Science.gov

Sample records for nerve growth induces

  1. Proteasome Inhibition by Fellutamide B Induces Nerve Growth Factor Synthesis

    PubMed Central

    Hines, John; Groll, Michael; Fahnestock, Margaret; Crews, Craig M.

    2008-01-01

    SUMMARY Neurotrophic small molecules have the potential to aid in the treatment of neuronal injury and neurodegenerative diseases. The natural product fellutamide B, originally isolated from Penicillium fellutanum, potently induces nerve growth factor (NGF) release from fibroblasts and glial-derived cells, although the mechanism for this neurotrophic activity has not been elucidated. Here, we report that fellutamide B potently inhibits proteasome catalytic activity. High resolution structural information obtained from co-crystallization of the 20S proteasome reveals novel aspects regarding β-subunit binding and adduct formation by fellutamide B to inhibit their hydrolytic activity. We demonstrate that fellutamide B and other proteasome inhibitors increased NGF gene transcription via a cis-acting element (or elements) in the promoter. These results demonstrate an unrecognized connection between proteasome inhibition and NGF production, suggesting a possible new strategy in the development of neurotrophic agents. PMID:18482702

  2. Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density.

    PubMed

    Hirth, Michael; Rukwied, Roman; Gromann, Alois; Turnquist, Brian; Weinkauf, Benjamin; Francke, Klaus; Albrecht, Philip; Rice, Frank; Hägglöf, Björn; Ringkamp, Matthias; Engelhardt, Maren; Schultz, Christian; Schmelz, Martin; Obreja, Otilia

    2013-11-01

    Nerve growth factor (NGF) is involved in the long-term sensitization of nociceptive processing linked to chronic pain. Functional and structural ("sprouting") changes can contribute. Thus, humans report long-lasting hyperalgesia to mechanical and electrical stimulation after intradermal NGF injection and NGF-induced sprouting has been reported to underlie cancer bone pain and visceral pain. Using a human-like animal model we investigated the relationship between the structure and function of unmyelinated porcine nociceptors 3 weeks after intradermal NGF treatment. Axonal and sensory characteristics were studied by in vivo single-fiber electrophysiology and immunohistochemistry. C fibers recorded extracellularly were classified based on mechanical response and activity-dependent slowing (ADS) of conduction velocity. Intraepidermal nerve fiber (IENF) densities were assessed by immunohistochemistry in pigs and in human volunteers using the same NGF model. NGF increased conduction velocity and reduced ADS and propagation failure in mechano-insensitive nociceptors. The proportion of mechano-sensitive C nociceptors within NGF-treated skin areas increased from 45.1% (control) to 71% and their median mechanical thresholds decreased from 40 to 20 mN. After NGF application, the mechanical receptive fields of nociceptors increased from 25 to 43 mm(2). At the structural level, however, IENF density was not increased by NGF. In conclusion, intradermal NGF induces long-lasting axonal and mechanical sensitization in porcine C nociceptors that corresponds to hyperalgesia observed in humans. Sensitization is not accompanied by increased IENF density, suggesting that NGF-induced hyperalgesia might not depend on changes in nerve fiber density but could be linked to the recruitment of previously silent nociceptors. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  3. Exposure to Nerve Growth Factor Worsens Nephrotoxic Effect Induced by Cyclosporine A in HK-2 Cells

    PubMed Central

    Lofaro, Danilo; Toteda, Giuseppina; Lupinacci, Simona; Leone, Francesca; Gigliotti, Paolo; Papalia, Teresa; Bonofiglio, Renzo

    2013-01-01

    Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkANTR and p75NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A. PMID:24244623

  4. Potential mechanisms for hypoalgesia induced by anti-nerve growth factor immunoglobulin are identified using autoimmune nerve growth factor deprivation

    PubMed Central

    Hoffman, E. Matthew; Zhang, Zijia; Anderson, Michael B.; Schechter, Ruben; Miller, Kenneth E.

    2011-01-01

    Nerve growth factor (NGF) antagonism has long been proposed as a chronic pain treatment. In 2010, the FDA suspended clinical trials using tanezumab, a humanized monoclonal anti-NGF antibody, to treat osteoarthritis due to worsening joint damage in 16 patients. Increased physical activity in the absence of acute pain which normally prevents self harm was purported as a potential cause. Such an adverse effect is consistent with an extension of tanezumab's primary mechanism of action by decreasing pain sensitivity below baseline levels. In animal inflammatory pain models, NGF antagonism decreases intraepidermal nerve fiber (IENF) density and attenuates increases in expression of nociception related proteins, such as calcitonin gene-related peptide (CGRP) and substance P (SP). Little is known of the effects of NGF antagonism in noninflamed animals and the hypoalgesia that ensues. In the current study, we immunized rats with NGF or cytochrome C (cytC) and examined 1) nocifensive behaviors with thermal latencies, mechanical thresholds, the hot plate test, and the tail flick test, 2) IENF density, and 3) expression of CGRP, SP, voltage-gated sodium channel 1.8 (Nav1.8), and glutaminase in subpopulations of dorsal root ganglion (DRG) neurons separated by size and isolectin B4 (IB4) labeling. Rats with high anti-NGF titers had delayed responses on the hot plate test but no other behavioral abnormalities. Delayed hot plate responses correlated with lower IENF density. CGRP and SP expression was decreased principally in medium (400-800 μm2) and small neurons (<400 μm2), respectively, regardless of IB4 labeling. Expression of Nav1.8 was only decreased in small and medium IB4 negative neurons. NGF immunization appears to result in a more profound antagonism of NGF than tanezumab therapy, but we hypothesize that decreases in IENF density and nociception related protein expression are potential mechanisms for tanezumab induced hypoalgesia. PMID:21802499

  5. Nerve growth factor induces the expression of chaperone protein calreticulin in human epithelial ovarian cells.

    PubMed

    Vera, C; Tapia, V; Kohan, K; Gabler, F; Ferreira, A; Selman, A; Vega, M; Romero, C

    2012-07-01

    Epithelial ovarian cancer is highly angiogenic and high expression of Nerve Growth Factor (NGF), a proangiogenic protein. Calreticulin is a multifunctional protein with anti-angiogenic properties and its translocation to the tumor cell membrane promotes recognition and engulfment by dendritic cells. The aim of this work was to evaluate calreticulin expression in human normal ovaries, benign and borderline tumors, and epithelial ovarian cancer samples and to evaluate whether NGF regulates calreticulin expression in human ovarian surface epithelium and in epithelial ovarian cancer cell lines. Calreticulin mRNA and protein levels were analyzed using RT-PCR, Western blot and immunohistochemistry in 67 human ovarian samples obtained from our Institution. Calreticulin expression induced by NGF stimulation in cell lines was evaluated using RT-PCR, Western blot and immunocytochemistry. We found a significant increase of calreticulin mRNA levels in epithelial ovarian cancer samples as compared to normal ovaries, benign tumors, and borderline tumors. Calreticulin protein levels, evaluated by Western blot, were also increased in epithelial ovarian cancer with respect to benign and borderline tumors. When HOSE and A2780 cell lines were stimulated with Nerve Growth Factor, we found an increase in calreticulin protein levels compared to controls. This effect was reverted by GW441756, a TRKA specific inhibitor. These results suggest that NGF regulates calreticulin protein levels in epithelial ovarian cells through TRKA receptor activation. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Nerve growth factor induced hyperalgesia in the rat hind paw is dependent on circulating neutrophils.

    PubMed

    Bennett, G; al-Rashed, S; Hoult, J R; Brain, S D

    1998-09-01

    The mechanisms by which nerve growth factor (NGF) induces thermal hyperalgesia and neutrophil accumulation have been investigated in the rat. Thermal nociceptive thresholds in rat hind paw were measured as the time taken for paw withdrawal from a heat source and neutrophil accumulation was measured in hind paw and dorsal skin samples using a myeloperoxidase assay. NGF (23-80 pmol intraplantar (i.pl.) injection) induced a significant (P < 0.05, n = 6-16) thermal hyperalgesia at 5 h after injection and significant neutrophil accumulation (P < 0.05, n = 6) was observed with NGF (40 pmol). In dorsal skin, where multiple samples can be assessed, intradermal (i.d.) NGF was 10-30 times less potent than interleukin-1beta in inducing neutrophil accumulation. The 5-lipoxygenase inhibitor ZM230487 (10 nmol co-injected with NGF) significantly attenuated neutrophil accumulation and hyperalgesia induced by NGF; unlike the histamine and 5-hydroxytryptamine antagonists (mepyramine and methysergide) which were without effect at the times measured. Furthermore, depletion of circulating neutrophils (using a rabbit anti-rat neutrophil antibody) abolished NGF induced hyperalgesia. These results indicate that neutrophils, which accumulate in response to a 5-lipoxygenase product, play a crucial role in NGF-induced hyperalgesia.

  7. Shape changes induced by biologically active peptides and nerve growth factor in blood platelets of rabbits.

    PubMed

    Gudat, F; Laubscher, A; Otten, U; Pletscher, A

    1981-11-01

    1 Nerve growth factor (NGF), substance P (SP) and thymopoietin all caused shape change reactions of rapid onset in rabbit platelets. NGF had the highest maximal effect, and SP the lowest EC50 (concentration causing half maximal shape change). The action of SP was reversible within 5 min, whereas that of NGF lasted for at least 1 h. A series of other peptides were inactive. 2 After preincubation of platelets with SP, a second application of SP no longer caused a shape change reaction, whereas the effect of NGF was not influenced. 3 An oxidized NGF-derivative without biological activity did not cause a shape change reaction, neither did epidermal growth factor. 4 Prostaglandin E1 (PGE1) and pretreatment of the platelets with 3% butanol, which counteract the shape changes caused by 5-hydroxytryptamine (5-HT) and adenosine 3',5'-diphosphate, also antagonized those induced by NGF and SP. Neither heparin nor methysergide, an antagonist of 5-HT-receptors, influenced the shape change induced by NGF or SP. The action of NGF was also antagonized by a specific antibody to NGF. 5 Thymopoietin, like the basic polypeptide polyornithine (mol. wt. 40,000) was not antagonized by PGE1 and butanol. Heparin, which counteracted the effect of polyornithine, did not influence that of thymopoietin. 6 In conclusion, different modes of action are involved in the shape change of blood platelets induced by polypeptides and proteins. SP and NGF may act by stimulating specific membrane receptors.

  8. Nerve growth factor partially recovers inflamed skin from stress-induced worsening in allergic inflammation.

    PubMed

    Peters, Eva M J; Liezmann, Christiane; Spatz, Katharina; Daniltchenko, Maria; Joachim, Ricarda; Gimenez-Rivera, Andrey; Hendrix, Sven; Botchkarev, Vladimir A; Brandner, Johanna M; Klapp, Burghard F

    2011-03-01

    Neuroimmune dysregulation characterizes atopic disease, but its nature and clinical impact remain ill-defined. Induced by stress, the neurotrophin nerve growth factor (NGF) may worsen cutaneous inflammation. We therefore studied the role of NGF in the cutaneous stress response in a mouse model for atopic dermatitis-like allergic dermatitis (AlD). Combining several methods, we found that stress increased cutaneous but not serum or hypothalamic NGF in telogen mice. Microarray analysis showed increased mRNAs of inflammatory and growth factors associated with NGF in the skin. In stress-worsened AlD, NGF-neutralizing antibodies markedly reduced epidermal thickening together with NGF, neurotrophin receptor (tyrosine kinase A and p75 neurotrophin receptor), and transforming growth factor-β expression by keratinocytes but did not alter transepidermal water loss. Moreover, NGF expression by mast cells was reduced; this corresponded to reduced cutaneous tumor necrosis factor-α (TNF-α) mRNA levels but not to changes in mast cell degranulation or in the T helper type 1 (Th1)/Th2 cytokine balance. Also, eosinophils expressed TNF receptor type 2, and we observed reduced eosinophil infiltration after treatment with NGF-neutralizing antibodies. We thus conclude that NGF acts as a local stress mediator in perceived stress and allergy and that increased NGF message contributes to worsening of cutaneous inflammation mainly by enhancing epidermal hyperplasia, pro-allergic cytokine induction, and allergy-characteristic cellular infiltration.

  9. Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease.

    PubMed

    Bruno, Martin A; Leon, Wanda C; Fragoso, Gabriela; Mushynski, Walter E; Almazan, Guillermina; Cuello, A Claudio

    2009-08-01

    We previously reported that the precursor form of nerve growth factor (pro-NGF) and not mature NGF is liberated in the CNS in an activity-dependent manner, and that its maturation and degradation occur in the extracellular space by the coordinated action of proteases.Here, we present evidence of diminished conversion of pro-NGF to its mature form and of greater NGF degradation in Alzheimer disease (AD) brain samples compared with controls. These alterations of the NGF metabolic pathway likely resulted in the increased pro-NGF levels. The pro-NGF was largely in a peroxynitrited form in the AD samples. Intrahippocampal injection of amyloid-beta oligomers provoked similar upregulation of pro-NGF in naive rats that was accompanied by evidence of microglial activation (CD40), increased levels of inducible nitric oxide synthase, and increased activity of the NGF-degrading enzyme matrix metalloproteinase 9. The elevated inducible nitric oxide synthase provoked the generation of biologically inactive, peroxynitrite-modified pro-NGF in amyloid-beta oligomer-injected rats. These parameters were corrected by minocycline treatment. Minocycline also diminished altered matrix metalloproteinase 9, inducible nitric oxide synthase, and microglial activation (CD40); improved cognitive behavior; and normalized pro-NGF levels in a transgenic mouse AD model. The effects of amyloid-beta amyloid CNS burden on NGF metabolism may explain the paradoxical upregulation of pro-NGF in AD accompanied by atrophy of forebrain cholinergic neurons.

  10. Nerve growth factor protects against palmitic acid-induced injury in retinal ganglion cells

    PubMed Central

    Yan, Pan-shi; Tang, Shu; Zhang, Hai-feng; Guo, Yuan-yuan; Zeng, Zhi-wen; Wen, Qiang

    2016-01-01

    Accumulating evidence supports an important role for nerve growth factor (NGF) in diabetic retinopathy. We hypothesized that NGF has a protective effect on rat retinal ganglion RGC-5 cells injured by palmitic acid (PA), a metabolic factor implicated in the development of diabetes and its complications. Our results show that PA exposure caused apoptosis of RGC-5 cells, while NGF protected against PA insult in a concentration-dependent manner. Additionally, NGF significantly attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in RGC-5 cells. Pathway inhibitor tests showed that the protective effect of NGF was completely reversed by LY294002 (PI3K inhibitor), Akt VIII inhibitor, and PD98059 (ERK1/2 inhibitor). Western blot analysis revealed that NGF induced the phosphorylation of Akt/FoxO1 and ERK1/2 and reversed the PA-evoked reduction in the levels of these proteins. These results indicate that NGF protects RGC-5 cells against PA-induced injury through anti-oxidation and inhibition of apoptosis by modulation of the PI3K/Akt and ERK1/2 signaling pathways. PMID:28123432

  11. Anti-nerve growth factor antibody attenuates chronic morphine treatment-induced tolerance in the rat.

    PubMed

    Cheppudira, Bopaiah P; Trevino, Alex V; Petz, Lawrence N; Christy, Robert J; Clifford, John L

    2016-09-05

    Nerve growth factor (NGF) is known to induce inflammation and pain; however its role in opioid-induced tolerance has not been studied. This study investigated the effects of an anti-NGF neutralizing antibody on the development of tolerance following chronic morphine treatment in naïve rats. Four groups of rats were used in this study; one treated with saline alone, one with 10 mg/kg of morphine, one with 10 μg of anti-NGF and the other with 10 mg/kg of morphine + 10 μg of anti-NGF, twice per day for 5 days. The route of treatment was subcutaneous (S.C.) for morphine and saline, and intraperitoneal (i.p.) for anti-NGF. Response to a noxious thermal stimulus during the course of drug treatment was assessed (Hargreaves' test). Further, the change in the NGF levels in the lumbar spinal cord was measured by ELISA. Our results showed that repeated administration of morphine produced an apparent tolerance which was significantly attenuated by co-administration of anti-NGF (P < 0.001). Additionally, the area under the curve (AUC) of the analgesic effect produced by the combination of morphine and anti-NGF was significantly (P < 0.001) greater than for saline controls and chronic morphine treated rats. Moreover, the level of NGF in the spinal cord of chronic morphine treated rats was significantly higher (P < 0.05) than in both the saline control group and the group receiving simultaneous administration of anti-NGF with morphine. These results indicate that anti-NGF has the potential to attenuate morphine-induced tolerance behavior by attenuating the effects of NGF at the spinal level. Taken together, our study strongly suggests that the NGF signaling system is a potential novel target for treating opioid-induced tolerance.

  12. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells.

    PubMed

    Mesentier-Louro, Louise A; De Nicolò, Sara; Rosso, Pamela; De Vitis, Luigi A; Castoldi, Valerio; Leocani, Letizia; Mendez-Otero, Rosalia; Santiago, Marcelo F; Tirassa, Paola; Rama, Paolo; Lambiase, Alessandro

    2017-01-05

    Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75(NTR), TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75(NTR) enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75(NTR) contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.

  13. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells

    PubMed Central

    Mesentier-Louro, Louise A.; De Nicolò, Sara; Rosso, Pamela; De Vitis, Luigi A.; Castoldi, Valerio; Leocani, Letizia; Mendez-Otero, Rosalia; Santiago, Marcelo F.; Tirassa, Paola; Rama, Paolo; Lambiase, Alessandro

    2017-01-01

    Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration. PMID:28067793

  14. Response Growth With Sound Level in Auditory-Nerve Fibers After Noise-Induced Hearing Loss

    PubMed Central

    Heinz, Michael G.; Young, Eric D.

    2010-01-01

    People with sensorineural hearing loss are often constrained by a reduced acoustic dynamic range associated with loudness recruitment; however, the neural correlates of loudness and recruitment are still not well understood. The growth of auditory-nerve (AN) activity with sound level was compared in normal-hearing cats and in cats with a noise-induced hearing loss to test the hypothesis that AN-fiber rate-level functions are steeper in impaired ears. Stimuli included best-frequency and fixed-frequency tones, broadband noise, and a brief speech token. Three types of impaired responses were observed. 1) Fibers with rate-level functions that were similar across all stimuli typically had broad tuning, consistent with outer-hair-cell (OHC) damage. 2) Fibers with a wide dynamic range and shallow slope above threshold often retained sharp tuning, consistent with primarily inner-hair-cell (IHC) damage. 3) Fibers with very steep rate-level functions for all stimuli had thresholds above approximately 80 dB SPL and very broad tuning, consistent with severe IHC and OHC damage. Impaired rate-level slopes were on average shallower than normal for tones, and were steeper in only limited conditions. There was less variation in rate-level slopes across stimuli in impaired fibers, presumably attributable to the lack of suppression-induced reductions in slopes for complex stimuli relative to BF-tone slopes. Sloping saturation was observed less often in impaired fibers. These results illustrate that AN fibers do not provide a simple representation of the basilar-membrane I/O function and suggest that both OHC and IHC damage can affect AN response growth. PMID:14534289

  15. Bradykinin modulates spontaneous nerve growth factor production and stretch-induced ATP release in human urothelium.

    PubMed

    Ochodnický, Peter; Michel, Martina B; Butter, Jan J; Seth, Jai; Panicker, Jalesh N; Michel, Martin C

    2013-04-01

    The urothelium plays a crucial role in integrating urinary bladder sensory outputs, responding to mechanical stress and chemical stimulation by producing several diffusible mediators, including ATP and, possibly, neurotrophin nerve growth factor (NGF). Such urothelial mediators activate underlying afferents and thus may contribute to normal bladder sensation and possibly to the development of bladder overactivity. The muscle-contracting and pain-inducing peptide bradykinin is produced in various inflammatory and non-inflammatory pathologies associated with bladder overactivity, but the effect of bradykinin on human urothelial function has not yet been characterized. The human urothelial cell line UROtsa expresses mRNA for both B1 and B2 subtypes of bradykinin receptors, as determined by real-time PCR. Bradykinin concentration-dependently (pEC50=8.3, Emax 4434±277nM) increased urothelial intracellular calcium levels and induced phosphorylation of the mitogen-activated protein kinase (MAPK) ERK1/2. Activation of both bradykinin-induced signaling pathways was completely abolished by the B2 antagonist icatibant (1μM), but not the B1 antagonist R715 (1μM). Bradykinin-induced (100nM) B2 receptor activation markedly increased (192±13% of control levels) stretch-induced ATP release from UROtsa in hypotonic medium, the effect being dependent on intracellular calcium elevations. UROtsa cells also expressed mRNA and protein for NGF and spontaneously released NGF to the medium in the course of hours (11.5±1.4pgNGF/mgprotein/h). Bradykinin increased NGF mRNA expression and accelerated urothelial NGF release to 127±5% in a protein kinase C- and ERK1/2-dependent manner. Finally, bradykinin up-regulated mRNA for transient-receptor potential vanilloid (TRPV1) sensory ion channel in UROtsa. In conclusion, we show that bradykinin represents a versatile modulator of human urothelial phenotype, accelerating stretch-induced ATP release, spontaneous release of NGF, as well as

  16. Depletion of nerve growth factor in chemotherapy-induced peripheral neuropathy associated with hematologic malignancies.

    PubMed

    Youk, Jeonghwan; Kim, Young-Sook; Lim, Jung-Ah; Shin, Dong-Yeop; Koh, Youngil; Lee, Soon-Tae; Kim, Inho

    2017-01-01

    To investigate whether the depletion of nerve growth factor (NGF) is associated with the development of chemotherapy-induced peripheral neuropathy (CIPN) in patients with hematologic malignancy. We prospectively enrolled hematologic cancer patients who had a plan to receive bortezomib, thalidomide, or vincristine. Baseline NGF levels were measured within one week before the start date of chemotherapy. Follow-up NGF levels were measured after four months from the start date of chemotherapy or the date when CIPN was initially diagnosed. Baseline and follow-up NGF pairs were measured in 45 patients (male/female = 27/18, median age = 63 years old). CIPN has developed in 28 patients. In the CIPN group, the level of NGF was significantly decreased after chemotherapy compared to the baseline (△NGF = -3.52 ±5.72; p-value = 0.003), while the NGF level of the no-CIPN group was not changed after chemotherapy. The differences in △NGF levels between the CIPN and no-CIPN group were more profound when analyzed in the subgroup of newly diagnosed multiple myeloma patients (△NGF = -4.14 ± 4.87 pg/ml for the CIPN group and +2.52 ± 8.39 pg/ml for the no-CIPN group; p-value = 0.043). This study shows that the depletion of NGF occurs during the development of CIPN, suggesting pathogenesis based on the role of NGF and therapeutic implications.

  17. Atlastin regulates store-operated calcium entry for nerve growth factor-induced neurite outgrowth

    PubMed Central

    Li, Jing; Yan, Bing; Si, Hongjiang; Peng, Xu; Zhang, Shenyuan L.; Hu, Junjie

    2017-01-01

    Homotypic membrane fusion of the endoplasmic reticulum (ER) is mediated by a class of dynamin-like GTPases known as atlastin (ATL). Depletion of or mutations in ATL cause an unbranched ER morphology and hereditary spastic paraplegia (HSP), a neurodegenerative disease characterized by axon shortening in corticospinal motor neurons and progressive spasticity of the lower limbs. How ER shaping is linked to neuronal defects is poorly understood. Here, we show that dominant-negative mutants of ATL1 in PC-12 cells inhibit nerve growth factor (NGF)-induced neurite outgrowth. Overexpression of wild-type or mutant ATL1 or depletion of ATLs alters ER morphology and affects store-operated calcium entry (SOCE) by decreasing STIM1 puncta formation near the plasma membrane upon calcium depletion of the ER. In addition, blockage of the STIM1-Orai pathway effectively abolishes neurite outgrowth of PC-12 cells stimulated by NGF. These results suggest that SOCE plays an important role in neuronal regeneration, and mutations in ATL1 may cause HSP, partly by undermining SOCE. PMID:28240257

  18. Nerve growth induces 5-HT sub 3 recognition sites in rat pheochromocytoma (PC12) cells

    SciTech Connect

    Gordon, J.C.; Rowland, H.C. )

    1990-01-01

    In rat pheochromocytoma (PC12) cells, nerve growth factor (7S NGF) induced the expression of recognition sites that bind the specific 5-HT{sub 3} antagonist (S-) ({sup 3}H) zacopride. Culturing PC12 cells for 8-12 days in the presence of 50 ng/ml NGF increased the density (B{sub max}) of (S-) ({sup 3}H) zacopride binding sites in cell membranes (0-100,000 x g fraction) from 0 to 105 fmoles/mg protein. This binding exhibited high affinity for (S-) ({sup 3}H) zacopride (K{sub d}=0.8 nM), was specific (>95%), and was inhibited by 5-HT{sub 3} compounds with a rank of potency (quipazine>ICS 205-930 > GR38032F > BRL 24924{approx}MDL 72222 > phenylbiguanide {le} seroton-in > 2-methyl-serotonin > metoclopramide) which was distinct from neuroblastoma cells. Thus, NGF-differentiated PC12 cells possess a 5-HT{sub 3} receptor and should be useful to investigate its regulation and biochemical mechanism of action.

  19. Methamphetamine reversed maternal separation-induced decrease in nerve growth factor in the ventral hippocampus.

    PubMed

    Dimatelis, J J; Russell, V A; Stein, D J; Daniels, W M

    2014-06-01

    Stress has been suggested to predispose individuals to drug abuse. The early life stress of maternal separation (MS) is known to alter the response to drugs of abuse later in life. Exposure to either stress or methamphetamine has been shown to alter neurotrophic factors in the brain. Changes in neurotrophin levels may contribute to the underlying molecular mechanisms responsible for drug use- and stress-induced behaviours. The purpose of the present study was to investigate the individual effects of MS and methamphetamine administration during adolescence and the combined effects of both stressors on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels in the dorsal and ventral hippocampus (HC) in adulthood. Methamphetamine administration (1 mg/kg, daily from postnatal day (PND) 33 to 36 and from PND 39 to 42), MS and the combination of the two stressors resulted in decreased BDNF levels in both the dorsal and ventral HC. MS decreased NGF levels in the ventral HC which was restored by methamphetamine administration in adolescence. In the dorsal HC, NGF remained unaltered by either stressor alone or in combination. We propose that the restoration of NGF levels in the ventral HC may reflect a possible compensatory mechanism in response to methamphetamine exposure in adolescence following the early life stress of MS.

  20. Atropine-enhanced, antigen challenge-induced airway hyperreactivity in guinea pigs is mediated by eosinophils and nerve growth factor.

    PubMed

    Verbout, Norah G; Jacoby, David B; Gleich, Gerald J; Fryer, Allison D

    2009-08-01

    Although anticholinergic therapy inhibits bronchoconstriction in asthmatic patients and antigen-challenged animals, administration of atropine 1 h before antigen challenge significantly potentiates airway hyperreactivity and eosinophil activation measured 24 h later. This potentiation in airway hyperreactivity is related to increased eosinophil activation and is mediated at the level of the airway nerves. Since eosinophils produce nerve growth factor (NGF), which is known to play a role in antigen-induced airway hyperreactivity, we tested whether NGF mediates atropine-enhanced, antigen challenge-induced hyperreactivity. Antibody to NGF (Ab NGF) was administered to sensitized guinea pigs with and without atropine pretreatment (1 mg/kg iv) 1 h before challenge. At 24 h after challenge, animals were anesthetized, vagotomized, paralyzed, and ventilated. Electrical stimulation of both vagus nerves caused bronchoconstriction that was increased in challenged animals. Atropine pretreatment potentiated antigen challenge-induced hyperreactivity. Ab NGF did not affect eosinophils or inflammatory cells in any group, nor did it prevent hyperreactivity in challenged animals that were not pretreated with atropine. However, Ab NGF did prevent atropine-enhanced, antigen challenge-induced hyperreactivity and eosinophil activation (assessed by immunohistochemistry). This effect was specific to NGF, since animals given control IgG remained hyperreactive. These data suggest that anticholinergic therapy amplifies eosinophil interactions with airway nerves via NGF. Therefore, therapeutic strategies that target both eosinophil activation and NGF-mediated inflammatory processes in allergic asthma are likely to be beneficial.

  1. Atropine-enhanced, antigen challenge-induced airway hyperreactivity in guinea pigs is mediated by eosinophils and nerve growth factor

    PubMed Central

    Verbout, Norah G.; Jacoby, David B.; Gleich, Gerald J.; Fryer, Allison D.

    2009-01-01

    Although anticholinergic therapy inhibits bronchoconstriction in asthmatic patients and antigen-challenged animals, administration of atropine 1 h before antigen challenge significantly potentiates airway hyperreactivity and eosinophil activation measured 24 h later. This potentiation in airway hyperreactivity is related to increased eosinophil activation and is mediated at the level of the airway nerves. Since eosinophils produce nerve growth factor (NGF), which is known to play a role in antigen-induced airway hyperreactivity, we tested whether NGF mediates atropine-enhanced, antigen challenge-induced hyperreactivity. Antibody to NGF (Ab NGF) was administered to sensitized guinea pigs with and without atropine pretreatment (1 mg/kg iv) 1 h before challenge. At 24 h after challenge, animals were anesthetized, vagotomized, paralyzed, and ventilated. Electrical stimulation of both vagus nerves caused bronchoconstriction that was increased in challenged animals. Atropine pretreatment potentiated antigen challenge-induced hyperreactivity. Ab NGF did not affect eosinophils or inflammatory cells in any group, nor did it prevent hyperreactivity in challenged animals that were not pretreated with atropine. However, Ab NGF did prevent atropine-enhanced, antigen challenge-induced hyperreactivity and eosinophil activation (assessed by immunohistochemistry). This effect was specific to NGF, since animals given control IgG remained hyperreactive. These data suggest that anticholinergic therapy amplifies eosinophil interactions with airway nerves via NGF. Therefore, therapeutic strategies that target both eosinophil activation and NGF-mediated inflammatory processes in allergic asthma are likely to be beneficial. PMID:19447892

  2. Chronic Nerve Growth Factor Exposure Increases Apoptosis in a Model of In Vitro Induced Conjunctival Myofibroblasts

    PubMed Central

    Micera, Alessandra; Puxeddu, Ilaria; Balzamino, Bijorn Omar; Bonini, Stefano; Levi-Schaffer, Francesca

    2012-01-01

    In the conjunctiva, repeated or prolonged exposure to injury leads to tissue remodeling and fibrosis associated with dryness, lost of corneal transparency and defect of ocular function. At the site of injury, fibroblasts (FB) migrate and differentiate into myofibroblasts (myoFB), contributing to the healing process together with other cell types, cytokines and growth factors. While the physiological deletion of MyoFB is necessary to successfully end the healing process, myoFB prolonged survival characterizes the pathological process of fibrosis. The reason for myoFB persistence is poorly understood. Nerve Growth Factor (NGF), often increased in inflamed stromal conjunctiva, may represent an important molecule both in many inflammatory processes characterized by tissue remodeling and in promoting wound-healing and well-balanced repair in humans. NGF effects are mediated by the specific expression of the NGF neurotrophic tyrosine kinase receptor type 1 (trkANGFR) and/or the pan-neurotrophin glycoprotein receptor (p75NTR). Therefore, a conjunctival myoFB model (TGFβ1-induced myoFB) was developed and characterized for cell viability/proliferation as well as αSMA, p75NTR and trkANGFR expression. MyoFB were exposed to acute and chronic NGF treatment and examined for their p75NTR/trkANGFR, αSMA/TGFβ1 expression, and apoptosis. Both NGF treatments significantly increased the expression of p75NTR, associated with a deregulation of both αSMA/TGFβ1 genes. Acute and chronic NGF exposures induced apoptosis in p75NTR expressing myoFB, an effect counteracted by the specific trkANGFR and/or p75NTR inhibitors. Focused single p75NTR and double trkANGFR/p75NTR knocking-down experiments highlighted the role of p75NTR in NGF-induced apoptosis. Our current data indicate that NGF is able to trigger in vitro myoFB apoptosis, mainly via p75NTR. The trkANGFR/p75NTR ratio in favor of p75NTR characterizes this process. Due to the lack of effective pharmacological agents for balanced

  3. Lithium ion inhibits nerve growth factor-induced neurite outgrowth and phosphorylation of nerve growth factor-modulated microtubule-associated proteins

    PubMed Central

    1985-01-01

    LiCl (2.5-20 mM) reversibly suppressed nerve growth factor (NGF)- induced neurite outgrowth by cultured rat PC 12 pheochromocytoma cells. Similar concentrations of LiCl also reversibly blocked NGF-dependent regeneration of neurites by PC12 cells that had been primed by long- term pre-exposure to NGF and by cultured newborn mouse sympathetic neurons. In contrast, transcription-dependent responses of PC12 cells to NGF such as priming and induction of the NGF-inducible large external glycoprotein, occurred despite the presence of Li+. SDS PAGE analysis of total cellular phosphoproteins (labeled by 2-h exposure to 32P-orthophosphate) from neurite-bearing primed PC12 cells revealed that Li+ reversibly inhibited the phosphorylation of a band of Mr 64,000 that was barely detectable in NGF-untreated PC12 cells. However, Li+ did not appear to affect the labeling of other phosphoproteins in either NGF-primed or untreated PC12 cultures, nor did it affect the rapid increase in phosphorylation of several proteins that occurs when NGF is first added to unprimed cultures. Several criteria indicated that the NGF-inducible phosphoprotein of Mr 64,000 is a microtubule- associated protein (MAP). Of the NGF-inducible phosphorylated MAPs that have been detected in PC12 cells (Mr 64,000, 72,000, 80,000, and 320,000), several (Mr 64,000, 72,000, and 80,000) were found to be substantially less phosphorylated in the presence of Li+. Neither a phorbol ester tumor promotor nor permeant cAMP analogs reversed the inhibitory effects of Li+ on neurite outgrowth or on phosphorylation of the component of Mr 64,000. Microtubules are a major and required constituent of neurites, and MAPs may regulate the assembly and stability of neuritic microtubules. The observation that Li+ selectively inhibits NGF-induced neurite outgrowth and MAP phosphorylation suggests a possible causal relationship between these two events. PMID:4030895

  4. Noninflammatory upregulation of nerve growth factor underlies gastric hypersensitivity induced by neonatal colon inflammation

    PubMed Central

    Li, Qingjie; Winston, John H.

    2015-01-01

    Gastric hypersensitivity is one of the key contributors to the postprandial symptoms of epigastric pain/discomfort, satiety, and fullness in functional dyspepsia patients. Epidemiological studies found that adverse early-life experiences are risk factors for the development of gastric hypersensitivity. Preclinical studies found that neonatal colon inflammation elevates plasma norepinephrine (NE), which upregulates expression of nerve growth factor (NGF) in the muscularis externa of the gastric fundus. Our goal was to investigate the cellular mechanisms by which NE upregulates the expression of NGF in gastric hypersensitive (GHS) rats, which were subjected previously to neonatal colon inflammation. Neonatal colon inflammation upregulated NGF protein, but not mRNA, in the gastric fundus of GHS rats. Western blotting showed upregulation of p110γ of phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K), phosphoinositide-dependent kinase-1 (PDK1), pAKT(Ser473), and phosphorylated 4E-binding protein (p4E-BP1)(Thr70), suggesting AKT activation and enhanced NGF protein translation. AKT inhibitor MK-2206 blocked the upregulation of NGF in the fundus of GHS rats. Matrix metalloproteinase 9 (MMP-9), the major NGF-degrading protease, was suppressed, indicating that NGF degradation was impeded. Incubation of fundus muscularis externa with NE upregulated NGF by modulating the protein translation and degradation pathways. Yohimbine, an α2-adrenergic receptor antagonist, upregulated plasma NE and NGF expression by activating the protein translation and degradation pathways in naive rats. In contrast, a cocktail of adrenergic receptor antagonists suppressed the upregulation of NGF by blocking the activation of the protein translation and degradation pathways. Our findings provide evidence that the elevation of plasma NE induces NGF expression in the gastric fundus. PMID:26608656

  5. Nerve growth factor and cytokines mediate lymphoid tissue-induced neurite outgrowth from mouse superior cervical ganglia in vitro.

    PubMed

    Kannan, Y; Bienenstock, J; Ohta, M; Stanisz, A M; Stead, R H

    1996-07-01

    Superior cervical ganglia (SCG) from neonatal mice were cultured with adult murine lymphoid tissue explants in Matrigel (Collaborative Biomedical, Bedford, MA). After 1 and 2 days in culture, many neurites grew toward thymus and spleen. Normal mesenteric lymph node (MLN) induced a smaller effect; however, activated MLN (isolated from mice 10 days after infection with Nippostrongylus brasiliensis; Nb-MLN-10d) caused significantly increased neurite outgrowth. To determine the roles of nerve growth factor (NGF) and cytokines in the promotion of neuritogenesis by lymphoid tissues, anti-NGF and various anti-cytokines were added to cocultures. Anti-NGF inhibited most of the neurite outgrowth toward thymus and spleen but only partially that toward Nb-MLN-10d. Anti-mouse IL-1 beta also significantly reduced the number of neurites growing toward thymus, spleen, and normal MLN. The number of neurites growing toward Nb-MLN-10d was significantly reduced by anti-IL-1 beta, anti-IL-3, anti-IL-6, or anti-GM-CSF. Exogenous IL-1 beta and IL-3 caused neurite outgrowth in single SCG cultures; and the IL-1 beta-, but not the IL-3-, mediated effect was completely blocked by anti-NGF. In one-day thymus/SCG cocultures, endogenous IL-1 was not detectable at concentrations sufficient to cause nerve growth; however, ample NGF was present in the thymic tissues and culture supernatants, but not in SCG. These data suggest that IL-1 mediates NGF production in lymphoid tissues, which in turn induces the growth of sympathetic nerves. Moreover, IL-3, IL-6, or GM-CSF produced during inflammation might also play important roles in the stimulation of nerve growth in vivo.

  6. Effect of a 5-lipoxygenase inhibitor on nerve growth factor-induced thermal hyperalgesia in the rat.

    PubMed

    Amann, R; Schuligoi, R; Lanz, I; Peskar, B A

    1996-06-13

    Intraplantar injection of mouse beta (2.5S) nerve growth factor (NGF) caused thermal hyperalgesia and stimulated release of immunoreactive leukotriene B4 from the rat paw skin. Both effects of NGF were prevented by the 5-lipoxygenase inhibitor, (R)-2-[4-quinolin-2-yl-methoxy)phenyl]-2-cyclopentyl acetic acid (BAY X1005). BAY X1005 did not affect bradykinin-induced thermal hyperalgesia. These results suggest the participation of 5-lipoxygenase products of arachidonate in NGF-induced local thermal hyperalgesia.

  7. Emotional stress induced by parachute jumping enhances blood nerve growth factor levels and the distribution of nerve growth factor receptors in lymphocytes.

    PubMed

    Aloe, L; Bracci-Laudiero, L; Alleva, E; Lambiase, A; Micera, A; Tirassa, P

    1994-10-25

    We examined the plasma nerve growth factor (NGF) level and the distribution of NGF receptors in peripheral lymphocytes of young soldiers (mean age, 20-24 yr) experiencing the thrill of a novice about to make their first parachute jumps. Blood was collected from soldiers who knew they were selected to jump (n = 26), as well as from soldiers who knew they were not selected (n = 17, controls). The former group was sampled the evening before the jump and 20 min after landing. Compared with controls, NGF levels increased 84% in prejump and 107% in postjump sampling. Our studies also showed that the increase of NGF levels preceded the increase of plasma cortisol and adrenocorticotropic hormone. No changes in the baseline levels of circulating interleukin 1 beta or tumor necrosis factor were found, suggesting that the increased levels of NGF were not correlated with change in these cytokines. Moreover, immunofluorescence analysis demonstrated that parachuting stress enhances the distribution of low-affinity p75LNGFR and high-affinity p140trkA NGF receptors in circulating peripheral blood mononuclear cells. These observations suggest that the release of NGF might be involved in the activation of cells of the immune system and is most probably associated with homeostatic adaptive mechanisms, as previously shown for stressed rodents.

  8. Emotional stress induced by parachute jumping enhances blood nerve growth factor levels and the distribution of nerve growth factor receptors in lymphocytes.

    PubMed Central

    Aloe, L; Bracci-Laudiero, L; Alleva, E; Lambiase, A; Micera, A; Tirassa, P

    1994-01-01

    We examined the plasma nerve growth factor (NGF) level and the distribution of NGF receptors in peripheral lymphocytes of young soldiers (mean age, 20-24 yr) experiencing the thrill of a novice about to make their first parachute jumps. Blood was collected from soldiers who knew they were selected to jump (n = 26), as well as from soldiers who knew they were not selected (n = 17, controls). The former group was sampled the evening before the jump and 20 min after landing. Compared with controls, NGF levels increased 84% in prejump and 107% in postjump sampling. Our studies also showed that the increase of NGF levels preceded the increase of plasma cortisol and adrenocorticotropic hormone. No changes in the baseline levels of circulating interleukin 1 beta or tumor necrosis factor were found, suggesting that the increased levels of NGF were not correlated with change in these cytokines. Moreover, immunofluorescence analysis demonstrated that parachuting stress enhances the distribution of low-affinity p75LNGFR and high-affinity p140trkA NGF receptors in circulating peripheral blood mononuclear cells. These observations suggest that the release of NGF might be involved in the activation of cells of the immune system and is most probably associated with homeostatic adaptive mechanisms, as previously shown for stressed rodents. Images PMID:7937971

  9. Neuropathic pain and Nerve Growth Factor in Chemotherapy-Induced Peripheral Neuropathy: prospective clinical-pathological study.

    PubMed

    Velasco, R; Navarro, X; Gil-Gil, M; Herrando-Grabulosa, M; Calls, A; Bruna, J

    2017-08-07

    Neuropathic pain can be present in patients developing chemotherapy-induced peripheral neuropathy (CIPN). Nerve growth factor (NGF) is trophic to small sensory fibers and regulates nociception. We investigated the changes in serum NGF and intraepidermal nerve fiber density (IENFD) in skin biopsies of cancer patients receiving neurotoxic chemotherapy in a single-center prospective observational study. Patients were evaluated before and after chemotherapy administration. CIPN was graded with Total Neuropathy Score(©), nerve conduction studies, and NCI-CTCAE scale. Neuropathic pain was defined according to the EORTC QLQ-CIPN20 questionnaire. Neuropathic pain was present in 13 of 60 patients (21%), who reported shooting or burning pain in the hands (n=9) and the feet (n=12). Patients displaying painful CIPN presented higher NGF after treatment compared to patients with painless or absent CIPN (8.7±11.9 vs 2.5±1.4 pg/mL, p=0.016). The change of NGF significantly correlated with neuropathic pain. Patients with painful CIPN did not show significant loss of IEFND compared to patients with painless or absent CIPN (6.16±3.86 vs 8.37±4.82, p=0.12). No correlation between IEFND and NGF was observed. Serum NGF increases in cancer patients receiving taxane or platinum with painful CIPN, suggesting that it might be a potential biomarker of presence and severity of neuropathic pain in this population. Long-term comprehensive studies to better define the course of NGF in relation with neurological outcomes would be helpful in the further design of therapies for CIPN related neuropathic pain. Copyright © 2017. Published by Elsevier Inc.

  10. Nerve growth factor-induced neurite sprouting in PC12 cells involves sigma-1 receptors: implications for antidepressants.

    PubMed

    Takebayashi, Minoru; Hayashi, Teruo; Su, Tsung-Ping

    2002-12-01

    One theory concerning the action of antidepressants relates to the drugs' ability to induce an adaptive plasticity in neurons such as neurite sprouting. Certain antidepressants are known to bind to sigma-1 receptors (Sig-1R) with high affinity. Sig-1R are dynamic endoplasmic reticulum proteins that are highly concentrated at the tip of growth cones in cultured cells. We therefore tested the hypotheses that Sig-1R might participate in the neurite sprouting and that antidepressants with Sig-1R affinity may promote the neuronal sprouting via Sig-1R. The prototypic Sig-1R agonist (+)-pentazocine [(+)PTZ], as well as the Sig-1R-active antidepressants imipramine and fluvoxamine, although ineffective by themselves, were found to enhance the nerve growth factor (NGF)-induced neurite sprouting in PC12 cells in a dose-dependent manner. A Sig-1R antagonist N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE100) blocked the enhancements caused by these Sig-1R agonists. In separate experiments, we found that NGF dose and time dependently increased Sig-1R in PC12 cells. Chronic treatment of cells with (+)PTZ, imipramine, or fluvoxamine also increased Sig-1R. These latter results suggested that NGF induces the neurite sprouting by increasing Sig-1R. Indeed, the overexpression of Sig-1R per se in PC12 cells enhanced the NGF-induced neurite sprouting. Furthermore, antisense deoxyoligonucleotides directed against Sig-1R attenuated the NGF-induced neurite sprouting. Thus, when taken together, our results indicate that Sig-1R play an important role in the NGF-induced neurite sprouting and that certain antidepressants may facilitate neuronal sprouting in the brain via Sig-1R.

  11. Nerve growth factor-induced changes in neural cell adhesion molecule (N-CAM) in PC12 cells.

    PubMed Central

    Prentice, H M; Moore, S E; Dickson, J G; Doherty, P; Walsh, F S

    1987-01-01

    The effects of nerve growth factor (NGF) on the expression of neural cell adhesion molecule (N-CAM) in PC12 cells were determined. A quantitative immunoassay was used to show that NGF induces a 4- to 5-fold increase in relative N-CAM levels over a 3-day period. This increase could not be mimicked by cholera toxin suggesting that it is not a simple consequence of morphological differentiation. The changes in N-CAM levels induced by NGF were accompanied by changes in N-CAM molecular forms. The 140-kd N-CAM species is the major N-CAM expressed by naive PC12 cells, while NGF-treated cultures express N-CAM species of 180 kd and 140 kd. Northern analysis showed that naive cells express a 6.7-kd N-CAM mRNA species only, while NGF-treated cultures express both a 6.7-kb and a 7.2-kb transcript. As the 6.7-kb and 7.2-kb mRNAs are alternative spliced transcripts of a single gene, this result shows that NGF can activate a neuron-specific splicing mechanism. This is the first description of control of N-CAM expression by a growth factor. Images Fig. 3. Fig. 4. Fig. 5. PMID:3308447

  12. KANK1 inhibits cell growth by inducing apoptosis though regulating CXXC5 in human malignant peripheral nerve sheath tumors

    PubMed Central

    Cui, Zhibin; Shen, Yingjia; Chen, Kenny H.; Mittal, Suresh K.; Yang, Jer-Yen; Zhang, GuangJun

    2017-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are a type of rare sarcomas with a poor prognosis due to its highly invasive nature and limited treatment options. Currently there is no targeted-cancer therapy for this type of malignancy. Thus, it is important to identify more cancer driver genes that may serve as targets of cancer therapy. Through comparative oncogenomics, we have found that KANK1 was a candidate tumor suppressor gene (TSG) for human MPNSTs. Although KANK1 is known as a cytoskeleton regulator, its tumorigenic function in MPNSTs remains largely unknown. In this study, we report that restoration of KANK1 in human MPNST cells inhibits cell growth both in human cell culture and xenograft mice by increasing apoptosis. Consistently, knockdown of KANK1 in neurofibroma cells promoted cell growth. Using RNA-seq analysis, we identified CXXC5 and other apoptosis-related genes, and demonstrated that CXXC5 is regulated by KANK1. Knockdown of CXXC5 was found to diminish KANK1-induced apoptosis in MPNST cells. Thus, KANK1 inhibits MPNST cell growth though CXXC5 mediated apoptosis. Our results suggest that KANK1 may function as a tumor suppressor in human MPNSTs, and thus it may be useful for targeted therapy. PMID:28067315

  13. Nerve growth factor withdrawal-induced cell death in neuronal PC12 cells resembles that in sympathetic neurons

    PubMed Central

    1992-01-01

    Previous studies have shown that in neuronal cells the developmental phenomenon of programmed cell death is an active process, requiring synthesis of both RNA and protein. This presumably reflects a requirement for novel gene products to effect cell death. It is shown here that the death of nerve growth factor-deprived neuronal PC12 cells occurs at the same rate as that of rat sympathetic neurons and, like rat sympathetic neurons, involves new transcription and translation. In nerve growth factor-deprived neuronal PC12 cells, a decline in metabolic activity, assessed by uptake of [3H]2-deoxyglucose, precedes the decline in cell number, assessed by counts of trypan blue-excluding cells. Both declines are prevented by actinomycin D and anisomycin. In contrast, the death of nonneuronal (chromaffin-like) PC12 cells is not inhibited by transcription or translation inhibitors and thus does not require new protein synthesis. DNA fragmentation by internucleosomal cleavage does not appear to be a consistent or significant aspect of cell death in sympathetic neurons, neuronal PC12 cells, or nonneuronal PC12 cells, notwithstanding that the putative nuclease inhibitor aurintricarboxylic acid protects sympathetic neurons, as well as neuronal and nonneuronal PC12 cells, from death induced by trophic factor removal. Both phenotypic classes of PC12 cells respond to aurintricarboxylic acid with similar dose-response characteristics. Our results indicate that programmed cell death in neuronal PC12 cells, but not in nonneuronal PC12 cells, resembles programmed cell death in sympathetic neurons in significant mechanistic aspects: time course, role of new protein synthesis, and lack of a significant degree of DNA fragmentation. PMID:1469055

  14. Low-frequency electro-acupuncture reduces the nociceptive response and the pain mediator enhancement induced by nerve growth factor.

    PubMed

    Aloe, Luigi; Manni, Luigi

    2009-01-16

    A number of studies have shown that the potential clinical benefits of nerve growth factor (NGF) administration are limited by its hyperalgesic side effects. The ancient therapeutic technique of acupuncture and its modern derivate electro-acupuncture (EA) have been proven effective in reducing hyperalgesia as well as nociceptive and neuropathic pain in several pathological conditions. The present study addresses the question of whether EA can influence the hyperalgesia induced by NGF administration. We treated adult healthy rats with repeated injections of murine NGF and/or low-frequency electro-acupuncture. We found that EA was able to counteract the NGF-induced hyperalgesic response when assessed by a hot plate test. Moreover, EA counteracted the NGF-driven variation of substance P (SP) and transient receptor potential vanilloid type 1 (TRPV1) response in both hind-paw skin as well as the corresponding dorsal root ganglia (DRG). Our findings indicate that low-frequency EA could be useful as a supportive therapy to reduce NGF-induced side effects, such as hypersensitivity and hyperalgesia, when clinical treatment with NGF is necessary.

  15. Maslinic Acid Protected PC12 Cells Differentiated by Nerve Growth Factor against β-Amyloid-Induced Apoptosis.

    PubMed

    Yang, Yu-wan; Tsai, Chia-wen; Mong, Mei-chin; Yin, Mei-chin

    2015-12-02

    β-Amyloid peptide (Abeta) was used to induce apoptosis in PC12 cells differentiated by nerve growth factor, and the protective activities of maslinic acid (MA) at 2-16 μM were examined. Abeta treatment lowered Bcl-2 expression, raised Bax expression, and decreased cell viability. MA pretreatments decreased Bax expression, raised the Bcl-2/Bax ratio, and increased cell viability. MA pretreatments retained glutathione content and decreased subsequent Abeta-induced release of reactive oxygen species, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Abeta treatment up-regulated protein expression of p47(phox), gp91(phox), mitogen-activated protein kinase, advanced glycation end product receptor (RAGE), and nuclear factor-κ B (NF-κB). MA pretreatments at 2-16 μM suppressed the expression of proteins including gp91(phox), p47(phox), p-p38, and NF-κB p65, at 4-16 μM down-regulated RAGE and NF-κB p50 expression, and at 8 and 16 μM reduced p-ERK1/2 expression. These novel findings suggest that maslinic acid is a potent compound against Abeta-induced cytotoxicity.

  16. β-Nerve growth factor is a major component of alpaca seminal plasma and induces ovulation in female alpacas.

    PubMed

    Kershaw-Young, C M; Druart, X; Vaughan, J; Maxwell, W M C

    2012-01-01

    Ovulation in camelids is induced by an unidentified protein in the seminal plasma of the male termed 'ovulation-inducing factor'. This protein has been reported to be a 14-kDa protein under reducing conditions, which, when purified from seminal plasma, induces ovulation in llamas. The identification of this protein and investigation of its potential to induce ovulation in camelids may aid the development of protocols for the induction of ovulation. In the present study, alpaca seminal plasma proteins were separated using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the most abundant protein of 14 kDa was identified as β-nerve growth factor (β-NGF) by liquid chromatography mass spectrometry. Female alpacas (n = 5 per group) were given intramuscular injections of: (1) 1 mL of 0.9% saline; (2) 4 µg buserelin, a gonadotrophin-releasing hormone agonist; (3) 2 mL alpaca seminal plasma; or (4) 1mg human β-NGF. Ovulation was detected by transrectal ultrasonography 8 days after treatment and confirmed by plasma progesterone concentrations. Ovulation occurred in 0%, 80%, 80% and 80% of animals treated with saline, buserelin, seminal plasma and β-NGF, respectively. Treatment type did not affect the diameter of the corpus luteum, but plasma progesterone concentrations were lower in saline-treated animals than in the other treatment groups owing to the lack of a corpus luteum. The present study is the first to identify the ovulation-inducing factor protein in alpacas. β-NGF successfully induces ovulation in alpacas and this finding may lead to new methods for the induction of ovulation in camelids.

  17. Vascular and neuronal protection induced by the ocular administration of nerve growth factor in diabetic-induced rat encephalopathy.

    PubMed

    Tirassa, Paola; Maccarone, Mattia; Florenzano, Fulvio; Cartolano, Sara; De Nicolò, Sara

    2013-05-01

    Based on our previous findings on the efficacy of ocular applied nerve growth factor as eye drops (oNGF) to act in brain and counteract neuronal damage, we hypothesized that oNGF treatment might revert neuronal atrophy occurring in diabetic brain also by controlling neurotrophin system changes. The major NGF brain target areas, such as the septum and the hippocampus, were used as an experimental paradigma to test this hypothesis. Bilateral oNGF treatment was performed twice a day for 2 weeks in full-blown streptozotocin-treated adult male rats. The forebrain distribution of cholinergic and endothelial cell markers and NGF receptors were studied by confocal microscopy. The septo-hippocampal content of NGF mature and precursor form and NGF receptors expression were also analyzed by Elisa and Western blot. oNGF treatment recovers the morphological alterations and the neuronal atrophy in septum and normalized the expression of mature and pro-NGF, as well as NGF receptors in the septum and hippocampus of diabetic rats. In addition, oNGF stimulated brain vascularization and up-regulated the TRKA receptor in vessel endothelium. Our findings confirm that reduced availability of mature NGF and NGF signaling impairment favors vascular and neuronal alterations in diabetic septo-hippocampal areas and corroborate the ability of oNGF to act as a neuroprotective agent in brain. © 2013 Blackwell Publishing Ltd.

  18. Intracerebroventricular administration of nerve growth factor induces gliogenesis in sensory ganglia, dorsal root, and within the dorsal root entry zone.

    PubMed

    Schlachetzki, Johannes C M; Pizzo, Donald P; Morrissette, Debbi A; Winkler, Jürgen

    2014-01-01

    Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.

  19. Nerve growth factor induces rapid increases in functional cell surface low density lipoprotein receptor-related protein.

    PubMed

    Bu, G; Sun, Y; Schwartz, A L; Holtzman, D M

    1998-05-22

    The low density lipoprotein receptor-related protein (LRP) is a large endocytic receptor that binds multiple ligands and is highly expressed in neurons. Several LRP ligands, including apolipoprotein E/lipoproteins and amyloid precursor protein, have been shown to participate either in Alzheimer's disease pathogenesis or pathology. However, factors that regulate LRP expression in neurons are unknown. In the current study, we analyzed the effects of nerve growth factor (NGF) treatment on LRP expression, distribution, and function within neurons in two neuronal cell lines. Our results show that NGF induces a rapid increase of cell surface LRP expression in a central nervous system-derived neuronal cell line, GT1-1 Trk, which was seen within 10 min and reached a maximum at about 1 h of NGF treatment. This increase of cell surface LRP expression is concomitant with an increase in the endocytic activity of LRP as measured via ligand uptake and degradation assays. We also found that the cytoplasmic tail of LRP is phosphorylated and that NGF rapidly increases the amount of phosphorylation. Furthermore, we detected a significant increase of LRP expression at the messenger RNA level following 24 h of NGF treatment. Both rapid and long term induction of LRP expression were also detected in peripheral nervous system-derived PC12 cells following NGF treatment. Taken together, our results demonstrate that NGF regulates LRP expression in neuronal cells.

  20. Down-regulation of hypoxia-inducible factor-2 in PC12 cells by nerve growth factor stimulation.

    PubMed

    Naranjo-Suárez, Salvador; Castellanos, María Carmen; Alvarez-Tejado, Miguel; Vara, Alicia; Landázuri, Manuel O; del Peso, Luis

    2003-08-22

    Cellular responses to low oxygen tension are mediated, at least in part, by the activation of the hypoxia-inducible factors (HIFs). In the presence of oxygen, specific HIF residues become hydroxylated by the action of a recently described group of dioxygenases. These post-translational modifications target HIF for proteosomal degradation and prevent its transcriptional activity. Despite these detailed studies, little is known about the regulation of HIF by stimuli other than hypoxia. Here we report that, in rat pheochromocytoma PC12 cells, nerve growth factor (NGF) stimulation results in a decrease of both basal and hypoxia-induced levels of HIF-2 alpha protein. NGF treatment did not increase HIF-hydroxylase gene expression or activity, and the reduction of the HIF-2 alpha protein level upon stimulation was observed even in the presence of HIF-hydroxylase inhibitors such as deferoxamine or dimethyloxoglutarate. Thus, in contrast to the response to hypoxia, the effect of NGF on HIF-2 alpha protein levels is not mediated by the HIF hydroxilases. Quantitative real time (RT)-PCR showed that NGF stimulation results in a decrease of the HIF-2 alpha mRNA level similar to that found at the protein level. Interestingly, NGF effect was specific for HIF-2 alpha mRNA because it did not affect HIF-1 alpha mRNA levels. NGF treatment reduced HIF-2 alpha mRNA levels even in the presence of actinomycin D, suggesting an effect on mRNA stability. Finally, the effect of NGF on HIF2 alpha correlates with reduction of both basal and hypoxia-induced vascular endothelial growth factor mRNA levels. Reporter assays suggest that the reduced expression of hypoxia-inducible genes upon NGF treatment is related, at least in part, to the reduction of HIF-2 alpha protein. Hence, in PC12 cells the level of HIF-2 alpha protein and its effect on gene expression can be down-regulated by stimuli other than oxygen.

  1. NICER elements: a family of nerve growth factor-inducible cAMP-extinguishable retrovirus-like elements.

    PubMed Central

    Cho, K O; Minsk, B; Wagner, J A

    1990-01-01

    We have shown previously that the transcription of the gene designated d5 is induced by nerve growth factor (NGF) in rat adrenal pheochromocytoma PC-12 cells and that this NGF induction is repressed by cAMP. In this paper we demonstrate that d5 is a member of a gene family that contains several hundred members, which is closely related to retroviruses and retrotransposons, as demonstrated by the following observations: (i) the original d5 cDNA hybridized to numerous restriction fragments in genomic DNA; (ii) d5 cDNA hybridized to genomic clones with various intensities, and genomic clones can be isolated with a frequency suggesting that this family includes several hundred members; and (iii) there were minor sequence variations in four independently isolated cDNA clones that were homologous to d5 cDNA. Primer extension studies show that initiation of the 5.7-kilobase d5 mRNA(s) occurs at a unique site relative to a synthetic primer. The 5' end of the cDNA sequence was homologous to Rasheed rat sarcoma virus; and a genomic clone contained several elements that are typical of a long terminal repeat (LTR), including a CCAAT box, a TATA box, a primer binding site, a poly(A) addition signal, and a poly(A) addition site. Furthermore, there is a LTR at the 3' end of at least one of the genes in this family, and there appeared to be a four-base duplication at the probable site of integration into host DNA. Since several members of this family retain responses to NGF and cAMP, we conclude that the regulatory elements present in the LTR have been conserved in many members of this family. We have named this family of genes the NICER elements because they are a family of NGF-inducible cAMP-extinguishable retrovirus-like elements. Images PMID:2160077

  2. Potential Novel Biomarkers for Diabetic Testicular Damage in Streptozotocin-Induced Diabetic Rats: Nerve Growth Factor Beta and Vascular Endothelial Growth Factor

    PubMed Central

    Sisman, Ali Rıza; Kiray, Muge; Camsari, Ulas Mehmet; Evren, Merve; Ates, Mehmet; Aksu, Ilkay; Guvendi, Guven

    2014-01-01

    Background. It is well known that diabetes mellitus may cause testicular damage. Vascular endothelial growth factor (VEGF) and nerve growth factor beta (NGF-β) are important neurotrophic factors for male reproductive system. Objective. We aimed to investigate the correlation between testicular damage and testicular VEGF and NGF-β levels in diabetic rats. Methods. Diabetes was induced by streptozotocin (STZ, 45 mg/kg/i.p.) in adult rats. Five weeks later testicular tissue was removed; testicular VEGF and NGF-β levels were measured by ELISA. Testicular damage was detected by using hematoxylin and eosin staining and periodic acid-Schiff staining, and apoptosis was identified by terminal-deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL). Seminiferous tubular sperm formation was evaluated using Johnsen's score. Results. In diabetic rats, seminiferous tubule diameter was found to be decreased; basement membrane was found to be thickened in seminiferous tubules and degenerated germ cells. Additionally, TUNEL-positive cells were increased in number of VEGF+ cells and levels of VEGF and NGF-β were decreased in diabetic testes. Correlation between VEGF and NGF-β levels was strong. Conclusion. These results suggest that the decrease of VEGF and NGF-β levels is associated with the increase of the apoptosis and testicular damage in diabetic rats. Testis VEGF and NGF-β levels could be potential novel biomarkers for diabetes induced testicular damage. PMID:24771956

  3. Somatic tetraploidy in specific chick retinal ganglion cells induced by nerve growth factor

    PubMed Central

    Morillo, Sandra M.; Escoll, Pedro; de la Hera, Antonio; Frade, José M.

    2009-01-01

    A subset of neurons in the normal vertebrate nervous system contains double the normal amount of DNA in their nuclei. These neurons are all thought to derive from aberrant mitoses in neuronal precursor cells. Here we show that endogenous NGF induces DNA replication in a subpopulation of differentiating chick retinal ganglion cells that express both the neurotrophin receptor p75 and the E2F1 transcription factor, but that lack the retinoblastoma protein. Many of these neurons avoid G2/M transition and remain alive in the retina as tetraploid cells with large cell somas and extensive dendritic trees, and most of them express β2 nicotinic acetylcholine receptor subunits, a specific marker of retinal ganglion cells innervating lamina F in the stratum-griseum-et-fibrosum-superficiale of the tectal cortex. Tetraploid neurons were also observed in the adult mouse retina. Thus, a developmental program leading to somatic tetraploidy in specific retinal neurons exists in vertebrates. This program might occur in other vertebrate neurons during normal or pathological situations. PMID:20018664

  4. Nerve growth factor neuroprotection of ethanol-induced neuronal death in rat cerebral cortex is age dependent.

    PubMed

    Mooney, S M; Miller, M W

    2007-10-26

    Organotypic cultures of rat cortex were used to test the hypotheses that nerve growth factor (NGF) is neuroprotective for immature cortical neurons and that ethanol abolishes this neuroprotection in a developmental stage-dependent manner. Samples were obtained on gestational day (G) 16 or postnatal day (P) 3 and cultured with ethanol (0 or 400 mg/dl) and NGF (0 or 30 ng/ml) for 72 h. Dying neurons were identified as exhibiting terminal nick-end labeling, immunoreactivity for activated caspase 3, or condensed nuclear chromatin. Two cortical compartments were examined in fetal tissue: a superficial, cell-sparse marginal zone (MZ) and a cell-dense cortical plate (CP). At P3, the CP was subdivided into a cell-dense upper cortical plate (UCP) and a less densely packed lower cortical plate (LCP). Neuronal death in the MZ was affected by neither NGF nor ethanol at both ages. In the fetal CP, NGF did not affect the incidence of cell death, but ethanol increased it. Treatment with NGF caused an upregulation of the expression of Neg, a gene known to be affected by NGF and ethanol. NGF did not ameliorate the ethanol-induced death. In pups, ethanol increased the amount of death in the LCP. NGF did protect against this death. Neither ethanol nor NGF altered the incidence of cell death in the UCP. The laminar-dependent neuroprotection did not correlate with expression of NGF receptors or Neg. Thus, NGF can be protective against the neurotoxic effect of ethanol in the neonatal brain. This effect is site selective and time dependent and it targets postmigratory, differentiating neurons.

  5. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats.

    PubMed

    Lv, Qiushi; Fan, Xinying; Xu, Gelin; Liu, Qian; Tian, Lili; Cai, Xiaoyi; Sun, Wenshan; Wang, Xiaomeng; Cai, Qiankun; Bao, Yuanfei; Zhou, Lulu; Zhang, Yao; Ge, Liang; Guo, Ruibing; Liu, Xinfeng

    2013-02-01

    Traumatic brain injury (TBI) remains the leading cause of injury-related death and disability. Brain edema, one of the most major complications of TBI, contributes to elevated intracranial pressure, and poor prognosis following TBI. Nerve growth factor (NGF) appears to be a viable strategy to treat brain edema and TBI. Unfortunately, due to its poor blood-brain barrier (BBB) permeability, the clinical application of NGF has been greatly limited. We previously demonstrated that intranasal NGF could bypass the BBB and distribute throughout the brain. Here we further studied whether intranasal NGF could attenuate TBI-induced brain edema and its putative mechanisms. TBI was produced by a modified weight-drop model. We found that intranasal administration of NGF (5μg/d) attenuated the brain edema, as assayed by hemisphere water content, at 12h, 24h and 72h after TBI induction. This attenuation was associated with a prominent decrease of the content of aquaporin-4, which plays a pivotal role in the formation of brain edema. By the use of RT-PCR and ELISA, we showed that intranasal NGF markedly inhibited the transcription and expression of pro-inflammatory cytokines including IL-1β and TNF-α. An electrophoretic mobility shift assay (EMSA) displayed a significant activation of nuclear factor-κB following TBI, which was, however, much lowered in the NGF-treated rats. Furthermore, upon intranasal NGF supplementation, mitochondria-mediated apoptosis following TBI was minimized, as indicated by upregulation of Bcl-2 and downregulation of caspase-3. Collectively, our findings suggested that intranasal NGF may be a promising strategy to treat brain edema and TBI.

  6. The ras suppressor, RSU-1, enhances nerve growth factor-induced differentiation of PC12 cells and induces p21CIP expression.

    PubMed

    Masuelli, L; Ettenberg, S; Vasaturo, F; Vestergaard-Sykes, K; Cutler, M L

    1999-08-01

    The Rsu-1 Ras suppressor gene was isolated based on its ability to inhibit v-Ras transformation. Using Rsu-1 transfectants of the pheochromocytoma cell line PC12, we demonstrated previously that Rsu-1 expression inhibited Jun kinase activation but enhanced Erk2 activation in response to epidermal growth factor. In the present study, the Rsu-1 PC12 transfectants were used to investigate the role of Rsu-1 in nerve growth factor (NGF)- and v-Ki-ras-mediated neuronal differentiation. NGF-induced neurite extension was enhanced, not inhibited, by the expression of Rsu-1 in PC12 cells. The activation of Erk kinase activity in response to NGF was sustained longer in the Rsu-1 transfectants compared with the vector control cells. During NGF-mediated differentiation, an increase in the expression of specific mRNAs for the early response genes Fos, cJun, and NGF1a was detected in both the vector control and Rsu-1 transfectants. The expression of the differentiation-specific genes VGF8 and SCG10 was similar in Rsu-1 transfectants compared with the vector control cells. The induction of Rsu-1 expression in these cell lines did not inhibit v-Ki-ras-induced differentiation, as measured by neurite extension. These data suggest that although Rsu-1 blocked some Ras-dependent response(s), these responses were not required for differentiation. Moreover, the induction of Rsu-1 expression in the PC12 clones resulted in growth inhibition and p21(WAF/CIP) expression. Hence, Rsu-1 expression enhances NGF-induced differentiation while inhibiting the growth of cells.

  7. Bacteria-induced static batch fungal fermentation of the diterpenoid cyathin A(3), a small-molecule inducer of nerve growth factor.

    PubMed

    Dixon, Emma; Schweibenz, Tatiana; Hight, Alison; Kang, Brian; Dailey, Allyson; Kim, Sarah; Chen, Meng-Yang; Kim, Yura; Neale, Sarah; Groth, Ashley; Ike, Trish; Khan, Sarah; Schweibenz, Brandon; Lieu, David; Stone, David; Orellana, Tania; Couch, Robin D

    2011-05-01

    Cyathin A(3), produced by the fungus Cyathus helenae, is a member of the cyathane family of diterpene natural products. While many of the cyathanes display antibacterial/antimicrobial activity or have cytotoxic activity against human cancer cell lines, their most exciting therapeutic potential is derived from their ability to induce nerve growth factor (NGF) release from glial cells, making the cyathanes attractive lead molecules for the development of neuroprotective therapeutics to prevent/treat Alzheimer's disease. To investigate if cyathin A(3) has NGF-inducing activity, we set out to obtain it using published C. helenae bench-scale fungal fermentations. However, to overcome nonproducing fermentations, we developed an alternative, bacteria-induced static batch fermentation approach to the production of cyathin A(3), as described in this report. HPLC, UV absorption spectra, and mass spectrometry identify cyathin A(3) in fungal fermentations induced by the timely addition of Escherichia coli K12 or Bacillus megabacterium. Pre-filtration of the bacterial culture abolishes cyathin A(3) induction, suggesting that bacteria-associated media changes or physical interaction between the fungus and bacteria underlie the induction mechanism. Through alteration of incubation conditions, including agitation, the timing of induction, and media composition, we optimized the fermentation to yield nearly 1 mg cyathin A(3)/ml media, a sixfold increase over previously described yields. Additionally, by comparison of fermentation profiles, we reveal that cyathin A(3) biosynthesis is regulated by carbon catabolite repression. We have used an enzyme-linked immunosorbent assay to illustrate that cyathin A(3) induces NGF release from cultured glial cells, and therefore cyathin A(3) warrants further examination in the development of neuroprotective therapeutics.

  8. Expression of nerve growth factor and its receptor in distracted tibial nerve after limb lengthening.

    PubMed

    Shao, Heng; Shu, Hengsheng; Wang, Chunmei; Yuan, Wu; Li, Yunsheng

    2013-02-01

    Despite many experimental and clinical studies conducted on distraction osteogenesis (DO) in the past decade, changes in the surrounding tissues that occur after the procedure remains poorly understood. To study the biochemical changes of recovery in nerve tissues upon DO-induced nerve injury, we prepared a rabbit model of tibia lengthening to observe the expression pattern of nerve growth factor (NGF) and low-affinity NGF receptor (p75NGFR) in the distracted tibial nerve. The distracted tibial nerve was harvested at various time points during the consolidation period of new bone formation and immunohistochemical staining was performed to detect the expression of NGF and p75NGFR. The expression levels of NGF and p75NGFR were found to be different at various times after DO. The changes in expression of these two cellular factors show similar tendencies with significantly elevated expression in Schwann cells at 7 and 14 days after distraction, but low or undetectable levels of expression at 0, 28, and 56 days. These results suggest that NGF and p75NGFR may play important roles in the adaptive process of the distracted nerve. NGF and p75NGFR are autocrine growth factors present in the distracted nerve during the early consolidation period. NGF interacts with p75NGFR to promote damage repair and reconstruction of nerves. Together, this study furthers the understanding of the relative mechanisms of nerve repair, as well as provides a further basis for the clinical application of neurotrophins.

  9. Nerve growth factor (NGF) induces neuronal differentiation in neuroblastoma cells transfected with the NGF receptor cDNA

    SciTech Connect

    Matsushima, H.; Bogenmann, E. )

    1990-09-01

    Human nerve growth factor (NGF) receptor (NGFR) cDNA was transfected into a neuroblastoma cell line (HTLA 230) which does not express a functional NGF-NGFR signal transduction cascade. Short-term treatment of stably transfected cells (98-3) expressing membrane-bound NGF receptor molecules resulted in a cell cycle-dependent, transient expression of the c-fos gene upon treatment with NGF, suggesting the presence of functional high-affinity NGFR. Extensive outgrowth of neurites and cessation of DNA synthesis occurred in transfectants grown on an extracellular matrix after long-term treatment with NGF, suggesting terminal differentiation. Our data support the idea that introduction of a constitutively expressed NGFR cDNA into cells with neuronal background results in the assembly of a functional NGF-NGFR signal cascade in a permissive extracellular environment.

  10. Luteotrophic effect of ovulation-inducing factor/nerve growth factor present in the seminal plasma of llamas.

    PubMed

    Ulloa-Leal, C; Bogle, O A; Adams, G P; Ratto, M H

    2014-05-01

    The hypothesis that ovulation-inducing factor/nerve growth factor (OIF/NGF) isolated from llama seminal plasma exerts a luteotrophic effect was tested by examining changes in circulating concentrations of LH and progesterone, and the vascular perfusion of the ovulatory follicle and developing CL. Female llamas with a growing follicle of 8 mm or greater in diameter were assigned randomly to one of three groups (n = 10 llamas per group) and given a single intramuscular dose of PBS (1 mL), GnRH (50 μg), or purified OIF/NGF (1.0 mg). Cineloops of ultrasonographic images of the ovary containing the dominant follicle were recorded in brightness and power Doppler modalities. Llamas were examined every 4 hours from the day of treatment (Day 0) until ovulation, and every other day thereafter to Day 16. Still frames were extracted from cineloops for computer-assisted analysis of the vascular area of the preovulatory follicle from treatment to ovulation and of the growing and regressing phases of subsequent CL development. Blood samples were collected for the measurement of plasma LH and progesterone concentrations. The diameter of the dominant follicle at the time of treatment did not differ among groups (P = 0.48). No ovulations were detected in the PBS group but were detected in all llamas given GnRH or OIF/NGF (0/10, 10/10, and 10/10, respectively; P < 0.0001). No difference was detected between the GnRH and OIF/NGF groups in the interval from treatment to ovulation (32.0 ± 1.9 and 30.4 ± 5.7 hours, respectively; P = 0.41) or in maximum CL diameter (13.1 ± 0.4 and 13.5 ± 0.3 mm, respectively; P = 0.44). The preovulatory follicle of llamas treated with OIF/NGF had a greater vascular area at 4 hours after treatment than that of the GnRH group (P < 0.001). Similarly, the luteal tissue of llamas treated with purified OIF/NGF had a greater vascular area than that of the GnRH group on Day 6 after treatment (P < 0.001). The preovulatory surge in plasma LH concentration

  11. HemoHIM improves ovarian morphology and decreases expression of nerve growth factor in rats with steroid-induced polycystic ovaries.

    PubMed

    Kim, Sung Ho; Lee, Hae June; Kim, Joong Sun; Moon, Changjong; Kim, Jong Choon; Bae, Chun Sik; Park, Hae Ran; Jung, Uhee; Jo, Sung Kee

    2009-12-01

    Estradiol valerate (EV)-induced polycystic ovaries (PCOs) in rats cause the anovulation and cystic ovarian morphology. We investigated whether treatment with HemoHIM influences the ovarian morphology and the expression of nerve growth factor (NGF) in an EV-induced PCO rat model. PCO was induced by a single intramuscular injection of EV (4 mg, dissolved in sesame oil) in adult cycling rats. HemoHIM was either administered orally (100 mg/kg of body weight/day) for 35 consecutive days or injected intraperitoneally (50 mg/kg of body weight) every other day after EV injection. Ovarian morphology was almost normalized, and NGF was normalized in the PCO + HemoHIM group. HemoHIM lowered the high numbers of antral follicles and increased the number of corpora lutea in PCOs. The results are consistent with a beneficial effect of HemoHIM in the prevention and treatment of PCO syndrome.

  12. Negletein as a neuroprotectant enhances the action of nerve growth factor and induces neurite outgrowth in PC12 cells.

    PubMed

    Phan, Chia-Wei; Sabaratnam, Vikineswary; Bovicelli, Paolo; Righi, Giuliana; Saso, Luciano

    2016-11-12

    Negletein has been shown to have therapeutic potential for inflammation-associated diseases, but its effect on neurite outgrowth is still unknown. The present study showed that negletein alone did not trigger PC12 cells to differentiate and extend neurites. When compared with the cells in the untreated control, a significant (P < 0.05) induction and a higher neurite outgrowth activity was observed when the cells were cotreated with negletein (10 µM) and a low dose of nerve growth factor (NGF; 5 ng/mL). The neurite outgrowth process was blocked by the tyrosine kinase receptor (Trk) inhibitor, K252a, suggesting that the neuritogenic effect was NGF-dependent. Negletein (10 µM) together with NGF (5 ng/mL) enhanced the phosphorylation of extracellular signal-regulated kinases (ERKs), protein kinase B (Akt), and cAMP response element-binding protein (CREB). The growth associated protein-43 (GAP-43) and the NGF level were also upregulated by negletein (10 µM) and a low dose of NGF (5 ng/mL). Negletein at nanomolar concentration also was found to be sufficient to mediate the survival of serum-deprived PC12 cells up to 72 h. Taken together, negletein might be useful as an efficient bioactive compound to protect neurons from cell death and promote neuritogenesis. © 2016 BioFactors, 42(6):591-599, 2016.

  13. Nerve growth factor combined with vascular endothelial growth factor enhances regeneration of bladder acellular matrix graft in spinal cord injury-induced neurogenic rat bladder.

    PubMed

    Kikuno, Nobuyuki; Kawamoto, Ken; Hirata, Hiroshi; Vejdani, Kaveh; Kawakami, Kazumori; Fandel, Thomas; Nunes, Lora; Urakami, Shinji; Shiina, Hiroaki; Igawa, Mikio; Tanagho, Emil; Dahiya, Rajvir

    2009-05-01

    To determine the combined effects of nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) on regeneration of the bladder acellular matrix graft (BAMG) in spinal cord injury (SCI)-mediated neurogenic bladder in rats. In all, 40 female Sprague-Dawley rats were used. At 8 weeks after spinalization surgery (neurogenic bladder), they were divided into five groups consisting of untreated controls and those whose bladders were injected with either no growth factor, NGF (2 microg/rat), VEGF (2 microg/rat) or both at partial BAMG replacement surgery. After 8 weeks, bladder function was assessed by urodynamic studies and the bladders were harvested for histological examination. Smooth muscle induction, collagen and nerve fibre regeneration were assessed immunohistochemically using antibodies to smooth muscle actin (alpha-actin), Masson's trichrome and protein gene product 9.5, respectively. Bladder capacity and compliance were significantly increased in all BAMG groups 8 weeks after surgery compared with that before bladder replacement surgery. Bladder capacity and compliance were much higher in the VEGF and NGF combined group than in the control, or NGF and VEGF alone groups. There was no significant difference in the residual volume ratio among all groups. This is the first report showing that NGF has a significant synergistic effect on the development, differentiation and functional restoration of the BAMG when administered with VEGF in neurogenic bladder. Our results indicate that NGF may be a useful cytokine for enhancing the regeneration of a functional bladder following acellular matrix grafting in a neurogenic rat model.

  14. Nerve growth factor-induced circadian phase shifts and MAP kinase activation in the hamster suprachiasmatic nuclei.

    PubMed

    Pizzio, Gastón A; Hainich, Ernesto C; Plano, Santiago A; Ralph, Martin R; Golombek, Diego A

    2005-08-01

    Circadian rhythms are entrained by light and by several neurochemical stimuli. In hamsters housed in constant darkness, i.c.v. administration of nerve growth factor (NGF) at various times in their circadian cycle produced phase shifts of locomotor activity rhythms that were similar in direction and circadian timing to those produced by brief pulses of light. Moreover, the effect of NGF and light were not additive, indicating signalling points in common. These points include the immediate-early gene c-fos and ERK1/2, a component of the mitogen-activated protein kinases (MAPK) family. NGF activates c-FOS and ERK1/2-MAPK in the suprachiasmatic nuclei, the site of a circadian clock in mammals, when administered during the subjective night but not during the day. The effect of NGF on ERK1/2 activation was not inhibited by the administration of MK-801, a glutamate/NMDA receptor antagonist. These results suggest that NGF, acting through MAPK activation, plays a role in photic entrainment of the mammalian circadian clock.

  15. Gelatin Nanostructured Lipid Carriers Incorporating Nerve Growth Factor Inhibit Endoplasmic Reticulum Stress-Induced Apoptosis and Improve Recovery in Spinal Cord Injury.

    PubMed

    Zhu, Si-Pin; Wang, Zhou-Guang; Zhao, Ying-Zheng; Wu, Jiang; Shi, Hong-Xue; Ye, Li-Bing; Wu, Fen-Zan; Cheng, Yi; Zhang, Hong-Yu; He, Songbin; Wei, Xiaojie; Fu, Xiao-Bing; Li, Xiao-Kun; Xu, Hua-Zi; Xiao, Jian

    2016-09-01

    Clinical translation of growth factor therapies faces multiple challenges; the most significant one is the short half-life of the naked protein. Gelatin nanostructured lipid carriers (GNLs) had previously been used to encapsulate the basic fibroblast growth factor to enhance the functional recovery in hemiparkinsonian rats. In this research, we comparatively study the enhanced therapy between nerve growth factor (NGF) loaded GNLs (NGF-GNLs) and NGF only in spinal cord injury (SCI). The effects of NGF-GNLs and NGF only were tested by the Basso-Beattie-Bresnahan (BBB) locomotion scale, inclined plane test, and footprint analysis. Western blot analysis and immunofluorescent staining were further performed to identify the expression of ER stress-related proteins, neuron-specific marker neuronal nuclei (NeuN), and growth-associated protein 43 (GAP43). Correlated downstream signals Akt/GSK-3β and ERK1/2 were also analyzed with or without inhibitors. Results showed that NGF-GNLs, compared to NGF only, enhanced the neuroprotection effect in SCI rats. The ER stress-induced apoptosis response proteins CHOP, GRP78 and caspase-12 inhibited by NGF-GNL treatment were more obvious. Meanwhile, NGF-GNLs in the recovery of SCI are related to the inhibition of ER stress-induced cell death via the activation of downstream signals PI3K/Akt/GSK-3β and ERK1/2.

  16. The urokinase plasminogen activator receptor (UPAR) is preferentially induced by nerve growth factor in PC12 pheochromocytoma cells and is required for NGF-driven differentiation.

    PubMed

    Farias-Eisner, R; Vician, L; Silver, A; Reddy, S; Rabbani, S A; Herschman, H R

    2000-01-01

    Nerve growth factor (NGF)-driven differentiation of PC12 pheochromocytoma cells is a well studied model used both to identify molecular, biochemical, and physiological correlates of neurotrophin-driven neuronal differentiation and to determine the causal nature of specific events in this differentiation process. Although epidermal growth factor (EGF) elicits many of the same early biochemical and molecular changes in PC12 cells observed in response to NGF, EGF does not induce molecular or morphological differentiation of PC12 cells. The identification of genes whose expression is differentially regulated by NGF versus EGF in PC12 cells has, therefore, been considered a source of potential insight into the molecular specificity of neurotrophin-driven neuronal differentiation. A "second generation" representational difference analysis procedure now identifies the urokinase plasminogen activator receptor (UPAR) as a gene that is much more extensively induced by NGF than by EGF in PC12 cells. Both an antisense oligonucleotide for the UPAR mRNA and an antibody directed against UPAR protein block NGF-induced morphological and biochemical differentiation of PC12 cells; NGF-induced UPAR expression is required for subsequent NGF-driven differentiation.

  17. The brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, and induced nitric oxide synthase expressions after low-level laser therapy in an axonotmesis experimental model.

    PubMed

    Gomes, Lessandra Esper Abdala; Dalmarco, Eduardo Monguilhott; André, Edison Sanfelice

    2012-11-01

    A robust body of evidence has shown that low-level laser therapy (LLLT) improves peripheral nerve regeneration. However, the biochemical background triggered in this process is not yet fully understood. The purpose of this study was to evaluate the mRNA expression of neurotrophic factors (brain-derived neurotrophic factor [BDNF], nerve growth factor [NGF], and neurotrophin-3, [NT-3]) and also an inflammatory marker (induced nitric oxide synthase [iNOS]) in an axonotmesis experimental model after low-level laser therapy. Thirty-six adult male Wistar rats (250-350 g) were subjected to right sciatic nerve crush injury, and 24 h later, the animals in the three different experimental groups (n=18) were irradiated on a daily basis with helium-neon laser (collimated HeNe laser, continuous emission, wavelength: 632.8 nm, power density: 0.5 mW/cm(2), irradiation time: 20 sec, energy density: 10 J/cm(2)) during 7, 14, and 21 consecutive days, respectively. The control group (n=18) underwent the same procedures, but with the equipment turned off. At the end of the experiments, animals were killed with an overdose of anesthesia to remove samples from the sciatic nerve lesion epicenter to determine the mRNA expression of BDNF, NGF, NT-3 and iNOS enzyme. Comparisons between groups showed that HeNe laser increased the mRNA expression of both BDNF and NGF factors after 14 days of LLLT, with peak expression at the 21st day. Increase in NT-3 mRNA expression was not observed. In addition, HeNe laser produced iNOS expression reduction, which played an important role in the inflammatory process. The reported data could have a relevant practical value because LLLT is a noninvasive procedure, and have revealed significant increase in neurotrophic factor expressions and inflammatory process reduction, opening the possibility of using LLLT as an important aid to nerve regeneration process.

  18. 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons.

    PubMed

    Brown, Jillanne; Bianco, John I; McGrath, John J; Eyles, Darryl W

    2003-06-05

    There is an accumulation of evidence implicating a role for vitamin D(3) in the developing brain. The receptor for this seco-steroid is expressed in both neurons and glial cells, it induces nerve growth factor (NGF) and it is a potent inhibitor of mitosis and promoter of differentiation in numerous cells. We have therefore assessed the direct effect of vitamin D(3) on mitosis, neurite outgrowth, as well as NGF production as a possible mediator of those effects, in developing neurons. Using cultured embryonic hippocampal cells and explants we found the addition of vitamin D(3) significantly decreases the percentage of cultured hippocampal cells undergoing mitosis in conjunction with increases in both neurite outgrowth and NGF production. The role of vitamin D(3) during brain development warrants closer scrutiny.

  19. Nerve growth factor promotes human hemopoietic colony growth and differentiation.

    PubMed Central

    Matsuda, H; Coughlin, M D; Bienenstock, J; Denburg, J A

    1988-01-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been cloned. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. NGF also causes histamine release from rat peritoneal mast cells in vitro, and we have shown elsewhere that it causes significant, dose-dependent, generalized mast cell proliferation in the rat in vivo when administered neonatally. Our experiments now indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by polyclonal and monoclonal antibodies to NGF. We conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, we postulate that NGF plays an important biological role in a variety of repair processes. PMID:3413109

  20. P2X1 Receptor-Mediated Ca(2+) Influx Triggered by DA-9801 Potentiates Nerve Growth Factor-Induced Neurite Outgrowth.

    PubMed

    Back, Moon Jung; Lee, Hae Kyung; Lee, Joo Hyun; Fu, Zhicheng; Son, Mi Won; Choi, Sang Zin; Go, Hyo Sang; Yoo, Sungjae; Hwang, Sun Wook; Kim, Dae Kyong

    2016-11-16

    Nerve growth factor (NGF)-induced neuronal regeneration has emerged as a strategy to treat neuronal degeneration-associated disorders. However, direct NGF administration is limited by the occurrence of adverse effects at high doses of NGF. Therefore, development of a therapeutic strategy to promote the NGF trophic effect is required. In view of the lack of understanding of the mechanism for potentiating the NGF effect, this study investigated molecular targets of DA-9801, a well-standardized Dioscorea rhizome extract, which has a promoting effect on NGF. An increase in intracellular calcium ion level was induced by DA-9801, and chelation of extracellular calcium ions with ethylene-bis(oxyethylenenitrilo)tetraacetic acid (EGTA) suppressed the potentiating effect of DA-9801 on NGF-induced neurite outgrowth. In addition, EGTA treatment reduced the DA-9801-induced phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), the major mediators of neurite outgrowth. To find which calcium ion-permeable channel contributes to the calcium ion influx induced by DA-9801, we treated PC12 cells with various inhibitors of calcium ion-permeable channels. NF449, a P2X1 receptor selective antagonist, significantly abolished the potentiating effect of DA-9801 on NGF-induced neurite outgrowth and abrogated the DA-9801-induced ERK1/2 phosphorylation. In addition, transfection with siRNA of P2X1 receptor significantly reduced the DA-9801-enhanced neurite outgrowth. In conclusion, calcium ion influx through P2X1 receptor mediated the promoting effect of DA-9801 on NGF-induced neurite outgrowth via ERK1/2 phosphorylation.

  1. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  2. Asarone from Acori Tatarinowii Rhizoma Potentiates the Nerve Growth Factor-Induced Neuronal Differentiation in Cultured PC12 Cells: A Signaling Mediated by Protein Kinase A

    PubMed Central

    Lam, Kelly Y. C.; Chen, Jianping; Lam, Candy T. W.; Wu, Qiyun; Yao, Ping; Dong, Tina T. X.; Lin, Huangquan; Tsim, Karl W. K.

    2016-01-01

    Acori Tatarinowii Rhizoma (ATR), the rhizome of Acorus tatarinowii Schott, is being used clinically to treat neurological disorders. The volatile oil of ATR is being considered as an active ingredient. Here, α-asarone and β-asarone, accounting about 95% of ATR oil, were evaluated for its function in stimulating neurogenesis. In cultured PC12 cells, application of ATR volatile oil, α-asarone or β-asarone, stimulated the expression of neurofilaments, a bio-marker for neurite outgrowth, in a concentration-dependent manner. The co-treatment of ATR volatile oil, α-asarone or β-asarone, with low concentration of nerve growth factor (NGF) potentiated the NGF-induced neuronal differentiation in cultured PC12 cells. In addition, application of protein kinase A inhibitors, H89 and KT5720, in cultures blocked the ATR-induced neurofilament expression, as well as the phosphorylation of cAMP-responsive element binding protein (CREB). In the potentiation of NGF-induced signaling in cultured PC12 cells, α-asarone and β-asarone showed synergistic effects. These results proposed the neurite-promoting asarone, or ATR volatile oil, could be useful in finding potential drugs for treating various neurodegenerative diseases, in which neurotrophin deficiency is normally involved. PMID:27685847

  3. Impacts of anti-nerve growth factor antibody on pain-related behaviors and expressions of opioid receptor in spinal dorsal horn and dorsal root ganglia of rats with cancer-induced bone pain

    PubMed Central

    Ding, Yuanyuan; Wang, Zhibin; Ma, Jiaming; Hong, Tao; Zhu, Yongqiang; Li, Hongxi; Pan, Shinong

    2016-01-01

    Objective To investigate the impacts of anti-nerve growth factor antibody on pain-related behaviors and expressions of μ-opioid receptor in spinal dorsal horn and dorsal root ganglia of rats with cancer-induced bone pain. Methods The rats were randomly grouped and then injected with 10 μl of phosphate buffer saline or Walker256 tumor cells into the upper segment of left tibia. Thirteen days after the injection, the intrathecal catheterization was performed, followed by the injection of saline, anti-nerve growth factor, nerve growth factor, and naloxone twice a day. The pain ethological changes were measured at the set time points; the expression changes of μ-opioid receptor protein and mRNA in spinal dorsal horn and dorsal root ganglia were detected on the 18th day. Results After the tumor cells were injected into the tibia, hyperalgesia appeared and the expression of μ-opioid receptor protein and mRNA in spinal dorsal horn and dorsal root ganglia was increased, compared with the sham group; after intrathecally injected anti-nerve growth factor, the significant antinociceptive effects appeared, and the μ-opioid receptor expression was increased, compared with the cancer pain group; the μ-opioid receptor expressions in the other groups showed no statistical significance. The naloxone pretreatment could mostly inverse the antinociception effects of anti-nerve growth factor. Conclusions Anti-nerve growth factor could reduce hyperalgesia in the cancer-induced bone pain rats, and the antinociceptive effects were related with the upregulation of μ-opioid receptor. PMID:27118770

  4. The exocytotic signaling pathway induced by nerve growth factor in the presence of lyso-phosphatidylserine in rat peritoneal mast cells involves a type D phospholipase.

    PubMed

    Seebeck, J; Westenberger, K; Elgeti, T; Ziegler, A; Schütze, S

    2001-12-15

    Nerve growth factor (NGF) has been previously shown to induce exocytosis in rat peritoneal mast cells (RPMCs) in the presence of lyso-phosphatidylserine (lysoPS) by interacting with high-affinity NGF receptors of the TrkA-type. In RPMCs, type D phosphatidylcholine-selective phospholipases (PLDs) have been postulated to be involved in some exocytotic signaling pathways induced by different agonists. The aim of the present study was to assess a putative functional role of PLD for NGF/lysoPS-induced exocytosis in RPMCs. In 1-[14C]palmitoyl-2-lyso-3-phosphatidylcholine-labelled RPMCs, NGF/lysoPS stimulated the formation of diacylglycerol (DAG) and, in the presence of ethanol (1% [v/v]), phosphatidylethanol (PEtOH). These data indicate PLD-activation by NGF/lysoPS in RPMCs. Preincubation of RPMCs for 2 min with ethanol, an inhibitor of PLD-derived DAG-formation, dose-dependently (IC(50): 0.6% [v/v]) and agonist-selectively inhibited the NGF/lysoPS induced release of [3H]serotonin ([3H]5-HT) in [3H]5-HT-loaded RPMCs, confirming the functional importance of PLD-action. Exocytosis and PEtOH-production was potently inhibited by the broad-spectrum serine/threonine kinase inhibitor staurosporine and activated by the protein kinase C(PKC)-activator PMA (phorbol-12-myristate-13-acetate) suggesting a role for PKC as mediator for NGF/lysoPS-induced activation of PLD.

  5. Intra-articular nerve growth factor regulates development, but not maintenance, of injury-induced facet joint pain & spinal neuronal hypersensitivity.

    PubMed

    Kras, J V; Kartha, S; Winkelstein, B A

    2015-11-01

    The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. Male Holtzman rats underwent painful cervical facet joint distraction (FJD) or sham procedures. Mechanical hyperalgesia was assessed in the forepaws, and NGF expression was quantified in the C6/C7 facet joint. An anti-NGF antibody was administered intra-articularly in additional rats immediately or 1 day following facet distraction or sham procedures to block intra-articular NGF and test its contribution to initiation and/or maintenance of facet joint pain and spinal neuronal hyperexcitability. NGF was injected into the bilateral C6/C7 facet joints in separate rats to determine if NGF alone is sufficient to induce these behavioral and neuronal responses. NGF expression increases in the cervical facet joint in association with behavioral sensitivity after that joint's mechanical injury. Intra-articular application of anti-NGF immediately after a joint distraction prevents the development of both injury-induced pain and hyperexcitability of spinal neurons. Yet, intra-articular anti-NGF applied after pain has developed does not attenuate either behavioral or neuronal hyperexcitability. Intra-articular NGF administered to the facet in naïve rats also induces behavioral hypersensitivity and spinal neuronal hyperexcitability. Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Soluble toll-like receptor 4 reversed attenuating effect of Chinese herbal Xiao-Qing-Long-Tang on allergen induced nerve growth factor and thymic stromal lymphopoietin

    PubMed Central

    CHANG, REN-SHIU; WANG, YU-CHIN; KAO, SHUNG-TE

    2013-01-01

    Xiao-Qing-Long-Tang (XQLT) is known to regulate allergic immune reactions. The aim of this study was to investigate the effects of XQLT on allergen-induced cytokines and associated signaling pathways. An acute allergic mouse model was used to investigate the effects of XQLT on nerve growth factor (NGF) during an allergic reaction, while human pulmonary alveolar epithelial cells (HPAEpiCs) were used to investigate the effects of XQLT on Dermatophagoides pteronyssinus group 2 (Der p 2)-induced NGF, p75 neurotrophin receptor (p75NTR) and thymic stromal lymphopoietin (TSLP) expression. XQLT was demonstrated to inhibit NGF- and p75NTR-related allergic reactions in the mouse model. XQLT also reduced the expression of Toll-like receptor 4 (TLR4) in the lungs of the model mice. XQLT inhibited Der p 2-induced NGF, TSLP and p75NTR expression in the HPAEpiC cell line. The use of recombinant soluble TLR4 (sTLR4) in a competitive assay partially attenuated the inhibitory effect of XQLT on NGF, TSLP and p75NTR expression in HPAEpiC cells. The inhibitory effect of XQLT on the Ser536 phosphorylation of p65 (nuclear factor-κB; NF-κB), a TLR4-induced factor, was also attenuated by sTLR4. In conclusion, XQLT inhibited Der p allergen-induced NGF, p75NTR and TSLP expression. This inhibition was attenuated by sTLR4. The mechanism of action of XQLT may be correlated with TLR4, a primary receptor in the innate immune system. The findings of this study may focus the search for pharmacological targets of XQLT onto TLR4, which is important in the allergen presentation pathway. PMID:24223644

  7. INTRA-ARTICULAR NERVE GROWTH FACTOR REGULATES DEVELOPMENT, BUT NOT MAINTENANCE, OF INJURY-INDUCED FACET JOINT PAIN & SPINAL NEURONAL HYPERSENSITIVITY

    PubMed Central

    Kras, Jeffrey V.; Kartha, Sonia; Winkelstein, Beth A.

    2015-01-01

    Objective The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. Method Male Holtzman rats underwent painful cervical facet joint distraction or sham procedures. Mechanical hyperalgesia was assessed in the forepaws, and NGF expression was quantified in the C6/C7 facet joint. An anti-NGF antibody was administered intra-articularly in additional rats immediately or 1 day following facet distraction or sham procedures to block intra-articular NGF and test its contribution to initiation and/or maintenance of facet joint pain and spinal neuronal hyperexcitability. NGF was injected into the bilateral C6/C7 facet joints in separate rats to determine if NGF alone is sufficient to induce these behavioral and neuronal responses. Results NGF expression increases in the cervical facet joint in association with behavioral sensitivity after that joint’s mechanical injury. Intra-articular application of anti-NGF immediately after a joint distraction prevents the development of both injury-induced pain and hyperexcitability of spinal neurons. Yet, intra-articular anti-NGF applied after pain has developed does not attenuate either behavioral or neuronal hyperexcitability. Intra-articular NGF administered to the facet in naïve rats also induces behavioral hypersensitivity and spinal neuronal hyperexcitability. Conclusion Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain. PMID:26521746

  8. Expression of nerve growth factor and hypoxia inducible factor-1α and its correlation with angiogenesis in non-small cell lung cancer.

    PubMed

    Lu, Qing-li; Liu, Jian; Zhu, Xiao-li; Xu, Wen-jia

    2014-06-01

    In order to investigate the expression of nerve growth factor (NGF) and hypoxia inducible factor-1α (HIF-1α) and its correlation with angiogenesis in non-small cell lung cancer (NSCLC), paraffin-embedded tissue blocks from 20 patients with NSCLC were examined. Twenty corresponding para-cancerous lung tissue specimens were obtained to serve as a control. The expression of NGF, HIF-1α, and vascular endothelial growth factor (VEGF) in the NSCLC tissues was detected by using immunohistochemistry. The microvascular density (MVD) was determined by CD31 staining. The results showed that the expression levels of NGF, HIF-1α and VEGF in the NSCLC tissues were remarkably higher than those in the para-cancerous lung tissues (P<0.05). There was significant difference in the MVD between the NSCLC tissues (9.19±1.43) and para-cancerous lung tissues (2.23±1.19) (P<0.05). There were positive correlations between NGF and VEGF, between HIF-1α and VEGF, and between NGF and HIF-1α in NSCLC tissues, with the spearman correlation coefficient being 0.588, 0.519 and 0.588, respectively. In NSCLC tissues, the MVD had a positive correlation with the three factors (P<0.05). Theses results suggest that NGF and HIF-1α are synergically involved in the angiogenesis of NSCLC.

  9. Ultrasound Microbubbles Enhance the Neuroprotective Effect of Mouse Nerve Growth Factor on Intraocular Hypertension-Induced Neuroretina Damage in Rabbits

    PubMed Central

    Shen, Xiaoli; Ma, Dahui; Zhao, Jun; Xie, Yi; Li, Qiang; Zeng, Aineng; Zeng, Kun; Tian, Ruyin; Wang, Tianfu; Chen, Siping

    2016-01-01

    Ultrasound microbubble combined optic protection drugs have obvious protective effect on optic nerve damage. This way of targeting drug delivery is becoming more simple, not through the whole body metabolism, avoiding drug via blood circulation when facing the decomposition and the environment in the interference and destruction process of drugs, to maximize the guarantee to reach target organs of drug concentration and to reache the maximum therapeutic effect. The technique of ultrasound microbubbles is safe, controllable, nonimmunogenic, and repeatable. It provides us with a novel idea in the administration of neuroprotective drugs. PMID:27994883

  10. Exogenous nerve growth factor protects the hypoglossal nerve against crush injury

    PubMed Central

    Fan, Li-yuan; Wang, Zhong-chao; Wang, Pin; Lan, Yu-yan; Tu, Ling

    2015-01-01

    Studies have shown that sensory nerve damage can activate the p38 mitogen-activated protein kinase (MAPK) pathway, but whether the same type of nerve injury after exercise activates the p38MAPK pathway remains unclear. Several studies have demonstrated that nerve growth factor may play a role in the repair process after peripheral nerve injury, but there has been little research focusing on the hypoglossal nerve injury and repair. In this study, we designed and established rat models of hypoglossal nerve crush injury and gave intraperitoneal injections of exogenous nerve growth factor to rats for 14 days. p38MAPK activity in the damaged neurons was increased following hypoglossal nerve crush injury; exogenous nerve growth factor inhibited this increase in acitivity and increased the survival rate of motor neurons within the hypoglossal nucleus. Under transmission electron microscopy, we found that the injection of nerve growth factor contributed to the restoration of the morphology of hypoglossal nerve after crush injury. Our experimental findings indicate that exogenous nerve growth factor can protect damaged neurons and promote hypoglossal nerve regeneration following hypoglossal nerve crush injury. PMID:26889186

  11. Distinctive effect on nerve growth factor-induced PC12 cell neurite outgrowth by two unique neolignan enantiomers from Illicium merrillianum

    NASA Astrophysics Data System (ADS)

    Tian, Xinhui; Yue, Rongcai; Zeng, Huawu; Li, Honglin; Shan, Lei; He, Weiwei; Shen, Yunheng; Zhang, Weidong

    2015-11-01

    Merrillianoid (1), a racemic neolignan possessing the characteristic benzo-2,7-dioxabicyclo[3.2.1]octane moiety, was isolated from the branches and leaves of Illicium merrillianum. Chiral separation of 1 gave two enantiomers (+)-1 and (-)-1. The structure of 1 was established by comprehensive spectroscopic analysis and single crystal X-ray diffraction. The absolute configurations of enantiomers were determined by quantum mechanical calculation. Compound (+)-1 exhibited a better neurotrophic activity than racemate 1 by promoting nerve growth factor (NGF) induced PC12 cell neurite outgrowth, while (-)-1 showed a distinctive inhibitory effect. Furthermore, a mechanism study indicated that the two enantiomers influenced NGF-induced neurite outgrowth of PC12 cells possibly by interacting with the trkA receptor, and extracellular signal regulated kinases 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) in Ras/ERK signal cascade. But the phosphorylation level of serine/threonine kinase Akt1 and Akt2 in PI3K/Akt signal pathway showed no significant difference between (+)-1 and (-)-1.

  12. Pro-nerve Growth Factor Induces Autocrine Stimulation of Breast Cancer Cell Invasion through Tropomyosin-related Kinase A (TrkA) and Sortilin Protein*

    PubMed Central

    Demont, Yohann; Corbet, Cyril; Page, Adeline; Ataman-Önal, Yasemin; Choquet-Kastylevsky, Genevieve; Fliniaux, Ingrid; Le Bourhis, Xuefen; Toillon, Robert-Alain; Bradshaw, Ralph A.; Hondermarck, Hubert

    2012-01-01

    The precursor of nerve growth factor (proNGF) has been described as a biologically active polypeptide able to induce apoptosis in neuronal cells, via the neurotrophin receptor p75NTR and the sortilin receptor. Herein, it is shown that proNGF is produced and secreted by breast cancer cells, stimulating their invasion. Using Western blotting and mass spectrometry, proNGF was detected in a panel of breast cancer cells as well as in their conditioned media. Immunohistochemical analysis indicated an overproduction of proNGF in breast tumors, when compared with benign and normal breast biopsies, and a relationship to lymph node invasion in ductal carcinomas. Interestingly, siRNA against proNGF induced a decrease of breast cancer cell invasion that was restored by the addition of non-cleavable proNGF. The activation of TrkA, Akt, and Src, but not the MAP kinases, was observed. In addition, the proNGF invasive effect was inhibited by the Trk pharmacological inhibitor K252a, a kinase-dead TrkA, and siRNA against TrkA sortilin, neurotensin, whereas siRNA against p75NTR and the MAP kinase inhibitor PD98059 had no impact. These data reveal the existence of an autocrine loop stimulated by proNGF and mediated by TrkA and sortilin, with the activation of Akt and Src, for the stimulation of breast cancer cell invasion. PMID:22128158

  13. Nerve growth factor-induced changes in the intracellular localization of the protein kinase C substrate B-50 in pheochromocytoma PC12 cells

    PubMed Central

    1989-01-01

    High levels of the neuron-specific protein kinase C substrate, B-50 (= GAP43), are present in neurites and growth cones during neuronal development and regeneration. This suggests a hitherto nonelucidated role of this protein in neurite outgrowth. Comparable high levels of B- 50 arise in the pheochromocytoma PC12 cell line during neurite formation. To get insight in the putative growth-associated function of B-50, we compared its ultrastructural localization in naive PC12 cells with its distribution in nerve growth factor (NGF)- or dibutyryl cyclic AMP (dbcAMP)-treated PC12 cells. B-50 immunogold labeling of cryosections of untreated PC12 cells is mainly associated with lysosomal structures, including multivesicular bodies, secondary lysosomes, and Golgi apparatus. The plasma membrane is virtually devoid of label. However, after 48-h NGF treatment of the cells, B-50 immunoreactivity is most pronounced on the plasma membrane. Highest B- 50 immunoreactivity is observed on plasma membranes surrounding sprouting microvilli, lamellipodia, and filopodia. Outgrowing neurites are scattered with B-50 labeling, which is partially associated with chromaffin granules. In NGF-differentiated PC12 cells, B-50 immunoreactivity is, as in untreated cells, also associated with organelles of the lysosomal family and Golgi stacks. B-50 distribution in dbcAMP-differentiated cells closely resembles that in NGF-treated cells. The altered distribution of B-50 immunoreactivity induced by differentiating agents indicates a shift of the B-50 protein towards the plasma membrane. This translocation accompanies the acquisition of neuronal features of PC12 cells and points to a neurite growth- associated role for B-50, performed at the plasma membrane at the site of protrusion. PMID:2537833

  14. Sciatic nerve regeneration using a nerve growth factor-containing fibrin glue membrane.

    PubMed

    Ma, Shengzhong; Peng, Changliang; Wu, Shiqing; Wu, Dongjin; Gao, Chunzheng

    2013-12-25

    Our previous findings confirmed that the nerve growth factor-containing fibrin glue membrane provides a good microenvironment for peripheral nerve regeneration; however, the precise mechanism remains unclear. p75 neurotrophin receptor (p75(NTR)) plays an important role in the regulation of peripheral nerve regeneration. We hypothesized that a nerve growth factor-containing fibrin glue membrane can promote neural regeneration by up-regulating p75(NTR) expression. In this study, we used a silicon nerve conduit to bridge a 15 mm-long sciatic nerve defect and injected a mixture of nerve growth factor and fibrin glue at the anastomotic site of the nerve conduit and the sciatic nerve. Through RT-PCR and western blot analysis, nerve growth factor-containing fibrin glue membrane significantly increased p75(NTR) mRNA and protein expression in the Schwann cells at the anastomotic site, in particular at 8 weeks after injection of the nerve growth factor/fibrin glue mixture. These results indicate that nerve growth factor-containing fibrin glue membrane can promote peripheral nerve regeneration by up-regulating p75(NTR) expression in Schwann cells.

  15. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes.

    PubMed

    Weaver, Ian C G; D'Alessio, Ana C; Brown, Shelley E; Hellstrom, Ian C; Dymov, Sergiy; Sharma, Shakti; Szyf, Moshe; Meaney, Michael J

    2007-02-14

    Maternal care alters epigenetic programming of glucocorticoid receptor (GR) gene expression in the hippocampus, and increased postnatal maternal licking/grooming (LG) behavior enhances nerve growth factor-inducible protein A (NGFI-A) transcription factor binding to the exon 1(7) GR promoter within the hippocampus of the offspring. We tested the hypothesis that NGFI-A binding to the exon 1(7) GR promoter sequence marks this sequence for histone acetylation and DNA demethylation and that such epigenetic alterations subsequently influence NGFI-A binding and GR transcription. We report that (1) NGFI-A binding to its consensus sequence is inhibited by DNA methylation, (2) NGFI-A induces the activity of exon 1(7) GR promoter in a transient reporter assay, (3) DNA methylation inhibits exon 1(7) GR promoter activity, and (4) whereas NGFI-A interaction with the methylated exon 1(7) GR promoter is reduced, NGFI-A overexpression induces histone acetylation, DNA demethylation, and activation of the exon 1(7) GR promoter in transient transfection assays. Site-directed mutagenesis assays demonstrate that NGFI-A binding to the exon 1(7) GR promoter is required for such epigenetic reprogramming. In vivo, enhanced maternal LG is associated with increased NGFI-A binding to the exon 1(7) GR promoter in the hippocampus of pups, and NGFI-A-bound exon 1(7) GR promoter is unmethylated compared with unbound exon 1(7) GR promoter. Knockdown experiments of NGFI-A in hippocampal primary cell culture show that NGFI-A is required for serotonin-induced DNA demethylation and increased exon 1(7) GR promoter expression. The data are consistent with the hypothesis that NGFI-A participates in epigenetic programming of GR expression.

  16. DOSE-DEPENDENT INCREASE IN THE PRODUCTION OF NERVE GROWTH FACTOR, NEUROTROPHIN-3, AND NEUROTROPHIN-4 IN A PENICILLIUM CHRYSOGENUM-INDUCED ALLERGIC ASTHMA MODEL

    EPA Science Inventory


    Increased levels of neurotrophins (nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], neurotrophin [NT]-3, and/or NT-4) have been associated with asthma as well as in animal models of allergic asthma. In our mouse model for fungal allergic asthma, repeated ...

  17. INCREASED PRODUCTION OF NERVE GROWTH FACTOR, NEUROTROPHIN-3, AND NEUROTROPHIN-4 IN A PENICILLIUM CHRYSOGENUM -INDUCED ALLERGIC ASTHMA MODEL IN MICE

    EPA Science Inventory

    Increased levels of neurotrophins (nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], neurotrophin [NT]-3, and/or NT-4) have been associated with asthmatics and in animal models of allergic asthma. In our mouse model for fungal allergic asthma, repeated pulmona...

  18. INCREASED PRODUCTION OF NERVE GROWTH FACTOR, NEUROTROPHIN-3, AND NEUROTROPHIN-4 IN A PENICILLIUM CHRYSOGENUM -INDUCED ALLERGIC ASTHMA MODEL IN MICE

    EPA Science Inventory

    Increased levels of neurotrophins (nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], neurotrophin [NT]-3, and/or NT-4) have been associated with asthmatics and in animal models of allergic asthma. In our mouse model for fungal allergic asthma, repeated pulmona...

  19. DOSE-DEPENDENT INCREASE IN THE PRODUCTION OF NERVE GROWTH FACTOR, NEUROTROPHIN-3, AND NEUROTROPHIN-4 IN A PENICILLIUM CHRYSOGENUM-INDUCED ALLERGIC ASTHMA MODEL

    EPA Science Inventory


    Increased levels of neurotrophins (nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], neurotrophin [NT]-3, and/or NT-4) have been associated with asthma as well as in animal models of allergic asthma. In our mouse model for fungal allergic asthma, repeated ...

  20. alpha-Adrenergic regulation of secretion of mouse saliva rich in nerve growth factor.

    PubMed Central

    Wallace, L J; Partlow, L M

    1976-01-01

    Nerve growth factor has been quantified by both bioassay and radial immunodiffusion in mouse saliva elicited by several secretagogues. The concentrations by bioassay of nerve growth factor in both epinephrine- and norepinephrine-induced saliva (3400 and 900 mug/ml, respectively) are higher than reported in any other source. In contrast, the concentrations of nerve growth factor in isoproterenol- and pilocarpine-induced saliva are relatively low (17 and 2 mug/ml, respectively). The specific activity of the salivary nerve growth factor was 41, 36, 2, and 0.6 mug/mg of protein in secretions elicited by epinephrine, norepinephrine, pilocarpine, and isoproterenol, respectively. Salivation after administration of either epinephrine or norepinephrine was completely inhibited by the alpha-adrenergic blocker, phenoxybenzamine. These results suggest that the release of saliva rich in nerve growth factor is primarily regulated through alpha-adrenergic receptors. Images PMID:186790

  1. Nerve Growth Factor Decreases in Sympathetic and Sensory Nerves of Rats with Chronic Heart Failure

    PubMed Central

    Lu, Jian

    2014-01-01

    Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6–20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF. PMID:24913185

  2. Peripheral nerve morphogenesis induced by scaffold micropatterning

    PubMed Central

    Memon, Danish; Boneschi, Filippo Martinelli; Madaghiele, Marta; Brambilla, Paola; Del Carro, Ubaldo; Taveggia, Carla; Riva, Nilo; Trimarco, Amelia; Lopez, Ignazio D.; Comi, Giancarlo; Pluchino, Stefano; Martino, Gianvito; Sannino, Alessandro; Quattrini, Angelo

    2014-01-01

    Several bioengineering approaches have been proposed for peripheral nervous system repair, with limited results and still open questions about the underlying molecular mechanisms. We assessed the biological processes that occur after the implantation of collagen scaffold with a peculiar porous microstructure of the wall in a rat sciatic nerve transection model compared to commercial collagen conduits and nerve crush injury using functional, histological and genome wide analyses. We demonstrated that within 60 days, our conduit had been completely substituted by a normal nerve. Gene expression analysis documented a precise sequential regulation of known genes involved in angiogenesis, Schwann cells/axons interactions and myelination, together with a selective modulation of key biological pathways for nerve morphogenesis induced by porous matrices. These data suggest that the scaffold’s microstructure profoundly influences cell behaviors and creates an instructive micro-environment to enhance nerve morphogenesis that can be exploited to improve recovery and understand the molecular differences between repair and regeneration. PMID:24559639

  3. ERK5 Activity Is Required for Nerve Growth Factor-induced Neurite Outgrowth and Stabilization of Tyrosine Hydroxylase in PC12 Cells*

    PubMed Central

    Obara, Yutaro; Yamauchi, Arata; Takehara, Shin; Nemoto, Wataru; Takahashi, Maho; Stork, Philip J. S.; Nakahata, Norimichi

    2009-01-01

    Extracellular signal-regulated kinases (ERKs) play important physiological roles in proliferation, differentiation, and gene expression. ERK5 is approximately twice the size of ERK1/2, and its amino-terminal half contains the kinase domain that shares homology with ERK1/2 and TEY activation motif, whereas the carboxyl-terminal half is unique. In this study, we examined a physiological role of ERK5 in rat pheochromocytoma cells (PC12), comparing it with ERK1/2. Nerve growth factor (NGF) induced phosphorylation of both ERK5 and ERK1/2, whereas the cAMP analog dibutyryl cAMP (Bt2cAMP) caused only ERK1/2 phosphorylation. U0126, at 30 μm, that blocks ERK1/2 signaling selectively attenuated neurite outgrowth induced by NGF and Bt2cAMP, but BIX02188 and BIX02189, at 30 μm, that block ERK5 signaling and an ERK5 dominant-negative mutant suppressed only NGF-induced neurite outgrowth. Next, we examined the expression of tyrosine hydroxylase, a rate-limiting enzyme of catecholamine biosynthesis. Both NGF and Bt2cAMP increased tyrosine hydroxylase gene promoter activity in an ERK1/2-dependent manner but was ERK5-independent. However, when both ERK5 and ERK1/2 signalings were inhibited, tyrosine hydroxylase protein up-regulation by NGF and Bt2cAMP was abolished, because of the loss of stabilization of tyrosine hydroxylase protein by ERK5. Taking these results together, ERK5 is involved in neurite outgrowth and stabilization of tyrosine hydroxylase in PC12 cells, and ERK5, along with ERK1/2, plays essential roles in the neural differentiation process. PMID:19581298

  4. Ocular nerve growth factor administration counteracts the impairment of neural precursor cell viability and differentiation in the brain subventricular area of rats with streptozotocin-induced diabetes.

    PubMed

    Tirassa, Paola; Maccarone, Mattia; Carito, Valentina; De Nicolò, Sara; Fiore, Marco

    2015-05-01

    The ocular administration of nerve growth factor (NGF) as eye drops (oNGF) has been shown to exert protective effects in forebrain-injured animal models, including adult diabetes induced by a single injection of streptozotocin (STZ) (60 mg/kg body weight). This type 1 diabetes model was used in this study to investigate whether oNGF might extend its actions on neuronal precursors localised in the subventricular zone (SVZ). NGF or saline was administrated as eye drops twice daily for 2 weeks in rats with STZ-induced diabetes and healthy control rats. The expression of mature and precursor NGF and the NGF receptors, tropomyosin-related kinase A and neurotrophin receptor p75, and the levels of DNA fragmentation were analysed by ELISA and western blotting. Incorporation of bromodeoxyuridine was used to trace newly formed cells. Nestin, polysialylated neuronal cell adhesion molecule (PSA-NCAM), doublecortin (DCX) and glial fibrillary acidic protein antibodies were used to identify the SVZ cells by confocal microscopy. It was found that oNGF counteracts the STZ-induced cell death and the alteration of mature/pro-NGF expression in the SVZ. It also affects the survival and differentiation of SVZ progenitors. In particular, oNGF counteracts the reduction in the number of cells expressing PSA-NCAM/DCX (neuroblast type A cells) and the related reductions in the number and distribution of nestin/DCX-positive cells (C-type cells), or glia-committed cells (type B cells), observed in the SVZ of diabetic rats. These findings show that oNGF treatment counteracts the effect of type 1 diabetes on neuronal precursors in the SVZ, and further support the neuroprotective and reparative role of oNGF in the brain.

  5. Nerve growth factor-mediated neuronal plasticity in spinal cord contributes to neonatal maternal separation-induced visceral hypersensitivity in rats.

    PubMed

    Tsang, S W; Zhao, M; Wu, J; Sung, J J Y; Bian, Z-X

    2012-04-01

    Visceral hyperalgesia is a multifactorial gastrointestinal disorder which featured with alterations of abdominal motility and/or gut sensitivity, and is believed to be triggered by environmental stressor or psychological factors. However, its etiology remains incompletely understood. In this study, we aimed to investigate whether nerve growth factor (NGF)-mediated neuronal plasticity is involved in neonatal maternal separation (NMS)-induced visceral hypersensitivity in adult rats, and whether NGF antagonist can attenuate or block such development. In our experiments, animals subjected to NMS were developed with visceral hyperalgesia at age of 8 weeks. The threshold for visceral pain among these NMS rats was remarkably lowered than that of the normal handling (NH) rats; however, the expression levels of NGF, c-fos, calcitonin gene-related peptide (CGRP), Substance P, and tyrosine kinases A (TrkA) were notably elevated in lumbosacral spinal cord and/or dorsal root ganglion (DRG) when comparing to those of the NH rats. Further, as intra-peritoneal administration of NGF (10 μl at 1 μg/kg/day) was given to NH rats during neonatal period, effects that comparable to NMS induction were observed in the adulthood. In contrast, when NMS rats were treated with NGF antagonist K252a (10 μl/day from postnatal days 2-14), which acts against tyrosine kinases, the neonatal stress-induced down-shifted visceral pain threshold was restored and neuronal activation, specifically NGF and neuropeptide production, was attenuated. In conclusion, our data strongly suggest that NGF triggers neuronal plasticity and plays a crucial role in NMS-induced visceral hypersensitivity in which NGF antagonism provides positive inhibition via blocking the tyrosine phosphorylation of TrkA.

  6. Potentiation of Nerve Growth Factor-Induced Neurite Outgrowth by Fluvoxamine: Role of Sigma-1 Receptors, IP3 Receptors and Cellular Signaling Pathways

    PubMed Central

    Nishimura, Tomoko; Ishima, Tamaki; Iyo, Masaomi; Hashimoto, Kenji

    2008-01-01

    Background Selective serotonin reuptake inhibitors (SSRIs) have been widely used and are a major therapeutic advance in psychopharmacology. However, their pharmacology is quite heterogeneous. The SSRI fluvoxamine, with sigma-1 receptor agonism, is shown to potentiate nerve-growth factor (NGF)-induced neurite outgrowth in PC 12 cells. However, the precise cellular and molecular mechanisms underlying potentiation by fluvoxamine are not fully understood. In this study, we examined the roles of cellular signaling pathways in the potentiation of NGF-induced neurite outgrowth by fluvoxamine and sigma-1 receptor agonists. Methods and Findings The effects of three SSRIs (fluvoxamine, sertraline, paroxetine) and three sigma-1 receptor agonists (SA4503, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP), and dehydroepiandrosterone (DHEA)-sulfate) on NGF-induced neurite outgrowth in PC12 cells were examined. Also examined were the effects of the sigma-1 receptor antagonist NE-100, inositol 1,4,5-triphosphate (IP3) receptor antagonist, and specific inhibitors of signaling pathways in the potentiation of NGF-induced neurite outgrowth by selective sigma-1 receptor agonist SA4503. Fluvoxamine (but not sertraline or paroxetine) and the sigma-1 receptor agonists SA4503, PPBP, and DHEA-sulfate significantly potentiated NGF-induced neurite outgrowth in PC12 cells in a concentration-dependent manner. The potentiation by fluvoxamine and the three sigma-1 receptor agonists was blocked by co-administration of the selective sigma-1 receptor antagonist NE-100, suggesting that sigma-1 receptors play a role in blocking the enhancement of NGF-induced neurite outgrowth. Moreover, the potentiation by SA4503 was blocked by co-administration of the IP3 receptor antagonist xestospongin C. In addition, the specific inhibitors of phospholipase C (PLC-γ), phosphatidylinositol 3-kinase (PI3K), p38MAPK, c-Jun N-terminal kinase (JNK), and the Ras/Raf/mitogen-activated protein kinase (MAPK) signaling pathways

  7. Isorhamnetin, A Flavonol Aglycone from Ginkgo biloba L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor.

    PubMed

    Xu, Sherry L; Choi, Roy C Y; Zhu, Kevin Y; Leung, Ka-Wing; Guo, Ava J Y; Bi, Dan; Xu, Hong; Lau, David T W; Dong, Tina T X; Tsim, Karl W K

    2012-01-01

    Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, share a chemical resemblance to estrogen, and indeed some of which have been used as estrogen substitutes. In searching for possible functions of flavonoids, the neuroprotective effect in brain could lead to novel treatment, or prevention, for neurodegenerative diseases. Here, different subclasses of flavonoids were analyzed for its inductive role in neurite outgrowth of cultured PC12 cells. Amongst the tested flavonoids, a flavonol aglycone, isorhamnetin that was isolated mainly from the leaves of Ginkgo biloba L. showed robust induction in the expression of neurofilament, a protein marker for neurite outgrowth, of cultured PC12 cells. Although isorhamnetin by itself did not show significant inductive effect on neurite outgrowth of cultured PC12 cells, the application of isorhamnetin potentiated the nerve growth factor- (NGF-)induced neurite outgrowth. In parallel, the expression of neurofilaments was markedly increased in the cotreatment of NGF and isorhamnetin in the cultures. The identification of these neurite-promoting flavonoids could be very useful in finding potential drugs, or food supplements, for treating various neurodegenerative diseases, including Alzheimer's disease and depression.

  8. Injection of nerve growth factor into a low back muscle induces long-lasting latent hypersensitivity in rat dorsal horn neurons.

    PubMed

    Hoheisel, Ulrich; Reuter, Ragna; de Freitas, Milena Fernandes; Treede, Rolf-Detlef; Mense, Siegfried

    2013-10-01

    Little is known about the central mechanisms underlying the transition from local or regional to widespread pain in low back pain patients. The aim of the study was to find out if muscle input induced by injection of nerve growth factor (NGF) can be used as an animal model for studying spinal mechanisms involved in widespread myofascial low back pain. Electrophysiological recordings from rat dorsal horn neurons were made in vivo to study alterations in their responsiveness caused by 2 injections of NGF into the multifidus muscle at an interval of 5 days. NGF is known to be closely associated with many painful muscle disorders. The results demonstrate that the 2 NGF injections-but not a single one-caused a significant hyperexcitability of spinal neurons. Five days after the first NGF injection, the neurons were not significantly sensitized but were easier to sensitize by a second injection. The state of the neurons resembles nociceptive priming. Important findings were that the proportion of neurons having multiple receptive fields (RFs) in various tissues was significantly higher after 2 NGF injections, and new RFs appeared on the distal hind limb. The new RFs were located not in the skin but in deep tissues (muscles, thoracolumbar fascia). If similar changes occur in patients, the data might explain the diffuse nature and spread of myofascial low back pain.

  9. Biochemical and biological properties of the nerve growth factor receptor

    SciTech Connect

    Taniuchi, M.

    1988-01-01

    We have utilized a monoclonal antibody (192-IgG) to study the rat nerve growth factor receptor. After intraocular injection, {sup 125}I-192-IgG was retrogradely transported in sympathetic neuronal axons to the superior cervical ganglion. When the sciatic nerve was ligated to induce the accumulation of axonally transported materials, 192-IgG immunostaining was observed on both sides of the ligature, indicating that NGF receptors are transported in both orthograde and retrograde directions. By using {sup 125}I-NGF crosslinking and 192-IgG immunoprecipitation, we detected receptor molecules throughout the rat brain, thereby supporting the hypothesis that NGF is active in the central nervous system. We also discovered that sciatic nerve transection leads to a dramatic increase in the amount of NGF receptor found in the distal portion of the nerve. Immunostaining revealed that all Schwann cells in the distal axotomized nerve were expressing NGF receptors. We examined phosphorylation of NGF receptor in cultured sympathetic neurons and PC12 cells. We also examined pharmacological effects of 192-IgG. Systemic injection of 192-IgG into neonatal rats caused a permanent partial sympathectomy in a dose-dependent manner; a maximum of 50% of the cells were killed.

  10. Nerve Growth Factor and Diabetic Neuropathy

    PubMed Central

    Vinik, Aaron

    2003-01-01

    Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium. PMID:14668049

  11. Electroacupuncture counteracts the development of thermal hyperalgesia and the alteration of nerve growth factor and sensory neuromodulators induced by streptozotocin in adult rats.

    PubMed

    Manni, L; Florenzano, F; Aloe, L

    2011-07-01

    Diabetes is considered the leading cause of neuropathies in developed countries. Dysfunction of nerve growth factor (NGF) production and/or utilisation may lead to the establishment of diabetic neuropathies. Electroacupuncture has been proved effective in the treatment of human neuropathic pain as well as in modulating NGF production/activity. We aimed at using electroacupuncture to correct the development of thermal hyperalgesia and the tissue alteration of NGF and sensory neuromodulators in a rat model of type 1 diabetes. Adult rats were injected with streptozotocin to induce diabetes and subsequently treated with low-frequency electroacupuncture for 3 weeks. Variation in thermal sensitivity was studied during the experimental course. Hindpaw skin and spinal cord protein content of NGF, NGF receptor tyrosine kinase A (TrkA), substance P (SP), transient receptor potential vanilloid 1 (TRPV1) receptor and glutamic acid decarboxylase-67 (GAD-67) were measured after electroacupuncture treatments. The skin and spinal cord cellular distribution of TrkA was analysed to explore NGF signalling. Early after streptozotocin treatment, thermal hyperalgesia developed that was corrected by electroacupuncture. The parallel increases in NGF and TrkA in the spinal cord were counteracted by electroacupuncture. Streptozotocin also induced variation in skin/spinal TrkA phosphorylation, increases in skin SP and spinal TRPV1 and a decrease in spinal GAD-67. These changes were counteracted by electroacupuncture. Our results point to the potential of electroacupuncture as a supportive therapy for the treatment of diabetic neuropathies. The efficacy of electroacupuncture might depend on its actions on spinal/peripheral NGF synthesis/utilisation and normalisation of the levels of several sensory neuromodulators.

  12. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo.

    PubMed

    Lopatina, Tatiana; Kalinina, Natalia; Karagyaur, Maxim; Stambolsky, Dmitry; Rubina, Kseniya; Revischin, Alexander; Pavlova, Galina; Parfyonova, Yelena; Tkachuk, Vsevolod

    2011-03-14

    Transplantation of adipose-derived mesenchymal stem cells (ASCs) induces tissue regeneration by accelerating the growth of blood vessels and nerve. However, mechanisms by which they accelerate the growth of nerve fibers are only partially understood. We used transplantation of ASCs with subcutaneous matrigel implants (well-known in vivo model of angiogenesis) and model of mice limb reinnervation to check the influence of ASC on nerve growth. Here we show that ASCs stimulate the regeneration of nerves in innervated mice's limbs and induce axon growth in subcutaneous matrigel implants. To investigate the mechanism of this action we analyzed different properties of these cells and showed that they express numerous genes of neurotrophins and extracellular matrix proteins required for the nerve growth and myelination. Induction of neural differentiation of ASCs enhances production of brain-derived neurotrophic factor (BDNF) as well as ability of these cells to induce nerve fiber growth. BDNF neutralizing antibodies abrogated the stimulatory effects of ASCs on the growth of nerve sprouts. These data suggest that ASCs induce nerve repair and growth via BDNF production. This stimulatory effect can be further enhanced by culturing the cells in neural differentiation medium prior to transplantation.

  13. Nerve Growth Factor with Insular Cortical Grafts Induces Recovery of Learning and Reestablishes Graft Choline Acetyltransferase Activity

    PubMed Central

    Escobar, M. L.; Jiménez, N.; López-García, J. C.; Tapia, R.; Bermúdez-Rattoni, F.

    1993-01-01

    Rats showing disrupted taste aversion due to insular cortex (IC)-lesions received either IC-grafts with NGF, grafts without NGF, or NGF alone. An additional group served as lesioned controls. Only those animals that received IC-grafts with NGF recovered the ability to learn the conditioned taste aversion task, at 15 days post-graft. Choline acetyltransferase (ChAT) activity in the IC-grafts with, but not without NGF, was similar to the IC activity of unoperated controls. In contrast, glutamate decarboxylase activity was similar in all the groups. These findings suggest that IC-grafts associated with NGF induce recovery of learning abilities in IC-lesioned rats, which correlates with reestablishment of ChAT activity in the grafts at 15 days post-implantation. PMID:8110867

  14. Ethanol induces upregulation of the nerve growth factor receptor CD271 in human melanoma cells via nuclear factor-κB activation.

    PubMed

    Rappa, Germana; Anzanello, Fabio; Lorico, Aurelio

    2015-08-01

    Alcohol consumption is one of the most important, and potentially avoidable, risk factors of human cancer, accounting for 3.6% of all types of cancer worldwide. In a recent meta-analysis, a 20% increased risk of melanoma was linked with regular alcohol consumption. In the present study, the effect of ethanol exposure on the expression of the nerve growth factor receptor, CD271, in human FEMX-I melanoma cells was investigated. Consistent with the derivation of melanocytes from the neural crest, the majority of melanomas express CD271, a protein that is crucial for maintaining the melanoma stem cell properties, including the capacity of self-renewal and resistance to chemotherapy and radiotherapy. Analysis of CD271-sorted subpopulations and clones of FEMX-I cells indicated no hierarchical organization of CD271(+) and CD271(-) cells. In addition, CD271 expression was lost upon growth of FEMX-I melanoma cells in cancer stem cell-like conditions, while it was greatly increased upon CD133 knockdown or exposure to ethanol. After 24-h exposure to 100, 200 and 400 mM ethanol, the percentage of CD271(+) cells increased from 14% in control cells to 24, 35 and 88%, respectively. An increase in the percentage of CD271(+) cells was already evident 8 h after ethanol exposure and reached a maximum at 48 h. Ethanol-induced upregulation of CD271 was mediated by nuclear factor-κB (NF-κB). In fact, exposure of FEMX-I cells to 100-400 mM ethanol for 24 h resulted in a concentration- and time-dependent increase in NF-κB activity, up to 900% that of control cells. NF-κB activation was due to a decrease in p50 homodimers, which occupy the NF-κB binding site, blocking transactivation. No effects of ethanol on 9 additional signaling pathways of FEMX-I cells were observed. In the presence of CD271 blocking antibodies, NF-κB activation was not prevented, indicating that ethanol did not target CD271 directly. These data demonstrate that ethanol induces expression of CD271 in FEMX-I cells

  15. Ethanol induces upregulation of the nerve growth factor receptor CD271 in human melanoma cells via nuclear factor-κB activation

    PubMed Central

    RAPPA, GERMANA; ANZANELLO, FABIO; LORICO, AURELIO

    2015-01-01

    Alcohol consumption is one of the most important, and potentially avoidable, risk factors of human cancer, accounting for 3.6% of all types of cancer worldwide. In a recent meta-analysis, a 20% increased risk of melanoma was linked with regular alcohol consumption. In the present study, the effect of ethanol exposure on the expression of the nerve growth factor receptor, CD271, in human FEMX-I melanoma cells was investigated. Consistent with the derivation of melanocytes from the neural crest, the majority of melanomas express CD271, a protein that is crucial for maintaining the melanoma stem cell properties, including the capacity of self-renewal and resistance to chemotherapy and radiotherapy. Analysis of CD271-sorted subpopulations and clones of FEMX-I cells indicated no hierarchical organization of CD271+ and CD271− cells. In addition, CD271 expression was lost upon growth of FEMX-I melanoma cells in cancer stem cell-like conditions, while it was greatly increased upon CD133 knockdown or exposure to ethanol. After 24-h exposure to 100, 200 and 400 mM ethanol, the percentage of CD271+ cells increased from 14% in control cells to 24, 35 and 88%, respectively. An increase in the percentage of CD271+ cells was already evident 8 h after ethanol exposure and reached a maximum at 48 h. Ethanol-induced upregulation of CD271 was mediated by nuclear factor-κB (NF-κB). In fact, exposure of FEMX-I cells to 100–400 mM ethanol for 24 h resulted in a concentration- and time-dependent increase in NF-κB activity, up to 900% that of control cells. NF-κB activation was due to a decrease in p50 homodimers, which occupy the NF-κB binding site, blocking transactivation. No effects of ethanol on 9 additional signaling pathways of FEMX-I cells were observed. In the presence of CD271 blocking antibodies, NF-κB activation was not prevented, indicating that ethanol did not target CD271 directly. These data demonstrate that ethanol induces expression of CD271 in FEMX-I cells via

  16. Ethanol- and acetaldehyde-induced cholinergic imbalance in the hippocampus of Aldh2-knockout mice does not affect nerve growth factor or brain-derived neurotrophic factor.

    PubMed

    Jamal, Mostofa; Ameno, Kiyoshi; Ruby, Mostofa; Miki, Takanori; Tanaka, Naoko; Nakamura, Yu; Kinoshita, Hiroshi

    2013-11-20

    Neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), play an important role in the maintenance of cholinergic-neuron function. The objective of this study was to investigate whether ethanol (EtOH)- and acetaldehyde (AcH)- induced cholinergic effects would cause neurotrophic alterations in the hippocampus of mice. We used Aldh2 knockout (Aldh2-KO) mice, a model of aldehyde dehydrogenase 2 (ALDH2)-deficiency in humans, to examine the effects of acute administration of EtOH and the role of AcH. Hippocampal slices were collected and the mRNA and protein levels of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), NGF and BDNF were analyzed 30 min after the i.p. administration of EtOH (0.5, 1.0, or 2.0 g/kg). We show that treatment with 2.0 g/kg of EtOH decreased ChAT mRNA and protein levels in Aldh2-KO mice but not in wild-type (WT) mice, which suggests a role for AcH in the mechanism of action of EtOH. The administration of 2.0 g/kg of EtOH increased AChE mRNA in both strains of mice. EtOH failed to change the levels of NGF or BDNF at any dose. Aldh2-KO mice exhibited a distinctly lower expression of ChAT and a higher expression of NGF both at mRNA and protein levels in the hippocampus compared with WT mice. Our observations suggest that administration of EtOH and elevated AcH can alter cholinergic markers in the hippocampus of mice, and this effect did not change the levels of NGF or BDNF.

  17. Nerve growth factor induced changes in the Golgi apparatus of PC-12 rat pheochromocytoma cells as studied by ligand endocytosis, cytochemical and morphometric methods.

    PubMed

    Hickey, W F; Stieber, A; Hogue-Angeletti, R; Gonatas, J; GOnatas, N K

    1983-10-01

    Cells of the PC-12 rat pheochromocytoma cell line respond to nerve growth factor (NGF) by sprouting neurites and biochemically differentiating into sympathetic ganglion-like cells. NGF-stimulated ('differentiated') and unstimulated ('undifferentiated') cells were studied by cytochemical techniques for the localization of the enzymes acid phosphatase (ACPase) and thiamine pyrophosphatase (TPPase), and by a morphometric analysis of the distribution of endocytosed wheat-germ agglutinin labelled with horseradish peroxidase (WGA-HRP). Both cytochemical stains showed the enzymes to be distributed in lysosomes and certain cisternae of the Golgi apparatus in both NGF stimulated and unstimulated cells. ACPase was not confined to GERL (Golgi-endoplasmic reticulum-lysosome) as in certain other cells. The morphometric studies demonstrated that the reaction product of the internalized WGA-HRP occupied 4.7% of the cytoplasmic area in unstimulated cells and 4.5% in NGF-stimulated ones. Despite this similarity, the distribution of the WGA-HRP among the studied intracellular compartments in these two cell groups varied. In the NGF-stimulated cells 3.3% of the WGA-HRP reaction product was found in the innermost Golgi cisterna(e) while in unstimulated cells only 0.3% was seen in this compartment. Similarly, 4.3% of the WGA-HRP stain was found in small vesicles at the 'trans' aspect of the Golgi apparatus in stimulated cells, when only 0.3% of the stain occupied this compartment in 'undifferentiated' cells. The morphometric analysis also revealed that when the PC-12 cells were stimulated with NGF, the Golgi apparatus increased in area by approximately 70%. These findings are consistent with the hypothesis that NGF induced differentiation of PC-12 cells is coupled with enhanced endocytosis of WGA and probably of its 'receptor' to the innermost Golgi cisterna(e) and the closely associated vesicles.

  18. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  19. Nerve Growth Factor Protects the Ischemic Heart via Attenuation of the Endoplasmic Reticulum Stress Induced Apoptosis by Activation of Phosphatidylinositol 3-Kinase

    PubMed Central

    Wei, Ke; Liu, Li; Xie, Fei; Hao, Xuechao; Luo, Jie; Min, Su

    2015-01-01

    Background: Increased expression of nerve growth factor (NGF) has been found in the myocardium suffered from ischemia and reperfusion (I/R). The pro-survival activity of NGF on ischemic heart has been supposed to be mediated by phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Endoplasmic reticulum (ER) stress, which is activated initially as a defensive response to eliminate the accumulated unfolded proteins, has shown a critical involvement in the ischemia induced myocardial apoptosis. This study was aimed to investigate whether NGF induced heart protection against I/R injury includes a mechanism of attenuation of ER stress-induced myocardial apoptosis by activation of PI3K/Akt pathway. Methods: Isolated adult rat hearts were perfused with a Langendörff perfusion system. Hearts in the Sham group were subjected to 225 min of continuous Krebs-Henseleit buffer (KHB) perfusion without ischemia. Hearts in I/R group were perfused with KHB for a 75-min of equilibration period followed by 30 min of global ischemia and 120 min of KHB reperfusion. Hearts in the NGF group accepted 45 min of euilibration perfusion and 30 min of NGF pretreatment (with a final concentration of 100 ng/ml in the KHB) before 30 min of global ischemia and 120 min of reperfusion. Hearts in K252a and LY294002 groups were pretreated with either a TrkA inhibitor, K252a or a phosphatidyl inositol 3-kinase inhibitor, LY294002 for 30 min before NGF (100 ng/ml) administration. Cardiac hemodynamics were measured from the beginning of the perfusion. Cardiac enzymes and cardiac troponin I (cTnI) were assayed before ischemia and at the end of reperfusion. Myocardial apoptosis rate was measured by TUNEL staining, and expression of glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, total- and phospho-(Ser473)-Akt were assessed by Western blot analyses. Results: NGF pretreatment significantly improved the recovery of post

  20. Nerve growth factor protects the ischemic heart via attenuation of the endoplasmic reticulum stress induced apoptosis by activation of phosphatidylinositol 3-kinase.

    PubMed

    Wei, Ke; Liu, Li; Xie, Fei; Hao, Xuechao; Luo, Jie; Min, Su

    2015-01-01

    Increased expression of nerve growth factor (NGF) has been found in the myocardium suffered from ischemia and reperfusion (I/R). The pro-survival activity of NGF on ischemic heart has been supposed to be mediated by phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Endoplasmic reticulum (ER) stress, which is activated initially as a defensive response to eliminate the accumulated unfolded proteins, has shown a critical involvement in the ischemia induced myocardial apoptosis. This study was aimed to investigate whether NGF induced heart protection against I/R injury includes a mechanism of attenuation of ER stress-induced myocardial apoptosis by activation of PI3K/Akt pathway. Isolated adult rat hearts were perfused with a Langendörff perfusion system. Hearts in the Sham group were subjected to 225 min of continuous Krebs-Henseleit buffer (KHB) perfusion without ischemia. Hearts in I/R group were perfused with KHB for a 75-min of equilibration period followed by 30 min of global ischemia and 120 min of KHB reperfusion. Hearts in the NGF group accepted 45 min of euilibration perfusion and 30 min of NGF pretreatment (with a final concentration of 100 ng/ml in the KHB) before 30 min of global ischemia and 120 min of reperfusion. Hearts in K252a and LY294002 groups were pretreated with either a TrkA inhibitor, K252a or a phosphatidyl inositol 3-kinase inhibitor, LY294002 for 30 min before NGF (100 ng/ml) administration. Cardiac hemodynamics were measured from the beginning of the perfusion. Cardiac enzymes and cardiac troponin I (cTnI) were assayed before ischemia and at the end of reperfusion. Myocardial apoptosis rate was measured by TUNEL staining, and expression of glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, total- and phospho-(Ser473)-Akt were assessed by Western blot analyses. NGF pretreatment significantly improved the recovery of post-ischemia cardiac hemodynamics. Reduced

  1. Bioactivity of ovulation inducing factor (or nerve growth factor) in bovine seminal plasma and its effects on ovarian function in cattle.

    PubMed

    Tribulo, P; Bogle, O; Mapletoft, R J; Adams, G P

    2015-06-01

    To understand the role of ovulation-inducing factor (or nerve growth factor) (OIF [NGF]) in bovine seminal plasma, we (1) used an in vivo llama bioassay to test the hypothesis that bovine seminal plasma induces ovulation and CL development in llamas similar to that of llama seminal plasma when the dose of seminal plasma is adjusted to ovulation-inducing factor content (experiment 1) and (2) determined the effect of bovine seminal plasma on the interval to ovulation and luteal development in heifers (experiment 2). Within species, seminal plasma was pooled (n = 160 bulls, n = 4 llamas), and the volume of seminal plasma used for treatment was adjusted to a total dose of 250 μg of ovulation-inducing factor. In experiment 1, mature female llamas were assigned randomly to four groups and treated intramuscularly with either 10 mL of PBS (negative control, n = 5), 50-μg GnRH (positive control, n = 5), 6-mL of llama seminal plasma (n = 6), or 12 mL of bull seminal plasma (n = 6). Ovulation and CL development were monitored by transrectal ultrasonography. In experiment 2, beef heifers were given a luteolytic dose of prostaglandin followed by 25-mg porcine LH (pLH) 12 hours later to induce ovulation. Heifers were assigned randomly to three groups and given 12 mL bovine seminal plasma intramuscularly 12 hours after pLH treatment (n = 10), within 4 hours after ovulation (n = 9), or no treatment (control, n = 10). Ovulation was monitored by ultrasonography every 4 hours, and the CL development was monitored daily until the next ovulation. In experiment 1, ovulation was detected in 0/5, 4/5, 4/6, 4/6 llamas in the PBS, GnRH, llama seminal plasma, and bovine seminal plasma groups, respectively (P < 0.05). Luteal development was not different among groups. In experiment 2, the interval to ovulation was more synchronous (range: 4 vs. 22 hours; P < 0.0001) in heifers treated with seminal plasma before ovulation compared with the other groups. Luteal development was not different

  2. Nerve growth factor: neurotrophin or cytokine?

    PubMed

    Bonini, S; Rasi, G; Bracci-Laudiero, M L; Procoli, A; Aloe, L

    2003-06-01

    Nerve growth factor (NGF) is a neutrophin exerting an important role in the development and functions of the central and peripheral nervous system. However, it has recently been documented that several immune cells - such as mast cells, lymphocytes and eosinophils - produce, store and release NGF. Moreover, NGF high and low affinity receptors are widely expressed in the immune system, thus indicating the potential of responding to this neurotrophin through an autocrine mechanism. In fact, NGF influences development differentiation, chemotaxis and mediator release of inflammatory cells as well as fibroblast activation through a complex network influenced by other pro-inflammatory cytokines. Finally, NGF is increased in biological fluids of several allergic, immune and inflammatory diseases. Data reviewed suggest, therefore, that NGF might also be viewed as a (Th2?) cytokine with a modulatory role in allergic inflammation and tissue remodeling. Copyright 2003 S. Karger AG, Basel

  3. Expression of nerve growth factor and its receptors in the uterus of gilts with endometritis induced by infection with Escherichia coli.

    PubMed

    Jana, B; Andronowska, A

    2012-11-01

    Nerve growth factor (NGF) is a neurotrophin implicated in the pathophysiology of allergy, diseases of the immune system and inflammation. Expression of NGF and its receptors (TrkA and p75) has not been examined in inflamed uterine tissue. The aim of the present study was to evaluate the patterns of NGF, TrkA and p75 expression in normal and inflamed porcine uteri using real-time reverse transcriptase polymerase chain reaction (RT-PCR), western blotting and immunohistochemistry. On day 3 of the oestrous cycle, 50 ml of saline or 50 ml of Escherichia coli suspension containing 10(9) colony forming units/ml, was injected into both uterine horns of control (n = 10) and experimental (n = 10) gilts, respectively. Infected animals developed moderate or severe acute endometritis after 8 days and moderate acute or subacute endometritis after 16 days. On day 8 of the study, the expression of NGF and TrkA mRNA and protein was higher in the endometrium of gilts with endometritis than in normal tissue. NGF protein was also more prominently expressed in the endometrium of those animals with endometritis 16 days post infection. There was no difference in endometrial p75 mRNA and protein expression on either day. The myometrium of animals in both groups showed no difference in expression of any of the three molecules. Immunohistochemically, on day 8 there was greater expression of NGF and TrkA by the luminal epithelium and some glandular and endothelial cells as well as the myometrium of the uteri of gilts with endometritis compared with normal tissues. At day 16, there was greater expression of NGF by the luminal epithelium and of TrkA by some endothelial cells and the myometrium, compared with control tissue. There is therefore, up-regulation of NGF and TrkA mRNA and protein expression in the porcine uterus when affected by E. coli-induced inflammation. NGF and TrkA may have roles in this inflammatory process and/or in the innervation of the uterus.

  4. Can amino-functionalized carbon nanotubes carry functional nerve growth factor?

    PubMed Central

    Chen, Wen; Xiong, Qing; Ren, Quanxia; Guo, Yake; Li, Gao

    2014-01-01

    Carbon nanotubes can carry protein into cells to induce biological effects. Amino-functionalized carbon nanotubes are soluble and biocompatible, have high reactivity and low toxicity, and can help promote nerve cell growth. In this study, amino-functionalized ethylenediamine-treated multi-walled carbon nanotubes were used to prepare carbon nanotubes-nerve growth factor complexes by non-covalent grafting. The physicochemical properties, cytotoxicity to PC12 and chick embryo dorsal root ganglion, and biological activity of the carbon nanotubes-nerve growth factor complexes were investigated. The results showed that amino functionalization improved carbon nanotubes-nerve growth factor complex dispersibility, reduced their toxicity to PC12 cells, and promoted PC12 cell differentiation and chick embryo dorsal root ganglion. PMID:25206814

  5. Nerve growth factor actions on the brain

    SciTech Connect

    Martinez, H.J.

    1989-01-01

    We examined the effect of the trophic protein, nerve growth factor (NGF), on cultures of fetal rat neostriatum and basal forebrain-medial septal area (BF-MS) to define its role in brain development. Treatment of cultures with NGF resulted in an increase in the specific activity of the cholinergic enzyme choline acetyltransferase (CAT) in both brain areas. CAT was immunocytochemically localized to neurons. In the BF-MS, NGF treatment elicited a marked increase in staining intensity and an apparent increase in the number of CAT-positive neurons. Moreover, treatment of BF-MS cultures with NGF increased the activity of acetylcholinesterase, suggesting that the cholinergic neuron as a whole was affected. To begin defining mechanisms of action of NGF in the BF-MS, we detected NGF receptors by two independent methods. Receptors were localized to two different cellular populations: neuron-like cells, and non-neuron-like cells. Dissociation studies with ({sup 125}I)NGF suggested that high affinity receptors were localized to the neuron-like population. Only low-affinity receptors were localized to the non-neuron-like cells. Moreover, employing combined immunocytochemistry and ({sup 125}I)NGF autoradiography, we detected a subpopulation of CAT-containing neutrons that exhibited high-affinity binding. Unexpectedly, a gamma-aminobutyric acid (GABA)-containing cell group also expressed high affinity binding. However, only subsets of cholinergic or GABA neurons expressed high-affinity biding, suggesting that these transmitter populations are composed of differentially response subpopulations.

  6. Nerve growth factor enhances sleep in rabbits.

    PubMed

    Takahashi, S; Krueger, J M

    1999-04-02

    Nerve growth factor (NGF) elicits rapid-eye-movement sleep (REMS) in cats. Removal of NGF receptor-positive cholinergic basal forebrain neurons inhibits REMS in rats. The aim of the present study was to determine the effects of NGF on sleep and brain temperature (Tbr) in rabbits. Male rabbits were implanted with electroencephalograph (EEG) electrodes, a brain thermistor and an intraventricular (i.c.v.) guide cannula. Rabbits received human beta-NGF i.c.v. (0.01, 0.1, 1.0 or 10 microg] and on a separate day, 25 microl pyrogen-free saline i.c.v. as control. EEG and Tbr were recorded for 23 h after injections. The highest two doses of NGF increased both non-REMS and REMS across the 23-h recording period. REMS was enhanced dose-dependently. Tbr was not affected by any dose of NGF. These results suggest that NGF is involved in both REMS and non-REMS regulation.

  7. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia.

    PubMed

    Li, Qinwen; Chen, Jianghai; Chen, Yanhua; Cong, Xiaobin; Chen, Zhenbing

    2016-03-01

    In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription‑quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post‑compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR‑labeled DRG neurons were significantly higher, relative to the sham‑operated group, however, the numbers of FG‑labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor‑β1 (TGF‑β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)‑extracellular signal‑regulated kinase 1/2, and significantly lower levels of p‑c‑Jun N‑terminal kinase and p‑p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF‑β1, CTGF and collagen type I, with involvement of the mitogen‑activated protein kinase signaling pathway.

  8. Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor.

    PubMed

    Li, Shiying; Wang, Xinghui; Gu, Yun; Chen, Chu; Wang, Yaxian; Liu, Jie; Hu, Wen; Yu, Bin; Wang, Yongjun; Ding, Fei; Liu, Yan; Gu, Xiaosong

    2015-03-01

    Peripheral nerve injury is a common clinical problem. Nerve growth factor (NGF) promotes peripheral nerve regeneration, but its clinical applications are limited by several constraints. In this study, we found that the time-dependent expression profiles of eight let-7 family members in the injured nerve after sciatic nerve injury were roughly similar to each other. Let-7 microRNAs (miRNAs) significantly reduced cell proliferation and migration of primary Schwann cells (SCs) by directly targeting NGF and suppressing its protein translation. Following sciatic nerve injury, the temporal change in let-7 miRNA expression was negatively correlated with that in NGF expression. Inhibition of let-7 miRNAs increased NGF secretion by primary cultured SCs and enhanced axonal outgrowth from a coculture of primary SCs and dorsal root gangalion neurons. In vivo tests indicated that let-7 inhibition promoted SCs migration and axon outgrowth within a regenerative microenvironment. In addition, the inhibitory effect of let-7 miRNAs on SCs apoptosis might serve as an early stress response to nerve injury, but this effect seemed to be not mediated through a NGF-dependent pathway. Collectively, our results provide a new insight into let-7 miRNA regulation of peripheral nerve regeneration and suggest a potential therapy for repair of peripheral nerve injury.

  9. Vascular endothelial growth factor mediates corneal nerve repair.

    PubMed

    Yu, Charles Q; Zhang, Min; Matis, Krisztina I; Kim, Charles; Rosenblatt, Mark I

    2008-09-01

    To examine the expression of vascular endothelial growth factor (VEGF) and its receptors in the cornea and the trigeminal ganglion and to characterize the role of VEGF in mediating corneal nerve repair. Regeneration of the corneal subbasal nerve plexus after epithelial debridement was measured. The expression of VEGF and its receptors was examined in the trigeminal ganglia and in the cornea by RT-PCR, immunohistochemistry, and Western blotting. VEGF-mediated nerve growth was measured in a trigeminal ganglia explant assay. Anti-VEGF neutralizing antibody was used to examine the VEGF-dependent growth of neurons in vitro and regeneration of the corneal nerves in vivo. After two distinct patterns of nerve regeneration, the subbasal nerves recovered to 65% of the preinjury density after 28 days. RT-PCR demonstrated gene expression of VEGF and VEGF receptors in the trigeminal ganglia. Immunohistochemistry showed staining for VEGF and its receptors in the trigeminal ganglia and for VEGFR1, VEGFR2, and neuropilin (NRP)-1 in the cornea. Western blot confirmed these results. In vitro, VEGF promoted the growth of explanted trigeminal ganglia by 91%. Blockage of VEGF signaling with anti-VEGF antibody reduced the growth of cultured neurons by 17% and the regeneration of subbasal neurons by 23%. In addition to providing new information on the regeneration of murine corneal nerves, this study presents evidence that VEGF signaling influences the repair of corneal nerves by demonstrating that VEGF and VEGF receptors are present in the trigeminal ganglia and that abrogation of VEGF signaling reduces nerve growth in vitro and in vivo.

  10. The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor

    PubMed Central

    Capsoni, Simona; Malerba, Francesca; Carucci, Nicola Maria; Rizzi, Caterina; Criscuolo, Chiara; Origlia, Nicola; Calvello, Mariantonietta; Viegi, Alessandro; Meli, Giovanni

    2017-01-01

    Abstract Nerve growth factor is a therapeutic candidate for Alzheimer’s disease. Due to its pain-inducing activity, in current clinical trials nerve growth factor is delivered locally into the brain by neurosurgery, but data on the efficacy of local nerve growth factor delivery in decreasing amyloid-β deposition are not available. To reduce the nerve growth factor pain-inducing side effects, thus avoiding the need for local brain injection, we developed human painless nerve growth factor (hNGFp), inspired by the human genetic disease hereditary sensory and autonomic neuropathy type V. hNGFp has identical neurotrophic potency as wild-type human nerve growth factor, but a 10-fold lower pain sensitizing activity. In this study we first mimicked, in the 5xFAD mouse model, the intraparenchymal delivery of hNGFp used in clinical trials and found it to be ineffective in decreasing amyloid-β plaque load. On the contrary, the same dose of hNGFp delivered intranasally, which was widely biodistributed in the brain and did not induce pain, showed a potent anti-amyloidogenic action and rescued synaptic plasticity and memory deficits. We found that hNGFp acts on glial cells, modulating inflammatory proteins such as the soluble TNFα receptor II and the chemokine CXCL12. We further established that the rescuing effect by hNGFp is mediated by CXCL12, as pharmacological inhibition of CXCL12 receptor CXCR4 occludes most of hNGFp effects. These findings have significant therapeutic implications: (i) we established that a widespread exposure of the brain is required for nerve growth factor to fully exert its neuroprotective actions; and (ii) we have identified a new anti-neurodegenerative pathway as a broad target for new therapeutic opportunities for neurodegenerative diseases. PMID:28031222

  11. The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor.

    PubMed

    Capsoni, Simona; Malerba, Francesca; Carucci, Nicola Maria; Rizzi, Caterina; Criscuolo, Chiara; Origlia, Nicola; Calvello, Mariantonietta; Viegi, Alessandro; Meli, Giovanni; Cattaneo, Antonino

    2017-01-01

    Nerve growth factor is a therapeutic candidate for Alzheimer's disease. Due to its pain-inducing activity, in current clinical trials nerve growth factor is delivered locally into the brain by neurosurgery, but data on the efficacy of local nerve growth factor delivery in decreasing amyloid-β deposition are not available. To reduce the nerve growth factor pain-inducing side effects, thus avoiding the need for local brain injection, we developed human painless nerve growth factor (hNGFp), inspired by the human genetic disease hereditary sensory and autonomic neuropathy type V. hNGFp has identical neurotrophic potency as wild-type human nerve growth factor, but a 10-fold lower pain sensitizing activity. In this study we first mimicked, in the 5xFAD mouse model, the intraparenchymal delivery of hNGFp used in clinical trials and found it to be ineffective in decreasing amyloid-β plaque load. On the contrary, the same dose of hNGFp delivered intranasally, which was widely biodistributed in the brain and did not induce pain, showed a potent anti-amyloidogenic action and rescued synaptic plasticity and memory deficits. We found that hNGFp acts on glial cells, modulating inflammatory proteins such as the soluble TNFα receptor II and the chemokine CXCL12. We further established that the rescuing effect by hNGFp is mediated by CXCL12, as pharmacological inhibition of CXCL12 receptor CXCR4 occludes most of hNGFp effects. These findings have significant therapeutic implications: (i) we established that a widespread exposure of the brain is required for nerve growth factor to fully exert its neuroprotective actions; and (ii) we have identified a new anti-neurodegenerative pathway as a broad target for new therapeutic opportunities for neurodegenerative diseases.

  12. Growth Arrest and DNA-damage-inducible Protein 45β-mediated DNA Demethylation of Voltage-dependent T-type Calcium Channel 3.2 Subunit Enhances Neuropathic Allodynia after Nerve Injury in Rats.

    PubMed

    Lai, Cheng-Yuan; Hsieh, Ming-Chun; Ho, Yu-Cheng; Lee, An-Sheng; Wang, Hsueh-Hsiao; Cheng, Jen-Kun; Chau, Yat-Pang; Peng, Hsien-Yu

    2017-06-01

    Growth arrest and DNA-damage-inducible protein 45β reactivates methylation-silenced neural plasticity-associated genes through DNA demethylation. However, growth arrest and DNA-damage-inducible protein 45β-dependent demethylation contributes to neuropathic allodynia-associated spinal plasticity remains unclear. Adult male Sprague-Dawley rats (654 out of 659) received a spinal nerve ligation or a sham operation with or without intrathecal application of one of the following: growth arrest and DNA-damage-inducible protein 45β messenger RNA-targeted small interfering RNA, lentiviral vector expressing growth arrest and DNA-damage-inducible protein 45β, Ro 25-6981 (an NR2B-bearing N-methyl-D-aspartate receptor antagonist), or KN-93 (a calmodulin-dependent protein kinase II antagonist) were used for behavioral measurements, Western blotting, immunofluorescence, dot blots, detection of unmodified cytosine enrichment at cytosine-phosphate-guanine site, chromatin immunoprecipitation quantitative polymerase chain reaction analysis, and slice recordings. Nerve ligation-enhanced growth arrest and DNA-damage-inducible protein 45β expression (n = 6) in ipsilateral dorsal horn neurons accompanied with behavioral allodynia (n = 7). Focal knockdown of growth arrest and DNA-damage-inducible protein 45β expression attenuated ligation-induced allodynia (n = 7) by reducing the binding of growth arrest and DNA-damage-inducible protein 45β to the voltage-dependent T-type calcium channel 3.2 subunit promoter (n = 6) that decreased expression of and current mediated by the voltage-dependent T-type calcium channel 3.2 subunit (both n = 6). In addition, NR2B-bearing N-methyl-D-aspartate receptors and calmodulin-dependent protein kinase II act in an upstream cascade to increase growth arrest and DNA-damage-inducible protein 45β expression, hence enhancing demethylation at the voltage-dependent T-type calcium channel 3.2 subunit promoter and up-regulating voltage-dependent T

  13. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  14. Recombinant human fibroblast growth factor-2 promotes nerve regeneration and functional recovery after mental nerve crush injury.

    PubMed

    Lee, Sung Ho; Jin, Wei-Peng; Seo, Na Ri; Pang, Kang-Mi; Kim, Bongju; Kim, Soung-Min; Lee, Jong-Ho

    2017-04-01

    Several studies have shown that fibroblast growth factor-2 (FGF2) can directly affect axon regeneration after peripheral nerve damage. In this study, we performed sensory tests and histological analyses to study the effect of recombinant human FGF-2 (rhFGF2) treatment on damaged mental nerves. The mental nerves of 6-week-old male Sprague-Dawley rats were crush-injured for 1 minute and then treated with 10 or 50 μg/mL rhFGF2 or PBS in crush injury area with a mini Osmotic pump. Sensory test using von Frey filaments at 1 week revealed the presence of sensory degeneration based on decreased gap score and increased difference score. However, at 2 weeks, the gap score and difference score were significantly rebounded in the mental nerve crush group treated with 10 μg/mL rhFGF2. Interestingly, treatment with 10 μg/mL rhFGF had a more obviously positive effect on the gap score than treatment with 50 μg/mL rhFGF2. In addition, retrograde neuronal tracing with Dil revealed a significant increase in nerve regeneration in the trigeminal ganglion at 2 and 4 weeks in the rhFGF2 groups (10 μg/mL and 50 μg/mL) than in the PBS group. The 10 μg/mL rhFGF2 group also showed an obviously robust regeneration in axon density in the mental nerve at 4 weeks. Our results demonstrate that 10 μg/mL rhFGF induces mental nerve regeneration and sensory recovery after mental nerve crush injury.

  15. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits

    PubMed Central

    Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.

    2017-01-01

    Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739

  16. Steroid-induced polycystic ovaries in rats: effect of electro-acupuncture on concentrations of endothelin-1 and nerve growth factor (NGF), and expression of NGF mRNA in the ovaries, the adrenal glands, and the central nervous system.

    PubMed

    Stener-Victorin, Elisabet; Lundeberg, Thomas; Cajander, Stefan; Aloe, Luigi; Manni, Luigi; Waldenström, Urban; Janson, Per Olof

    2003-04-08

    Previous studies on the effect of repeated electro-acupuncture (EA) treatments in rats with steriod-induced polycystic ovaries (PCO), EA has been shown to modulate nerve growth factor (NGF) concentration in the ovaries as well as corticotropin releasing factor (CRF) in the median eminence (ME). In the present study we tested the hypothesis that repeated EA treatments modulates sympathetic nerve activity in rats with PCO. This was done by analysing endothelin-1 (ET-1), a potent vasoconstrictor involved in ovarian functions, as well as NGF and NGF mRNA expression involved in the pathophysiological process underlying steroid-induced PCO. The main result in the present study was that concentrations of ET-1 in the ovaries were significantly lower in the PCO group receiving EA compared with the healthy control group (p < 0.05). In the hypothalamus, however, ET-1 concentrations were found to be significantly higher in the PCO group receiving EA than in the healthy control group (p < 0.05). Concentrations of ovarian NGF protein were significantly higher in the PCO control group compared with the healthy control group (p < 0.001), and these concentrations decreased significantly after repeated EA treatments compared with those in the PCO control group (p < 0.05) and were found to be the same as those in the healthy control group. In conclusion, these results indicate that EA modulates the neuroendocrinological state of the ovaries, most likely by modulating the sympathetic nerve activity in the ovaries, which may be a factor in the maintenance of steroid-induced PCO.

  17. Peripheral Nerve Transplantation Combined with Acidic Fibroblast Growth Factor and Chondroitinase Induces Regeneration and Improves Urinary Function in Complete Spinal Cord Transected Adult Mice.

    PubMed

    DePaul, Marc A; Lin, Ching-Yi; Silver, Jerry; Lee, Yu-Shang

    2015-01-01

    The loss of lower urinary tract (LUT) control is a ubiquitous consequence of a complete spinal cord injury, attributed to a lack of regeneration of supraspinal pathways controlling the bladder. Previous work in our lab has utilized a combinatorial therapy of peripheral nerve autografts (PNG), acidic fibroblast growth factor (aFGF), and chondroitinase ABC (ChABC) to treat a complete T8 spinal cord transection in the adult rat, resulting in supraspinal control of bladder function. In the present study we extended these findings by examining the use of the combinatorial PNG+aFGF+ChABC treatment in a T8 transected mouse model, which more closely models human urinary deficits following spinal cord injury. Cystometry analysis and external urethral sphincter electromyograms reveal that treatment with PNG+aFGF+ChABC reduced bladder weight, improved bladder and external urethral sphincter histology, and significantly enhanced LUT function, resulting in more efficient voiding. Treated mice's injured spinal cord also showed a reduction in collagen scaring, and regeneration of serotonergic and tyrosine hydroxylase-positive axons across the lesion and into the distal spinal cord. Regeneration of serotonin axons correlated with LUT recovery. These results suggest that our mouse model of LUT dysfunction recapitulates the results found in the rat model and may be used to further investigate genetic contributions to regeneration failure.

  18. Peripheral Nerve Transplantation Combined with Acidic Fibroblast Growth Factor and Chondroitinase Induces Regeneration and Improves Urinary Function in Complete Spinal Cord Transected Adult Mice

    PubMed Central

    DePaul, Marc A.; Lin, Ching-Yi; Silver, Jerry; Lee, Yu-Shang

    2015-01-01

    The loss of lower urinary tract (LUT) control is a ubiquitous consequence of a complete spinal cord injury, attributed to a lack of regeneration of supraspinal pathways controlling the bladder. Previous work in our lab has utilized a combinatorial therapy of peripheral nerve autografts (PNG), acidic fibroblast growth factor (aFGF), and chondroitinase ABC (ChABC) to treat a complete T8 spinal cord transection in the adult rat, resulting in supraspinal control of bladder function. In the present study we extended these findings by examining the use of the combinatorial PNG+aFGF+ChABC treatment in a T8 transected mouse model, which more closely models human urinary deficits following spinal cord injury. Cystometry analysis and external urethral sphincter electromyograms reveal that treatment with PNG+aFGF+ChABC reduced bladder weight, improved bladder and external urethral sphincter histology, and significantly enhanced LUT function, resulting in more efficient voiding. Treated mice’s injured spinal cord also showed a reduction in collagen scaring, and regeneration of serotonergic and tyrosine hydroxylase-positive axons across the lesion and into the distal spinal cord. Regeneration of serotonin axons correlated with LUT recovery. These results suggest that our mouse model of LUT dysfunction recapitulates the results found in the rat model and may be used to further investigate genetic contributions to regeneration failure. PMID:26426529

  19. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    PubMed Central

    Liu, Fang; Zhang, Haiwei; Zhang, Kaiming; Wang, Xinyu; Li, Shipu; Yin, Yixia

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Schwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not significantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy. PMID:25206862

  20. Upregulation of nerve growth factor following cortical trauma.

    PubMed

    DeKosky, S T; Goss, J R; Miller, P D; Styren, S D; Kochanek, P M; Marion, D

    1994-12-01

    As part of the inflammatory response to brain injury, CSF and tissue levels of interleukin-1 beta (IL-1 beta) are elevated after trauma. This elevation in IL-1 beta initiates a cascade of events among which may be an upregulation in nerve growth factor (NGF) in brain tissue. We infused IL-1 beta into the ventricle of adult rats and found a two- to fourfold increase in NGF in the cerebral cortex, hippocampus, and cerebellum, suggesting that IL-1 beta induced in vivo may also increase NGF in the brain. To test this hypothesis we utilized two models of traumatic brain injury (TBI) in the rat and examined NGF protein and RNA in the cortex over a period of several days. Both weight drop and controlled cortical contusion models of CNS trauma demonstrated large and significant increases in NGF protein in the cortex. NGF RNA was assessed in the controlled cortical contusion model and increased approximately fivefold by 1 day post-trauma. The remarkable elevation of NGF observed following TBI suggests that its role in response to injury may be other than as a target-derived growth substance. We hypothesize that the elevation of NGF in trauma induces upregulation of enzymes which suppress free-radical formation after injury.

  1. Facilitation of facial nerve regeneration using chitosan-β-glycerophosphate-nerve growth factor hydrogel.

    PubMed

    Chao, Xiuhua; Xu, Lei; Li, Jianfeng; Han, Yuechen; Li, Xiaofei; Mao, YanYan; Shang, Haiqiong; Fan, Zhaomin; Wang, Haibo

    2016-06-01

    Conclusion C/GP hydrogel was demonstrated to be an ideal drug delivery vehicle and scaffold in the vein conduit. Combined use autologous vein and NGF continuously delivered by C/GP-NGF hydrogel can improve the recovery of facial nerve defects. Objective This study investigated the effects of chitosan-β-glycerophosphate-nerve growth factor (C/GP-NGF) hydrogel combined with autologous vein conduit on the recovery of damaged facial nerve in a rat model. Methods A 5 mm gap in the buccal branch of a rat facial nerve was reconstructed with an autologous vein. Next, C/GP-NGF hydrogel was injected into the vein conduit. In negative control groups, NGF solution or phosphate-buffered saline (PBS) was injected into the vein conduits, respectively. Autologous implantation was used as a positive control group. Vibrissae movement, electrophysiological assessment, and morphological analysis of regenerated nerves were performed to assess nerve regeneration. Results NGF continuously released from C/GP-NGF hydrogel in vitro. The recovery rate of vibrissae movement and the compound muscle action potentials of regenerated facial nerve in the C/GP-NGF group were similar to those in the Auto group, and significantly better than those in the NGF group. Furthermore, larger regenerated axons and thicker myelin sheaths were obtained in the C/GP-NGF group than those in the NGF group.

  2. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury

    PubMed Central

    Li, Hong-fei; Wang, Yi-ru; Huo, Hui-ping; Wang, Yue-xiang; Tang, Jie

    2015-01-01

    Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration. PMID:26807123

  3. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury.

    PubMed

    Li, Hong-Fei; Wang, Yi-Ru; Huo, Hui-Ping; Wang, Yue-Xiang; Tang, Jie

    2015-11-01

    Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration.

  4. Manipulation of the nerve growth factor network in prostate cancer.

    PubMed

    Papatsoris, Athanasios G; Liolitsa, Danae; Deliveliotis, Charalambos

    2007-03-01

    Autocrine and paracrine events regulated by nerve growth factor (NGF) and relevant receptors (low- and high affinity; p75 neurotrophin receptor [p75(NTR)] and TrkA, respectively) seem to play a significant role in prostate carcinogenesis. Studies reveal that p75(NTR) is both a tumor suppressor of growth and a metastasis suppressor of human prostate cancer cells. Furthermore, p75(NTR) is progressively lost during prostate carcinogenesis. An imbalance between p75(NTR) and tropomyosin receptor kinase A (TrkA)-mediated signals may be involved in the progression of prostate cancer through increased proliferation and reduced apoptosis. The antiproliferative and apoptotic effects of GnRH analogs in prostate cancer cells may be mediated by altering the TrkA:p75(NTR) NGF receptor ratio. Administration of NGF induces a reversion of the androgen-independent/androgen receptor-negative prostate cancer cell lines to a less malignant phenotype. Finally, Trk inhibition is a novel, attractive and rational approach for prostate cancer therapy. This review unravels the NGF 'circuitry' in prostate cancinogenesis for relevant pharmacologic manipulation to lead to the development of novel therapeutic agents.

  5. Nerve growth factor signaling in prostate health and disease.

    PubMed

    Arrighi, Nicola; Bodei, Serena; Zani, Danilo; Simeone, Claudio; Cunico, Sergio Cosciani; Missale, Cristina; Spano, Pierfranco; Sigala, Sandra

    2010-06-01

    The prostate is one of the most abundant sources of nerve growth factor (NGF) in different species, including humans. NGF and its receptors are implicated in the control of prostate cell proliferation and apoptosis and it can either support or suppress cell growth. The co-expression of both NGF receptors, p75(NGFR) and tropomyosin-related kinase A (trkA), represents a crucial condition for the antiproliferative effect of NGF; indeed, p75(NGFR) is progressively lost during prostate tumorigenesis and its disappearance represents a malignancy marker of prostate adenocarcinoma (PCa). Interestingly, a dysregulation of NGF signal transduction was found in a number of human tumors. This review summarizes the current knowledge on the role of NGF and its receptors in prostate and in PCa. Conclusions bring to the hypothesis that the NGF network could be a candidate for future pharmacological manipulation in the PCa therapy: in particular the re-expression of p75(NTR) and/or the negative modulation of trkA could represent a target to induce apoptosis and to reduce proliferation and invasiveness of PCa.

  6. Nerve growth factor signal transduction in mature pig oligodendrocytes.

    PubMed

    Althaus, H H; Hempel, R; Klöppner, S; Engel, J; Schmidt-Schultz, T; Kruska, L; Heumann, R

    1997-12-01

    It has previously been shown that nerve growth factor (NGF) is of functional significance for mature pig oligodendrocytes (OLs) in culture. The present data give evidence for the expression of TrkA, the so-called high-affinity NGF receptor, and of p75NTR, the so-called low-affinity NGF receptor. TrkA is upregulated during culturing, in contrast to the p75 receptor. Exposure of OLs to NGF induces an autophosphorylation of TrkA via its intrinsic tyrosine kinase. K-252a inhibits the TrkA autophosphorylation, which reduces the OL process formation to control levels. To the tyrosine-phosphorylated sites of TrkA several proteins, such as phospholipase C-gamma1, the adaptor protein SHC, the phosphotyrosine phosphatase SH-PTP2 (SYP) associate via their SH2 phosphotase SH-PTP2 domain. The association of SHC to TrkA is shown by co-immunoprecipitation. Indirect evidence for a possible activation of PLC-gamma1 is given by an NGF-induced increase of oligodendroglial [Ca2+]i. Downstream from TrkA, a mitogen-activated protein kinase cascade, which includes Erk1 and Erk2, is operating. An in-gel myelin basic protein kinase assay revealed that NGF activates predominantly Erk1. Finally, it is shown that NGF stimulates expression of c-fos.

  7. Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain.

    PubMed

    Nencini, Sara; Ringuet, Mitchell; Kim, Dong-Hyun; Chen, Yu-Jen; Greenhill, Claire; Ivanusic, Jason J

    2017-01-01

    Sequestration of nerve growth factor has been used successfully in the management of pain in animal models of bone disease and in human osteoarthritis. However, the mechanisms of nerve growth factor-induced bone pain and its role in modulating inflammatory bone pain remain to be determined. In this study, we show that nerve growth factor receptors (TrkA and p75) and some other nerve growth factor-signaling molecules (TRPV1 and Nav1.8, but not Nav1.9) are expressed in substantial proportions of rat bone nociceptors. We demonstrate that nerve growth factor injected directly into rat tibia rapidly activates and sensitizes bone nociceptors and produces acute behavioral responses with a similar time course. The nerve growth factor-induced changes in the activity and sensitivity of bone nociceptors we report are dependent on signaling through the TrkA receptor, but are not affected by mast cell stabilization. We failed to show evidence for longer term changes in expression of TrkA, TRPV1, Nav1.8 or Nav1.9 in the soma of bone nociceptors in a rat model of inflammatory bone pain. Thus, retrograde transport of NGF/TrkA and increased expression of some of the common nerve growth factor signaling molecules do not appear to be important for the maintenance of inflammatory bone pain. The findings are relevant to understand the basis of nerve growth factor sequestration and other therapies directed at nerve growth factor signaling, in managing pain in bone disease.

  8. Nerve growth factor protects against aluminum-mediated cell death.

    PubMed

    Ohyashiki, Takao; Satoh, Eiko; Okada, Morihiro; Takadera, Tsuneo; Sahara, Masako

    2002-07-15

    In the present study, we examined the effect of two salts of aluminum (Al), aluminum maltolate (Almal) and aluminum chloride (AlCl(3)), on the cell viability of PC12 cells in the absence and presence of nerve growth factor (NGF). A 72-h exposure of PC12 cells to Almal (300 microM) resulted in a marked increase of lactic dehydrogenase (LDH) release from the cells and a decrease of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) activity. These results indicate that Almal induces a decrease in the cell viability. Under the same conditions, Almal also caused DNA ladder formation and chromatin condensation. In contrast, AlCl(3) did not showed an increased LDH release and a decreased MTT activity in the concentration range of the salt tested (0.1-1 mM). The extent of LDH release and MTT activity decrease induced by Almal treatment closely depended on the amount of Almal incorporated into the cells. An increase in the fluorescence intensity of 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester) (C-DCDHF-DA) which was loaded into the cell by Almal treatment and its prevention by pyrrolodine dithiocarbamate, a potent antioxidant, suggested that Almal-induced cell death partly proceeds via reactive oxygen species (ROS) production. NGF effectively inhibited the increase of LDH release and the decrease of MTT activity, as well as DNA fragmentation and chromatin condensation. However, NGF did not inhibit the increase of C-DCDHF-DA fluorescence in the cells induced by Almal treatment. From these results, it is suggested that ROS production associated with accumulation of Al is one possible important factor in the onset of Al neurotoxicity via apoptotic cell death and that NGF protects against cell degeneration associated with Al accumulation, but independently of ROS production.

  9. Mechanisms underlying midazolam-induced peripheral nerve block and neurotoxicity.

    PubMed

    Yilmaz, Eser; Hough, Karen A; Gebhart, Gerald F; Williams, Brian A; Gold, Michael S

    2014-01-01

    The benzodiazepine midazolam has been reported to facilitate the actions of spinally administrated local anesthetics. Interestingly, despite the lack of convincing evidence for the presence of γ-aminobutyric acid type A (GABAA) receptors along peripheral nerve axons, midazolam also has been shown to have analgesic efficacy when applied alone to peripheral nerves.These observations suggest midazolam-induced nerve block is due to another site of action. Furthermore, because of evidence indicating that midazolam has equal potency at the benzodiazepine site on the GABAA receptor and the 18-kd translocator protein (TSPO), it is possible that at least the nerve-blocking actions of midazolam are mediated by this alternative site of action. We used the benzodiazepine receptor antagonist flumazenil, and the TSPO antagonist PK11195, with midazolam on rat sciatic nerves and isolated sensory neurons to determine if either receptor mediates midazolam-induced nerve block and/or neurotoxicity. Midazolam (300 μM)-induced block of nerve conduction was reversed by PK11195 (3 μM), but not flumazenil (30 μM). Midazolam-induced neurotoxicity was blocked by neither PK11195 nor flumazenil. Midazolam also causes the release of Ca from internal stores in sensory neurons, and there was a small but significant attenuation of midazolam-induced neurotoxicity by the Ca chelator, BAPTA. BAPTA (30 μM) significantly attenuated midazolam-induced nerve block. Our results indicate that processes underlying midazolam-induced nerve block and neurotoxicity are separable, and suggest that selective activation of TSPO may facilitate modality-selective nerve block while minimizing the potential for neurotoxicity.

  10. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration.

    PubMed

    Seijffers, Rhona; Mills, Charles D; Woolf, Clifford J

    2007-07-25

    Peripheral axons of dorsal root ganglion (DRG) neurons, but not their central axons in the dorsal columns, regenerate after injury. However, if the neurons are conditioned by a peripheral nerve injury into an actively growing state, the rate of peripheral axonal growth is accelerated and the injured central axons begin to regenerate. The growth-promoting effects of conditioning injuries have two components, increased axonal growth and a reduced response to inhibitory myelin cues. We have examined which transcription factors activated by peripheral axonal injury may mediate the conditioning effect by regulating expression of effectors that increase the intrinsic growth state of the neurons. Activating transcription factor 3 (ATF3) is a prime candidate because it is induced in all injured DRG neurons after peripheral, but not central, axonal damage. To investigate if ATF3 promotes regeneration, we generated transgenic mice that constitutively express this transcription factor in non-injured adult DRG neurons. The rate of peripheral nerve regeneration was enhanced in the transgenic mice to an extent comparable to that produced by a preconditioning nerve injury. The expression of some growth-associated genes, such as SPRR1A, but not others like GAP-43, was increased in the non-injured neurons. ATF3 increased DRG neurite elongation when cultured on permissive substrates but did not overcome the inhibitory effects of myelin or promote central axonal regeneration in the spinal cord in vivo. We conclude that ATF3 contributes to nerve regeneration by increasing the intrinsic growth state of injured neurons.

  11. Nerve Growth Factor: A Focus on Neuroscience and Therapy

    PubMed Central

    Aloe, Luigi; Rocco, Maria Luisa; Omar Balzamino, Bijorn; Micera, Alessandra

    2015-01-01

    Nerve growth factor (NGF) is the firstly discovered and best characterized neurotrophic factor, known to play a critical protective role in the development and survival of sympathetic, sensory and forebrain cholinergic neurons. NGF promotes neuritis outgrowth both in vivo and in vitro and nerve cell recovery after ischemic, surgical or chemical injuries. Recently, the therapeutic property of NGF has been demonstrated on human cutaneous and corneal ulcers, pressure ulcer, glaucoma, maculopathy and retinitis pigmentosa. NGF eye drops administration is well tolerated, with no detectable clinical evidence of systemic or local adverse effects. The aim of this review is to summarize these biological properties and the potential clinical development of NGF. PMID:26411962

  12. Electroacupucture and nerve growth factor: potential clinical applications.

    PubMed

    Manni, Luigi; Rocco, M L; Barbaro Paparo, Samuele; Guaragna, Morena

    2011-06-01

    The nerve growth factor (NGF) is a neurotrophin regulating the survival and function peripheral sensory and sympathetic neurons and of forebrain cholinergic neurons. Both peripheral neuropathies and brain cholinergic dysfunctions could benefit from NGFbased therapies, but the clinical use of NGF has been so far hampered by the development of important side effects, like hyperalgesia and autonomic dysfunctions. Acupuncture is a therapeutic technique and is a part of traditional Chinese medicine. Western descriptions of the clinical efficacy of acupuncture on pain, inflammation, motor dysfunction, mood disorders, and seizures are based on the stimulation of several classes of sensory afferent fibers and the consequent activation of physiological processes similar to those resulting from physical exercise or deep massage. Recently, it has been shown that peripheral sensory stimulation by electroacupuncture (EA) could improve brain NGF availability and utilization, at the same time counteracting the major sideeffects induced by NGF administration. This review focuses on the emerging links between EA and NGF with special emphasis on the work carried out in the last decade in our laboratory, investigating the role of NGF as a mediator of EA effects in the central nervous system and as a modulator of sensory and autonomic activity.

  13. Nerve growth factor gene therapy in Alzheimer disease.

    PubMed

    Tuszynski, Mark H

    2007-01-01

    Nervous system growth factors potently stimulate cell function and prevent neuronal death. These broad effects on survival and function arise from direct downstream activation of antiapoptotic pathways, inhibition of proapoptotic pathways, and stimulation of functionally important cellular mechanisms including ERK/MAP kinase and CREB. Thus, as a class, growth factors offer the potential to treat neurodegenerative disorders for the first time by preventing neuronal degeneration rather than compensating for cell loss after it has occurred. Different growth factors affect distinct and specific populations of neurons: the first nervous system growth factor identified, nerve growth factor, potentially stimulates the survival and function of basal forebrain cholinergic neurons, suggesting that nerve growth factor could be a means for reducing the cholinergic component of cell degeneration in Alzheimer disease. This review will discuss the transition of growth factors from preclinical studies to human clinical trials in Alzheimer disease. The implementation of clinical testing of growth factor therapy for neurologic disease has been constrained by the dual need to achieve adequate concentrations of these proteins in specific brain regions containing degenerating neurons, and preventing growth factor spread to nontargeted regions to avoid adverse effects. Gene therapy is one of a limited number of potential methods for achieving these requirements.

  14. Growth of injured rabbit optic axons within their degenerating optic nerve

    SciTech Connect

    Lavie, V.; Murray, M.; Solomon, A.; Ben-Bassat, S.; Belkin, M.; Rumelt, S.; Schwartz, M. )

    1990-08-15

    Spontaneous growth of axons after injury is extremely limited in the mammalian central nervous system (CNS). It is now clear, however, that injured CNS axons can be induced to elongate when provided with a suitable environment. Thus injured CNS axons can elongate, but they do not do so unless their environment is altered. We now show apparent regenerative growth of injured optic axons. This growth is achieved in the adult rabbit optic nerve by the use of a combined treatment consisting of: (1) supplying soluble substances originating from growing axons to be injured rabbit optic nerves, and (2) application of low energy He-Ne laser irradiation, which appears to delay degenerative changes in the injured axons. Two to 8 weeks after this treatment, unmyelinated and thinly myelinated axons are found at the lesion site and distal to it. Morphological and immunocytochemical evidence indicate that these thinly myelinated and unmyelinated axons are growing in close association with glial cells. Only these axons are identified as being growing axons. These newly growing axons transverse the site of injury and extend into the distal stump of the nerve, which contains degenerating axons. Axons of this type could be detected distal to the lesion only in nerves subjected to the combined treatment. No unmyelinated or thinly myelinated axons in association with glial cells were seen at 6 or 8 weeks postoperatively in nerves that were not treated, or in nerves in which the two stumps were completely disconnected. Two millimeters distal to the site of injury, the growing axons are confined to a compartment comprising 5%-30% of the cross section of the nerve. A temporal analysis indicates that axons have grown as far as 6 mm distal to the site of injury, by 8 weeks postoperatively.

  15. Changes induced by peripheral nerve injury in the morphology and nanomechanics of sensory neurons

    NASA Astrophysics Data System (ADS)

    Benzina, Ouafa; Szabo, Vivien; Lucas, Olivier; Saab, Marie-belle; Cloitre, Thierry; Scamps, Frédérique; Gergely, Csilla; Martin, Marta

    2013-06-01

    Peripheral nerve injury in vivo promotes a regenerative growth in vitro characterized by an improved neurite regrowth. Knowledge of the conditioning injury effects on both morphology and mechanical properties of live sensory neurons could be instrumental to understand the cellular and molecular mechanisms leading to this regenerative growth. In the present study, we use differential interference contrast microscopy, fluorescence microscopy and atomic force microscopy (AFM) to show that conditioned axotomy, induced by sciatic nerve injury, does not increase somatic size of sensory neurons from adult mice lumbar dorsal root ganglia but promotes the appearance of longer and larger neurites and growth cones. AFM on live neurons is also employed to investigate changes in morphology and membrane mechanical properties of somas of conditioned neurons following sciatic nerve injury. Mechanical analysis of the soma allows distinguishing neurons having a regenerative growth from control ones, although they show similar shapes and sizes.

  16. Glial cell plasticity in sensory ganglia induced by nerve damage.

    PubMed

    Hanani, M; Huang, T Y; Cherkas, P S; Ledda, M; Pannese, E

    2002-01-01

    Numerous studies have been done on the effect of nerve injury on neurons of sensory ganglia but little is known about the contribution of satellite glial cells (SCs) in these ganglia to post-injury events. We investigated cell-to-cell coupling and ultrastructure of SCs in mouse dorsal root ganglia after nerve injury (axotomy). Under control conditions SCs were mutually coupled, but mainly to other SCs around a given neuron. After axotomy SCs became extensively coupled to SCs that enveloped other neurons, apparently by gap junctions. Serial section electron microscopy showed that after axotomy SC sheaths enveloping neighboring neurons formed connections with each other. Such connections were absent in control ganglia. The number of gap junctions between SCs increased 6.5-fold after axotomy. We propose that axotomy induces growth of perineuronal SC sheaths, leading to contacts between SCs enveloping adjacent neurons and to formation of new gap junctions between SCs. These changes may be an important mode of glial plasticity and can contribute to neuropathic pain.

  17. Polyethlyene glycol microgels to deliver bioactive nerve growth factor.

    PubMed

    Stukel, Jessica; Thompson, Susan; Simon, Laurent; Willits, Rebecca

    2015-02-01

    Delivery of bioactive molecules is a critical step in fabricating materials for regenerative medicine, yet, this step is particularly challenging in hydrated scaffolds such as hydrogels. Although bulk photocrosslinked poly(ethylene glycol) (PEG) hydrogels have been used for a variety of tissue engineering applications, their capability as drug delivery scaffolds has been limited due to undesirable release profiles and reduction in bioactivity of molecules. To solve these problems, this article presents the fabrication of degradable PEG microgels, which are micron-sized spherical hydrogels, to deliver bioactive nerve growth factor (NGF). NGF release and activity was measured after encapsulation in microgels formed from either 3 kDa or 6 kDa PEG to determine the role of hydrogel mesh size on release. Microgels formed from 6 kDa PEG were statistically larger and had a higher swelling ratio than 3 kDa PEG. The 6 kDa PEG microgels provided a Fickian release with a reduced burst effect and 3 kDa microgels provided anomalous release over ≥20 days. Regardless of molecular weight of PEG, NGF bioactivity was not significantly reduced compared to unprocessed NGF. These results demonstrate that microgels provide easy mechanisms to control the release while retaining the activity of growth factors. As this microgel-based delivery system can be injected at the site of nerve injury to promote nerve repair, the potential to deliver active growth factors in a controlled manner may reduce healing time for neural tissue engineering applications.

  18. Nerve growth factor from cobra venom inhibits the growth of Ehrlich tumor in mice.

    PubMed

    Osipov, Alexey V; Terpinskaya, Tatiana I; Kryukova, Elena V; Ulaschik, Vladimir S; Paulovets, Lubov V; Petrova, Elena A; Blagun, Ekaterina V; Starkov, Vladislav G; Utkin, Yuri N

    2014-02-26

    The effects of nerve growth factor (NGF) from cobra venom (cvNGF) on growth of Ehrlich ascites carcinoma (EAC) cells inoculated subcutaneously in mice have been studied. The carcinoma growth slows down, but does not stop, during a course of cvNGF injections and restores after the course has been discontinued. The maximal anti-tumor effect has been observed at a dose of 8 nmoles cvNGF/kg body weight. cvNGF does not impact on lifespan of mice with grafted EAC cells. K252a, a tyrosine kinase inhibitor, attenuates the anti-tumor effect of cvNGF indicating the involvement of TrkA receptors in the process. cvNGF has induced also increase in body weight of the experimental animals. In overall, cvNGF shows the anti-tumor and weight-increasing effects which are opposite to those described for mammalian NGF (mNGF). However in experiments on breast cancer cell line MCF-7 cvNGF showed the same proliferative effects as mNGF and had no cytotoxic action on tumor cells in vitro. These data suggest that cvNGF slows down EAC growth via an indirect mechanism in which TrkA receptors are involved.

  19. Nerve Growth Factor from Cobra Venom Inhibits the Growth of Ehrlich Tumor in Mice

    PubMed Central

    Osipov, Alexey V.; Terpinskaya, Tatiana I.; Kryukova, Elena V.; Ulaschik, Vladimir S.; Paulovets, Lubov V.; Petrova, Elena A.; Blagun, Ekaterina V.; Starkov, Vladislav G.; Utkin, Yuri N.

    2014-01-01

    The effects of nerve growth factor (NGF) from cobra venom (cvNGF) on growth of Ehrlich ascites carcinoma (EAC) cells inoculated subcutaneously in mice have been studied. The carcinoma growth slows down, but does not stop, during a course of cvNGF injections and restores after the course has been discontinued. The maximal anti-tumor effect has been observed at a dose of 8 nmoles cvNGF/kg body weight. cvNGF does not impact on lifespan of mice with grafted EAC cells. K252a, a tyrosine kinase inhibitor, attenuates the anti-tumor effect of cvNGF indicating the involvement of TrkA receptors in the process. cvNGF has induced also increase in body weight of the experimental animals. In overall, cvNGF shows the anti-tumor and weight-increasing effects which are opposite to those described for mammalian NGF (mNGF). However in experiments on breast cancer cell line MCF-7 cvNGF showed the same proliferative effects as mNGF and had no cytotoxic action on tumor cells in vitro. These data suggest that cvNGF slows down EAC growth via an indirect mechanism in which TrkA receptors are involved. PMID:24577582

  20. Comparison of rabbit facial nerve regeneration in nerve growth factor-containing silicone tubes to that in autologous neural grafts.

    PubMed

    Spector, J G; Lee, P; Derby, A; Roufa, D G

    1995-11-01

    Previous reports suggest that nerve growth factor (NGF) enhanced nerve regeneration in rabbit facial nerves. We compared rabbit facial nerve regeneration in 10-mm silicone tubes prefilled with NGF or cytochrome C (Cyt C), bridging an 8-mm nerve gap, to regeneration of 8-mm autologous nerve grafts. Three weeks following implantation, NGF-treated regenerates exhibited a more mature fascicular organization and more extensive neovascularization than Cyt C-treated controls. Morphometric analysis at the middle of the tube of 3- and 5-week regenerates revealed no significant difference in the mean number of myelinated or unmyelinated axons between NGF- and Cyt C-treated implants. However, when the numbers of myelinated fibers in 5-week regenerates were compared to those in their respective preoperative controls, NGF-treated regenerates had recovered a significantly greater percentage of myelinated axons than Cyt C-treated implants (46% versus 18%, respectively). The number of regenerating myelinated axons in the autologous nerve grafts at 5 weeks was significantly greater than the number of myelinated axons in the silicone tubes. However, in the nerve grafts the majority of the axons were found in the extrafascicular connective tissue (66%). The majority of these myelinated fibers did not find their way into the distal nerve stump. Thus, although the number of regenerating myelinated axons within the nerve grafts is greater than that of axons within silicone tube implants, functional recovery of autologous nerve graft repairs may not be superior to that of intubational repairs.

  1. [The preparation and evaluation of tissue inducible nerve guide conduit].

    PubMed

    Zhao, Hongbin; Liu, Xingyan; Ge, Baofeng; Guo, Chao; Zhen, Ping

    2012-04-01

    The objective of this research was to fabricate a novel tissue inducible nerve guide conduit, and to evaluate its biologic property. The microspheres were prepared with chitosan that encapsulated ligustrazine. The drug release of the chitosan microspheres was detected with application of the controlled release method in vitro. Chitosan microspheres were mixed with collagen to fabricate the tissue inducible nerve conduit, which were crosslinked with 2% genipin for 24h. Mechanical properties of the nerve guide conduit samples, including maximum load and breaking load, were measured using an Instron Series IX Automated Materials Testing System. The flexibility of the nerve guide conduit was determined with the texture evaluation instrument. Different methods, such as scanning electron microscope (SEM), light microscope (LMS) and immunofluorescence were used to analyze the spatial structure of the nerve guide conduit, the distribution of the microspheres, the state of the nerve duct combined with mesenchymal stem cells (MSCs), and the effect of the ligustrazine that released from chitosan microsphere on MSCs differentiation into nerve cells, respectively. The results showed that the chitosan microspheres had better releasing effect. The mechanical properties resultant nerve guide conduit were determined. The maximum load and breaking load of the genipin crosslinked samples were significantly higher than that observed with the non-crosslinkers, increasing to (0.76 +/- 0.15) N and (0.69 +/- 0.17) N from (0.23 +/- 0.09) N and (0.20 +/- 0.12) N for the non-crosslinkers (P < 0.01). The degradation rates of non-crosslinked and crosslinked by genipin were(58.62 +/- 7.59) mg and (9.23 +/- 2.47) mg, respec- tively. This had a statistical significance (P < 0.01). The average linearities in dry and hygrometric state of the nerve guide conduit were (0.597 +/- 0.012) LC and (0.333 +/- 0.015) LC, respectively, which also had statistical significance (P < 0.01). The flexibility in

  2. Using gait analysis to assess weight bearing in rats with Freund׳s complete adjuvant-induced monoarthritis to improve predictivity: Interfering with the cyclooxygenase and nerve growth factor pathways.

    PubMed

    Ängeby Möller, Kristina; Berge, Odd-Geir; Finn, Anja; Stenfors, Carina; Svensson, Camilla I

    2015-06-05

    Lack of predictive power for drug effects has been a major criticism against animal pain models. It is therefore important to define the utility and limitations of different models. The aim of this study was to extend previous work on gait analysis as a tool to investigate pharmacological effects in monoarthritic rats, specifically to test the hypothesis that monoarthritis induced by Freund׳s complete adjuvant (FCA) provides a better estimate of overall analgesic efficacy of established, and novel, clinically effective and ineffective therapeutic approaches. Male rats injected intra-articularly into one ankle joint with FCA (1.0mg/ml) were treated with the monoclonal antibody to nerve growth factor (NGF), MEDI-578, the inhibitors of tropomyosin receptor kinases A, B and C (pan-Trk) AZ6623 or AZ7092, the transient receptor potential vanilloid 1 (TRPV1) inhibitor AZD1386, or the cyclooxygenase (COX) inhibitors naproxen, ibuprofen, valdecoxib or rofecoxib. Effects on weight bearing during locomotion were tested using video capture of print images. The apparent efficacy in this model was Trk inhibitors≥anti-NGF antibody>COX inhibitors. The TRPV1 inhibitor was ineffective. Together with previous data, the results support using gait-related parameters in the monoarthritis model. FCA as induction agent seems to provide a good overall prediction of analgesic efficacy in disorders with inflammatory joint pain.

  3. Purinergic signalling underlies transforming growth factor‐β‐mediated bladder afferent nerve hyperexcitability

    PubMed Central

    Gonzalez, Eric J.; Heppner, Thomas J.; Nelson, Mark T.

    2016-01-01

    Key points The sensory components of the urinary bladder are responsible for the transduction of bladder filling and are often impaired with neurological injury or disease.Elevated extracellular ATP contributes, in part, to bladder afferent nerve hyperexcitability during urinary bladder inflammation or irritation.Transforming growth factor‐β1 (TGF‐β1) may stimulate ATP release from the urothelium through vesicular exocytosis mechanisms with minimal contribution from pannexin‐1 channels to increase bladder afferent nerve discharge.Bladder afferent nerve hyperexcitability and urothelial ATP release with CYP‐induced cystitis is decreased with TGF‐β inhibition.These results establish a causal link between an inflammatory mediator, TGF‐β, and intrinsic signalling mechanisms of the urothelium that may contribute to the altered sensory processing of bladder filling. Abstract The afferent limb of the micturition reflex is often compromised following bladder injury, disease and inflammatory conditions. We have previously demonstrated that transforming growth factor‐β (TGF‐β) signalling contributes to increased voiding frequency and decreased bladder capacity with cystitis. Despite the functional presence of TGF‐β in bladder inflammation, the precise mechanisms of TGF‐β mediating bladder dysfunction are not yet known. Thus, the present studies investigated the sensory components of the urinary bladder that may underlie the pathophysiology of aberrant TGF‐β activation. We utilized bladder–pelvic nerve preparations to characterize bladder afferent nerve discharge and the mechanisms of urothelial ATP release with distention. Our findings indicate that bladder afferent nerve discharge is sensitive to elevated extracellular ATP during pathological conditions of urinary bladder inflammation or irritation. We determined that TGF‐β1 may increase bladder afferent nerve excitability by stimulating ATP release from the urothelium via vesicular

  4. Nerve growth factor (NGF) and diabetic neuropathy in the rat: morphological investigations of the sural nerve, dorsal root ganglion, and spinal cord.

    PubMed

    Unger, J W; Klitzsch, T; Pera, S; Reiter, R

    1998-09-01

    A number of functions for nerve growth factor (NGF) have been described over the past years, including its role for neuronal function and regeneration during toxic or metabolic neuropathies. In order to further assess the effects of NGF on the somatosensory system in diabetic neuropathy, the sural nerve, dorsal root ganglia (DRG), and dorsal horn of the spinal cord were investigated by morphological and quantitative methods in rats after 12 weeks of uncontrolled streptozotocin-induced diabetes mellitus. The results from our study suggest a twofold effect of NGF: (1) In sural nerve treatment with NGF (0.1 or 0.5 mg/kg) for 12 weeks was able to reverse distinct diabetes-related alterations in myelinated nerve fiber morphology, such as myelin thickness. These changes occurred in the entire myelinated population of sensory nerves and were not restricted to nociceptive nerve fibers. (2) The NGF effect on neurotransmitters of the sensory, nociceptive system was reflected by increased CGRP and substance P content in the DRG and in the dorsal horn of the spinal cord. No change of trkA receptor immunostaining was seen in DRGs of diabetic rats; however, a reduction of trkA immunoreactivity of DRG neurons was noted after long-term NGF treatment of healthy controls. The data demonstrate that NGF regulates a number of neuronal parameters along peripheral and central parts of the somatosensory pathway in the adult. This neurotrophic support may be essential for inducing functionally significant regenerative mechanisms in diabetic neuropathy.

  5. NERVE GROWTH FACTOR MAINTAINS POTASSIUM CONDUCTANCE AFTER NERVE INJURY IN ADULT CUTANEOUS AFFERENT DORSAL ROOT GANGLION NEURONS

    PubMed Central

    EVERILL, B.; KOCSIS, J. D.

    2008-01-01

    Whole-cell patch-clamp techniques were used to study the effects of nerve growth factor on voltage-dependent potassium conductance in normal and axotomized identified large cutaneous afferent dorsal root ganglion neurons (48–50 μm diameter) many of which probably give rise to myelinated Aβ fibers. K-currents were isolated by blocking Na- and Ca-currents with appropriate ion replacement and channel blockers. Separation of current components was achieved on the basis of response to variation in conditioning voltage. Cutaneous afferents were labeled by the retrograde marker hydroxy-stilbamide (FluoroGold) which was injected into the skin of the foot. The sciatic nerve was either ligated or crushed with fine forceps five to seven days later. Neurons were dissociated 14–17 days after injury. The cut ends of the sciatic nerves were positioned into polyethylene tubes, which were connected to mini-osmotic pumps filled with either nerve growth factor or sterile saline. Control neurons displayed a prominent sustained K-current and the transient potassium currents “A” and “D”. Nerve ligation, which blocks target reconnection resulted in near 50% reduction of total outward current; isolated sustained K-current and transient A-current were reduced by a comparable amount. Nerve crush, which allows regeneration to peripheral targets and exposure of the regenerating nerve to the distal nerve segment, resulted in a small reduction in sustained K-current but no reduction in transient A-current compared to controls. Levels of transient A-current and sustained K-current were maintained at control levels after nerve growth factor treatment. These results indicate that the large reduction in transient A-current, and in sustained K-current, observed in cutaneous afferent cell bodies after nerve ligation is prevented by application of nerve growth factor. PMID:11008179

  6. Nerve growth factor-mediated vascular endothelial growth factor expression of astrocyte in retinal vascular development.

    PubMed

    Kim, You Sun; Jo, Dong Hyun; Lee, Hanjae; Kim, Jin Hyoung; Kim, Kyu-Won; Kim, Jeong Hun

    2013-02-22

    The angiogenic aspect of neurotrophins and their receptors rather than the neuroscientific aspect has been focused. However, their role in retinal vascular development is underdiscovered. The purpose of this study is to understand the role of neurotrophin receptors in retinal vascular development and the mechanisms of their action. To identify the expression of tropomyosin receptor kinase receptor (Trk) in developing retina, tissues of 4, 8, 12, 16 and 26 day-old mice were prepared for experiments. Immunohistochemistry and immunofluorescence double staining against glial fibrillary acidic protein and type IV collagen were performed. TrkA was expressed mainly along the vessel structure in inner part of retina, especially in retinal astrocyte. In cultured primary astrocyte, recombinant nerve growth factor (NGF) was used to activate TrkA. NGF induced the phosphorylation of TrkA, and it also enhanced the level of activated Akt and vascular endothelial growth factor (VEGF) mRNA. Inhibition of phosphoinositide 3-kinase (PI3K) reversed the NGF-induced activation of these two molecules. This study demonstrated that TrkA activation on NGF leads to VEGF elevation by PI3K-Akt pathway and therefore suggested that TrkA could be a stimulator of retinal vascular development. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Postnatal expression of the plasticity-related nerve growth factor-induced gene A (NGFI-A) protein in the superficial layers of the rat superior colliculus: relation to N-methyl-D-aspartate receptor function.

    PubMed

    Giraldi-Guimarães, A; de Bittencourt-Navarrete, R E; Nascimento, I C C; Salazar, P R; Freitas-Campos, D; Mendez-Otero, R

    2004-01-01

    Immediate early gene expression in the CNS is induced by sensory stimulation and seems to be involved in long-term synaptic plasticity. We have used an immunohistochemical method to detect the nerve growth factor-induced gene A (NGFI-A) protein expression in the superficial layers of the rat superior colliculus during postnatal development. Our goal was to correlate the expression of this candidate plasticity protein with developmental events, especially the activity-dependent refinement of the retinocollicular and corticocollicular pathways. We have also investigated the N-methyl-D-aspartate (NMDA)-receptor dependence of the NGFI-A expression. Animals of various postnatal ages were used. Postnatal day (P) 12 and older animals were submitted to a protocol of dark adaptation followed by light stimulation. NGFI-A expression was never observed during the first 2 postnatal weeks. The first stained cells were observed at P15, 2 days after eye opening (P13). The highest number of stained cells was observed at the end of the third postnatal week (P22). Adult-like level of expression was reached at P30, since at this age, the number of stained cells was comparable to that found in adult rats (P90). Both P22 animals submitted to an acute treatment with MK-801 (i.p. injection) and adult animals submitted to chronic intracranial infusion of a MK-801 presented a clear decrease in the NGFI-A expression in response to light stimulation. These results suggest that the NGFI-A expression is dependent on the NMDA receptor activation, and the observed pattern of expression is in close agreement with previous descriptions of the changes in the NMDA receptor-mediated visual activity in the developing rat superior colliculus (SC). Our results suggest that the plasticity-related NGFI-A protein might play a role in the developmental plasticity of the superficial layers of the rat SC after eye opening.

  8. Vascular endothelial growth factor promotes anatomical and functional recovery of injured peripheral nerves in the avascular cornea

    PubMed Central

    Pan, Zan; Fukuoka, Shima; Karagianni, Natalia; Guaiquil, Victor H.; Rosenblatt, Mark I.

    2013-01-01

    Peripheral nerve injury is a major neurological disorder that can cause severe motor and sensory dysfunction. Neurogenic effects of vascular endothelial growth factor (VEGF) have been found in the central nervous system, and we examined whether VEGF could promote anatomical and functional recovery of peripheral nerves after injury using an avascular corneal nerve injury model. We found that VEGF enhanced neurite elongation in isolated trigeminal ganglion neurons in a dose-dependent manner. This effect was suppressed by neutralizing antibodies for VEGF receptor (VEGFR) 1 and 2 or neuropilin receptor 1 or by VEGFR2 inhibitors (SU 1498 and Ki 8751). In vivo, mice receiving sustained VEGF via implanted pellets showed increased corneal nerve regeneration after superficial injury compared with those receiving vehicle. VEGF injected subconjunctivally at the time of injury accelerated reinnervation, the recovery of mechanosensation, and epithelial wound healing. Endogenous VEGF expression was up-regulated in the corneal epithelium and stroma after wounding. Thus, VEGF can mediate peripheral neuron growth but requires the activation of multiple VEGF receptor types. In addition, VEGF can accelerate the return of sensory and trophic functions of damaged peripheral nerves. Wounding induces the expression of VEFG, which may modulate physiological nerve repair.—Pan, Z., Fukuoka, S., Karagianni, N., Guaiquil, V. H., Rosenblatt, M. I. Vascular endothelial growth factor promotes anatomical and functional recovery of injured peripheral nerves in the avascular cornea. PMID:23568776

  9. RAPID COMMUNICATION: Nerve growth factor influences cleavage rate and embryo development in sheep.

    PubMed

    Crispo, M; Dos Santos-Neto, P C; Vilariño, M; Mulet, A P; de León, A; Barbeito, L; Menchaca, A

    2016-10-01

    Recent information about Nerve growth factor (NGF), a protein traditionally associated to the nervous system that regulates survival and maturation of developing neurons, suggests that it may exert action also on different levels in the reproductive system. The aim of this study was to evaluate the effect of NGF added during in vitro oocyte maturation, fertilization or in vitro embryo development in sheep. Nerve growth factor was supplemented to the culture medium at 0, 100, or 1,000 ng/mL, during either in vitro maturation (Exp. 1), in vitro fertilization (Exp. 2), or in vitro culture (Exp. 3). In addition, NGF mRNA expression was determined in cumulus cells and oocytes. Nerve growth factor induced early cleavage when added during oocyte maturation or fertilization, improved embryo development when added during fertilization, and had no significant effect when added during embryo culture. In general, the effect was more evident with 100 rather than 1,000 ng/mL (P < 0.05). Expression of endogenous NGF was not detected in oocytes, and increased in cumulus cells when 1,000 ng/mL of NGF was added during fertilization, but not during maturation and embryo culture. In conclusion, the addition of NGF during oocyte maturation and fertilization affects in vitro cleavage and embryo development in sheep. We suggest a possible effect of this growth factor on oocyte maturation and mainly on the fertilization process.

  10. Nerve agent-induced seizures and their pharmacological modulation

    SciTech Connect

    McDonough, J.H.; Shih, T.M.; Adams, N.L.; Koviak, T.A.; Cook, L.A.

    1993-05-13

    Intoxication with nerve agents produces prolonged central nervous system seizures (status epilepticus) that can produce irreversible brain pathology (15). This report summarizes our recent findings regarding the neurotransmitter changes that occur in discrete brain regions as a function of seizure duration and the differential effectiveness of anticholinergic, benzodiazepine and excitatory amino acid (EAA) antagonist drugs in terminating soman-induced seizures when given at different times after seizure onset. These results are discussed in relation to a model we have proposed to explain the sequence of electrophysiological, biochemical and neurochemical events and mechanisms controlling nerve agent-induced seizures.

  11. Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC12 cells.

    PubMed Central

    Gutacker, C; Klock, G; Diel, P; Koch-Brandt, C

    1999-01-01

    Clusterin (apolipoprotein J) is an extracellular glycoprotein that might exert functions in development, cell death and lipid transport. Clusterin gene expression is elevated at sites of tissue remodelling, such as differentiation and apoptosis; however, the signals responsible for this regulation have not been identified. We use here the clusterin gene as a model system to examine expression in PC12 cells under the control of differentiation and proliferation signals produced by nerve growth factor (NGF) and by epidermal growth factor (EGF) respectively. NGF induced clusterin mRNA, which preceded neurite outgrowth typical of neuronal differentiation. EGF also activated the clusterin mRNA, demonstrating that both proliferation and differentiation signals regulate the gene. To localize NGF- and EGF-responsive elements we isolated the clusterin promoter and tested it in PC12 cell transfections. A 2.5 kb promoter fragment and two 1.5 and 0.3 kb deletion mutants were inducible by NGF and EGF. The contribution to this response of a conserved activator protein 1 (AP-1) motif located in the 0.3 kb fragment was analysed by mutagenesis. The mutant promoter was not inducible by NGF or EGF, which identifies the AP-1 motif as an element responding to both factors. Binding studies with PC12 nuclear extracts showed that AP-1 binds to this sequence in the clusterin promoter. These findings suggest that NGF and EGF, which give differential gene regulation in PC12 cells, resulting in neuronal differentiation and proliferation respectively, use the common Ras/extracellular signal-regulated kinase/AP-1 signalling pathway to activate clusterin expression. PMID:10215617

  12. Discovery of SNPs in the swine nerve growth factor gene.

    PubMed

    Chung, H Y; Kim, J Y

    2010-10-01

    This study was aimed to search genetic variants for the swine nerve growth factor gene that associated with regulation of proliferation and differentiation of nervous systems. The swine nerve growth factor gene was screened with 5 primer sets for random populations of crossbred pigs born 2005-2007 at National Institute of Animal Science (NIAS). To verify genetic variants of miniature pigs, a total of 288,000 BAC clones generated from NIAS in 2007 were used. The selection of primer sequences was based on sequences of the swine in GenBank (L31898), and genetic variants have been discovered in the crossbred population positioned at 381 (A/C), 412 (C/T), 422 (G/A), 468 (G/C), 496 (A/G), 538 (T/C), 540 (G/A), and 547 (A/G) showing substitutions of amino acids. The identified sequences of miniature pigs including SNPs were submitted into GenBank with an accession number (GQ423508). The sequence alignment conducted to compare genetic distances between species, revealing not many high similarities between swine and human as approximately 0.89 that was a little bit high value than expected. Consequently, we suggest that the identified SNPs of the swine NGF gene may be used in the future to identify genetic markers in coding regions, regarding explanations of phenotypic variations.

  13. Neurotrophic Factor Receptor Expression and in vitro Nerve Growth of Geniculate Ganglion Neurons That Supply Divergent Nerves

    PubMed Central

    Yamout, Adam; Spec, Andrej; Cosmano, Jason; Kashyap, Manoj; Rochlin, M. William

    2016-01-01

    We investigated which neurotrophic factors may contribute to the divergence of two peripheral nerves emanating from the geniculate ganglion. We compared receptor mRNA profiles of the neurons that supply the nerves, and also the growth of their neurites in response to neurotrophic factors in culture. Three mRNAs, Gfra2, TrkA, and TrkC, were differentially expressed. Only one ligand, Neurturin, promoted substantially different nerve regrowth from the nerves, and therefore may contribute to nerve divergence. Three receptor mRNAs were expressed in 100% of the neurons: TrkB, TrkB.T2 (kinaselacking isoform), and NCAM-140. Ligands for these Trks and FRα-1 promoted more outgrowth than ligands for the other receptors. NT-3 and BDNF synergistically promoted outgrowth. Finally, receptors are coexpressed at random rates, arguing against the existence of neuronal subtypes defined by a combinatorial code of these receptors. PMID:16137986

  14. Plasticity in rat uterine sympathetic nerves: the role of TrkA and p75 nerve growth factor receptors

    PubMed Central

    Richeri, Analía; Bianchimano, Paola; Mármol, Nelson M; Viettro, Lorena; Cowen, Timothy; Brauer, M Mónica

    2005-01-01

    Uterine sympathetic innervation undergoes profound remodelling in response to physiological and experimental changes in the circulating levels of sex hormones. It is not known, however, whether this plasticity results from changes in the innervating neurons, the neuritogenic properties of the target tissue or both. Using densitometric immunohistochemistry, we analysed the effects of prepubertal chronic oestrogen treatment (three subcutaneous injections of 20 µg of β-oestradiol 17-cypionate on days 25, 27 and 29 after birth), natural peripubertal transition and late pregnancy (19–20 days post coitum) on the levels of TrkA and p75 nerve growth factor receptors in uterine-projecting sympathetic neurons of the thoraco-lumbar paravertebral sympathetic chain (T7–L2) identified using the retrograde tracer Fluorogold. For comparative purposes, levels of TrkA and p75 were assessed in the superior cervical ganglion (SCG) following prepubertal chronic oestrogen treatment. These studies showed that the vast majority of uterine-projecting neurons expressed both TrkA and p75. Both prepubertal chronic oestrogen treatment and the peripubertal transition increased the ratio p75 to TrkA in uterine-projecting neurons, whereas pregnancy elicited the opposite effect. Prepubertal chronic oestrogen treatment had no effects on levels of TrkA or p75 in sympathetic neurons of the SCG. Taken together, our data suggest that neurotrophin receptor-mediated events may contribute to regulate sex hormone-induced plasticity in uterine sympathetic nerves, and are in line with the idea that, in vivo, plasticity in uterine nerves involves changes in both the target and the innervating neurons. PMID:16050899

  15. Angelica injection promotes peripheral nerve structure and function recovery with increased expressions of nerve growth factor and brain derived neurotrophic factor in diabetic rats.

    PubMed

    Li, Ruilin; Zhang, Junjian; Zhang, Lei; Cui, Qin; Liu, Hui

    2010-08-01

    Several nervous system injury models, such as sciatic crush and chronic cerebral hypoperfusion have been well studied in terms of neuroprotective effect of angelica injection. However, definitive experimental studies are lacking on diabetic peripheral neuropathy (DPN). This study sought to investigate the effects of angelica injection on DPN in type 1 diabetic rats. Diabetes was induced by single intraperitoneal injection of streptozotocin (STZ). To examine whether DPN model succeeded, tail-flick latency (TFL) and motor nerve conduction velocity (MNCV) were measured at 6 weeks after diabetes induction. Then, diabetic rats were treated with high- and low-dose angelica injection for 4 weeks. TFL, MNCV, morphology of sciatic nerve, myelinated nerve fiber density and the expressions of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in soleus and sciatic nerve were measured at 10 weeks after diabetes induction. The results showed the TFL was significantly shortened (p<0.001) and the MNCV was reduced (p<0.01) in diabetic rats compared with normal control rats at 6 weeks after diabetes induction. The TFL was obviously prolonged and the MNCV was further reduced in diabetic control group at 10 weeks after diabetes induction. TFL, MNCV and morphology of sciatic nerve were remarkably ameliorated and myelinated nerve fiber density and the expressions of NGF and BDNF in soleus and sciatic nerve were increased in the angelica treatment groups. This study suggests angelica injection has potential therapeutic effects on DPN, and the mechanism might be related to direct increase in NGF expression and direct or indirect increase in BDNF expression.

  16. Nerve growth factor combined with an epineural conduit for bridging a short nerve gap (10 mm). A study in rabbits.

    PubMed

    Barmpitsioti, Antonia; Konofaos, Petros; Ignatiadis, Ioannis; Papalois, Apostolos; Zoubos, Aristides B; Soucacos, Panagiotis N

    2011-10-01

    The purpose of this study was to evaluate the effect of direct administration of nerve growth factor (NGF) into an epineural conduit across a short nerve gap (10 mm) in a rabbit sciatic nerve model. The animals were divided into two groups. In group 1, n = 6, a 10-mm defect was created in the sciatic nerve and bridged with an epineural flap. A dose of 1 μg of NGF was locally administered daily for the first 21 days. NGF administration was made inside the epineural flap using a silicone reservoir connected to a silicone tube. In group 2, n = 6, the 10-mm defect was bridged with a nerve graft. This group did not receive any further treatment. At 13 weeks, all animals, before euthanasia, underwent electromyography (EMG) studies and then specimen sent for histology morphometric analysis. NGF administration ensured a significantly increased average number of myelinated axons per μm(2) (P = 0.028) and promoted fiber maturation (P = 0.031) and better EMG results (P = 0.046 for latency P = 0.048 for amplitude), compared with the control group. Although nerve grafts remain the gold standard for peripheral nerve repair, NGF-treated epineural conduits represent a good alternative, particularly when an unfavorable environment for nerve grafts is present.

  17. A Review of Bioactive Release from Nerve Conduits as a Neurotherapeutic Strategy for Neuronal Growth in Peripheral Nerve Injury

    PubMed Central

    Choonara, Yahya E.; Bijukumar, Divya; du Toit, Lisa C.

    2014-01-01

    Peripheral nerve regeneration strategies employ the use of polymeric engineered nerve conduits encompassed with components of a delivery system. This allows for the controlled and sustained release of neurotrophic growth factors for the enhancement of the innate regenerative capacity of the injured nerves. This review article focuses on the delivery of neurotrophic factors (NTFs) and the importance of the parameters that control release kinetics in the delivery of optimal quantities of NTFs for improved therapeutic effect and prevention of dose dumping. Studies utilizing various controlled-release strategies, in attempt to obtain ideal release kinetics, have been reviewed in this paper. Release strategies discussed include affinity-based models, crosslinking techniques, and layer-by-layer technologies. Currently available synthetic hollow nerve conduits, an alternative to the nerve autografts, have proven to be successful in the bridging and regeneration of primarily the short transected nerve gaps in several patient cases. However, current research emphasizes on the development of more advanced nerve conduits able to simulate the effectiveness of the autograft which includes, in particular, the ability to deliver growth factors. PMID:25143934

  18. Peripheral Nerve Repair in Rats Using Composite Hydrogel-Filled Aligned Nanofiber Conduits with Incorporated Nerve Growth Factor

    PubMed Central

    Jin, Jenny; Limburg, Sonja; Joshi, Sunil K.; Landman, Rebeccah; Park, Michelle; Zhang, Qia; Kim, Hubert T.

    2013-01-01

    Repair of peripheral nerve defects with current synthetic, tubular nerve conduits generally shows inferior recovery when compared with using nerve autografts, the current gold standard. We tested the ability of composite collagen and hyaluronan hydrogels, with and without the nerve growth factor (NGF), to stimulate neurite extension on a promising aligned, nanofiber poly-L-lactide-co-caprolactone (PLCL) scaffold. In vitro, the hydrogels significantly increased neurite extension from dorsal root ganglia explants. Consistent with these results, the addition of hydrogels as luminal fillers within aligned, nanofiber tubular PLCL conduits led to improved sensory function compared to autograft repair in a critical-size defect in the sciatic nerve in a rat model. Sensory recovery was assessed 3 and 12 weeks after repair using a withdrawal assay from thermal stimulation. The addition of hydrogel did not enhance recovery of motor function in the rat model. The NGF led to dose-dependent improvements in neurite out-growth in vitro, but did not have a significant effect in vivo. In summary, composite collagen/hyaluronan hydrogels enhanced sensory neurite outgrowth in vitro and sensory recovery in vivo. The use of such hydrogels as luminal fillers for tubular nerve conduits may therefore be useful in assisting restoration of protective sensation following peripheral nerve injury. PMID:23659607

  19. Efficacy of glial growth factor and nerve growth factor on the recovery of traumatic facial paralysis.

    PubMed

    Yildiz, Mucahit; Karlidag, Turgut; Yalcin, Sinasi; Ozogul, Candan; Keles, Erol; Alpay, Hayrettin Cengiz; Yanilmaz, Muhammed

    2011-08-01

    The aim of this study was to assess the effects of Glial growth factor (GGF) and nerve growth factor (NGF) on nerve regeneration in facial nerve anastomosis. In this study, approximately a 1-mm segment was resected from the facial nerve and the free ends were anastomosed. All animals underwent the same surgical procedure and 30 rabbits were grouped randomly in three groups. Control group, the group without any medications; NGF group, the group receiving 250 ng/0.1 ml NGF in the epineurium at the site of anastomosis; GBF group, the group receiving 500 ng/0.1 ml GGF in the epineurium at the site of anastomosis. Medications were given at the time of surgery, and at 24 and 48 h postoperatively. After 2 months, the sites of anastomosis were excised and examined using the electron microscope. It was found that the best regeneration was in the group receiving GGF as compared to the control group in terms of nerve regeneration. Schwann cell and glial cell proliferation were found to be significantly higher in the group receiving GGF as compared to the group receiving NGF. Besides, the number of myelin debris, an indicator of degeneration, was significantly lower in the group with GGF as compared to NGF and control groups (p < 0.005). Using GGF and NGF in order to increase regeneration after nerve anastomosis in experimental traumatic facial nerve paralysis may be a hopeful alternative treatment option in the future. However, further studies on human studies are required to support these results.

  20. Endodontic periapical lesion-induced mental nerve paresthesia.

    PubMed

    Shadmehr, Elham; Shekarchizade, Neda

    2015-01-01

    Paresthesia is a burning or prickling sensation or partial numbness, resulting from neural injury. The symptoms can vary from mild neurosensory dysfunction to total loss of sensation in the innervated area. Only a few cases have described apical periodontitis to be the etiological factor of impaired sensation in the area innervated by the inferior alveolar and mental nerves. The aim of the present paper is to report a case of periapical lesion-induced paresthesia in the innervation area of the mental nerve, which was successfully treated with endodontic retreatment.

  1. Endodontic periapical lesion-induced mental nerve paresthesia

    PubMed Central

    Shadmehr, Elham; Shekarchizade, Neda

    2015-01-01

    Paresthesia is a burning or prickling sensation or partial numbness, resulting from neural injury. The symptoms can vary from mild neurosensory dysfunction to total loss of sensation in the innervated area. Only a few cases have described apical periodontitis to be the etiological factor of impaired sensation in the area innervated by the inferior alveolar and mental nerves. The aim of the present paper is to report a case of periapical lesion-induced paresthesia in the innervation area of the mental nerve, which was successfully treated with endodontic retreatment. PMID:25878687

  2. Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: Implications for nerve regeneration.

    PubMed

    Ali, Sumia; Driscoll, Heather E; Newton, Victoria L; Gardiner, Natalie J

    2014-11-01

    Minocycline is an inhibitor of matrix metalloproteinases (MMPs) and has been shown to have analgesic effects. Whilst increased expression of MMPs is associated with neuropathic pain, MMPs also play crucial roles in Wallerian degeneration and nerve regeneration. In this study we examined the expression of MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1/-2 in the sciatic nerve of control and streptozotocin-induced diabetic rats treated with either vehicle or minocycline by quantitative PCR and gelatin zymography. We assessed the effects of minocycline on nerve conduction velocity and intraepidermal nerve fibre (IENF) deficits in diabetic neuropathy and investigated the effects of minocycline or MMP-2 on neurite outgrowth from primary cultures of dissociated adult rat sensory neurons. We show that MMP-2 is expressed constitutively in the sciatic nerve in vivo and treatment with minocycline or diabetes leads to downregulation of MMP-2 expression and activity. The functional consequence of this is IENF deficits in minocycline-treated nondiabetic rats and an unsupportive microenvironment for regeneration in diabetes. Minocycline reduces levels of MMP-2 mRNA and nerve growth factor-induced neurite outgrowth. Furthermore, in vivo minocycline treatment reduces preconditioning-induced in vitro neurite outgrowth following a sciatic nerve crush. In contrast, the addition of active MMP-2 facilitates neurite outgrowth in the absence of neurotrophic support and pre-treatment of diabetic sciatic nerve substrata with active MMP-2 promotes a permissive environment for neurite outgrowth. In conclusion we suggest that MMP-2 downregulation may contribute to the regenerative deficits in diabetes. Minocycline treatment also downregulates MMP-2 activity and is associated with inhibitory effects on sensory neurons. Thus, caution should be exhibited with its use as the balance between beneficial and detrimental outcomes may be critical in assessing the benefits of using

  3. Primary neuron culture for nerve growth and axon guidance studies in zebrafish (Danio rerio).

    PubMed

    Chen, Zheyan; Lee, Han; Henle, Steven J; Cheever, Thomas R; Ekker, Stephen C; Henley, John R

    2013-01-01

    Zebrafish (Danio rerio) is a widely used model organism in genetics and developmental biology research. Genetic screens have proven useful for studying embryonic development of the nervous system in vivo, but in vitro studies utilizing zebrafish have been limited. Here, we introduce a robust zebrafish primary neuron culture system for functional nerve growth and guidance assays. Distinct classes of central nervous system neurons from the spinal cord, hindbrain, forebrain, and retina from wild type zebrafish, and fluorescent motor neurons from transgenic reporter zebrafish lines, were dissociated and plated onto various biological and synthetic substrates to optimize conditions for axon outgrowth. Time-lapse microscopy revealed dynamically moving growth cones at the tips of extending axons. The mean rate of axon extension in vitro was 21.4±1.2 µm hr(-1) s.e.m. for spinal cord neurons, which corresponds to the typical ∼0.5 mm day(-1) growth rate of nerves in vivo. Fluorescence labeling and confocal microscopy demonstrated that bundled microtubules project along axons to the growth cone central domain, with filamentous actin enriched in the growth cone peripheral domain. Importantly, the growth cone surface membrane expresses receptors for chemotropic factors, as detected by immunofluorescence microscopy. Live-cell functional assays of axon extension and directional guidance demonstrated mammalian brain-derived neurotrophic factor (BDNF)-dependent stimulation of outgrowth and growth cone chemoattraction, whereas mammalian myelin-associated glycoprotein inhibited outgrowth. High-resolution live-cell Ca(2+)-imaging revealed local elevation of cytoplasmic Ca(2+) concentration in the growth cone induced by BDNF application. Moreover, BDNF-induced axon outgrowth, but not basal outgrowth, was blocked by treatments to suppress cytoplasmic Ca(2+) signals. Thus, this primary neuron culture model system may be useful for studies of neuronal development, chemotropic axon

  4. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  5. Modulation of brain dead induced inflammation by vagus nerve stimulation.

    PubMed

    Hoeger, S; Bergstraesser, C; Selhorst, J; Fontana, J; Birck, R; Waldherr, R; Beck, G; Sticht, C; Seelen, M A; van Son, W J; Leuvenink, H; Ploeg, R; Schnuelle, P; Yard, B A

    2010-03-01

    Because the vagus nerve is implicated in control of inflammation, we investigated if brain death (BD) causes impairment of the parasympathetic nervous system, thereby contributing to inflammation. BD was induced in rats. Anaesthetised ventilated rats (NBD) served as control. Heart rate variability (HRV) was assessed by ECG. The vagus nerve was electrically stimulated (BD + STIM) during BD. Intestine, kidney, heart and liver were recovered after 6 hours. Affymetrix chip-analysis was performed on intestinal RNA. Quantitative PCR was performed on all organs. Serum was collected to assess TNFalpha concentrations. Renal transplantations were performed to address the influence of vagus nerve stimulation on graft outcome. HRV was significantly lower in BD animals. Vagus nerve stimulation inhibited the increase in serum TNFalpha concentrations and resulted in down-regulation of a multiplicity of pro-inflammatory genes in intestinal tissue. In renal tissue vagal stimulation significantly decreased the expression of E-selectin, IL1beta and ITGA6. Renal function was significantly better in recipients that received a graft from a BD + STIM donor. Our study demonstrates impairment of the parasympathetic nervous system during BD and inhibition of serum TNFalpha through vagal stimulation. Vagus nerve stimulation variably affected gene expression in donor organs and improved renal function in recipients.

  6. Glucagon Release Induced by Pancreatic Nerve Stimulation in the Dog

    PubMed Central

    Marliss, Errol B.; Girardier, Lucien; Seydoux, Josiane; Wollheim, Claes B.; Kanazawa, Yasunori; Orci, Lelio; Renold, Albert E.; Porte, Daniel

    1973-01-01

    A direct neural role in the regulation of immunoreactive glucagon (IRG) secretion has been investigated during stimulation of mixed autonomic nerves to the pancreas in anesthetized dogs. The responses were evaluated by measurement of blood flow and hormone concentration in the venous effluent from the stimulated region of pancreas. Electrical stimulation of the distal end of the discrete bundles of nerve fibers isolated along the superior pancreaticoduodenal artery was invariably followed by an increase in IRG output. With 10-min periods of nerve stimulation, the integrated response showed that the higher the control glucagon output, the greater was the increment. Atropinization did not influence the response to stimulation. That the preparation behaved in physiologic fashion was confirmed by a fall in IRG output, and a rise in immunoreactive insulin (IRI) output, during hyperglycemia induced by intravenous glucose (0.1 g/kg). The kinetics of this glucose effect on IRG showed characteristics opposite to those of nerve stimulation: the lower the control output, the less the decrement. Furthermore, during the control steady state, blood glucose concentration was tightly correlated with the IRI/IRG molar output ratio, the function relating the two parameters being markedly nonlinear. Injection or primed infusion of glucose diminished the IRG response to simultaneous nerve stimulation. Measurement of IRG was inferred to reflect response of pancreatic glucagon secretion on the basis of the site of sample collection (the superior pancreaticoduodenal vein), the absence of changes in arterial IRG, and similar responses being obtained using an antibody specific for pancreatic glucagon. These studies support a role for the autonomic nervous system in the control of glucagon secretion: direct nerve stimulation induces glucagon release. Such sympathetic activation may be interpreted as capable of shifting the sensitivity of the A cell to glucose in the direction of higher

  7. Microwave-assisted synthesis of 4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl)phenoxy)thiophene-2-sulfonamide (B-355252): a new potentiator of Nerve Growth Factor (NGF)-induced neurite outgrowth

    PubMed Central

    Williams, Alfred L.; Dandepally, Srinivasa R.; Gilyazova, Nailya; Witherspoon, Sam M; Ibeanu, Gordon

    2010-01-01

    The synthesis of 4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl)phenoxy)thiophene-2-sulfonamide (B-355252) using a MW-assisted nucleophilic aromatic substitution (SNAr) reaction will be discussed. Utilization of this method allowed for the rapid generation of B-355252 heteroaryl ether core structure in the presence of cesium carbonate in dimethylformamide or tripotassium phosphate in N-methyl-2-pyrrolidone in 94% yield. Evaluation of B-355252 enhancement of nerve growth factor’s ability to stimulate neurite outgrowths was determined using NS-1 cells. PMID:22973068

  8. Topical administration of adrenergic receptor pharmaceutics and nerve growth factor

    PubMed Central

    Steinle, Jena J

    2010-01-01

    Topical application of nerve growth factor (NGF) and adrenergic receptor pharmaceutics are currently in use for corneal ulcers and glaucoma. A recent interest in the neuroprotective abilities of NGF has led to a renewed interest in NGF as a therapeutic for retinal and choroidal diseases. NGF can promote cell proliferation through actions of the TrkA receptor or promote apoptosis through receptor p75NTR. This understanding has led to novel interest in the role of NGF for diseases of the posterior eye. The role of β-adrenergic receptor agonists and antagonists for treatments of glaucoma, diabetic retinopathy, and their potential mechanisms of action, are still under investigation. This review discusses the current knowledge and applications of topical NGF and adrenergic receptor drugs for ocular disease. PMID:20668722

  9. Nerve growth factor: stimulation of polymorphonuclear leukocyte chemotaxis in vitro.

    PubMed Central

    Gee, A P; Boyle, M D; Munger, K L; Lawman, M J; Young, M

    1983-01-01

    Topical application of mouse nerve growth factor (NGF) to superficial skin wounds of mice has previously been shown to accelerate the rate of wound contraction. Results of the present study reveal that NGF in the presence of plasma is also chemotactic for human polymorphonuclear leukocytes in vitro, and the concentration of NGF required for this effect is similar to that which stimulates ganglionic neurite outgrowth. This property does not arise from liberation of the C5a fragment of complement, nor does it require the known enzymic activity of NGF. (NGF inactivated with diisopropyl fluorophosphate is equally active.) We conclude that NGF can display biological effects on cells of nonneural origin and function, and this feature might play a role in the early inflammatory response to injury. PMID:6580641

  10. Nerve Growth Factor Promoter Activity Revealed in Mice Expressing Enhanced Green Fluorescent Protein

    PubMed Central

    Kawaja, Michael D.; Smithson, Laura J.; Elliott, Janet; Trinh, Gina; Crotty, Anne-Marie; Michalski, Bernadeta; Fahnestock, Margaret

    2012-01-01

    Nerve growth factor (NGF) and its precursor proNGF are perhaps the best described growth factors of the mammalian nervous system. There remains, however, a paucity of information regarding the precise cellular sites of proNGF/NGF synthesis. Here we report the generation of transgenic mice in which the NGF promoter controls the ectopic synthesis of enhanced green fluorescent protein (EGFP). These transgenic mice provide an unprecedented resolution of both neural cells (e.g., neocortical and hippocampal neurons) and non-neural cells (e.g., renal interstitial cells and thymic reticular cells) that display NGF promoter activity from postnatal development to adulthood. Moreover, the transgene is inducible by injury. At 2 days after sciatic nerve ligation, a robust population of EGFP-positive cells is seen in the proximal nerve stump. These transgenic mice offer novel insights into the cellular sites of NGF promoter activity and can be used as models for investigating the regulation of proNGF/NGF expression after injury. PMID:21456011

  11. Streptozotocin-induced diabetes, and the optic nerve blood barrier.

    PubMed

    Alemán, R; Mompeó, B; Castaño, I

    2016-04-01

    To study the features of the endoneurial micro-vessels of the optic nerve in streptozotocin-induced diabetic animals. Optic nerves from control and streptozotocin-induced diabetic animals were studied by light and transmission electron microscopy. Patency was determined by indirect immunofluorescence albumin detection. The expression of major histocompatibility complex class II molecules was performed by direct immunofluorescence. The endoneurial vessels were counted, and the endothelial cell, the basement membrane, and the surface of the transverse section of the nerve were measured. Vessels of diabetic rats showed vessel wall thickening, preservation of pericytes, an increase in endothelial cell transcytosis, and an increased number of perivascular macrophage cells. It may be concluded that the effects of hyperglycaemia on the inner vessels of the optic nerve are more similar to the cerebral diabetic vessels than to the retinal vessels in diabetic animals. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  12. Nerve Growth Factor Potentiates the Neurotoxicity of β Amyloid

    NASA Astrophysics Data System (ADS)

    Yankner, Bruce A.; Caceres, Alfredo; Duffy, Lawrence K.

    1990-11-01

    The role of growth factors in the pathogenesis of Alzheimer disease is unknown. The β-amyloid protein accumulates abnormally in the brain in Alzheimer disease and is neurotoxic to differentiated hippocampal neurons in culture. Nerve growth factor (NGF) increased the neurotoxic potency of a β-amyloid polypeptide by a factor of ≈100,000, which resulted in a reduction of the β-amyloid neurotoxic EC50 from 0.1 μM to 1 pM. This potentiating effect of NGF was reversed by a monoclonal antibody against NGF and was not observed for a variety of other neurotrophic growth factors. Exposure of hippocampal neurons to very low concentrations of β amyloid alone resulted in a marked induction of immunoreactive NGF receptors. Addition of NGF with β amyloid resulted in the appearance of neurodegenerative changes in NGF receptor-positive neurons. The early and profound degeneration of hippocampal and basal forebrain cholinergic neurons that occurs in Alzheimer disease may result from a neurotoxic interaction of β amyloid with NGF.

  13. [Nerve growth factor in neurodegeneration and neurorestorative therapy].

    PubMed

    Lorigados-Pedre, L; Bergado-Rosado, J

    The purpose of this work was to gather the information currently available about the content of nerve growth factor (NGF) in experimental models of neurodegeneration and in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, as well as to analyse how NGF content is affected by the application of different neurorestorative therapies (transplant and trophic therapy) in these neurological entities. Neurotrophins are proteins that promote the differentiation, growth and survival of many populations of peripheral neurons and the central nervous system during development and adulthood. NGF is the best known and most widely researched member of this family, which is also made up of the growth factor derived from the brain and neurotrophins 3, 4/5, 6 and 7. In the last few decades, significant progress has been made in the knowledge available about the biological role played by these factors, their molecular characterisation and regulation, as well as their signalling mechanisms. Yet, little is known about the role played by the neurotrophic factors in neurodegenerative diseases or whether the levels of these factors are modified following the use of neurorestorative treatment. Neurodegenerative disorders, especially Parkinson and Alzheimer, are accompanied by modifications in the levels of NGF that depend on the extent to which the disease has progressed. A model of the changes in NGF content during neurodegenerative processes is also proposed.

  14. Intrathecal administration of nerve growth factor delays GAP 43 expression and early phase regeneration of adult rat peripheral nerve.

    PubMed

    Hirata, Akira; Masaki, Toshihiro; Motoyoshi, Kazuo; Kamakura, Keiko

    2002-07-19

    Whether nerve growth factor (NGF) promotes peripheral nerve regeneration in vivo, in particular in adults, is controversial. We therefore examined the effect of exogenous NGF on nerve regeneration and the expression of GAP 43 (growth-associated protein 43) in adult rats. NGF was infused intrathecally via an osmotic mini-pump, while control rats received artificial cerebrospinal fluid. Two days after the infusion was initiated, the right sciatic nerves were transected or crushed, and the animals allowed to survive for 3 to 11 days. The right DRG, the right proximal stump of the transected sciatic nerve, and the posterior horn of the spinal cord were examined by Western blotting, immunohistochemistry, and electron microscopy. GAP 43 immunoreactivity in the NGF-treated animals was significantly lower than in the aCSF-treated controls. Electron microscopy showed that the number of myelinated and unmyelinated axons decreased significantly in the NGF-treated rats as compared with the controls. These findings are indicative that exogenous NGF delayed GAP 43 induction and the early phase of peripheral nerve regeneration and supports the hypothesis that the loss of NGF supply from peripheral targets via retrograde transport caused by axotomy serves as a signal for DRG neurons to invoke regenerative responses. NGF administered intrathecally may delay the neurons' perception of the reduction of the endogenous NGF, causing a delay in conversion of DRG neurons from the normal physiological condition to regrowth state.

  15. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator

    PubMed Central

    Zhou, Xiang; Hao, Qian; Liao, Peng; Luo, Shiwen; Zhang, Minhong; Hu, Guohui; Liu, Hongbing; Zhang, Yiwei; Cao, Bo; Baddoo, Melody; Flemington, Erik K; Zeng, Shelya X; Lu, Hua

    2016-01-01

    Cancer develops and progresses often by inactivating p53. Here, we unveil nerve growth factor receptor (NGFR, p75NTR or CD271) as a novel p53 inactivator. p53 activates NGFR transcription, whereas NGFR inactivates p53 by promoting its MDM2-mediated ubiquitin-dependent proteolysis and by directly binding to its central DNA binding domain and preventing its DNA-binding activity. Inversely, NGFR ablation activates p53, consequently inducing apoptosis, attenuating survival, and reducing clonogenic capability of cancer cells, as well as sensitizing human cancer cells to chemotherapeutic agents that induce p53 and suppressing mouse xenograft tumor growth. NGFR is highly expressed in human glioblastomas, and its gene is often amplified in breast cancers with wild type p53. Altogether, our results demonstrate that cancers hijack NGFR as an oncogenic inhibitor of p53. DOI: http://dx.doi.org/10.7554/eLife.15099.001 PMID:27282385

  16. Vascular endothelial growth factor promotes anatomical and functional recovery of injured peripheral nerves in the avascular cornea.

    PubMed

    Pan, Zan; Fukuoka, Shima; Karagianni, Natalia; Guaiquil, Victor H; Rosenblatt, Mark I

    2013-07-01

    Peripheral nerve injury is a major neurological disorder that can cause severe motor and sensory dysfunction. Neurogenic effects of vascular endothelial growth factor (VEGF) have been found in the central nervous system, and we examined whether VEGF could promote anatomical and functional recovery of peripheral nerves after injury using an avascular corneal nerve injury model. We found that VEGF enhanced neurite elongation in isolated trigeminal ganglion neurons in a dose-dependent manner. This effect was suppressed by neutralizing antibodies for VEGF receptor (VEGFR) 1 and 2 or neuropilin receptor 1 or by VEGFR2 inhibitors (SU 1498 and Ki 8751). In vivo, mice receiving sustained VEGF via implanted pellets showed increased corneal nerve regeneration after superficial injury compared with those receiving vehicle. VEGF injected subconjunctivally at the time of injury accelerated reinnervation, the recovery of mechanosensation, and epithelial wound healing. Endogenous VEGF expression was up-regulated in the corneal epithelium and stroma after wounding. Thus, VEGF can mediate peripheral neuron growth but requires the activation of multiple VEGF receptor types. In addition, VEGF can accelerate the return of sensory and trophic functions of damaged peripheral nerves. Wounding induces the expression of VEFG, which may modulate physiological nerve repair.

  17. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews.

    PubMed

    Xiong, Liu-Lin; Chen, Zhi-Wei; Wang, Ting-Hua

    2016-04-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  18. Artemin induced functional recovery and reinnervation after partial nerve injury.

    PubMed

    Wang, Ruizhong; Rossomando, Anthony; Sah, Dinah W Y; Ossipov, Michael H; King, Tamara; Porreca, Frank

    2014-03-01

    Systemic artemin promotes regeneration of dorsal roots to the spinal cord after crush injury. However, it is unclear whether systemic artemin can also promote peripheral nerve regeneration, and functional recovery after partial lesions distal to the dorsal root ganglion (DRG) remains unknown. In the present investigation, male Sprague Dawley rats received axotomy, ligation, or crush of the L5 spinal nerve or sham surgery. Starting the day of injury, animals received intermittent subcutaneous artemin or vehicle across 2weeks. Sensory thresholds to tactile or thermal stimuli were monitored for 6weeks after injury. Immunohistochemical analyses of the DRG and nerve regeneration were performed at the 6-week time point. Artemin transiently reversed tactile and thermal hypersensitivity after axotomy, ligation, or crush injury. Thermal and tactile hypersensitivity reemerged within 1week of treatment termination. However, artemin-treated rats with nerve crush, but not axotomy or ligation, subsequently showed gradual return of sensory thresholds to preinjury baseline levels by 6weeks after injury. Artemin normalized labeling for NF200, IB4, and CGRP in nerve fibers distal to the crush injury, suggesting persistent normalization of nerve crush-induced neurochemical changes. Sciatic and intradermal administration of dextran or cholera toxin B distal to the crush injury site resulted in labeling of neuronal profiles in the L5 DRG, suggesting regeneration functional restoration of nonmyelinated and myelinated fibers across the injury site into cutaneous tissue. Artemin also diminished ATF3 and caspase 3 expression in the L5 DRG, suggesting persistent neuroprotective actions. A limited period of artemin treatment elicits disease modification by promoting sensory reinnervation of distal territories and restoring preinjury sensory thresholds. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  19. Temporal mismatch between pain behaviour, skin Nerve Growth factor and intra-epidermal nerve fibre density in trigeminal neuropathic pain.

    PubMed

    Evans, Laura J; Loescher, Alison R; Boissonade, Fiona M; Whawell, Simon A; Robinson, Peter P; Andrew, David

    2014-01-01

    The neurotrophin Nerve Growth factor (NGF) is known to influence the phenotype of mature nociceptors, for example by altering synthesis of neuropeptides, and changes in NGF levels have been implicated in the pathophysiology of chronic pain conditions such as neuropathic pain. We have tested the hypothesis that after partial nerve injury, NGF accumulates within the skin and causes 'pro-nociceptive' phenotypic changes in the remaining population of sensory nerve fibres, which could underpin the development of neuropathic pain. Eleven days after chronic constriction injury of the rat mental nerve the intra-epidermal nerve fibre density of the chin skin from had reduced from 11.6 ± 4.9 fibres/mm to 1.0 ± 0.4 fibres/mm; this slowly recovered to 2.4 ± 2.0 fibres/mm on day 14 and 4.0 ± 0.8 fibres/mm on day 21. Cold hyperalgesia in the ipsilateral lower lip was detectable 11 days after chronic constriction injury, although at this time skin [NGF] did not differ between sides. At 14 days post-injury, there was a significantly greater [NGF] ipsilaterally compared to contralaterally (ipsilateral = 111 ± 23 pg/mg, contralateral = 69 ± 13 pg/mg), but there was no behavioural evidence of neuropathic pain at this time-point. By 21 days post-injury, skin [NGF] was elevated bilaterally and there was a significant increase in the proportion of TrkA-positive (the high-affinity NGF receptor) intra-epidermal nerve fibres that were immunolabelled for the neuropeptide Calcitonin Gene-related peptide. The temporal mismatch in behaviour, skin [NGF] and phenotypic changes in sensory nerve fibres indicate that increased [NGF] does not cause hyperalgesia after partial mental nerve injury, although it may contribute to the altered neurochemistry of cutaneous nerve fibres.

  20. Tiam1 as a signaling mediator of nerve growth factor-dependent neurite outgrowth.

    PubMed

    Shirazi Fard, Shahrzad; Kele, Julianna; Vilar, Marçal; Paratcha, Gustavo; Ledda, Fernanda

    2010-03-19

    Nerve Growth Factor (NGF)-induced neuronal differentiation requires the activation of members of the Rho family of small GTPases. However, the molecular mechanisms through which NGF regulates cytoskeletal changes and neurite outgrowth are not totally understood. In this work, we identify the Rac1-specific guanine exchange factor (GEF) Tiam1 as a novel mediator of NGF/TrkA-dependent neurite elongation. In particular, we report that knockdown of Tiam1 causes a significant reduction in Rac1 activity and neurite outgrowth induced by NGF. Physical interaction between Tiam1 and active Ras (Ras-GTP), but not tyrosine phosphorylation of Tiam1, plays a central role in Rac1 activation by NGF. In addition, our findings indicate that Ras is required to associate Tiam1 with Rac1 and promote Rac1 activation upon NGF stimulation. Taken together, these findings define a novel molecular mechanism through which Tiam1 mediates TrkA signaling and neurite outgrowth induced by NGF.

  1. Expression and significance of nerve growth factor receptor p75 in rats' cathartic colonic wall.

    PubMed

    Fan, Yi Hong; Lu, Bin; Wang, Mei; Ni, Gui Bao; Chen, Ming Tao; Xu, Yi

    2006-01-01

    To investigate the expression of nerve growth factor receptor p75 in a normal and cathartic colon and its significance in the formation of the cathartic colon in rats. Sixty Sprague-Dawley rats were equally divided into normal control group, rhubarb group and phenolphthalein group. A model of the cathartic colon was constructed by gastric infusion with rhubarb or phenolphthalein in rats. The first dose of rhubarb and phenolphthalein was both 200 mg/kg/d and was increased by 200 mg/kg/d with each passing day. The last dose of rhubarb and phenolphthalein was 3200 mg/kg/d and 4200 mg/kg/d, respectively. The transit function of colon was measured by the Chinese ink expulsion test; the p75 in colon wall was determined by the immunohistochemical method. The transit speed was much slower in the cathartic colon group than that in the control group. The imprinted Chinese ink length and the ratio of imprinted length/total colon length in the rhubarb-induced cathartic colon was significantly shorter than that of the control group (77.38 +/- 8.42 vs 94.25 +/- 7.07 cm, P < 0.01). Those in the phenolphthalein-induced group (83.38 +/- 9.75 cm) were also significantly shorter than those of the control group but to a lesser degree (P < 0.05). p75 was abundantly expressed in the submucosal nerve plexus and weakly expressed in the myenteric plexus. The expression of p75 was much higher in the rhubarb-induced group. The expression was strongly positive in the submucosal nerve plexus, significantly higher than that in the controls (P < 0.01). In the myenteric plexus, p75 was also highly expressed (P < 0.05). In the case of the phenolphthalein-induced group, the expression of p75 was positive in the submucosal nerve plexus but was positive in the myenteric plexus of three rats only. The remaining rats were negative or weakly positive. This was not significantly different from that of the control group. The abnormal expression of p75 in cathartic colon probably has some effect on the

  2. Snoring-Induced Nerve Lesions in the Upper Airway

    PubMed Central

    Poothrikovil, Rajesh P; Al Abri, Mohammed A

    2012-01-01

    The prevalence of habitual snoring is extremely high in the general population, and is reported to be roughly 40% in men and 20% in women. The low-frequency vibrations of snoring may cause physical trauma and, more specifically, peripheral nerve injuries, just as jobs which require workers to use vibrating tools over the course of many years result in local nerve lesions in the hands. Histopathological analysis of upper airway (UA) muscles have shown strong evidence of a varying severity of neurological lesions in groups of snoring patients. Neurophysiological assessment shows evidence of active and chronic denervation and re-innervation in the palatopharyngeal muscles of obstructive sleep apnoea (OSA) patients. Neurogenic lesions of UA muscles induced by vibration trauma impair the reflex dilation abilities of the UA, leading to an increase in the possibility of UA collapse. The neurological factors which are partly responsible for the progressive nature of OSAS warrant the necessity of early assessment in habitual snorers. PMID:22548134

  3. Snoring-induced nerve lesions in the upper airway.

    PubMed

    Poothrikovil, Rajesh P; Al Abri, Mohammed A

    2012-05-01

    The prevalence of habitual snoring is extremely high in the general population, and is reported to be roughly 40% in men and 20% in women. The low-frequency vibrations of snoring may cause physical trauma and, more specifically, peripheral nerve injuries, just as jobs which require workers to use vibrating tools over the course of many years result in local nerve lesions in the hands. Histopathological analysis of upper airway (UA) muscles have shown strong evidence of a varying severity of neurological lesions in groups of snoring patients. Neurophysiological assessment shows evidence of active and chronic denervation and re-innervation in the palatopharyngeal muscles of obstructive sleep apnoea (OSA) patients. Neurogenic lesions of UA muscles induced by vibration trauma impair the reflex dilation abilities of the UA, leading to an increase in the possibility of UA collapse. The neurological factors which are partly responsible for the progressive nature of OSAS warrant the necessity of early assessment in habitual snorers.

  4. Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes

    PubMed Central

    Shao, Yufang; Akmentin, Wendy; Toledo-Aral, Juan Jose; Rosenbaum, Julie; Valdez, Gregorio; Cabot, John B.; Hilbush, Brian S.; Halegoua, Simon

    2002-01-01

    Acentral tenet of nerve growth factor (NGF) action that is poorly understood is its ability to mediate cytoplasmic signaling, through its receptor TrkA, that is initiated at the nerve terminal and conveyed to the soma. We identified an NGF-induced protein that we termed Pincher (pinocytic chaperone) that mediates endocytosis and trafficking of NGF and its receptor TrkA. In PC12 cells, overexpression of Pincher dramatically stimulated NGF-induced endocytosis of TrkA, unexpectedly at sites of clathrin-independent macropinocytosis within cell surface ruffles. Subsequently, a system of Pincher-containing tubules mediated the delivery of NGF/TrkA-containing vesicles to cytoplasmic accumulations. These vesicles selectively and persistently mediated TrkA-erk5 mitogen-activated protein kinase signaling. A dominant inhibitory mutant form of Pincher inhibited the NGF-induced endocytosis of TrkA, and selectively blocked TrkA-mediated cytoplasmic signaling of erk5, but not erk1/2, kinases. Our results indicate that Pincher mediates pinocytic endocytosis of functionally specialized NGF/TrkA endosomes with persistent signaling potential. PMID:12011113

  5. Anti-nerve growth factor in pain management: current evidence

    PubMed Central

    Chang, David S; Hsu, Eugene; Hottinger, Daniel G; Cohen, Steven P

    2016-01-01

    There continues to be an unmet need for safe and effective pain medications. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) dominate the clinical landscape despite limited effectiveness and considerable side-effect profiles. Although significant advancements have identified myriad potential pain targets over the past several decades, the majority of new pain pharmacotherapies have failed to come to market. The discovery of nerve growth factor (NGF) and its interaction with tropomyosin receptor kinase A (trkA) have been well characterized as important mediators of pain initiation and maintenance, and pharmacotherapies targeting this pathway have the potential to be considered promising methods in the treatment of a variety of nociceptive and neuropathic pain conditions. Several methodologic approaches, including sequestration of free NGF, prevention of NGF binding and trkA activation, and inhibition of trkA function, have been investigated in the development of new pharmacotherapies. Among these, NGF-sequestering antibodies have exhibited the most promise in clinical trials. However, in 2010, reports of rapid joint destruction leading to joint replacement prompted the US Food and Drug Administration (FDA) to place a hold on all clinical trials involving anti-NGF antibodies. Although the FDA has since lifted this hold and a number of new trials are under way, the long-term efficacy and safety profile of anti-NGF antibodies are yet to be established. PMID:27354823

  6. Anti-nerve growth factor in pain management: current evidence.

    PubMed

    Chang, David S; Hsu, Eugene; Hottinger, Daniel G; Cohen, Steven P

    2016-01-01

    There continues to be an unmet need for safe and effective pain medications. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) dominate the clinical landscape despite limited effectiveness and considerable side-effect profiles. Although significant advancements have identified myriad potential pain targets over the past several decades, the majority of new pain pharmacotherapies have failed to come to market. The discovery of nerve growth factor (NGF) and its interaction with tropomyosin receptor kinase A (trkA) have been well characterized as important mediators of pain initiation and maintenance, and pharmacotherapies targeting this pathway have the potential to be considered promising methods in the treatment of a variety of nociceptive and neuropathic pain conditions. Several methodologic approaches, including sequestration of free NGF, prevention of NGF binding and trkA activation, and inhibition of trkA function, have been investigated in the development of new pharmacotherapies. Among these, NGF-sequestering antibodies have exhibited the most promise in clinical trials. However, in 2010, reports of rapid joint destruction leading to joint replacement prompted the US Food and Drug Administration (FDA) to place a hold on all clinical trials involving anti-NGF antibodies. Although the FDA has since lifted this hold and a number of new trials are under way, the long-term efficacy and safety profile of anti-NGF antibodies are yet to be established.

  7. Herpesvirus-mediated systemic delivery of nerve growth factor.

    PubMed

    Wolfe, D; Goins, W F; Kaplan, T J; Capuano, S V; Fradette, J; Murphey-Corb, M; Robbins, P D; Cohen, J B; Glorioso, J C

    2001-01-01

    Sustained systemic dissemination of therapeutic proteins from peripheral sites is an attractive prospect for gene therapy applications. Replication-defective genomic herpes simplex virus type 1 (HSV-1) vectors were evaluated for their ability to express nerve growth factor (NGF) as a model gene product both locally and systemically. Intra-articular inoculation of NGF expression vectors in rabbits resulted in significant increases in joint lavage and blood plasma NGF that persisted for 1 year. A rhesus macaque injected intra-articularly displayed a comparable increase in plasma NGF for at least 6 months, at which time the serum NGF levels of this animal were sufficient to cause differentiation of PC12 cells in culture, but not to increase footpad epidermis innervation. Long-term reporter transgene expression was observed primarily in ligaments, a finding confirmed by direct inoculation of patellar ligament. Patellar ligament inoculation with a NGF vector resulted in elevated levels of circulating NGF similar to those observed following intra-articular vector delivery. These results represent the first demonstration of sustained systemic release of a transgene product using HSV vectors, raising the prospect of new applications for HSV-1 vectors in the treatment of systemic disease.

  8. Choline Acetyltransferase Activity in Striatum of Neonatal Rats Increased by Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Rutkowski, J. Lynn; Tennekoon, Gihan I.; Buchanan, Karen; Johnston, Michael V.

    1985-07-01

    Some neurodegenerative disorders may be caused by abnormal synthesis or utilization of trophic molecules required to support neuronal survival. A test of this hypothesis requires that trophic agents specific for the affected neurons be identified. Cholinergic neurons in the corpus striatum of neonatal rats were found to respond to intracerebroventricular administration of nerve growth factor with prominent, dose-dependent, selective increases in choline acetyltransferase activity. Cholinergic neurons in the basal forebrain also respond to nerve growth factor in this way. These actions of nerve growth factor may indicate its involvement in the normal function of forebrain cholinergic neurons as well as in neurodegenerative disorders involving such cells.

  9. Nerve growth factor injected into the gastric ulcer base incorporates into endothelial, neuronal, glial and epithelial cells: implications for angiogenesis, mucosal regeneration and ulcer healing.

    PubMed

    Tanigawa, T; Ahluwalia, A; Watanabe, T; Arakawa, T; Tarnawski, A S

    2015-08-01

    A previous study has demonstrated that locally administered growth factors such as epidermal growth factor, basic fibroblast growth factor and hepatocyte growth factor can accelerate healing of experimental gastric ulcers in rats. That study indicates that locally administered growth factors can exert potent biological effects resulting in enhanced gastric ulcers healing. However, the fate of injected growth factors, their retention and localization to specific cellular compartments have not been examined. In our preliminary study, we demonstrated that local injection of nerve growth factor to the base of experimental gastric ulcers dramatically accelerates ulcer healing, increases angiogenesis - new blood vessel formation, and improves the quality of vascular and epithelial regeneration. Before embarking on larger, definitive and time sequence studies, we wished to determine whether locally injected nerve growth factor is retained in gastric ulcer's tissues and taken up by specific cells during gastric ulcer healing. Gastric ulcers were induced in anesthetized rats by local application of acetic acid using standard methods; and, 60 min later fluorescein isothiocyanate-labeled nerve growth factor was injected locally to the ulcer base. Rats were euthanized 2, 5 and 10 days later. Gastric specimens were obtained and processed for histology. Unstained paraffin sections were examined under a fluorescence microscope, and the incorporation of fluorescein isothiocyanate-labeled nerve growth factor into various gastric tissue cells was determined and quantified. In addition, we performed immunostaining for S100β protein that is expressed in neural components. Five and ten days after ulcer induction labeled nerve growth factor (injected to the gastric ulcer base) was incorporated into endothelial cells of blood vessels, neuronal, glial and epithelial cells, myofibroblasts and muscle cells. This study demonstrates for the first time that during gastric ulcer healing

  10. Retrograde axonal transport of /sup 125/I-nerve growth factor in rat ileal mesenteric nerves. Effect of streptozocin diabetes

    SciTech Connect

    Schmidt, R.E.; Plurad, S.B.; Saffitz, J.E.; Grabau, G.G.; Yip, H.K.

    1985-12-01

    The retrograde axonal transport of intravenously (i.v.) administered /sup 125/I-nerve growth factor (/sup 125/I-NGF) was examined in mesenteric nerves innervating the small bowel of rats with streptozocin (STZ) diabetes using methods described in detail in the companion article. The accumulation of /sup 125/I-NGF distal to a ligature on the ileal mesenteric nerves of diabetic animals was 30-40% less than in control animals. The inhibition of accumulation of /sup 125/I-NGF in diabetic animals was greater at a ligature tied 2 h after i.v. administration than at a ligature tied after 14 h, which suggests that the diabetic animals may have a lag in initiation of NGF transport in the terminal axon or retardation of transport at some site along the axon. The /sup 125/I-NGF transport defect was observed as early as 3 days after the induction of diabetes, a time before the development of structural axonal lesions, and did not worsen at later times when dystrophic axonopathy is present. Both the ileal mesenteric nerves, which eventually develop dystrophic axonopathy in experimental diabetes, and the jejunal mesenteric nerves, which never develop comparable structural alterations, showed similar /sup 125/I-NGF transport deficits, suggesting that the existence of the transport abnormality does not predict the eventual development of dystrophic axonal lesions. Autoradiographic localization of /sup 125/I-NGF in the ileal mesenteric nerves of animals that had been diabetic for 11-13 mo demonstrated decreased amounts of /sup 125/I-NGF in transit in unligated paravascular nerve fascicles. There was, however, no evidence for focal retardation of transported /sup 125/I-NGF at the sites of dystrophic axonal lesions.

  11. The Glucuronyltransferase GlcAT-P Is Required for Stretch Growth of Peripheral Nerves in Drosophila

    PubMed Central

    Pandey, Rahul; Blanco, Jorge; Udolph, Gerald

    2011-01-01

    During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC). We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail. PMID:22132223

  12. Influence of congenital facial nerve palsy on craniofacial growth in craniofacial microsomia.

    PubMed

    Choi, Jaehoon; Park, Sang Woo; Kwon, Geun-Yong; Kim, Sang-Hyun; Hur, Ji An; Baek, Seung-Hak; Kim, Jae Chan; Choi, Tae Hyun; Kim, Sukwha

    2014-11-01

    Facial muscles are of major importance in human craniofacial growth and development. The purpose of our study was to investigate whether congenital facial nerve palsy influences craniofacial growth in craniofacial microsomia. Fifty-one patients with unilateral craniofacial microsomia and no history of craniofacial skeletal surgery whose radiographs were taken after craniofacial growth was complete were included in this study. These patients were divided into groups in which the facial nerve was involved or uninvolved. The authors evaluated a total of seven measurement items to analyze the midface and mandibular asymmetry. Twenty patients had facial nerve involvement, and 31 had no involvement. None of the measurement items revealed any significant differences between the facial nerve-involved group and the uninvolved group within the same modified Pruzansky grade. There was no correlation between the type of facial nerve involvement and the measurement items. In relationships among the measurement items within each group, maxillary asymmetry was indirectly correlated with mandibular asymmetry or midline deviation through the occlusal plane angle in the uninvolved groups. However, in the facial nerve-involved group, the relationships disappeared. When the correlations in the facial nerve-involved group were compared with those of the uninvolved group, the relationships in the uninvolved group appeared more significant than in the facial nerve-involved group. The loss of relationships between the upper and lower jaw in the facial nerve-involved group might have been caused by subtle changes, which occur in midfacial bones and in the mandible due to facial nerve palsy. The main limitation of our study is that aside from facial nerve palsy, craniofacial microsomia has many factors that can influence craniofacial growth, such as hypoplasia of the mandibular condyle and soft tissue deficiencies. Copyright © 2014 British Association of Plastic, Reconstructive and

  13. Nerve growth factor and associated nerve sprouting contribute to local mechanical hyperalgesia in a rat model of bone injury.

    PubMed

    Yasui, M; Shiraishi, Y; Ozaki, N; Hayashi, K; Hori, K; Ichiyanagi, M; Sugiura, Y

    2012-08-01

    To clarify the mechanism of tenderness after bone injury, we investigated changes in the withdrawal threshold to mechanical stimuli, nerve distribution and nerve growth factor (NGF)-expression in a rat model of bone injury without immobilization for bone injury healing. Rats were divided into three groups as follows: (1) rats incised in the skin and periosteum, followed by drilling a hole in the tibia [bone lesion group (BLG)]; (2) those incised in the skin and periosteum without bone drilling [periosteum lesion group (PLG)]; and (3) those incised in the skin [skin lesion group (SLG)]. Mechanical hyperalgesia continued for 28 days at a lesion in the BLG, 21 days in PLG and 5 days in SLG after treatments, respectively. Endochondral ossification was observed on days 5-28 in BLG and on days 5-21 in PLG. Nerve growth appeared in deep connective tissue (DCT) at day 28 in BLG. Nerve fibres increased in both cutaneous tissue and DCT at day 7 in PLG, but they were not found at day 28. Mechanical hyperalgesia accompanied with endochondral ossification and nerve fibres increasing at the lesion in both BLG and PLG. NGF was expressed in bone-regenerating cells during the bone injury healing. Anti-NGF and trk inhibitor K252a inhibited hyperalgesia in the different time course. This study shows that localized tenderness coincides with the bone healing and involves NGF expression and nerve sprouting after bone injury. The findings present underlying mechanisms and provide pathophysiological relevance of local tenderness to determination of bone fracture and its healing.

  14. Nerve growth factor in human semen: Effect of nerve growth factor on the normozoospermic men during cryopreservation process

    PubMed Central

    Saeednia, Sara; Bahadoran, Hosein; Amidi, Fardin; Asadi, Mohammad Hosein; Naji, Mohammad; Fallahi, Parvin; Nejad, Nahid Ataie

    2015-01-01

    Objective(s): Although routinely applied in assisted reproductive technology, human sperm cryopreservation is not a completely successful procedure. Adverse effects of cryopreservation on the fertilization capacity, motility, morphology, and viability of spermatozoa have been proven; cryopreservation has also shown a role in sperm DNA fragmentation and infertility. The post-thaw survival of spermatozoa improved after addition of supplementation of antioxidant molecules to freezing media. Nerve growth factor (NGF) as one of the prosurvival substances has gained great attention in recent years. The aim of this study was the usage of NGF as prosurvival factor after cryopreservation process of human semen samples to assess the motility and viability of sperm, nitric oxide (NO) concentration, and DNA fragmentation in normozoospermic men. Materials and Methods: Semen samples were collected from 25 normozoospermic men and were divided into fresh semen samples as control group, frozen–thawed semen samples without addition of exogenous NGF, and three groups of semen samples cryopreserved with addition of exogenous NGF (0.5, 1, and 5 ng/ml) in freezing medium. Viability was assessed by eosin-negrosin staining technique. Motility was evaluated with inverted microscope. NO concentration and apoptosis content were measured with flow cytometry. Results: Results showed that exogenous NGF at 0.5 ng/ml could significantly (P-value <0.05) influence viability, motility, nitric oxide, and DNA fragmentation content. Conclusion: Exogenous NGF as cryoprotectant improved sperm viability and motility, increased intracellular NO concentration, and decreased apoptosis content in normal human spermatozoa. PMID:25945243

  15. Specific binding of nerve growth factor (NGF) by murine C 1300 neuroblastoma cells.

    PubMed

    Revoltella, R; Bertolini, L; Pediconi, M; Vigneti, E

    1974-08-01

    Murine C 1300 neuroblastoma cells bind with high avidity on their membrane surface the nerve growth factor (NGF), a protein capable of inducing differentiation of sympathetic nerve cells. The total binding capacity of NGF by the cells was quantitatively measured by a radioimmunoassay technique, using (125)I-labeled NGF. An average number of about 10(6) molecules of NGF could be bound, at saturation, by each cell with an average relative association constant of about 10(7) liters/mol. Using synchronized cells, it was found, however, that either the number of molecules of ligand bound or the avidity of the binding interaction between NGF and cells varied depending upon their growth cycle, the maximal-binding occurring during the G(1) and early S phase. Binding of [(125)I]NGF was suppressed by trypsin treatment of the cells, however new receptor sites were rapidly replaced onto the membrane surface within 1-2 h. Cells exposed to 3 M KCl released into the supernate a protein product exhibiting similar high avidity for NGF. Acrylamide gel electrophoresis suggested a restricted molecular heterogeneity of this product, with a major component in the 52,000 mol wt region. Antibodies made specific to this protein were capable, in the absence of the complement, of inhibiting the binding of [(125)I]NGF by the cells and in the presence of the complement they killed them.

  16. Coordinated Movement of Vesicles and Actin Bundles during Nerve Growth Revealed by Superresolution Microscopy.

    PubMed

    Nozumi, Motohiro; Nakatsu, Fubito; Katoh, Kaoru; Igarashi, Michihiro

    2017-02-28

    The growth cone is an essential structure for nerve growth. Although its membrane and cytoskeleton are likely to interact coordinately during nerve growth, the mechanisms are unknown due to their close proximity. Here, we used superresolution microscopy to simultaneously observe vesicles and F-actin in growth cones. We identified a novel vesicular generation mechanism that is independent of clathrin and dependent on endophilin-3- and dynamin-1 and that occurs proximal to the leading edge simultaneously with fascin-1-dependent F-actin bundling. In contrast to conventional clathrin-dependent endocytosis, which occurs distal from the leading edge at the basal surfaces of growth cones, this mechanism was distinctly observed at the apical surface using 3D imaging and was involved in mediating axon growth. Reduced endophilin or fascin inhibited this endocytic mechanism. These results suggest that, at the leading edge, vesicles are coordinately generated and transported with actin bundling during nerve growth.

  17. Temporal mismatch between pain behaviour, skin Nerve Growth Factor and intra-epidermal nerve fibre density in trigeminal neuropathic pain

    PubMed Central

    2014-01-01

    Background The neurotrophin Nerve Growth factor (NGF) is known to influence the phenotype of mature nociceptors, for example by altering synthesis of neuropeptides, and changes in NGF levels have been implicated in the pathophysiology of chronic pain conditions such as neuropathic pain. We have tested the hypothesis that after partial nerve injury, NGF accumulates within the skin and causes ‘pro-nociceptive’ phenotypic changes in the remaining population of sensory nerve fibres, which could underpin the development of neuropathic pain. Results Eleven days after chronic constriction injury of the rat mental nerve the intra-epidermal nerve fibre density of the chin skin from had reduced from 11.6 ± 4.9 fibres/mm to 1.0 ± 0.4 fibres/mm; this slowly recovered to 2.4 ± 2.0 fibres/mm on day 14 and 4.0 ± 0.8 fibres/mm on day 21. Cold hyperalgesia in the ipsilateral lower lip was detectable 11 days after chronic constriction injury, although at this time skin [NGF] did not differ between sides. At 14 days post-injury, there was a significantly greater [NGF] ipsilaterally compared to contralaterally (ipsilateral = 111 ± 23 pg/mg, contralateral = 69 ± 13 pg/mg), but there was no behavioural evidence of neuropathic pain at this time-point. By 21 days post-injury, skin [NGF] was elevated bilaterally and there was a significant increase in the proportion of TrkA-positive (the high-affinity NGF receptor) intra-epidermal nerve fibres that were immunolabelled for the neuropeptide Calcitonin Gene-related peptide. Conclusions The temporal mismatch in behaviour, skin [NGF] and phenotypic changes in sensory nerve fibres indicate that increased [NGF] does not cause hyperalgesia after partial mental nerve injury, although it may contribute to the altered neurochemistry of cutaneous nerve fibres. PMID:24380503

  18. Role of Urothelial Nerve Growth Factor in Human Bladder Function

    PubMed Central

    Birder, Lori A.; Wolf-Johnston, Amanda; Griffiths, Derek; Resnick, Neil M.

    2011-01-01

    Aims To test whether nerve growth factor (NGF) concentration in human bladder urothelium/suburothelium is related to detrusor overactivity (DO), bladder sensation, detrusor contractility, or other aspects of lower urinary tract function. Materials and Methods Concentration of NGF was measured (using ELISA) in superficial bladder biopsies from 27 women (mean age 52 years, range 22–82) after comprehensive videourodynamics and bladder diary. Approximately half (12/27) showed clear DO and half did not. Results There was no evidence for increased NGF concentration in subjects with DO (association negative by Mann–Whitney test, P = 0.23). NGF was not significantly associated with two measures of detrusor contractility (Spearman’s r = −0.29, P = 0.17; r = −0.20, P = 0.33); nor with four measures inversely related to sensation: volume at strong desire to void and maximum capacity on cystometry (r = −0.13, P = 0.53; r = −0.23, P = 0.28), and maximum voided volume and mean daytime voided volume on bladder diary (r = −0.29, P = 0.16; r = −0.16, P = 0.44). It was significantly associated with 24-hr urine output on bladder diary (Spearman’s r = −0.55, P = 0.004). Conclusions Elevated NGF levels in human urothelium/suburothelium are not strongly associated with DO, detrusor contractility or increased bladder sensation. NGF levels are lower in subjects with higher 24-hr urine output. This observation is consistent with a role for NGF in an active process (trafficking) involved in bladder filling. PMID:17266135

  19. Beta-nerve growth factor levels in newborn cord sera.

    PubMed

    Haddad, J; Vilge, V; Juif, J G; Maitre, M; Donato, L; Messer, J; Mark, J

    1994-06-01

    This study was designed to examine beta-nerve growth factor (NGF) levels in human cord blood by a two-site enzyme immunoassay using MAb 27/21 to mouse NGF and to determine whether beta-NGF levels show developmental changes. Blood was collected at delivery from 61 newborns, 55 neonates appropriate for gestational age (46 term infants and 9 premature infants), 5 neonates small for gestational age, and 1 neonate with congenital hydrocephalus. In addition, samples were collected from 2 microcephalic children (microcephaly vera) aged 15 and 18 mo, 2 control children, and 4 healthy adults. Mean levels of NGF in preterm infants (n = 9; 13.7 +/- 8 pg/mL) were significantly lower than levels in term infants (n = 47; 21.2 +/- 8.8 pg/mL; p = 0.034 by Mann-Whitney U test). There was no correlation between birth weight, length, head circumference, and beta-NGF levels. In microcephalic children, NGF levels were low (8 pg/mL) compared with control infants' values (22 pg/mL). In adults, beta-NGF levels were higher and ranged between 238 and 292 pg/mL. Our study demonstrates that beta-NGF levels can be assessed in human newborn sera using a two-site enzyme immunoassay with MAb 27/21 to mouse beta-NGF, that beta-NGF levels are extremely low in newborns compared with adults, that beta-NGF levels seems to show developmental changes, and that beta-NGF levels may be used to assess NGF utilization under normal and pathologic conditions such as cerebral malformations.

  20. Mental disorders, functional impairment, and nerve growth factor

    PubMed Central

    Salles, Fanny Helena Martins; Soares, Pedro San Martin; Wiener, Carolina David; Mondin, Thaise Campos; da Silva, Paula Moraes; Jansen, Karen; de Mattos Souza, Luciano Dias; da Silva, Ricardo Azevedo; Oses, Jean Pierre

    2017-01-01

    Nerve growth factor (NGF) is an important member of the neurotrophin family and its alteration has been associated with psychiatric disorders. Functionality consists of the activities that an individual can perform, as well as their social participation, which is an important factor in analyzing the carrier living conditions of subjects with psychiatric suffering. Several studies have evaluated functionality in bipolar disorder; however, no studies have evaluated the functionality in other mental disorders. There are also few studies investigating the association between functionality and the biological bases of mental disorders. This study aimed to evaluate the serum NGF levels in psychiatric patients and to verify a possible association between the serum neurotrophic levels and functionality. This was a cross-sectional study with a convenient sample obtained from the Public Mental Health Service from the south of Brazil. The final sample was composed of 286 patients enrolled from July 2013 to October 2014. Data was collected using a sociodemographic questionnaire, and the diagnosis was confirmed using the Mini International Neuropsychiatric Interview (M.I.N.I) and a Functioning Assessment Short Test. The serum NGF levels were determined using the enzyme-linked immunosorbent assay method. Statistical analyses were performed using IBM SPSS Statistic 21.0 software. NGF serum levels were increased significantly in patients with obsessive–compulsive disorder compared with patients with no obsessive–compulsive disorder (P=0.015). An increase in serum NGF levels in generalized anxiety disorder patients was observed compared with patients with no generalized anxiety disorder (P=0.047). NGF was negatively associated with autonomy (P=0.024, r=−0.136), work (P=0.040, r=−0.124), and cognition (P=0.024, r=−0.137), thereby showing that changes in serum levels of NGF are associated with functionality in mental disorders. PMID:28053561

  1. Developmental regulation of human truncated nerve growth factor receptor

    SciTech Connect

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. )

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  2. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    EPA Science Inventory

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  3. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    EPA Science Inventory

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  4. Increased axonal regeneration through a biodegradable amnionic tube nerve conduit: effect of local delivery and incorporation of nerve growth factor/hyaluronic acid media.

    PubMed

    Mohammad, J A; Warnke, P H; Pan, Y C; Shenaq, S

    2000-01-01

    The authors emphasize the possible pharmacological enhancement of axonal regeneration using a specific growth factor/ extracellular media incorporated in a biodegradable nonneural nerve conduit material. They investigated the early effects on nerve regeneration of continuous local delivery of nerve growth factor (NGF) and the local incorporation of hyaluronic acid (HA) inside a newly manufactured nerve conduit material from fresh human amnionic membrane. Human amnionic membrane contains important biochemical factors that play a major neurotrophic role in the nerve regeneration process. The process of manufacturing a nerve conduit from fresh human amnionic membrane is described. This nerve conduit system was used in rabbits to bridge a 25-mm nerve gap over 3 months. NGF was released locally, over 28 days, at the distal end of the tube via a system of slow release, and HA was incorporated inside the lumen of the tube at the time of surgery. NGF/HA treatment promoted axonal regeneration across the amnionic tube nerve conduit (8,962 +/- 383 myelinated axons) 45% better than the nontreated amnionic tube group (6,180 +/- 353 myelinated axons). The authors demonstrate that NGF/HA media enhances additional axonal regeneration in the amnionic tube nerve conduit. This result is secondary to the effect of the amnion promoting biochemical factors, in combination with the NGF/HA effect on facilitating early events in the nerve regeneration process.

  5. Select noxious stimuli induce changes on corneal nerve morphology.

    PubMed

    Hegarty, Deborah M; Hermes, Sam M; Yang, Katherine; Aicher, Sue A

    2017-06-01

    The surface of the cornea contains the highest density of nociceptive nerves of any tissue in the body. These nerves are responsive to a variety of modalities of noxious stimuli and can signal pain even when activated by low threshold stimulation. Injury of corneal nerves can lead to altered nerve morphology, including neuropathic changes which can be associated with chronic pain. Emerging technologies that allow imaging of corneal nerves in vivo are spawning questions regarding the relationship between corneal nerve density, morphology, and function. We tested whether noxious stimulation of the corneal surface can alter nerve morphology and neurochemistry. We used concentrations of menthol, capsaicin, and hypertonic saline that evoked comparable levels of nocifensive eye wipe behaviors when applied to the ocular surface of an awake rat. Animals were sacrificed and corneal nerves were examined using immunocytochemistry and three-dimensional volumetric analyses. We found that menthol and capsaicin both caused a significant reduction in corneal nerve density as detected with β-tubulin immunoreactivity 2 hr after stimulation. Hypertonic saline did not reduce nerve density, but did cause qualitative changes in nerves including enlarged varicosities that were also seen following capsaicin and menthol stimulation. All three types of noxious stimuli caused a depletion of CGRP from corneal nerves, indicating that all modalities of noxious stimuli evoked peptide release. Our findings suggest that studies aimed at understanding the relationship between corneal nerve morphology and chronic disease may also need to consider the effects of acute stimulation on corneal nerve morphology.

  6. Pathophysiology of facial nerve paralysis induced by herpes simplex virus type 1 infection.

    PubMed

    Honda, Nobumitu; Hato, Naohito; Takahashi, Hirotaka; Wakisaka, Hiroyuki; Kisaki, Hisanobu; Murakami, Shingo; Gyo, Kiyofumi

    2002-07-01

    Herpes simplex virus type 1 (HSV-1) has been proven to be a cause of Bell's palsy; however, the underlying pathophysiology of the facial nerve paralysis is not fully understood. We established a mouse model with facial nerve paralysis induced by HSV-1 infection simulating Bell's palsy and investigated the pathophysiology of the facial nerve paralysis. The time course of the R1 latency in the blink reflex tests paralleled the recovery of the facial nerve paralysis well, whereas electroneurographic recovery tended to be delayed, compared to that of the paralysis; these responses are usually seen in Bell's palsy. On histopathologic analysis, intact, demyelinated, and degenerated nerves were intermingled in the facial nerve in the model. The similarity of the time course of facial nerve paralysis and the electrophysiological results in Bell's palsy and the model strongly suggest that the pathophysiological basis of Bell's palsy is a mixed lesion of various nerve injuries.

  7. The statistical mechanics of complex signaling networks: nerve growth factor signaling

    NASA Astrophysics Data System (ADS)

    Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.

    2004-10-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  8. Balanced levels of nerve growth factor are required for normal pregnancy progression.

    PubMed

    Frank, Pierre; Barrientos, Gabriela; Tirado-González, Irene; Cohen, Marie; Moschansky, Petra; Peters, Eva M; Klapp, Burghard F; Rose, Matthias; Tometten, Mareike; Blois, Sandra M

    2014-08-01

    Nerve growth factor (NGF), the first identified member of the family of neurotrophins, is thought to play a critical role in the initiation of the decidual response in stress-challenged pregnant mice. However, the contribution of this pathway to physiological events during the establishment and maintenance of pregnancy remains largely elusive. Using NGF depletion and supplementation strategies alternatively, in this study, we demonstrated that a successful pregnancy is sensitive to disturbances in NGF levels in mice. Treatment with NGF further boosted fetal loss rates in the high-abortion rate CBA/J x DBA/2J mouse model by amplifying a local inflammatory response through recruitment of NGF-expressing immune cells, increased decidual innervation with substance P(+) nerve fibres and a Th1 cytokine shift. Similarly, treatment with a NGF-neutralising antibody in BALB/c-mated CBA/J mice, a normal-pregnancy model, also induced abortions associated with increased infiltration of tropomyosin kinase receptor A-expressing NK cells to the decidua. Importantly, in neither of the models, pregnancy loss was associated with defective ovarian function, angiogenesis or placental development. We further demonstrated that spontaneous abortion in humans is associated with up-regulated synthesis and an aberrant distribution of NGF in placental tissue. Thus, a local threshold of NGF expression seems to be necessary to ensure maternal tolerance in healthy pregnancies, but when surpassed may result in fetal rejection due to exacerbated inflammation.

  9. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injury

    PubMed Central

    Aloe, Luigi; Bianchi, Patrizia; De Bellis, Alberto; Soligo, Marzia; Rocco, Maria Luisa

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an increased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deficits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells. PMID:25206755

  10. Integrin antagonists affect growth and pathfinding of ventral motor nerves in the trunk of embryonic zebrafish.

    PubMed

    Becker, Thomas; McLane, Mary Ann; Becker, Catherina G

    2003-05-01

    Integrins are thought to be important receptors for extracellular matrix (ECM) components on growing axons. Ventral motor axons in the trunk of embryonic zebrafish grow in a midsegmental pathway through an environment rich in ECM components. To test the role of integrins in this process, integrin antagonists (the disintegrin echistatin in native and recombinant form, as well as the Arg-Gly-Asp-Ser peptide) were injected into embryos just prior to axon outgrowth at 14-16 h postfertilization (hpf). All integrin antagonists affected growth of ventral motor nerves in a similar way and native echistatin was most effective. At 24 hpf, when only the three primary motor axons per trunk hemisegment had grown out, 80% (16 of 20) of the embryos analyzed had abnormal motor nerves after injection of native echistatin, corresponding to 19% (91 of 480) of all nerves. At 33 hpf, when secondary motor axons were present in the pathway, 100% of the embryos were affected (24 of 24), with 20% of all nerves analyzed (196 of 960) being abnormal. Phenotypes comprised abnormal branching (64% of all abnormal nerves) and truncations (36% of all abnormal nerves) of ventral motor nerves at 24 hpf and mostly branching of the nerves at 33 hpf (94% of all abnormal nerves). Caudal branches were at least twice as frequent as rostral branches. Surrounding trunk tissue and a number of other axon fascicles were apparently not affected by the injections. Thus integrin function contributes to both growth and pathfinding of axons in ventral motor nerves in the trunk of zebrafish in vivo.

  11. Nerve growth factor facilitates redistribution of adrenergic and non-adrenergic non-cholinergic perivascular nerves injured by phenol in rat mesenteric resistance arteries.

    PubMed

    Yokomizo, Ayako; Takatori, Shingo; Hashikawa-Hobara, Narumi; Goda, Mitsuhiro; Kawasaki, Hiromu

    2016-01-05

    We previously reported that nerve growth factor (NGF) facilitated perivascular sympathetic neuropeptide Y (NPY)- and calcitonin gene-related peptide (CGRP)-containing nerves injured by the topical application of phenol in the rat mesenteric artery. We also demonstrated that mesenteric arterial nerves were distributed into tyrosine hydroxylase (TH)-, substance P (SP)-, and neuronal nitric oxide synthase (nNOS)-containing nerves, which had axo-axonal interactions. In the present study, we examined the effects of NGF on phenol-injured perivascular nerves, including TH-, NPY-, nNOS-, CGRP-, and SP-containing nerves, in rat mesenteric arteries in more detail. Wistar rats underwent the in vivo topical application of 10% phenol to the superior mesenteric artery, proximal to the abdominal aorta, under pentobarbital-Na anesthesia. The distribution of perivascular nerves in the mesenteric arteries of the 2nd to 3rd-order branches isolated from 8-week-old Wistar rats was investigated immunohistochemically using antibodies against TH-, NPY-, nNOS-, CGRP-, and SP-containing nerves. The topical phenol treatment markedly reduced the density of all nerves in these arteries. The administration of NGF at a dose of 20µg/kg/day with an osmotic pump for 7 days significantly increased the density of all perivascular nerves over that of sham control levels. These results suggest that NGF facilitates the reinnervation of all perivascular nerves injured by phenol in small resistance arteries.

  12. Nerve Growth Factor Inhibits Sympathetic Neurons' Response to an Injury Cytokine

    NASA Astrophysics Data System (ADS)

    Shadiack, Annette M.; Vaccariello, Stacey A.; Sun, Yi; Zigmond, Richard E.

    1998-06-01

    Axonal damage to adult peripheral neurons causes changes in neuronal gene expression. For example, axotomized sympathetic, sensory, and motor neurons begin to express galanin mRNA and protein, and recent evidence suggests that galanin plays a role in peripheral nerve regeneration. Previous studies in sympathetic and sensory neurons have established that galanin expression is triggered by two consequences of nerve transection: the induction of leukemia inhibitory factor (LIF) and the reduction in the availability of the target-derived factor, nerve growth factor. It is shown in the present study that no stimulation of galanin expression occurs following direct application of LIF to intact neurons in the superior cervical sympathetic ganglion. Injection of animals with an antiserum to nerve growth factor concomitant with the application of LIF, on the other hand, does stimulate galanin expression. The data suggest that the response of neurons to an injury factor, LIF, is affected by whether the neurons still receive trophic signals from their targets.

  13. Role of CD44 in Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis

    DTIC Science & Technology

    2002-09-01

    Malignant peripheral nerve sheath tumors ( MPNSTs ) are aggressive malignancies that arise within peripheral nerves. These tumors occur with increased...and abnormal expression of the epidermal growth factor receptor (EGFR). We previously found that MPNSTs express increased levels of the CD44 family...kinase activity (and not increased Ras-GTP) contributes to MPNST cell invasion. We further find that EGFR contributes at least part of the elevated Src

  14. Neurotrophins enhance electric field-directed growth cone guidance and directed nerve branching.

    PubMed

    McCaig, C D; Sangster, L; Stewart, R

    2000-03-01

    Neurotrophins play major roles in the developing nervous system in controlling neuronal differentiation, neurite outgrowth, guidance and branching, synapse formation and maturation, and neuronal survival or death. There is increasing evidence that nervous system construction takes place in the presence of dc electric fields, which fluctuate dynamically in space and time during embryonic development. These have their origins in the neural tube itself, as well as in surrounding skin and gut. Early disruption of these endogenous electric fields causes failure of the nervous system to form, or else it forms aberrantly. Nerve growth, guidance, and branching are controlled tightly during pathway construction and in vitro dc electric fields have profound effects on each of these behaviours. We have used cultured neurones to ask whether neurotrophins and dc electric fields might interact in shaping neuronal growth, given their coexistence in vivo. Electric field-directed nerve growth generally was enhanced by the simultaneous presentation of several neurotrophins to the growth cone. Under certain circumstances, more nerves turned cathodally, they turned faster, further, and in lower field strengths. Intriguingly, other combinations of dc electric field and neurotrophins (low field strength and neurotrophin 3 (NT-3) switched the direction of growth cone turning. Additionally, cathodally directed nerve growth was faster and directed branching was much more common when electric fields and neurotrophins interacted with neuronal growth cones. Given such profound changes in growth cone behaviour in vitro, neurotrophins and endogenous electric fields are likely to interact in vivo.

  15. Role of Nerve Growth Factor (NGF) and miRNAs in Epithelial Ovarian Cancer

    PubMed Central

    Retamales-Ortega, Rocío; Oróstica, Lorena; Vera, Carolina; Cuevas, Paula; Hernández, Andrea; Hurtado, Iván; Vega, Margarita; Romero, Carmen

    2017-01-01

    Ovarian cancer is the eighth most common cancer in women worldwide, and epithelial ovarian cancer (EOC) represents 90% of cases. Nerve growth factor (NGF) and its high affinity receptor tyrosine kinase A receptor (TRKA) have been associated with the development of several types of cancer, including EOC; both NGF and TRKA levels are elevated in this pathology. EOC presents high angiogenesis and several molecules have been reported to induce this process. NGF increases angiogenesis through its TRKA receptor on endothelial cells, and by indirectly inducing vascular endothelial growth factor expression. Other molecules controlled by NGF include ciclooxigenase-2, disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) and calreticulin (CRT), proteins involved in crucial processes needed for EOC progression. These molecules could be modified through microRNA regulation, which could be regulated by NGF. MicroRNAs are the widest family of non-coding RNAs; they bind to 3′-UTR of mRNAs to inhibit their translation, to deadenilate or to degraded them. In EOC, a deregulation in microRNA expression has been described, including alterations of miR-200 family, cluster-17-92, and miR-23b, among others. Since the NGF-microRNA relationship in pathologies has not been studied, this review proposes that some microRNAs could be associated with NGF/TRKA activation, modifying protein levels needed for EOC progression. PMID:28245631

  16. Role of Nerve Growth Factor (NGF) and miRNAs in Epithelial Ovarian Cancer.

    PubMed

    Retamales-Ortega, Rocío; Oróstica, Lorena; Vera, Carolina; Cuevas, Paula; Hernández, Andrea; Hurtado, Iván; Vega, Margarita; Romero, Carmen

    2017-02-26

    Ovarian cancer is the eighth most common cancer in women worldwide, and epithelial ovarian cancer (EOC) represents 90% of cases. Nerve growth factor (NGF) and its high affinity receptor tyrosine kinase A receptor (TRKA) have been associated with the development of several types of cancer, including EOC; both NGF and TRKA levels are elevated in this pathology. EOC presents high angiogenesis and several molecules have been reported to induce this process. NGF increases angiogenesis through its TRKA receptor on endothelial cells, and by indirectly inducing vascular endothelial growth factor expression. Other molecules controlled by NGF include ciclooxigenase-2, disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) and calreticulin (CRT), proteins involved in crucial processes needed for EOC progression. These molecules could be modified through microRNA regulation, which could be regulated by NGF. MicroRNAs are the widest family of non-coding RNAs; they bind to 3'-UTR of mRNAs to inhibit their translation, to deadenilate or to degraded them. In EOC, a deregulation in microRNA expression has been described, including alterations of miR-200 family, cluster-17-92, and miR-23b, among others. Since the NGF-microRNA relationship in pathologies has not been studied, this review proposes that some microRNAs could be associated with NGF/TRKA activation, modifying protein levels needed for EOC progression.

  17. Association of nerve growth factor receptors with the triton X-100 cytoskeleton of PC12 cells

    SciTech Connect

    Vale, R.D.; Ignatius, M.J.; Shooter, E.M.

    1985-10-01

    Triton X-100 solubilizes membranes of PC12 cells and leaves behind a nucleus and an array of cytoskeletal filaments. Nerve growth factor (NGF) receptors are associated with this Triton X-100-insoluble residue. Two classes of NGF receptors are found on PC12 cells which display rapid and slow dissociating kinetics. Although rapidly dissociating binding is predominant (greater than 75%) in intact cells, the majority of binding to the Triton X-100 cytoskeleton is slowly dissociating (greater than 75%). Rapidly dissociating NGF binding on intact cells can be converted to a slowly dissociating form by the plant lectin wheat germ agglutinin (WGA). This lectin also increases the number of receptors which associate with the Triton X-100 cytoskeleton by more than 10-fold. SVI-NGF bound to receptors can be visualized by light microscopy autoradiography in Triton X-100-insoluble residues of cell bodies, as well as growth cones and neurites. The WGA-induced association with the cytoskeleton, however, is not specific for the NGF receptor. Concentrations of WGA which change the Triton X-100 solubility of membrane glycoproteins are similar to those required to alter the kinetic state of the NGF receptor. Both events may be related to the crossbridging of cell surface proteins induced by this multivalent lectin.

  18. Maxillary sensory nerve responses induced by different types of dentures.

    PubMed

    Kimoto, Suguru; Ito, Nana; Nakashima, Yoshio; Ikeguchi, Nobuyuki; Yamaguchi, Hidenori; Kawai, Yasuhiko

    2013-01-01

    The purpose of this study was to investigate whether different types of dentures induced different responses to stimulations in sensory nerve underlying the denture-supporting mucosa using current perception threshold (CPT). The study population comprised 45 complete denture wearers with a mean age of 69.7 years (CD), 30 partial denture wearers (PD) with a mean age of 67.1 years, and 40 dentulous participants with a mean age of 69.0 years (Dent). Current perception threshold (CPT) on the greater palatine nerve at 2000 Hz, 250 Hz, and 5 Hz, corresponding to A-beta, A-delta, and C fibers respectively, were measured by the Neurometer® NS3000 device. The differences CPTs among CD, PD, and Dent groups were analyzed by Kruskal-Wallis test and Mann-Whitney U test with adjusting the multiple comparisons' inflation of type 1 error rate by a Bonferroni correction. CPTs of CD, PD, and Dent group at 2000 Hz were 61.5±45.8, 53.5±25.3, 33.0±11.4 (10(-2) mA) respectively. CPTs of CD, PD, and Dent group at 250 Hz were 29.2±28.2, 20.1±13.2, 14.3±5.9 (10(-2) mA) respectively. CPTs of CD, PD, and Dent group at 5 Hz were 28.9±23.4, 17.8±12.2, 12.2±5.6 (10(-2) mA) respectively. The CPTs at all frequencies increased in the following order: Dentinduce different responses to stimulations in the sensory nerve underlying the denture-supporting mucosa. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  19. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    PubMed Central

    Xiong, Liu-lin; Chen, Zhi-wei; Wang, Ting-hua

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews. PMID:27212919

  20. Sustained Growth Factor Delivery Promotes Axonal Regeneration in Long Gap Peripheral Nerve Repair

    PubMed Central

    Kokai, Lauren E.; Bourbeau, Dennis; Weber, Douglas; McAtee, Jedidiah

    2011-01-01

    The aim of this study was to evaluate the long-term effect of localized growth factor delivery on sciatic nerve regeneration in a critical-size (>1 cm) peripheral nerve defect. Previous work has demonstrated that bioactive proteins can be encapsulated within double-walled, poly(lactic-co-glycolic acid)/poly(lactide) microspheres and embedded within walls of biodegradable polymer nerve guides composed of poly(caprolactone). Within this study, nerve guides containing glial cell line-derived neurotrophic factor (GDNF) were used to bridge a 1.5-cm defect in the male Lewis rat for a 16-week period. Nerve repair was evaluated through functional assessment of joint angle range of motion using video gait kinematics, gastrocnemius twitch force, and gastrocnemius wet weight. Histological evaluation of nerve repair included assessment of Schwann cell and neurofilament location with immunohistochemistry, evaluation of tissue integration and organization throughout the lumen of the regenerated nerve with Masson's trichrome stain, and quantification of axon fiber density and g-ratio. Results from this study showed that the measured gastrocnemius twitch force in animals treated with GDNF was significantly higher than negative controls and was not significantly different from the isograft-positive control group. Histological assessment of explanted conduits after 16 weeks showed improved tissue integration within GDNF releasing nerve guides compared to negative controls. Nerve fibers were present across the entire length of GDNF releasing guides, whereas nerve fibers were not detectable beyond the middle region of negative control guides. Therefore, our results support the use of GDNF for improved functional recovery above negative controls following large axonal defects in the peripheral nervous system. PMID:21189072

  1. [Construction of recombinant human nerve growth factor (rh-β-NGF) eukaryotic vector and its expression in HEK293 cells].

    PubMed

    Li, Jingchuan; Xue, Bofu; Yuan, Yuan; Ma, Mo; Zhu, Lin; Milburn, Rebecca; Le, Li; Hu, Peizhen; Ye, Jing

    2015-03-01

    Human nerve growth factor (NGF) is a nerve cell growth regulation factor, which can provide nutrition for the neurons and promote the neurites outgrowth. In order to produce large-scale recombinant human nerve growth factor (rh-beta-NGF), we constructed a plasmid vector, which can stably express the rh-beta-NGF in the HEK293 cell lines. First, the plasmid of pCMV-beta-NGF-IRES-dhfr was constructed and transformed into HEK293 cells. Then MTX pressurized filter and limiting dilution methods were used to obtain monoclonal HEK293 cell lines. After stepwise reducing serum in culture media, the cells eventually adapted to serum-free medium and secreted rh-beta-NGF. SDS-PAGE analysis revealed that the expression product owned a molecular weight of about 13 kDa and a purity of more than 50%. The peptide mapping sequencing analysis demonstrated the sequences of rh-beta-NGF matched with the theoretical ones. Later we purified this protein by ion exchange and molecular sieve chromatograph. Finally, our experimental results exhibited that the recombinant cell lines can stably express rh-beta-NGF with a high efficiency of more than 20 pg/cell x day. In addition, this protein could successfully induce differentiation of PC12 cells. In summary, our recombinant HEK293 cells can express bio-active rh-beta-NGF with great efficiency and stability, which supply a valid basis to large-scale production of rh-beta-NGF.

  2. Control of Growth Within Drosophila Peripheral Nerves by Ras and Protein Kinase A

    DTIC Science & Technology

    2008-02-01

    via induced expression of a nuclear -localized GFP. We also visualized the total complement of peripheral nerve nuclei (peripheral and perineurial glial...RafF179 (Brand and Perrimon, 1994), UAS–green fluorescent pro- tein (GFP) nuclear localization signal (nls) (Shiga et al., 1996), and Akt4226 (Perrimon et... nuclear -localized GFP. We also visualized the total complement of peripheral nerve nuclei (peripheral and perineurial glial) via the Hoechst DNA dye. As

  3. Tiam1 as a Signaling Mediator of Nerve Growth Factor-Dependent Neurite Outgrowth

    PubMed Central

    Vilar, Marçal; Paratcha, Gustavo; Ledda, Fernanda

    2010-01-01

    Nerve Growth Factor (NGF)-induced neuronal differentiation requires the activation of members of the Rho family of small GTPases. However, the molecular mechanisms through which NGF regulates cytoskeletal changes and neurite outgrowth are not totally understood. In this work, we identify the Rac1-specific guanine exchange factor (GEF) Tiam1 as a novel mediator of NGF/TrkA-dependent neurite elongation. In particular, we report that knockdown of Tiam1 causes a significant reduction in Rac1 activity and neurite outgrowth induced by NGF. Physical interaction between Tiam1 and active Ras (Ras-GTP), but not tyrosine phosphorylation of Tiam1, plays a central role in Rac1 activation by NGF. In addition, our findings indicate that Ras is required to associate Tiam1 with Rac1 and promote Rac1 activation upon NGF stimulation. Taken together, these findings define a novel molecular mechanism through which Tiam1 mediates TrkA signaling and neurite outgrowth induced by NGF. PMID:20333299

  4. A nerve growth factor-regulated messenger RNA encodes a new intermediate filament protein

    PubMed Central

    1988-01-01

    Differential screening of a cDNA library from the PC12 rat pheochromocytoma cell line previously revealed a clone, clone 73, whose corresponding mRNA is induced by nerve growth factor (NGF). Induction parallels NGF-stimulated PC12 differentiation from a chromaffinlike phenotype to a sympathetic neuronlike phenotype. We report that DNA sequence analysis reveals that clone 73 mRNA encodes an intermediate filament (IF) protein whose predicted amino acid sequence is distinct from the known sequences of other members of the IF protein family. The sequence has highest homology with desmin and vimentin and includes the highly conserved central alpha-helical rod domain with the characteristic heptad repeat of hydrophobic residues, but has lower homology in the amino-terminal head and carboxyl-terminal tail domains. The head domain contains a large number of serine residues which are potential phosphorylation sites. The expression of clone 73 in vivo in the nervous system of the adult rat was investigated by in situ hybridization of clone 73 probes to tissue sections. The mRNA is expressed at high levels in ganglia of the peripheral nervous system, including the superior cervical ganglion (sympathetic), ciliary ganglion (parasympathetic), and dorsal root ganglion (sensory). In the central nervous system, motor nuclei of cranial nerves III, IV, V, VI, VII, X, and XII as well as ventral horn motor neurons and a restricted set of other central nervous system nuclei express the clone 73 mRNA. Tissues apart from those of the nervous system did not in general express the mRNA, with only very low levels detected in adrenal gland. We discuss the implications of these results for the mechanism of NGF- induced PC12 cell differentiation, the pathways of neuronal development in vivo, and the possible function of the clone 73 IF protein and its relationship to other IF proteins. PMID:3339087

  5. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake.

    PubMed

    Fiore, Marco; Mancinelli, Rosanna; Aloe, Luigi; Laviola, Giovanni; Sornelli, Federica; Vitali, Mario; Ceccanti, Mauro

    2009-08-10

    Ethanol intake during pregnancy and lactation induces severe changes in brain and liver throughout mechanisms involving growth factors. These are signaling molecules regulating survival, differentiation, maintenance and connectivity of brain and liver cells. Ethanol is an element of red wine which contains also compounds with antioxidant properties. Aim of the study was to investigate differences in hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) in brain areas and liver by ELISA of 1-month-old male mice exposed perinatally to ethanol at 11 vol.% or to red wine at same ethanol concentration. Ethanol was administered before and during pregnancy up to pups' weaning. Ethanol per se elevated HGF in liver and cortex, potentiated liver VEGF, reduced GDNF in the liver and decreased NGF content in hippocampus and cortex in the offspring. We did not find changes in HGF or NGF due to red wine exposure. However, we revealed elevation in VEGF levels in liver and reduced GDNF in the cortex of animals exposed to red wine but the VEGF liver increase was more marked in animals exposed to ethanol only compared to the red wine group. In conclusion the present findings in the mouse show differences in ethanol-induced toxicity when ethanol is administered alone or in red wine that may be related to compounds with antioxidant properties present in the red wine.

  6. Effects of nerve growth factor delivery via a gel to inferior alveolar nerve in mandibular distraction osteogenesis.

    PubMed

    Wang, Lei; Cao, Jian; Lei, De-lin; Cheng, Xiao-bing; Yang, Yao-wu; Hou, Rui; Zhao, Ying-hua; Cui, Fu-zhai

    2009-11-01

    Inferior alveolar nerve (IAN) injury is a concern in mandible distraction osteogenesis (DO). We have previously demonstrated that repeated local injections of human nerve growth factor beta (NGF-beta) have significantly enhanced the histologic recovery of the IAN in a rabbit model of DO. This study was to further test the effect of a single injection of human NGF-beta delivered via a collagen/nanohydroxyapatite/kappa-carrageenan gel to the recovery of the IAN in DO. Rabbits underwent mandibular DO at a rate of 0.75 mm/12 h for 6 days. At the end of the distraction period, injections were performed near the IAN percutaneously as follows: group 1, human NGF-beta in the gel; group 2, human NGF-beta in saline; group 3, the gel alone; and group 4, saline alone. At 14 days after the end of distraction, IAN histologic findings and histomorphometric parameters were evaluated. Histologically, there were less myelin debris and more abundant regenerating nerve fibers in group 1 than the other groups. Both the myelinated fiber density and the myelinated axon area in group 1 were significantly higher than groups 3 and 4 (P < 0.01); the myelinated axon area in the group 1 was significantly higher than group 2 (P < 0.01). In conclusion, the delivery of human NGF-beta in the gel leads to a better acceleration of the IAN injury recovery over the saline delivery. It provides a possible way to enhance the recovery of nerve injuries in craniofacial DO clinically.

  7. Upregulation of Nerve Growth Factor in Central Amygdala Increases Sensitivity to Opioid Reward

    PubMed Central

    Bie, Bihua; Wang, Yan; Cai, You-Qing; Zhang, Zhi; Hou, Yuan-Yuan; Pan, Zhizhong Z

    2012-01-01

    The rewarding properties of opioids are essential driving force for compulsive drug-seeking and drug-taking behaviors in the development of opioid-mediated drug addiction. Prior drug use enhances sensitivity to the rewarding effects of subsequently used drugs, increasing vulnerability to relapse. The molecular mechanisms underlying this reward sensitization are still unclear. We report here that morphine that induced reward sensitization, as demonstrated by reinstatement of the behavior of conditioned place preference (CPP) with sub-threshold priming morphine, epigenetically upregulated the output activity of Ngf encoding the nerve growth factor (NGF) by increasing histone H4 acetylation in the rat central nucleus of the amygdala (CeA). NGF locally infused into the CeA mimicked the morphine effect in inducing new functional delta-opioid receptor (DOR) that was required for the reward sensitization, and morphine-induced reward sensitization was inhibited by blocking NGF receptor signaling in the CeA. Histone deacetylase inhibitors that increased the acetylation level at the Ngf promoter and NGF expression in the CeA also induced reward sensitization in a CeA NGF signaling- and DOR-dependent manner. Furthermore, CeA-applied NGF substituted prior morphine to induce reward sensitization in naive rats and also substituted priming morphine to reinstate the CPP induced by prior morphine. Thus, epigenetic upregulation of NGF activity in the CeA may promote the behavior of opioid reward and increase the sensitivity to the rewarding effect of subsequent opioids, a potentially important mechanism in drug addiction. PMID:22871918

  8. Intrathecal lidocaine neurotoxicity: combination with bupivacaine and ropivacaine and effect of nerve growth factor.

    PubMed

    Zhao, Guangyi; Ding, Xudong; Guo, Yao; Chen, Weimin

    2014-09-01

    The study aims to investigate the neurotoxicity induced by combined use of intrathecal lidocaine with bupivacaine and ropivacaine, and to examine the effect of nerve growth factor (NGF) on lidocaine-induced neurotoxicity. All rats received intrathecal infusion of anesthetics and NGF. To study the neurotoxicity of combined use of lidocaine with bupivacaine and ropivacaine, rats received saline, 5% lidocaine, 1.065% bupivacaine, 1.5% ropivacaine, 5% lidocaine+bupivacaine, or 5% lidocaine+1.5% ropivacaine. To study the neurotoxicity of different proportions of lidocaine and bupivacaine, mixtures were made by mixing 10% lidocaine and 2.5% bupivacaine in ratios of 1:3, 1:2, 1:1, 2:1 and 3:1 by volume. To study the effect of NGF on lidocaine-induced neurotoxicity, rats received saline or 10 μg NGF for 1, 2, 5 and 8 days. The neurotoxicity of lidocaine was significantly increased when combined with ropivacaine. A mixture of lidocaine and bupivacaine in a ratio of ≤1:1 did not significantly increase lidocaine-induced neurotoxicity. NGF significantly reduced lidocaine-induced neurobehavioral and morphological damage in the spinal cord. This was accompanied by downregulation of caspase 3 expression. Ropivacaine is not safe when intrathecally administered with lidocaine at the concentrations used in this study. Bupivacaine may be safely used with lidocaine at a ratio of 1:1. NGF can reduce lidocaine-induced neurotoxicity, possibly via inhibition of caspase 3-mediated apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Obesity-induced increases in sympathetic nerve activity: sex matters.

    PubMed

    Brooks, Virginia L; Shi, Zhigang; Holwerda, Seth W; Fadel, Paul J

    2015-01-01

    Abundant evidence obtained largely from male human and animal subjects indicates that obesity increases sympathetic nerve activity (SNA), which contributes to hypertension development. However, recent studies that included women reported that the strong relationships between muscle SNA and waist circumference or body mass index (BMI) found in men are not present in overweight and obese women. A similar sex difference in the association between adiposity and hypertension development has been identified in animal models of obesity. In this brief review, we consider two possible mechanisms for this sex difference. First, visceral adiposity, leptin, insulin, and angiotensin II have been identified as potential culprits in obesity-induced sympathoexcitation in males. We explore if these factors wield the same impact in females. Second, we consider if sex differences in vascular reactivity to sympathetic activation contribute. Our survey of the literature suggests that premenopausal females may be able to resist obesity-induced sympathoexcitation and hypertension in part due to differences in adipose disposition as well as its muted inflammatory response and reduced production of pressor versus depressor components of the renin-angiotensin system. In addition, vascular responsiveness to increased SNA may be reduced. However, more importantly, we identify the urgent need for further study, not only of sex differences per se, but also of the mechanisms that may mediate these differences. This information is required not only to refine treatment options for obese premenopausal women but also to potentially reveal new therapeutic avenues in obese men and women.

  10. Synergistic induction of neurite outgrowth by nerve growth factor or epidermal growth factor and interleukin-6 in PC12 cells.

    PubMed

    Wu, Y Y; Bradshaw, R A

    1996-05-31

    Native PC12 cells respond differentially to nerve growth factor (NGF) but not interleukin-6 (IL-6); PC12-E2 cells, a stable variant, respond to both stimuli (and more rapidly to NGF). Neither responds to epidermal growth factor (EGF). NGF primarily induces the RAS/extracellular signal-regulated kinase (ERK) pathway and IL-6 activates a JAK (Janus tyrosine kinase)/STAT (signal transducers and activators of transcription) response. EGF also stimulates RAS/ERK but in a transient manner. When either cell type is treated with combinations of NGF, EGF, and IL-6, at concentrations that produce modest or no response, a substantial augmentation of neurite outgrowth is observed. With PC12-E2 cells, a subthreshold concentration of IL-6 increases NGF response by approximately 2-3-fold after 1-2 days; the increase with EGF is more pronounced. Native PC12 cells show even greater synergistic effects with NGF and IL-6. The most dramatic effect was observed with low levels of EGF, where IL-6 increased the percentage of responsive cells from zero to approximately 60% after 3 days. In addition, two neural-specific transcripts, GAP-43 and SCG-10, are synergistically increased by the combinations of growth factors. Importantly, IL-6 does not enhance ERK phosphorylation in the presence of either NGF or EGF. In contrast, NGF and EGF, in the presence or absence of IL-6, cause mobility shifts of Stat3 that are consistent with serine phosphorylations. Although these modifications do not lead to activation and translocation by themselves, in the presence of the tyrosine phosphorylation induced by IL-6, they may play a role in the synergistic responses. These observations suggest a differentially regulated two-stage mechanism for the differentiative response of PC12 cells to NGF.

  11. Transforming Growth Factor-β Promotes Axonal Regeneration After Chronic Nerve Injury.

    PubMed

    Sulaiman, Wale A R

    2016-04-01

    When spinal cord injury (SCI) occurs, injured cells must survive and regenerate to close gaps caused by the injury and to create functional motor units. After peripheral nerve injury, Wallerian degeneration in the distal nerve stump creates a neurotrophic and growth-supportive environment for injured neurons and axons via Schwann cells and secreted cytokines/neurotrophins. In both SCI and peripheral nerve injury, injured motor and sensory neurons must regenerate axons, eventually reaching and reinnervating target tissue (SDC Figure 1, http://links.lww.com/BRS/B116). This process is often unsuccessful after SCI, and the highly complex anatomy of branching axons and nerves in the peripheral nervous system leads to slow recovery of function, even with careful and appropriate techniques.

  12. Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis.

    PubMed

    Ashraf, Sadaf; Wibberley, Helen; Mapp, Paul Ian; Hill, Roger; Wilson, Deborah; Walsh, David Andrew

    2011-03-01

    Meniscal damage is a recognised feature of knee osteoarthritis (OA), although its clinical relevance remains uncertain. This study describes vascular penetration and nerve growth in human menisci, providing a potential mechanism for the genesis of pain in knee OA. Menisci obtained post mortem were screened on the basis of high or low macroscopic tibiofemoral chondropathy as a measure of the presence and degree of OA. Forty cases (20 per group) were selected for the study of meniscal vascularity, and 16 (eight per group) for the study of meniscal innervation. Antibodies directed against α-actin and calcitonin gene-related peptide (CGRP) were used to localise blood vessels and nerves by histochemistry. Image analysis was used to compare vascular and nerve densities between groups. Data are presented as median (IQR). Menisci from knees with high chondropathy displayed degeneration of collagen bundles in their outer regions, which were more vascular than the inner regions, with an abrupt decrease in vascularity at the fibrocartilage junction. Vascular densities were increased in menisci from the high compared with low chondropathy group both in the synovium (3.8% (IQR 2.6-5.2), 2.0% (IQR 1.4-2.9), p=0.002) and at the fibrocartilage junction (2.3% (IQR 1.7-3.1), 1.1% (IQR 0.8-1.9), p=0.003), with a greater density of perivascular sensory nerve profiles in the outer region (high chondropathy group, 144 nerve profiles/mm(2) (IQR 134-189); low chondropathy group, 119 nerve profiles/mm(2) (IQR 104-144), p=0.049). Tibiofemoral chondropathy is associated with altered matrix structure, increased vascular penetration, and increased sensory nerve densities in the medial meniscus. The authors suggest therefore that angiogenesis and associated sensory nerve growth in menisci may contribute to pain in knee OA.

  13. Evaluation of ADD392124 for the Delayed Treatment of Nerve Agent-Induced Status Epilepticus Seizures

    DTIC Science & Technology

    2011-09-01

    Induced Status Epilepticus Seizures John H. McDonough Kerry E. Van Shura Megan E. Lyman Claire G. Eisner Amelia Mazza Robert K. Kan Tsung...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Evaluation of ADD392124 for the delayed treatment of nerve agent-induced status epilepticus seizures 5b... status epilepticus seizures. We evaluated the ability of ADD392124 to control seizures induced by the nerve agent soman. Rats were exposed to a

  14. Silk fibroin matrices for the controlled release of nerve growth factor (NGF).

    PubMed

    Uebersax, Lorenz; Mattotti, Marta; Papaloïzos, Michaël; Merkle, Hans P; Gander, Bruno; Meinel, Lorenz

    2007-10-01

    Nerve conduits (NC) for peripheral nerve repair should guide the sprouting axons and physically protect the axonal cone from any damage. The NC should also degrade after completion of its function to obviate the need of subsequent explanation and should optionally be suitable for controlled drug release of embedded growth factors to enhance nerve regeneration. Silk fibroin (SF) is a biocompatible and slowly biodegradable biomaterial with excellent mechanical properties that could meet the above stated requirements. SF material (films) supported the adherence and metabolic activity of PC12 cells, and, in combination with nerve growth factor (NGF), supported neurite outgrowth during PC12 cell differentiation. NGF-loaded SF-NC were prepared from aqueous solutions of NGF and SF (20%, w/w), which were air-dried or freeze-dried (freezing at -20 or -196 degrees C) in suitable molds. NGF release from the three differently prepared SF-NC was prolonged over at least 3 weeks, but the total amount released depended on the drying procedure of the NC. The potency of released NGF was retained within all formulations. Control experiments with differently dried NGF-lactose solutions did not evidence marked protein aggregation (SEC, HPLC), loss of ELISA-reactivity or PC12 cell bioactivity. This study encourages the further exploitation of SF-NC for growth factor delivery and evaluation in peripheral nerve repair.

  15. Nerve growth factor stimulates cellular proliferation of human epithelial ovarian cancer.

    PubMed

    Urzua, U; Tapia, V; Geraldo, M P; Selman, A; Vega, M; Romero, C

    2012-09-01

    Due to its ability to induce vascular endothelial growth factor expression and proliferation, migration, and vasculogenesis of endothelial cells, nerve growth factor (NGF) has been considered as an angiogenic factor in epithelial ovarian cancer (EOC). In this work, we evaluated the angiogenic and proliferative mRNA expression profiles of EOC and addressed the responsiveness of EOC explants to NGF stimulation. Twenty EOC samples were obtained from Obstetrics and Gynecology Department, University of Chile's Clinical Hospital. Global gene expression profiles of selected poorly differentiated serous EOC samples were obtained with DNA oligonucleotide microarrays. In addition, EOC explants were subjected to NGF stimulation and levels of p-AKT, BAX, BCL2, Ki-67, c-MYC, and FOXL2 proteins were determined by immunohistochemistry. Results showed that mRNAs coding for specific transcriptional regulators and antiapoptotic components of the NGF signaling pathway were upregulated in EOC cells. At the protein level, key members of the NGF pathway including p-AKT, BCL2/BAX, Ki-67, and c-MYC were found increased, while FOXL2 was decreased in response to NGF stimulation. These findings strongly suggest that NGF stimulates cellular proliferation of human EOC. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Expression and modulation of nerve growth factor in murine keratinocytes (PAM 212)

    SciTech Connect

    Tron, V.A.; Coughlin, M.D.; Jang, D.E.; Stanisz, J.; Sauder, D.N. )

    1990-04-01

    Nerve growth factor (NGF) is a polypeptide that is required for normal development and maintenance of the sympathetic and sensory nervous systems. Skin has been shown to contain relatively high amounts of NGF, which is in keeping with the finding that the quantity of NGF in a tissue is proportional to the extent of sympathetic innervation of that organ. Since the keratinocyte, a major cellular constituent of the skin, is known to produce other growth factors and cytokines, our experiments were designed to determine whether keratinocytes are a source of NGF. Keratinocyte-conditioned media from the keratinocyte cell line PAM 212 contained NGF-like activity, approximately 2-3 ng/ml, as detected by the neurite outgrowth assay. Freshly isolated BALB/c keratinocytes contained approximately 0.1 ng/ml. Using a cDNA probe directed against NGF, we demonstrated the presence of a 1.3-kb NGF mRNA in both PAM 212 and BALB/c keratinocytes. Since ultraviolet radiation (UV) is a potentially important modulating factor for cytokines in skin, we examined the effect of UV on NGF mRNA expression. Although UV initially inhibited the expression of keratinocyte NGF mRNA (4 h), by 24 h an induction of NGF mRNA was seen. The NGF signal could also be induced by phorbol esters. Thus, keratinocytes synthesize and express NGF, and its expression is modulated by UVB and phorbol esters.

  17. Cobra Venom Factor and Ketoprofen Abolish the Antitumor Effect of Nerve Growth Factor from Cobra Venom.

    PubMed

    Osipov, Alexey V; Terpinskaya, Tatiana I; Kuznetsova, Tatiana E; Ryzhkovskaya, Elena L; Lukashevich, Vladimir S; Rudnichenko, Julia A; Ulashchyk, Vladimir S; Starkov, Vladislav G; Utkin, Yuri N

    2017-09-06

    We showed recently that nerve growth factor (NGF) from cobra venom inhibited the growth of Ehrlich ascites carcinoma (EAC) inoculated subcutaneously in mice. Here, we studied the influence of anti-complementary cobra venom factor (CVF) and the non-steroidal anti-inflammatory drug ketoprofen on the antitumor NGF effect, as well as on NGF-induced changes in EAC histological patterns, the activity of lactate and succinate dehydrogenases in tumor cells and the serum level of some cytokines. NGF, CVF and ketoprofen reduced the tumor volume by approximately 72%, 68% and 30%, respectively. The antitumor effect of NGF was accompanied by an increase in the lymphocytic infiltration of the tumor tissue, the level of interleukin 1β and tumor necrosis factor α in the serum, as well as the activity of lactate and succinate dehydrogenases in tumor cells. Simultaneous administration of NGF with either CVF or ketoprofen abolished the antitumor effect and reduced all other effects of NGF, whereas NGF itself significantly decreased the antitumor action of both CVF and ketoprofen. Thus, the antitumor effect of NGF critically depended on the status of the immune system and was abolished by the disturbance of the complement system; the disturbance of the inflammatory response canceled the antitumor effect as well.

  18. Magnetic Nanoparticles for Efficient Delivery of Growth Factors: Stimulation of Peripheral Nerve Regeneration.

    PubMed

    Giannaccini, Martina; Calatayud, M Pilar; Poggetti, Andrea; Corbianco, Silvia; Novelli, Michela; Paoli, Melania; Battistini, Pietro; Castagna, Maura; Dente, Luciana; Parchi, Paolo; Lisanti, Michele; Cavallini, Gabriella; Junquera, Concepción; Goya, Gerardo F; Raffa, Vittoria

    2017-04-01

    The only clinically approved alternative to autografts for treating large peripheral nerve injuries is the use of synthetic nerve guidance conduits (NGCs), which provide physical guidance to the regenerating stump and limit scar tissue infiltration at the injury site. Several lines of evidence suggest that a potential future strategy is to combine NGCs with cellular or molecular therapies to deliver growth factors that sustain the regeneration process. However, growth factors are expensive and have a very short half-life; thus, the combination approach has not been successful. In the present paper, we proposed the immobilization of growth factors (GFs) on magnetic nanoparticles (MNPs) for the time- and space-controlled release of GFs inside the NGC. We tested the particles in a rat model of a peripheral nerve lesion. Our results revealed that the injection of a cocktail of MNPs functionalized with nerve growth factor (NGF) and with vascular endothelial growth factor (VEGF) strongly accelerate the regeneration process and the recovery of motor function compared to that obtained using the free factors. Additionally, we found that injecting MNPs in the NGC is safe and does not impair the regeneration process, and the MNPs remain in the conduit for weeks. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Scaffolds from alternating block polyurethanes of poly(ɛ-caprolactone) and poly(ethylene glycol) with stimulation and guidance of nerve growth and better nerve repair than autograft.

    PubMed

    Niu, Yuqing; Li, Linjing; Chen, Kevin C; Chen, Feiran; Liu, Xiangyu; Ye, Jianfu; Li, Wei; Xu, Kaitian

    2015-07-01

    Nerve repair scaffolds from novel alternating block polyurethanes (PUCL-alt-PEG) based on PCL and PEG without additional growth factors or proteins were prepared by a particle leaching method. The scaffolds have pore size 10-20 µm and porosity 92%. Mechanical tests showed that the polyurethane scaffolds have maximum loads of 5.97 ± 0.35 N and maximal stresses of 8.84 ± 0.5 MPa. Histocompatiblity of the nerve repair scaffolds was tested in a SD rat model for peripheral nerve defect treatment. Two types of treatments including PUCL-alt-PEG scaffolds and autografts were compared in rat model. After 32 weeks, bridging of a 12 mm defect gap by the regenerated nerve was observed in all rats. The nerve regeneration was systematically characterized by sciatic function index (SFI), electrophysiology, histological assessment including HE staining, immunohistochemistry, ammonia sliver staining, Masson's trichrome staining and TEM observation. Results revealed that nerve repair scaffolds from PUCL-alt-PEG exhibit better regeneration effects compared to autografts. Electrophysiological recovery was seen in 90% and 87% of rats in PUCL-alt-PEG and autograft groups respectively. Biodegradation in vitro and in vivo shows good degradation match of PUCL-alt-PEG scaffolds with nerve regeneration. It demonstrates that plain nerve repair scaffolds from PUCL-alt-PEG biomaterials can achieve peripheral nerve regeneration satisfactorily.

  20. Significance of cholinergic and peptidergic nerves in stress-induced ulcer and MALT lymphoma formation.

    PubMed

    Nakamura, Masahiko; Øverby, Anders; Uehara, Akina; Oda, Masaya; Takahashi, Shinichi; Murayama, Somay Y; Matsui, Hidenori

    2017-02-10

    Backgound: The role of enteric nerves has previously been demonstrated in the formation of several gastric diseases. In the present review, the significance of the cholinergic nerves in stress-induced ulcer formation as well as the importance of substance P in the formation of gastric MALT lymphoma is discussed.

  1. Nerve growth factor preserves a critical motor period in rat striatum.

    PubMed

    Wolansky, M J; Paratcha, G C; Ibarra, G R; Azcurra, J M

    1999-01-01

    We previously found the occurrence of a critical motor period during rat postnatal development where circling training starting the 7-day schedule at 30 days-but not before or after-induces a lifetime drop in the binding to cholinergic muscarinic receptors (mAChRs) in striatum. Here, we studied whether nerve growth factor (NGF) participates in this restricted period of muscarinic sensitivity. For this purpose, we administered mouse salival gland 2.5S NGF (1.4 or 0.4 microg/day, infused by means of ALZA minipumps) by intrastriatal unilateral route between days 25 and 39, and then trained rats starting at 40 days. Under these conditions, NGF induced a long-term reduction in the striatal [3H] quinuclidilbenzylate (QNB) binding sites despite the fact that motor training was carried out beyond the natural critical period. Thus, at day 70, measurement of specific QNB binding in infused striata of trained rats showed decreases of 42% (p < .0004) and 33% (p < .02) after administration of the higher and lower NGF doses, respectively, with respect to trained rats treated with cytochrome C, for control. Noncannulated striata of the NGF-treated rats also showed a decrease in QNB binding sites (44%; p < .0001) only at the higher infusion rate. This effect was not found in the respective control groups. Our observations show that NGF modulates the critical period in which activity-dependent mAChR setting takes place during rat striatal maturation.

  2. The Effect of Vitamin D Treatment On Nerve Growth Factor (NGF) Release From Hippocampal Neurons

    PubMed Central

    GEZEN-AK, Duygu; DURSUN, Erdinç; YILMAZER, Selma

    2014-01-01

    Introduction Vitamin D, the main function of which is thought to be the maintenance of calcium and phosphate homeostasis and bone structure, has been shown in recent studies to have important roles in brain development as well. A certain vitamin D receptor (VDR) gene haplotype was reported, for the first time by our group, to increase the risk of developing Alzheimer’s disease. Our studies also showed that vitamin D prevents beta amyloid-induced calcium elevation and toxicity that target nerve growth factor (NGF) release in cortical neurons; beta amyloid suppresses VDR expression and the disruption of vitamin D-VDR pathway mimics beta amyloid-induced neurodegeneration. In this study, our aim was to investigate the effects of vitamin D on the NGF release from hippocampal neurons. Method Primary hippocampal neuron cultures that were prepared from 18-day-old Sprague-Dawley rat embryos were treated with vitamin D for 48 hours. The alteration in the NGF release was determined with ELISA. Cytotoxicity tests were also performed for all groups. Results The NGF release in vitamin D-treated group was significantly higher than in untreated control group. The protective effect of vitamin D against cytotoxicity was also observed. Conclusion Our results indicated that vitamin D regulates the release of NGF, a very important molecule for neuronal survival of hippocampal neurons as well as cortical neurons.

  3. Some characteristics of histamine secretion from rat peritoneal mast cells stimulated with nerve growth factor.

    PubMed Central

    Pearce, F L; Thompson, H L

    1986-01-01

    Nerve growth factor (NGF) isolated from mouse submandibular gland or from snake venom produced a dose-dependent release of histamine from isolated rat peritoneal mast cells. The response was almost totally dependent on the presence of extracellular calcium ions and on added phosphatidylserine or its lyso-derivative. At high concentrations, strontium ions could substitute for calcium. The process was non-cytotoxic, relatively slow, pH dependent and blocked by polyclonal antibodies to NGF. Binding of NGF to the mast cell was not dependent on added calcium. The release was unaffected by low molecular weight glucose polymers or specific quaternary ammonium salts and thus differed from that evoked by clinical dextran or polyamines. The release was not inhibited by soluble rat IgE or IgG and was unimpaired in mast cells recovered from specific pathogen free rats. As such it did not appear to be mediated through interaction with cell-fixed antibodies. The process further differed from anaphylactic histamine release in that there was no accompanying change in the intracellular level of adenosine 3',5'-cyclic monophosphate (cyclic AMP), the activated state induced by NGF was much more persistent than that evoked by antigen, and there was no cross-desensitization between the two latter stimuli. In total, these data suggest that NGF may induce secretion from rat mast cells by interaction with a specific receptor on the plasma membrane, possibly similar to that present on sensory and sympathetic neurones. PMID:2425086

  4. Nerve growth factor amplifies cyclic AMP production in the HT4 neuronal cell line.

    PubMed

    Berg, K A; Maayani, S; McKay, R; Clarke, W P

    1995-01-01

    There has been considerable interest and controversy in the relationship between nerve growth factor (NGF) and the cyclic AMP (cAMP) second messenger system. We have used a novel, neuronal cell line (HT4) to investigate the effect of NGF on the adenylyl cyclase signaling system. Treatment of cells with NGF (100 ng/ml, 15 min) amplified cAMP accumulation (approximately 75%) in response to activation of adenosine A2 receptors (5 min) with 5'-N-ethylcarboxamidoadenosine or activation of adenylyl cyclase directly with forskolin. Basal cAMP accumulation was not altered by NGF. This amplification appears to be mediated by activation of protein kinase C (PKC) because (1) it was mimicked by activators (phorbol esters and a diacylglycerol analogue) of PKC, (2) the effects of NGF and phorbol ester on cAMP accumulation were not additive, (3) NGF amplification of cAMP accumulation was abolished by down-regulation of PKC, (4) NGF increased cytosolic PKC activity, and (5) inhibitors of PKC blocked the NGF-induced amplification of cAMP accumulation. Although NGF-induced amplification of cAMP accumulation was dependent upon PKC, mechanisms other than the classic activation pathway (i.e., hydrolysis of inositol phospholipids or the production of diacylglycerol) appeared to mediate PKC activation by NGF. The tyrosine kinase inhibitor, lavendustin A, blocked NGF-mediated amplification of cAMP accumulation, suggesting a novel interaction between a tyrosine kinase and protein kinase C.

  5. Neuromonitoring of cochlea and auditory nerve with multiple extracted parameters during induced hypoxia and nerve manipulation

    NASA Astrophysics Data System (ADS)

    Bohórquez, Jorge; Özdamar, Özcan; Morawski, Krzysztof; Telischi, Fred F.; Delgado, Rafael E.; Yavuz, Erdem

    2005-06-01

    A system capable of comprehensive and detailed monitoring of the cochlea and the auditory nerve during intraoperative surgery was developed. The cochlear blood flow (CBF) and the electrocochleogram (ECochGm) were recorded at the round window (RW) niche using a specially designed otic probe. The ECochGm was further processed to obtain cochlear microphonics (CM) and compound action potentials (CAP).The amplitude and phase of the CM were used to quantify the activity of outer hair cells (OHC); CAP amplitude and latency were used to describe the auditory nerve and the synaptic activity of the inner hair cells (IHC). In addition, concurrent monitoring with a second electrophysiological channel was achieved by recording compound nerve action potential (CNAP) obtained directly from the auditory nerve. Stimulation paradigms, instrumentation and signal processing methods were developed to extract and differentiate the activity of the OHC and the IHC in response to three different frequencies. Narrow band acoustical stimuli elicited CM signals indicating mainly nonlinear operation of the mechano-electrical transduction of the OHCs. Special envelope detectors were developed and applied to the ECochGm to extract the CM fundamental component and its harmonics in real time. The system was extensively validated in experimental animal surgeries by performing nerve compressions and manipulations.

  6. Tamoxifen inhibits malignant peripheral nerve sheath tumor growth in an estrogen receptor–independent manner

    PubMed Central

    Byer, Stephanie J.; Eckert, Jenell M.; Brossier, Nicole M.; Clodfelder-Miller, Buffie J.; Turk, Amy N.; Carroll, Andrew J.; Kappes, John C.; Zinn, Kurt R.; Prasain, Jeevan K.; Carroll, Steven L.

    2011-01-01

    Few therapeutic options are available for malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with neurofibromatosis type 1 (NF1). Guided by clinical observations suggesting that some NF1-associated nerve sheath tumors are hormonally responsive, we hypothesized that the selective estrogen receptor (ER) modulator tamoxifen would inhibit MPNST tumorigenesis in vitro and in vivo. To test this hypothesis, we examined tamoxifen effects on MPNST cell proliferation and survival, MPNST xenograft growth, and the mechanism by which tamoxifen impeded these processes. We found that 1–5 μM 4-hydroxy-tamoxifen induced MPNST cell death, whereas 0.01–0.1 μM 4-hydroxy-tamoxifen inhibited mitogenesis. Dermal and plexiform neurofibromas, MPNSTs, and MPNST cell lines expressed ERβ and G-protein-coupled ER-1 (GPER); MPNSTs also expressed estrogen biosynthetic enzymes. However, MPNST cells did not secrete 17β-estradiol, exogenous 17β-estradiol did not stimulate mitogenesis or rescue 4-hydroxy-tamoxifen effects on MPNST cells, and the steroidal antiestrogen ICI-182,780 did not mimic tamoxifen effects on MPNST cells. Further, ablation of ERβ and GPER had no effect on MPNST proliferation, survival, or tamoxifen sensitivity, indicating that tamoxifen acts via an ER-independent mechanism. Consistent with this hypothesis, inhibitors of calmodulin (trifluoperazine, W-7), another known tamoxifen target, recapitulated 4-hydroxy-tamoxifen effects on MPNST cells. Tamoxifen was also effective in vivo, demonstrating potent antitumor activity in mice orthotopically xenografted with human MPNST cells. We conclude that 4-hydroxy-tamoxifen inhibits MPNST cell proliferation and survival via an ER-independent mechanism. The in vivo effectiveness of tamoxifen provides a rationale for clinical trials in cases of MPNSTs. PMID:21075781

  7. Progesterone modulates diabetes/hyperglycemia-induced changes in the central nervous system and sciatic nerve.

    PubMed

    Atif, Fahim; Prunty, Megan C; Turan, Nefize; Stein, Donald G; Yousuf, Seema

    2017-03-14

    We investigated the effect of progesterone (P4) treatment on diabetes/hyperglycemia-induced pathological changes in brain, spinal cord and sciatic nerve tissue in male rats. Animals were rendered hyperglycemic by a single dose of streptozotocin (STZ). P4 treatment was started after hyperglycemia was confirmed and body weight and blood glucose levels were monitored once/week for 5weeks. Rats underwent behavioral testing at week 5 and were then euthanized for histology. We assessed the expression of markers of angiogenesis (vascular endothelial growth factor (VEGF)), inflammation (interleukin-6 (IL-6)) and tissue injury (CD11b, NG2, COX2 and matrix metalloproteinase-2 (MMP-2)) in the brain, spinal cord and sciatic nerve. We also examined the regenerative effect of P4 on pathological changes in intra-epidermal nerve fibers (IENF) of the footpads. Diabetes/hyperglycemia led to body weight loss over 5weeks and P4 treatment reduced this loss. At week 5, blood-glucose levels were significantly lower in the P4-treated diabetic group compared to vehicle. Compared to sham or P4-treated groups, the diabetic vehicle group showed hyperactivity on the spontaneous locomotor activity test. Western blot data revealed upregulation of VEGF, IL-6, CD11b, NG2, COX2 and MMP-2 levels in the vehicle group and P4 treatment normalized these expression levels. IENF densities were reduced in the vehicle group and normalized after P4 treatment. We conclude that P4 can reduce some of the chronic pathological responses to STZ-induced diabetes.

  8. Investigation of assumptions underlying current safety guidelines on EM-induced nerve stimulation

    NASA Astrophysics Data System (ADS)

    Neufeld, Esra; Vogiatzis Oikonomidis, Ioannis; Iacono, Maria Ida; Angelone, Leonardo M.; Kainz, Wolfgang; Kuster, Niels

    2016-06-01

    An intricate network of a variety of nerves is embedded within the complex anatomy of the human body. Although nerves are shielded from unwanted excitation, they can still be stimulated by external electromagnetic sources that induce strongly non-uniform field distributions. Current exposure safety standards designed to limit unwanted nerve stimulation are based on a series of explicit and implicit assumptions and simplifications. This paper demonstrates the applicability of functionalized anatomical phantoms with integrated coupled electromagnetic and neuronal dynamics solvers for investigating the impact of magnetic resonance exposure on nerve excitation within the full complexity of the human anatomy. The impact of neuronal dynamics models, temperature and local hot-spots, nerve trajectory and potential smoothing, anatomical inhomogeneity, and pulse duration on nerve stimulation was evaluated. As a result, multiple assumptions underlying current safety standards are questioned. It is demonstrated that coupled EM-neuronal dynamics modeling involving realistic anatomies is valuable to establish conservative safety criteria.

  9. Enhancement of sciatic nerve regeneration after vascular endothelial growth factor (VEGF) gene therapy.

    PubMed

    Pereira Lopes, F R; Lisboa, B C G; Frattini, F; Almeida, F M; Tomaz, M A; Matsumoto, P K; Langone, F; Lora, S; Melo, P A; Borojevic, R; Han, S W; Martinez, A M B

    2011-10-01

    Recent studies have emphasized the beneficial effects of the vascular endothelial growth factor (VEGF) on neurone survival and Schwann cell proliferation. VEGF is a potent angiogenic factor, and angiogenesis has long been recognized as an important and necessary step during tissue repair. Here, we investigated the effects of VEGF on sciatic nerve regeneration. Using light and electron microscopy, we evaluated sciatic nerve regeneration after transection and VEGF gene therapy. We examined the survival of the neurones in the dorsal root ganglia and in lumbar 4 segment of spinal cord. We also evaluated the functional recovery using the sciatic functional index and gastrocnemius muscle weight. In addition, we evaluated the VEGF expression by immunohistochemistry. Fluorescein isothiocyanate-dextran (FITC-dextran) fluorescence of nerves and muscles revealed intense staining in the VEGF-treated group. Quantitative analysis showed that the numbers of myelinated fibres and blood vessels were significantly higher in VEGF-treated animals. VEGF also increased the survival of neurone cell bodies in dorsal root ganglia and in spinal cord. The sciatic functional index and gastrocnemius muscle weight reached significantly higher values in VEGF-treated animals. We demonstrate a positive relationship between increased vascularization and enhanced nerve regeneration, indicating that VEGF administration can support and enhance the growth of regenerating nerve fibres, probably through a combination of angiogenic, neurotrophic and neuroprotective effects. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  10. Ursolic acid induces neural regeneration after sciatic nerve injury

    PubMed Central

    Liu, Biao; Liu, Yan; Yang, Guang; Xu, Zemin; Chen, Jiajun

    2013-01-01

    In this study, we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve. BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tube-rosity. The successfully generated model mice were treated with 10, 5, or 2.5 mg/kg ursolic acid via intraperitoneal injection. Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradually increased at 1–4 weeks after sciatic nerve injury, and significantly decreased at 8 weeks. As such, ursolic acid has the capacity to significantly increase S100 protein expression levels. Real-time quantitative PCR showed that S100 mRNA expression in the L4–6 segments on the injury side was increased after ursolic acid treatment. In addition, the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid. Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid. 10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid. Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice following sciatic nerve injury. PMID:25206561

  11. Capsaicin Induces Degeneration of Cutaneous Autonomic Nerve Fibers

    PubMed Central

    Gibbons, Christopher H; Wang, Ningshan; Freeman, Roy

    2010-01-01

    Objective To determine the effects of topical application of capsaicin on cutaneous autonomic nerves. Methods Thirty-two healthy subjects underwent occlusive application of 0.1% capsaicin cream (or placebo) for 48 hours. Subjects were followed for 6 months with serial assessments of sudomotor, vasomotor, pilomotor and sensory function with simultaneous assessment of innervation through skin biopsies. Results There were reductions in sudomotor, vasomotor, pilomotor and sensory function in capsaicin- treated subjects (p<0.01 vs. placebo). Sensory function declined more rapidly than autonomic function; reaching a nadir by day 6 while autonomic function reached a nadir by day 16. There were reductions in sudomotor, vasomotor, pilomotor and sensory nerve fiber densities in capsaicin treated subjects (p<0.01 vs. placebo). Intra-epidermal nerve fiber density declined maximally by 6 days while autonomic nerve fiber densities reached maximal degeneration by day 16. Conversely, autonomic nerves generally regenerated more rapidly than sensory nerves, requiring 40–50 days to return to baseline levels while sensory fibers required 140–150 days to return to baseline. Interpretation Topical capsaicin leads to degeneration of sudomotor, vasomotor and pilomotor nerves accompanied by impairment of sudomotor, vasomotor and pilomotor function. These results suggest the susceptibility and/or pathophysiologic mechanisms of nerve damage may differ between autonomic and sensory nerve fibers treated with capsaicin and enhances the capsaicin model for the study of disease modifying agents. The data suggest caution should be taken when topical capsaicin is applied to skin surfaces at risk for ulceration, particularly in neuropathic conditions characterized by sensory and autonomic impairment. PMID:21061393

  12. Pro-nerve growth factor in the ovary and human granulosa cells

    PubMed Central

    Meinel, Sabine; Blohberger, Jan; Berg, Dieter; Berg, Ulrike; Dissen, Gregory A.; Ojeda, Sergio R.; Mayerhofer, Artur

    2016-01-01

    Background Pro-nerve growth factor must be cleaved to generate mature NGF, which was suggested to be a factor involved in ovarian physiology and pathology. Extracellular proNGF can induce cell death in many tissues. Whether extracellular proNGF exists in the ovary and may play a role in the death of follicular cells or atresia was unknown. Material and Methods Immunohistochemistry of human and Rhesus monkey ovarian sections was performed. IVF-derived follicular fluid and human granulosa cells were studied by RT-PCR, qPCR, Western blotting, ATP- and caspase-assays. Results and Conclusions Immunohistochemistry of ovarian sections identified proNGF in granulosa cells and Western blotting of human isolated granulosa cells confirmed the presence of proNGF. Ovarian granulosa cells thus produce proNGF. Recombinant human proNGF even at high concentrations did not affect the levels of ATP or the activity of caspase 3/7, indicating that in granulosa cells proNGF does not induce death. In contrast, mature NGF, which was detected previously in follicular fluid, may be a trophic molecule for granulosa cells with unexpected functions. We found that in contrast to proNGF, NGF increased the levels of the transcription factor early growth response 1 and of the enzyme choline acetyl-transferase. A mechanism for the generation of mature NGF from proNGF in the follicular fluid may be extracellular enzymatic cleavage. The enzyme MMP7 is known to cleave proNGF and was identified in follicular fluid and as a product of granulosa cells. Thus the generation of NGF in the ovarian follicle may depend on MMP7. PMID:26457789

  13. Irritation Induced Bladder Overactivity Is Suppressed by Tibial Nerve Stimulation in Cats

    PubMed Central

    Tai, Changfeng; Chen, Mang; Shen, Bing; Wang, Jicheng; Roppolo, James R.; de Groat, William C.

    2011-01-01

    Purpose To investigate the effects of tibial nerve stimulation on bladder overactivity induced by acetic acid (AA) irritation. Material and Methods Cystometry was performed in 10 α-chloralose anesthetized female cats by infusing saline or AA through a urethral catheter that was secured by a ligature around the urethra. Intravesical infusion of 0.25% AA was used to irritate the bladder and induce bladder overactivity. Multiple cystometrograms (CMGs) were performed before, during, and after tibial nerve stimulation to determine the inhibitory effect on the micturition reflex. Results Infusion of 0.25% AA irritated the bladder, induced bladder overactivity, and significantly reduced the bladder capacity to about 20% of the control capacity measured during saline infusion. Tibial nerve stimulation at either low (5 Hz) or high (30 Hz) frequency significantly increased bladder capacity to about 40% of the saline control capacity when it was applied during AA infusion CMG. The amplitude of bladder contractions was smaller during AA irritation than during saline distention due to a significantly smaller bladder capacity. Tibial nerve stimulation at 5 Hz not only increased bladder capacity but also increased the amplitude of bladder contractions. Conclusion Activation of somatic afferents in the tibial nerve of cats can partially reverse the bladder overactivity induced by intravesical administration of a chemical irritant that activates C-fiber afferent nerves. These data are consistent with clinical studies showing that tibial nerve neuromodulation is effective in treating overactive bladder symptoms. PMID:21600604

  14. Irritation induced bladder overactivity is suppressed by tibial nerve stimulation in cats.

    PubMed

    Tai, Changfeng; Chen, Mang; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C

    2011-07-01

    We investigated the effects of tibial nerve stimulation on bladder overactivity induced by acetic acid irritation. Cystometry was performed in 10 α-chloralose anesthetized female cats by infusing saline or acetic acid through a urethral catheter that was secured by a ligature around the urethra. Intravesical infusion of 0.25% acetic acid was used to irritate the bladder and induce bladder overactivity. Multiple cystometrograms were done before, during and after tibial nerve stimulation to determine the inhibitory effect on the micturition reflex. Infusion of 0.25% acetic acid irritated the bladder, induced bladder overactivity and significantly decreased bladder capacity to about 20% of control capacity measured during saline infusion. Tibial nerve stimulation at low (5 Hz) or high (30 Hz) frequency significantly increased bladder capacity to about 40% of saline control capacity when it was applied during acetic acid infusion cystometrogram. Bladder contraction amplitude was smaller during acetic acid irritation than during saline distention due to significantly smaller bladder capacity. Tibial nerve stimulation at 5 Hz increased bladder capacity and bladder contraction amplitude. Activation of somatic afferents in the tibial nerve of cats can partially reverse the bladder overactivity induced by intravesical administration of a chemical irritant that activates C-fiber afferent nerves. These data are consistent with clinical studies showing that tibial nerve neuromodulation is effective treatment for overactive bladder symptoms. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. SIP30 Is Regulated by ERK in Peripheral Nerve Injury-induced Neuropathic Pain*

    PubMed Central

    Peng, Guangdun; Han, Mei; Du, Yimin; Lin, Anning; Yu, Lei; Zhang, Yuqiu; Jing, Naihe

    2009-01-01

    ERK plays an important role in chronic neuropathic pain. However, the underlying mechanism is largely unknown. Here we show that in chronic constriction injury-treated rat spinal cords, up-regulation of SIP30 (SNAP25-interacting protein 30), which is involved in the development and maintenance of chronic constriction injury-induced neuropathic pain, correlates with ERK activation and that the up-regulation of SIP30 is suppressed by intrathecal delivery of the MEK inhibitor U0126. In PC12 cells, up-regulation of SIP30 by nerve growth factor is also dependent on ERK activation. We found that there is an ERK-responsive region in the rat sip30 promoter. Activation of ERK promotes the recruitment of the transcription factor cyclic AMP-response element-binding protein to the sip30 gene promoter. Taken together, our results provide a potential downstream target of ERK activation-mediated neuropathic pain. PMID:19723624

  16. Neuroprotection for Nerve Agent-Induced Brain Damage

    DTIC Science & Technology

    2002-01-01

    nonconvulsive status epilepticus, either because of the distribution of the seizure focus or, more likely, because ATP stores are depleted and thus no...damaged due to seizures secondary to exposure to nerve agents. Preliminary work in this laboratory has demonstrated proof of concept using a compound not...initial life-threatening effects of nerve agents are likely to develop electrical seizure activity. Anticonvulsants such as diazepam can arrest

  17. Vascular endothelial growth factor gene therapy improves nerve regeneration in a model of obstetric brachial plexus palsy.

    PubMed

    Hillenbrand, Matthias; Holzbach, Thomas; Matiasek, Kaspar; Schlegel, Jürgen; Giunta, Riccardo E

    2015-03-01

    The treatment of obstetric brachial plexus palsy has been limited to conservative therapies and surgical reconstruction of peripheral nerves. In addition to the damage of the brachial plexus itself, it also leads to a loss of the corresponding motoneurons in the spinal cord, which raises the need for supportive strategies that take the participation of the central nervous system into account. Based on the protective and regenerative effects of VEGF on neural tissue, our aim was to analyse the effect on nerve regeneration by adenoviral gene transfer of vascular endothelial growth factor (VEGF) in postpartum nerve injury of the brachial plexus in rats. In the present study, we induced a selective crush injury to the left spinal roots C5 and C6 in 18 rats within 24 hours after birth and examined the effect of VEGF-gene therapy on nerve regeneration. For gene transduction an adenoviral vector encoding for VEGF165 (AdCMV.VEGF165) was used. In a period of 11 weeks, starting 3 weeks post-operatively, functional regeneration was assessed weekly by behavioural analysis and force measurement of the upper limb. Morphometric evaluation was carried out 8 months post-operatively and consisted of a histological examination of the deltoid muscle and the brachial plexus according to defined criteria of degeneration. In addition, atrophy of the deltoid muscle was evaluated by weight determination comparing the left with the right side. VEGF expression in the brachial plexus was quantified by an enzyme-linked immunosorbent assay (ELISA). Furthermore the motoneurons of the spinal cord segment C5 were counted comparing the left with the right side. On the functional level, VEGF-treated animals showed faster nerve regeneration. It was found less degeneration and smaller mass reduction of the deltoid muscle in VEGF-treated animals. We observed significantly less degeneration of the brachial plexus and a greater number of surviving motoneurons (P < 0·05) in the VEGF group. The results of

  18. Discoordinate regulation of different K channels in cultured rat skeletal muscle by nerve growth factor.

    PubMed

    Vigdor-Alboim, S; Rothman, C; Braiman, L; Bak, A; Langzam, L; Yosef, O; Sterengarz, B B; Nawrath, H; Brodie, C; Sampson, S R

    1999-05-01

    We investigated the effects of nerve growth factor (NGF) on expression of K+ channels in cultured skeletal muscle. The channels studied were (1) charybdotoxin (ChTx)-sensitive channels by using a polyclonal antibody raised in rabbits against ChTx, (2) Kv1.5 voltage-sensitive channels, and (3) apamin-sensitive (afterhyperpolarization) channels. Crude homogenates were prepared from cultures made from limb muscles of 1-2-day-old rat pups for identification of ChTx-sensitive and Kv1.5 channels by Western blotting techniques. Apamin-sensitive K+ channels were studied by measurement of specific [125I]-apamin binding by whole cell preparations. ChTx-sensitive channels display a fusion-related increase in expression, and NGF downregulates these channels in both myoblasts and myotubes. Voltage-dependent Kv1.5 channel expression is low in myoblasts and increases dramatically with fusion; NGF induces early expression of these channels and causes expression after fusion to increase even further. NGF downregulates apamin-sensitive channels. NGF increases the rate of fall of the action potential recorded intracellularly from single myotubes with intracellular microelectrodes. The results confirm and extend those of previous studies in showing a functional role for NGF in the regulation of membrane properties of skeletal muscle. Moreover, the findings demonstrate that the different K+ channels in this preparation are regulated in a discoordinate manner. The divergent effects of NGF on expression of different K+ channels, however, do not appear sufficient to explain the NGF-induced increase in the rate of fall of the action potential. The changes during the falling phase may rather be due to increases in channel properties or may result from an increased driving force on the membrane potential secondary to the NGF-induced hyperpolarization.

  19. Nerve growth factor reduces amiloride‐sensitive Na+ transport in human airway epithelial cells

    PubMed Central

    Shimko, Michael J.; Zaccone, Eric J.; Thompson, Janet A.; Schwegler‐Berry, Diane; Kashon, Michael L.; Fedan, Jeffrey S.

    2014-01-01

    Abstract Nerve growth factor (NGF) is overexpressed in patients with inflammatory lung diseases, including virus infections. Airway surface liquid (ASL), which is regulated by epithelial cell ion transport, is essential for normal lung function. No information is available regarding the effect of NGF on ion transport of airway epithelium. To investigate whether NGF can affect ion transport, human primary air‐interface cultured epithelial cells were placed in Ussing chambers to obtain transepithelial voltage (−7.1 ± 3.4 mV), short‐circuit current (Isc, 5.9 ± 1.0 μA), and transepithelial resistance (750 Ω·cm2), and to measure responses to ion transport inhibitors. Amiloride (apical, 3.5 × 10−5 mol/L) decreased Isc by 55.3%. Apically applied NGF (1 ng/mL) reduced Isc by 5.3% in 5 min; basolaterally applied NGF had no effect. The response to amiloride was reduced (41.6%) in the presence of NGF. K‐252a (10 nmol/L, apical) did not itself affect Na+ transport, but it attenuated the NGF‐induced reduction in Na+ transport, indicating the participation of the trkA receptor in the NGF‐induced reduction in Na+ transport. PD‐98059 (30 μmol/L, apical and basolateral) did not itself affect Na+ transport, but attenuated the NGF‐induced reduction in Na+ transport, indicating that trkA activated the Erk 1/2 signaling cascade. NGF stimulated phosphorylation of Erk 1/2 and the β‐subunit of ENaC. K‐252a and PD‐98059 inhibited these responses. NGF had no effect on Isc in the presence of apical nystatin (50 μmol/L). These results indicate that NGF inhibits Na+ transport through a trkA‐Erk 1/2‐activated signaling pathway linked to ENaC phosphorylation. PMID:25347857

  20. Neuroprotection by Cocktails of Dietary Antioxidants under Conditions of Nerve Growth Factor Deprivation.

    PubMed

    Amara, Flavio; Berbenni, Miluscia; Fragni, Martina; Leoni, Giampaolo; Viggiani, Sandra; Ippolito, Vita Maria; Larocca, Marilena; Rossano, Rocco; Alberghina, Lilia; Riccio, Paolo; Colangelo, Anna Maria

    2015-01-01

    Dietary antioxidants may be useful in counteracting the chronic inflammatory status in neurodegenerative diseases by reducing oxidative stress due to accumulation of reactive oxygen species (ROS). In this study, we newly described the efficacy of a number of dietary antioxidants (polyphenols, carotenoids, thiolic compounds, and oligoelements) on viability of neuronal PC12 cells following Nerve Growth Factor (NGF) deprivation, a model of age-related decrease of neurotrophic support that triggers neuronal loss. Neuroprotection by antioxidants during NGF deprivation for 24 h was largely dependent on their concentrations: all dietary antioxidants were able to efficiently support cell viability by reducing ROS levels and restoring mitochondrial function, while preserving the neuronal morphology. Moreover, ROS reduction and neuroprotection during NGF withdrawal were also achieved with defined cocktails of 3-6 different antioxidants at concentrations 5-60 times lower than those used in single treatments, suggesting that their antioxidant activity was preserved also at very low concentrations. Overall, these data indicate the beneficial effects of antioxidants against oxidative stress induced by decreased NGF availability and suggest that defined cocktails of dietary factors at low concentrations might be a suitable strategy to reduce oxidative damage in neurodegenerative diseases, while limiting possible side effects.

  1. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo.

    PubMed

    Cantarella, Giuseppina; Lempereur, Laurence; Presta, Marco; Ribatti, Domenico; Lombardo, Gabriella; Lazarovici, Philip; Zappalà, Giovanna; Pafumi, Carlo; Bernardini, Renato

    2002-08-01

    Nerve growth factor (NGF) has important functions during embryonic development and on various tissues and organs under normal and pathological conditions during the extrauterine life. RT-PCR analysis and immunological methods demonstrate that human umbilical vein endothelial cells (HUVECs) express the NGF receptors trkA(NGFR) and p75NTR. NGF treatment caused a rapid phosphorylation of trkA(NGFR) in HUVECs, determining a parallel increase of phosphorylated ERK1/2. Accordingly, NGF induced a significant increase in HUVEC proliferation that was abolished by the trkA(NGFR) inhibitor K252a. Also, HUVECs express significant levels of NGF under standard culture conditions that were up-regulated during serum starvation. Endogenous NGF was responsible for the basal levels of trkA(NGFR) and ERK1/2 phosphorylation observed in untreated HUVEC cultures. Finally, NGF exerted a potent, direct, angiogenic activity in vivo when delivered onto the chorioallantoic membrane of the chicken embryo. The data indicate that NGF may play an important role in blood vessel formation in the nervous system and in several pathological processes, including tumors and inflammatory diseases. Unraveling mechanisms of NGF-dependent angiogenesis could provide valuable tools for novel therapeutic approaches in antiangiogenic therapy.

  2. Nerve growth factor modulates TRPV1 expression and function and mediates pain in chronic pancreatitis.

    PubMed

    Zhu, Yaohui; Colak, Tugba; Shenoy, Mohan; Liu, Liansheng; Pai, Reetesh; Li, Cuiping; Mehta, Kshama; Pasricha, Pankaj Jay

    2011-07-01

    The pathogenesis of pain in chronic pancreatitis (CP) is poorly understood and treatment remains difficult. We hypothesized that nerve growth factor (NGF) plays a key role in this process via its effects on the transient receptor potential vanilloid 1, TRPV1. CP was induced by intraductal injection of trinitrobenzene sulfonic acid in rats. After 3 weeks, anti-NGF antibody or control serum was administered daily for 1 week. Pancreatic hyperalgesia was assessed by nocifensive behavioral response to electrical stimulation of the pancreas as well as by referred somatic pain assessed by von Frey filament testing. TRPV1 currents in pancreatic sensory neurons were examined by patch-clamp. The expression and function of TRPV1 in pancreas-specific nociceptors was examined by immunostaining and quantification of messenger RNA levels. Blockade of NGF significantly attenuated pancreatic hyperalgesia and referred somatic pain compared with controls. It also decreased TRPV1 current density and open probability and reduced the proportion of pancreatic sensory neurons that expressed TRPV1 as well as levels of TRPV1 in these neurons. These findings emphasize a key role for NGF in pancreatic pain and highlight the role it plays in the modulation of TRPV1 expression and activity in CP. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Nerve growth factor evokes hyperalgesia in mice lacking the low-affinity neurotrophin receptor p75.

    PubMed

    Bergmann, I; Reiter, R; Toyka, K V; Koltzenburg, M

    1998-10-16

    Endogenous nerve growth factor (NGF) has been shown to be an important mediator of inflammatory pain and exogenous application of recombinant human NGF (rhNGF) produces pain and hyperalgesia in animals and humans. Since NGF can act through two receptors types, the high affinity tyrosine kinase A (trkA) receptor and the low affinity p75 receptor, we used transgenic mice lacking p75 to analyse the relative importance of these receptors. After systemic injection of rhNGF (5 mg/ kg), pharmacokinetic studies revealed similar serum levels and elimination profiles of exogenously administered rhNGF in both strains of mice. Although animals lacking p75 have increased mechanical and thermal withdrawal thresholds they developed both heat and mechanical hyperalgesia after systemic injection of rhNGF whose magnitude did not differ significantly from wildtype animals. This means that NGF-induced hyperalgesia can occur in the absence of the p75 receptor and suggests that the trkA receptor is sufficient to mediate the acute noxious action of NGF.

  4. Differential activation of dendritic cells by nerve growth factor and brain-derived neurotrophic factor.

    PubMed

    Noga, O; Peiser, M; Altenähr, M; Knieling, H; Wanner, R; Hanf, G; Grosse, R; Suttorp, N

    2007-11-01

    Neurotrophins are involved in inflammatory reactions influencing several cells in health and disease including allergy and asthma. Dendritic cells (DCs) play a major role in the induction of inflammatory processes with an increasing role in allergic diseases as well. The aim of this study was to investigate the influence of neurotrophins on DC function. Monocyte-derived dendritic cells were generated from allergic and non-allergic donors. Neurotrophin receptors were demonstrated by western blotting, flow cytometry and fluorescence microscopy. Activation of small GTPases was evaluated by pull-down assays. DCs were incubated with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and supernatants were collected for measurement of IL-4, IL-6, IL-10, IL-12p70, TNF-alpha and TGF-beta. Receptor proteins were detectable by western blot, fluorescence activated cell sorting analysis and fluorescence microscopy. Signalling after neurotrophin stimulation occurred in a ligand-specific pattern. NGF led to decreased RhoA and increased Rac activation, while BDNF affected RhoA and Rac activity in a reciprocal fashion. Cells of allergics released a significantly increased amount of IL-6, while for healthy subjects a significantly higher amount of IL-10 was found. These data indicate that DCs are activated by the neurotrophins NGF and BDNF by different pathways in a receptor-dependant manner. These cells then may initiate inflammatory responses based on allergic sensitization releasing preferred cytokines inducing tolerance or a T-helper type 2 response.

  5. Neuroprotection by Cocktails of Dietary Antioxidants under Conditions of Nerve Growth Factor Deprivation

    PubMed Central

    Amara, Flavio; Berbenni, Miluscia; Fragni, Martina; Leoni, Giampaolo; Viggiani, Sandra; Ippolito, Vita Maria; Larocca, Marilena; Rossano, Rocco; Alberghina, Lilia; Riccio, Paolo; Colangelo, Anna Maria

    2015-01-01

    Dietary antioxidants may be useful in counteracting the chronic inflammatory status in neurodegenerative diseases by reducing oxidative stress due to accumulation of reactive oxygen species (ROS). In this study, we newly described the efficacy of a number of dietary antioxidants (polyphenols, carotenoids, thiolic compounds, and oligoelements) on viability of neuronal PC12 cells following Nerve Growth Factor (NGF) deprivation, a model of age-related decrease of neurotrophic support that triggers neuronal loss. Neuroprotection by antioxidants during NGF deprivation for 24 h was largely dependent on their concentrations: all dietary antioxidants were able to efficiently support cell viability by reducing ROS levels and restoring mitochondrial function, while preserving the neuronal morphology. Moreover, ROS reduction and neuroprotection during NGF withdrawal were also achieved with defined cocktails of 3–6 different antioxidants at concentrations 5–60 times lower than those used in single treatments, suggesting that their antioxidant activity was preserved also at very low concentrations. Overall, these data indicate the beneficial effects of antioxidants against oxidative stress induced by decreased NGF availability and suggest that defined cocktails of dietary factors at low concentrations might be a suitable strategy to reduce oxidative damage in neurodegenerative diseases, while limiting possible side effects. PMID:26236423

  6. Zhangfei, a novel regulator of the human nerve growth factor receptor, trkA.

    PubMed

    Valderrama, Ximena; Rapin, Noreen; Misra, Vikram

    2008-10-01

    The replication of herpes simplex virus (HSV) in epithelial cells, and during reactivation from latency in sensory neurons, depends on a ubiquitous cellular protein called host cell factor (HCF). The HSV transactivator, VP16, which initiates the viral replicative cycle, binds HCF as do some other cellular proteins. Of these, the neuronal transcription factor Zhangfei suppresses the ability of VP16 to initiate the replicative cycle. It also suppresses Luman, another cellular transcription factor that binds HCF. Interactions of nerve growth factor (NGF) and its receptor tropomyosin-related kinase (trkA) appear to be critical for maintaining HSV latency. Because the neuronal transcription factor Brn3a, which regulates trkA expression, has a motif for binding HCF, we investigated if Zhangfei had an effect on its activity. We found that Brn3a required HCF for activating the trkA promoter and Zhangfei suppressed its activity in non-neuronal cells. However, in neuron-like NGF-differentiated PC12 cells, both Brn3a and Zhangfei activated the trkA promoter and induced the expression of endogenous trkA. In addition, capsaicin, a stressor, which activates HSV in in vitro models of latency, decreased levels of Zhangfei and trkA transcripts in NGF-differentiated PC12 cells.

  7. Altered expression of nerve growth factor and its receptors in the kidneys of diabetic rats.

    PubMed

    Aloe, Luigi; Rossi, Simona; Manni, Luigi

    2011-01-01

    Type 1 diabetes (DB) is a multifactorial metabolic disorder characterized by loss of insulin-producing pancreatic ß-cells, and metabolic and functional deficits in a number of cells, including kidney cells. Nerve growth factor (NGF) is a signaling molecule that is up-regulated in cells affected by diabetes-linked disorders. However, whether DB alters the expression of NGF in the kidney is not known. DB was induced in adult male rats with a single injection of streptozotocin (STZ), and NGF protein levels were analyzed in a time-course study in serum and kidney. The expression of NGF receptors in the kidneys of healthy and DB rats was evaluated by immunohistochemistry. NGF levels as well as apoptotic features in the kidneys of healthy rats injected with purified NGF were also assessed. This study revealed that DB elevates NGF levels in serum and NGF expression in the kidney and that subcutaneous administration of NGF causes a marked uptake of NGF in kidney cells. The elevated presence of NGF in kidney cells is not associated with proapoptotic factor expression. The present data suggest that NGF presence in the kidney might play a survival, and most probably protective, role in kidney cells.

  8. Expression Profile of Nerve Growth Factor after Muscle Incision in the Rat

    PubMed Central

    Wu, Chaoran; Erickson, Mark A.; Xu, Jun; Wild, Kenneth D.; Brennan, Timothy J.

    2009-01-01

    Background Previous studies have demonstrated that nerve growth factor (NGF) is an important mediator of pathologic pain. Many studies have focused on cutaneous mechanisms for NGF-induced hyperalgesia; few have examined its contribution in deeper tissues like muscle. This study examined pain behaviors and the expression of NGF in incised hind paw flexor digitorum brevis muscle. Methods Adult Sprague-Dawley rats were pretreated with anti-NGF peptibody and underwent skin or skin plus deep fascia and muscle incision. Guarding pain behaviors were measured. Muscle NGF messenger RNA (mRNA) was measured by real time polymerase chain reaction. Changes in NGF protein expression were measured using western blot, enzyme-linked immunoabsorbent assay and immunohistochemistry. In situ hybridization for NGF mRNA was also performed. Results Pretreatment with anti-NGF peptibody (100 mg/kg) decreased the guarding behavior caused by deep fascia and muscle incision. Muscle NGF mRNA increased abruptly 2 h after incision and was the same as control by postoperative day 1. NGF protein increased from 4 h after incision, and was sustained for several days. NGF was localized in many calcitonin gene related peptide positive axons, few N52 positive axons, but not isolectin B4 positive axons in incised muscle. The sources of NGF mRNA included keratinocytes in epidermis and fibroblasts in deeper tissues. Conclusion Fibroblasts adjacent to the injury are sources of NGF in incised muscle. NGF is upregulated by incision of muscle and contributes to guarding pain behavior. PMID:19104181

  9. Reduced nerve growth factor levels in stress-related brain regions of folate-deficient mice.

    PubMed

    Eckart, S; Hörtnagl, H; Kronenberg, G; Gertz, K; Hörster, H; Endres, M; Hellweg, R

    2013-08-15

    Folate deficiency has been linked to neurodegenerative and stress-related diseases such as stroke, dementia and depression. The role of the neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) in stress-related disorders and neurodegeneration has garnered increasing attention in recent years. Uracil misincorporation is involved in the neuropsychiatric dysfunction induced by experimental folate deprivation. However, the effects of folate deficiency on the expression of NGF and NT-3 in brain tissue have not yet been investigated. In a 2×2 design, aged mice lacking uracil-DNA N-glycosylase (Ung(-/-)) versus wild-type (Ung(+/+)) controls were subjected to a folate-deficient diet versus a regular diet for three months. Independent of genotype, folate deficiency led to decreased NGF protein levels in the frontal cortex and amygdala. In the hippocampus, NGF levels were increased in UNG(-/-) mice on the normal diet, but not under folate deficiency, while in UNG(+/+) mice, folate deprivation did not affect hippocampal NGF content. NT-3 protein concentrations were neither affected by genotype nor by folate deficiency. Altogether, the results of our study show that folate deficiency affects NGF levels in the frontal cortex, amygdala and hippocampus. The decrease in NGF content in the hippocampus in response to folate deficiency in Ung(-/-) mice may contribute to their phenotype of enhanced anxiety and despair-like behavior as well as to selective hippocampal neurodegeneration. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Enhanced bioavailability of nerve growth factor with phytantriol lipid-based crystalline nanoparticles in cochlea

    PubMed Central

    Bu, Meng; Tang, Jingling; Wei, Yinghui; Sun, Yanhui; Wang, Xinyu; Wu, Linhua; Liu, Hongzhuo

    2015-01-01

    Purpose Supplementation of exogenous nerve growth factor (NGF) into the cochlea of deafened animals rescues spiral ganglion cells from degeneration. However, a safe and potent delivery of therapeutic proteins, such as NGF, to spiral ganglion cells remains one of the greatest challenges. This study presents the development of self-assembled cubic lipid-based crystalline nanoparticles to enhance inner ear bioavailability of bioactive NGF via a round window membrane route. Methods A novel nanocarrier-entrapped NGF was developed based on phytantriol by a liquid precursor dilution, with Pluronic® F127 and propylene glycol as the surfactant and solubilizer, respectively. Upon dilution of the liquid lipid precursors, monodispersed submicron-sized particles with a slight negative charge formed spontaneously. Results Biological activity of entrapped NGF was assessed using pheochromocytoma cells with NGF-loaded reservoirs to induce significant neuronal outgrowth, similar to that seen in free NGF-treated controls. Finally, a 3.28-fold increase in inner ear bioavailability was observed after administration of phytantriol lipid-based crystalline nanoparticles as compared to free drug, contributing to an enhanced drug permeability of the round window membrane. Conclusion Data presented here demonstrate the potential of lipid-based crystalline nanoparticles to improve the outcomes of patients bearing cochlear implants. PMID:26604754

  11. Acid fibroblast growth factor and peripheral nerve grafts regulate Th2 cytokine expression, macrophage activation, polyamine synthesis, and neurotrophin expression in transected rat spinal cords.

    PubMed

    Kuo, Huai-Sheng; Tsai, May-Jywan; Huang, Ming-Chao; Chiu, Chuan-Wen; Tsai, Ching-Yi; Lee, Meng-Jen; Huang, Wen-Cheng; Lin, Yi-Lo; Kuo, Wen-Chun; Cheng, Henrich

    2011-03-16

    Spinal cord injury elicits an inflammatory response that recruits macrophages to the injured spinal cord. Quantitative real-time PCR results have shown that a repair strategy combining peripheral nerve grafts with acidic fibroblast growth factor (aFGF) induced higher interleukin-4 (IL-4), IL-10, and IL-13 levels in the graft areas of rat spinal cords compared with transected spinal cords at 10 and 14 d. This led to higher arginase I-positive alternatively activated macrophage (M2 macrophage) responses. The gene expression of several enzymes involved in polyamine biosynthesis pathways was also upregulated in the graft areas of repaired spinal cords. The treatment induced a twofold upregulation of polyamine levels at 14 d, as confirmed by HPLC. Polyamines are important for the repair process, as demonstrated by the observation that treatment with inhibitors of arginase I and ornithine decarboxylase attenuates the functional recoveries of repaired rats. After 14 d, the treatment also induced the expression of neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), as well as M2 macrophages within grafted nerves expressing BDNF. IL-4 was upregulated in the injury sites of transected rats that received aFGF alone compared with those that received nerve grafts alone at 10 d. Conversely, nerve graft treatment induced NGF and BDNF expression at 14 d. Macrophages expressing polyamines and BDNF may benefit axonal regeneration at 14 d. These results indicate that aFGF and nerve grafts regulate different macrophage responses, and M2 macrophages may play an important role in axonal regeneration after spinal cord injury in rats.

  12. Complementary Effects of Two Growth Factors in Multifunctionalized Silk Nanofibers for Nerve Reconstruction

    PubMed Central

    Jose, Rodrigo R.; Vigneron, Pascale; Bresson, Damien; Fitzpatrick, Vincent; Marin, Frédéric; Kaplan, David L.; Egles, Christophe

    2014-01-01

    With the aim of forming bioactive guides for peripheral nerve regeneration, silk fibroin was electrospun to obtain aligned nanofibers. These fibers were functionalized by incorporating Nerve Growth Factor (NGF) and Ciliary NeuroTrophic Factor (CNTF) during electrospinning. PC12 cells grown on the fibers confirmed the bioavailability and bioactivity of the NGF, which was not significantly released from the fibers. Primary neurons from rat dorsal root ganglia (DRGs) were grown on the nanofibers and anchored to the fibers and grew in a directional fashion based on the fiber orientation, and as confirmed by growth cone morphology. These biofunctionalized nanofibers led to a 3-fold increase in neurite length at their contact, which was likely due to the NGF. Glial cell growth, alignment and migration were stimulated by the CNTF in the functionalized nanofibers. Organotypic culture of rat fetal DRGs confirmed the complementary effect of both growth factors in multifunctionalized nanofibers, which allowed glial cell migration, alignment and parallel axonal growth in structures resembling the ‘bands of Bungner’ found in situ. Graftable multi-channel conduits based on biofunctionalized aligned silk nanofibers were developed as an organized 3D scaffold. Our bioactive silk tubes thus represent new options for a biological and biocompatible nerve guidance conduit. PMID:25313579

  13. Rita Levi-Montalcini: the discovery of nerve growth factor and modern neurobiology.

    PubMed

    Aloe, Luigi

    2004-07-01

    The remarkable accomplishments in developmental neurobiology within the past 60 years have depended on two things: (i) a succession of original histochemical and immunohistochemical methodologies for identifying pathways in the nervous system with increasing precision and sensitivity, and (ii) the discovery of growth factors for neurons. Growth factors are naturally occurring, essential biological mediators that promote cell growth, differentiation, survival and function in specific nerve cell populations. The discovery of nerve growth factor (NGF) by Rita Levi-Montalcini in the 1950s represents an important milestone in the processes that led to modern cell biology. NGF was the first growth factor identified, for its action on the morphological differentiation of neural-crest-derived nerve cells. Later, its effect on neuronal cells of the peripheral and central nervous systems, and on several non-neuronal cells was also determined. Thus, Levi-Montalcini's work on NGF represents, as acknowledged by the Nobel Prize Assembly in its press release of 13 October 1986, "a fascinating example of how a skilled observer can create a concept out of apparent chaos".

  14. Delay-induced destabilization of entrainment of nerve impulses on ephaptically coupled nerve fibers

    NASA Astrophysics Data System (ADS)

    Adhikari, Mohit H.; McIver, John K.; Coutsias, Evangelos A.

    2009-01-01

    We study the effect of delay on the synchronization of two nerve impulses traveling along two ephaptically coupled, unmyelinated nerve fibers. The system is modeled as a pair of delay-coupled Fitzhugh-Nagumo equations. A multiple-scale perturbation approach is used for the analysis of these equations in the limit of weak coupling. In the absence of delay, two pulses with identical speeds are shown to be entrained precisely. However, as the delay is increased beyond a critical value, we show that this precise entrainment becomes unstable. We make quantitative estimates for the actual values of delay at which this can occur in the case of squid giant axons and compare them with the relevant time scales involved.

  15. Stretch-induced nerve injury: a proposed technique for the study of nerve regeneration and evaluation of the influence of gabapentin on this model.

    PubMed

    Machado, J A; Ghizoni, M F; Bertelli, J; Teske, Gabriel C; Teske, Guilherme C; Martins, D F; Mazzardo-Martins, L; Cargnin-Ferreira, E; Santos, A R S; Piovezan, A P

    2013-11-06

    The rat models currently employed for studies of nerve regeneration present distinct disadvantages. We propose a new technique of stretch-induced nerve injury, used here to evaluate the influence of gabapentin (GBP) on nerve regeneration. Male Wistar rats (300 g; n=36) underwent surgery and exposure of the median nerve in the right forelimbs, either with or without nerve injury. The technique was performed using distal and proximal clamps separated by a distance of 2 cm and a sliding distance of 3 mm. The nerve was compressed and stretched for 5 s until the bands of Fontana disappeared. The animals were evaluated in relation to functional, biochemical and histological parameters. Stretching of the median nerve led to complete loss of motor function up to 12 days after the lesion (P<0.001), compared to non-injured nerves, as assessed in the grasping test. Grasping force in the nerve-injured animals did not return to control values up to 30 days after surgery (P<0.05). Nerve injury also caused an increase in the time of sensory recovery, as well as in the electrical and mechanical stimulation tests. Treatment of the animals with GBP promoted an improvement in the morphometric analysis of median nerve cross-sections compared with the operated vehicle group, as observed in the area of myelinated fibers or connective tissue (P<0.001), in the density of myelinated fibers/mm2 (P<0.05) and in the degeneration fragments (P<0.01). Stretch-induced nerve injury seems to be a simple and relevant model for evaluating nerve regeneration.

  16. Nerve Growth Factor Effects on the Immune System

    DTIC Science & Technology

    1989-12-19

    growth factor protein, NGF, has been shown to play a physiologic role in the development and regeneration of the peripheral nervous system, acting on...determine the effects of NGF on lymphocytes with an aim to understanding the physiological and developmental role of NGF in the immune system. Our approaches...Thorpe and Perez-Polo, 1987). Although the maximal response of these cells occurs at levels significantly above those considered physiological it is

  17. Mesenchymal stem cells modified with nerve growth factor improve recovery of the inferior alveolar nerve after mandibular distraction osteogenesis in rabbits.

    PubMed

    Wang, L; Zhao, Y; Cao, J; Yang, X; Lei, D

    2015-03-01

    Distraction osteogenesis is widely used in the treatment of bony deformities and defects. However, injury to the inferior alveolar nerve is a concern. Our aim was to investigate the feasibility of using lentiviral-mediated human nerve growth factor beta (hNGFβ) of the inferior alveolar nerve in mandibular distraction osteogenesis in rabbits. To achieve this, mesenchymal stem cells (MSC) from the bone marrow of rabbit mandibles were isolated and genetically engineered using recombinant lentiviral vector containing hNGFβ. Twenty New Zealand white rabbits underwent mandibular distraction osteogenesis, and 5 million MSC transduced with hNGFβ-vector or control vector were transplanted around the nerve in the gap where the bone had been fractured during the operation (n=10 in each group). After gradual distraction, samples of the nerve were harvested for histological and histomorphometric analysis. We found that the genetically engineered MSC transduced by the lentiviral vector were able to secrete hNGFβ at physiologically relevant concentrations as measured by ELISA. Histological examination of the nerve showed more regenerating nerve fibres and less myelin debris in the group in which hNGFβ-modified MSC had been implanted than in the control group. Histomorphometric analysis of the nerve showed increased density of myelinated fibres in the group in which hNGFβ-modified MSC had been implanted than in the control group. The data suggest that implantation of hNGFβ-modified MSC can accelerate the morphological recovery of the inferior alveolar nerve during mandibular distraction osteogenesis in rabbits. The use of lentiviral-mediated gene treatment to deliver hNGFβ through MSC may be a promising way of minimising injury to the nerve. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Nerve terminal growth remodels neuromuscular synapses in mice following regeneration of the postsynaptic muscle fiber.

    PubMed

    Li, Yue; Thompson, Wesley J

    2011-09-14

    Muscle fibers degenerate and regenerate in response to contractile damage, during aging, and in various muscle diseases that weaken the fibers. It is known that degeneration and regeneration of the segment of the postsynaptic fiber produces dramatic alterations in the neuromuscular junction (NMJ) that forms on the regenerated fiber, but the mechanisms here are incompletely understood. We have used a laser microbeam to damage the postsynaptic fibers at individual NMJs in the sternomastoid muscle of living young adult mice and then followed the synapses vitally over time using fluorescent proteins expressed in motor neurons and glial cells and staining of postsynaptic acetylcholine receptors. We find, in contrast to previous reports, that the mouse nerve terminal retains contact with the synaptic basal lamina marked by cholinesterase staining even in the absence of the target, showing that this terminal does not require a continuous supply of target-derived molecules for its maintenance. Thus, remodeling of the nerve terminal during the period of target absence does not explain the subsequent changes in the new NMJ. Rather, we see that the synapse becomes altered as the new fiber segment regenerates. Mechanisms for remodeling the synapse include failure of the regenerating muscle fiber to contact the old basal lamina and nerve terminal, growth of the nerve terminal and its glia toward the regenerating fiber, and remodeling of the initial contact as the nerve terminal becomes varicose.

  19. Nerve Growth Factor Secretion From Pulp Fibroblasts is Modulated by Complement C5a Receptor and Implied in Neurite Outgrowth

    PubMed Central

    Chmilewsky, Fanny; Ayaz, Warda; Appiah, James; About, Imad; Chung, Seung-Hyuk

    2016-01-01

    Given the importance of sensory innervation in tooth vitality, the identification of signals that control nerve regeneration and the cellular events they induce is essential. Previous studies demonstrated that the complement system, a major component of innate immunity and inflammation, is activated at the injured site of human carious teeth and plays an important role in dental-pulp regeneration via interaction of the active Complement C5a fragment with pulp progenitor cells. In this study, we further determined the role of the active fragment complement C5a receptor (C5aR) in dental nerve regeneration in regards to local secretion of nerve growth factor (NGF) upon carious injury. Using ELISA and AXIS co-culture systems, we demonstrate that C5aR is critically implicated in the modulation of NGF secretion by LTA-stimulated pulp fibroblasts. The NGF secretion by LTA-stimulated pulp fibroblasts, which is negatively regulated by C5aR activation, has a role in the control of the neurite outgrowth length in our axon regeneration analysis. Our data provide a scientific step forward that can guide development of future therapeutic tools for innovative and incipient interventions targeting the dentin-pulp regeneration process by linking the neurite outgrowth to human pulp fibroblast through complement system activation. PMID:27539194

  20. Nerve Growth Factor Gene Therapy: Activation of Neuronal Responses in Alzheimer Disease.

    PubMed

    Tuszynski, Mark H; Yang, Jennifer H; Barba, David; U, Hoi-Sang; Bakay, Roy A E; Pay, Mary M; Masliah, Eliezer; Conner, James M; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H

    2015-10-01

    Alzheimer disease (AD) is the most common neurodegenerative disorder and lacks effective disease-modifying therapies. In 2001, we initiated a clinical trial of nerve growth factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in patients with AD. We present postmortem findings in 10 patients with survival times ranging from 1 to 10 years after treatment. To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. Patients in this anatomicopathological study were enrolled in clinical trials from March 2001 to October 2012 at the University of California, San Diego, Medical Center in La Jolla. Ten patients with early AD underwent NGF gene therapy using ex vivo or in vivo gene transfer. The brains of all 8 patients in the first phase 1 ex vivo trial and of 2 patients in a subsequent phase 1 in vivo trial were examined. Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In 2 patients, NGF protein levels were measured by enzyme-linked immunosorbent assay. Among 10 patients, degenerating neurons in the AD brain responded to NGF. All patients exhibited a trophic response to NGF in the form of axonal sprouting toward the NGF source. Comparing treated and nontreated sides of the brain in 3 patients who underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P < .05). Activation of cellular signaling and functional markers was present in 2 patients who underwent adeno-associated viral vectors (serotype 2)-mediated NGF gene transfer. Neurons exhibiting tau pathology and neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic

  1. Combined treatment with FK506 and nerve growth factor for spinal cord injury in rats.

    PubMed

    Chen, Guang; Zhang, Zhen; Wang, Shouyu; Lv, Decheng

    2013-10-01

    Following spinal cord injury in rats, FK506 is able to protect local nerve tissue, promote neural regeneration, reduce neuronal apoptosis and accelerate the recovery of spinal cord functions. Nerve growth factor (NGF) is important in the regulation of central and peripheral nerve cell regeneration, growth differentiation and functions. Previous studies have shown that FK506 and NGF exhibit a synergistic effect in the treatment of peripheral nerve injury; however, it remains unclear whether the synergistic effect is present in the treatment of spinal cord injury. In this study, we combined FK506 and NGF for the treatment of spinal cord injury in rats. The NF200 protein expression in rats with spinal cord injury was determined using immunohistochemical staining and NF200 mRNA expression levels were observed using the reverse transcription-polymerase chain reaction method. The restoration of spinal cord functions was evaluated using the Basso, Beattie and Bresnahan score. The results demonstrated that the combined treatment significantly enhanced the expression of NF200 and improved spinal cord functions compared with the results of the single treatment. Our experimental observations indicated that FK506 and NGF exhibit a synergistic effect in the treatment of spinal cord injury in rats and that the combined treatment may effectively promote neural regeneration and functional recovery in rats following spinal cord injury.

  2. Pituitary adenylyl cyclase-activating polypeptide and nerve growth factor use the proteasome to rescue nerve growth factor-deprived sympathetic neurons cultured from chick embryos.

    PubMed

    Przywara, D A; Kulkarni, J S; Wakade, T D; Leontiev, D V; Wakade, A R

    1998-11-01

    Removal of nerve growth factor (NGF) from sympathetic neurons initiates a neuronal death program and apoptosis. We show that pituitary adenylyl cyclase-activating polypeptide (PACAP) prevents apoptosis in NGF-deprived sympathetic neurons. PACAP (100 nM) added to culture medium at the time of plating failed to support neuronal survival. However, in neurons grown for 2 days with NGF and then deprived of NGF, PACAP prevented cell death for the next 24-48 h. Uptake of [3H]norepinephrine ([3H]NE) was used as an index of survival and decreased >50% in NGF-deprived cultures within 24 h. PACAP (1-100 nM) restored [3H]NE uptake to 92 +/- 8% of that of NGF-supported controls. Depolarization-induced [3H]NE release in neurons rescued by PACAP was the same as that in NGF-supported neurons. PACAP rescue was not mimicked by forskolin or 8-bromo-cyclic AMP and was not blocked by the protein kinase A inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate. Mobilization of phosphatidylinositol by muscarine failed to support NGF-deprived neurons. Thus, PACAP may use novel signaling to promote survival of sympathetic neurons. The apoptosis-associated caspase CPP32 activity increased approximately fourfold during 6 h of NGF withdrawal (145 +/- 40 versus 38 +/- 17 nmol of substrate cleaved/min/mg of protein) and returned to even below the control level in NGF-deprived, PACAP-rescued cultures (14 +/- 7 nmol/min/mg of protein). Readdition of NGF or PACAP to NGF-deprived cultures reversed CPP32 activation, and this was blocked by lactacystin, a potent and specific inhibitor of the 20S proteasome, suggesting that NGF and PACAP target CPP32 for destruction by the proteasome. As PACAP is a preganglionic neurotransmitter in autonomic ganglia, we propose a novel function for this transmitter as an apoptotic rescuer of sympathetic neurons when the supply of NGF is compromised.

  3. Statins alleviate experimental nerve injury-induced neuropathic pain.

    PubMed

    Shi, Xiang Qun; Lim, Tony K Y; Lee, Seunghwan; Zhao, Yuan Qing; Zhang, Ji

    2011-05-01

    The statins are a well-established class of drugs that lower plasma cholesterol levels by inhibiting HMG-CoA (3-hydroxy-3-methyl-glutaryl-coenzyme A) reductase. They are widely used for the treatment of hypercholesterolemia and for the prevention of coronary heart disease. Recent studies suggest that statins have anti-inflammatory effects beyond their lipid-lowering properties. We sought to investigate whether statins could affect neuropathic pain by mediating nerve injury-associated inflammatory responses. The effects of hydrophilic rosuvastatin and lipophilic simvastatin were examined in the mouse partial sciatic nerve ligation model. Systemic daily administration of either statin from days 0 to 14 completely prevented the development of mechanical allodynia and thermal hyperalgesia. When administered from days 8 to 14 after injury, both statins dose-dependently reduced established hypersensitivity. After treatment, the effects of the statins were washed out within 2 to 7 days, depending on dose. Effects of both statins in alleviating mechanical allodynia were further confirmed in a different injury-associated neuropathic pain model, mental nerve chronic constriction, in rats. Both statins were able to abolish interleukin-1β expression in sciatic nerve triggered by nerve ligation. Additionally, quantitative analysis with Iba-1 and glial fibrillary acid protein immunoreactivity demonstrated that rosuvastatin and simvastatin significantly reduced the spinal microglial and astrocyte activation produced by sciatic nerve injury. The increase of interleukin-1β mRNA in the ipsilateral side of spinal cords was also reduced by the treatment of either statin. We identified a potential new application of statins in the treatment of neuropathic pain. The pain-alleviating effects of statins are likely attributable to their immunomodulatory effects.

  4. Sulodexide prevents peripheral nerve damage in streptozotocin induced diabetic rats.

    PubMed

    Jin, Heung Yong; Lee, Kyung Ae; Song, Sun Kyung; Liu, Wei Jing; Choi, Ji Hae; Song, Chang Ho; Baek, Hong Sun; Park, Tae Sun

    2012-01-15

    We investigated whether sulodexide has additional protective effects against peripheral nerve damage caused by microvascular dysfunction in a rat model of diabetes. Female Sprague-Dawley (SD) rats were divided into the following 4 groups (n=7-9/group): Normal, Normal+Sulodexide (sulodexide 10mg/kg), diabetic group, and diabetic+Sulodexide (sulodexide 10mg/kg). We assessed current perception threshold, skin blood flow, superoxide dismutase, and proteinuria in experimental rats after oral administration of sulodexide for 20 weeks. We also performed morphometric analysis of sciatic nerves and intraepidermal nerve fibers of the foot. Superoxide dismutase activity in the blood and sciatic nerve were increased significantly after sulodexide treatment in the diabetic group. Current perception threshold was reduced at 2000 Hz (633.3 ± 24.15 vs 741.2 ± 23.5 μA, P<0.05) and skin blood flow was improved (10.90 ± 0.67 vs 8.85 ± 0.49 TPU, P<0.05) in the diabetic+Sulodexide group compared with the diabetic group. The mean myelinated axon area was significantly larger (56.6 ± 2.2 vs 49.8 ± 2.7 μm(2), P<0.05) and the intraepidermal nerve fiber density was significantly less reduced (6.27 ± 0.24 vs 5.40 ± 0.25/mm, P<0.05) in the diabetic+Sulodexide group compared to the diabetic group. Our results demonstrate that sulodexide exhibits protective effects against peripheral nerve damage in a rat experimental model of diabetes. Therefore, these findings suggest that sulodexide is a potential new therapeutic agent for diabetic peripheral neuropathy.

  5. The protective effects of DA-9801 (Dioscorea extract) on the peripheral nerves in streptozotocin-induced diabetic rats.

    PubMed

    Lee, Kyung Ae; Jin, Heung Yong; Baek, Hong Sun; Park, Tae Sun

    2013-01-01

    It has been reported that DA-9801, an extract mixture of Dioscorea japonica Thunb and Dioscorea nipponica Makino, produces a neurotrophic activity. Therefore, this study was conducted to examine the neuroprotective effects of DA-9801 in streptozotocin-induced diabetic rats. The experimental rats were divided into six groups: the control group, Group I (non-diabetic rats treated with DA-9801), Group II (diabetic, non-treated rats) and Groups III, IV, and V (diabetic rats treated with DA-9801 at doses of 10, 50 or 100 mg/kg/d). Following a 16-wk course of oral treatment with DA-9801, functional parameters (von Frey filament test, hot plate test), biochemical parameters (nerve growth factor (NGF), tumor necrosis factor (TNF)-α, interleukin (IL)-6) were measured. An immunohistochemical staining was done to assess the neuroprotective effects of DA-9081 in the skin, sciatic nerve, gastric mucosa and renal cortex. In Week 8, pain was evoked by either tactile or thermal stimuli, whose threshold was significantly higher in Group III, IV and V than Group II. Western blot analysis showed a more significant increase in NGF and decrease in TNF-α and IL-6 in Group III, IV and V than in Group II (p<0.05). Moreover, following the treatment with DA-9801, a loss of intraepidermal nerve fibers (IENFs) was inhibited to a significant level in the skin, myelinated axonal fibers of the sciatic nerve and small nerve fibers innervating the gastric mucosa or renal cortex (p<0.05). Our results demonstrated that DA-9801 is a beneficial agent that protects the peripheral nerves in diabetic rats.

  6. Concentration-dependent effect of nerve growth factor on cell fate determination of neural progenitors.

    PubMed

    Zhang, Lei; Jiang, Hui; Hu, Zhengqing

    2011-10-01

    Stem cell-based spiral ganglion neuron (SGN) replacement therapy has been proposed to be a promising strategy to restore hearing either via replacing degenerated neurons or by improving the efficacy of cochlear implants which rely on functional neurons. However, lack of suitable donor cells and low survival rate of implanted cells are the major obstacles to successful implementation of therapeutic transplantation. The present study investigated the potential of mouse inner ear statoacoustic ganglion (SAG)-derived neural progenitors (NPs) to differentiate toward SGN-like glutamatergic cells and the influence to cell survival and differentiation when nerve growth factor (NGF) was supplied. We found that SAG-NPs could form neurospheres, proliferate, and differentiate into cells expressing neuronal protein neurofilament and β-III tubulin. NGF affected the cell fate of SAG-NP in a concentration-dependent manner in vitro. Low concentration of NGF (2-5 ng/mL) promoted cell proliferation. Medium concentration of NGF (20-40 ng/mL) stimulated cells to differentiate into bi-polar SGN-like cells expressing glutamatergic proteins. High concentration of NGF (100 ng/mL) could rescue cells from induced apoptosis. In the in vivo study, NGF (100 ng/mL) dramatically enhanced SAG-NP survival rate after implantation into adult mammalian inner ear. This finding raises the possibility to further induce these NPs to differentiate into SGN-like neurons in future in vivo study. In conclusion, given the capability of proliferation and differentiation into SGN-like cells with the supplement of NGF in vitro, SAG-NPs can serve as donor cells in stem cell-based SGN replacement therapy. NGF improved the survival of SAG-NPs not only in vitro but also in vivo.

  7. Severe Acute Orthopnea: Ipilimumab-Induced Bilateral Phrenic Nerve Neuropathy.

    PubMed

    Jinnur, Praveen; Lim, Kaiser G

    2015-08-01

    Ipilimumab is a monoclonal antibody used in the treatment of unresectable or metastatic melanoma. Several immune-related adverse events including potential fatal events have been reported following its use. We report a case of a 66-year-old man who presented with severe acute exertional dyspnea and orthopnea following administration of ipilimumab for metastatic melanoma. Although various peripheral neuropathy syndromes associated with ipilimumab have been reported, bilateral phrenic nerve paralysis has not been previously reported. This case also highlights the clinical features of bilateral phrenic nerve neuropathy. Pulmonologists have to be aware of these unusual immune-related respiratory adverse events in patients being treated with monoclonal antibodies.

  8. Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve

    PubMed Central

    2012-01-01

    Background Trigeminal neuropathic pain attacks can be excruciating for patients, even after being lightly touched. Although there are rodent trigeminal nerve research models to study orofacial pain, few models have been applied to studies in mice. A mouse trigeminal inflammatory compression (TIC) model is introduced here which successfully and reliably promotes vibrissal whisker pad hypersensitivity. Results The chronic orofacial neuropathic pain model is induced after surgical placement of chromic gut suture in the infraorbital nerve fissure in the maxillary bone. Slight compression and chemical effects of the chromic gut suture on the portion of the infraorbital nerve contacted cause mild nerve trauma. Nerve edema is observed in the contacting infraorbital nerve bundle as well as macrophage infiltration in the trigeminal ganglia. Centrally in the spinal trigeminal nucleus, increased immunoreactivity for an activated microglial marker is evident (OX42, postoperative day 70). Mechanical thresholds of the affected whisker pad are significantly decreased on day 3 after chromic gut suture placement, persisting at least 10 weeks. The mechanical allodynia is reversed by suppression of microglial activation. Cold allodynia was detected at 4 weeks. Conclusions A simple, effective, and reproducible chronic mouse model mimicking clinical orofacial neuropathic pain (Type 2) is induced by placing chromic gut suture between the infraorbital nerve and the maxillary bone. The method produces mild inflammatory compression with significant continuous mechanical allodynia persisting at least 10 weeks and cold allodynia measureable at 4 weeks. PMID:23270529

  9. Molecular cloning of a human gene that is a member of the nerve growth factor family

    SciTech Connect

    Jones, K.R.; Reichardt, L.F. )

    1990-10-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. The authors have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development.

  10. Nerve growth factor corrects developmental impairments of basal forebrain cholinergic neurons in the trisomy 16 mouse.

    PubMed Central

    Corsi, P; Coyle, J T

    1991-01-01

    The trisomy 16 (Ts16) mouse, which shares genetic and phenotypic homologies with Down syndrome, exhibits impaired development of the basal forebrain cholinergic system. Basal forebrains obtained from Ts16 and euploid littermate fetuses at 15 days of gestation were dissociated and cultured in completely defined medium, with cholinergic neurons identified by choline acetyltransferase (ChAT) immunoreactivity. The Ts16 cultures exhibited fewer ChAT-immunoreactive neurons, which were smaller and emitted shorter, smoother, and more simplified neurites than those from euploid littermates. Whereas the addition of beta-nerve growth factor (100 ng/ml) augmented the specific activity of ChAT and neuritic extension for both Ts16 and euploid cholinergic neurons, only Ts16 cultures exhibited an increase in the number and size of ChAT-immunoreactive neurons. Furthermore, Ts16 ChAT-immunoreactive neurites formed varicosities only in the presence of beta-nerve growth factor. Images PMID:2000385

  11. Nerve growth factor (NGF) promotes angiogenesis in the quail chorioallantoic membrane.

    PubMed

    Lazarovici, Philip; Gazit, Aviv; Staniszewska, Izabela; Marcinkiewicz, Cezary; Lelkes, Peter I

    2006-01-01

    Angiogenesis, the formation of new blood vessels, is tightly regulated by growth factors, such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). The authors hypothesize that nerve growth factor (NGF), a well known neurotrophin, may play a direct angiogenic role. To test this hypothesis, the authors measured the effects of NGF on the natural vascularization of the quail chorioallantoic membrane (CAM). The angiogenic effect of NGF was compared to that of human recombinant VEGF165 (rhVEGF) and basic FGF (rhbFGF). In comparison to phosphate-buffered saline-treated controls, NGFs from different biological sources (mouse, viper, and cobra) increased the rate of angiogenesis in a dose-dependent fashion from 0.5 to 5 microg. For quantitative morphometry, grayscale images of the blood vessels end points of the CAM arteries were binarized for visualization and skeletonized for quantization by fractal analysis. In mouse NGF-treated embryos the fractal dimension (Df), indicative of arterial vessel length and density, increased to 1.266 +/- 0.021 compared to 1.131 +/- 0.018 (p < .001) for control embryos. This effect was similar to that of 0.5 microg rhVEGF (1.290 +/- 0.021, p < .001) and 1.5 microg rhbFGF (1.264 +/- 0.028, p < .001). The mouse NGF-induced angiogenic effect was blocked by 1 microM K252a (1.149 +/- 0.018, p < .001), an antagonist of the NGF/trkA receptor, but not by 1 microM SU-5416 (1.263 +/- 0.029, p < .001), the VEGF/Flk1 receptor antagonist, indicating a direct, selective angiogenic effect of NGF via quail embryo trkA receptor activation. These results confirm previous observations that NGF has angiogenic activity and suggest that this neurotrophin may also play an important role in the cardiovascular system, besides its well-known effects in the nervous system. The angiogenic properties of NGF may be beneficial in engineering new blood vessels and for developing novel antiangiogenesis therapies for cancer.

  12. Effect of subcutaneous administration of calcium channel blockers on nerve injury-induced hyperalgesia.

    PubMed

    White, D M; Cousins, M J

    1998-08-10

    Recent studies suggest that calcium contributes to peripheral neural mechanisms of hyperalgesia associated with nerve damage. In this animal behavioural study, we examined further the contribution of calcium in neuropathic pain by testing whether subcutaneous administration of either a calcium chelating agent or voltage-dependent calcium channel blockers attenuate nerve injury-induced hyperalgesia to mechanical stimulation. Studies were carried out in animals with partially ligated sciatic nerves, an established animal model of neuropathic pain. The nociceptive flexion reflex was quantified using an Ugo Basile Analgesymeter. Partial nerve injury induced a significant decrease in mechanical threshold compared to the sham operated controls. Daily subcutaneous injections of the calcium chelating agent, Quin 2 (20 microgram/2.5 microliter), significantly attenuated the nerve injury-induced hyperalgesia. Similarly, SNX-111, a N-type channel blocker, also significantly attenuated the nerve injury-induced hyperalgesia. SNX-230, a P and/or Q-type channel blocker, and nifedipine, a L-type channel blocker, had no effect on the hyperalgesia to mechanical stimulation. In control experiments, SNX-111 had no effect on mechanical thresholds when administered subcutaneously in either the hindpaw of normal animals or the back of the neck in nerve injury animals. This study shows that neuropathic pain involves a local calcium-dependent mechanism in the receptive field of intact neurons of an injured nerve, since it can be alleviated by subcutaneous injections of either a calcium chelating agent or SNX-111, a N-type calcium channel blocker. These agents may be effective, peripherally acting therapeutic agents for neuropathic pain.

  13. Soft Graphene Nanofibers Designed for the Acceleration of Nerve Growth and Development.

    PubMed

    Feng, Zhang-Qi; Wang, Ting; Zhao, Bin; Li, Jiacheng; Jin, Lin

    2015-11-04

    Soft graphene nanofibers with recoverable electrical conductivity and excellent physicochemical stability are prepared by a controlled assembly technique. By using the soft graphene nanofibers for cellular electrical stimulation, the common inhibitory effect of long-term electrical stimulation on nerve growth and development is avoided, which usually happens with traditional 2D conductive materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of administration of antibodies against nerve growth factor in a rat model of muscle injury.

    PubMed

    Suzuki, Masahiro; Inage, Kazuhide; Sakuma, Yoshihiro; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Takane; Suzuki, Miyako; Kubota, Go; Oikawa, Yasuhiro; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Shiga, Yasuhiro; Abe, Koki; Kanamoto, Hirohito; Takahashi, Kazuhisa; Ohtori, Seiji

    2016-03-01

    Although muscle injury is a common source of pain, the mechanism causing such pain is not completely known. We have previously reported nerve growth factor (NGF) as a proinflammatory mediator involved in acute pain, and clinical trials have shown the effectiveness of anti-NGF antibodies for management of low back pain. Here, we aim to examine the effects of anti-NGF antibodies on muscle-derived pain by studying their effects on sensory innervation in a rat muscle injury model. A nervous system tracer, Fluoro-Gold, was applied to both gastrocnemius muscles of 24 male Sprague Dawley rats to stain the sensory nerves. Then, the drop-mass method was used to damage the right gastrocnemius muscle of the posterior limb. Anti-NGF antibodies (50μL) were injected into the injured muscles in 12 rats. Tissues were evaluated 1, 3, and 7 days post-injury by performing haematoxylin-and-eosin (HE) staining. The percentage of the total number of FG-positive cells that were also positive for a pain-related neuropeptide, calcitonin gene-related peptide (CGRP), was determined for the bilateral dorsal root ganglia from L1 to L6 7 days post-injury. HE staining showed active inflammation, indicated by increased basophil and eosinophil accumulation, at the injury site 1 and 3 days post-injury, as well as scar tissue formation 7 days post-injury. Injection of anti-NGF reduced muscle necrosis 1 and 3 days post-injury, and resulted in replacement of granulation tissue and muscle fibre regeneration 7 days post-injury. Anti-NGF also significantly inhibited CGRP among FG-positive cells (treatment group 38.2%, control group 49.6%; P<0.05). This study found active inflammation induced by NGF, which may contribute to pain after muscle injury. Anti-NGF antibodies successfully suppressed the pain mediator NGF and inhibited inflammation, suggesting NGF as a target for control in pain management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Tonic postganglionic sympathetic inhibition induced by afferent renal nerves?

    PubMed

    Ditting, Tilmann; Freisinger, Wolfgang; Siegel, Kirsten; Fiedler, Christian; Small, Lisa; Neuhuber, Winfried; Heinlein, Sonja; Reeh, Peter W; Schmieder, Roland E; Veelken, Roland

    2012-02-01

    Other than efferent sympathetic innervation, the kidney has peptidergic afferent fibers expressing TRPV1 receptors and releasing substance P. We tested the hypothesis that stimulation of afferent renal nerve activity with the TRPV1 agonist capsaicin inhibits efferent renal sympathetic nerve activity tonically by a neurokinin 1 receptor-dependant mechanism. Anesthetized Sprague-Dawley rats were instrumented as follows: (1) arterial and venous catheters for recording of blood pressure and heart rate and drug administration; (2) left-sided renal arterial catheter for selective intrarenal administration of the TRPV1 agonist capsaicin (3.3, 6.6, 10, 33*10(-7) m; 10 μL; after 15, 30, 45, and 60 minutes, respectively) to stimulate afferent renal nerve activity; (3) right-sided bipolar electrode for continuous renal sympathetic nerve recording; and (4) specialized renal pelvic and renal artery catheters to separate pelvic from intrarenal afferent activity. Before and after intrarenal capsaicin application, increasing intravenous doses of the neurokinin 1 receptor blocker RP67580 were given. Intrarenal capsaicin decreased integrated renal sympathetic activity from 65.4±13.0 mV*s (baseline) to 12.8±3.2 mV*s (minimum; P<0.01). This sustained renal sympathetic inhibition reached its minimum within 70 minutes and was not directly linked to the transient electric afferent response to be expected with intrarenal capsaicin. Suppressed renal sympathetic activity transiently but completely recovered after intravenous administration of the neurokinin 1 blocker (maximum: 120.3±19.4 mV*s; P<0.01). Intrarenal afferent activity could be unequivocally separated from pelvic afferent activity. For the first time we provide direct evidence that afferent intrarenal nerves provide a tonically acting sympathoinhibitory system, which seems to be rather mediated by neurokinin release acting via neurokinin 1 receptor pathways rather than by electric afferent effects on central sympathetic

  16. Changes in myelin sheath thickness and internode geometry in the rabbit phrenic nerve during growth.

    PubMed Central

    Friede, R L; Brzoska, J; Hartmann, U

    1985-01-01

    The rabbit phrenic nerve was studied at seven phases of growth from the newborn to the adult to determine the length of the nerve fibres, the length of the internodes, the fibre calibre, the geometric proportions of the internodes and the thickness of the myelin sheaths. The elongation of the internodes corresponded precisely to the elongation of the nerve, indicating a constant number of approximately 140 internodes per fibre, each internode elongating commensurate with body growth. Internode elongation was accompanied by increases in fibre calibre, but these parameters did not change in precise proportion. The internodes of thick fibres were relatively short for calibre, as defined by the length/diameter quotient. This trend of foreshortening changed during growth. Sheath thickness, defined by the quotient axon diameter/fibre diameter, was determined with a computer-assisted method. Fibres of young rabbits had relatively thin sheaths for axon calibre, compared with adult rabbits. The changes in sheath thickness corresponded to the changes in internode geometry. This was consistent with previous studies showing that elongation or foreshortening of an internode of a given calibre has a slight, but definite effect on the thickness of its myelin sheath. PMID:3870716

  17. Human Adenomyosis Endometrium Stromal Cells Secreting More Nerve Growth Factor: Impact and Effect.

    PubMed

    Li, Yan; Zou, Shien; Xia, Xian; Zhang, Shaofen

    2015-09-01

    Abnormal expression of nerve growth factor (NGF) was found in adenomyosis (AM). We collected AM foci from patients and eutopic endometrium from non-AM controls. Endometrium stromal cells (ESCs) were cultured. Different levels of 17β-estradiol, tumor necrosis factor (TNF), CoCl2, and H2O2 were added to the culture system separately, then the expression level of NGF in ESCs was detected. After adding different levels of NGF, the proliferation and apoptosis of ESCs and aromatase expression were detected. We found that 17β-estradiol promoted NGF production in AM ESCs but not in control ESCs; TNF promoted NGF production in both AM and control ESCs; and CoCl2 inhibited NGF production in control ESCs, but had no effect in AM ESCs. Nerve growth factor promoted the proliferation and synthesis of aromatase in AM ESCs. In conclusion, locally increased estrogen levels and inflammation may cause increased NGF production in the uterus of patients with AM. Nerve growth factor stimulated the proliferation and increased aromatase expression of ESCs from AM foci, suggesting NGF might contribute to the pathology and etiology of AM.

  18. Insulin resistance-induced hypertension and a role of perivascular CGRPergic nerves.

    PubMed

    Takatori, Shingo; Zamami, Yoshito; Hashikawa-Hobara, Narumi; Kawasaki, Hiromu

    2013-06-01

    Insulin resistance is defined as a preliminary step of type 2 diabetes mellitus with decreased insulin action evoked by continuous postprandial hyperglycemia, which is provoked by high fat and calories dieting, a lack of physical activity and obesity. In the early phase of type 2 diabetes mellitus, patients have a hyperinsulinemia to compensate deficient insulin action by increased secretion from the pancreas to maintain euglycemia. Then, pancreatic β cells progressively decrease secretion function, resulting in the development of diabetes mellitus with decreased serum insulin levels. Accumulating evidences show that insulin resistance is associated with hypertension. However, the mechanisms underlying hypertension associated with type 2 diabetes mellitus have still unknown. Therefore, to elucidate the mechanisms of insulin resistance-induced hypertension, we investigated that the effects of hyperinsulinemia or hyperglycemia on vascular responses mediated by perivascular nerves including sympathetic adrenergic nerves and calcitonin gene-related peptide (CGRP)-containing nerves (CGRPergic nerves). In this article, we show evidence that insulin resistance-induced hypertension could be resulted from increased density and function of sympathetic nerve, and decreased density and function of CGRPergic nerves. Furthermore, our findings provide a new insight into the research of therapeutic drugs for insulin resistance-induced hypertension.

  19. Orthopedic surgery and bone fracture pain are both significantly attenuated by sustained blockade of nerve growth factor

    PubMed Central

    Majuta, Lisa A.; Longo, Geraldine; Fealk, Michelle N.; McCaffrey, Gwen; Mantyh, Patrick W.

    2015-01-01

    The number of patients suffering from postoperative pain due to orthopedic surgery and bone fracture is projected to dramatically increase because the human life span, weight, and involvement in high-activity sports continue to rise worldwide. Joint replacement or bone fracture frequently results in skeletal pain that needs to be adequately controlled for the patient to fully participate in needed physical rehabilitation. Currently, the 2 major therapies used to control skeletal pain are nonsteroidal anti-inflammatory drugs and opiates, both of which have significant unwanted side effects. To assess the efficacy of novel therapies, mouse models of orthopedic and fracture pain were developed and evaluated here. These models, orthopedic surgery pain and bone fracture pain, resulted in skeletal pain–related behaviors that lasted 3 weeks and 8 to 10 weeks, respectively. These skeletal pain behaviors included spontaneous and palpation-induced nocifensive behaviors, dynamic weight bearing, limb use, and voluntary mechanical loading of the injured hind limb. Administration of anti–nerve growth factor before orthopedic surgery or after bone fracture attenuated skeletal pain behaviors by 40% to 70% depending on the end point being assessed. These data suggest that nerve growth factor is involved in driving pain due to orthopedic surgery or bone fracture. These animal models may be useful in developing an understanding of the mechanisms that drive postoperative orthopedic and bone fracture pain and the development of novel therapies to treat these skeletal pains. PMID:25599311

  20. Orthopedic surgery and bone fracture pain are both significantly attenuated by sustained blockade of nerve growth factor.

    PubMed

    Majuta, Lisa A; Longo, Geraldine; Fealk, Michelle N; McCaffrey, Gwen; Mantyh, Patrick W

    2015-01-01

    The number of patients suffering from postoperative pain due to orthopedic surgery and bone fracture is projected to dramatically increase because the human life span, weight, and involvement in high-activity sports continue to rise worldwide. Joint replacement or bone fracture frequently results in skeletal pain that needs to be adequately controlled for the patient to fully participate in needed physical rehabilitation. Currently, the 2 major therapies used to control skeletal pain are nonsteroidal anti-inflammatory drugs and opiates, both of which have significant unwanted side effects. To assess the efficacy of novel therapies, mouse models of orthopedic and fracture pain were developed and evaluated here. These models, orthopedic surgery pain and bone fracture pain, resulted in skeletal pain-related behaviors that lasted 3 weeks and 8 to 10 weeks, respectively. These skeletal pain behaviors included spontaneous and palpation-induced nocifensive behaviors, dynamic weight bearing, limb use, and voluntary mechanical loading of the injured hind limb. Administration of anti-nerve growth factor before orthopedic surgery or after bone fracture attenuated skeletal pain behaviors by 40% to 70% depending on the end point being assessed. These data suggest that nerve growth factor is involved in driving pain due to orthopedic surgery or bone fracture. These animal models may be useful in developing an understanding of the mechanisms that drive postoperative orthopedic and bone fracture pain and the development of novel therapies to treat these skeletal pains.

  1. Peripheral NMDA Receptors Mediate Antidromic Nerve Stimulation-Induced Tactile Hypersensitivity in the Rat

    PubMed Central

    Jang, Jun Ho; Nam, Taick Sang; Jun, Jaebeom; Jung, Se Jung; Kim, Dong-Wook; Leem, Joong Woo

    2015-01-01

    We investigated the role of peripheral NMDA receptors (NMDARs) in antidromic nerve stimulation-induced tactile hypersensitivity outside the skin area innervated by stimulated nerve. Tetanic electrical stimulation (ES) of the decentralized L5 spinal nerve, which induced enlargement of plasma extravasation, resulted in tactile hypersensitivity in the L4 plantar dermatome of the hind-paw. When intraplantar (i.pl.) injection was administered into the L4 dermatome before ES, NMDAR and group-I metabotropic Glu receptor (mGluR) antagonists and group-II mGluR agonist but not AMPA/kainate receptor antagonist prevented ES-induced hypersensitivity. I.pl. injection of PKA or PKC inhibitors also prevented ES-induced hypersensitivity. When the same injections were administered after establishment of ES-induced hypersensitivity, hypersensitivity was partially reduced by NMDAR antagonist only. In naïve animals, i.pl. Glu injection into the L4 dermatome induced tactile hypersensitivity, which was blocked by NMDAR antagonist and PKA and PKC inhibitors. These results suggest that the peripheral release of Glu, induced by antidromic nerve stimulation, leads to the expansion of tactile hypersensitive skin probably via nociceptor sensitization spread due to the diffusion of Glu into the skin near the release site. In addition, intracellular PKA- and PKC-dependent mechanisms mediated mainly by NMDAR activation are involved in Glu-induced nociceptor sensitization and subsequent hypersensitivity. PMID:26770021

  2. Peripheral NMDA Receptors Mediate Antidromic Nerve Stimulation-Induced Tactile Hypersensitivity in the Rat.

    PubMed

    Jang, Jun Ho; Nam, Taick Sang; Jun, Jaebeom; Jung, Se Jung; Kim, Dong-Wook; Leem, Joong Woo

    2015-01-01

    We investigated the role of peripheral NMDA receptors (NMDARs) in antidromic nerve stimulation-induced tactile hypersensitivity outside the skin area innervated by stimulated nerve. Tetanic electrical stimulation (ES) of the decentralized L5 spinal nerve, which induced enlargement of plasma extravasation, resulted in tactile hypersensitivity in the L4 plantar dermatome of the hind-paw. When intraplantar (i.pl.) injection was administered into the L4 dermatome before ES, NMDAR and group-I metabotropic Glu receptor (mGluR) antagonists and group-II mGluR agonist but not AMPA/kainate receptor antagonist prevented ES-induced hypersensitivity. I.pl. injection of PKA or PKC inhibitors also prevented ES-induced hypersensitivity. When the same injections were administered after establishment of ES-induced hypersensitivity, hypersensitivity was partially reduced by NMDAR antagonist only. In naïve animals, i.pl. Glu injection into the L4 dermatome induced tactile hypersensitivity, which was blocked by NMDAR antagonist and PKA and PKC inhibitors. These results suggest that the peripheral release of Glu, induced by antidromic nerve stimulation, leads to the expansion of tactile hypersensitive skin probably via nociceptor sensitization spread due to the diffusion of Glu into the skin near the release site. In addition, intracellular PKA- and PKC-dependent mechanisms mediated mainly by NMDAR activation are involved in Glu-induced nociceptor sensitization and subsequent hypersensitivity.

  3. Immunity to nerve growth factor and the effect on motor unit reinnervation in the rabbit.

    PubMed

    Finkelstein, D I; Luff, A R; Schuijers, J A

    1992-05-01

    The trophic effects of nerve growth factor (NGF) on sympathetic, peripheral afferent, and other neural crest-derived cells have been intensively investigated. More recently, NGF has been shown to have an influence on motoneurons. This study was undertaken to investigate whether NGF had any influence on the mechanical or histological properties of reinnervated motor units. Three groups of rabbits were used: normal rabbits, rabbits in which the nerve to medial gastrocnemius (MG) was cut and allowed to reinnervate for 56 days, and rabbits in which the MG nerve reinnervated in the presence of immunity to NGF. Immunity to NGF did not affect the ability of motor axons to reinnervate a muscle, nor were the contractile characteristics of the motor units altered. The size of horseradish peroxidase-labeled motoneurons was not influenced by immunization against NGF; however, the distribution of afferent neuron sizes was altered. Conduction velocity of motor axons proximal to the neuroma was significantly faster after immunization against NGF. Transection and subsequent reinnervation by a peripheral nerve normally causes an increase in myelin thickness proximal to the neuroma. However, immunization against NGF appeared to decrease the magnitude of myelin thickening. It was concluded that immunization against NGF affects motor axonal conduction velocity via an influence on the neural crest-derived Schwann cells.

  4. Chondroitinase C Selectively Degrades Chondroitin Sulfate Glycosaminoglycans that Inhibit Axonal Growth within the Endoneurium of Peripheral Nerve

    PubMed Central

    2016-01-01

    The success of peripheral nerve regeneration is highly dependent on the regrowth of axons within the endoneurial basal lamina tubes that promote target-oriented pathfinding and appropriate reinnervation. Restoration of nerve continuity at this structural level after nerve transection injury by direct repair and nerve grafting remains a major surgical challenge. Recently, biological approaches that alter the balance of growth inhibitors and promoters in nerve have shown promise to improve appropriate axonal regeneration and recovery of peripheral nerve function. Chondroitin sulfate proteoglycans (CSPGs) are known inhibitors of axonal growth. This growth inhibition is mainly associated with a CSPG's glycosaminoglycan chains. Enzymatic degradation of these chains with chondroitinase eliminates this inhibitory activity and, when applied in vivo, can improve the outcome of nerve repair. To date, these encouraging findings were obtained with chondroitinase ABC (a pan-specific chondroitinase). The aim of this study was to examine the distribution of CSPG subtypes in rodent, rabbit, and human peripheral nerve and to test more selective biological enzymatic approaches to improve appropriate axonal growth within the endoneurium and minimize aberrant growth. Here we provide evidence that the endoneurium, but not the surrounding epineurium, is rich in CSPGs that have glycosaminoglycan chains readily degraded by chondroitinase C. Biochemical studies indicate that chondroitinase C has degradation specificity for 6-sulfated glycosaminoglycans found in peripheral nerve. We found that chondroitinase C degrades and inactivates inhibitory CSPGs within the endoneurium but not so much in the surrounding nerve compartments. Cryoculture bioassays (neurons grown on tissue sections) show that chondroitinase C selectively and significantly enhanced neuritic growth associated with the endoneurial basal laminae without changing growth-inhibiting properties of the surrounding epineurium

  5. Immunohistochemical profile of cytokines and growth factors expressed in vestibular schwannoma and in normal vestibular nerve tissue.

    PubMed

    Taurone, Samanta; Bianchi, Enrica; Attanasio, Giuseppe; Di Gioia, Cira; Ierinó, Rocco; Carubbi, Cecilia; Galli, Daniela; Pastore, Francesco Saverio; Giangaspero, Felice; Filipo, Roberto; Zanza, Christian; Artico, Marco

    2015-07-01

    Vestibular schwannomas, also known as acoustic neuromas, are benign tumors, which originate from myelin-forming Schwann cells. They develop in the vestibular branch of the eighth cranial nerve in the internal auditory canal or cerebellopontine angle. The clinical progression of the condition involves slow and progressive growth, eventually resulting in brainstem compression. The objective of the present study was to investigate the expression level and the localization of the pro-inflammatory cytokines, transforming growth factor-β1 (TGF-β1) interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α), as well as the adhesion molecules, intracellular adhesion molecule-1 and vascular endothelial growth factor (VEGF), in order to determine whether these factors are involved in the transformation and development of human vestibular schwannoma. The present study investigated whether changes in inflammation are involved in tumor growth and if so, the mechanisms underlying this process. The results of the current study demonstrated that pro-inflammatory cytokines, including TGF-β1, IL-1β and IL-6 exhibited increased expression in human vestibular schwannoma tissue compared with normal vestibular nerve samples. TNF-α was weakly expressed in Schwann cells, confirming that a lower level of this cytokine is involved in the proliferation of Schwann cells. Neoplastic Schwann cells produce pro-inflammatory cytokines that may act in an autocrine manner, stimulating cellular proliferation. In addition, the increased expression of VEGF in vestibular schwannoma compared with that in normal vestibular nerve tissue, suggests that this factor may induce neoplastic growth via the promotion of angiogenesis. The present findings suggest that inflammation may promote angiogenesis and consequently contribute to tumor progression. In conclusion, the results of the present study indicated that VEGF and pro-inflammatory cytokines may be potential therapeutic targets in vestibular

  6. Effect of local administration of platelet-derived growth factor B on functional recovery of peripheral nerve regeneration: A sciatic nerve transection model

    PubMed Central

    Golzadeh, Atefeh; Mohammadi, Rahim

    2016-01-01

    Background: Effects of platelet-derived growth factor B (PDGF-B) on peripheral nerve regeneration was studied using a rat sciatic nerve transection model. Materials and Methods: Forty-five male, white Wistar rats were divided into three experimental groups (n = 15), randomly: Normal control group (NC), silicon group (SIL), and PDGF-B treated group (SIL/PDGF). In NC group, left sciatic nerve was exposed through a gluteal muscle incision and after homeostasis muscle was sutured. In the SIL group, the left sciatic nerve was exposed in the same way and transected proximal to tibio-peroneal bifurcation leaving a 10-mm gap. Proximal and distal stumps were each inserted into a silicone conduit and filled with 10 μL phosphate buffered solution. In SIL/PDGF group, the silicon conduit was filled with 10 μL PDGF-B (0.5 ng/mL). Each group was subdivided into three subgroups of five and were studied in 4, 8, 12 weeks after surgery. Results: Behavioral testing, sciatic nerve functional study, gastrocnemius muscle mass, and histomorphometric studies showed earlier regeneration of axons in SIL/PDGF than in SIL group (P < 0.05). Conclusion: Local administration of PDGF-B combined with silicon grafting could accelerate functional recovery and may have clinical implications for the surgical management of patients after facial nerve transection. PMID:27274342

  7. Effects of locally applied nerve growth factor to the inferior alveolar nerve histology in a rabbit model of mandibular distraction osteogenesis.

    PubMed

    Wang, L; Zhao, Y; Cheng, X; Yang, Y; Liu, G; Ma, Q; Shang, H; Tian, L; Lei, D

    2009-01-01

    Distraction osteogenesis (DO) is widely used in deformities and defects of the craniofacial bone. Accelerating inferior alveolar nerve (IAN) recovery would aid the process. Nerve growth factor (NGF) plays a vital role in peripheral nerve regeneration. In this study, the ability of locally applied human NGF beta (hNGFbeta) to enhance the morphological recovery of the IAN in a rabbit model of mandibular DO was studied. Rabbits underwent bilateral DO with a rate of 0.5mm per 12h. Two doses of 40 microg hNGFbeta in buffer were injected into callus at the beginning the of consolidation time. The contralateral side received injections of placebo. Rabbits were killed at 14 and 28 days. IAN specimens were subjected to histological and histomorphometric analysis. In both 14 and 28 days consolidation experiments, nerve histological analysis showed less degeneration and more regeneration in nerve fibers on the hNGFbeta treated side than the control side. Histomorphometric analysis showed that the myelinated fiber density on the hNGFbeta treated side was significantly higher than on the control side (p<0.01). The data indicate that locally applied hNGFbeta can accelerate the morphological recovery of the IAN and may play a role in reducing nerve injury in mandibular DO clinically.

  8. Enhanced sympathetic nerve activity induced by neonatal colon inflammation induces gastric hypersensitivity and anxiety-like behavior in adult rats.

    PubMed

    Winston, John H; Sarna, Sushil K

    2016-07-01

    Gastric hypersensitivity (GHS) and anxiety are prevalent in functional dyspepsia patients; their underlying mechanisms remain unknown largely because of lack of availability of live visceral tissues from human subjects. Recently, we demonstrated in a preclinical model that rats subjected to neonatal colon inflammation show increased basal plasma norepinephrine (NE), which contributes to GHS through the upregulation of nerve growth factor (NGF) expression in the gastric fundus. We tested the hypothesis that neonatal colon inflammation increases anxiety-like behavior and sympathetic nervous system activity, which upregulates the expression of NGF to induce GHS in adult life. Chemical sympathectomy, but not adrenalectomy, suppressed the elevated NGF expression in the fundus muscularis externa and GHS. The measurement of heart rate variability showed a significant increase in the low frequency-to-high frequency ratio in GHS vs. the control rats. Stimulus-evoked release of NE from the fundus muscularis externa strips was significantly greater in GHS than in the control rats. Tyrosine hydroxylase expression was increased in the celiac ganglia of the GHS vs. the control rats. We found an increase in trait but not stress-induced anxiety-like behavior in GHS rats in an elevated plus maze. We concluded that neonatal programming triggered by colon inflammation upregulates tyrosine hydroxylase in the celiac ganglia, which upregulates the release of NE in the gastric fundus muscularis externa. The increase of NE release from the sympathetic nerve terminals concentration dependently upregulates NGF, which proportionately increases the visceromotor response to gastric distention. Neonatal programming concurrently increases anxiety-like behavior in GHS rats. Copyright © 2016 the American Physiological Society.

  9. Use of antioxidants for the prophylaxis of cold-induced peripheral nerve injury.

    PubMed

    Teixeira, Fernanda; Pollock, Martin; Karim, Alveera; Jiang, Yuying

    2002-09-01

    "Trench foot" is a particular risk for those involved in adventure tourism, for soldiers in winter mountain training exercises, and for the homeless. Nonfreezing cold nerve injury is characterized by axonal degeneration, which is attributed to free radicals released during cycles of ischemia and reperfusion. This pilot study sought to determine whether the administration of antioxidants might prevent or ameliorate the development of cold nerve injury. Twenty-six rats were divided into two groups. Group 1 animals received, by gavage, a mixture of vitamin C (150 mg/kg/d), vitamin E (100 mg/kg/d), and N-acetyl-L-cysteine (250 mg/kg/d) daily for 4 weeks. Allopurinol (20 mg/kg/d) was added in the last 4 days of treatment. Group 2 animals served as controls and did not receive any antioxidant supplements. After 1 month, two cycles of sciatic nerve cooling (0 degrees C) were induced in 10 controls and 10 experimental animals using circulating water through a nerve cuff. Six additional control animals were subjected to surgery but did not undergo nerve cooling. All animals were killed on the third postoperative day, and their nerves were processed for ultrastructural and quantitative studies. The proportion of degenerated myelinated and unmyelinated axons showed no significant difference between treated and untreated animals. We conclude that the administration of commonly used antioxidants does not prevent cold nerve injury.

  10. Antibodies to nerve growth factor reverse established tactile allodynia in rodent models of neuropathic pain without tolerance.

    PubMed

    Wild, Kenneth D; Bian, Di; Zhu, Dawn; Davis, James; Bannon, Anthony W; Zhang, Tie J; Louis, Jean-Claude

    2007-07-01

    A considerable body of evidence implicates endogenous nerve growth factor (NGF) in conditions in which pain is a prominent feature, including neuropathic pain. However, previous studies of NGF antagonism in animal models of neuropathic pain have examined only the prevention of hyperalgesia and allodynia after injury, whereas the more relevant issue is whether treatment can provide relief of established pain, particularly without tolerance. In the current work, we studied the effects of potent, neutralizing anti-NGF antibodies on the reversal of tactile allodynia and thermal hyperalgesia in established models of neuropathic and inflammatory pain in rats and mice. In the complete Freund's adjuvant-induced hind-paw inflammation, spinal nerve ligation and streptozotocin-induced neuropathic pain models, a single intraperitoneal injection of a polyclonal anti-NGF antibody reversed established tactile allodynia from approximately day 3 to day 7 after treatment. Effects on thermal hyperalgesia were variable with a significant effect observed only in the spinal nerve ligation model. In the mouse chronic constriction injury (CCI) model, a mouse monoclonal anti-NGF antibody reversed tactile allodynia when administered 2 weeks after surgery. Repeated administration of this antibody to CCI mice for 3 weeks produced a sustained reversal (days 4 to 21) of tactile allodynia that returned 5 days after the end of dosing. In conclusion, NGF seems to play a critical role in models of established neuropathic and inflammatory pain in both rats and mice, with no development of tolerance to antagonism. Antagonists of NGF, such as fully human monoclonal anti-NGF antibodies, may have therapeutic utility in analogous human pain conditions.

  11. Longterm effects of cardiac mediastinal nerve cryoablation on neural inducibility of atrial fibrillation in canines.

    PubMed

    Leiria, Tiago Luiz Luz; Glavinovic, Tamara; Armour, J Andrew; Cardinal, René; de Lima, Gustavo Glotz; Kus, Teresa

    2011-04-26

    In canines, excessive activation of select mediastinal nerve inputs to the intrinsic cardiac nervous system induces atrial fibrillation (AF). Since ablation of neural elements is proposed as an adjunct to circumferential pulmonary vein ablation for AF, we investigated the short and long-term effects of mediastinal nerve ablation on AF inducibility. Under general anesthesia, in 11 dogs several mediastinal nerve sites were identified on the superior vena cava that, when stimulated electrically during the atrial refractory period, reproducibly initiated AF. Cryoablation of one nerve site was then performed and inducibility retested early (1-2 months post Cryo; n=7) or late (4 months post Cryo; n=4). Four additional dogs that underwent a sham procedure were retested 1 to 2 months post-surgery. Stimulation induced AF at 91% of nerve sites tested in control versus 21% nerve sites early and 54% late post-ablation (both P<0.05). Fewer stimuli were required to induce AF in controls versus the Early Cryo group; this capacity returned to normal values in the Late Cryo group. AF episodes were longer in control versus the Early or Late Cryo groups. Heart rate responses to vagal or stellate ganglion stimulation, as well as to local nicotine infusion into the right coronary artery, were similar in all groups. In conclusion, focal damage to intrinsic cardiac neuronal inputs causes short-term stunning of neuronal inducibility of AF without major loss of overall adrenergic or cholinergic efferent neuronal control. That recovery of AF inducibility occurs rapidly post-surgery indicates the plasticity of intrathoracic neuronal elements to focal injury. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats.

    PubMed

    Tang, Shuo; Zhu, Jixiang; Xu, Yangbin; Xiang, Andy Peng; Jiang, Mei Hua; Quan, Daping

    2013-09-01

    Introducing concentration gradients of nerve growth factor (NGF) into conduits for repairing of peripheral nerve injury is crucial for nerve regeneration and guidance. Herein, combining differential adsorption of NGF/silk fibroin (SF) coating, the gradient of NGF-immobilized membranes (G-Ms) and nanofibrous nerve conduits (G-nNCs) were successfully fabricated. The efficacy of NGF gradients was confirmed by a quantitative comparison of dorsal root ganglia (DRG) neurite outgrowth on the G-Ms or uniform NGF-immobilized membranes (U-Ms). Significantly, the neurite turning ratio was 0.48 ± 0.11 for G-M group, but it was close to zero for U-M group. The neurite length of DRGs in the middle of the G-Ms was significantly longer than that of U-M group, even though the average NGF concentration was approximated. Furthermore, 12 weeks after implantation in rats with a 14 mm gap of sciatic nerve injury, G-nNCs achieved satisfying outcomes of nerve regeneration associated with morphological and functional improvements, which was superior to that of the uniform NGF-immobilized nNCs (U-nNCs). Sciatic function index (SFI), compound muscle action potentials (CMAPs), total number of myelinated nerve fibers, thickness of myelin sheath were similar for the G-nNCs and autografts, with the G-nNCs having a higher density of axons than the autografts. Our results demonstrated the significant role of introducing NGF gradients into scaffolds in promoting nerve regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Persistent Nociception Triggered by Nerve Growth Factor (NGF) Is Mediated by TRPV1 and Oxidative Mechanisms.

    PubMed

    Eskander, Michael A; Ruparel, Shivani; Green, Dustin P; Chen, Paul B; Por, Elaine D; Jeske, Nathaniel A; Gao, Xiaoli; Flores, Eric R; Hargreaves, Kenneth M

    2015-06-03

    Nerve growth factor (NGF) is elevated in certain chronic pain conditions and is a sufficient stimulus to cause lasting pain in humans, but the actual mechanisms underlying the persistent effects of NGF remain incompletely understood. We developed a rat model of NGF-induced persistent thermal hyperalgesia and mechanical allodynia to determine the role of transient receptor potential vanilloid 1 (TRPV1) and oxidative mechanisms in the persistent effects of NGF. Persistent thermal hypersensitivity and mechanical allodynia require de novo protein translation and are mediated by TRPV1 and oxidative mechanisms. By comparing effects after systemic (subcutaneous), spinal (intrathecal) or hindpaw (intraplantar) injections of test compounds, we determined that TRPV1 and oxidation mediate persistent thermal hypersensitivity via peripheral and spinal sites of action and mechanical allodynia via only a spinal site of action. Therefore, NGF-evoked thermal and mechanical allodynia are mediated by spatially distinct mechanisms. NGF treatment evoked sustained increases in peripheral and central TRPV1 activity, as demonstrated by increased capsaicin-evoked nocifensive responses, increased calcitonin gene-related peptide release from hindpaw skin biopsies, and increased capsaicin-evoked inward current and membrane expression of TRPV1 protein in dorsal root ganglia neurons. Finally, we showed that NGF treatment increased concentrations of linoleic and arachidonic-acid-derived oxidized TRPV1 agonists in spinal cord and skin biopsies. Furthermore, increases in oxidized TRPV1-active lipids were reduced by peripheral and spinal injections of compounds that completely blocked persistent nociception. Collectively, these data indicate that NGF evokes a persistent nociceptive state mediated by increased TRPV1 activity and oxidative mechanisms, including increased production of oxidized lipid TRPV1 agonists.

  14. Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis.

    PubMed

    Lazaridis, Iakovos; Charalampopoulos, Ioannis; Alexaki, Vassilia-Ismini; Avlonitis, Nicolaos; Pediaditakis, Iosif; Efstathopoulos, Paschalis; Calogeropoulou, Theodora; Castanas, Elias; Gravanis, Achille

    2011-04-01

    The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75(NTR) membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [(3)H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75(NTR) receptors (K(D): 7.4 ± 1.75 nM and 5.6 ± 0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75(NTR) receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75(NTR) receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor.

  15. Nerve growth factor attenuates cholinergic deficits following traumatic brain injury in rats.

    PubMed

    Dixon, C E; Flinn, P; Bao, J; Venya, R; Hayes, R L

    1997-08-01

    Traumatic brain injury (TBI) results in chronic derangements in central cholinergic neurotransmission that may contribute to posttraumatic memory deficits. Intraventricular cannula (IVC) nerve growth factor (NGF) infusion can reduce axotomy-induced spatial memory deficits and morphologic changes observed in medial septal cholinergic neurons immunostained for choline acetyltransferase (ChAT). We examined the efficacy of NGF to (1) ameliorate reduced posttraumatic spatial memory performance, (2) release of hippocampal acetylcholine (ACh), and (3) ChAT immunoreactivity in the rat medial septum. Rats (n = 36) were trained prior to TBI on the functional tasks and retested on Days 1-5 (motor) and on Day 7 (memory retention). Immediately following injury, an IVC and osmotic pump were implanted, and NGF or vehicle was infused for 7 days. While there were no differences in motor performance, the NGF-treated group had significantly better spatial memory retention (P < 0.05) than the vehicle-treated group. The IVC cannula was then removed on Day 7, and a microdialysis probe was placed into the dorsal hippocampus. After a 22-h equilibration period, samples were collected prior to and after administration of scopolamine (1 mg/kg), which evoked ACh release by blocking autoreceptors. The posttraumatic reduction in scopolamine-evoked ACh release was completely reversed with NGF. Injury produced a bilateral reduction in the number and cross-sectional area of ChAT immunopositive medial septal neurons that was reversed by NGF treatment. These data suggest that cognitive but not motor deficits following TBI are, in part, mediated by chronic deficits in cholinergic systems that can be modulated by neurotrophic factors such as NGF.

  16. Nerve Growth Factor Promotes Reorganization of the Axonal Microtubule Array at Sites of Axon Collateral Branching

    PubMed Central

    Ketschek, Andrea; Jones, Steven; Spillane, Mirela; Korobova, Farida; Svitkina, Tatyana; Gallo, Gianluca

    2015-01-01

    The localized debundling of the axonal microtubule array and the entry of microtubules into axonal filopodia are two defining features of collateral branching. We report that nerve growth factor (NGF), a branch inducing signal, increases the frequency of microtubule debundling along the axon shaft of chicken embryonic sensory neurons. Sites of debundling correlate strongly with the localized targeting of microtubules into filopodia. Platinum replica electron microscopy suggests physical interactions between debundled microtubules and axonal actin filaments. However, as evidenced by depolymerization of actin filaments and inhibition of myosin II, actomyosin force generation does not promote debundling. In contrast, loss of actin filaments or inhibition of myosin II activity promotes debundling, indicating that axonal actomyosin forces suppress debundling. MAP1B is a microtubule associated protein that represses axon branching. Following treatment with NGF, microtubules penetrating filopodia during the early stages of branching exhibited lower levels of associated MAP1B. NGF increased and decreased the levels of MAP1B phosphorylated at a GSK-3β site (pMAP1B) along the axon shaft and within axonal filopodia, respectively. The levels of MAP1B and pMAP1B were not altered at sites of debundling, relative to the rest of the axon. Unlike the previously determined effects of NGF on the axonal actin cytoskeleton, the effects of NGF on microtubule debundling were not affected by inhibition of protein synthesis. Collectively, these data indicate that NGF promotes localized axonal microtubule debundling, that actomyosin forces antagonize microtubule debundling and that NGF regulates pMAP1B in axonal filopodia during the early stages of collateral branch formation. PMID:25846486

  17. Can proline-rich polypeptide complex mimic the effect of nerve growth factor?

    PubMed

    Zabłocka, Agnieszka; Urbaniak, Anna; Kuropatwa, Marianna; Zyzak, Joanna; Rossowska, Joanna; Janusz, Maria

    2014-01-01

    Naturally occurring compounds that can act as prosurvival factors and neurite formation stimulants in the conditions of reduced neurotrophins production are important both in neuronal protection and therapy of neurodegenerative disorders. Therefore, the role of proline-rich polypeptide complex (PRP) and its nonapeptide fragment (NP) in the promotion of pheochromocytoma cell line (PC12) survival and neurite outgrowth pathway is presented. It was shown that PRP/NP did not affect the neuronal nitric oxide synthase (nNOS) at the transcriptional and protein level. However, the activity of nNOS and intracellular nitric oxide (NO) concentration was markedly increased after treatment of PC12 cells with peptides. This reaction was inhibited by L-NAME-nNOS inhibitor. It was shown that PRP and NP induce the soluble guanylyl cyclase to release higher amount of cyclic GMP (cGMP), and subsequently, the increased phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) is observed. This effect was abolished by both U0126 (inhibitor of ERK1/2) and also by L-NAME. Reduction of ERK1/2 activity observed in the presence of nNOS inhibitor suggests that its activation is NO-dependent. The presented results shed some light on the mechanism of action of PRP complex. PRP and NP can activate NO/cGMP/ERK1/2 signaling pathway, similarly to nerve growth factor (NGF). The prosurvival action and short fibers formation suggest the role of PRP and NP in neuroprotection and the initiation of neuritogenesis. They can also participate in the amplification of signals controlling the survival and differentiation of neurons effect when the deficit of NGF takes place.

  18. Exploring the role of nerve growth factor in multiple sclerosis: implications in myelin repair.

    PubMed

    Acosta, C M R; Cortes, C; MacPhee, H; Namaka, M P

    2013-12-01

    Multiple sclerosis (MS) is a chronic disease resulting from targeted destruction of central nervous system (CNS) myelin. MS is suggested to be an autoimmune disease involving the pathogenic activation of CD4(+) T cells by a foreign antigen in the peripheral blood. The activated CD4(+) T cells liberate inflammatory cytokines that facilitate the breakdown of the blood-brain barrier (BBB) promoting their passage into the CNS. Inside the CNS, CD4(+) T cells become re-activated by myelin proteins sharing a similar structure to the foreign antigen that initially triggered the immune response. The CD4(+) T cells continue to liberate inflammatory cytokines, such as tumor necrosis factor α (TNFα), which activates macrophages and antibodies responsible for the phagocytosis of myelin. Acute CNS lesions can be re-myelinated, however, the repair of chronic demyelinating lesions is limited, leading to permanent neurological deficits. Although current MS treatments reduce severity and slow disease progression, they do not directly repair damaged myelin. Henceforth, recent treatment strategies have focused on neurotrophins, such as nerve growth factor (NGF) for myelin repair. NGF promotes axonal regeneration, survival, protection and differentiation of oligodendrocytes (OGs) and facilitates migration and proliferation of oligodendrocyte precursors (OPs) to the sites of myelin damage. NGF also directly regulates key structural proteins that comprise myelin. Interestingly, NGF also induces the production of brain-derived neurotrophic factor (BDNF), another integral neurotrophin involved in myelination. The intricate signaling between neurotrophins and cytokines that governs myelin repair supports the role of NGF as a leading therapeutic candidate in white matter disorders, such as MS.

  19. Neurosteroid Dehydroepiandrosterone Interacts with Nerve Growth Factor (NGF) Receptors, Preventing Neuronal Apoptosis

    PubMed Central

    Alexaki, Vassilia-Ismini; Avlonitis, Nicolaos; Pediaditakis, Iosif; Efstathopoulos, Paschalis; Calogeropoulou, Theodora; Castanas, Elias; Gravanis, Achille

    2011-01-01

    The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75NTR membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [3H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75NTR receptors (KD: 7.4±1.75 nM and 5.6±0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75NTR receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75NTR receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor. PMID:21541365

  20. Synergistic effects of cyclic AMP and nerve growth factor on neurite outgrowth and microtubule stability of PC12 cells

    PubMed Central

    1985-01-01

    The outgrowth of neurites from rat PC12 cells stimulated by combined treatment of nerve growth factor (NGF) with cAMP is significantly more rapid and extensive than the outgrowth induced by either factor alone. We have compared the responses of PC12 cells under three different growth conditions, NGF alone, cAMP alone, and combined treatment, with respect to surface morphology, rapidity of neurite outgrowth, and stability of neurite microtubules, to understand the synergistic action of NGF and cAMP on PC12. Surface events at early times in these growth conditions varied, suggesting divergent pathways of action of NGF and cAMP. This suggestion is strongly supported by the finding that cells exposed to saturating levels of dibutyryl cAMP without substantial neurite outgrowth initiated neurites within 5 min of NGF. This response has been adopted as a convenient assay for NGF. Neurites that regenerated in the three growth conditions showed marked differences in stability to treatments that depolymerize microtubules. The results indicate that microtubules in cells treated with both NGF and cAMP are significantly more stable than in either growth factor alone. We suggest that a shift of the assembly equilibrium favoring tubulin assembly is a necessary prerequisite for the initiation of neurites by PC12. PMID:2982887

  1. Role of nerve growth factor and its TRKA receptor in normal ovarian and epithelial ovarian cancer angiogenesis.

    PubMed

    Vera, Carolina; Tapia, Verónica; Vega, Margarita; Romero, Carmen

    2014-08-10

    In normal ovarian function a controlled angiogenesis is essential. Several growth factors are involved in this process, such as the vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). The angiogenesis process in the normal ovary is a tightly controlled process that occurs in each ovarian cycle. Also, angiogenesis is critical for ovarian cancer development and it is responsible for tumor spread, metastasis and its peritoneal dissemination. Ovarian cancer is the fifth leading cause of cancer death in women and it is distinguished as the most lethal gynecologic cancer. In recent years angiogenesis has been given considerable attention in order to identify targets for developing effective anti-tumor therapies. Several molecules have been reported to promote angiogenesis, such as platelet-derived growth factor (PDGF) and its receptors, the angiopoietin/Tie ligand/receptor system and fibroblast growth factor (FGF). Primarily, VEGF has been identified to play key roles in driving angiogenesis. The above-mentioned molecules are candidate drug targets. Used in combination with other treatments, anti-angiogenic therapies have managed to reduce disease progression. The present review is focused in NGF and its high affinity receptor tyrosine kinase A (TRKA). The expression of VEGF, proliferation and the angiogenesis process in ovarian cancer is importantly induced by NGF, among other molecules.

  2. Nitric oxide: Mediator of nonadrenergic noncholinergic nerve-induced responses of opossum esophageal muscle

    SciTech Connect

    Murray, J.; Du, C.; Conklin, J.L.; Ledlow, A.; Bates, J.N. )

    1991-03-15

    Nonadrenergic noncholinergic (NANC) nerves of the opossum esophagus mediate relaxation of circular muscle from the lower esophageal sphincter (LES) and the off contraction of circular esophageal muscle. The latencies between the end of the stimulus and the off contraction describe a gradient such that the latency is longest in muscle from the caudad esophagus. N{sup G}-nitro-L-arginine (L-NNA), an inhibitor of nitric oxide synthase, and nitric oxide were used to test the hypothesis that NO is a mediator of these nerve-induced responses. Both electrical field stimulation (EFS) of intrinsic esophageal nerves and exogenous NO relaxed LES muscle. Only EFS-induced relaxation was inhibited by L-NNA. L-arginine, the substrate for NO synthase, antagonized the inhibitory effect of L-NNA. Exogenous NO neither relaxed nor contracted circular esophageal muscle. Both the amplitude and the latency of the off contraction were diminished by L-NNA. L-arginine antagonized the action of L-NNA. N{sup G}-nitro-L-arginine also attenuated the gradient in the latency of the off response by shortening latencies in muscle form the caudad esophagus. It had no effect on cholinergic nerve-induced contraction of longitudinal esophageal muscle. These data support the hypothesis that NO or an NO-containing compound mediates NANC nerve-induced responses of the esophagus and LES.

  3. Spinal cord stimulation suppresses bradycardias and atrial tachyarrhythmias induced by mediastinal nerve stimulation in dogs.

    PubMed

    Cardinal, René; Pagé, Pierre; Vermeulen, Michel; Bouchard, Caroline; Ardell, Jeffrey L; Foreman, Robert D; Armour, J Andrew

    2006-11-01

    Spinal cord stimulation (SCS) applied to the dorsal aspect of the cranial thoracic cord imparts cardioprotection under conditions of neuronally dependent cardiac stress. This study investigated whether neuronally induced atrial arrhythmias can be modulated by SCS. In 16 anesthetized dogs with intact stellate ganglia and in five with bilateral stellectomy, trains of five electrical stimuli were delivered during the atrial refractory period to right- or left-sided mediastinal nerves for up to 20 s before and after SCS (20 min). Recordings were obtained from 191 biatrial epicardial sites. Before SCS (11 animals), mediastinal nerve stimulation initiated bradycardia alone (12 nerve sites), bradycardia followed by tachyarrhythmia/fibrillation (50 sites), as well as tachyarrhythmia/fibrillation without a preceding bradycardia (21 sites). After SCS, the number of responsive sites inducing bradycardia was reduced by 25% (62 to 47 sites), and the cycle length prolongation in residual bradycardias was reduced. The number of responsive sites inducing tachyarrhythmia was reduced by 60% (71 to 29 sites). Once elicited, residual tachyarrhythmias arose from similar epicardial foci, displaying similar dynamics (cycle length) as in control states. In the absence of SCS, bradycardias and tachyarrhythmias induced by repeat nerve stimulation were reproducible (five additional animals). After bilateral stellectomy, SCS no longer influenced neuronal induction of bradycardia and atrial tachyarrhythmias. These data indicate that SCS obtunds the induction of atrial arrhythmias resulting from excessive activation of intrinsic cardiac neurons and that such protective effects depend on the integrity of nerves coursing via the subclavian ansae and stellate ganglia.

  4. Low Levels of NDRG1 in Nerve Tissue Are Predictive of Severe Paclitaxel-Induced Neuropathy

    PubMed Central

    Sundar, Raghav; Jeyasekharan, Anand D.; Pang, Brendan; Soong, Richie Chuan Teck; Kumarakulasinghe, Nesaretnam Barr; Ow, Samuel Guan Wei; Ho, Jingshan; Lim, Joline Si Jing; Tan, David Shao Peng; Wilder-Smith, Einar P. V.; Bandla, Aishwarya; Tan, Stacey Sze Hui; Asuncion, Bernadette Reyna; Fazreen, Zul; Hoppe, Michal Marek; Putti, Thomas Choudary; Poh, Lay Mui; Goh, Boon Cher; Lee, Soo-Chin

    2016-01-01

    Introduction Sensory peripheral neuropathy caused by paclitaxel is a common and dose limiting toxicity, for which there are currently no validated predictive biomarkers. We investigated the relationship between the Charcot-Marie-Tooth protein NDRG1 and paclitaxel-induced neuropathy. Methods/Materials Archived mammary tissue specimen blocks of breast cancer patients who received weekly paclitaxel in a single centre were retrieved and NDRG1 immunohistochemistry was performed on normal nerve tissue found within the sample. The mean nerve NDRG1 score was defined by an algorithm based on intensity of staining and percentage of stained nerve bundles. NDRG1 scores were correlated with paclitaxel induced neuropathy Results 111 patients were studied. 17 of 111 (15%) developed severe paclitaxel-induced neuropathy. The mean nerve NDRG1 expression score was 5.4 in patients with severe neuropathy versus 7.7 in those without severe neuropathy (p = 0.0019). A Receiver operating characteristic (ROC) curve analysis of the mean nerve NDRG1 score revealed an area under the curve of 0.74 (p = 0.0013) for the identification of severe neuropathy, with a score of 7 being most discriminative. 13/54 (24%) subjects with an NDRG1 score < = 7 developed severe neuropathy, compared to only 4/57 (7%) in those with a score >7 (p = 0.017). Conclusion Low NDRG1 expression in nerve tissue present within samples of surgical resection may identify subjects at risk for severe paclitaxel-induced neuropathy. Since nerve biopsies are not routinely feasible for patients undergoing chemotherapy for early breast cancer, this promising biomarker strategy is compatible with current clinical workflow. PMID:27716814

  5. Low Levels of NDRG1 in Nerve Tissue Are Predictive of Severe Paclitaxel-Induced Neuropathy.

    PubMed

    Sundar, Raghav; Jeyasekharan, Anand D; Pang, Brendan; Soong, Richie Chuan Teck; Kumarakulasinghe, Nesaretnam Barr; Ow, Samuel Guan Wei; Ho, Jingshan; Lim, Joline Si Jing; Tan, David Shao Peng; Wilder-Smith, Einar P V; Bandla, Aishwarya; Tan, Stacey Sze Hui; Asuncion, Bernadette Reyna; Fazreen, Zul; Hoppe, Michal Marek; Putti, Thomas Choudary; Poh, Lay Mui; Goh, Boon Cher; Lee, Soo-Chin

    2016-01-01

    Sensory peripheral neuropathy caused by paclitaxel is a common and dose limiting toxicity, for which there are currently no validated predictive biomarkers. We investigated the relationship between the Charcot-Marie-Tooth protein NDRG1 and paclitaxel-induced neuropathy. Archived mammary tissue specimen blocks of breast cancer patients who received weekly paclitaxel in a single centre were retrieved and NDRG1 immunohistochemistry was performed on normal nerve tissue found within the sample. The mean nerve NDRG1 score was defined by an algorithm based on intensity of staining and percentage of stained nerve bundles. NDRG1 scores were correlated with paclitaxel induced neuropathy. 111 patients were studied. 17 of 111 (15%) developed severe paclitaxel-induced neuropathy. The mean nerve NDRG1 expression score was 5.4 in patients with severe neuropathy versus 7.7 in those without severe neuropathy (p = 0.0019). A Receiver operating characteristic (ROC) curve analysis of the mean nerve NDRG1 score revealed an area under the curve of 0.74 (p = 0.0013) for the identification of severe neuropathy, with a score of 7 being most discriminative. 13/54 (24%) subjects with an NDRG1 score < = 7 developed severe neuropathy, compared to only 4/57 (7%) in those with a score >7 (p = 0.017). Low NDRG1 expression in nerve tissue present within samples of surgical resection may identify subjects at risk for severe paclitaxel-induced neuropathy. Since nerve biopsies are not routinely feasible for patients undergoing chemotherapy for early breast cancer, this promising biomarker strategy is compatible with current clinical workflow.

  6. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  7. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  8. Role of the vagus nerve in the development and treatment of diet-induced obesity.

    PubMed

    de Lartigue, Guillaume

    2016-10-15

    This review highlights evidence for a role of the vagus nerve in the development of obesity and how targeting the vagus nerve with neuromodulation or pharmacology can be used as a therapeutic treatment of obesity. The vagus nerve innervating the gut plays an important role in controlling metabolism. It communicates peripheral information about the volume and type of nutrients between the gut and the brain. Depending on the nutritional status, vagal afferent neurons express two different neurochemical phenotypes that can inhibit or stimulate food intake. Chronic ingestion of calorie-rich diets reduces sensitivity of vagal afferent neurons to peripheral signals and their constitutive expression of orexigenic receptors and neuropeptides. This disruption of vagal afferent signalling is sufficient to drive hyperphagia and obesity. Furthermore neuromodulation of the vagus nerve can be used in the treatment of obesity. Although the mechanisms are poorly understood, vagal nerve stimulation prevents weight gain in response to a high-fat diet. In small clinical studies, in patients with depression or epilepsy, vagal nerve stimulation has been demonstrated to promote weight loss. Vagal blockade, which inhibits the vagus nerve, results in significant weight loss. Vagal blockade is proposed to inhibit aberrant orexigenic signals arising in obesity as a putative mechanism of vagal blockade-induced weight loss. Approaches and molecular targets to develop future pharmacotherapy targeted to the vagus nerve for the treatment of obesity are proposed. In conclusion there is strong evidence that the vagus nerve is involved in the development of obesity and it is proving to be an attractive target for the treatment of obesity.

  9. Episomal Induced Pluripotent Stem Cells Promote Functional Recovery of Transected Murine Peripheral Nerve

    PubMed Central

    Kao, Huang-Kai; Cardona, Esteban; Chuang, Sheng-Hao

    2016-01-01

    Traumatic peripheral nerve neurotmesis occurs frequently and functional recovery is often slow and impaired. Induced pluripotent stem cells (iPSCs) have shown much promise in recent years due to its regenerative properties similar to that of embryonic stem cells. However, the potential of iPSCs in promoting the functional recovery of a transected peripheral nerve is largely unknown. This study is the first to investigate in vivo effects of episomal iPSCs (EiPSCs) on peripheral nerve regeneration in a murine sciatic nerve transection model. Episomal iPSCs refer to iPSCs that are generated via Oct3/4-Klf4-Sox2 plasmid reprogramming instead of the conventional viral insertion techniques. It represents a relatively safer form of iPSC production without permanent transgene integration which may raise questions regarding risks of genomic mutation. A minimal number of EiPSCs were added directly to the transected nerve. Functional recovery of the EiPSC group was significantly improved compared to the negative control group when assessed via serial five-toe spread measurement and gait analysis of ankle angles. EiPSC promotion of nerve regeneration was also evident on stereographic analysis of axon density, myelin thickness, and axonal cross-sectional surface area. Most importantly, the results observed in EiPSCs are similar to that of the embryonic stem cell group. A roughly ten-fold increase in neurotrophin-3 levels was seen in EiPSCs which could have contributed to peripheral nerve regeneration and recovery. No abnormal masses or adverse effects were noted with EiPSC administration after one year of follow-up. We have hence shown that functional recovery of the transected peripheral nerve can be improved with the use of EiPSC therapy, which holds promise for the future of nerve regeneration. PMID:27736950

  10. Treatment of transected peripheral nerves with artemin improved motor neuron regeneration, but did not reduce nerve injury-induced pain behaviour.

    PubMed

    Widenfalk, Johan; Wu, Weiping; Hao, Jingxia; Person, Jonas K E; Wiesenfeldt-Hallin, Zsuzsanna; Risling, Mårten

    2009-01-01

    Incomplete recovery of function and neuropathic pain are common problems after peripheral nerve injury. To develop new treatment strategies for peripheral nerve injuries we investigated whether the neurotrophic factor artemin could improve outcome after sciatic nerve injuries in rats. Artemin is a member of the glial cell line-derived neurotrophic factor (GDNF) family and exerts neuroprotective effects on sensory neurons as well as influencing behavioural thermal sensitivity. We additionally evaluated if fibrin sealant, which is sometimes used as a nerve glue, had any effects on neuropathic pain-related behaviour. After the sciatic nerve had been transected, 30 animals were randomised to one of three groups: treatment with a fibrin sealant that contained artemin in conjunction with sutures; fibrin sealant with no artemin (sham) in conjunction with sutures; or sutures alone (n=10 in each group). Motor function, sensory function, and autotomy were evaluated from 1 to 12 weeks after injury. Retrograde flourogold tracing 12 weeks after injury showed that the addition of artemin increased the number of regenerating motor neurons. However, it did not improve their performance, as measured by the Sciatic Function Index, compared with sham or suture alone. Animals treated with artemin had a non-significant increase in motor nerve conduction velocity compared with sham. However, artemin did not reverse nerve injury-induced pain behaviour such as cold or heat hypersensitivity. Fibrin sealant in itself did not ameliorate motor performance, or regeneration of motor neurons, or give rise to nerve injury-induced pain behaviour. The results indicate that artemin is of value as a treatment for peripheral nerve injuries, although the effects were limited. As the artemin high-affinity receptor GFRalpha-3 is present in Schwann cells and not in motor neurons, the effect on motor neuron axon regeneration may result from an indirect effect through Schwann cells in the injured nerve.

  11. Nestin-Expressing Stem Cells Promote Nerve Growth in Long-Term 3-Dimensional Gelfoam®-Supported Histoculture

    PubMed Central

    Mii, Sumiyuki; Uehara, Fuminari; Yano, Shuya; Tran, Benjamin; Miwa, Shinji; Hiroshima, Yukihiro; Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M.

    2013-01-01

    We have previously reported that hair follicles contain multipotent stem cells which express nestin. The nestin-expressing cells form the hair follicle sensory nerve. In vitro, the nestin-expressing hair follicle cells can differentiate into neurons, Schwann cells, and other cell types. In the present study, the sciatic nerve was excised from transgenic mice in which the nestin promoter drives green fluorescent protein (ND-GFP mice). The ND-GFP cells of the sciatic nerve were also found to be multipotent as the ND-GFP cells in the hair follicle. When the ND-GFP cells in the mouse sciatic nerve cultured on Gelfoam® and were imaged by confocal microscopy, they were observed forming fibers extending the nerve. The fibers consisted of ND-GFP-expressing spindle cells, which co-expressed the neuron marker β-III tubulin, the immature Schwann-cell marker p75NTR and TrkB which is associated with neurons. The fibers also contain nestin-negative spherical cells expressing GFAP, a Schwann-cell marker. The β-III tubulin-positive fibers had growth cones on their tips expressing F-actin, indicating they are growing axons. When the sciatic nerve from mice ubiquitously expressing red fluorescent protein (RFP) was co-cultured on Gelfoam® with the sciatic nerve from ND-GFP transgenic mice, the interaction of nerves was observed. Proliferating nestin-expressing cells in the injured sciatic nerve were also observed in vivo. Nestin-expressing cells were also observed in posterior nerves but not in the spinal cord itself, when placed in 3-D Gelfoam® culture. The results of the present report suggest a critical function of nestin-expressing cells in peripheral nerve growth and regeneration. PMID:23840607

  12. Incorporation of Chitosan Microspheres into Collagen-Chitosan Scaffolds for the Controlled Release of Nerve Growth Factor

    PubMed Central

    Xiao, Wei; Qi, Fengyu; Huang, Jinghui; Luo, Zhuojing

    2014-01-01

    Background Artifical nerve scaffold can be used as a promising alternative to autologous nerve grafts to enhance the repair of peripheral nerve defects. However, current nerve scaffolds lack efficient microstructure and neurotrophic support. Methods Microsphere–Scaffold composite was developed by incorporating chitosan microspheres loaded with nerve growth factor (NGF–CMSs) into collagen-chitosan scaffolds (CCH) with longitudinally oriented microchannels (NGF–CMSs/CCH). The morphological characterizations, in vitro release kinetics study, neurite outgrowth assay, and bioactivity assay were evaluated. After that, a 15-mm-long sciatic nerve gap in rats was bridged by the NGF–CMSs/CCH, CCH physically absorbed NGF (NGF/CCH), CCH or nerve autograft. 16 weeks after implantation, electrophysiology, fluoro-gold retrograde tracing, and nerve morphometry were performed. Results The NGF–CMSs were evenly distributed throughout the longitudinally oriented microchannels of the scaffold. The NGF–CMSs/CCH was capable of sustained release of bioactive NGF within 28 days as compared with others in vitro. In vivo animal study demonstrated that the outcomes of NGF–CMSs/CCH were better than those of NGF/CCH or CCH. Conclusion Our findings suggest that incorporation of NGF–CMSs into the CCH may be a promising tool in the repair of peripheral nerve defects. PMID:24983464

  13. Expression of nerve growth factor receptor in paraffin-embedded soft tissue tumors.

    PubMed Central

    Perosio, P. M.; Brooks, J. J.

    1988-01-01

    Identification of growth factors and receptors in mesenchymal tumors may be crucial to understanding of growth regulation in sarcomas. During an immunohistochemical study of the expression of growth factors and receptors in human soft tissue tumors (STT), only 1 antisera capable of working in paraffin-embedded tissue was noted. A detailed study of 141 STT was undertaken to determine the frequency of expression of nerve growth factor receptor (NGF-R), its specificity and sensitivity for neural tumors, and the effect of fixation on detection. In normal mesenchymal tissue, only nerve sheath and perivascular staining was seen. No immunoreactivity was seen in many tumors including rhabdomyosarcoma, angiosarcoma, liposarcoma, Ewing's sarcoma, and alveolar soft part sarcoma. Less than 15% of tumors of smooth muscle, fibrous, or fibrohistiocytic origin showed immunoreactivity, usually focal. In contrast, a high frequency of immunoreactivity was noted in tumors of neural origin (74%). This included granular cell tumors (100%), Schwannoma/neurofibroma (91%), malignant Schwannoma (78%), neuroblastoma/neuroepithelioma (60%), and paraganglioma (57%). A high rate of reactivity was also seen in synovial sarcomas (80%), undifferentiated sarcomas (60%), and hemangiopericytomas (43%), suggesting a potential relationship to the neural phenotype. Among the neural tumors, Bouin's fixation was superior to formalin, suggesting that immunoreactivity for NGF-R is affected by fixation. This antibody may be a useful adjunct marker diagnostically. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 Figure 10 PMID:2456020

  14. Corneal edema induced by cold in trigeminal nerve palsy

    SciTech Connect

    Thorgaard, G.L.; Holland, E.J.; Krachmer, J.H.

    1987-05-15

    We examined a 34-year-old man who complained of decreased visual acuity in the right eye when exposed to cold environmental temperatures. Although examination at room temperature was unremarkable, he developed prominent unilateral corneal edema of the right eye when placed in a cold room at 4 C. Corneal thickness increased from 525 to 789 microns in the affected eye. Further examination disclosed a right-sided trigeminal nerve palsy. He was eventually found to have a 3 X 2-cm tentorial ridge meningioma on the right.

  15. Mechanisms of pruritogen-induced activation of itch nerves in isolated mouse skin.

    PubMed

    Ru, F; Sun, H; Jurcakova, D; Herbstsomer, R A; Meixong, J; Dong, X; Undem, B J

    2017-02-19

    Chloroquine (CQ) and histamine are pruritogens commonly used to study itch in the mouse. A novel skin-nerve preparation was used to evaluate chloroquine (CQ)- and histamine- induced activation of afferent nerves in the dorsal thoracic skin of the mouse. All CQ sensitive nerves were C-fibres, and were also sensitive to histamine. The response to CQ, but not histamine, was largely absent in mrgpr cluster Δ -/- mice supporting the hypothesis that CQ evokes itch largely via stimulation of MrgprA3 receptors. The CQ-induced action potential discharge was largely absent in phospholipase Cβ3 knockout animals. The CQ and histamine responses were not influenced by removal of TRPA1, TRPV1, TRPC3 or TRPC6, nor by the TRP channel blocker Ruthenium Red. The bouts of scratching in response to CQ was not different between wild type and TRPA1 deficient mice. A selective inhibitor of TMEM16A, N-((4-methoxy)-2-naphthyl)-5-nitroanthranilic acid (MONNA) inhibited CQ-induced action potential discharge at itch nerve terminals and bouts of scratching by about 50%. Although TRPA1 and TRPV1 channels may be involved in the scratching responses to intradermal pruitogens, this is unlikely due to an effect at the nerve terminals, where chloride channels may play a more important role. This article is protected by copyright. All rights reserved.

  16. Corneal sulfated glycosaminoglycans and their effects on trigeminal nerve growth cone behavior in vitro: roles for ECM in cornea innervation.

    PubMed

    Schwend, Tyler; Deaton, Ryan J; Zhang, Yuntao; Caterson, Bruce; Conrad, Gary W

    2012-12-13

    Sensory trigeminal nerve growth cones innervate the cornea in a highly coordinated fashion. The purpose of this study was to determine if extracellular matrix glycosaminoglycans (ECM-GAGs), including keratan sulfate (KS), dermatan sulfate (DS), and chondroitin sulfate A (CSA) and C (CSC), polymerized in developing eyefronts, may provide guidance cues to nerves during cornea innervation. Immunostaining using antineuron-specific-β-tubulin and monoclonal antibodies for KS, DS, and CSA/C was performed on eyefronts from embryonic day (E) 9 to E14 and staining visualized by confocal microscopy. Effects of purified GAGs on trigeminal nerve growth cone behavior were tested using in vitro neuronal explant cultures. At E9 to E10, nerves exiting the pericorneal nerve ring grew as tight fascicles, advancing straight toward the corneal stroma. In contrast, upon entering the stroma, nerves bifurcated repeatedly as they extended anteriorly toward the epithelium. KS was localized in the path of trigeminal nerves, whereas DS and CSA/C-rich areas were avoided by growth cones. When E10 trigeminal neurons were cultured on different substrates comprised of purified GAG molecules, their neurite growth cone behavior varied depending on GAG type, concentration, and mode of presentation (immobilized versus soluble). High concentrations of immobilized KS, DS, and CSA/C inhibited neurite growth to varying degrees. Neurites traversing lower, permissive concentrations of immobilized DS and CSA/C displayed increased fasciculation and decreased branching, whereas KS caused decreased fasciculation and increased branching. Enzymatic digestion of sulfated GAGs canceled their effects on trigeminal neurons. Data herein suggest that GAGs may direct the movement of trigeminal nerve growth cones innervating the cornea.

  17. Corneal Sulfated Glycosaminoglycans and Their Effects on Trigeminal Nerve Growth Cone Behavior In Vitro: Roles for ECM in Cornea Innervation

    PubMed Central

    Schwend, Tyler; Deaton, Ryan J.; Zhang, Yuntao; Caterson, Bruce; Conrad, Gary W.

    2012-01-01

    Purpose. Sensory trigeminal nerve growth cones innervate the cornea in a highly coordinated fashion. The purpose of this study was to determine if extracellular matrix glycosaminoglycans (ECM–GAGs), including keratan sulfate (KS), dermatan sulfate (DS), and chondroitin sulfate A (CSA) and C (CSC), polymerized in developing eyefronts, may provide guidance cues to nerves during cornea innervation. Methods. Immunostaining using antineuron-specific-β-tubulin and monoclonal antibodies for KS, DS, and CSA/C was performed on eyefronts from embryonic day (E) 9 to E14 and staining visualized by confocal microscopy. Effects of purified GAGs on trigeminal nerve growth cone behavior were tested using in vitro neuronal explant cultures. Results. At E9 to E10, nerves exiting the pericorneal nerve ring grew as tight fascicles, advancing straight toward the corneal stroma. In contrast, upon entering the stroma, nerves bifurcated repeatedly as they extended anteriorly toward the epithelium. KS was localized in the path of trigeminal nerves, whereas DS and CSA/C–rich areas were avoided by growth cones. When E10 trigeminal neurons were cultured on different substrates comprised of purified GAG molecules, their neurite growth cone behavior varied depending on GAG type, concentration, and mode of presentation (immobilized versus soluble). High concentrations of immobilized KS, DS, and CSA/C inhibited neurite growth to varying degrees. Neurites traversing lower, permissive concentrations of immobilized DS and CSA/C displayed increased fasciculation and decreased branching, whereas KS caused decreased fasciculation and increased branching. Enzymatic digestion of sulfated GAGs canceled their effects on trigeminal neurons. Conclusions. Data herein suggest that GAGs may direct the movement of trigeminal nerve growth cones innervating the cornea. PMID:23132805

  18. Reduced serum concentrations of nerve growth factor, but not brain-derived neurotrophic factor, in chronic cannabis abusers.

    PubMed

    Angelucci, Francesco; Ricci, Valerio; Spalletta, Gianfranco; Pomponi, Massimiliano; Tonioni, Federico; Caltagirone, Carlo; Bria, Pietro

    2008-12-01

    Chronic cannabis use produces effects within the central nervous system (CNS) which include deficits in learning and attention tasks and decreased brain volume. Neurotrophins, in particular nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), are proteins that serve as survival factors for CNS neurons. Deficits in the production and utilization of these proteins can lead to CNS dysfunctions including those associated with cannabis abuse. In this study we measured by enzyme-linked immunosorbent assay (ELISA) the NGF and BDNF serum levels in two groups of subjects: cannabis-dependent patients and healthy subjects. We found that NGF serum levels were significantly reduced in cannabis abusers as compared to healthy subjects. These findings indicate that NGF may have a role in the central action of cannabis and potentially in the neurotoxicity induced by this drug. These data also suggest that chronic cannabis consumption may be a risk factor for developing psychosis among drug users.

  19. Expression of nerve growth factor is upregulated in the rat thymic epithelial cells during thymus regeneration following acute thymic involution.

    PubMed

    Lee, Hee-Woo; Kim, Sung-Min; Shim, Na-Ri; Bae, Soo-Kyung; Jung, Il-Gun; Kwak, Jong-Young; Kim, Bong-Seon; Kim, Jae-Bong; Moon, Jeon-Ok; Chung, Joo-Seop; Yoon, Sik

    2007-06-07

    Neuroimmune networks in the thymic microenvironment are thought to be involved in the regulation of T cell development. Nerve growth factor (NGF) is increasingly recognized as a potent immunomodulator, promoting "cross-talk" between various types of immune system cells. The present study describes the expression of NGF during thymus regeneration following acute involution induced by cyclophosphamide in the rat. Immunohistochemical stain demonstrated not only the presence of NGF but also its upregulated expression mainly in the subcapsular, paraseptal, and perivascular epithelial cells, and medullary epithelial cells including Hassall's corpuscles in both the normal and regenerating thymus. Biochemical data obtained using Western blot and RT-PCR supported these results and showed that thymic extracts contain NGF protein and mRNA, at higher levels during thymus regeneration. Thus, our results suggest that NGF expressed in these thymic epithelial cells plays a role in the T lymphopoiesis associated with thymus regeneration during recovery from acute thymic involution.

  20. Increased severity of inflammation correlates with elevated expression of TRPV1 nerve fibers and nerve growth factor on interstitial cystitis/bladder pain syndrome.

    PubMed

    Liu, Bo-long; Yang, Fei; Zhan, Hai-lun; Feng, Zhi-ying; Zhang, Zhi-gang; Li, Wen-biao; Zhou, Xiang-fu

    2014-01-01

    Although evidence supports a role for inflammation in interstitial cystitis/bladder pain syndrome (IC/BPS), the mechanism remains unknown. We determined whether inflammation causes an elevated expression of nerve growth factor (NGF) and transient receptor potential vanilloid receptor subtype 1 (TRPV1) and correlated them with the symptoms. Bladder biopsies were obtained from 53 IC/BPS patients and 27 controls, and hematoxylin and eosin staining, immunostaining and Western blotting were performed to detect inflammation, TRPV1-immunoreactive and PGP9.5-immunoreactive nerve fibers, and NGF, respectively. Symptoms were assessed using the Pelvic Pain/Urgency/Frequency (PUF) questionnaire and pain visual analogue scale scores. Suburothelial nerve fiber density was quantified and correlated with PUF scores. Increased severity of inflammation was correlated with a higher TRPV1-immunoreactive nerve fiber density (r = 0.4113, p = 0.0024) and higher NGF levels (r = 0.3775, p = 0.0052). Suburothelial TRPV1-immunoreactive nerve fiber density was significantly correlated with pain scores and urgency scores (r = 0.3320, p = 0.0145 and r = 0.3823, p = 0.0039, respectively). PGP9.5-immunoreactive nerve fibers were significantly increased in IC/BPS (p = 0.0193) and had a positive relationship with inflammation severity (r = 0.6138, p < 0.0001). Our study revealed increased severity of inflammation correlated with a higher expression of TRPV1-immunoreactive nerve fibers and NGF in IC/BPS and correlated with clinical symptoms. 2014 S. Karger AG, Basel.

  1. Single injection of a novel nerve growth factor coacervate improves structural and functional regeneration after sciatic nerve injury in adult rats.

    PubMed

    Li, Rui; Wu, Jiang; Lin, Zhenkun; Nangle, Matthew R; Li, Yi; Cai, Pingtao; Liu, Dan; Ye, Libin; Xiao, Zecong; He, Chaochao; Ye, Jingjing; Zhang, Hongyu; Zhao, Yingzheng; Wang, Jian; Li, Xiaokun; He, Yan; Ye, Qingsong; Xiao, Jian

    2017-02-01

    The prototypical neurotrophin, nerve growth factor (NGF), plays an important role in the development and maintenance of many neurons in both the central and peripheral nervous systems, and can promote functional recovery after peripheral nerve injury in adulthood. However, repair of peripheral nerve defects is hampered by the short half-life of NGF in vivo, and treatment with either NGF alone or NGF contained in synthetic nerve conduits is inferior to the use of nerve autografts, the current gold standard. We tested the reparative ability of a single local injection of a polyvalent coacervate containing polycation-poly(ethylene argininylaspartate diglyceride; PEAD), heparin, and NGF, in adult rats following sciatic nerve crush injury, using molecular, histological and behavioral approaches. In vitro assays demonstrated that NGF was loaded into the coacervate at nearly 100% efficiency, and was protected from proteolytic degradation. In vivo, the coacervate enhanced NGF bioavailability, leading to a notable improvement in motor function (track walking analysis) after 30days. The NGF coacervate treatment was also associated with better weight gain and reduction in atrophy of the gastrocnemius muscle. Furthermore, light and electron microscopy showed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in NGF coacervate-treated rats compared with control groups. Expression of markers of neural tissue regeneration (MAP-2, S-100β, MBP and GAP-43), as well as proliferating Schwann cells and myelin-axon relationships (GFAP and NF200), were also increased. These observations suggest that even a single administration of NGF coacervate could have therapeutic value for peripheral nerve regeneration and functional recovery.

  2. Combinatorial therapy with tamoxifen and trifluoperazine effectively inhibits malignant peripheral nerve sheath tumor growth by targeting complementary signaling cascades.

    PubMed

    Brosius, Stephanie N; Turk, Amy N; Byer, Stephanie J; Longo, Jody Fromm; Kappes, John C; Roth, Kevin A; Carroll, Steven L

    2014-11-01

    Chemotherapeutic agents effective against malignant peripheral nerve sheath tumors (MPNSTs) are urgently needed. We recently found that tamoxifen potently impedes xenograft growth. In vitro, tamoxifen inhibits MPNST proliferation and survival in an estrogen receptor-independent manner; these effects are phenocopied by the calmodulin inhibitor trifluoperazine. The present study was performed to establish the mechanism of action of tamoxifen in vivo and optimize its therapeutic effectiveness. To determine if tamoxifen has estrogen receptor-dependent effects in vivo, we grafted MPNST cells in castrated and ovariectomized mice; xenograft growth was unaffected by reductions in sex hormones. To establish whether tamoxifen and trifluoperazine additively or synergistically impede MPNST growth, mice xenografted with neurofibromatosis type 1-associated or sporadic MPNST cells were treated with tamoxifen, trifluoperazine, or both drugs for 30 days. Both monotherapies inhibited graft growth by 50%, whereas combinatorial treatment maximally reduced graft mass by 90% and enhanced decreases in proliferation and survival. Kinomic analyses showed that tamoxifen and trifluoperazine have both shared and distinct targets in MPNSTs. In addition, trifluoperazine prevented tamoxifen-induced increases in serum/glucocorticoid regulated kinase 1, a protein linked to tamoxifen resistance. These findings suggest that combinatorial therapy with tamoxifen and trifluoperazine is effective against MPNSTs because these agents target complementary pathways that are essential for MPNST pathogenesis.

  3. Nicotine Stimulates Nerve Growth Factor in Lung Fibroblasts through an NFκB-Dependent Mechanism

    PubMed Central

    Wongtrakool, Cherry; Grooms, Kora; Bijli, Kaiser M.; Crothers, Kristina; Fitzpatrick, Anne M.; Hart, C. Michael

    2014-01-01

    Rationale Airway hyperresponsiveness (AHR) is classically found in asthma, and persistent AHR is associated with poor asthma control. Although airway smooth muscle (ASM) cells play a critical pathophysiologic role in AHR, the paracrine contributions of surrounding cells such as fibroblasts to the contractile phenotype of ASM cells have not been examined fully. This study addresses the hypothesis that nicotine promotes a contractile ASM cell phenotype by stimulating fibroblasts to increase nerve growth factor (NGF) secretion into the environment. Methods Primary lung fibroblasts isolated from wild type and α7 nicotinic acetylcholine receptor (α7 nAChR) deficient mice were treated with nicotine (50 µg/ml) in vitro for 72 hours. NGF levels were measured in culture media and in bronchoalveolar lavage (BAL) fluid from asthmatic, smoking and non-smoking subjects by ELISA. The role of the NFκB pathway in nicotine-induced NGF expression was investigated by measuring NFκB nuclear translocation, transcriptional activity, chromatin immunoprecipitation assays, and si-p65 NFκB knockdown. The ability of nicotine to stimulate a fibroblast-mediated, contractile ASM cell phenotype was confirmed by examining expression of contractile proteins in ASM cells cultured with fibroblast-conditioned media or BAL fluid. Results NGF levels were elevated in the bronchoalveolar lavage fluid of nicotine-exposed mice, current smokers, and asthmatic children. Nicotine increased NGF secretion in lung fibroblasts in vitro in a dose-dependent manner and stimulated NFκB nuclear translocation, p65 binding to the NGF promoter, and NFκB transcriptional activity. These responses were attenuated in α7 nAChR deficient fibroblasts and in wild type fibroblasts following NFκB inhibition. Nicotine-treated, fibroblast-conditioned media increased expression of contractile proteins in ASM cells. Conclusion Nicotine stimulates NGF release by lung fibroblasts through α7 nAChR and NFκB dependent pathways

  4. Isolated generalised anhidrosis induced by postganglionic sympathetic skin nerve fibre degeneration: an incomplete Ross syndrome?

    PubMed

    Donadio, V; Cortelli, P; Falzone, F; Bugiardini, E; Giuliani, A; Misciali, C; Montagna, P; Calzà, L; Liguori, R

    2008-08-01

    Ross syndrome is characterised by tonic pupil, areflexia and anhidrosis, and the underlying lesion affects postganglionic skin sympathetic nerve fibres. We describe a 51-year-old man who had complained of anhidrosis since adolescence, at which time this problem was limited to the lower arms. The thermoregulatory sweating test disclosed generalised anhidrosis (GA) except for two small skin areas that were located in the right palm and left neck. Immunofluorescence analysis disclosed no cholinergic sudomotor fibres around the sweat glands of non-sweating skin areas, which were evident although sparse and deranged in the sweating site. In our patient, GA was induced by degeneration of postganglionic sympathetic skin nerve fibres, as found in Ross syndrome, although his clinical picture was incomplete as it lacked tonic pupil and areflexia. Isolated GA induced by degeneration of postganglionic sympathetic nerve fibers, directly evaluated by skin biopsy, has not previously been described.

  5. Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures.

    PubMed

    Schwartz, Fidi; Brodie, Chaya; Appel, Elana; Kazimirsky, Gila; Shainberg, Asher

    2002-04-01

    Low energy laser irradiation therapy in medicine is widespread but the mechanisms are not fully understood. The aim of the present study was to elucidate the mechanism by which the light might induce therapeutic effects. Skeletal muscle cultures were chosen as a target for light irradiation and nerve growth factor (NGF) was the biochemical marker for analysis. It was found that there is a transient elevation of intracellular calcium in the myotubes immediately after irradiation (P<0.001). Preincubation of the myotubes with either the photosensitizers 5-amino-levulinic acid (5-ALA), or with hematoporphyrin (Hp) enhanced the elevation of cytosolic calcium (P<0.001) after helium/neon irradiation (633 nm) with an energy of 3 J/cm(2). In addition, helium/neon irradiation augmented the level of NGF mRNA fivefold and increased NGF release to the medium of the myotubes. Thus, it is speculated that transient changes in calcium caused by light can modulate NGF release from the myotubes and also affect the nerves innervating the muscle. The NGF is probably responsible for the beneficial effects of low-level light.

  6. Expression of the beta-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs.

    PubMed Central

    Shelton, D L; Reichardt, L F

    1984-01-01

    Although beta-nerve growth factor (NGF), a protein necessary for survival and development of sympathetic neurons, is believed to be a trophic factor that is produced by sympathetic effector organs, its synthesis by these tissues has never been conclusively demonstrated. Using an assay capable of detecting 10 fg of mRNA, we measured the level of NGF mRNA in tissues innervated by sympathetic neurons. NGF mRNA was detected unambiguously in each tissue at a level that appeared to be more than enough to account for the low levels of NGF protein previously detected. Tissues that were densely innervated had comparatively high levels of NGF mRNA, while those with sparser innervation had lower levels. There was a strong positive correlation between the NGF mRNA level and norepinephrine content, a measure of the density of sympathetic innervation. NGF gene expression in one of these tissues, the iris, was shown to be induced by denervation. NGF mRNA was also found in other areas, including elements of the adult peripheral nervous system--the sciatic nerve and the sympathetic and sensory ganglia. In the central nervous system, levels of NGF mRNA were found that are too high to be attributed entirely to the vasculature, suggesting a role for NGF in adult central nervous system function. Images PMID:6595669

  7. The Akt-nitric oxide-cGMP pathway contributes to nerve growth factor-mediated neurite outgrowth in apolipoprotein E knockout mice.

    PubMed

    Hashikawa-Hobara, Narumi; Hashikawa, Naoya; Yutani, Chikao; Zamami, Yoshito; Jin, Xin; Takatori, Shingo; Mio, Mitsunobu; Kawasaki, Hiromu

    2011-08-01

    Apolipoprotein E (apo)-deficient [apoE(-/-)] mice have peripheral sensory nerve defects and a reduced and delayed response to noxious thermal stimuli. However, to date, no report has focused on the influence of apoE deficiency on calcitonin gene-related peptide (CGRP)-containing nerve fiber extensions. We have shown that the density of CGRP-containing nerve fibers decreases in mesenteric arteries of apoE(-/-) mice compared with wild-type mice. Here, we investigated whether apoE deficiency is involved in nerve growth factor (NGF)-induced CGRP-containing nerve regeneration using apoE(-/-) mice. NGF-mediated CGRP-like immunoreactivity (LI)-neurite outgrowth in apoE(-/-) cultured dorsal root ganglia (DRG) cells was significantly lower than that in wild-type cultures. However, the level of NGF receptor mRNA in apoE(-/-) DRG cells was similar to that in wild-type mice. To clarify the mechanism of the impaired ability of NGF-mediated neurite outgrowth, we focused on the Akt-nitric oxide (NO)-cGMP pathway. Expression of phosphorylated Akt was significantly reduced in apoE(-/-) DRG. The NO donor, sodium nitroprusside or S-nitroso-N-acetylpenicillamine, did not affect NGF-mediated neurite outgrowth in apoE(-/-) cultured DRG cells. However, 8-bromoguanosine 3',5'-cyclic monophosphate sodium salt n-hydrate, a cGMP analog, induced NGF-mediated nerve facilitation similar to wild-type NGF-mediated neurite outgrowth levels. Furthermore, in apoE(-/-) DRG, soluble guanylate cyclase expression was significantly lower than that in wild-type DRG. These results suggest that in apoE(-/-) mice the Akt-NO-cGMP pathway is impaired, which may be caused by NGF-mediated CGRP-LI-neurite outgrowth defects.

  8. Varying butyric acid amounts induce different stress- and cell death-related signals in nerve growth factor-treated PC12 cells: implications in neuropathic pain absence during periodontal disease progression.

    PubMed

    Seki, Keisuke; Cueno, Marni E; Kamio, Noriaki; Saito, Yuko; Kamimoto, Atsushi; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2016-06-01

    Neuropathic pain is absent from the early stages of periodontal disease possibly due to neurite retraction. Butyric acid (BA) is a periodontopathic metabolite that activates several stress-related signals and, likewise, induce neurite retraction. Neuronal cell death is associated to neurite retraction which would suggest that BA-induced neurite retraction is ascribable to neuronal cell death. However, the underlying mechanism of BA-related cell death signaling remains unknown. In this study, we exposed NGF-treated PC12 cells to varying BA concentrations [0 (control), 0.5, 1.0, 5.0 mM] and determined selected stress-related (H2O2, glutathione reductase, calcium (Ca(2+)), plasma membrane Ca(2+) ATPase (PMCA), and GADD153/CHOPS) and cell death-associated (extrinsic: FasL, TNF-α, TWEAK, and TRAIL; intrinsic: cytochrome C (CytC), NF-kB, CASP8, CASP9, CASP10, and CASP3) signals. Similarly, we confirmed cell death execution by chromatin condensation. Our results showed that low (0.5 mM) and high (1.0 and 5.0 mM) BA levels differ in stress and cell death signaling. Moreover, at periodontal disease-level BA concentration (5 mM), we observed that only FasL amounts were affected and occurred concurrently with chromatin condensation insinuating that cells have fully committed to neurodegeneration. Thus, we believe that both stress and cell death signaling in NGF-treated PC12 cells are affected differently depending on BA concentration. In a periodontal disease scenario, we hypothesize that during the early stages, low BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurite non-proliferation, whereas, during the later stages, high BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurodegeneration. More importantly, we propose that neuropathic pain absence at any stage of periodontal disease progression is ascribable to BA accumulation regardless of amount.

  9. Nerve growth factor promotes killing of Leishmania donovani by macrophages through the induction of hydrogen peroxide.

    PubMed

    Chiba, Rieko; Amagai, Yosuke; Tanaka, Akane; Katakura, Ken; Matsuda, Hiroshi

    2014-08-01

    Visceral leishmaniasis is protozoonosis that occurs worldwide and still requires effective therapies with less toxicity. In this study, we examined the antileishmanial effect of nerve growth factor (NGF) using a murine infection model. NGF blocked the infection of macrophages by Leishmania donovani, which was completely cancelled by a hydrogen peroxide inhibitor. In vivo, not only did NGF show antileishmanial effects, but combination therapy of NGF and sodium stibogluconate synergistically exhibited the activity more potently than each monotherapy. These results indicate that NGF exerts antileishmanial effect by stimulating hydrogen peroxide production in macrophages and can be a novel therapy for leishmaniasis.

  10. Nerve growth factor (NGF) and NGF mRNA change in rat uterus during pregnancy.

    PubMed

    Varol, F G; Duchemin, A M; Neff, N H; Hadjiconstantinou, M

    2000-11-10

    During pregnancy, the uterus undergoes a profound sympathetic denervation. To explore whether this is associated with changes in neurotrophic factors, we assayed nerve growth factor (NGF) and NGF mRNA in the uterus of non-pregnant and pregnant rats. In the uterine horn, the concentration of NGF and its mRNA decreased during middle and late pregnancy. However, when values were corrected for the increase of uterine weight and total RNA yield during pregnancy, NGF content and mRNA per horn increased during middle and late pregnancy. Similar, but less pronounced, changes were observed in the cervix. By seven days postpartum, both parameters returned to near normal.

  11. Response of the regenerating telencephalon of Lacerta viridis to nerve growth factor.

    PubMed

    Del Grande, P; Minelli, G

    1980-01-01

    To identify the nature of the dividing cells during the regenerative process of the telencephalon, the authors administered nerve growth factor (NGF) to Lacerta viridis with a wedge of telencephalon removed. Some known centers of cell proliferation were unresponsive to the treatment, whereas the ventral end of the telencephalic ventricle underwent an increase of up to 200% in proliferation rate. On the basis of this observation and data in the literature, the authors propose that the cell proliferation beginning in the medial area during the regeneration of the telencephalic ventricle is due to catecholaminergic neuroblasts still present in the adult.

  12. Altered levels of nerve growth factor in the thymus of subjects with myasthenia gravis.

    PubMed

    Stampachiacchiere, Barbara; Marinova, Tsvetana; Velikova, Kamelia; Philipov, Stanislav; Stankulov, Ivan S; Chaldakov, George N; Fiore, Marco; Aloe, Luigi

    2004-01-01

    We have previously reported that nerve growth factor (NGF), a polypeptide known for its neurotrophic activities, is also involved in the differentiation and survival of immune cells, and that NGF and its high-affinity receptor are present in the thymus. We here demonstrate that the thymus of humans affected by myasthenia gravis (MG) contains significant concentrations of NGF. These observations support our hypothesis of a role for NGF in the thymus and suggest that the changes observed in the thymus of subject with MG may have functional significance.

  13. Measuring nerve growth factor in saliva by immunoassay: A cautionary note.

    PubMed

    Matin, Marla J; Li, Daming; Peterson, Jon; Taylor, Marcus K; Laurent, Heidemarie K; Lucas, Todd; Granger, Steve J; Granger, Douglas A; Granger, Steve W

    2016-01-01

    Nerve growth factor (NGF), a neurotrophin, modulates a diverse set of physiologic processes in the nervous, immune, and endocrine systems. Studies suggest that NGF can be measured in saliva (sNGF). Historically, the method for measuring sNGF involves the off-label use of an enzyme immunoassay designed for use with cell-culture supernatants/tissue extracts (Nam et al., 2007; Ruhl et al., 2004). In a series of experiments we reveal this measurement strategy is subject to non-specific interference by constituents present in oral fluids. We conclude that the measurement of sNGF by this assay is not optimal for use with oral fluid specimens.

  14. Neuroprotection elicited by nerve growth factor and brain-derived neurotrophic factor released from astrocytes in response to methylmercury.

    PubMed

    Takemoto, Takuya; Ishihara, Yasuhiro; Ishida, Atsuhiko; Yamazaki, Takeshi

    2015-07-01

    The protective roles of astrocytes in neurotoxicity induced by environmental chemicals, such as methylmercury (MeHg), are largely unknown. We found that conditioned medium of MeHg-treated astrocytes (MCM) attenuated neuronal cell death induced by MeHg, suggesting that astrocytes-released factors can protect neuronal cells. The increased expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) was observed in MeHg-treated astrocytes. NGF and BDNF were detected in culture media as homodimers, which are able to bind specific tyrosine kinase receptors, tropomyosin related kinase (Trk) A and TrkB, respectively. The TrkA antagonist and TrkB antagonist abolished the protective effects of MCM in neuronal cell death induced by MeHg. Taken together, astrocytes synthesize and release NGF and BDNF in response to MeHg to protect neurons from MeHg toxicity. This study is considered to show a novel defense mechanism against MeHg-induced neurotoxicity.

  15. Verticillin A Inhibits Leiomyosarcoma and Malignant Peripheral Nerve Sheath Tumor Growth via Induction of Apoptosis

    PubMed Central

    Zewdu, A; Lopez, G; Braggio, D; Kenny, C; Constantino, D; Bid, HK; Batte, K; Iwenofu, OH; Oberlies, NH; Pearce, CJ; Strohecker, AM; Lev, D; Pollock, RE

    2017-01-01

    Objective The heterogeneity of soft tissue sarcoma (STS) represents a major challenge for the development of effective therapeutics. Comprised of over 50 different histology subtypes of various etiologies, STS subsets are further characterized as either karyotypically simple or complex. Due to the number of genetic anomalies associated with genetically complex STS, development of therapies demonstrating potency against this STS cluster is especially challenging and yet greatly needed. Verticillin A is a small molecule natural product with demonstrated anticancer activity; however, the efficacy of this agent has never been evaluated in STS. Therefore, the goal of this study was to explore verticillin A as a potential STS therapeutic. Methods We performed survival (MTS) and clonogenic analyses to measure the impact of this agent on the viability and colony formation capability of karyotypically complex STS cell lines: malignant peripheral nerve sheath tumor (MPNST) and leiomyosarcoma (LMS). The in vitro effects of verticillin A on apoptosis were investigated through annexin V/PI flow cytometry analysis and by measuring fluorescently-labeled cleaved caspase 3/7 activity. The impact on cell cycle progression was assessed via cytometric measurement of propidium iodide intercalation. In vivo studies were performed using MPNST xenograft models. Tumors were processed and analyzed using immunohistochemistry (IHC) for verticillin A effects on growth (Ki67) and apoptosis (cleaved caspase 3). Results Treatment with verticillin A resulted in decreased STS growth and an increase in apoptotic levels after 24 h. 100 nM verticillin A induced significant cellular growth abrogation after 24 h (96.7, 88.7, 72.7, 57, and 39.7% reduction in LMS1, S462, ST88, SKLMS1, and MPNST724, respectively). We observed no arrest in cell cycle, elevated annexin, and a nearly two-fold increase in cleaved caspase 3/7 activity in all MPNST and LMS cell lines. Control normal human Schwann (HSC) and

  16. Berberine Ameliorates Allodynia Induced by Chronic Constriction Injury of the Sciatic Nerve in Rats.

    PubMed

    Kim, Hyun Jee

    2015-08-01

    The objective of this study was to investigate whether berberine could ameliorate allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in rats. After inducement of CCI, significant increases in the number of paw lifts from a cold plate test (cold allodynia) and decreased paw withdrawal threshold in the von Frey hair stimulation test (mechanical allodynia) were observed. However, these cold and mechanical allodynia were markedly alleviated by berberine administration in a dose-dependent manner. Sciatic nerve myeloperoxidase and malondialdehyde activities were also attenuated by berberine administration. Continuous injection for 7 days induced no development of tolerance. The antiallodynic effect of 20 mg/kg berberine was comparable to that of amitriptyline 10 mg/kg. This study demonstrated that berberine could mitigate allodynia induced by CCI, a neuropathic pain model, and it suggested that the anti-inflammatory and antioxidative properties of berberine contributed to the antiallodynic effect in the CCI model.

  17. Mycobacterium leprae-induced demyelination: a model for early nerve degeneration.

    PubMed

    Rambukkana, Anura

    2004-08-01

    The molecular events that occur at the early phase of many demyelinating neurodegenerative diseases are unknown. A recent demonstration of rapid demyelination and axonal injury induced by Mycobacterium leprae provides a model for elucidating the molecular events of early nerve degeneration which might be common to neurodegenerative diseases of both infectious origin and unknown etiology. The identification of the M. leprae-targeted Schwann cell receptor, dystroglycan, and its associated molecules in myelination, demyelination and axonal functions suggests a role for these molecules in early nerve degeneration.

  18. Muscle-targeted hydrodynamic gene introduction of insulin-like growth factor-1 using polyplex nanomicelle to treat peripheral nerve injury.

    PubMed

    Nagata, Kazuya; Itaka, Keiji; Baba, Miyuki; Uchida, Satoshi; Ishii, Takehiko; Kataoka, Kazunori

    2014-06-10

    The recovery of neurologic function after peripheral nerve injury often remains incomplete because of the prolonged reinnervation process, which leads to skeletal muscle atrophy and articular contracture from disuse over time. To rescue the skeletal muscle and promote functional recovery, insulin-like growth factor-1 (IGF-1), a potent myogenic factor, was introduced into the muscle by hydrodynamic injection of IGF-1-expressing plasmid DNA using a biocompatible nonviral gene carrier, a polyplex nanomicelle. In a mouse model of sciatic nerve injury, the introduction of IGF-1 into the skeletal muscle of the paralyzed limb effectively alleviated a decrease in muscle weight compared with that in untreated control mice. Histologic analysis of the muscle revealed the IGF-1-expressing plasmid DNA (pDNA) to have a myogenic effect, inducing muscle hypertrophy with the upregulation of the myogenic regulatory factors, myogenin and MyoD. The evaluation of motor function by walking track analysis revealed that the group that received the hydrodynamic injection of IGF-1-expressing pDNA using the polyplex nanomicelle had significantly early recovery of motor function compared with groups receiving negative control pDNA and untreated controls. Early recovery of sensation in the distal area of sciatic nerve injury was also induced by the introduction of IGF-1-expressing pDNA, presumably because of the effect of secreted IGF-1 protein in the vicinity of the injured sciatic nerve exerting a synergistic effect with muscle hypertrophy, inducing a more favorable prognosis. This approach of introducing IGF-1 into skeletal muscle is promising for the treatment of peripheral nerve injury by promoting early motor function recovery.

  19. Mutant human myocilin induces strain specific differences in ocular hypertension and optic nerve damage in mice.

    PubMed

    McDowell, Colleen M; Luan, Tomi; Zhang, Zhang; Putliwala, Tasneem; Wordinger, Robert J; Millar, J Cameron; John, Simon W M; Pang, Iok-Hou; Clark, Abbot F

    2012-07-01

    Elevated intraocular pressure (IOP) is a causative risk factor for the development and progression of glaucoma. Glaucomatous mutations in myocilin (MYOC) damage the trabecular meshwork and elevate IOP in humans and in mice. Animal models of glaucoma are important to discover and better understand molecular pathogenic pathways and to test new glaucoma therapeutics. Although a number of different animal models of glaucoma have been developed and characterized, there are no true models of human primary open angle glaucoma (POAG). The overall goal of this work is to develop the first inducible mouse model of POAG using a human POAG relevant transgene (i.e. mutant MYOC) expression in mouse eyes to elevate IOP and cause pressure-induced damage to the optic nerve. Four mouse strains (A/J, BALB/cJ, C57BL/6J, and C3H/HeJ) were used in this study. Ad5.MYOC.Y437H (5 × 10(7) pfu) was injected intravitreally into one eye, with the uninjected contralateral eye serving as the control eye. Conscious IOP measurements were taken using a TonoLab rebound tonometer. Optic nerve damage was determined by scoring PPD stained optic nerve cross sections. Retinal ganglion cell and superior colliculus damage was assessed by Nissl stain cell counts. Intravitreal administration of viral vector Ad5.MYOC.Y437H caused a prolonged, reproducible, and statistically significant IOP elevation in BALB/cJ, A/J, and C57BL/6J mice. IOPs increased to approximately 25 mm Hg for 8 weeks (p < 0.0001). In contrast, the C3H/HeJ mouse strain was resistant to Ad5.MYOC.Y437H induced IOP elevation for the 8-week time period. IOPs were stable (12-15 mm Hg) in the uninjected control eyes. We also determined whether there were any strain differences in pressure-induced optic nerve damage. Even though IOP was similarly elevated in three of the strains tested (BALB/cJ, C57BL/6J, and A/J) only the A/J strain had considerable and significant optic nerve damage at the end of 8 weeks with optic nerve damage score of 2.64

  20. Chronic mild stress influences nerve growth factor through a matrix metalloproteinase-dependent mechanism.

    PubMed

    Kucharczyk, Mateusz; Kurek, Anna; Detka, Jan; Slusarczyk, Joanna; Papp, Mariusz; Tota, Katarzyna; Basta-Kaim, Agnieszka; Kubera, Marta; Lason, Wladyslaw; Budziszewska, Bogusława

    2016-04-01

    Stress is generally a beneficial experience that motivates an organism to action to overcome the stressful challenge. In particular situations, when stress becomes chronic might be harmful and devastating. The hypothalamus is a critical coordinator of stress and the metabolic response; therefore, disruptions in this structure may be a significant cause of the hormonal and metabolic disturbances observed in depression. Chronic stress induces adverse changes in the morphology of neural cells that are often associated with a deficiency of neurotrophic factors (NTFs); additionally, many studies indicate that insufficient NTF synthesis may participate in the pathogenesis of depression. The aim of the present study was to determine the expression of the nerve growth factor (NGF) in the hypothalamus of male rats subjected to chronic mild stress (CMS) or to prenatal stress (PS) and to PS in combination with an acute stress event (AS). It has been found that chronic mild stress, but not prenatal stress, acute stress or a combination of PS with AS, decreased the concentration of the mature form of NGF (m-NGF) in the rat hypothalamus. A discrepancy between an increase in the Ngf mRNA and a decrease in the m-NGF levels suggested that chronic mild stress inhibited NGF maturation or enhanced the degradation of this factor. We have shown that NGF degradation in the hypothalamus of rats subjected to chronic mild stress is matrix metalloproteinase-dependent and related to an increase in the active forms of some metalloproteinases (MMP), including MMP2, MMP3, MMP9 and MMP13, while the NGF maturation process does not seem to be changed. We suggested that activated MMP2 and MMP9 potently cleave the mature but not the pro- form of NGF into biologically inactive products, which is the reason for m-NGF decomposition. In turn, the enhanced expression of Ngf in the hypothalamus of these rats is an attempt to overcome the reduced levels of m-NGF. Additionally, the decreased level of m

  1. Enhancement of musculocutaneous nerve reinnervation after vascular endothelial growth factor (VEGF) gene therapy

    PubMed Central

    2012-01-01

    Background Vascular endothelial growth factor (VEGF) is not only a potent angiogenic factor but it also promotes axonal outgrowth and proliferation of Schwann cells. The aim of the present study was to quantitatively assess reinnervation of musculocutaneous nerve (MCN) stumps using motor and primary sensory neurons after plasmid phVEGF transfection and end-to-end (ETE) or end-to-side (ETS) neurorrhaphy. The distal stump of rat transected MCN, was transfected with plasmid phVEGF, plasmid alone or treated with vehiculum and reinnervated following ETE or ETS neurorrhaphy for 2 months. The number of motor and dorsal root ganglia neurons reinnervating the MCN stump was estimated following their retrograde labeling with Fluoro-Ruby and Fluoro-Emerald. Reinnervation of the MCN stumps was assessed based on density, diameter and myelin sheath thickness of regenerated axons, grooming test and the wet weight index of the biceps brachii muscles. Results Immunohistochemical detection under the same conditions revealed increased VEGF in the Schwann cells of the MCN stumps transfected with the plasmid phVEGF, as opposed to control stumps transfected with only the plasmid or treated with vehiculum. The MCN stumps transfected with the plasmid phVEGF were reinnervated by moderately higher numbers of motor and sensory neurons after ETE neurorrhaphy compared with control stumps. However, morphometric quality of myelinated axons, grooming test and the wet weight index were significantly better in the MCN plasmid phVEGF transfected stumps. The ETS neurorrhaphy of the MCN plasmid phVEGF transfected stumps in comparison with control stumps resulted in significant elevation of motor and sensory neurons that reinnervated the MCN. Especially noteworthy was the increased numbers of neurons that sent out collateral sprouts into the MCN stumps. Similarly to ETE neurorrhaphy, phVEGF transfection resulted in significantly higher morphometric quality of myelinated axons, behavioral test and the

  2. VEGF-A165 potently induces human blood-nerve barrier endothelial cell proliferation, angiogenesis and wound healing in vitro

    PubMed Central

    Reddy, Chetan Lakshmana; Yosef, Nejla; Ubogu, Eroboghene E.

    2013-01-01

    Several mitogens such as vascular endothelial growth factor (VEGF) have been implicated in mammalian vascular proliferation and repair. However, the molecular mediators of human blood-nerve barrier (BNB) development and specialization are unknown. Primary human endoneurial endothelial cells (pHEndECs) were expanded in vitro and specific mitogen receptors detected by western blot. pHEndECs were cultured with basal medium containing different mitogen concentrations with or without heparin. Non-radioactive cell proliferation, Matrigel™-induced angiogenesis and sterile micropipette injury wound healing assays were performed. Proliferation rates, number and total length of induced microvessels and rate of endothelial cell monolayer wound healing were determined and compared to basal conditions. VEGF-A165 in the presence of heparin, was the most potent inducer of pHEndEC proliferation, angiogenesis and wound healing in vitro. 1.31 nM VEGF-A165 induced ~110% increase in cell proliferation relative to basal conditions (~51% without heparin). 2.62 pM VEGF-A165 induced a 3-fold increase in mean number of microvessels and 3.9-fold increase in total capillary length/field relative to basal conditions. In addition, 0.26 nM VEGF-A165 induced ~1.3-fold increased average rate of endothelial wound healing 4–18 hours after endothelial monolayer injury, mediated by increased cell migration. VEGF-A165 was the only mitogen capable of complete wound closure, occurring within 30 hours following injury via increased cell proliferation. This study demonstrates that VEGF-A165, in the presence of heparin, is a potent inducer of pHEndEC proliferation, angiogenesis and wound healing in vitro. VEGF-A165 may be an important mitogen necessary for human BNB development and recovery in response to peripheral nerve injury. PMID:23712256

  3. G9a participates in nerve injury-induced Kcna2 downregulation in primary sensory neurons

    PubMed Central

    Liang, Lingli; Gu, Xiyao; Zhao, Jian-Yuan; Wu, Shaogen; Miao, Xuerong; Xiao, Jifang; Mo, Kai; Zhang, Jun; Lutz, Brianna Marie; Bekker, Alex; Tao, Yuan-Xiang

    2016-01-01

    Nerve injury-induced downregulation of voltage-gated potassium channel subunit Kcna2 in the dorsal root ganglion (DRG) is critical for DRG neuronal excitability and neuropathic pain genesis. However, how nerve injury causes this downregulation is still elusive. Euchromatic histone-lysine N-methyltransferase 2, also known as G9a, methylates histone H3 on lysine residue 9 to predominantly produce a dynamic histone dimethylation, resulting in condensed chromatin and gene transcriptional repression. We showed here that blocking nerve injury-induced increase in G9a rescued Kcna2 mRNA and protein expression in the axotomized DRG and attenuated the development of nerve injury-induced pain hypersensitivity. Mimicking this increase decreased Kcna2 mRNA and protein expression, reduced Kv current, and increased excitability in the DRG neurons and led to spinal cord central sensitization and neuropathic pain-like symptoms. G9a mRNA is co-localized with Kcna2 mRNA in the DRG neurons. These findings indicate that G9a contributes to neuropathic pain development through epigenetic silencing of Kcna2 in the axotomized DRG. PMID:27874088

  4. The Role of Nerve Growth Factor (NGF) and Its Precursor Forms in Oral Wound Healing.

    PubMed

    Schenck, Karl; Schreurs, Olav; Hayashi, Katsuhiko; Helgeland, Kristen

    2017-02-11

    Nerve growth factor (NGF) and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF) and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptor (p75(NTR)) are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds.

  5. Nerve growth factor-immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite extension

    PubMed Central

    Gomez, Natalia; Schmidt, Christine E.

    2010-01-01

    Biomaterials that present multiple stimuli are attractive for a number of biomedical applications. In particular, electrical and biological cues are important factors to include in interfaces with neurons for applications such as nerve conduits and neural probes. Here, we report the combination of these two stimuli, by immobilizing nerve growth factor (NGF) on the surface of the electrically conducting polymer polypyrrole (PPy). NGF was immobilized using an intermediate linker provided by a layer of polyallylamine conjugated to an arylazido functional group. Upon exposure to UV light and activation of the azido groups, NGF was fixed to the substrate. Three different surface concentrations were obtained (0.21–0.98 ng/mm2) and similar levels of neurite extension were observed on immobilized NGF as with soluble NGF. Additionally, electrical stimulation experiments were conducted with the modified polymer and revealed a 50% increase in neurite outgrowth in PC12 cells compared to experiments without electrical stimulation. This novel modification of PPy provides both electrical and biological stimulation, by presenting tethered growth factors and only producing a small decrease in the material's properties (conductivity ~10 S cm−1) when compared to other modification techniques (conductivity ~10−3–10−6 S cm−1. PMID:17111407

  6. Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering.

    PubMed

    Gnavi, S; di Blasio, L; Tonda-Turo, C; Mancardi, A; Primo, L; Ciardelli, G; Gambarotta, G; Geuna, S; Perroteau, I

    2017-02-01

    Hydrogels are promising materials in regenerative medicine applications, due to their hydrophilicity, biocompatibility and capacity to release drugs and growth factors in a controlled manner. In this study, biocompatible and biodegradable hydrogels based on blends of natural polymers were used in in vitro and ex vivo experiments as a tool for VEGF-controlled release to accelerate the nerve regeneration process. Among different candidates, the angiogenic factor VEGF was selected, since angiogenesis has been long recognized as an important and necessary step during tissue repair. Recent studies have pointed out that VEGF has a beneficial effect on motor neuron survival and Schwann cell vitality and proliferation. Moreover, VEGF administration can sustain and enhance the growth of regenerating peripheral nerve fibres. The hydrogel preparation process was optimized to allow functional incorporation of VEGF, while preventing its degradation and denaturation. VEGF release was quantified through ELISA assay, whereas released VEGF bioactivity was validated in human umbilical vein endothelial cells (HUVECs) and in a Schwann cell line (RT4-D6P2T) by assessing VEGFR-2 and downstream effectors Akt and Erk1/2 phosphorylation. Moreover, dorsal root ganglia explants cultured on VEGF-releasing hydrogels displayed increased neurite outgrowth, providing confirmation that released VEGF maintained its effect, as also confirmed in a tubulogenesis assay. In conclusion, a gelatin-based hydrogel system for bioactive VEGF delivery was developed and characterized for its applicability in neural tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Postnatal expression of nerve growth factor receptors in the rat testis.

    PubMed

    Djakiew, D; Pflug, B; Dionne, C; Onoda, M

    1994-08-01

    Because nerve growth factor beta (NGF beta) and its corresponding receptors have been implicated in the paracrine regulation of spermatogenesis, we examined the postnatal developmental expression of the low- and high-affinity NGF receptors in the rat testis, and localized their expression to specific testicular cell types. The neurotropin receptors consist of a low-affinity p75 nerve growth factor receptor (LNGFR) and a family of high-affinity tyrosine receptor kinases (trk). Both the p75 LNGFR gene product and the trk receptor gene product were detected in immature rat testes, with maximal expression in 10- and 20-day-old rats. Expression of the testicular p75 LNGFR and the trk receptor progressively declined in older animals so that they were barely detectable in 90-day-old adult rats. The 75-kDa LNGFR was detected in membrane fractions of Sertoli cells, whereas the p75 LNGFR was not detected by Western blot in membrane fractions of round spermatids and primary spermatocytes. Interestingly, microsomal fractions of peritubular myoid cells were immunoreactive for a 65-kDa band on Western blots with the p75 LNGFR monoclonal antibody. Immunoblot analysis of the trk receptor in cell lysates of isolated cell types was inconclusive. Excess NGF beta and round spermatid protein, which is known to contain a NGF-like protein, were both capable of displacing the binding of 125I-NGF beta from the surface of Sertoli cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. The Role of Nerve Growth Factor (NGF) and Its Precursor Forms in Oral Wound Healing

    PubMed Central

    Schenck, Karl; Schreurs, Olav; Hayashi, Katsuhiko; Helgeland, Kristen

    2017-01-01

    Nerve growth factor (NGF) and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF) and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptor (p75NTR) are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds. PMID:28208669

  9. Recombinant expression of human nerve growth factor beta in rabbit bone marrow mesenchymal stem cells.

    PubMed

    Fan, Bo-Sheng; Lou, Ji-Yu

    2010-12-01

    Nerve growth factor (NGF) is required for the differentiation and maintenance of sympathetic and sensory neurons. In the present study, the recombinant expression of human nerve growth factor beta (hNGF-β) gene in rabbit bone marrow mesenchymal stem cells (rMSCs) was undertaken. Recombinant vector containing hNGF-β was constructed and transferred into rMSCs, the expressions of the exogenous in rMSCs were determined by reverse transcriptase PCR (RT-PCR), ELISA and Western blot, whereas the biological activity of recombinant hNGF-β was confirmed using PC12 cells and cultures of dorsal root ganglion neurons from chicken embryos. The results showed that the hNGF-β gene expressed successfully in the rMSCs, a polypeptide with a molecular weight of 13.2 kDa was detected. The maximal expression level of recombinant hNGF-β in rMSCs reached 126.8012 pg/10(6) cells, the mean concentration was 96.4473 pg/10(6) cells. The recombinant hNGF-β in the rMSCs showed full biological activity when compared to commercial recombinant hNGF-β.

  10. Selective decrease in axonal nerve growth factor and insulin-like growth factor I immunoreactivity in axonopathies of unknown etiology.

    PubMed

    Fressinaud, Catherine; Jean, Isabelle; Dubas, Frédéric

    2003-05-01

    In an attempt to approach the mechanisms underlying axonopathies of unknown etiology, we have studied by immunocytochemistry the fate of several growth factors in eight of such cases that we had previously analyzed by morphometry and which were characterized by a decrease in neurofilaments and an increase in beta tubulin immunostaining. Here we establish that, contrary to beta tubulin, growth-associated protein43 (GAP-43) immunolabeling is not up-regulated in theses cases, correlating well with the failure of regeneration. Neurotrophin-3 (NT-3) and its receptor TrkC were not modified compared to controls (five cases). On the contrary, we observed in all cases a pronounced decrease in the number of fibers labeled for nerve growth factor (NGF) and insulin-like growth factor I (IGF-I), which were both approximately half of control values. This decrease could not be ascribed to the reduction in fiber density since it was also present in cases without fiber loss (isolated large fiber atrophy). The fact that only around 50% of fibers were stained, versus all fibers in controls, probably accounted for this decrease. It contrasted also with the normality of NGF and IGF-I immunolabeling in six cases of chronic inflammatory demyelinating neuropathy that were investigated in parallel. These results differ from those reported in experimental diabetic neuropathy, during which NT-3 is also decreased. A deficient supply of specific growth factors delivered by neuronal targets may be responsible for these neuropathies and their associated axonal cytoskeleton abnormalities.

  11. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells

    PubMed Central

    Costantini, Todd W.; Bansal, Vishal; Krzyzaniak, Michael; Putnam, James G.; Peterson, Carrie Y.; Loomis, William H.; Wolf, Paul; Baird, Andrew; Eliceiri, Brian P.

    2010-01-01

    The enteric nervous system may have an important role in modulating gastrointestinal barrier response to disease through activation of enteric glia cells. In vitro studies have shown that enteric glia activation improves intestinal epithelial barrier function by altering the expression of tight junction proteins. We hypothesized that severe injury would increase expression of glial fibrillary acidic protein (GFAP), a marker of enteric glial activation. We also sought to define the effects of vagal nerve stimulation on enteric glia activation and intestinal barrier function using a model of systemic injury and local gut mucosal involvement. Mice with 30% total body surface area steam burn were used as model of severe injury. Vagal nerve stimulation was performed to assess the role of parasympathetic signaling on enteric glia activation. In vivo intestinal permeability was measured to assess barrier function. Intestine was collected to investigate changes in histology; GFAP expression was assessed by quantitative PCR, by confocal microscopy, and in GFAP-luciferase transgenic mice. Stimulation of the vagus nerve prevented injury-induced intestinal barrier injury. Intestinal GFAP expression increased at early time points following burn and returned to baseline by 24 h after injury. Vagal nerve stimulation prior to injury increased GFAP expression to a greater degree than burn alone. Gastrointestinal bioluminescence was imaged in GFAP-luciferase transgenic animals following either severe burn or vagal stimulation and confirmed the increased expression of intestinal GFAP. Injection of S-nitrosoglutathione, a signaling molecule released by activated enteric glia cells, following burn exerts protective effects similar to vagal nerve stimulation. Intestinal expression of GFAP increases following severe burn injury. Stimulation of the vagus nerve increases enteric glia activation, which is associated with improved intestinal barrier function. The vagus nerve may mediate the

  12. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease.

    PubMed

    Tuszynski, Mark H; Thal, Leon; Pay, Mary; Salmon, David P; U, Hoi Sang; Bakay, Roy; Patel, Piyush; Blesch, Armin; Vahlsing, H Lee; Ho, Gilbert; Tong, Gang; Potkin, Steven G; Fallon, James; Hansen, Lawrence; Mufson, Elliott J; Kordower, Jeffrey H; Gall, Christine; Conner, James

    2005-05-01

    Cholinergic neuron loss is a cardinal feature of Alzheimer disease. Nerve growth factor (NGF) stimulates cholinergic function, improves memory and prevents cholinergic degeneration in animal models of injury, amyloid overexpression and aging. We performed a phase 1 trial of ex vivo NGF gene delivery in eight individuals with mild Alzheimer disease, implanting autologous fibroblasts genetically modified to express human NGF into the forebrain. After mean follow-up of 22 months in six subjects, no long-term adverse effects of NGF occurred. Evaluation of the Mini-Mental Status Examination and Alzheimer Disease Assessment Scale-Cognitive subcomponent suggested improvement in the rate of cognitive decline. Serial PET scans showed significant (P < 0.05) increases in cortical 18-fluorodeoxyglucose after treatment. Brain autopsy from one subject suggested robust growth responses to NGF. Additional clinical trials of NGF for Alzheimer disease are warranted.

  13. Rita Levi-Montalcini and the discovery of NGF, the first nerve cell growth factor.

    PubMed

    Aloe, Luigi

    2011-06-01

    The nerve growth factor (NGF) is a signaling protein, discovered by Rita Levi-Montalcini in the early 1950's for its effect on growth and differentiation of specific populations of neurons of the peripheral nervous system. Originally identified as neurite outgrowth-stimulating factor, later studies revealed that the purified molecule has a number of target cells in the central nervous system and on nonneuronal cells. Moreover, recent studies showed the potential therapeutic properties of NGF in neuropathies of the central and peripheral nervous system and diseases of the eye and skin. Here I briefly describe the discovery of NGF, the early studies of Rita LeviMontalcini, a pioneer in modern neuroscience, and my scientific and human experience working in her laboratory for over 40 years.

  14. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  15. Identification of a Peripheral Nerve Neurite Growth-Promoting Activity by Development and Use of an in vitro Bioassay

    NASA Astrophysics Data System (ADS)

    Sandrock, Alfred W.; Matthew, William D.

    1987-10-01

    The effective regeneration of severed neuronal axons in the peripheral nerves of adult mammals may be explained by the presence of molecules in situ that promote the effective elongation of neurites. The absence of such molecules in the central nervous system of these animals may underlie the relative inability of axons to regenerate in this tissue after injury. In an effort to identify neurite growth-promoting molecules in tissues that support effective axonal regeneration, we have developed an in vitro bioassay that is sensitive to substrate-bound factors of peripheral nerve that influence the growth of neurites. In this assay, neonatal rat superior cervical ganglion explants are placed on longitudinal cryostat sections of fresh-frozen sciatic nerve, and the regrowing axons are visualized by catecholamine histofluorescence. Axons are found to regenerate effectively over sciatic nerve tissue sections. When ganglia are similarly explanted onto cryostat sections of adult rat central nervous system tissue, however, axonal regeneration is virtually absent. We have begun to identify the molecules in peripheral nerve that promote effective axonal regeneration by examining the effect of antibodies that interfere with the activity of previously described neurite growth-promoting factors. Axonal elongation over sciatic nerve tissue was found to be sensitive to the inhibitory effects of INO (for inhibitor of neurite outgrowth), a monoclonal antibody that recognizes and inhibits a neurite growth-promoting activity from PC-12 cell-conditioned medium. The INO antigen appears to be a molecular complex of laminin and heparan sulfate proteoglycan. In contrast, a rabbit antiserum that recognizes laminin purified from mouse Engelbreth-Holm-Swarm (EHS) sarcoma, stains the Schwann cell basal lamina of peripheral nerve, and inhibits neurite growth over purified laminin substrata has no detectable effect on the rate of axonal regeneration in our assay.

  16. Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade.

    PubMed

    Bruno, Martin A; Cuello, A Claudio

    2006-04-25

    In this report, we provide direct demonstration that the neurotrophin nerve growth factor (NGF) is released in the extracellular space in an activity-dependent manner in its precursor form (proNGF) and that it is in this compartment that its maturation and degradation takes place because of the coordinated release and the action of proenzymes and enzyme regulators. This converting protease cascade and its endogenous regulators (including tissue plasminogen activator, plasminogen, neuroserpin, precursor matrix metalloproteinase 9, and tissue inhibitor metalloproteinase 1) are colocalized in neurons of the cerebral cortex and released upon neuronal stimulation. We also provide evidence that this mechanism operates in in vivo conditions, as the CNS application of inhibitors of converting and degrading enzymes lead to dramatic alterations in the tissue levels of either precursor NGF or mature NGF. Pathological alterations of this cascade in the CNS might cause or contribute to a lack of proper neuronal trophic support in conditions such as cerebral ischemia, seizure and Alzheimer's disease or, conversely, to excessive local production of neurotrophins as reported in inflammatory arthritis pain.

  17. Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade

    PubMed Central

    Bruno, Martin A.; Cuello, A. Claudio

    2006-01-01

    In this report, we provide direct demonstration that the neurotrophin nerve growth factor (NGF) is released in the extracellular space in an activity-dependent manner in its precursor form (proNGF) and that it is in this compartment that its maturation and degradation takes place because of the coordinated release and the action of proenzymes and enzyme regulators. This converting protease cascade and its endogenous regulators (including tissue plasminogen activator, plasminogen, neuroserpin, precursor matrix metalloproteinase 9, and tissue inhibitor metalloproteinase 1) are colocalized in neurons of the cerebral cortex and released upon neuronal stimulation. We also provide evidence that this mechanism operates in in vivo conditions, as the CNS application of inhibitors of converting and degrading enzymes lead to dramatic alterations in the tissue levels of either precursor NGF or mature NGF. Pathological alterations of this cascade in the CNS might cause or contribute to a lack of proper neuronal trophic support in conditions such as cerebral ischemia, seizure and Alzheimer’s disease or, conversely, to excessive local production of neurotrophins as reported in inflammatory arthritis pain. PMID:16618925

  18. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries.

    PubMed

    Nausch, Lydia W M; Bonev, Adrian D; Heppner, Thomas J; Tallini, Yvonne; Kotlikoff, Michael I; Nelson, Mark T

    2012-02-01

    It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) signals ("pulsars") in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca(2+) pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca(2+) pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca(2+) signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca(2+) channels, suggesting a role for IP(3), rather than Ca(2+), in VSM-to-endothelium communication. Block of intermediate-conductance Ca(2+)-sensitive K(+) channels, which have been shown to colocalize with IP(3) receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca(2+) signals to oppose vasoconstriction.

  19. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries

    PubMed Central

    Nausch, Lydia W. M.; Bonev, Adrian D.; Heppner, Thomas J.; Tallini, Yvonne; Kotlikoff, Michael I.

    2012-01-01

    It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ signals (“pulsars”) in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca2+ pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca2+ pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca2+ signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca2+ channels, suggesting a role for IP3, rather than Ca2+, in VSM-to-endothelium communication. Block of intermediate-conductance Ca2+-sensitive K+ channels, which have been shown to colocalize with IP3 receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca2+ signals to oppose vasoconstriction. PMID:22140050

  20. Neonatal sensory nerve injury-induced synaptic plasticity in the trigeminal principal sensory nucleus.

    PubMed

    Lo, Fu-Sun; Erzurumlu, Reha S

    2016-01-01

    Sensory deprivation studies in neonatal mammals, such as monocular eye closure, whisker trimming, and chemical blockade of the olfactory epithelium have revealed the importance of sensory inputs in brain wiring during distinct critical periods. But very few studies have paid attention to the effects of neonatal peripheral sensory nerve damage on synaptic wiring of the central nervous system (CNS) circuits. Peripheral somatosensory nerves differ from other special sensory afferents in that they are more prone to crush or severance because of their locations in the body. Unlike the visual and auditory afferents, these nerves show regenerative capabilities after damage. Uniquely, damage to a somatosensory peripheral nerve does not only block activity incoming from the sensory receptors but also mediates injury-induced neuro- and glial chemical signals to the brain through the uninjured central axons of the primary sensory neurons. These chemical signals can have both far more and longer lasting effects than sensory blockade alone. Here we review studies which focus on the consequences of neonatal peripheral sensory nerve damage in the principal sensory nucleus of the brainstem trigeminal complex.

  1. Reversal of peripheral nerve injury-induced hypersensitivity in the postpartum period: role of spinal oxytocin.

    PubMed

    Gutierrez, Silvia; Liu, Baogang; Hayashida, Ken-ichiro; Houle, Timothy T; Eisenach, James C

    2013-01-01

    Physical injury, including surgery, can result in chronic pain; yet chronic pain following childbirth, including cesarean delivery in women, is rare. The mechanisms involved in this protection by pregnancy or delivery have not been explored. We examined the effect of pregnancy and delivery on hypersensitivity to mechanical stimuli of the rat hindpaw induced by peripheral nerve injury (spinal nerve ligation) and after intrathecal oxytocin, atosiban, and naloxone. Additionally, oxytocin concentration in lumbar spinal cerebrospinal fluid was determined. Spinal nerve ligation performed at mid-pregnancy resulted in similar hypersensitivity to nonpregnant controls, but hypersensitivity partially resolved beginning after delivery. Removal of pups after delivery prevented this partial resolution. Cerebrospinal fluid concentrations of oxytocin were greater in normal postpartum rats prior to weaning. To examine the effect of injury at the time of delivery rather than during pregnancy, spinal nerve ligation was performed within 24 h of delivery. This resulted in acute hypersensitivity that partially resolved over the next 2-3 weeks. Weaning of pups resulted only in a temporary return of hypersensitivity. Intrathecal oxytocin effectively reversed the hypersensitivity following separation of the pups. Postpartum resolution of hypersensitivity was transiently abolished by intrathecal injection of the oxytocin receptor antagonist, atosiban. These results suggest that the postpartum period rather than pregnancy protects against chronic hypersensitivity from peripheral nerve injury and that this protection may reflect sustained oxytocin signaling in the central nervous system during this period.

  2. Distribution of elements and water in peripheral nerve of streptozocin-induced diabetic rats

    SciTech Connect

    Lowery, J.M.; Eichberg, J.; Saubermann, A.J.; LoPachin, R.M. Jr. )

    1990-12-01

    Accumulating evidence suggests that alterations in Na, Ca, K, and other biologically relevant elements play a role in the mechanism of cell injury. The pathogenesis of experimental diabetic neuropathy is unknown but might include changes in the distribution of these elements in morphological compartments. In this study, this possibility was examined via electron-probe X-ray microanalysis to measure both concentrations of elements (millimoles of element per kilogram dry or wet weight) and cell water content (percent water) in frozen, unfixed, unstained sections of peripheral nerve from control and streptozocin-induced diabetic rats. Our results indicate that after 20 wk of experimental diabetes, mitochondria and axoplasm from myelinated axons of proximal sciatic nerve displayed diminished K and Cl content, whereas in tibial nerve, the intraaxonal levels of these elements increased. In distal sciatic nerve, mitochondrial and axoplasmic levels of Ca were increased, whereas other elemental alterations were not observed. These regional changes resulted in a reversal of the decreasing proximodistal concentration gradients for K and Cl, which exist in nondiabetic rat sciatic nerve. Our results cannot be explained on the basis of altered water. Highly distinctive changes in elemental distribution observed might be a critical component of the neurotoxic mechanism underlying diabetic neuropathy.

  3. The nerve growth factor administrated as eye drops activates mature and precursor cells in subventricular zone of adult rats.

    PubMed

    Tirassa, Paola

    2011-06-01

    The possibility to take advantage from the nerve growth factor (NGF) ability to induce recovery of damaged tissue has been largely explored in animal models and humans. Recently, the successful use of the ocular administration of NGF in ophthalmology, and the evidences that from the eyes NGF can access to the brain have stimulated new fields of research and open further perspectives to the clinical application of this neurotrophin. In our previous studies we have demonstrated the efficacy of NGF eye drop treatment to improved behavioural deficits and recover structural and biochemical alterations occurring follow brain lesion in animals. Since NGF exerts neuroreparative effects in brain by acting on mature neurons and neuronal precursors localised in germinal subventricular zone (SVZ), the present study has been aimed to evaluate the effects of NGF eye drop administration on the expression of the mitotic marker Ki67 in brain of adult rats. We found that a single ocular administration (10 μl) of 200 μg/mL NGF solution is sufficient to enhance the distribution of Ki67 positive cells also expressing p75 neurotrophin receptors in the proliferating layer of the SVZ. In addition, NGF treatment induces an increase of levels of brain derived neurotrophic factor (BDNF) in forebrain. This data further supports the efficacy of ocular applied NGF to affect brain activities and suggests that NGF also by inducing local factors, including BDNF, can activate the machinery regulating the proliferation and maturation of neuronal precursor in brain.

  4. Nerve growth factor antibody stimulates reactivation of ocular herpes simplex virus type 1 in latently infected rabbits.

    PubMed

    Hill, J M; Garza, H H; Helmy, M F; Cook, S D; Osborne, P A; Johnson, E M; Thompson, H W; Green, L C; O'Callaghan, R J; Gebhardt, B M

    1997-06-01

    Anti-nerve growth factor (anti-NGF) antibody has been shown to induce reactivation of latent herpes simplex virus type 1 (HSV-1) in vitro. We found that systemically administered anti-NGF induces ocular shedding of HSV-1 in vivo in rabbits harboring latent virus. Rabbits in which HSV-1 latency had been established were given intravenous injections of goat anti-NGF serum daily for 10 days beginning 42 days after primary viral infection. Tears were assayed for virus for 12 days beginning on the day of the first injection. All eight rabbits given high titer anti-NGF had infectious virus in their tears at least once during the 12-day period. Fifteen of 16 eyes were positive and the average duration of viral shedding for these eyes was 4.0 days. Latently infected rabbits receiving daily injections of nonimmune goat serum or saline for 10 consecutive days were controls. Only six of the 16 (38%) eyes from rabbits receiving nonimmune goat serum shed virus. Only one of 12 eyes from untreated rabbits shed virus. Sera from control rabbits had no detectable anti-NGF activity; titers in anti-NGF-treated rabbits ranged between 1:1000 and 1:10,000. NGF deprivation may act as a neuronal stressor and may share a common second messenger pathway with heat- or cold-stress induced reactivation of latent HSV-1.

  5. PC12 cell mutants that possess low- but not high-affinity nerve growth factor receptors neither respond to nor internalize nerve growth factor

    PubMed Central

    1986-01-01

    Four mutant PC12 pheochromocytoma cell lines that are nerve growth factor (NGF)-nonresponsive (PC12nnr) have been selected from chemically mutagenized cultures by a double selection procedure: failure both to grow neurites in the presence of NGF and to survive in NGF-supplemented serum-free medium. The PC12nnr cells were deficient in all additional NGF responses surveyed: abatement of cell proliferation, changes in glycoprotein composition, induction of ornithine decarboxylase, rapid changes in protein phosphorylation, and cell surface ruffling. However, PC12nnr cells closely resembled non-NGF-treated PC12 cells in most properties tested: cell size and shape; division rate; protein, phosphoprotein, and glycoprotein composition; and cell surface morphology. All four PC12nnr lines differed from PC12 cells in three ways in addition to failure of NGF response: PC12nnr cells failed to internalize bound NGF by the normal, saturable, high-affinity mechanism present in PC12 cells. The PC12nnr cells bound NGF but entirely, or nearly entirely, at low-affinity sites only, whereas PC12 cells possess both high- and low-affinity NGF binding sites. The responses to dibutyryl cyclic AMP that were tested appeared to be enhanced or altered in the PC12nnr cells compared to PC12 cells. Internalization of, and responses to, epidermal growth factor were normal in the PC12nnr cells ruling out a generalized defect in hormonal binding, uptake, or response mechanisms. These findings are consistent with a causal association between the presence of high-affinity NGF receptors and of NGF responsiveness and internalization. A possible relationship is also suggested between regulation of cAMP responses and regulation of NGF responses or NGF receptor affinity. PMID:3005338

  6. Nerve growth factor injected systemically improves the recovery of the inferior alveolar nerve in a rabbit model of mandibular distraction osteogenesis.

    PubMed

    Du, Zhao-jie; Wang, Lei; Lei, De-lin; Liu, Bao-lin; Cao, Jian; Zhang, Pu; Ma, Qin

    2011-10-01

    Our aim was to find out if nerve growth factor (NGF) injected systemically could improve the recovery of the inferior alveolar nerve in a rabbit model of mandibular distraction osteogenesis. We used 48 New Zealand white rabbits that were treated with bilateral distraction osteogenesis at a rate of 0.5mm/12h for 10 days. Immediately postoperatively, NGF or sodium chloride 0.6 μg/day was injected intramuscularly for 20 days. At the end of distraction and after consolidation times of 1, 2, and 4 weeks, the inferior alveolar nerves were evaluated histologically and histomorphometrically. Histologically, at 2 and 4 weeks there was less myelin debris, and more regenerating axons were present, in the NGF than the control groups. The density of myelinated axons was significantly greater in groups with NGF than controls at 2 and 4 weeks (p<0.05). NGF given systemically can accelerate the recovery of the inferior alveolar nerve in rabbits after mandibular distraction osteogenesis, and is a promising treatment option for neurological complications of mandibular distraction osteogenesis.

  7. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  8. Basic study on the influence of inhibition induced by the magnetic stimulation on the peripheral nerve

    NASA Astrophysics Data System (ADS)

    Sato, Aya; Torii, Tetsuya; Iwahashi, Masakuni; Iramina, Keiji

    2015-05-01

    The purpose of this study is to analyze the inhibition mechanism of magnetic stimulation on motor function. A magnetic stimulator with a flat figure-eight coil was used to stimulate the peripheral nerve of the antebrachium. The intensity of magnetic stimulation was 0.8 T, and the stimulation frequency was 1 Hz. The amplitudes of the motor-evoked potentials (MEPs) at the abductor pollicis brevis muscle and first dorsal interosseous muscle were used to evaluate the effects of magnetic stimulation. The effects of magnetic stimulation were evaluated by analyzing the MEP amplitude before and after magnetic stimulation to the primary motor cortex. The results showed that MEP amplitude after magnetic stimulation compared with before magnetic stimulation decreased. Because there were individual differences in MEP amplitude induced by magnetic stimulation, the MEP amplitude after stimulation was normalized by the amplitude of each participant before stimulation. The MEP amplitude after stimulation decreased by approximately 58% (p < 0.01) on average compared with before stimulation. Previous studies suggested that magnetic stimulation to the primary motor cortex induced an increase or a decrease in MEP amplitude. Furthermore, previous studies have shown that the alteration in MEP amplitude was induced by cortical excitability based on magnetic stimulation. The results of this study showed that MEP amplitude decreased following magnetic stimulation to the peripheral nerve. We suggest that the decrease in MEP amplitude found in this study was obtained via the feedback from a peripheral nerve through an afferent nerve to the brain. This study suggests that peripheral excitement by magnetic stimulation of the peripheral nerve may control the central nervous system via afferent feedback.

  9. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  10. Schwann cell-neuronal interactions in the rat involve nerve growth factor.

    PubMed

    Urschel, B A; Hulsebosch, C E

    1990-06-01

    To gain some insight into possible functions of nerve growth factor (NGF), we suppressed the endogenous levels of NGF in newborn rats by subcutaneous injections (3 microliters/g body weight) of rabbit antibodies to purified mouse beta-NGF (ANTI-NGF). Fiber and axonal areas and perimeters were measured for unmyelinated and myelinated sensory fibers in T9 dorsal roots (DR) in three groups of animals: 1) ANTI-NGF treated littermates, 2) preimmune sera treated littermates (PREIMM), and 3) untreated littermates (UNTR). In some rats, fibers in ventral roots (VR) were measured and, in other rats, sensory processes in peripheral nerves (PN) were measured following radical ventral rhizotomy. The only outer area and perimeter measurements that were statistically different were those in the ventral root (P less than 0.013 and P less than 0.043, respectively). However, myelin thickness was significantly thinner in the dorsal roots of the ANTI-NGF group than in the dorsal roots of the UNTR and PREIMM groups (P less than 0.000009 and P less than 10(-6), respectively). Myelin thickness in the ventral roots of the ANTI-NGF group was also statistically thinner than that in the UNTR group (P less than 0.001). There were no statistically significant differences when comparing the UNTR group to the PREIMM group. In the peripheral nerves studied, there was no significant change in the myelin thickness between the ANTI-NGF and UNTR groups of animals. These results indicate that Schwann cell-neuronal interactions are altered by the inactivation of NGF, and that 1) the central processes of sensory fibers are affected and not the peripheral processes and 2) motor fiber myelination is altered.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. [Effect of embryonic anlage allografts of the rat spinal cord on growth of regenerating fibers of the recipient nerve].

    PubMed

    Petrova, E S; Isaeva, E N

    2014-01-01

    A comparative study of the effect of tissue and suspension allografts of an embryonic spinal cord on regeneration of nerve fibers of impaired (by application of a ligature) sciatic nerve in rats was conducted. It was demonstrated that unlike tissue grafts that reach a large volume 21 and 60 days after transplantation, suspension grafts do not inhibit the growth of axons of the recipient to the periphery. It was established that introduction of a suspension of dissociated cells of the spinal cord embryonic anlages (but not fragments of these anlages) into the impaired sciatic nerve in rats results in an increase in the amount of myelinated regenerating nerve fibers of the recipient 60 days after the operation.

  12. Inferior Alveolar Nerve Injury in Trauma-Induced Mandible Fractures.

    PubMed

    Tay, Andrew Ban Guan; Lai, Juen Bin; Lye, Kok Weng; Wong, Wai Yee; Nadkarni, Nivedita V; Li, Wenyun; Bautista, Dianne

    2015-07-01

    This prospective observational cohort study sought to determine the prevalence of inferior alveolar nerve (IAN) injury after mandibular fractures before and after treatment and to elucidate factors associated with the incidence of post-treatment IAN injury and time to normalization of sensation. Consenting patients with mandibular fractures (excluding dentoalveolar, pathologic, previous fractures, or mandibular surgery) were prospectively evaluated for subjective neurosensory disturbance (NSD) and underwent neurosensory testing before treatment and then 1 week, 1.5, 3, 6, and 12 months after treatment. Eighty patients (men, 83.8%; mean age, 30.0 yr; standard deviation, 12.6 yr) with 123 mandibular sides (43 bilateral) were studied. Injury etiology included assault (33.8%), falls (31.3%), motor vehicle accidents (25.0%), and sports injuries (6.3%). Half the fractures (49.6%) involved the IAN-bearing posterior mandible; all condylar fractures (13.0%) had no NSD. Treatment included open reduction and internal fixation (ORIF; 74.8%), closed reduction and fixation (22.0%), or no treatment (3.3%). Overall prevalence of IAN injury was 33.7% (95% confidence interval [CI], 24.8-42.6) before treatment and 53.8% (95% CI, 46.0-61.6) after treatment. In the IAN-bearing mandible, the prevalence was 56.2% (95% CI, 43.2-69.2) before treatment and 72.9% (95% CI, 63.0-82.7) after treatment. In contrast, this prevalence in the non-IAN-bearing mandible was 12.6% (95% CI, 4.1-21.1) before treatment and 31.6% (95% CI, 20.0-43.3) after treatment. Factors associated with the development of post-treatment IAN injury included fracture site and gap distance (a 1-mm increase was associated with a 27% increase in odds of post-treatment sensory alteration). Time to normalization after treatment was associated with type of treatment (ORIF inhibited normalization) and fracture site (IAN-bearing sites took longer to normalize). IAN injury was 4 times more likely in IAN-bearing posterior mandibular

  13. Nerve Regeneration in Vitro: Comparative Effects of Direct and Induced Current and NGF. Appendix.

    DTIC Science & Technology

    1985-11-26

    neurito- genically ineffective on nerve growth factor-sensitive PCI2 pheochromocytoma cells in culture. Media from ganglia in which triethanolamine...cells in which neuritogenesis can occur, such as rat pheochromocytoma PCI2 cells, and rather tightly packed communities of cells in which neural and...Cell Culture. Rat pheochromocytoma cells (PC12) were grown routinely without antibiotics on uncoated Coming plastic tissue culture dishes using RPMI

  14. A relaxin-like peptide purified from radial nerves induces oocyte maturation and ovulation in the starfish, Asterina pectinifera

    PubMed Central

    Mita, Masatoshi; Yoshikuni, Michiyasu; Ohno, Kaoru; Shibata, Yasushi; Paul-Prasanth, Bindhu; Pitchayawasin, Suthasinee; Isobe, Minoru; Nagahama, Yoshitaka

    2009-01-01

    Gonad-stimulating substance (GSS) of starfish is the only known invertebrate peptide hormone responsible for final gamete maturation, rendering it functionally analogous to the vertebrate luteinizing hormone (LH). Here, we purified GSS of starfish, Asterina pectinifera, from radial nerves and determined its amino acid sequence. The purified GSS was a heterodimer composed of 2 different peptides, A and B chains, with disulfide cross-linkages. Based on its cysteine motif, starfish GSS was classified as a member of the insulin/insulin-like growth factor (IGF)/relaxin superfamily. The cDNA of GSS encodes a preprohormone sequence with a C peptide between the A and B chains. Phylogenetic analyses revealed that starfish GSS was a relaxin-like peptide. Chemically synthesized GSS induced not only oocyte maturation and ovulation in isolated ovarian fragments, but also unique spawning behavior, followed by release of gametes shortly after the injection. Importantly, the action of the synthetic GSS on oocyte maturation and ovulation was mediated through the production of cAMP by isolated ovarian follicle cells, thereby producing the maturation-inducing hormone of this species, 1-methyladenine. In situ hybridization showed the transcription of GSS to occur in the periphery of radial nerves at the side of tube feet. Together, the structure, sequence, and mode of signal transduction strongly suggest that GSS is closely related to the vertebrate relaxin. PMID:19470645

  15. Median nerve stimulation reduces ventricular arrhythmias induced by dorsomedial hypothalamic stimulation.

    PubMed

    Zhao, Shuang; Tang, Min; Yuan, Kexin; Gu, Jingli; Yu, Jun; Long, Xiaoyang; Liu, Miaomiao; Cao, Ji-Min; Zhang, Shu

    2016-12-01

    This study tested the hypothesis that median nerve stimulation (MNS) prevents ventricular arrhythmias (VAs) induced by dorsomedial hypothalamus stimulation (DMHS) and investigated the electrophysiological mechanisms underlying the anti-arrhythmic effects of MNS by recording left stellate ganglion activity (LSGA). Eighteen rabbits were anesthetized, the median nerve was anchored by stimulating electrodes, and a bipolar electrode was implanted into the LSG to record nerve activity. The DMH was stimulated to induce arrhythmia. All animals underwent six repetitions of DMHS (30 s). The 18 rabbits were divided into the following 3 groups: a control group, which underwent only DMHS (n = 6); an MNS group, which underwent MNS during both the third and fourth DMHS repetitions (n = 6); and an LSGA-recording group, for which LSGA was recorded at baseline, immediately following DMHS and again immediately following MNS and DMHS (n = 6). Repeated DMHS-induced multiple VAs, in the rabbits. Compared with the DMHS-only group, the concurrent administration of MNS during DMHS significantly reduced the incidence of VAs (7 ± 3 and 9 ± 2 beats for the third and fourth DMHS + MNS repetitions vs. 29 ± 8 and 27 ± 9 beats for the first two DMHS repetitions, p < 0.05). The total duration of the abnormal discharges of the LSG (ADLSG) following MNS and DMHS was significantly reduced compared with that of the DMHS-only group (40 ± 18 vs. 14 ± 6 s, p < 0.05). MNS reduced VAs induced by DMHS, which is thought to be mediated through suppressing of ADLSG. Median nerve electrical stimulation prevented ventricular arrhythmias induced by DMHS through the mechanism of suppressing abnormal discharges of left stellate ganglion.

  16. Nerve growth factor-immobilized electrically conducting fibrous scaffolds for potential use in neural engineering applications.

    PubMed

    Lee, Jae Y; Bashur, Chris A; Milroy, Craig A; Forciniti, Leandro; Goldstein, Aaron S; Schmidt, Christine E

    2012-03-01

    Engineered scaffolds simultaneously exhibiting multiple cues are highly desirable for neural tissue regeneration. To this end, we developed a neural tissue engineering scaffold that displays submicrometer-scale features, electrical conductivity, and neurotrophic activity. Specifically, electrospun poly(lactic acid-co-glycolic acid) (PLGA) nanofibers were layered with a nanometer thick coating of electrically conducting polypyrrole (PPy) presenting carboxylic groups. Then, nerve growth factor (NGF) was chemically immobilized onto the surface of the fibers. These NGF-immobilized PPy-coated PLGA (NGF-PPyPLGA) fibers supported PC12 neurite formation ( 28.0±3.0% of the cells) and neurite outgrowth (14.2 μm median length), which were comparable to that observed with NGF (50 ng/mL) in culture medium ( 29.0±1.3%, 14.4 μm). Electrical stimulation of PC12 cells on NGF-immobilized PPyPLGA fiber scaffolds was found to further improve neurite development and neurite length by 18% and 17%, respectively, compared to unstimulated cells on the NGF-immobilized fibers. Hence, submicrometer-scale fibrous scaffolds that incorporate neurotrophic and electroconducting activities may serve as promising neural tissue engineering scaffolds such as nerve guidance conduits.

  17. Nerve Growth Factor-Immobilized Electrically Conducting Fibrous Scaffolds for Potential Use in Neural Engineering Applications

    PubMed Central

    Lee, Jae Y.; Bashur, Chris A.; Milroy, Craig A.; Forciniti, Leandro; Goldstein, Aaron S.

    2015-01-01

    Engineered scaffolds simultaneously exhibiting multiple cues are highly desirable for neural tissue regeneration. To this end, we developed a neural tissue engineering scaffold that displays submicrometer-scale features, electrical conductivity, and neurotrophic activity. Specifically, electrospun poly(lactic acid-co-glycolic acid) (PLGA) nanofibers were layered with a nanometer thick coating of electrically conducting polypyrrole (PPy) presenting carboxylic groups. Then, nerve growth factor (NGF) was chemically immobilized onto the surface of the fibers. These NGF-immobilized PPy-coated PLGA (NGF-PPyPLGA) fibers supported PC12 neurite formation (28.0±3.0% of the cells) and neurite outgrowth (14.2 µm median length), which were comparable to that observed with NGF (50 ng/mL) in culture medium (29.0±1.3%, 14.4 µm). Electrical stimulation of PC12 cells on NGF-immobilized PPyPLGA fiber scaffolds was found to further improve neurite development and neurite length by 18% and 17%, respectively, compared to unstimulated cells on the NGF-immobilized fibers. Hence, submicrometer-scale fibrous scaffolds that incorporate neurotrophic and electroconducting activities may serve as promising neural tissue engineering scaffolds such as nerve guidance conduits. PMID:21712166

  18. Femoral Nerve Palsy due to Anticoagulant Induced Retroperitoneal Hematoma

    PubMed Central

    Gurbuz, Orcun; Ercan, Abdulkadir; Kumtepe, Gencehan; Karal, İlker Hasan; Velioglu, Yusuf; Ener, Serdar

    2014-01-01

    A forty-one-year-old man who, sought evaluation for a sudden hip flexion contracture and groin pain with a history of mechanical mitral valve replacement, had been misdiagnosed and treated as having lumbar discopathy for two days. This patient finally was diagnosed with compressive femoral neuropathy due to warfarin-induced retroperitoneal hematoma and successfully managed nonoperatively. This case is reported in order to draw attention to this rare presentation. PMID:25386195

  19. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    NASA Astrophysics Data System (ADS)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  20. Randomized Trial of Peripheral Nerve Stimulation to Enhance Modified Constraint-Induced Therapy After Stroke.

    PubMed

    Carrico, Cheryl; Chelette, Kenneth C; Westgate, Philip M; Salmon-Powell, Elizabeth; Nichols, Laurie; Sawaki, Lumy

    2016-06-01

    Constraint-based therapy and peripheral nerve stimulation can significantly enhance movement function after stroke. No studies have investigated combining these interventions for cases of chronic, mild-to-moderate hemiparesis following stroke. This study aims to determine the effects of peripheral nerve stimulation paired with a modified form of constraint-induced therapy on upper extremity movement function after stroke. Nineteen adult stroke survivors with mild-to-moderate hemiparesis more than 12 mo after stroke received 2 hours of either active (n = 10) or sham (n = 9) peripheral nerve stimulation preceding 4 hours of modified constraint-induced therapy (10 sessions). Active peripheral nerve stimulation enhanced modified constraint-induced therapy more than sham peripheral nerve stimulation (significance at P < 0.05), both immediately after intervention (Wolf Motor Function Test: P = 0.006 (timed score); P = 0.001 (lift score); Fugl-Meyer Assessment: P = 0.022; Action Research Arm Test: P = 0.007) and at 1-mo follow-up (Wolf Motor Function Test: P = 0.025 (timed score); P = 0.007 (lift score); Fugl-Meyer Assessment: P = 0.056; Action Research Arm Test: P = 0.028). Pairing peripheral nerve stimulation with modified constraint-induced therapy can lead to significantly more improvement in upper extremity movement function than modified constraint-induced therapy alone. Future research is recommended to help establish longitudinal effects of this paired intervention, particularly as it affects movement function and daily life participation. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES:: Upon completion of this article, the reader should be able to: (1) Understand the role that afferent input plays with regard to movement function; (2) Understand general concepts of delivering modified constraint-based therapy in stroke rehabilitation research; and (3) Understand the rationale for applying an

  1. Swimming: Effects on Stress Urinary Incontinence and the Expression of Nerve Growth Factor in Rats Following Transabdominal Urethrolysis

    PubMed Central

    Ko, Il Gyu; Kim, Sung Eun; Kim, Bo Kyun; Shin, Mal Soon; Kim, Chang Ju; Yim, Sung Jin; Bang, Yu Jeong; Choi, In Ho

    2011-01-01

    Purpose Stress urinary incontinence (SUI) commonly occurs in women, and it has an enormous impact on quality of life. Surgery, drugs, and exercise have been recommended for the treatment of this disease. Among these, exercise is known to be effective for the relief of symptoms of SUI; however, the efficacy and underlying mechanisms of the effect of exercise on SUI are poorly understood. We investigated the effect of swimming the symptom of SUI in relation to the expression of nerve growth factor (NGF) in rats. Methods Transabdominal urethrolysis was used to induce SUI, in Sprague-Dawley rats. The experimental groups were divided into the following three groups: sham-operation group, transabdominal urethrolysis-induced group, and transabdominal urethrolysis-induced and swimming group. The rats in the swimming group were forced to swim for 30 minutes once daily starting 2 weeks after SUI induction and continuing for 4 weeks. For this study, determination of abdominal leak point pressure and immunohistochemistry for NGF in the urethra and in the neuronal voiding centers (medial preoptic nucleus [MPA], ventrolateral periaqueductal gray [vlPAG], pontine micturition center [PMC], and spinal cord [L4-L5]) were performed. Results Transabdominal urethrolysis significantly reduced the abdominal leak point pressure, thereby contributing to the induction of SUI. Abdominal leak point pressure, however, was significantly improved by swimming. The expression of NGF in the urethra and in the neuronal voiding centers (MPA, vlPAG, PMC, and L4-L5) relating to micturition was enhanced by the induction of SUI. Swimming, however, significantly suppressed SUI-induced NGF expression. Conclusions Swimming alleviated symptoms of transabdominal urethrolysis-induced SUI, as assessed by an increase in abdominal leak point pressure. The underlying mechanisms of these effects of swimming might be ascribed to the inhibitory effect of swimming on NGF expression. PMID:21811696

  2. Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors.

    PubMed

    Zeng, Fang; Li, Zicong; Zhu, Qingchun; Dong, Rui; Zhao, Chengcheng; Li, Guoling; Li, Guo; Gao, Wenchao; Jiang, Gelong; Zheng, Enqin; Cai, Gengyuan; Moisyadi, Stefan; Urschitz, Johann; Yang, Huaqiang; Liu, Dewu; Wu, Zhenfang

    2017-01-24

    The salivary glands of animals have great potential to act as powerful bioreactors to produce human therapeutic proteins. Human nerve growth factor (hNGF) is an important pharmaceutical protein that is clinically effective in the treatment of many human neuronal and non-neuronal diseases. In this study, we generated 18 transgenic (TG) founder mice each carrying a salivary gland specific promoter-driven hNGF transgene. A TG mouse line secreting high levels of hNGF protein in its saliva (1.36 μg/mL) was selected. hNGF protein was successfully purified from the saliva of these TG mice and its identity was verified. The purified hNGF was highly functional as it displayed the ability to induce neuronal differentiation of PC12 cells. Furthermore, it strongly promoted proliferation of TF1 cells, above the levels observed with mouse NGF. Additionally, saliva collected from TG mice and containing unpurified hNGF was able to significantly enhance the growth of TF1 cells. This study not only provides a new and efficient approach for the synthesis of therapeutic hNGF but also supports the concept that salivary gland from TG animals is an efficient system for production of valuable foreign proteins.

  3. Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors

    PubMed Central

    Zeng, Fang; Li, Zicong; Zhu, Qingchun; Dong, Rui; Zhao, Chengcheng; Li, Guoling; Li, Guo; Gao, Wenchao; Jiang, Gelong; Zheng, Enqin; Cai, Gengyuan; Moisyadi, Stefan; Urschitz, Johann; Yang, Huaqiang; Liu, Dewu; Wu, Zhenfang

    2017-01-01

    The salivary glands of animals have great potential to act as powerful bioreactors to produce human therapeutic proteins. Human nerve growth factor (hNGF) is an important pharmaceutical protein that is clinically effective in the treatment of many human neuronal and non-neuronal diseases. In this study, we generated 18 transgenic (TG) founder mice each carrying a salivary gland specific promoter-driven hNGF transgene. A TG mouse line secreting high levels of hNGF protein in its saliva (1.36 μg/mL) was selected. hNGF protein was successfully purified from the saliva of these TG mice and its identity was verified. The purified hNGF was highly functional as it displayed the ability to induce neuronal differentiation of PC12 cells. Furthermore, it strongly promoted proliferation of TF1 cells, above the levels observed with mouse NGF. Additionally, saliva collected from TG mice and containing unpurified hNGF was able to significantly enhance the growth of TF1 cells. This study not only provides a new and efficient approach for the synthesis of therapeutic hNGF but also supports the concept that salivary gland from TG animals is an efficient system for production of valuable foreign proteins. PMID:28117418

  4. Regulatory effect of nerve growth factor in α9β1 integrin–dependent progression of glioblastoma

    PubMed Central

    Brown, Meghan C.; Staniszewska, Izabela; Lazarovici, Philip; Tuszynski, George P.; Del Valle, Luis; Marcinkiewicz, Cezary

    2008-01-01

    In the present study we described the role of α9β1 integrin in glioblastoma progression following its interaction with nerve growth factor (NGF). The level of expression of α9β1 on astrocytomas is correlated with increased grade of this brain tumor and is highest on glioblastoma, whereas normal astrocytes do not express this integrin. Two glioblastoma cell lines, LN229 and LN18, that are α9β1 integrin positive and negative, respectively, were used for α9β1 integrin–dependent NGF-induced tumor progression. NGF was a significant promoter of promigratory and pro-proliferative activities of glioblastoma cells through direct interaction with α9β1 integrin and activation of MAPK Erk1/2 pathway. The level of NGF increases approximately threefold in the most malignant glioma tissue when compared with normal brain. This increase is related to secretion of NGF by tumor cells. Specific inhibitors of α9β1 integrin or gene silencing inhibited NGF-induced proliferation of LN229 cell line to the level shown by LN18 cells. VLO5 promoted α9β1-dependent programmed cell death by induction of intrinsic apoptosis pathway in cancer cells. LN229 cells were rescued from proapoptotic effect of VLO5 by the presence of NGF. This disintegrin significantly inhibited tumor growth induced by implantation of LN229 cells to the chorioallantoic membrane (CAM) of quail embryonic model, and this inhibitory effect was significantly abolished by the presence of NGF. α9β1 integrin appears to be an interesting target for blocking the progression of malignant gliomas, especially in light of the stimulatory effect of NGF on the development of these tumors and its ability to transfer proapoptotic signals in cancer cells. PMID:19074980

  5. Growth-associated protein 43 in differentiating peripheral nerve sheath tumors from other non-neural spindle cell neoplasms.

    PubMed

    Chen, Wei-Shen; Chen, Pei-Ling; Lu, Dongsi; Lind, Anne C; Dehner, Louis P

    2014-02-01

    The malignant peripheral nerve sheath tumor is a relatively uncommon type of soft tissue sarcoma arising from a peripheral nerve or extraneural soft tissues and showing nerve sheath differentiation. The diagnosis of malignant peripheral nerve sheath tumor is one of the most challenging tasks in surgical pathology because of its uncommon type (5-10% soft tissue sarcomas), morphologic resemblance to other spindle cell neoplasms and lack of sensitive and specific immunohistochemical markers. The pathologic diagnosis is more straightforward in the clinical setting of neurofibromatosis-1, but problems are mainly centered on the non-neurofibromatosis-1 malignant peripheral nerve sheath tumors. To date, S100 protein is the most widely applied marker in the case of a suspected malignant peripheral nerve sheath tumor, yet its suboptimal sensitivity and its expression in other spindle cell neoplasms, including spindle cell melanoma, clear-cell sarcoma, leiomyosarcoma and monophasic synovial sarcoma, add to the diagnostic conundrum. Growth-associated protein 43 (GAP43), a membrane-associated phosphoprotein expressed in neuronal growth cones and Schwann cell precursors during neural development and axonal regeneration, was applied to a set of nerve sheath and non-nerve sheath spindle cell neoplasms. The findings in this study indicate that GAP43 is expressed in malignant peripheral nerve sheath tumors (n=18/21; 86%) and demonstrates a sensitivity superior to S100 protein (n=13/21; 62%). GAP43 is also positive in neurofibromas (n=17/18; 94%), schwannomas (n=11/12; 92%) and desmoplastic melanomas (n=7/10; 70%). In contrast, it is negative in the non-desmoplastic spindle cell melanomas (n=20/22; 91%). Of the other non-neural soft tissue sarcomas, GAP43 is non-reactive in most leiomyosarcomas (n=14/16; 88%) and clear-cell sarcomas (n=8/8), and only focally positive in monophasic synovial sarcomas (n=3/7; 43%). GAP43 is seemingly a highly sensitive marker for peripheral nerve

  6. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    PubMed

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells.

  7. Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury.

    PubMed

    de la Puente, Beatriz; Nadal, Xavier; Portillo-Salido, Enrique; Sánchez-Arroyos, Ricard; Ovalle, Sergio; Palacios, Gabriel; Muro, Asunción; Romero, Luz; Entrena, José Manuel; Baeyens, José Manuel; López-García, José Antonio; Maldonado, Rafael; Zamanillo, Daniel; Vela, José Miguel

    2009-10-01

    Sigma-1 receptor (sigma(1)R) is expressed in key CNS areas involved in nociceptive processing but only limited information is available about its functional role. In the present study we investigated the relevance of sigma(1)R in modulating nerve injury-evoked pain. For this purpose, wild-type mice and mice lacking the sigma(1)R gene were exposed to partial sciatic nerve ligation and neuropathic pain-related behaviors were investigated. To explore underlying mechanisms, spinal processing of repetitive nociceptive stimulation and expression of extracellular signal-regulated kinase (ERK) were also investigated. Sensitivity to noxious heat of homozygous sigma(1)R knockout mice did not differ from wild-type mice. Baseline values obtained in sigma(1)R knockout mice before nerve injury in the plantar, cold-plate and von Frey tests were also indistinguishable from those obtained in wild-type mice. However, cold and mechanical allodynia did not develop in sigma(1)R null mice exposed to partial sciatic nerve injury. Using isolated spinal cords we found that mice lacking sigma(1)R showed reduced wind-up responses respect to wild-type mice, as evidenced by a reduced number of action potentials induced by trains of C-fiber intensity stimuli. In addition, in contrast to wild-type mice, sigma(1)R knockout mice did not show increased phosphorylation of ERK in the spinal cord after sciatic nerve injury. Both wind-up and ERK activation have been related to mechanisms of spinal cord sensitization. Our findings identify sigma(1)R as a constituent of the mechanisms modulating activity-induced sensitization in pain pathways and point to sigma(1)R as a new potential target for drugs designed to alleviate neuropathic pain.

  8. Angiogenic Effects of Dimeric Dipeptide Mimetic of Loop 4 of Nerve Growth Factor.

    PubMed

    Kryzhanovskii, S A; Antipova, T A; Tsorin, I B; Pekeldina, E S; Stolyaruk, V N; Nikolaev, S V; Sorokina, A V; Gudasheva, T A; Seredenin, S B

    2016-08-01

    Angiogenic action of compound GK-2, a dimeric dipeptide mimetic of loop 4 of nerve growth factor (NGF), was studied in in vitro and in vivo experiments. Experiments on human endothelial cell culture HUVEC showed that compound GK-2 significantly (p<0.05) stimulated the initial stage of angiogenesis, and its angiogenic activity was not inferior to the reference neurotrophin NGF. In experiments with hindlimb ischemia modeled in rats, GK-2 (1 mg/kg intraperitoneally for 14 days) significantly increased the total length of capillary vessels (p<0.003) and the number of vessels per 1 mm2 ischemic tissue (p<0.001) in comparison with the control. Our findings indicate that under experimental conditions compound GK-2 exhibits not only angiogenic, but also anti-ischemic activity.

  9. Antagonism of nerve growth factor-TrkA signaling and the relief of pain.

    PubMed

    Mantyh, Patrick W; Koltzenburg, Martin; Mendell, Lorne M; Tive, Leslie; Shelton, David L

    2011-07-01

    Nerve growth factor (NGF) was originally discovered as a neurotrophic factor essential for the survival of sensory and sympathetic neurons during development. However, in the adult NGF has been found to play an important role in nociceptor sensitization after tissue injury. The authors outline mechanisms by which NGF activation of its cognate receptor, tropomyosin-related kinase A receptor, regulates a host of ion channels, receptors, and signaling molecules to enhance acute and chronic pain. The authors also document that peripherally restricted antagonism of NGF-tropomyosin-related kinase A receptor signaling is effective for controlling human pain while appearing to maintain normal nociceptor function. Understanding whether there are any unexpected adverse events and how humans may change their behavior and use of the injured/degenerating tissue after significant pain relief without sedation will be required to fully appreciate the patient populations that may benefit from these therapies targeting NGF.

  10. 'Mature' nerve growth factor is a minor species in most peripheral tissues.

    PubMed

    Bierl, Michael A; Jones, Elizabeth E; Crutcher, Keith A; Isaacson, Lori G

    The classic neurotrophin hypothesis is based on the idea that innervating neurons derive 'mature' neurotrophin provided by the target for their survival. Yet large precursor forms of the neurotrophin nerve growth factor (NGF) have been reported in both central and peripheral tissues. In the present study, immunoblotting was used to survey peripheral tissues containing NGF-responsive neurons and to characterize various NGF species. These results demonstrate that 'mature' forms of NGF, i.e., the 13 and 16kDa species, are rare in sympathetic and sensory ganglia and in their peripheral targets, and that large molecular weight NGF precursors are abundant. In addition, certain NGF forms predominate in a given tissue, with each tissue exhibiting a characteristic NGF expression pattern. These findings suggest that NGF processing in peripheral tissues and in NGF-responsive ganglia may involve a variety of NGF species.

  11. Analytical modelling of retrograde transport of nerve growth factors in an axon: a transient problem.

    PubMed

    Kuznetsov, A V

    2013-01-01

    The purpose of this paper was to develop an analytical solution describing retrograde transport of nerve growth factors (NGFs) from a target tissue to the neuron soma. The obtained solution is applied to describe two situations: (1) when all dynein motors are moving at a constant velocity and (2) when the dynein velocity distribution is described by a probability density function. The dynamics of NGF concentrations and fluxes is investigated. It is established that the magnitude of the diffusion flux forms a wave localised in space and propagating towards the neuron soma; the magnitude of this wave decreases as the wave propagates downstream. The dynein-driven flux of NGFs is demonstrated to be the main component in the NGF flux, which is shown to be strongly correlated with the NGF concentration.

  12. Nerve growth factor is an autocrine factor essential for the survival of macrophages infected with HIV.

    PubMed

    Garaci, E; Caroleo, M C; Aloe, L; Aquaro, S; Piacentini, M; Costa, N; Amendola, A; Micera, A; Caliò, R; Perno, C F; Levi-Montalcini, R

    1999-11-23

    Nerve growth factor (NGF) is a neurotrophin with the ability to exert specific effects on cells of the immune system. Human monocytes/macrophages (M/M) infected in vitro with HIV type 1 (HIV-1) are able to produce substantial levels of NGF that are associated with enhanced expression of the high-affinity NGF receptor (p140 trkA) on the M/M surface. Treatment of HIV-infected human M/M with anti-NGF Ab blocking the biological activity of NGF leads to a marked decrease of the expression of p140 trkA high-affinity receptor, a concomitant increased expression of p75(NTR) low-affinity receptor for NGF, and the occurrence of apoptotic death of M/M. Taken together, these findings suggest a role for NGF as an autocrine survival factor that rescues human M/M from the cytopathic effect caused by HIV infection.

  13. Cortical peroxynitration of nerve growth factor in aged and cognitively impaired rats.

    PubMed

    Bruno, Martin A; Cuello, A Claudio

    2012-09-01

    Basal forebrain cholinergic neurons (BFCN), a system involved in learning and memory processes, are highly dependent on a continuous supply of biologically active nerve growth factor (NGF). Age-related cholinergic atrophy and cell loss in normal brains is apparently not complemented by reductions in the levels of NGF as could be expected. In the present work, cortical proNGF/NGF were immunoprecipitated from cortical brain homogenates from young and aged and behaviorally characterized rats and resolved with antinitrotyrosine antibodies to reveal nitration of tyrosine residues in proteins. Cortical proNGF in aged and cognitively impaired rats was found to be a target for peroxynitrite-mediated oxidative damage with correlative impact on decrease in choline acetyltransferase activity. These studies provide evidence for oxidative stress damage of NGF molecules in the cerebral cortex of cognitively impaired aged rats as previously shown in AD human brains. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Antagonism of Nerve Growth Factor-TrkA Signaling and the Relief of Pain

    PubMed Central

    Mantyh, Patrick W.; Koltzenburg, Martin; Mendell, Lorne M.; Tive, Leslie; Shelton, David L.

    2011-01-01

    Nerve growth factor (NGF) was originally discovered as a neurotrophic factor essential for the survival of sensory and sympathetic neurons during development. However in the adult, NGF has been found to play an important role in nociceptor sensitization following tissue injury. Here we outline mechanisms by which NGF activation of its cognate receptor, tropomyosin-related kinase A receptor, regulates a host of ion channels, receptors, and signaling molecules to enhance acute and chronic pain. Further, we document that peripherally restricted antagonism of NGF-tropomyosin-related kinase A receptor signaling is effective for controlling human pain while appearing to maintain normal nociceptor function. Understanding whether there are any unexpected adverse events as well as how humans may change their behavior and use of the injured/degenerating tissue following significant pain relief without sedation will be required to fully appreciate the patient populations that may benefit from these therapies targeting NGF. PMID:21602663

  15. Origin and pharmacological response of atrial tachyarrhythmias induced by activation of mediastinal nerves in canines.

    PubMed

    Armour, J Andrew; Richer, Louis-Philippe; Pagé, Pierre; Vinet, Alain; Kus, Teresa; Vermeulen, Michel; Nadeau, Réginald; Cardinal, René

    2005-03-31

    We sought to determine the sites of origin of atrial tachyarrhythmias induced by activating mediastinal nerves, as well as the response of such arrhythmias to autonomic modulation. Under general anaesthesia, atrioventricular block was induced after thoracotomy in 19 canines. Brief trains of 5 electrical stimuli were delivered to right-sided mediastinal nerves during the atrial refractory period. Unipolar electrograms were recorded from 191 right and left atrial epicardial sites under several conditions, i.e. (i) with intact nervous systems and following (ii) acute decentralization of the intrathoracic nervous system or administration of (iii) atropine, (iv) timolol, (v) hexamethonium. Concomitant right atrial endocardial mapping was performed in 7 of these dogs. Mediastinal nerve stimulation consistently initiated bradycardia followed by atrial tachyarrhythmias. In the initial tachyarrhythmia beats, early epicardial breakthroughs were identified in the right atrial free wall (28/50 episodes) or Bachmann bundle region (22/50), which corresponded to endocardial sites of origin associated with the right atrial subsidiary pacemaker complex, i.e. the crista terminalis and dorsal locations including the right atrial aspect of the interatrial septum. Neuronally induced responses were eliminated by atropine, modified by timolol and unaffected by acute neuronal decentralization. After hexamethonium, responses to extra-pericardial but not intra-pericardial nerve stimulation were eliminated. It is concluded that concomitant activation of cholinergic and adrenergic efferent intrinsic cardiac neurons induced by right-sided efferent neuronal stimulation initiates atrial tachyarrhythmias that originate from foci anatomically related to the right atrial pacemaker complex and tissues underlying major atrial ganglionated plexuses.

  16. Axonal regeneration and remyelination evaluation of chitosan/gelatin-based nerve guide combined with transforming growth factor-β1 and Schwann cells.

    PubMed

    Nie, Xin; Deng, Manjing; Yang, Maojin; Liu, Luchuan; Zhang, Yongjie; Wen, Xiujie

    2014-01-01

    Despite efforts in peripheral nerve injury and regeneration, it is difficult to achieve a functional recovery following extended peripheral nerve lesions. Even if artificial nerve conduit, cell components and growth factors can enhance nerve regeneration, integration in peripheral nerve repair and regeneration remains yet to be explored. For this study, we used chitosan/gelatin nerve graft constructed with collagenous matrices as a vehicle for Schwann cells and transforming growth factor-β1 to bridge a 10-mm gap of the sciatic nerve and explored the feasibility of improving regeneration and reinnervation in rats. The nerve regeneration was assessed with functional recovery, electrophysiological test, retrograde labeling, and immunohistochemistry analysis during the post-operative period of 16 weeks. The results showed that the internal sides of the conduits were compact enough to prevent the connective tissues from ingrowth. Nerve conduction velocity, average regenerated myelin area, and myelinated axon count were similar to those treated with autograft (p > 0.05) but significantly higher than those bridged with chitosan/gelatin nerve graft alone (p < 0.05). Evidences from retrograde labeling and immunohistochemistry analysis are further provided in support of improving axonal regeneration and remyelination. A designed graft incorporating all of the tissue-engineering strategies for peripheral nerve regeneration may provide great progress in tissue engineering for nerve repair.

  17. Radiation-induced lower cranial nerve palsy in patients with head and neck carcinoma

    PubMed Central

    JANSSEN, STEFAN; GLANZMANN, CHRISTOPH; YOUSEFI, BITA; LOEWENICH, KARL; HUBER, GERHARD; SCHMID, STEPHAN; STUDER, GABRIELA

    2015-01-01

    Radiation-induced cranial nerve palsy (RICNP) is a severe long-term complication in patients with head and neck cancer following high-dose radiation therapy (RT). We present the case report of a patient with bilateral RICNP of the hypoglossal and vagus cranial nerves (XII/X) following postoperative RT in the era prior to the introduction of intensity-modulated RT (IMRT), and an analysis of our IMRT patient cohort at risk including the case of a XII RICNP. A total of 201 patients whose glosso-pharyngeal (IX), X and XII cranial nerves had been exposed to >65 Gy definitive IMRT in our institution between January, 2002 and December, 2012 with or without systemic therapy, were retrospectively identified. A total of 151 patients out of 201 fulfilling the following criteria were included in the analysis: Locoregionally controlled disease, with a follow-up (FU) of >24 months and >65 Gy exposure of the nerves of interest. So far, one of the assessed 151 IMRT patients at risk exhibited symptoms of RICNP after 6 years. The mean/median FU of the entire cohort was 71/68 months (range, 27–145). The results were compared with literature reports. In conclusion, RICNP appears to be a rare complication. However, a longer FU and a larger sample size are required to draw reliable conclusions on the incidence of RICNP in the era of IMRT. PMID:26171186

  18. Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses.

    PubMed

    Scheidt, Ryan E; Kale, Sushrut; Heinz, Michael G

    2010-10-01

    Auditory-nerve fibers demonstrate dynamic response properties in that they adapt to rapid changes in sound level, both at the onset and offset of a sound. These dynamic response properties affect temporal coding of stimulus modulations that are perceptually relevant for many sounds such as speech and music. Temporal dynamics have been well characterized in auditory-nerve fibers from normal-hearing animals, but little is known about the effects of sensorineural hearing loss on these dynamics. This study examined the effects of noise-induced hearing loss on the temporal dynamics in auditory-nerve fiber responses from anesthetized chinchillas. Post-stimulus-time histograms were computed from responses to 50-ms tones presented at characteristic frequency and 30 dB above fiber threshold. Several response metrics related to temporal dynamics were computed from post-stimulus-time histograms and were compared between normal-hearing and noise-exposed animals. Results indicate that noise-exposed auditory-nerve fibers show significantly reduced response latency, increased onset response and percent adaptation, faster adaptation after onset, and slower recovery after offset. The decrease in response latency only occurred in noise-exposed fibers with significantly reduced frequency selectivity. These changes in temporal dynamics have important implications for temporal envelope coding in hearing-impaired ears, as well as for the design of dynamic compression algorithms for hearing aids.

  19. Efficacy and safety of nerve growth factor for the treatment of neurological diseases: a meta-analysis of 64 randomized controlled trials involving 6,297 patients

    PubMed Central

    Zhao, Meng; Li, Xiao-yan; Xu, Chun-ying; Zou, Li-ping

    2015-01-01

    OBJECTIVE: China is the only country where nerve growth factor is approved for large-scale use as a clinical medicine. More than 10 years ago, in 2003, nerve growth factor injection was listed as a national drug. The goal of this article is to evaluate comprehensively the efficacy and safety of nerve growth factor for the treatment of neurological diseases. DATA RETRIEVAL: A computer-based retrieval was performed from six databases, including the Cochrane Library, PubMed, EMBASE, Sino Med, CNKI, and the VIP database, searching from the clinical establishment of nerve growth factor for treatment until December 31, 2013. The key words for the searches were “nerve growth factor, randomized controlled trials” in Chinese and in English. DATA SELECTION: Inclusion criteria: any study published in English or Chinese referring to randomized controlled trials of nerve growth factor; patients with neurological diseases such as peripheral nerve injury, central nerve injury, cranial neuropathy, and nervous system infections; patients older than 7 years; similar research methods and outcomes assessing symptoms; and measurement of nerve conduction velocities. The meta-analysis was conducted using Review Manager 5.2.3 software. MAIN OUTCOME MEASURES: The total effective rate, the incidence of adverse effects, and the nerve conduction velocity were recorded for each study. RESULTS: Sixty-four studies involving 6,297 patients with neurological diseases were included. The total effective rate in the group treated with nerve growth factor was significantly higher than that in the control group (P < 0.0001, RR: 1.35, 95%CI: 1.30–1.40). The average nerve conduction velocity in the nerve growth factor group was significantly higher than that in the control group (P < 0.00001, MD: 4.59 m/s, 95%CI: 4.12–5.06). The incidence of pain or scleroma at the injection site in the nerve growth factor group was also higher than that in the control group (P < 0.00001, RR: 6.30, 95%CI: 3.53

  20. A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program

    PubMed Central

    Chandran, Vijayendran; Coppola, Giovanni; Nawabi, Homaira; Omura, Takao; Versano, Revital; Huebner, Eric A.; Zhang, Alice; Costigan, Michael; Yekkirala, Ajay; Barrett, Lee; Blesch, Armin; Michaelevski, Izhak; Davis-Turak, Jeremy; Gao, Fuying; Langfelder, Peter; Horvath, Steve; He, Zhigang; Benowitz, Larry; Fainzilber, Mike; Tuszynski, Mark; Woolf, Clifford J.; Geschwind, Daniel H.

    2016-01-01

    SUMMARY The regenerative capacity of the injured CNS in adult mammals is severely limited, yet axons in the peripheral nervous system (PNS) regrow, albeit to a limited extent, after injury. We reasoned that coordinate regulation of gene expression in injured neurons involving multiple pathways was central to PNS regenerative capacity. To provide a framework for revealing pathways involved in PNS axon regrowth after injury, we applied a comprehensive systems biology approach, starting with gene expression profiling of dorsal root ganglia (DRGs) combined with multi-level bioinformatic analyses and experimental validation of network predictions. We used this rubric to identify a drug that accelerates DRG neurite outgrowth in vitro and optic nerve outgrowth in vivo by inducing elements of the identified network. The work provides a functional genomics foundation for understanding neural repair and proof of the power of such approaches in tackling complex problems in nervous system biology. PMID:26898779

  1. Nerve growth factor modulates the tumor cells migration in ovarian cancer through the WNT/β-catenin pathway

    PubMed Central

    Li, Bo; Cai, Shaoxi; Zhao, Yi; He, Qiyi; Yu, Xiaodong; Cheng, Longcong; Zhang, Yingfeng; Hu, Xiancheng; Ke, Ming; Chen, Sijia; Zou, Misha

    2016-01-01

    Nerve growth factor (NGF)/nerve growth factor receptors (NGFRs) axis and canonical WNT/β-catenin pathway have shown to play crucial roles in tumor initiation, progression and prognosis. But little did we know the relationship between them in modulation of tumor progress. In this report, we found that NGF/NGFRs and β-catenin were coexpression in ovarian cancer cell lines, and NGF can decrease the expression level of β-catenin and affect its activities, which may be related to the NGF-induced down-regulation of B-cell CLL/lymphoma 9-like (BCL9L, BCL9-2). Furthermore, NGF can also increase or decrease the downstream target gene expression levels of WNT/β-catenin depending on the cell types. Especially, we created a novel in vitro cell growth model based on a microfluidic device to intuitively observe the effects of NGF/NGFRs on the motility behaviors of ovarian cancer cells. The results showed that the migration area and maximum distance into three dimensional (3D) matrigel were decreased in CAOV3 and OVCAR3 cells, but increased in SKOV3 cells following the stimulation with NGF. In addition, we found that the cell colony area was down-regulated in CAOV3 cells, however, it was augmented in OVCAR3 cells after treatment with NGF. The inhibitors of NGF/NGFRs, such as Ro 08-2750, K252a and LM11A-31,can all block NGF-stimulated changes of gene expression or migratory behavior on ovarian cancer cells. The different results among ovarian cancer cells illustrated the heterogeneity and complexity of ovarian cancer. Collectively, our results suggested for the first time that NGF is functionally linked to β-catenin in the migration of human ovarian cancer cells, which may be a novel therapeutic perspective to prevent the spread of ovarian carcinomas by studying the interaction between NGF/NGFRs and canonical WNT/β-catenin signaling. PMID:27835587

  2. Therapeutic effect of nerve growth factor on cerebral infarction in dogs using the hemisphere anomalous volume ratio of diffusion-weighted magnetic resonance imaging.

    PubMed

    Wang, Yong; Zhang, Hui; Wang, Zhe; Geng, Zuojun; Liu, Huaijun; Yang, Haiqing; Song, Peng; Liu, Qing

    2012-08-25

    A model of focal cerebral ischemic infarction was established in dogs through middle cerebral artery occlusion of the right side. Thirty minutes after occlusion, models were injected with nerve growth factor adjacent to the infarct locus. The therapeutic effect of nerve growth factor against cerebral infarction was assessed using the hemisphere anomalous volume ratio, a quantitative index of diffusion-weighted MRI. At 6 hours, 24 hours, 7 days and 3 months after modeling, the hemisphere anomalous volume ratio was significantly reduced after treatment with nerve growth factor. Hematoxylin-eosin staining, immunohistochemistry, electron microscopy and neurological function scores showed that infarct defects were slightly reduced and neurological function significantly improved after nerve growth factor treatment. This result was consistent with diffusion-weighted MRI measurements. Experimental findings indicate that nerve growth factor can protect against cerebral infarction, and that the hemisphere anomalous volume ratio of diffusion-weighted MRI can be used to evaluate the therapeutic effect.

  3. Therapeutic effect of nerve growth factor on cerebral infarction in dogs using the hemisphere anomalous volume ratio of diffusion-weighted magnetic resonance imaging★

    PubMed Central

    Wang, Yong; Zhang, Hui; Wang, Zhe; Geng, Zuojun; Liu, Huaijun; Yang, Haiqing; Song, Peng; Liu, Qing

    2012-01-01

    A model of focal cerebral ischemic infarction was established in dogs through middle cerebral artery occlusion of the right side. Thirty minutes after occlusion, models were injected with nerve growth factor adjacent to the infarct locus. The therapeutic effect of nerve growth factor against cerebral infarction was assessed using the hemisphere anomalous volume ratio, a quantitative index of diffusion-weighted MRI. At 6 hours, 24 hours, 7 days and 3 months after modeling, the hemisphere anomalous volume ratio was significantly reduced after treatment with nerve growth factor. Hematoxylin-eosin staining, immunohistochemistry, electron microscopy and neurological function scores showed that infarct defects were slightly reduced and neurological function significantly improved after nerve growth factor treatment. This result was consistent with diffusion-weighted MRI measurements. Experimental findings indicate that nerve growth factor can protect against cerebral infarction, and that the hemisphere anomalous volume ratio of diffusion-weighted MRI can be used to evaluate the therapeutic effect. PMID:25624813

  4. Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation.

    PubMed

    Tsai, Sen-Wei; Tung, Yu-Tang; Chen, Hsiao-Ling; Yang, Shang-Hsun; Liu, Chia-Yi; Lu, Michelle; Pai, Hui-Jing; Lin, Chi-Chen; Chen, Chuan-Mu

    2016-02-01

    Muscle atrophy is a common symptom after nerve denervation. Myostatin propeptide, a precursor of myostatin, has been documented to improve muscle growth. However, the mechanism underlying the muscle atrophy attenuation effects of myostatin propeptide in muscles and the changes in gene expression are not well established. We investigated the possible underlying mechanisms associated with myostatin propeptide gene delivery by gene gun in a rat denervation muscle atrophy model, and evaluated gene expression patterns. In a rat botulinum toxin-induced nerve denervation muscle atrophy model, we evaluated the effects of wild-type (MSPP) and mutant-type (MSPPD75A) of myostatin propeptide gene delivery, and observed changes in gene activation associated with the neuromuscular junction, muscle and nerve. Muscle mass and muscle fiber size was moderately increased in myostatin propeptide treated muscles (p<0.05). And enhancement of the gene expression of the muscle regulatory factors, neurite outgrowth factors (IGF-1, GAP43) and acetylcholine receptors was observed. Our results demonstrate that myostatin propeptide gene delivery, especially the mutant-type of MSPPD75A, attenuates muscle atrophy through myogenic regulatory factors and acetylcholine receptor regulation. Our data concluded that myostatin propeptide gene therapy may be a promising treatment for nerve denervation induced muscle atrophy. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. α3β4-Nicotinic receptors mediate adrenergic nerve- and peptidergic (CGRP) nerve-dependent vasodilation induced by nicotine in rat mesenteric arteries

    PubMed Central

    Eguchi, S; Miyashita, S; Kitamura, Y; Kawasaki, H

    2007-01-01

    Background and purpose: Previous studies demonstrated that nicotine-induced endothelium-independent vasodilation is mediated by perivascular adrenergic nerves and nerves releasing calcitonin gene-related peptide (CGRPergic nerves). We characterized the nicotinic acetylcholine (ACh) receptor subtype underlying the vasodilation in response to nicotine in rat mesenteric arteries. Experimental approach: Rat mesenteric vascular beds without endothelium were contracted by perfusion with Krebs solution containing methoxamine and the perfusion pressure was measured with a pressure transducer. Key results: Perfusion of nicotine (1–100 μM) for 1 min caused a concentration-dependent decrease in perfusion pressure due to vasodilation. Perfusion of (±)-epibatidine (1–100 nM) (non-selective agonist) or (−)-cytisine (1–100 μM) (partial agonist for nicotinic β2 subtype and full agonist for nicotinic β4 subtype) induced vasodilation in a concentration-dependent manner. Vasodilation induced by nicotine, (−)-cytisine- and (±)-epibatidine was markedly attenuated by guanethidine (5 μM) and pretreatment with capsaicin (1 μM). Mecamylamine (relatively selective antagonist for α3β4 subtype), but not dihydro-β-erythroidine (selective antagonist for α4β2 subtype) or α-bungarotoxin (selective antagonist for α7 subtype), markedly inhibited nicotine-induced vasodilation. Nicotine-induced vasodilation was inhibited by methyllycaconitine at high concentrations (>1 μM), which non-selectively antagonize nicotinic receptors, while a low concentration of 10 nM, which selectively antagonizes α7 subtype, had no effect. (−)-Cytisine and (±)-epibatidine-induced vasodilation were abolished by mecamylamine Conclusion and implications: These results suggest that the nicotinic α3β4 receptor subtype, but not the α7 and α4β2 subtypes, is responsible for the vasodilation in rat mesenteric arteries induced by nicotine- and nicotinic ACh receptor agonists

  6. Vanilloid receptors mediate adrenergic nerve- and CGRP-containing nerve-dependent vasodilation induced by nicotine in rat mesenteric resistance arteries

    PubMed Central

    Eguchi, Shinji; Tezuka, Satoko; Hobara, Narumi; Akiyama, Shinji; Kurosaki, Yuji; Kawasaki, Hiromu

    2004-01-01

    Previous studies showed that nicotine induces adrenergic nerve-dependent vasodilation that is mediated by endogenous calcitonin gene-related peptide (CGRP) released from CGRP-containing (CGRPergic) nerves. The mechanisms underlying the nicotine-induced vasodilation were further studied. Rat mesenteric vascular beds without endothelium were contracted by perfusion with Krebs solution containing methoxamine, and the perfusion pressure was measured with a pressure transducer. Perfusion of nicotine (1–100 μM) for 1 min caused concentration-dependent vasodilation. Capsazepine (vanilloid receptor-1 antagonist; 1–10 μM) and ruthenium red (inhibitor of vanilloid response; 1–30 μM) concentration-dependently inhibited the nicotine-induced vasodilation without affecting the vasodilator response to exogenous CGRP. Nicotine-induced vasodilation was not inhibited by treatment with 3,4-dihydroxyphenylalanine (DOPA) receptor antagonist (L-DOPA cyclohexyl ester; 0.001–10 μM), dopamine D1 receptor-selective antagonist (SCH23390; 1–10 μM), dopamine D2 receptor antagonist (haloperidol; 0.1–0.5 μM), ATP P2x receptor-desensitizing agonist (α,β-methylene ATP; 1–10 μM), adenosine A2 receptor antagonist (8(p-sulfophenyl)theophylline; 10–50 μM) or neuropeptide Y (NPY)-Y1 receptor antagonist (BIBP3226; 0.1–0.5 μM). Immunohistochemical staining of the mesenteric artery showed dense innervation of CGRP- and vanilloid receptor-1-positive nerves, with both immunostainings appearing in the same neuron. The mesenteric artery was also densely innervated by NPY-positive nerves. Double immunostainings showed that both NPY and CGRP immunoreactivities a