Science.gov

Sample records for nerve injury model

  1. Reactive microglia after taste nerve injury: comparison to nerve injury models of chronic pain.

    PubMed

    Bartel, Dianna L; Finger, Thomas E

    2013-01-01

    The chorda tympani (CT), which innervates taste buds on the anterior portion of the tongue, is susceptible to damage during inner ear surgeries. Injury to the CT causes a disappearance of taste buds, which is concurrent with significant microglial responses at central nerve terminals in the nucleus of the solitary tract (nTS). The resulting taste disturbances that can occur may persist for months or years, long after the nerve and taste buds have regenerated. These persistent changes in taste sensation suggest alterations in central functioning and may be related to the microglial responses. This is reminiscent of nerve injuries that result in chronic pain, where microglial reactivity is essential in maintaining the altered sensation (i.e., pain). In these models, methods that diminish microglial responses also diminish the corresponding pain behavior. Although the CT nerve does not contain nociceptive pain fibers, the microglial reactivity after CT damage is similar to that described in pain models. Therefore, methods that decrease microglial responses in pain models were used here to test if they could also affect microglial reactivity after CT injury. Treatment with minocycline, an antibiotic that dampens pain responsive microglia, was largely ineffective in diminishing microglial responses after CT injury. In addition, signaling through the toll-like 4 receptor (TLR4) does not seem to be required after CT injury as blocking or deleting TLR4 had no effect on microglial reactivity. These results suggest that microglial responses following CT injury rely on different signaling mechanisms than those described in nerve injuries resulting in chronic pain.

  2. A model of injury potential for myelinated nerve fiber.

    PubMed

    Guang-Hao, Zhang; Xiao-Lin, Huo; Ai-Hua, Wang; Cheng, Zhang; Chang-Zhe, Wu

    2015-01-01

    Excellent models have been described in literatures which related membrane potential to extracellular electric or magnetic stimulation and which described the formation and propagation of action potentials along the axon, for both myelinated and nonmyelinated fibers. There is not, however, an adequate model for nerve injury which allows to compute the distribution of injury potential, a direct current potential difference between intact and injured nerve, because its importance has been ignored in the shadow of the well-known action potential. This paper focus on the injury potential and presents a model of the electrical properties of myelinated nerve which describes the time course of events following injury. The time-varying current and potential at all nodes can be computed from the model, and the factors relate to the amplitude of injury potential can be determined. It is shown that the amplitude of injury potential decreased gradually with injury time, and the recession curve was exponential. Results also showed that the initial amplitude of injury potential is positively related to the grade of injury and fiber diameter. This model explained the mechanism of formation of injury potential and can provide instruction for applied electric field to prevent the formation injury potential.

  3. Misdirection of regenerating motor axons after nerve injury and repair in the rat sciatic nerve model

    PubMed Central

    de Ruiter, Godard C. W.; Malessy, Martijn J. A.; Alaid, Awad O.; Spinner, Robert J.; Engelstad, JaNean K.; Sorenson, E. J.; Kaufman, K. R.; Dyck, Peter J.; Windebank, Anthony J.

    2010-01-01

    Misdirection of regenerating axons is one of the factors that can explain the poor results often found after nerve injury and repair. In this study, we quantified the degree of misdirection and the effect on recovery of function after different types of nerve injury and repair in the rat sciatic nerve model; crush injury, direct coaptation, and autograft repair. Sequential tracing with retrograde labeling of the peroneal nerve before and 8 weeks after nerve injury and repair was performed to quantify the accuracy of motor axon regeneration. Digital video analysis of ankle motion was used to investigate the recovery of function. In addition, serial compound action potential recordings and nerve and muscle morphometry were performed. In our study, accuracy of motor axon regeneration was found to be limited; only 71% (±4.9%) of the peroneal motoneurons were correctly directed 2 months after sciatic crush injury, 42% (±4.2%) after direct coaptation, and 25% (±6.6%) after autograft repair. Recovery of ankle motion was incomplete after all types of nerve injury and repair and demonstrated a disturbed balance of ankle plantar and dorsiflexion. The number of motoneurons from which axons had regenerated was not significantly different from normal. The number of myelinated axons was significantly increased distal to the site of injury. Misdirection of regenerating motor axons is a major factor in the poor recovery of nerves that innervate different muscles. The results of this study can be used as basis for developing new nerve repair techniques that may improve the accuracy of regeneration. PMID:18448099

  4. A simple model of radial nerve injury in the rhesus monkey to evaluate peripheral nerve repair

    PubMed Central

    Wang, Dong; Huang, Xijun; Fu, Guo; Gu, Liqiang; Liu, Xiaolin; Wang, Honggang; Hu, Jun; Yi, Jianhua; Niu, Xiaofeng; Zhu, Qingtang

    2014-01-01

    Current research on bone marrow stem cell transplantation and autologous or xenogenic nerve transplantation for peripheral nerve regeneration has mainly focused on the repair of peripheral nerve defects in rodents. In this study, we established a standardized experimental model of radial nerve defects in primates and evaluated the effect of repair on peripheral nerve injury. We repaired 2.5-cm lesions in the radial nerve of rhesus monkeys by transplantation of autografts, acellular allografts, or acellular allografts seeded with autologous bone marrow stem cells. Five months after surgery, regenerated nerve tissue was assessed for function, electrophysiology, and histomorphometry. Postoperative functional recovery was evaluated by the wrist-extension test. Compared with the simple autografts, the acellular allografts and allografts seeded with bone marrow stem cells facilitated remarkable recovery of the wrist-extension functions in the rhesus monkeys. This functional improvement was coupled with radial nerve distal axon growth, a higher percentage of neuron survival, increased nerve fiber density and diameter, increased myelin sheath thickness, and increased nerve conduction velocities and peak amplitudes of compound motor action potentials. Furthermore, the quality of nerve regeneration in the bone marrow stem cells-laden allografts group was comparable to that achieved with autografts. The wrist-extension test is a simple behavioral method for objective quantification of peripheral nerve regeneration. PMID:25206757

  5. ISCHEMIC MODEL OF OPTIC NERVE INJURY

    PubMed Central

    Cioffi, George A

    2005-01-01

    Purpose It is proposed that the anterior optic nerve is specifically susceptible to microcirculatory compromise contributing to the development of glaucomatous optic neuropathy. Methods Ischemic optic neuropathy was induced by delivering endothelin-1 (ET-1) to the retrobulbar space in one eye of 12 primates for 6 to 12 months. Regional ganglion cell axonal sizes and densities were compared with the normal, contralateral eyes. Results Without changes of intraocular pressure, mean axonal density was significantly decreased in ET-1 eyes compared to controls (P = .03, paired t test). Two-way matched-pair analysis of variance showed a significant effect of ET-1 on overall axonal density (P < .0001). Among the animals with significant axonal loss, the mean axonal loss was 11.6%, and loss varied from 4% to 21%. Axonal loss was commonly localized within specific quadrants. Five animals were examined for preferential axonal size loss. As a group, there appears to be a tendency toward preferential large axonal loss, but the mean axonal loss of large and small axons did not meet significant differences (P = .1) However, examination of individual animals with significant loss shows significantly greater loss of large axons as compared to the small axons in three of the animals. Conclusions Chronic optic nerve ischemia causes demonstrable and localized damage of the optic nerve, without intraocular pressure elevation. There is preferential loss of large retinal ganglion cell axons in animals with significant axonal loss. Ischemia-induced focal axonal loss is similar to human glaucoma and may represent a differential regional vulnerability. PMID:17057819

  6. Functional and Molecular Characterization of a Novel Traumatic Peripheral Nerve-Muscle Injury Model.

    PubMed

    Wanner, Renate; Gey, Manuel; Abaei, Alireza; Warnecke, Daniela; de Roy, Luisa; Dürselen, Lutz; Rasche, Volker; Knöll, Bernd

    2017-07-08

    Traumatic injuries to human peripheral nerves are frequently associated with damage to nerve surrounding tissues including muscles and blood vessels. Currently, most rodent models of peripheral nerve injuries (e.g., facial or sciatic nerve) employ surgical nerve transection with scissors or scalpels. However, such an isolated surgical nerve injury only mildly damages neighboring tissues and weakly activates an immune response. In order to provide a rodent nerve injury model accounting for such nerve-associated tissue damage and immune cell activation, we developed a drop tower-based facial nerve trauma model in mice. We compare nerve regeneration in this novel peripheral nerve trauma model with the established surgical nerve injury along several parameters. These include gene expression, histological and functional facial motoneuron (FMN) regeneration, facial nerve degeneration, immune cell activation and muscle damage. Regeneration-associated genes (RAGs; e.g., Atf3) were strongly induced in FMNs subjected to traumatic and surgical injury. Regeneration of FMNs and functional recovery of whisker movement were faster in traumatic versus complete surgical injury, thus cutting down experimentation time. Wallerian degeneration of distal nerve stumps was readily observed in this novel trauma injury model. Importantly, drop tower-inflicted facial nerve injury resulted in muscle damage, activation of muscle satellite cell markers (PAX7) and pronounced infiltration of immune cells to the injury site only in this model but not upon surgical nerve transection. Thus, we provide a novel rodent PNS trauma model that can be easily adopted to other PNS nerves such as the sciatic nerve. Since this nerve trauma model replicates multiple tissue damage frequently encountered in clinical routine, it will be well suited to identify molecular and cellular mechanisms of PNS nerve repair in wild-type and genetically modified rodents.

  7. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  8. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  9. Facial Nerve Axotomy in Mice: A Model to Study Motoneuron Response to Injury

    PubMed Central

    Olmstead, Deborah N.; Mesnard-Hoaglin, Nichole A.; Batka, Richard J.; Haulcomb, Melissa M.; Miller, Whitney M.; Jones, Kathryn J.

    2015-01-01

    The goal of this surgical protocol is to expose the facial nerve, which innervates the facial musculature, at its exit from the stylomastoid foramen and either cut or crush it to induce peripheral nerve injury. Advantages of this surgery are its simplicity, high reproducibility, and the lack of effect on vital functions or mobility from the subsequent facial paralysis, thus resulting in a relatively mild surgical outcome compared to other nerve injury models. A major advantage of using a cranial nerve injury model is that the motoneurons reside in a relatively homogenous population in the facial motor nucleus in the pons, simplifying the study of the motoneuron cell bodies. Because of the symmetrical nature of facial nerve innervation and the lack of crosstalk between the facial motor nuclei, the operation can be performed unilaterally with the unaxotomized side serving as a paired internal control. A variety of analyses can be performed postoperatively to assess the physiologic response, details of which are beyond the scope of this article. For example, recovery of muscle function can serve as a behavioral marker for reinnervation, or the motoneurons can be quantified to measure cell survival. Additionally, the motoneurons can be accurately captured using laser microdissection for molecular analysis. Because the facial nerve axotomy is minimally invasive and well tolerated, it can be utilized on a wide variety of genetically modified mice. Also, this surgery model can be used to analyze the effectiveness of peripheral nerve injury treatments. Facial nerve injury provides a means for investigating not only motoneurons, but also the responses of the central and peripheral glial microenvironment, immune system, and target musculature. The facial nerve injury model is a widely accepted peripheral nerve injury model that serves as a powerful tool for studying nerve injury and regeneration. PMID:25742324

  10. Far-Infrared Therapy Promotes Nerve Repair following End-to-End Neurorrhaphy in Rat Models of Sciatic Nerve Injury

    PubMed Central

    Chen, Tai-Yuan; Yang, Yi-Chin; Sha, Ya-Na; Chou, Jiun-Rou

    2015-01-01

    This study employed a rat model of sciatic nerve injury to investigate the effects of postoperative low-power far-infrared (FIR) radiation therapy on nerve repair following end-to-end neurorrhaphy. The rat models were divided into the following 3 groups: (1) nerve injury without FIR biostimulation (NI/sham group); (2) nerve injury with FIR biostimulation (NI/FIR group); and (3) noninjured controls (normal group). Walking-track analysis results showed that the NI/FIR group exhibited significantly higher sciatic functional indices at 8 weeks after surgery (P < 0.05) compared with the NI/sham group. The decreased expression of CD4 and CD8 in the NI/FIR group indicated that FIR irradiation modulated the inflammatory process during recovery. Compared with the NI/sham group, the NI/FIR group exhibited a significant reduction in muscle atrophy (P < 0.05). Furthermore, histomorphometric assessment indicated that the nerves regenerated more rapidly in the NI/FIR group than in the NI/sham group; furthermore, the NI/FIR group regenerated neural tissue over a larger area, as well as nerve fibers of greater diameter and with thicker myelin sheaths. Functional recovery, inflammatory response, muscular reinnervation, and histomorphometric assessment all indicated that FIR radiation therapy can accelerate nerve repair following end-to-end neurorrhaphy of the sciatic nerve. PMID:25722734

  11. Low-Level Laser Irradiation Improves Functional Recovery and Nerve Regeneration in Sciatic Nerve Crush Rat Injury Model

    PubMed Central

    Wang, Chau-Zen; Chen, Yi-Jen; Wang, Yan-Hsiung; Yeh, Ming-Long; Huang, Mao-Hsiung; Ho, Mei-Ling; Liang, Jen-I; Chen, Chia-Hsin

    2014-01-01

    The development of noninvasive approaches to facilitate the regeneration of post-traumatic nerve injury is important for clinical rehabilitation. In this study, we investigated the effective dose of noninvasive 808-nm low-level laser therapy (LLLT) on sciatic nerve crush rat injury model. Thirty-six male Sprague Dawley rats were divided into 6 experimental groups: a normal group with or without 808-nm LLLT at 8 J/cm2 and a sciatic nerve crush injury group with or without 808-nm LLLT at 3, 8 or 15 J/cm2. Rats were given consecutive transcutaneous LLLT at the crush site and sacrificed 20 days after the crush injury. Functional assessments of nerve regeneration were analyzed using the sciatic functional index (SFI) and hindlimb range of motion (ROM). Nerve regeneration was investigated by measuring the myelin sheath thickness of the sciatic nerve using transmission electron microscopy (TEM) and by analyzing the expression of growth-associated protein 43 (GAP43) in sciatic nerve using western blot and immunofluorescence staining. We found that sciatic-injured rats that were irradiated with LLLT at both 3 and 8 J/cm2 had significantly improved SFI but that a significant improvement of ROM was only found in rats with LLLT at 8 J/cm2. Furthermore, the myelin sheath thickness and GAP43 expression levels were significantly enhanced in sciatic nerve-crushed rats receiving 808-nm LLLT at 3 and 8 J/cm2. Taken together, these results suggest that 808-nm LLLT at a low energy density (3 J/cm2 and 8 J/cm2) is capable of enhancing sciatic nerve regeneration following a crush injury. PMID:25119457

  12. Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model.

    PubMed

    Wang, Chau-Zen; Chen, Yi-Jen; Wang, Yan-Hsiung; Yeh, Ming-Long; Huang, Mao-Hsiung; Ho, Mei-Ling; Liang, Jen-I; Chen, Chia-Hsin

    2014-01-01

    The development of noninvasive approaches to facilitate the regeneration of post-traumatic nerve injury is important for clinical rehabilitation. In this study, we investigated the effective dose of noninvasive 808-nm low-level laser therapy (LLLT) on sciatic nerve crush rat injury model. Thirty-six male Sprague Dawley rats were divided into 6 experimental groups: a normal group with or without 808-nm LLLT at 8 J/cm(2) and a sciatic nerve crush injury group with or without 808-nm LLLT at 3, 8 or 15 J/cm(2). Rats were given consecutive transcutaneous LLLT at the crush site and sacrificed 20 days after the crush injury. Functional assessments of nerve regeneration were analyzed using the sciatic functional index (SFI) and hindlimb range of motion (ROM). Nerve regeneration was investigated by measuring the myelin sheath thickness of the sciatic nerve using transmission electron microscopy (TEM) and by analyzing the expression of growth-associated protein 43 (GAP43) in sciatic nerve using western blot and immunofluorescence staining. We found that sciatic-injured rats that were irradiated with LLLT at both 3 and 8 J/cm(2) had significantly improved SFI but that a significant improvement of ROM was only found in rats with LLLT at 8 J/cm(2). Furthermore, the myelin sheath thickness and GAP43 expression levels were significantly enhanced in sciatic nerve-crushed rats receiving 808-nm LLLT at 3 and 8 J/cm(2). Taken together, these results suggest that 808-nm LLLT at a low energy density (3 J/cm(2) and 8 J/cm(2)) is capable of enhancing sciatic nerve regeneration following a crush injury.

  13. Thirty minutes of low intensity electrical stimulation promotes nerve regeneration after sciatic nerve crush injury in a rat model.

    PubMed

    Alrashdan, Mohammad S; Park, Jong-Chul; Sung, Mi-Ae; Yoo, Sang Bae; Jahng, Jeong Won; Lee, Tae Hyung; Kim, Sung-June; Lee, Jong-Ho

    2010-06-01

    We investigated whether electrical stimulation (ES) applied directly for 30 minutes after crushing injury to the sciatic nerves of rats could improve nerve regeneration. Two groups of animals were used in this study (n = 20 each): the ES group received 30 minutes of low intensity ES (20 Hz pulse rate, 2 uA amplitude) immediately after a standard crush injury, while the control group received no stimulation after injury. Both groups were followed up for three weeks. The sciatic function index (SFI) was calculated weekly. Mean conduction velocity (MCV) and peak voltage (PV) were calculated, and the sensory neurons in L4 and L5 dorsal root ganglia (DRG) were traced with Fluorogold in retrograde fashion and quantified at the end of the follow up period. Histomorphometric studies were also carried out in both groups. The ES group showed improved functional and sensory recovery compared to the control group three weeks after injury. SFI, MCV and the number of retrogradely labeled sensory neurons were significantly higher in the ES group. Additionally, axon counts, myelin thicknesses and G-ratio values were also higher in the ES group. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) showed an elevated expression of brain derived neurotrophic factor (BDNF) in DRG sensory neurons of the ES group five days post-injury. Here, we present the first evidence that the application of ES for 30 minutes immediately following crush injury is effective to promote nerve regeneration in a rat sciatic nerve model.

  14. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans.

    PubMed

    Gordon, Tessa

    2016-04-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.

  15. Nerve growth factor and associated nerve sprouting contribute to local mechanical hyperalgesia in a rat model of bone injury.

    PubMed

    Yasui, M; Shiraishi, Y; Ozaki, N; Hayashi, K; Hori, K; Ichiyanagi, M; Sugiura, Y

    2012-08-01

    To clarify the mechanism of tenderness after bone injury, we investigated changes in the withdrawal threshold to mechanical stimuli, nerve distribution and nerve growth factor (NGF)-expression in a rat model of bone injury without immobilization for bone injury healing. Rats were divided into three groups as follows: (1) rats incised in the skin and periosteum, followed by drilling a hole in the tibia [bone lesion group (BLG)]; (2) those incised in the skin and periosteum without bone drilling [periosteum lesion group (PLG)]; and (3) those incised in the skin [skin lesion group (SLG)]. Mechanical hyperalgesia continued for 28 days at a lesion in the BLG, 21 days in PLG and 5 days in SLG after treatments, respectively. Endochondral ossification was observed on days 5-28 in BLG and on days 5-21 in PLG. Nerve growth appeared in deep connective tissue (DCT) at day 28 in BLG. Nerve fibres increased in both cutaneous tissue and DCT at day 7 in PLG, but they were not found at day 28. Mechanical hyperalgesia accompanied with endochondral ossification and nerve fibres increasing at the lesion in both BLG and PLG. NGF was expressed in bone-regenerating cells during the bone injury healing. Anti-NGF and trk inhibitor K252a inhibited hyperalgesia in the different time course. This study shows that localized tenderness coincides with the bone healing and involves NGF expression and nerve sprouting after bone injury. The findings present underlying mechanisms and provide pathophysiological relevance of local tenderness to determination of bone fracture and its healing.

  16. Dentoalveolar nerve injury.

    PubMed

    Auyong, Thomas G; Le, Anh

    2011-08-01

    Nerve injury associated with dentoalveolar surgery is a complication contributing to the altered sensation of the lower lip, chin, buccal gingivae, and tongue. This surgery-related sensory defect is a morbid postoperative outcome. Several risk factors have been proposed. This article reviews the incidence of trigeminal nerve injury, presurgical risk assessment, classification, and surgical coronectomy versus conventional extraction as an approach to prevent neurosensory damage associated with dentoalveolar surgery. Copyright © 2011. Published by Elsevier Inc.

  17. Traumatic facial nerve injury.

    PubMed

    Lee, Linda N; Lyford-Pike, Sofia; Boahene, Kofi Derek O

    2013-10-01

    Facial nerve trauma can be a devastating injury resulting in functional deficits and psychological distress. Deciding on the optimal course of treatment for patients with traumatic facial nerve injuries can be challenging, as there are many critical factors to be considered for each patient. Choosing from the great array of therapeutic options available can become overwhelming to both patients and physicians, and in this article, the authors present a systematic approach to help organize the physician's thought process.

  18. Peripheral nerve palsy by torsional nerve injury.

    PubMed

    Guerra, Waltraud Kleist-Welch; Schroeder, Henry W S

    2011-04-01

    Peripheral nerve palsy caused by torsional nerve injury is rare. Only a few patients have been reported in the literature. The etiology of this type of nerve lesion is poorly understood. To report on 5 patients presenting with peripheral nerve palsy caused by a torsional nerve injury. Five patients presented with 6 upper peripheral nerve palsy involving the axillary nerve (n = 2), musculocutaneous nerve (n = 2), radial nerve (n = 1), and suprascapular nerve (n = 1). There was no history of trauma in 3 patients, but in the other 2 patients, nerve palsy occurred after a traumatic event. Because of a lack of spontaneous recovery, surgical exploration was performed. Torsion of the whole nerve (n = 5) or only 1 fascicle (n = 1) was found. Epifascicular epineurectomy and detorsion, as well as resection of the torsion site with subsequent primary nerve suture, were performed in 3 lesions. Good to excellent recovery of motor function was achieved in all 5 patients. In the last patient who presented with 2 nerve torsions, the follow-up period after the last surgery is too short to allow evaluation. Although not a frequent event, torsional nerve injury should be taken into consideration when dealing with peripheral nerve injuries. Surgical exploration with detorsion or suture results in good recovery.

  19. Craniocerebral injury promotes the repair of peripheral nerve injury

    PubMed Central

    Wang, Wei; Gao, Jun; Na, Lei; Jiang, Hongtao; Xue, Jingfeng; Yang, Zhenjun; Wang, Pei

    2014-01-01

    The increase in neurotrophic factors after craniocerebral injury has been shown to promote fracture healing. Moreover, neurotrophic factors play a key role in the regeneration and repair of peripheral nerve. However, whether craniocerebral injury alters the repair of peripheral nerve injuries remains poorly understood. Rat injury models were established by transecting the left sciatic nerve and using a free-fall device to induce craniocerebral injury. Compared with sciatic nerve injury alone after 6–12 weeks, rats with combined sciatic and craniocerebral injuries showed decreased sciatic functional index, increased recovery of gastrocnemius muscle wet weight, recovery of sciatic nerve ganglia and corresponding spinal cord segment neuron morphologies, and increased numbers of horseradish peroxidase-labeled cells. These results indicate that craniocerebral injury promotes the repair of peripheral nerve injury. PMID:25374593

  20. Effect of Zofenopril on regeneration of sciatic nerve crush injury in a rat model

    PubMed Central

    2009-01-01

    Background Zofenopril is an antioxidant agent which has been shown to have beneficial effects in hypertension and heart failure. The aim of this study was to test the effects of Zofenopril on nerve regeneration and scarring in a rat model of peripheral nerve crush injury. Methods Twenty-one adult Sprague-Dawley rats underwent a surgical procedure involving right sciatic nerve crush injury. 15 mg/kg Zofenopril was administered orally to seven rats in group Z for seven days. Seven rats in group S received saline orally for seven days. Seven rats in the control group C received no drug after crush injury. Fourteenth and 42nd days after injury, functional and electromyography assessments of nerves were performed. Functional recovery was analyzed using a walking track assessment, and quantified using the sciatic functional index (SFI). After these evaluations, all rats were sacrificed and microscopic evaluations were performed. Results The Sciatic functional Index (SFI) in group Z on 14th day is different significantly from group S and group C (p = 0.037). But on 42nd day there was no difference between groups (p = 0.278). The statistical analyses of electromyelographic (EMG) studies showed that the latency in group Z is significantly different from group S (p = 0.006) and group C (p = 0.045). But on 42nd day there was no difference between groups like SFI (p = 0.147). The amplitude was evaluated better in group Z than others (p < 0.05). In microscopic evaluation, we observed the highest number of nerve regeneration in the group Z and the lowest in the group C. But it was not significant statistically. Conclusion Our results demonstrate that Zofenopril promotes the regeneration of peripheral nerve injuries in rat models. PMID:19508704

  1. Side-to-side nerve bridges reduce muscle atrophy after peripheral nerve injury in a rodent model.

    PubMed

    Shea, Jill E; Garlick, Jared W; Salama, Mohamed E; Mendenhall, Shaun D; Moran, Linh A; Agarwal, Jayant P

    2014-03-01

    Peripheral nerve injury can result in muscle atrophy and long-term disability. We hypothesize that creating a side-to-side bridge to link an injured nerve with a healthy nerve will reduce muscle atrophy and improve muscle function. Sprague-Dawley rats were divided into four groups (n = 7 per group). Group 1: transection only--a 10-mm gap was created in the proximal tibial nerve; group 2: transected plus repaired--the transected tibial nerve was repaired; group 3: transected plus repaired plus nerve bridge--transected nerve repaired with a distal nerve bridge between the tibial and peroneal nerves via epineurial windows; and group 4: transected plus nerve bridge--transected tibial nerve left unrepaired and distal bridge added. Gait was assessed every 2 wk. At 90 d the following measures were determined: gastrocnemius mass, muscle and nerve nuclear density, and axonal infiltration into the nerve bridge. Groups 3 and 4 had greater improvements in walking track recovery than groups 1 and 2. Group 3's gastrocnemius muscles exhibited the least amount of atrophy. Groups 1, 2, and 4 exhibited greater histologic appearance of muscle breakdown compared with group 3 and control muscle. Finally, most bridges in groups 3 and 4 had neuronal sprouting via the epineurial windows. Our study demonstrated reduced muscle atrophy with a side-to-side nerve bridge in the setting of peripheral nerve injury. These results support the application of novel side-to-side bridges in combination with traditional end-to-end neurorrhaphy to preserve muscle viability after peripheral nerve injuries. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Implant-related nerve injuries.

    PubMed

    Steinberg, Mark J; Kelly, Patrick D

    2015-04-01

    Injuries to branches of the trigeminal nerves are a known complication during dental implant placement. These injuries tend to be more severe than those experienced during other dentoalveolar procedures. This article reviews the types of nerve injuries and areas and situations of which clinicians should be cognizant when placing dental implants. Strategies to avoid injuries, and a management algorithm for suspected nerve injuries, are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Stretch-induced nerve injury: a proposed technique for the study of nerve regeneration and evaluation of the influence of gabapentin on this model.

    PubMed

    Machado, J A; Ghizoni, M F; Bertelli, J; Teske, Gabriel C; Teske, Guilherme C; Martins, D F; Mazzardo-Martins, L; Cargnin-Ferreira, E; Santos, A R S; Piovezan, A P

    2013-11-06

    The rat models currently employed for studies of nerve regeneration present distinct disadvantages. We propose a new technique of stretch-induced nerve injury, used here to evaluate the influence of gabapentin (GBP) on nerve regeneration. Male Wistar rats (300 g; n=36) underwent surgery and exposure of the median nerve in the right forelimbs, either with or without nerve injury. The technique was performed using distal and proximal clamps separated by a distance of 2 cm and a sliding distance of 3 mm. The nerve was compressed and stretched for 5 s until the bands of Fontana disappeared. The animals were evaluated in relation to functional, biochemical and histological parameters. Stretching of the median nerve led to complete loss of motor function up to 12 days after the lesion (P<0.001), compared to non-injured nerves, as assessed in the grasping test. Grasping force in the nerve-injured animals did not return to control values up to 30 days after surgery (P<0.05). Nerve injury also caused an increase in the time of sensory recovery, as well as in the electrical and mechanical stimulation tests. Treatment of the animals with GBP promoted an improvement in the morphometric analysis of median nerve cross-sections compared with the operated vehicle group, as observed in the area of myelinated fibers or connective tissue (P<0.001), in the density of myelinated fibers/mm2 (P<0.05) and in the degeneration fragments (P<0.01). Stretch-induced nerve injury seems to be a simple and relevant model for evaluating nerve regeneration.

  4. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury.

    PubMed

    Witzel, Christian; Reutter, Werner; Stark, G Björn; Koulaxouzidis, Georgios

    2015-06-01

    Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005) and the number of arborizing axons (21% vs. 16%; P = 0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  5. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    PubMed Central

    Witzel, Christian; Reutter, Werner; Stark, G. Björn; Koulaxouzidis, Georgios

    2015-01-01

    Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005) and the number of arborizing axons (21% vs. 16%; P = 0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration. PMID:26199617

  6. Bilateral Cavernous Nerve Crush Injury in the Rat Model: A Comparative Review of Pharmacologic Interventions.

    PubMed

    Haney, Nora M; Nguyen, Hoang M T; Honda, Matthew; Abdel-Mageed, Asim B; Hellstrom, Wayne J G

    2017-08-18

    It is common for men to develop erectile dysfunction after radical prostatectomy. The anatomy of the rat allows the cavernous nerve (CN) to be identified, dissected, and injured in a controlled fashion. Therefore, bilateral CN injury (BCNI) in the rat model is routinely used to study post-prostatectomy erectile dysfunction. To compare and contrast the available literature on pharmacologic intervention after BCNI in the rat. A literature search was performed on PubMed for cavernous nerve and injury and erectile dysfunction and rat. Only articles with BCNI and pharmacologic intervention that could be grouped into categories of immune modulation, growth factor therapy, receptor kinase inhibition, phosphodiesterase type 5 inhibition, and anti-inflammatory and antifibrotic interventions were included. To assess outcomes of pharmaceutical intervention on erectile function recovery after BCNI in the rat model. The ratio of maximum intracavernous pressure to mean arterial pressure was the main outcome measure chosen for this analysis. All interventions improved erectile function recovery after BCNI based on the ratio of maximum intracavernous pressure to mean arterial pressure results. Additional end-point analysis examined the corpus cavernosa and/or the major pelvic ganglion and CN. There was extreme heterogeneity within the literature, making accurate comparisons between crush injury and therapeutic interventions difficult. BCNI in the rat is the accepted animal model used to study nerve-sparing post-prostatectomy erectile dysfunction. However, an important limitation is extreme variability. Efforts should be made to decrease this variability and increase the translational utility toward clinical trials in humans. Haney NM, Nguyen HMT, Honda M, et al. Bilateral Cavernous Nerve Crush Injury in the Rat Model: A Comparative Review of Pharmacologic Interventions. Sex Med Rev 2017;X:XXX-XXX. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier

  7. Long thoracic nerve injury.

    PubMed

    Wiater, J M; Flatow, E L

    1999-11-01

    Injury to the long thoracic nerve causing paralysis or weakness of the serratus anterior muscle can be disabling. Patients with serratus palsy may present with pain, weakness, limitation of shoulder elevation, and scapular winging with medial translation of the scapula, rotation of the inferior angle toward the midline, and prominence of the vertebral border. Long thoracic nerve dysfunction may result from trauma or may occur without injury. Fortunately, most patients experience a return of serratus anterior function with conservative treatment, but recovery may take as many as 2 years. Bracing often is tolerated poorly. Patients with severe symptoms in whom 12 months of conservative treatment has failed may benefit from surgical reconstruction. Although many surgical procedures have been described, the current preferred treatment is transfer of the sternal head of the pectoralis major tendon to the inferior angle of the scapula reinforced with fascia or tendon autograft. Many series have shown good to excellent results, with consistent improvement in function, elimination of winging, and reduction of pain.

  8. Peripheral nerve injury in sports.

    PubMed

    Hainline, Brian W

    2014-12-01

    The purpose of this review is to discuss peripheral nerve injuries in sport and to discuss such injuries within the context of their mechanisms of action. This review is based on the author's personal experience combined with analysis of pertinent articles and reviews. Peripheral nerve injuries are uncommon in sport, but represent a potentially serious cause of morbidity to the athlete. Although making a diagnosis of the involved peripheral nerve is not necessarily difficult for the practicing neurologist, it is critical to always place peripheral nerve injury in sport within the context of sports medicine. Nerve injuries do not occur in isolation, but rather are intertwined with the conditioning of the athlete, the biomechanics of the sport, and the use of protective equipment. In assessing peripheral nerve injuries in sport, it is not enough to simply make a diagnosis of the involved nerve; the physician must also assess whether the nerve became injured through a process of direct acute compression or stretching, repetitive compression and stretching over time, or another mechanism such as ischemia or laceration. Diagnosing sports-related peripheral nerve injuries within the context of their mechanism of action better allows for the possibility of functional rehabilitation.

  9. The effect of mirodenafil on the penile erection and corpus cavernosum in the rat model of cavernosal nerve injury.

    PubMed

    Kim, H; Sohn, D W; Kim, S D; Hong, S-H; Suh, H J; Lee, C B; Kim, S W

    2010-01-01

    Impotence is one of the common complications after the radical prostatectomy. One of the main reasons of this complication is due to the dysfunction of the veins in corpus cavernosum. Recent studies have shown that the erectile function is improved after the long-term therapy of phosphodiesterase type 5 inhibitor among patients with post-prostatectomy erectile dysfunction. In this study, we evaluated the effects of mirodenafil on the penile erection and corpus cavernosum tissues in the rat model of cavernosal nerve injury. Rats were divided into four groups: (1) control group, (2) bilateral cavernosal nerve injury group, (3) mirodenafil 10 mg therapy group after the nerve injury and (4) mirodenafil 20 mg therapy group after the nerve injury. After we identified the nerve from the pelvic nerve complex on the lateral side of the prostate, the rats in the control group were sutured without causing any nerve injury and in other groups we damaged the nerve by compressing it with a vessel clamp. Then, 10 and 20 mg kg(-1) of mirodenafil were orally administered to two experimental groups. After 8 weeks, the intracavernosal pressure (ICP) was recorded. The immunohistochemical staining and western blot were performed, and the effect of mirodenafil on the expression of cyclic guanosine monophosphate (cGMP) was evaluated through enzyme-linked immunosorbent assay. The ICP of nerve-injured group was decreased compared with the control group; however, the ICP of the mirodenafil-administered groups was improved compared with the nerve-injured group. The Masson's trichrome staining confirmed that the smooth muscle (SM) component was increased in the mirodenafil-administered groups. The nitric oxide synthase expression and cGMP of mirodenafil-administered groups was increased compared with the nerve-injured group. Long-term therapy of mirodenafil may improve the erectile function after the radical prostatectomy by preserving the SM content and inhibiting the fibrosis of the corpus

  10. The effect of mirodenafil on the penile erection and corpus cavernosum in the rat model of cavernosal nerve injury

    PubMed Central

    Kim, H; Sohn, D W; Kim, S D; Hong, S-H; Suh, H J; Lee, C B; Kim, S W

    2010-01-01

    Impotence is one of the common complications after the radical prostatectomy. One of the main reasons of this complication is due to the dysfunction of the veins in corpus cavernosum. Recent studies have shown that the erectile function is improved after the long-term therapy of phosphodiesterase type 5 inhibitor among patients with post-prostatectomy erectile dysfunction. In this study, we evaluated the effects of mirodenafil on the penile erection and corpus cavernosum tissues in the rat model of cavernosal nerve injury. Rats were divided into four groups: (1) control group, (2) bilateral cavernosal nerve injury group, (3) mirodenafil 10 mg therapy group after the nerve injury and (4) mirodenafil 20 mg therapy group after the nerve injury. After we identified the nerve from the pelvic nerve complex on the lateral side of the prostate, the rats in the control group were sutured without causing any nerve injury and in other groups we damaged the nerve by compressing it with a vessel clamp. Then, 10 and 20 mg kg−1 of mirodenafil were orally administered to two experimental groups. After 8 weeks, the intracavernosal pressure (ICP) was recorded. The immunohistochemical staining and western blot were performed, and the effect of mirodenafil on the expression of cyclic guanosine monophosphate (cGMP) was evaluated through enzyme-linked immunosorbent assay. The ICP of nerve-injured group was decreased compared with the control group; however, the ICP of the mirodenafil-administered groups was improved compared with the nerve-injured group. The Masson's trichrome staining confirmed that the smooth muscle (SM) component was increased in the mirodenafil-administered groups. The nitric oxide synthase expression and cGMP of mirodenafil-administered groups was increased compared with the nerve-injured group. Long-term therapy of mirodenafil may improve the erectile function after the radical prostatectomy by preserving the SM content and inhibiting the fibrosis of the

  11. A Novel Mouse Model of Traumatic Optic Neuropathy Using External Ultrasound Energy to Achieve Focal, Indirect Optic Nerve Injury.

    PubMed

    Tao, Wensi; Dvoriantchikova, Galina; Tse, Brian C; Pappas, Steven; Chou, Tsung-Han; Tapia, Manuel; Porciatti, Vittorio; Ivanov, Dmitry; Tse, David T; Pelaez, Daniel

    2017-09-18

    Traumatic optic neuropathy (TON) is a devastating cause of permanent visual loss following blunt injury to the head. Animal models for TON exist, but most fail to recapitulate the clinical scenario of closed head indirect trauma to the nerve and subsequent neurodegeneration. Thus, we developed a clinically-relevant animal model for TON using a novel ultrasonic pulse injury modality (sonication-induced TON; SI-TON). To trigger TON, a microtip probe sonifier was placed on the supraorbital ridge directly above the entrance of the optic nerve into the bony canal. An ultrasonic pulse was then delivered to the optic nerve. After injury, the number of RGCs in the retina as well as visual function measured by PERG steadily decreased over a two-week period. In the optic nerve, pro-inflammatory markers were upregulated within 6 hours following injury. Immunohistochemistry showed activation of microglia and infiltration of CD45-positive leukocytes in the optic nerve and initiation of a gliotic response. The SI-TON model is capable of delivering a non-contact concussive injury to the optic nerve and induce TON in mice. Thus, our data indicate that the SI-TON model reliably recapitulates the pathophysiology and progressive neurodegeneration seen in the human manifestation.

  12. Electro-physiological evidence of intercostal nerve injury after thoracotomy: an experimental study in a sheep model

    PubMed Central

    Schwabe, Kerstin; Krüger, Marcus; Haverich, Axel; Krauss, Joachim K.; Alam, Mesbah

    2017-01-01

    Background Although intercostal nerve injury is one of the major causes for post-thoracotomy pain, the exact mechanisms are still unclear. We sought to evaluate the electro-physiological changes of intercostal nerve injury after thoracotomy in a sheep model. Methods Adult sheep underwent thoracotomy in the sixth intercostal space by employing diathermy to superior border of the seventh rib. In two sheep, ribs were then spread using retractor spreading for a distance of 7 cm for 30 minutes. In the third sheep, thoracotomy was followed by harvesting intercostal muscles including the neurovascular bundle adjacent to inferior edge of the sixth rib. Thereafter, ribs were spread in the same way, but with the muscle flap dangled between the blades for intercostal nerve protection (dangling muscle flap technique). The nerve conduction velocity of the intercostal nerve was recorded before and after incision of intercostal muscles, immediately and 30 minutes after retractor placement and 30 minutes after removal of the retractor. Results In the sheep undergoing conventional thoracotomy, the physiological conductivity of intercostal nerve was completely blocked immediately after retractor placement using the same stimulation intensity or even the supra-threshold intensity. The conduction block persisted for 30 minutes during the retractor placement and further 30 minutes after removal of the retractor. In contrast, intercostal nerve conduction was not impaired throughout the experiment with the dangling muscle flap technique. Conclusions Our experiment provides electro-physiological evidence for intercostal nerve injury after thoracotomy. The injury is primarily attributed to mechanical compression caused by the rib retractor.

  13. Prostanoid receptor EP1 and Cox-2 in injured human nerves and a rat model of nerve injury: a time-course study.

    PubMed

    Durrenberger, Pascal F; Facer, Paul; Casula, Maria A; Yiangou, Yiangos; Gray, Roy A; Chessell, Iain P; Day, Nicola C; Collins, Sue D; Bingham, Sharon; Wilson, Alex W; Elliot, David; Birch, Rolfe; Anand, Praveen

    2006-01-04

    Recent studies show that inflammatory processes may contribute to neuropathic pain. Cyclooxygenase-2 (Cox-2) is an inducible enzyme responsible for production of prostanoids, which may sensitise sensory neurones via the EP1 receptor. We have recently reported that while macrophages infiltrate injured nerves within days of injury, they express increased Cox-2-immunoreactivity (Cox-2-IR) from 2 to 3 weeks after injury. We have now investigated the time course of EP1 and Cox-2 changes in injured human nerves and dorsal root ganglia (DRG), and the chronic constriction nerve injury (CCI) model in the rat. Tissue sections were immunostained with specific antibodies to EP1, Cox-2, CD68 (human macrophage marker) or OX42 (rat microglial marker), and neurofilaments (NF), prior to image analysis, from the following: human brachial plexus nerves (21 to 196 days post-injury), painful neuromas (9 days to 12 years post-injury), avulsion injured DRG, control nerves and DRG, and rat CCI model tissues. EP1 and NF-immunoreactive nerve fibres were quantified by image analysis. EP1:NF ratio was significantly increased in human brachial plexus nerve fibres, both proximal and distal to injury, in comparison with uninjured nerves. Sensory neurones in injured human DRG showed a significant acute increase of EP1-IR intensity. While there was a rapid increase in EP1-fibres and CD-68 positive macrophages, Cox-2 increase was apparent later, but was persistent in human painful neuromas for years. A similar time-course of changes was found in the rat CCI model with the above markers, both in the injured nerves and ipsilateral dorsal spinal cord. Different stages of infiltration and activation of macrophages may be observed in the peripheral and central nervous system following peripheral nerve injury. EP1 receptor level increase in sensory neurones, and macrophage infiltration, appears to precede increased Cox-2 expression by macrophages. However, other methods for detecting Cox-2 levels and

  14. Effect of administration of antibodies against nerve growth factor in a rat model of muscle injury.

    PubMed

    Suzuki, Masahiro; Inage, Kazuhide; Sakuma, Yoshihiro; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Takane; Suzuki, Miyako; Kubota, Go; Oikawa, Yasuhiro; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Shiga, Yasuhiro; Abe, Koki; Kanamoto, Hirohito; Takahashi, Kazuhisa; Ohtori, Seiji

    2016-03-01

    Although muscle injury is a common source of pain, the mechanism causing such pain is not completely known. We have previously reported nerve growth factor (NGF) as a proinflammatory mediator involved in acute pain, and clinical trials have shown the effectiveness of anti-NGF antibodies for management of low back pain. Here, we aim to examine the effects of anti-NGF antibodies on muscle-derived pain by studying their effects on sensory innervation in a rat muscle injury model. A nervous system tracer, Fluoro-Gold, was applied to both gastrocnemius muscles of 24 male Sprague Dawley rats to stain the sensory nerves. Then, the drop-mass method was used to damage the right gastrocnemius muscle of the posterior limb. Anti-NGF antibodies (50μL) were injected into the injured muscles in 12 rats. Tissues were evaluated 1, 3, and 7 days post-injury by performing haematoxylin-and-eosin (HE) staining. The percentage of the total number of FG-positive cells that were also positive for a pain-related neuropeptide, calcitonin gene-related peptide (CGRP), was determined for the bilateral dorsal root ganglia from L1 to L6 7 days post-injury. HE staining showed active inflammation, indicated by increased basophil and eosinophil accumulation, at the injury site 1 and 3 days post-injury, as well as scar tissue formation 7 days post-injury. Injection of anti-NGF reduced muscle necrosis 1 and 3 days post-injury, and resulted in replacement of granulation tissue and muscle fibre regeneration 7 days post-injury. Anti-NGF also significantly inhibited CGRP among FG-positive cells (treatment group 38.2%, control group 49.6%; P<0.05). This study found active inflammation induced by NGF, which may contribute to pain after muscle injury. Anti-NGF antibodies successfully suppressed the pain mediator NGF and inhibited inflammation, suggesting NGF as a target for control in pain management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Low intensity laser treatment of nerve injuries

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Guang; Liu, Timon Cheng-Yi; Luo, Qing-Ming

    2007-05-01

    The neural regeneration and functional recovery after nerve injuries has long been an important field in neuroscience. Low intensity laser (LIL) irradiation is a novel and useful tool for the treatment of many injuries and disorders. The aim of this study was to assess the role of LIL irradiation in the treatment of peripheral and central nerve injuries. Some animal experiments and clinical investigations have shown beneficial effects of LIL irradiation on neural tissues, but its therapeutic value and efficacy are controversial. Reviewing the data of experimental and clinical studies by using the biological information model of photobiomodulation, we conclude that LIL irradiation in specific parameters can promote the regeneration of injured peripheral and central nerves and LIL therapy is a safe and valuable treatment for superficial peripheral nerve injuries and spinal cord injury. The biological effects of LIL treatment depend largely on laser wavelength, power and dose per site and effective irradiation doses are location-specific.

  16. Peripheral nerve injury during anesthesia.

    PubMed

    Lieblich, S E

    1990-01-01

    A case is presented where a peripheral nerve injury occurred due to the pressure of a restraint buckle causing a postoperative motor and sensory deficit. Because these are iatrogenic injuries it is useful to review the mechanism of injury and means of prevention.

  17. Peripheral nerve injury during anesthesia.

    PubMed Central

    Lieblich, S. E.

    1990-01-01

    A case is presented where a peripheral nerve injury occurred due to the pressure of a restraint buckle causing a postoperative motor and sensory deficit. Because these are iatrogenic injuries it is useful to review the mechanism of injury and means of prevention. Images Figure 1 PMID:2096751

  18. A novel rat forelimb model of neuropathic pain produced by partial injury of the median and ulnar nerves.

    PubMed

    Yi, Hanju; Kim, Myung Ah; Back, Seung Keun; Eun, Jong Shin; Na, Heung Sik

    2011-05-01

    The vast majority of human peripheral nerve injuries occur in the upper limb, whereas the most animal studies have been conducted using the hindlimb models of neuropathic pain, involving damages of the sciatic or lumbar spinal nerve(s). We attempted to develop a rat forelimb model of peripheral neuropathy by partial injury of the median and ulnar nerves. The halves of each nerve were transected by microscissors at about 5mm proximal from the elbow joint and behavioral signs of neuropathic pain, such as mechanical and cold allodynia, and heat hyperalgesia, were monitored up to 126 days following nerve injury. Mechanical allodynia was assessed by measuring the forepaw withdrawal threshold to von Frey filaments, and cold allodynia was evaluated by measuring the time spent in lifting or licking the forepaw after applying acetone to it. Heat hyperalgesia was also monitored by investigating the forepaw withdrawal latencies using the Hargreaves' test. After the nerve injury, the experimental animals exhibited long-lasting clear neuropathic pain-like behaviors, such as reduced forepaw withdrawal threshold to von Frey filaments, the increased response duration of the forepaw to acetone application, and the decreased withdrawal latency to radiant heat stimulation. These behaviors were significantly alleviated by administration of gabapentin (5 or 50mg/kg, i.p.) in a dose-dependent manner. Therefore, these abnormal sensitivities are interpreted as the signs of neuropathic pain following injury of the median and ulnar nerves. Our rat forelimb model of neuropathic pain may be useful for studying human neuropathic pain and screening for valuable drug candidates.

  19. Trigeminal nerve injury induced thrombospondin-4 upregulation contributes to orofacial neuropathic pain states in a rat model

    PubMed Central

    Li, Kang-Wu; Kim, Doo-Sik; Zaucke, Frank; Luo, Z. David

    2013-01-01

    Background Injury to the trigeminal nerve often results in the development of chronic pain states including tactile allodynia, or hypersensitivity to light touch, in orofacial area, but its underlying mechanisms are poorly understood. Peripheral nerve injury has been shown to cause upregulation of thrombospondin-4 (TSP4) in dorsal spinal cord that correlates with neuropathic pain development. In this study, we examined whether injury-induced TSP4 is critical in mediating orofacial pain development in a rat model of chronic constriction injury to the infraorbital nerve (CCI-ION). Methods Orofacial sensitivity to mechanical stimulation was examined in a unilateral infraorbital nerve ligation rat model. The levels of TSP4 in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 spinal cord (Vc/C2) from injured rats were examined at time points correlating with the initiation and peak orofacial hypersensitivity. TSP4 antisense and mismatch oligodeoxynucleotides were intrathecally injected into injured rats to see if antisense oligodeoxynucleotide treatment could reverse injury-induced TSP4 upregulation and orofacial behavioral hypersensitivity. Results Our data indicated that trigeminal nerve injury induced TSP4 upregulation in Vc/C2 at a time point correlated with orofacial tactile allodynia. In addition, intrathecal treatment with TSP4 antisense, but not mismatch, oligodeoxynucleotides blocked both injury-induced TSP4 upregulation in Vc/C2 and behavioral hypersensitivity. Conclusions Our data support that infraorbital nerve injury leads to TSP4 upregulation in trigeminal spinal complex that contributes to orofacial neuropathic pain states. Blocking this pathway may provide an alternative approach in management of orofacial neuropathic pain states. PMID:24019258

  20. Trigeminal nerve injury-induced thrombospondin-4 up-regulation contributes to orofacial neuropathic pain states in a rat model.

    PubMed

    Li, K-W; Kim, D-S; Zaucke, F; Luo, Z D

    2014-04-01

    Injury to the trigeminal nerve often results in the development of chronic pain states including tactile allodynia, or hypersensitivity to light touch, in orofacial area, but its underlying mechanisms are poorly understood. Peripheral nerve injury has been shown to cause up-regulation of thrombospondin-4 (TSP4) in dorsal spinal cord that correlates with neuropathic pain development. In this study, we examined whether injury-induced TSP4 is critical in mediating orofacial pain development in a rat model of chronic constriction injury to the infraorbital nerve. Orofacial sensitivity to mechanical stimulation was examined in a unilateral infraorbital nerve ligation rat model. The levels of TSP4 in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 spinal cord (Vc/C2) from injured rats were examined at time points correlating with the initiation and peak orofacial hypersensitivity. TSP4 antisense and mismatch oligodeoxynucleotides were intrathecally injected into injured rats to see if antisense oligodeoxynucleotide treatment could reverse injury-induced TSP4 up-regulation and orofacial behavioural hypersensitivity. Our data indicated that trigeminal nerve injury induced TSP4 up-regulation in Vc/C2 at a time point correlated with orofacial tactile allodynia. In addition, intrathecal treatment with TSP4 antisense, but not mismatch, oligodeoxynucleotides blocked both injury-induced TSP4 up-regulation in Vc/C2 and behavioural hypersensitivity. Our data support that infraorbital nerve injury leads to TSP4 up-regulation in trigeminal spinal complex that contributes to orofacial neuropathic pain states. Blocking this pathway may provide an alternative approach in management of orofacial neuropathic pain states. © 2013 European Pain Federation - EFIC®

  1. Effects of glycine on electrical and histological properties of a rat peripheral nerve injury model.

    PubMed

    Padilla-Martin, Krystell; Baltazar-Rendon, Bernardo; Gonzalez-Maciel, Angelica; Nuno-Licona, Alberto; Uribe-Escamilla, Rebeca; Hernandez-Romero, Adriana; Ramos, Andrea; Alfaro-Rodriguez, Alfonso

    2009-03-01

    Treatment of peripheral nerve injuries focuses on lesion type, from expectant to interfascicular repair. Many experiments have been undertaken using different factors to facilitate better or faster nerve stump growth: nerve growth factor (NGF), plaque growth factor (PGF), hyaluronic acid, leukemic inhibiting factor, and GABA, etc. Glycine is an inhibitory neurotransmitter in the brain stem and spinal cord, and it also plays a critical role as a modulator of NMDA receptors. We studied the potential regenerative effect of glycine administered for different periods of time and compared results with a control group. The sciatic nerve of Wistar rats was exposed and the electrophysiology procedure was performed: the nerve was cut transversally and stitched back in place with four isolated cardinal 9/0 nylon stitches on each end. Study group rats were administered glycine 40 mM/kg daily for 15, 30, and 60 days, while control group rats were medicated with isotonic saline solution 0.9% for the same time periods. At the end of each study time period, the electrophysiological study was repeated. Animals were sacrificed on the 15th, 30th and 60th postoperative day and the sciatic nerve was exposed and prepared for histological studies. According to our results, glycine was effective in the morphologic regeneration and functional recovery of the sciatic nerve post-injury in Wistar rats with one month administration. We observed that nerve histology with glycine administration was more similar to that of normal nerves.

  2. Quantitative Histologic Analysis of Muscle Micro-architecture Following Facial Nerve Injury in a Rodent Model

    PubMed Central

    Kim, Sang W; Knox, Christopher J; Weinberg, Julie; Heaton, James T

    2015-01-01

    Objective To describe denervation features of facial musculature following facial nerve injury in a rodent model. Methods Six female Wistar-Hannover rats underwent unilateral transection and immediate repair of the facial nerve. After 8 weeks, muscular bundles consisting of dilator naris and levator labii superioris from both sides were harvested. The specimens were fixed, cryo-cut, and stained with Masson's trichrome stain. Tissue sections were analyzed for average muscle cell diameter and the percentage of muscle specimen attributable to muscle cell cross-sectional area using Image J image processing software. The atrophic features of facial muscles ipsilateral to nerve transection and repair were quantified and compared to the contralateral, healthy side of the face. Results Weekly post-operative whisking assessment demonstrated the anticipated time course of whisking recovery, with all animals demonstrating the initiation of recovered movement by post-repair day 17, and progressing to approximately 25% recovered whisking amplitude (repaired side / healthy side) by the end of the 8 week survival period. We observed significant differences in the percentage of muscle specimen cross-sectional area (including connective tissues) attributable to muscle cell profiles (57% vs 29%; p=0.01), and total fiber counts (1,346 vs 794; p=0.02) for the normal side and the manipulated side, respectively. While the average cross-sectional area of individual muscle fibers was higher on the normal side (1,129µm2 vs 928µm2; p=0.39), this difference was not statistically significant. Conclusion Although reinnervation of rat facial muscles begins within three weeks after facial nerve transection and suture repair, after an 8-week survival period whisking remain substantially impaired and rats experience a substantial loss (approximately 40%) of muscle cells and a roughly parallel loss of muscle cell surface area (approximately 49%) in two facial muscles associated with the whisker

  3. Endogenous glucocorticoids improve myelination via Schwann cells after peripheral nerve injury: An in vivo study using a crush injury model.

    PubMed

    Morisaki, Shinsuke; Nishi, Mayumi; Fujiwara, Hiroyoshi; Oda, Ryo; Kawata, Mitsuhiro; Kubo, Toshikazu

    2010-06-01

    Glucocorticoids improve the symptoms of peripheral nerve disorders, such as carpal tunnel syndrome and peripheral neuropathy. The effects of glucocorticoids are mainly anti-inflammatory, but the mechanisms of their effects in peripheral nerve disorders remain unclear. Schwann cells of the peripheral nerves express glucocorticoid receptors (GR), and glucocorticoids enhance the rate of myelin formation in vitro. Therefore, it is possible that the clinical improvement of peripheral nerve disorders by glucocorticoids is due, at least in part, to the modulation of myelination. In this study, an adrenalectomy (ADX) was performed, and followed by a daily injection of either low dose (1 mg/kg) or high dose (10 mg/kg) corticosterone (CORT). We then simulated a crush injury of the sciatic nerves. A sham ADX operation, followed by a simulated crush injury, was conducted as a control. Immunohistochemistry showed that the nuclei of in vivo Schwann cells expressed GR and that glucocorticoids impacted the GR immunoreactivity of the Schwann cells. The mRNA and protein expression of myelin basic protein was significantly lower in the animals given ADX with vehicle than in the sham operation group. However, the expression was restored in the low-dose CORT replacement group. Morphological analyses showed that the ADX with vehicle group had a significantly lower myelin thickness than did the low-dose CORT replacement group and the sham operation group. These results suggest that endogenous glucocorticoids have an important role in myelination through the GR in Schwann cells after an in vivo peripheral nerve injury.

  4. Plasticity of DNA methylation in a nerve injury model of pain

    PubMed Central

    Gölzenleuchter, Meike; Kanwar, Rahul; Zaibak, Manal; Al Saiegh, Fadi; Hartung, Theresa; Klukas, Jana; Smalley, Regenia L; Cunningham, Julie M; Figueroa, Maria E; Schroth, Gary P; Therneau, Terry M; Banck, Michaela S; Beutler, Andreas S

    2015-01-01

    The response of the peripheral nervous system (PNS) to injury may go together with alterations in epigenetics, a conjecture that has not been subjected to a comprehensive, genome-wide test. Using reduced representation bisulfite sequencing, we report widespread remodeling of DNA methylation in the rat dorsal root ganglion (DRG) occurring within 24 h of peripheral nerve ligation, a neuropathy model of allodynia. Significant (P < 10−4) cytosine hyper- and hypo-methylation was found at thousands of CpG sites. Remodeling occurred outside of CpG islands. Changes affected genes with known roles in the PNS, yet methylome remodeling also involved genes that were not linked to neuroplasticity by prior evidence. Consistent with emerging models relying on genome-wide methylation and RNA-seq analysis of promoter regions and gene bodies, variation of methylation was not tightly linked with variation of gene expression. Furthermore, approximately 44% of the dynamically changed CpGs were located outside of genes. We compared their positions with the intergenic, tissue-specific differentially methylated CpGs (tDMCs) of an independent experimental set consisting of liver, spleen, L4 control DRG, and muscle. Dynamic changes affected those intergenic CpGs that were different between tissues (P < 10−15) and almost never the invariant portion of the methylome (those CpGs that were identical across all tissues). Our findings—obtained in mixed tissue—show that peripheral nerve injury leads to methylome remodeling in the DRG. Future studies may address which of the cell types found in the DRG, such as specific groups of neurons or non-neuronal cells are affected by which aspect of the observed methylome remodeling. PMID:25621511

  5. Exogenous nerve growth factor protects the hypoglossal nerve against crush injury

    PubMed Central

    Fan, Li-yuan; Wang, Zhong-chao; Wang, Pin; Lan, Yu-yan; Tu, Ling

    2015-01-01

    Studies have shown that sensory nerve damage can activate the p38 mitogen-activated protein kinase (MAPK) pathway, but whether the same type of nerve injury after exercise activates the p38MAPK pathway remains unclear. Several studies have demonstrated that nerve growth factor may play a role in the repair process after peripheral nerve injury, but there has been little research focusing on the hypoglossal nerve injury and repair. In this study, we designed and established rat models of hypoglossal nerve crush injury and gave intraperitoneal injections of exogenous nerve growth factor to rats for 14 days. p38MAPK activity in the damaged neurons was increased following hypoglossal nerve crush injury; exogenous nerve growth factor inhibited this increase in acitivity and increased the survival rate of motor neurons within the hypoglossal nucleus. Under transmission electron microscopy, we found that the injection of nerve growth factor contributed to the restoration of the morphology of hypoglossal nerve after crush injury. Our experimental findings indicate that exogenous nerve growth factor can protect damaged neurons and promote hypoglossal nerve regeneration following hypoglossal nerve crush injury. PMID:26889186

  6. [Peripheral Nerve Injuries in Sports].

    PubMed

    Tettenborn, B; Mehnert, S; Reuter, I

    2016-09-01

    Peripheral nerve injuries due to sports are relatively rare but the exact incidence is not known due to a lack of epidemiological studies. Particular sports activities tend to cause certain peripheral nerve injuries including direct acute compression or stretching, repetitive compression and stretching over time, or another mechanism such as ischemia or laceration. These nerve lesions may be severe and delay or preclude the athlete's return to sports, especially in cases with delayed diagnosis. Repetitive and vigorous use or overuse makes the athlete vulnerable to disorders of the peripheral nerves, and sports equipment may cause compression of the nerves. Depending on etiology, the treatment is primarily conservative and includes physiotherapy, modification of movements and sports equipment, shoe inserts, splinting, antiphlogistic drugs, sometimes local administration of glucocorticoids or, lately, the use of extracorporeal shock waves. Most often, cessation of the offending physical activity is necessary. Surgery is only indicated in the rare cases of direct traumatic nerve injury or when symptoms are refractory to conservative therapy. Prognosis mainly depends on the etiology and the available options of modifying measures.This article is based on the publications "Reuter I, Mehnert S. Engpasssyndrome peripherer Nerven bei Sportlern". Akt Neurol 2012;39:292-308 and Sportverl Sportschad 2013;27:130-146.

  7. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    PubMed Central

    Chen, Yan; Guo, Wenjie; Li, Wenjuan; Cheng, Meng; Hu, Ying; Xu, Wenming

    2016-01-01

    Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation. PMID:27872858

  8. Goji fruit (Lycium barbarum) protects sciatic nerve function against crush injury in a model of diabetic stress.

    PubMed

    Simonyan, K V; Avetisyan, L G; Chavushyan, V A

    2016-09-01

    Excess fructose consumption causes changes in functioning of the central and peripheral nervous systems, which increase the vulnerability of peripheral nerves to traumatic injury. The aim of this study was to evaluate the electrophysiological parameters of responses of motoneurons of the spinal cord at high-frequency stimulation of the distal part of the injured sciatic nerve in a model of diabetic stress under action of Lycium barbarum (LB). Male albino rats were given with drinking water with 50% concentration of dietary fructose for 6 weeks. Starting on the 7th week a crush injury of the left sciatic nerve was carried out. Some of the animals received fructose post-injury for 3 weeks and some of the animals received fructose+dry LB fruits for 3 weeks. In the fructose+crush+LВ group a relatively proportional division of tetanic and posttetanic potentiation and depression in responses of ipsilateral and contralateral motoneurons was observed, which would suggest the modulatory role of LB in short-term synaptic plasticity formation. Generally, LB fruit is able to modulate central nervous system reorganization, amplifying positive adaptive changes that improve functional recovery and promote selective target reinnervation in high fructose-diet rats with sciatic nerve crush-injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Sacral nerve stimulation enhances early intestinal mucosal repair following mucosal injury in a pig model

    PubMed Central

    Brégeon, Jérémy; Coron, Emmanuel; Da Silva, Anna Christina Cordeiro; Jaulin, Julie; Aubert, Philippe; Chevalier, Julien; Vergnolle, Nathalie; Meurette, Guillaume

    2016-01-01

    Key points Reducing intestinal epithelial barrier (IEB) dysfunctions is recognized as being of major therapeutic interest for various intestinal disorders.Sacral nerve stimulation (SNS) is known to reduce IEB permeability.Here, we report in a pig model that SNS enhances morphological and functional recovery of IEB following mucosal injury induced via 2,4,6‐trinitrobenzenesulfonic acid. These effects are associated with an increased expression of tight junction proteins such as ZO‐1 and FAK.These results establish that SNS enhances intestinal barrier repair in acute mucosal injury. They further set the scientific basis for future use of SNS as a complementary or alternative therapeutic option for the treatment of gut disorders with IEB dysfunctions such as inflammatory bowel diseases or irritable bowel syndrome. Abstract Intestinal epithelial barrier (IEB) dysfunctions, such as increased permeability or altered healing, are central to intestinal disorders. Sacral nerve stimulation (SNS) is known to reduce IEB permeability, but its ability to modulate IEB repair remains unknown. This study aimed to characterize the impact of SNS on mucosal repair following 2,4,6‐trinitrobenzenesulfonic acid (TNBS)‐induced lesions. Six pigs were stimulated by SNS 3 h prior to and 3 h after TNBS enema, while sham animals (n = 8) were not stimulated. The impact of SNS on mucosal changes was evaluated by combining in vivo imaging, histological and functional methods. Biochemical and transcriptomic approaches were used to analyse the IEB and mucosal inflammatory response. We observed that SNS enhanced the recovery from TNBS‐induced increase in transcellular permeability. At 24 h, TNBS‐induced alterations of mucosal morphology were significantly less in SNS compared with sham animals. SNS reduced TNBS‐induced changes in ZO‐1 expression and its epithelial pericellular distribution, and also increased pFAK/FAK expression compared with sham. Interestingly, SNS increased

  10. Sacral nerve stimulation enhances early intestinal mucosal repair following mucosal injury in a pig model.

    PubMed

    Brégeon, Jérémy; Coron, Emmanuel; Da Silva, Anna Christina Cordeiro; Jaulin, Julie; Aubert, Philippe; Chevalier, Julien; Vergnolle, Nathalie; Meurette, Guillaume; Neunlist, Michel

    2016-08-01

    Reducing intestinal epithelial barrier (IEB) dysfunctions is recognized as being of major therapeutic interest for various intestinal disorders. Sacral nerve stimulation (SNS) is known to reduce IEB permeability. Here, we report in a pig model that SNS enhances morphological and functional recovery of IEB following mucosal injury induced via 2,4,6-trinitrobenzenesulfonic acid. These effects are associated with an increased expression of tight junction proteins such as ZO-1 and FAK. These results establish that SNS enhances intestinal barrier repair in acute mucosal injury. They further set the scientific basis for future use of SNS as a complementary or alternative therapeutic option for the treatment of gut disorders with IEB dysfunctions such as inflammatory bowel diseases or irritable bowel syndrome. Intestinal epithelial barrier (IEB) dysfunctions, such as increased permeability or altered healing, are central to intestinal disorders. Sacral nerve stimulation (SNS) is known to reduce IEB permeability, but its ability to modulate IEB repair remains unknown. This study aimed to characterize the impact of SNS on mucosal repair following 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced lesions. Six pigs were stimulated by SNS 3 h prior to and 3 h after TNBS enema, while sham animals (n = 8) were not stimulated. The impact of SNS on mucosal changes was evaluated by combining in vivo imaging, histological and functional methods. Biochemical and transcriptomic approaches were used to analyse the IEB and mucosal inflammatory response. We observed that SNS enhanced the recovery from TNBS-induced increase in transcellular permeability. At 24 h, TNBS-induced alterations of mucosal morphology were significantly less in SNS compared with sham animals. SNS reduced TNBS-induced changes in ZO-1 expression and its epithelial pericellular distribution, and also increased pFAK/FAK expression compared with sham. Interestingly, SNS increased the mucosal density of neutrophils

  11. Extracranial spinal accessory nerve injury.

    PubMed

    Donner, T R; Kline, D G

    1993-06-01

    Eighty-three consecutive patients with extracranial accessory nerve injury seen over a 12-year period are reviewed. The most common etiology was iatrogenic injury to the nerve at the time of previous surgery. Such operations were usually minor in nature and often related to lymph node or benign tumor removal. Examination usually distinguished winging due to trapezius weakness from that of serratus anterior palsy. Trapezius weakness was seen in all cases. Sternocleidomastoid weakness was unusual. Patients with accessory palsy were evaluated by both clinical and electromyographic studies. Patients who exhibited no clinical or electrical evidence of regeneration were operated on (44 cases). Based on intraoperative nerve action potential studies, 8 lesions in continuity had neurolysis alone. Resection with repair either by end-to-end suture or by grafts was necessary in 31 cases. One case had suture removed from nerve, two had nerve placed into target muscle, and two had more proximal neurotization. Function was usually improved in both operative and nonoperative patients. Related anatomy is discussed.

  12. Chitooligosaccharide Inhibits Scar Formation and Enhances Functional Recovery in a Mouse Model of Sciatic Nerve Injury.

    PubMed

    Hou, Hongping; Zhang, Lihai; Ye, Zuguang; Li, Jianrong; Lian, Zijian; Chen, Chao; He, Rong; Peng, Bo; Xu, Qihua; Zhang, Guangping; Gan, Wenbiao; Tang, Peifu

    2016-05-01

    Chitooligosaccharide (COS) has been shown to induce fibroblast apoptosis, indicating that it could be used as a material to inhibit scar formation. In the present study, we used a mouse model of sciatic nerve injury (SNI) to determine the role of COS in scar inhibition and functional recovery. The animals were divided into three groups: SNI, SNI + vehicle, and SNI + COS group. We performed a series of functional and histological examinations at ctrl, 0 min, 14 days, and 42 days, including behavioral recovery, percentage of regenerating axons, degree of scar formation, vascular changes, type I and type III collagen ratio, and percentage of demyelinated axons. The SNI + COS group exhibited better recovery of sensory and motor function and less scar formation. Two-photon microscopy showed that the percentage of regenerating axons was highest in the SNI + COS group at 14 and 42 days. Our results suggested that COS can inhibit scar formation and enhance functional recovery by inducing fibroblast death, altering the proportion of different vascular diameters, changing the ratio of type I/type III collagen, and reducing the percentage of demyelinated axons. COS might be a useful drug in the treatment of SNI to reduce scar formation, but additional research is required to clarify the relevant molecular pathways.

  13. Sex differences in the development of localized and spread mechanical hypersensitivity in rats after injury to the infraorbital or sciatic nerves to create a model for neuropathic pain.

    PubMed

    Dominguez, Cecilia A; Kouya, Poli Francois; Wu, Wei-Ping; Hao, Jing-Xia; Xu, Xiao-Jun; Wiesenfeld-Hallin, Zsuzsanna

    2009-01-01

    Neuropathic pain after injury to the nervous system is a difficult clinical problem. Sex differences in the development of neuropathic pain have not been well established experimentally or clinically. Rats were used to examine sex differences in localized and spread mechanical hypersensitivity after partial injury to their infraorbital or sciatic nerves in a model of neuropathic pain. In adult female and male rats, partial nerve injury to the infraorbital and sciatic nerves was produced using a photochemical method. Mechanical hypersensitivity (allodynia) was examined and compared in the innervation territories of the nerves on the face or hind paw. The spread of hypersensitivity beyond the innervation territories of the injured nerves was also studied. The female and male rats were randomized to active and sham groups. The rats in the sham group had their sciatic or infraorbital nerve exposed, but not injured. A total of 67 rats (36 females, 31 males) were used. There was a marked sex difference in the response to infraorbital nerve injury: female rats developed more profound and long-lasting facial hypersensitivity than did male rats (P<0.001). Hypersensitivity of the hind paw after sciatic nerve injury did not, however, significantly differ between female and male rats. Spread mechanical hypersensitivity was noted in body areas outside the innervation territory of the injured nerve. This hypersensitivity was more profound after infraorbital than sciatic nerve injury and also displayed a significant sex difference (female>male, P < 0.001). Sham-group rats did not exhibit localized or spread mechanical hypersensitivity. Sex differences in the development of neuropathic painlike behaviors in rats were dependent on site of injury and site of testing, with female rats being more susceptible to the development of spread mechanical hypersensitivity, particularly after facial nerve injury, compared with male rats.

  14. THE EFFECT OF TEAR SIZE AND NERVE INJURY ON ROTATOR CUFF MUSCLE FATTY DEGENERATION IN A RODENT ANIMAL MODEL

    PubMed Central

    Kim, H. Mike; Galatz, Leesa M.; Lim, Chanteak; Havlioglu, Necat; Thomopoulos, Stavros

    2011-01-01

    Background Irreversible muscle changes following rotator cuff tears is a well-known negative prognostic factor after shoulder surgery. Currently, little is known about the pathomechanism of fatty degeneration of the rotator cuff muscles after chronic cuff tears. Hypothesis/Purpose The purposes of this study were: 1) to develop a rodent animal model of chronic rotator cuff tears that can reproduce fatty degeneration of the cuff muscles seen clinically, 2) to describe the effects of tear size and concomitant nerve injury on muscle degeneration, and 3) to evaluate the changes in gene expression of relevant myogenic and adipogenic factors following rotator cuff tears using the animal model. Methods Rotator cuff tears were created in rodents with and without transection of the suprascapular nerve. The supraspinatus and infraspinatus muscles were examined 2, 8, and 16 weeks after injury for histological evidence of fatty degeneration and expression of myogenic and adipogenic genes. Results Histological analysis revealed adipocytes, intramuscular fat globules, and intramyocellular fat droplets in the tenotomized and neurotomized supraspinatus and infraspinatus muscles. Changes increased with time and were most severe in the muscles with combined tenotomy and neurotomy. Adipogenic and myogenic transcription factors and markers were upregulated in muscles treated with tenotomy or tenotomy combined with neurotomy compared to normal muscles. Conclusions The present study describes a rodent animal model that produces fatty degeneration of the rotator cuff muscles similar to human muscles after chronic cuff tears. The severity of changes was associated with tear size and concomitant nerve injury. PMID:21831663

  15. Pleiotrophin and peripheral nerve injury.

    PubMed

    Jin, Li; Jianghai, Chen; Juan, Liu; Hao, Kang

    2009-10-01

    The proto-oncogene pleiotrophin, discovered in 1989, was considered as a multifunctional growth factor, which played an important role in tumor occurrence, development, and central nervous system. The latest research showed that pleiotrophin signal pathway probably participated in neural repair after peripheral nerve injury, especially in the following critical points, such as the protection of spinal cord neuron, the promotion of the speed of neuron axon regeneration, the guidance of neuron axon regeneration, skeleton muscle reinnervation, and so on. It potentially plays a key role in the guidance of neural axon regeneration in peripheral nervous system and muscle reinnervation. With the deepening of related researches, pleiotrophin gene would become a controllable target for improving the repairing effect of peripheral nerve injury and reconstruction of the neuromuscular junction.

  16. Proximal versus Distal Nerve Transfer for Biceps Reinnervation—A Comparative Study in a Rat’s Brachial Plexus Injury Model

    PubMed Central

    McGrath, Aleksandra M.; Lu, Johnny Chuieng-Yi; Chang, Tommy Naj-Jen; Fang, Frank

    2016-01-01

    Background: The exact role of proximal and distal nerve transfers in reconstruction strategies of brachial plexus injury remains controversial. We compared proximal with distal nerve reconstruction strategies in a rat model of brachial plexus injury. Methods: In rats, the C6 spinal nerve with a nerve graft (proximal nerve transfer model, n = 30, group A) and 50% of ulnar nerve (distal nerve transfer model, n = 30, group B) were used as the donor nerves. The targets were the musculocutaneous nerve and the biceps muscle. Outcomes were recorded at 4, 8, 12, and 16 weeks postoperatively. Outcome parameters included grooming test, biceps muscle weight, compound muscle action potentials, tetanic contraction force, and axonal morphology of the donor and target nerves. Results: The axonal morphology of the 2 donor nerves revealed no significant difference. Time interval analysis in the proximal nerve transfer group showed peak axon counts at 12 weeks and a trend of improvement in all functional and physiologic parameters across all time points with statistically significant differences for grooming test, biceps compound action potentials, tetanic muscle contraction force, and muscle weight at 16 weeks. In contrast, in the distal nerve transfer group, the only statistically significant difference was observed between the 4 and 8 week time points, followed by a plateau from 8 to 16 weeks. Conclusions: Outcomes of proximal nerve transfers are ultimately superior to distal nerve transfers in our experimental model. Possible explanations for the superior results include a reduced need for cortical adaptation and higher proportions of motor units in the proximal nerve transfers. PMID:28293499

  17. Proteomic analysis of the dorsal spinal cord in the mouse model of spared nerve injury-induced neuropathic pain.

    PubMed

    Park, Eun-Sung; Ahn, Jung-Mo; Jeon, Sang-Min; Cho, Hee-Jung; Chung, Ki-Myung; Cho, Je-Yoel; Youn, Dong-Ho

    2017-09-03

    Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to simultaneously analyze hundreds or thousands of proteins differentially expressed in the dorsal horn of the spinal cord in rats or dorsal root ganglion of rats with certain type of peripheral nerve injury. However, a proteomic study using a mouse model of neuropathic pain could be attempted because of abundant protein database and the availability of transgenic mice. In this study, whole proteins were extracted from the ipsilateral dorsal half of the 4(th)-6(th) lumbar spinal cord in a mouse model of spared nerve injury (SNI)-induced neuropathic pain. In-gel digests of the proteins size-separated on a polyacrylamide gel were subjected to reverse-phase liquid-chromatography coupled with electrospray ionization ion trap tandem mass spectrometry (MS/MS). After identifying proteins, the data were analyzed with subtractive proteomics using ProtAn, an in-house analytic program. Consequently, 15 downregulated and 35 upregulated proteins were identified in SNI mice. The identified proteins may contribute to the maintenance of neuropathic pain, and may provide new or valuable information in the discovery of new therapeutic targets for neuropathic pain.

  18. Spinal Cord Stimulation Modulates Gene Expression in the Spinal Cord of an Animal Model of Peripheral Nerve Injury.

    PubMed

    Tilley, Dana M; Cedeño, David L; Kelley, Courtney A; Benyamin, Ramsin; Vallejo, Ricardo

    Previously, we found that application of pulsed radiofrequency to a peripheral nerve injury induces changes in key genes regulating nociception concurrent with alleviation of paw sensitivity in an animal model. In the current study, we evaluated such genes after applying spinal cord stimulation (SCS) therapy. Male Sprague-Dawley rats (n = 6 per group) were randomized into test and control groups. The spared nerve injury model was used to simulate a neuropathic pain state. A 4-contact microelectrode was implanted at the L1 vertebral level and SCS was applied continuously for 72 hours. Mechanical hyperalgesia was tested. Spinal cord tissues were collected and analyzed using real-time polymerase chain reaction to quantify levels of IL1β, GABAbr1, subP, Na/K ATPase, cFos, 5HT3ra, TNFα, Gal, VIP, NpY, IL6, GFAP, ITGAM, and BDNF. Paw withdrawal thresholds significantly decreased in spared nerve injury animals and stimulation attenuated sensitivity within 24 hours (P = 0.049), remaining significant through 72 hours (P = 0.003). Nerve injury caused up-regulation of TNFα, GFAP, ITGAM, and cFOS as well as down-regulation of Na/K ATPase. Spinal cord stimulation therapy modulated the expression of 5HT3ra, cFOS, and GABAbr1. Strong inverse relationships in gene expression relative to the amount of applied current were observed for GABAbr1 (R = -0.65) and Na/K ATPase (R = -0.58), and a positive linear correlations between 5HT3r (R = 0.80) and VIP (R = 0.50) were observed. Continuously applied SCS modulates expression of key genes involved in the regulation of neuronal membrane potential.

  19. Neuroprotective effect of docosahexaenoic acid nanoemulsion on erectile function in a rat model of bilateral cavernous nerve injury

    PubMed Central

    Liao, Chun-Hou; Wu, Yi-No; Chen, Bin-Huei; Lin, Ying-Hung; Ho, Hsiu-O; Chiang, Han-Sun

    2016-01-01

    There is an unmet need for treatment of erectile dysfunction resulting from radical prostatectomy and cavernous nerve (CN) injury. Given the neuroprotective properties of docosahexaenoic acid (DHA), we investigated its effect on penile functional and structural recovery in a rat model of bilateral cavernous nerve injury. Rats were subject to CN injury and received intraperitoneal administration of either vehicle or a DHA nanoemulsion (nano-DHA) at 10, 50, or 250 μg/kg. Functional testing and histological analyses were performed at 28 days post-injury. The maximum intracavernosal pressure (ICP) and other measures of erectile function were significantly higher in the nano-DHA groups than in the vehicle group (p < 0.05). The ratio of area of expression of neuronal nitric oxide synthase (nNOS)/β-III tubulin, numbers of axon and smooth muscle cell content were significantly higher in the 50 μg/kg nano-DHA group than in the vehicle group (p < 0.05). A qualitative increase in the smooth muscle cells/collagen ratio and decrease in apoptosis was observed in the nano-DHA groups relative to the vehicle group: however, these differences were not statistically significant. Our data demonstrate that nano-DHA, particularly the 50 μg/kg regimen, improves erectile function after bilateral CN injury in rats by neuroprotection and other anti-fibrotic and anti-apoptotic mechanisms. PMID:27625175

  20. Phosphate glass fibres promote neurite outgrowth and early regeneration in a peripheral nerve injury model.

    PubMed

    Kim, Young-Phil; Lee, Gil-Su; Kim, Jong-Wan; Kim, Min Soo; Ahn, Hong-Sun; Lim, Jae-Young; Kim, Hae-Won; Son, Young-Jin; Knowles, Jonathan C; Hyun, Jung Keun

    2015-03-01

    Three-dimensional (3D) scaffolds, which are bioactive and aid in neuronal guidance, are essential in the repair and regeneration of injured peripheral nerves. In this study, we used novel inorganic microfibres guided by phosphate glass (PG). PG fibres (PGfs) were aligned on compressed collagen that was rolled into a nerve conduit. In vitro tests confirmed that adult dorsal root ganglion (DRG) neurons showed active neurite outgrowth along the fibres, with a maximum number and length of neurites being significantly higher than those cultured on tissue culture plastic. In vivo experiments with nerve conduits that either contained PGfs (PGf/Col) or lacked them (Col) were conducted on transected sciatic nerves of rats for up to 12 weeks. One week after implantation, the PGf/Col group showed many axons extending along the scaffold, whereas the Col group showed none. Eight weeks after implantation, the PGf/Col group exhibited greater recovery of plantar muscle atrophy than the Col group. Electrophysiological studies revealed that some animals in the PGf/Col group at 6 and 7 weeks post-implantation (5.3% and 15.8%, respectively) showed compound muscle action potential. The Col group over the same period showed no response. Motor function also showed faster recovery in the PGf/Col group compared to the Col group up to 7 weeks. However, there was no significant difference in the number of axons, muscle atrophy or motor and sensory functions between the two groups at 12 weeks post-implantation. In summary, phosphate glass fibres can promote directional growth of axons in cases of peripheral nerve injury by acting as physical guides. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Evaluation of PVA biodegradable electric conductive membranes for nerve regeneration in axonotmesis injuries: the rat sciatic nerve animal model.

    PubMed

    Ribeiro, Jorge; Caseiro, Ana Rita; Pereira, Tiago; Armada-da-Silva, Paulo Alexandre; Pires, Isabel; Prada, Justina; Amorim, Irina; Leal Reis, Inês; Amado, Sandra; Santos, José Domingos; Bompasso, Simone; Raimondo, Stefania; Varejão, Artur Severo Proença; Geuna, Stefano; Luís, Ana Lúcia; Maurício, Ana Colette

    2017-05-01

    The therapeutic effect of three polyvinyl alcohol (PVA) membranes loaded with electrically conductive materials - carbon nanotubes (PVA-CNTs) and polypyrrole (PVA-PPy) - were tested in vivo for neuro-muscular regeneration after an axonotmesis injury in the rat sciatic nerve. The membranes electrical conductivity measured was 1.5 ± 0.5 × 10(-6) S/m, 579 ± 0.6 × 10(-6) S/m, and 1837.5 ± 0.7 × 10(-6) S/m, respectively. At week-12, a residual motor and nociceptive deficit were present in all treated groups, but at week-12, a better recovery to normal gait pattern of the PVA-CNTs and PVA-PPy treated groups was observed. Morphometrical analysis demonstrated that PVA-CNTs group presented higher myelin thickness and lower g-ratio. The tibialis anterior muscle, in the PVA-PPy and PVA-CNTs groups showed a 9% and 19% increase of average fiber size area and a 5% and 10% increase of the "minimal Feret's diameter," respectively. No inflammation, degeneration, fibrosis or necrosis were detected in lung, liver, kidneys, spleen, and regional lymph nodes and absence of carbon deposits was confirmed with Von Kossa and Masson-Fontana stains. In conclusion, the membranes of PVA-CNTs and PVA-PPy are biocompatible and have electrical conductivity. The higher electrical conductivity measured in PVA-CNTs membrane might be responsible for the positive results on maturation of myelinated fibers. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1267-1280, 2017.

  2. Dual regeneration of muscle and nerve by intravenous administration of human amniotic fluid-derived mesenchymal stem cells regulated by stromal cell-derived factor-1α in a sciatic nerve injury model.

    PubMed

    Yang, Dar-Yu; Sheu, Meei-Ling; Su, Hong-Lin; Cheng, Fu-Chou; Chen, Ying-Ju; Chen, Chun-Jung; Chiu, Wen-Ta; Yiin, Jia-Jean; Sheehan, Jason; Pan, Hung-Chuan

    2012-06-01

    Human amniotic fluid-derived mesenchymal stem cells (AFMSCs) have been shown to promote peripheral nerve regeneration. The expression of stromal cell-derived factor-1α (SDF-1α) in the injured nerve exerts a trophic effect by recruiting progenitor cells that promote nerve regeneration. In this study, the authors investigated the feasibility of intravenous administration of AFMSCs according to SDF-1α expression time profiles to facilitate neural regeneration in a sciatic nerve crush injury model. Peripheral nerve injury was induced in 63 Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. The animals were randomized into 1 of 3 groups: Group I, crush injury as the control; Group II, crush injury and intravenous administration of AFMSCs (5 × 10(6) cells for 3 days) immediately after injury (early administration); and Group III, crush injury and intravenous administration of AFMSCs (5 × 10(6) cells for 3 days) 7 days after injury (late administration). Evaluation of neurobehavior, electrophysiological study, and assessment of regeneration markers were conducted every week after injury. The expression of SDF-1α and neurotrophic factors and the distribution of AFMSCs in various time profiles were also assessed. Stromal cell-derived factor-1α increased the migration and wound healing of AFMSCs in vitro, and the migration ability was dose dependent. Crush injury induced the expression of SDF-1α at a peak of 10-14 days either in nerve or muscle, and this increased expression paralleled the expression of its receptor, chemokine receptor type-4 (CXCR-4). Most AFMSCs were distributed to the lung during early or late administration. Significant deposition of AFMSCs in nerve and muscle only occurred in the late administration group. Significantly enhanced neurobehavior, electrophysiological function, nerve myelination, and expression of neurotrophic factors and acetylcholine receptor were demonstrated in the late administration group. Amniotic

  3. Functional Regeneration of Recurrent Laryngeal Nerve Injury During Thyroid Surgery Using an Asymmetrically Porous Nerve Guide Conduit in an Animal Model

    PubMed Central

    Choi, Jeong-Seok; Oh, Se Heang; An, Hye-Young; Kim, Young-Mo; Lee, Jin Ho

    2014-01-01

    Background: Vocal cord paralysis (VCP) caused by recurrent laryngeal nerve (RLN) damage during thyroidectomy commonly results in serious medico-legal problems. The purpose of this study was to evaluate the usefulness of an asymmetrically porous polycaprolactone (PCL)/Pluronic F127 nerve guide conduit (NGC) for functional regeneration in a RLN injury animal model. Methods: A biodegradable, asymmetrically porous PCL/F127 NGC with selective permeability was fabricated for use in this study. A 10-mm segment of left RLN was resected in 28 New Zealand white rabbits, and then an asymmetrically porous NGC or a nonporous silicone tube was interposed between both stumps and securely fixed. Vocal cord mobility was endoscopically evaluated at one, four, and eight weeks postoperatively. Nerve growth through NGCs was assessed by toluidine blue staining, and thyroarytenoid (TA) muscle atrophy was evaluated by hematoxylin and eosin staining. Immunohistochemical stainings for acetylcholinesterase (AchE), anti-neurofilament (NF), and anti-S100 protein were also conducted, and transmission electron microscopy (TEM) was used to evaluate functional nerve regeneration. Results: At eight weeks postoperatively, endoscopic evaluations showed significantly better recovery from VCP in the asymmetrically porous PCL/F127 NGC group (6 of 10 rabbits) than in the silicone tube group (1 of 10 rabbits). Continued nerve growth on the damaged nerve endings was observed with time in the asymmetrically porous PCL/F127 NGC-interposed RLNs. TA muscle dimensions and AchE expressions in TA muscle were significantly greater in the asymmetrically porous PCL/F127 NGC group than in the silicone tube group. Furthermore, immunohistochemical staining revealed the expression of NF and S100 protein in the regenerated nerves in the asymmetrically porous PCL/F127 NGC group at eight weeks postoperatively, and at this time, TEM imaging showed myelinated axons in the regenerated RLNs. Conclusion: The study shows that

  4. What Protects Certain Nerves from Stretch Injury?

    PubMed

    Schraut, Nicholas B; Walton, Sharon; Bou Monsef, Jad; Shott, Susan; Serici, Anthony; Soulii, Lioubov; Amirouche, Farid; Gonzalez, Mark H; Kerns, James M

    2016-01-01

    The human tibial nerves is less prone to injury following joint arthroplasty compared with the peroneal nerves. Besides the anatomical distribution, other features may confer protection from stretch injury. We therefore examined the size, shape and connective tissue distribution for the two nerves. The tibial and peroneal nerves from each side of nine fresh human cadavers we reharvested mid-thigh. Proximal segments manually stretched 20%-25% were fixed in aldehyde, while the adjacent distal segments were fixed in their natural length. Paraffin sections stained by Masson's trichrome method for connective tissue were examined by light microscopy. Tibial nerves had 2X more fascicles compared with the peroneal, but the axonal content appeared similar. Analysis showed that neither nerve had a significant reduction in cross sectional area of the fascicles following stretch. However, fascicles from stretched tibial nerves become significantly more oval compared with those from unstretched controls and peroneal nerves. Tibial nerves had a greater proportion that was extrafascicular tissue (50-55%) compared with peroneal nerves (38%-42%). This epineurium was typically adipose tissue. Perineurial thickness in both nerves was directly related to fascicular size. Tibial nerves have several unique histological features associated with size, shape and tissue composition compared with the peroneal nerve. We suggest that more fascicles with their tightly bound perineurium and more robust epineurium afford protection against stretch injury. Mechanical studies should clarify how size and shape contribute to nerve protection and/or neurapraxia.

  5. Convection enhanced drug delivery of BDNF through a microcannula in a rodent model to strengthen connectivity of a peripheral motor nerve bridge model to bypass spinal cord injury.

    PubMed

    Martin Bauknight, W; Chakrabarty, Samit; Hwang, Brian Y; Malone, Hani R; Joshi, Shailendra; Bruce, Jeffrey N; Sander Connolly, E; Winfree, Christopher J; Cunningham, Miles G; Martin, John H; Haque, Raqeeb

    2012-04-01

    Models employing peripheral nerve to bypass spinal cord injury (SCI), although highly promising, may benefit from improved nerve regeneration and motor bridge connectivity. Recent studies have demonstrated that neuronal growth factor-induced enhancement of endogenous neurorestoration may improve neuronal connectivity after severe neurologic injury, particularly if delivered intraparenchymally with zero-order kinetics. We sought to investigate the effect of convection-enhanced delivery of brain-derived neurotrophic factor (BDNF), a neuronal growth factor, on the connectivity of a peripheral motor-nerve bridge in a rodent model using electrophysiology and immunohistochemistry (IHC). Spinal cords of 29 female rats were hemisected at the L1 level. Ipsilateral T13 peripheral nerves were dissected from their muscular targets distally, while maintaining their connections with the spinal cord, and inserted caudal to the injury site to establish the nerve bridge. A microcannula attached to a six-week mini-osmotic pump was used to deliver either BDNF (n=12), saline (n=14), or fluorescein dye (n=3) directly into the spinal cord parenchyma between the site of nerve insertion and hemisection to a depth of 2mm into the area of the lateral motor pool. After four weeks, gastrocnemius muscle activation was assessed electromyographically in five animals from each group. Spinal cords were harvested and analyzed with IHC for cannula-associated injury, and nerve regeneration. Strength of motor bridge connection was illustrated by electrophysiology data. Intraspinal BDNF levels were measured using enzyme-linked immunosorbent assay. IHC revealed increased intraparenchymal BDNF concentration at the nerve bridge insertion site with evidence of minimal trauma from cannulation. BDNF infusion resulted in stronger connections between bridge nerves and spinal motor axons. Bridge nerve electrical stimulation in BDNF-treated rats evoked hind leg electromyogram responses of shorter latency and

  6. The effect of tear size and nerve injury on rotator cuff muscle fatty degeneration in a rodent animal model.

    PubMed

    Kim, H Mike; Galatz, Leesa M; Lim, Chanteak; Havlioglu, Necat; Thomopoulos, Stavros

    2012-07-01

    Irreversible muscle changes after rotator cuff tears is a well-known negative prognostic factor after shoulder surgery. Currently, little is known about the pathomechanism of fatty degeneration of the rotator cuff muscles after chronic cuff tears. The purposes of this study were to (1) develop a rodent animal model of chronic rotator cuff tears that can reproduce fatty degeneration of the cuff muscles seen clinically, (2) describe the effects of tear size and concomitant nerve injury on muscle degeneration, and (3) evaluate the changes in gene expression of relevant myogenic and adipogenic factors after rotator cuff tears using the animal model. Rotator cuff tears were created in rodents with and without transection of the suprascapular nerve. The supraspinatus and infraspinatus muscles were examined at 2, 8, and 16 weeks after injury for histologic evidence of fatty degeneration and expression of myogenic and adipogenic genes. Histologic analysis revealed adipocytes, intramuscular fat globules, and intramyocellular fat droplets in the tenotomized and neurotomized supraspinatus and infraspinatus muscles. Changes increased with time and were most severe in the muscles with combined tenotomy and neurotomy. Adipogenic and myogenic transcription factors and markers were upregulated in muscles treated with tenotomy or tenotomy combined with neurotomy compared with normal muscles. The rodent animal model described in this study produces fatty degeneration of the rotator cuff muscles similar to human muscles after chronic cuff tears. The severity of changes was associated with tear size and concomitant nerve injury. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  7. Sesame oil improves functional recovery by attenuating nerve oxidative stress in a mouse model of acute peripheral nerve injury: role of Nrf-2.

    PubMed

    Hsu, Che-Chia; Huang, Hui-Cheng; Wu, Po-Ting; Tai, Ta-Wei; Jou, I-Ming

    2016-12-01

    Peripheral nervous injury (PNI) is a common form of trauma in modern society, especially in sport players. Despite the advance of therapy for PNI, the recovery of function can never reach the preinjury level after treatments. Recently, inhibiting neural oxidative stress shows a beneficial effect in improving functional recovery after PNI. In addition, sesame oil has been reported to possess the excellent antioxidative properties. However, whether sesame oil can improve the functional recovery after PNI by its antioxidative effect has never been investigated. Thirty mice were randomly divided into five groups of six: group I mice received sham operation; group II mice received sciatic nerve crush; and groups III-V mice daily ingested 0.5, 1 and 2 ml/kg of sesame oil for 6 days, respectively, after sciatic nerve crush. Oxidative stress, GAP43 and nuclear Nrf2 levels as well as spinal somatosensory evoked potentials were assessed on day 6, while paw withdrawal latency and sciatic function index were assessed on days 0, 3, and 6. Sesame oil significantly decreased lipid peroxidation and increased nuclear factor erythroid 2-related factor 2 and GAP43 expression in sciatic nerve. Furthermore, sesame oil improved electrophysiological and functional assessments in mice with sciatic nerve crush. In conclusion, sesame oil may improve nerve functional recovery by attenuating nerve oxidative stress in mouse acute peripheral nerve injury. Further, application of natural product sesame oil may be an alternative approach for improving nerve functional recovery in the clinical setting. Copyright © 2016. Published by Elsevier Inc.

  8. Feasibility of Human Amniotic Fluid Derived Stem Cells in Alleviation of Neuropathic Pain in Chronic Constrictive Injury Nerve Model

    PubMed Central

    Chiang, Chien-Yi; Liu, Shih-An; Sheu, Meei-Ling; Chen, Fu-Chou; Chen, Chun-Jung; Su, Hong-Lin; Pan, Hung-Chuan

    2016-01-01

    Purpose The neurobehavior of neuropathic pain by chronic constriction injury (CCI) of sciatic nerve is very similar to that in humans, and it is accompanied by a profound local inflammation response. In this study, we assess the potentiality of human amniotic fluid derived mesenchymal stem cells (hAFMSCs) for alleviating the neuropathic pain in a chronic constriction nerve injury model. Methods and Methods This neuropathic pain animal model was conducted by four 3–0 chromic gut ligatures loosely ligated around the left sciatic nerve in Sprague—Dawley rats. The intravenous administration of hAFMSCs with 5x105 cells was conducted for three consecutive days. Results The expression IL-1β, TNF-α and synaptophysin in dorsal root ganglion cell culture was remarkably attenuated when co-cultured with hAFMSCs. The significant decrease of PGP 9.5 in the skin after CCI was restored by administration of hAFMSCs. Remarkably increased expression of CD 68 and TNF-α and decreased S-100 and neurofilament expression in injured nerve were rescued by hAFMSCs administration. Increases in synaptophysin and TNF-α over the dorsal root ganglion were attenuated by hAFMSCs. Significant expression of TNF-α and OX-42 over the dorsal spinal cord was substantially attenuated by hAFMSCs. The increased amplitude of sensory evoked potential as well as expression of synaptophysin and TNF-α expression was alleviated by hAFMSCs. Human AFMSCs significantly improved the threshold of mechanical allodynia and thermal hyperalgesia as well as various parameters of CatWalk XT gait analysis. Conclusion Human AFMSCs administration could alleviate the neuropathic pain demonstrated in histomorphological alteration and neurobehavior possibly through the modulation of the inflammatory response. PMID:27441756

  9. Feasibility of Human Amniotic Fluid Derived Stem Cells in Alleviation of Neuropathic Pain in Chronic Constrictive Injury Nerve Model.

    PubMed

    Chiang, Chien-Yi; Liu, Shih-An; Sheu, Meei-Ling; Chen, Fu-Chou; Chen, Chun-Jung; Su, Hong-Lin; Pan, Hung-Chuan

    2016-01-01

    The neurobehavior of neuropathic pain by chronic constriction injury (CCI) of sciatic nerve is very similar to that in humans, and it is accompanied by a profound local inflammation response. In this study, we assess the potentiality of human amniotic fluid derived mesenchymal stem cells (hAFMSCs) for alleviating the neuropathic pain in a chronic constriction nerve injury model. This neuropathic pain animal model was conducted by four 3-0 chromic gut ligatures loosely ligated around the left sciatic nerve in Sprague-Dawley rats. The intravenous administration of hAFMSCs with 5x105 cells was conducted for three consecutive days. The expression IL-1β, TNF-α and synaptophysin in dorsal root ganglion cell culture was remarkably attenuated when co-cultured with hAFMSCs. The significant decrease of PGP 9.5 in the skin after CCI was restored by administration of hAFMSCs. Remarkably increased expression of CD 68 and TNF-α and decreased S-100 and neurofilament expression in injured nerve were rescued by hAFMSCs administration. Increases in synaptophysin and TNF-α over the dorsal root ganglion were attenuated by hAFMSCs. Significant expression of TNF-α and OX-42 over the dorsal spinal cord was substantially attenuated by hAFMSCs. The increased amplitude of sensory evoked potential as well as expression of synaptophysin and TNF-α expression was alleviated by hAFMSCs. Human AFMSCs significantly improved the threshold of mechanical allodynia and thermal hyperalgesia as well as various parameters of CatWalk XT gait analysis. Human AFMSCs administration could alleviate the neuropathic pain demonstrated in histomorphological alteration and neurobehavior possibly through the modulation of the inflammatory response.

  10. Nanoparticle Improved Stem Cell Therapy for Erectile Dysfunction in a Rat Model of Cavernous Nerve Injury.

    PubMed

    Lin, Haocheng; Dhanani, Nadeem; Tseng, Hubert; Souza, Glauco R; Wang, Grace; Cao, Yanna; Ko, Tien C; Jiang, Hui; Wang, Run

    2016-03-01

    Recently intracavernous injection of stem cells has garnered great interest as a potential treatment of erectile dysfunction. However, most stem cells are washed out immediately after intracavernous injection. The goal of this study was to investigate using NanoShuttle™ magnetic nanoparticles to maintain stem cells in the corpus cavernosum after intracavernous injection, thereby improving stem cell therapy of erectile dysfunction in an animal model. Adipose derived stem cells were magnetized with NanoShuttle magnetic nanoparticles to create Nano-adipose derived stem cells. A total of 24 rats underwent bilateral cavernous nerve crush and were randomly assigned to 3 groups, including adipose derived stem cells, Nano-adipose derived stem cells and Nano-adipose derived stem cells plus magnet. Cells were tracked at days 1, 3, 5 and 9 after intracavernous injection. Another 40 rats with bilateral cavernous nerve crush were randomly assigned to 4 groups, including bilateral cavernous nerve crush, bilateral cavernous nerve crush plus adipose derived stem cell intracavernous injection, bilateral cavernous nerve crush plus Nano-adipose derived stem cell intracavernous injection and bilateral cavernous nerve crush plus Nano-adipose derived stem cell intracavernous injection plus magnet. Functional testing and histological analysis were performed 4 weeks after intracavernous injection. In the in vitro study 1) NanoShuttle magnetic nanoparticles were successfully bound to adipose derived stem cells and 2) Nano-adipose derived stem cells migrated toward the magnet. In the in vivo study 1) cell tracking showed that Nano-adipose derived stem cells were successfully retained in the corpus cavernosum using the magnet for up to 3 days while most adipose derived stem cells were washed out in other groups by day 1 after intracavernous injection, and 2) intracavernous pressure/mean arterial pressure, and αSMA (α-smooth muscle actin) and PECAM-1 (platelet endothelial cell adhesion

  11. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer

    PubMed Central

    Sullivan, Robert; Dailey, Travis; Duncan, Kelsey; Abel, Naomi; Borlongan, Cesario V.

    2016-01-01

    Peripheral nerve injury can lead to great morbidity in those afflicted, ranging from sensory loss, motor loss, chronic pain, or a combination of deficits. Over time, research has investigated neuronal molecular mechanisms implicated in nerve damage, classified nerve injury, and developed surgical techniques for treatment. Despite these advancements, full functional recovery remains less than ideal. In this review, we discuss historical aspects of peripheral nerve injury and introduce nerve transfer as a therapeutic option, as well as an adjunct therapy to transplantation of Schwann cells and their stem cell derivatives for repair of the damaged nerve. This review furthermore, will provide an elaborated discussion on the sources of Schwann cells, including sites to harvest their progenitor and stem cell lines. This reflects the accessibility to an additional, concurrent treatment approach with nerve transfers that, predicated on related research, may increase the efficacy of the current approach. We then discuss the experimental and clinical investigations of both Schwann cells and nerve transfer that are underway. Lastly, we provide the necessary consideration that these two lines of therapeutic approaches should not be exclusive, but conversely, should be pursued as a combined modality given their mutual role in peripheral nerve regeneration. PMID:27983642

  12. A Novel Model for Acute Peripheral Nerve Injury in the Horse and Evaluation of the Effect of Mesenchymal Stromal Cells Applied In Situ on Nerve Regeneration: A Preliminary Study

    PubMed Central

    Cruz Villagrán, Claudia; Schumacher, Jim; Donnell, Robert; Dhar, Madhu S.

    2016-01-01

    Transplantation of mesenchymal stromal cells (MSCs) to sites of experimentally created nerve injury in laboratory animals has shown promising results in restoring nerve function. This approach for nerve regeneration has not been reported in horses. In this study, we first evaluated the in vitro ability of equine bone marrow-derived MSCs (EBM-MSCs) to trans-differentiate into Schwann-like cells and subsequently tested the MSCs in vivo for their potential to regenerate a transected nerve after implantation. The EBM-MSCs from three equine donors were differentiated into SCLs for 7 days, in vitro, in the presence of specialized differentiation medium and evaluated for morphological characteristics, by using confocal microscopy, and for protein characteristics, by using selected Schwann cell markers (GFAP and S100b). The EBM-MSCs were then implanted into the fascia surrounding the ramus communicans of one fore limb of three healthy horses after a portion of this nerve was excised. The excised portion of the nerve was examined histologically at the time of transection, and stumps of the nerve were examined histologically at day 45 after transplantation. The EBM-MSCs from all donors demonstrated morphological and protein characteristics of those of Schwann cells 7 days after differentiation. Nerves implanted with EBM-MSCs after nerve transection did not show evidence of nerve regeneration at day 45. Examination of peripheral nerves collected 45 days after injury and stem cell treatment revealed no histological differences between nerves treated with MSCs and those treated with isotonic saline solution (controls). The optimal delivery of MSCs and the model suitable to study the efficacy of MSCs in nerve regeneration should be investigated. PMID:27695697

  13. Motonuclear changes after cranial nerve injury and regeneration.

    PubMed

    Fernandez, E; Pallini, R; Lauretti, L; La Marca, F; Scogna, A; Rossi, G F

    1997-09-01

    Little is known about the mechanisms at play in nerve regeneration after nerve injury. Personal studies are reported regarding motonuclear changes after regeneration of injured cranial nerves, in particular of the facial and oculomotor nerves, as well as the influence that the natural molecule acetyl-L-carnitine (ALC) has on post-axotomy cranial nerve motoneuron degeneration after facial and vagus nerve lesions. Adult and newborn animal models were used. Massive motoneuron response after nerve section and reconstruction was observed in the motonuclei of all nerves studied. ALC showed to have significant neuroprotective effects on the degeneration of axotomized motoneurons. Complex quantitative, morphological and somatotopic nuclear changes occurred that sustain new hypotheses regarding the capacities of motoneurons to regenerate and the possibilities of new neuron proliferation. The particularities of such observations are described and discussed.

  14. Investigation of nerve injury through microfluidic devices

    PubMed Central

    Siddique, Rezina; Thakor, Nitish

    2014-01-01

    Traumatic injuries, both in the central nervous system (CNS) and peripheral nervous system (PNS), can potentially lead to irreversible damage resulting in permanent loss of function. Investigating the complex dynamics involved in these processes may elucidate the biological mechanisms of both nerve degeneration and regeneration, and may potentially lead to the development of new therapies for recovery. A scientific overview on the biological foundations of nerve injury is presented. Differences between nerve regeneration in the central and PNS are discussed. Advances in microtechnology over the past several years have led to the development of invaluable tools that now facilitate investigation of neurobiology at the cellular scale. Microfluidic devices are explored as a means to study nerve injury at the necessary simplification of the cellular level, including those devices aimed at both chemical and physical injury, as well as those that recreate the post-injury environment. PMID:24227311

  15. Spinal Autofluorescent Flavoprotein Imaging in a Rat Model of Nerve Injury-Induced Pain and the Effect of Spinal Cord Stimulation

    PubMed Central

    Jongen, Joost L. M.; Smits, Helwin; Pederzani, Tiziana; Bechakra, Malik; Hossaini, Mehdi; Koekkoek, Sebastiaan K.; Huygen, Frank J. P. M.; De Zeeuw, Chris I.; Holstege, Jan C.; Joosten, Elbert A. J.

    2014-01-01

    Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI) to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level. PMID:25279562

  16. Spinal autofluorescent flavoprotein imaging in a rat model of nerve injury-induced pain and the effect of spinal cord stimulation.

    PubMed

    Jongen, Joost L M; Smits, Helwin; Pederzani, Tiziana; Bechakra, Malik; Hossaini, Mehdi; Koekkoek, Sebastiaan K; Huygen, Frank J P M; De Zeeuw, Chris I; Holstege, Jan C; Joosten, Elbert A J

    2014-01-01

    Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI) to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.

  17. Botulinum neurotoxin type A counteracts neuropathic pain and facilitates functional recovery after peripheral nerve injury in animal models.

    PubMed

    Marinelli, S; Luvisetto, S; Cobianchi, S; Makuch, W; Obara, I; Mezzaroma, E; Caruso, M; Straface, E; Przewlocka, B; Pavone, F

    2010-11-24

    A growing interest was recently focused on the use of Botulinum neurotoxin serotype A (BoNT/A) for fighting pain. The aim of this study was to investigate the effects of BoNT/A on neuropathic pain. It was observed that BoNT/A is able to counteract neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve both in mice and in rats. This effect is already present after a single intraplantar (i.pl.) or intrathecal (i.t.) neurotoxin administration that significantly reduces the sciatic nerve ligation-induced mechanical allodynia in mice and rats and thermal hyperalgesia in rats. This effect was evident starting 24 h after the administration of BoNT/A and it was long-lasting, being present 81 or 25 days after i.pl. injection of the higher dose in mice (15 pg/paw) and rats (75 pg/paw), respectively, and 35 days after i.t. injection in rats (75 pg/rat). Moreover, BoNT/A-injected mice showed a quicker recovery of the walking pattern and weight bearing compared to control groups. The behavioral improvement was accompanied by structural modifications, as revealed by the expression of cell division cycle 2 (Cdc2) and growth associated protein 43 (GAP-43) regeneration associated proteins, investigated by immunofluorescence and Western blotting in the sciatic nerve, and by the immunofluorescence expression of S100β and glial fibrillary acidic protein (GFAP) Schwann cells proteins. In conclusion, the present research demonstrate long-lasting anti-allodynic and anti-hyperalgesic effects of BoNT/A in animal models of neuropathic pain together with an acceleration of regenerative processes in the injured nerve, as evidenced by both behavioral and immunohistochemistry/blotting analysis. These results may have important implications in the therapy of neuropathic pain.

  18. Expression changes of nerve cell adhesion molecules L1 and semaphorin 3A after peripheral nerve injury

    PubMed Central

    He, Qian-ru; Cong, Meng; Chen, Qing-zhong; Sheng, Ya-feng; Li, Jian; Zhang, Qi; Ding, Fei; Gong, Yan-pei

    2016-01-01

    The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A mRNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration. PMID:28197202

  19. Patterns of production of collagen-rich deposits in peripheral nerves in response to injury: A pilot study in a rabbit model.

    PubMed

    Rivlin, Michael; Miller, Andrew; Tulipan, Jacob; Beredjiklian, Pedro K; Wang, Mark L; Fertala, Jolanta; Steplewski, Andrzej; Kostas, James; Fertala, Andrzej

    2017-07-01

    Although collagen-rich deposits are the main component of neural scars, the patterns of their formation are ill defined. Essential to the biosynthesis of collagen fibrils are enzymes catalyzing posttranslational modifications and chaperones that control the formation of the collagen triple helix. Prolyl-4-hydroxylase (P4H) and heat shock protein-47 (HSP47) play a key role, and their production is upregulated during scar formation in human tissues. Alpha smooth muscle actin (αSMA) is also produced during fibrotic processes in myofibroblasts that participate in fibrotic response. In injured peripheral nerves, however, the distribution of cells that produce these markers is poorly understood. The goal of this study was to determine the distribution of the αSMA-positive, HSP47-positive, and the P4H-positive cells to better understand the formation of collagen-rich fibrotic tissue (FT) in response to peripheral nerve injury. To reach this goal, we employed a rabbit model of crush-injury and partial-transection injury of the sciatic nerves. Our study demonstrated that αSMA is expressed in a relatively small number of cells seen in neural FT. In contrast, cells producing P4H and HSP47 are ubiquitously present in sites of injury of the sciatic nerves. We contemplate that these proteins may serve as valuable markers that define fibrotic activities in the injured peripheral nerves.

  20. The incidence of nerve root injury by high-speed drill can be reduced by chilled saline irrigation in a rabbit model.

    PubMed

    Tamai, K; Suzuki, A; Takahashi, S; Akhgar, J; Rahmani, M S; Hayashi, K; Ohyama, S; Nakamura, H

    2017-04-01

    We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury. Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations. In the control group, the mean temperature around the nerve root was 52.0°C (38.0°C to 75.5°C) after 60 seconds of drilling, and nerve root injuries were found in one out of 13 (7.7%) immediately, three out of 14 (21.4%) at three days, and 11 out of 25 (44.0%) at seven days post-operatively. While the RT group showed a significantly lower temperature around the nerve root compared with the control group (mean 46.5°C; 34.5°C to 66.9°C, p < 0.001), RT saline failed to significantly reduce the incidence of nerve root injury (ten out of 26; 38.5%; odds ratio (OR) 0.96; 95% confidence interval (CI) 0.516 to 1.785; p = 0.563). However, chilled saline irrigation resulted in a significantly lower temperature than the control group (mean 39.0°C; 35.3°C to 52.3°C; p < 0.001) and a lower rate of nerve root injury (two out of 21; 9.5%, OR 0.13; 95% CI 0.02 to 0.703, p = 0.010). Frictional heat caused by a high-speed drill can cause histological nerve root injury. Chilled saline irrigation had a more prominent effect than RT in reducing the incidence of the thermal injury during extended drilling. Cite this article: Bone Joint J 2017;99-B:554-60. ©2017 The British Editorial Society of Bone & Joint Surgery.

  1. Ursolic acid induces neural regeneration after sciatic nerve injury

    PubMed Central

    Liu, Biao; Liu, Yan; Yang, Guang; Xu, Zemin; Chen, Jiajun

    2013-01-01

    In this study, we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve. BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tube-rosity. The successfully generated model mice were treated with 10, 5, or 2.5 mg/kg ursolic acid via intraperitoneal injection. Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradually increased at 1–4 weeks after sciatic nerve injury, and significantly decreased at 8 weeks. As such, ursolic acid has the capacity to significantly increase S100 protein expression levels. Real-time quantitative PCR showed that S100 mRNA expression in the L4–6 segments on the injury side was increased after ursolic acid treatment. In addition, the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid. Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid. 10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid. Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice following sciatic nerve injury. PMID:25206561

  2. Optical Detection of Early Damage in Retinal Ganglion Cells in a Mouse Model of Partial Optic Nerve Crush Injury

    PubMed Central

    Yi, Ji; Puyang, Zhen; Feng, Liang; Duan, Lian; Liang, Peiji; Backman, Vadim; Liu, Xiaorong; Zhang, Hao F.

    2016-01-01

    Purpose Elastic light backscattering spectroscopy (ELBS) has exquisite sensitivity to the ultrastructural properties of tissue and thus has been applied to detect various diseases associated with ultrastructural alterations in their early stages. This study aims to test whether ELBS can detect early damage in retinal ganglion cells (RGCs). Methods We used a mouse model of partial optic nerve crush (pONC) to induce rapid RGC death. We confirmed RGC loss by axon counting and characterized the changes in retinal morphology by optical coherence tomography (OCT) and in retinal function by full-field electroretinogram (ERG), respectively. To quantify the ultrastructural properties, elastic backscattering spectroscopic analysis was implemented in the wavelength-dependent images recorded by reflectance confocal microscopy. Results At 3 days post-pONC injury, no significant change was found in the thickness of the RGC layer or in the mean amplitude of the oscillatory potentials measured by OCT and ERG, respectively; however, we did observe a significantly decreased number of axons compared with the controls. At 3 days post-pONC, we used ELBS to calculate the ultrastructural marker (D), the shape factor quantifying the shape of the local mass density correlation functions. It was significantly reduced in the crushed eyes compared with the controls, indicating the ultrastructural fragmentation in the crushed eyes. Conclusions Elastic light backscattering spectroscopy detected ultrastructural neuronal damage in RGCs following the pONC injury when OCT and ERG tests appeared normal. Our study suggests a potential clinical method for detecting early neuronal damage prior to anatomical alterations in the nerve fiber and ganglion cell layers. PMID:27784071

  3. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury.

    PubMed

    Chung, Sokjoong; Rho, Seungsoo; Kim, Gijin; Kim, So-Ra; Baek, Kwang-Hyun; Kang, Myungseo; Lew, Helen

    2016-05-01

    The use of mesenchymal stem cells (MSCs) in cell therapy in regenerative medicine has great potential, particularly in the treatment of nerve injury. Umbilical cord blood (UCB) reportedly contains stem cells, which have been widely used as a hematopoietic source and may have therapeutic potential for neurological impairment. Although ongoing research is dedicated to the management of traumatic optic nerve injury using various measures, novel therapeutic strategies based on the complex underlying mechanisms responsible for optic nerve injury, such as inflammation and/or ischemia, are required. In the present study, a rat model of optic nerve crush (ONC) injury was established in order to examine the effects of transplanting human chorionic plate-derived MSCs (CP‑MSCs) isolated from the placenta, as well as human UCB mononuclear cells (CB-MNCs) on compressed rat optic nerves. Expression markers for inflammation, apoptosis, and optic nerve regeneration were analyzed, as well as the axon survival rate by direct counting. Increased axon survival rates were observed following the injection of CB‑MNCs at at 1 week post-transplantation compared with the controls. The levels of growth-associated protein-43 (GAP‑43) were increased after the injection of CB‑MNCs or CP‑MSCs compared with the controls, and the expression levels of hypoxia-inducible factor-1α (HIF-1α) were also significantly increased following the injection of CB-MNCs or CP-MSCs. ERM-like protein (ERMN) and SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2) were found to be expressed in the optic nerves of the CP‑MSC-injected rats with ONC injury. The findings of our study suggest that the administration of CB‑MNCs or CP‑MSCs may promote axon survival through systemic concomitant mechanisms involving GAP‑43 and HIF‑1α. Taken together, these findings provide further understanding of the mechanisms repsonsible for optic nerve injury and may aid in the development of novel cell

  4. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury

    PubMed Central

    CHUNG, SOKJOONG; RHO, SEUNGSOO; KIM, GIJIN; KIM, SO-RA; BAEK, KWANG-HYUN; KANG, MYUNGSEO; LEW, HELEN

    2016-01-01

    The use of mesenchymal stem cells (MSCs) in cell therapy in regenerative medicine has great potential, particularly in the treatment of nerve injury. Umbilical cord blood (UCB) reportedly contains stem cells, which have been widely used as a hematopoietic source and may have therapeutic potential for neurological impairment. Although ongoing research is dedicated to the management of traumatic optic nerve injury using various measures, novel therapeutic strategies based on the complex underlying mechanisms responsible for optic nerve injury, such as inflammation and/or ischemia, are required. In the present study, a rat model of optic nerve crush (ONC) injury was established in order to examine the effects of transplanting human chorionic plate-derived MSCs (CP-MSCs) isolated from the placenta, as well as human UCB mononuclear cells (CB-MNCs) on compressed rat optic nerves. Expression markers for inflammation, apoptosis, and optic nerve regeneration were analyzed, as well as the axon survival rate by direct counting. Increased axon survival rates were observed following the injection of CB-MNCs at at 1 week post-transplantation compared with the controls. The levels of growth-associated protein-43 (GAP-43) were increased after the injection of CB-MNCs or CP-MSCs compared with the controls, and the expression levels of hypoxia-inducible factor-1α (HIF-1α) were also significantly increased following the injection of CB-MNCs or CP-MSCs. ERM-like protein (ERMN) and SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2) were found to be expressed in the optic nerves of the CP-MSC-injected rats with ONC injury. The findings of our study suggest that the administration of CB-MNCs or CP-MSCs may promote axon survival through systemic concomitant mechanisms involving GAP-43 and HIF-1α. Taken together, these findings provide further understanding of the mechanisms repsonsible for optic nerve injury and may aid in the development of novel cell-based therapeutic strategies with

  5. Cranial nerve injury after minor head trauma.

    PubMed

    Coello, Alejandro Fernández; Canals, Andreu Gabarrós; Gonzalez, Juan Martino; Martín, Juan José Acebes

    2010-09-01

    There are no specific studies about cranial nerve (CN) injury following mild head trauma (Glasgow Coma Scale Score 14-15) in the literature. The aim of this analysis was to document the incidence of CN injury after mild head trauma and to correlate the initial CT findings with the final outcome 1 year after injury. The authors studied 49 consecutive patients affected by minor head trauma and CN lesions between January 2000 and January 2006. Detailed clinical and neurological examinations as well as CT studies using brain and bone windows were performed in all patients. Based on the CT findings the authors distinguished 3 types of traumatic injury: no lesion, skull base fracture, and other CT abnormalities. Patients were followed up for 1 year after head injury. The authors distinguished 3 grades of clinical recovery from CN palsy: no recovery, partial recovery, and complete recovery. Posttraumatic single nerve palsy was observed in 38 patients (77.6%), and multiple nerve injuries were observed in 11 (22.4%). Cranial nerves were affected in 62 cases. The most affected CN was the olfactory nerve (CN I), followed by the facial nerve (CN VII) and the oculomotor nerves (CNs III, IV, and VI). When more than 1 CN was involved, the most frequent association was between CNs VII and VIII. One year after head trauma, a CN deficit was present in 26 (81.2%) of the 32 cases with a skull base fracture, 12 (60%) of 20 cases with other CT abnormalities, and 3 (30%) of 10 cases without CT abnormalities. Trivial head trauma that causes a minor head injury (Glasgow Coma Scale Score 14-15) can result in CN palsies with a similar distribution to moderate or severe head injuries. The CNs associated with the highest incidence of palsy in this study were the olfactory, facial, and oculomotor nerves. The trigeminal and lower CNs were rarely damaged. Oculomotor nerve injury can have a good prognosis, with a greater chance of recovery if no lesion is demonstrated on the initial CT scan.

  6. Nerve Injury in Athletes Caused by Cryotherapy

    PubMed Central

    Malone, Terry R.; Engelhardt, David L.; Kirkpatrick, John S.; Bassett, Frank H.

    1992-01-01

    Cryotherapy is a therapeutic modality frequently used in the treatment of athletic injuries. In very rare circumstances, inappropriate use in some individuals can lead to nerve injury resulting in temporary or permanent disability of the athlete. Six cases of cold-induced peripheral nerve injury from 1988 to 1991 at the Sports Medicine Center at Duke University are reported. Although disability can be severe and can render an athlete unable to compete for several months, each of these cases resolved spontaneously. Whereas the application of this modality is typically quite safe and beneficial, clinicians must be aware of the location of major peripheral nerves, the thickness of the overlying subcutaneous fat, the method of application (with inherent or additional compression), the duration of tissue cooling, and the possible cryotherapy sensibility of some individuals. PMID:16558167

  7. Effect of PACAP in Central and Peripheral Nerve Injuries

    PubMed Central

    Tamas, Andrea; Reglodi, Dora; Farkas, Orsolya; Kovesdi, Erzsebet; Pal, Jozsef; Povlishock, John T.; Schwarcz, Attila; Czeiter, Endre; Szanto, Zalan; Doczi, Tamas; Buki, Andras; Bukovics, Peter

    2012-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important role in the endogenous response following both cerebral ischemia and traumatic brain injury and to be effective when given exogenously. A number of studies have shown the neuroprotective effect of PACAP in different models of ischemia, neurodegenerative diseases and retinal degeneration. The aim of this review is to summarize the findings on the neuroprotective potential of PACAP in models of different traumatic nerve injuries. Expression of endogenous PACAP and its specific PAC1 receptor is elevated in different parts of the central and peripheral nervous system after traumatic injuries. Some experiments demonstrate the protective effect of exogenous PACAP treatment in different traumatic brain injury models, in facial nerve and optic nerve trauma. The upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central and peripheral nerve injuries show the important function of PACAP in neuronal regeneration indicating that PACAP may also be a promising therapeutic agent in injuries of the nervous system. PMID:22942712

  8. Electrical Stimulation Enhances Reinnervation After Nerve Injury

    PubMed Central

    2015-01-01

    Electrical muscle stimulation following peripheral nerve injury has been a controversial method of treatment due primarily to the inconsistent literature surrounding it. In this presentation transcript I outline ongoing experiments investigating a clinically translatable daily muscle stimulation paradigm in rats following nerve injury. Results show that reinnervation of muscle and functional behavioural metrics are enhanced with daily stimulation with upregulation of intramuscular neurotrophic factors as a potential mechanism. In addition, the impact of stimulation on terminal sprouting, a mentioned negative aspect of electrical muscle stimulation, was a minor contributor to long term functional reinnervation of stimulated muscles in our studies. PMID:26913163

  9. Prevention and Management of Nerve Injuries in Thoracic Surgery.

    PubMed

    Auchincloss, Hugh G; Donahue, Dean M

    2015-11-01

    Nerve injuries can cause substantial morbidity after thoracic surgical procedures. These injuries are preventable, provided that the surgeon has a thorough understanding of the anatomy and follows important surgical principles. When nerve injuries occur, it is important to recognize the options available in the immediate and postoperative settings, including expectant management, immediate nerve reconstruction, or auxiliary procedures. This article covers the basic anatomy and physiology of nerves and nerve injuries, an overview of techniques in nerve reconstruction, and a guide to the nerves most commonly involved in thoracic operative procedures. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Fate of combat nerve injury

    DTIC Science & Technology

    2012-11-01

    Exoskeletal Orthosis are promising, even in patients complicated by the presence of a foot drop (0/5 motor strength to the peroneal nerve), allowing them...after limb salvage. J Trauma. 2011;71:S120 S124. 32. Patzkowski JC, Blanck RV, Owens JG, et al. Can an ankle-foot orthosis change hearts and minds? J

  11. Neuregulin-1 inhibits neuroinflammatory responses in a rat model of organophosphate-nerve agent-induced delayed neuronal injury.

    PubMed

    Li, Yonggang; Lein, Pamela J; Ford, Gregory D; Liu, Cuimei; Stovall, Kyndra C; White, Todd E; Bruun, Donald A; Tewolde, Teclemichael; Gates, Alicia S; Distel, Timothy J; Surles-Zeigler, Monique C; Ford, Byron D

    2015-04-02

    Neuregulin-1 (NRG-1) has been shown to act as a neuroprotectant in animal models of nerve agent intoxication and other acute brain injuries. We recently demonstrated that NRG-1 blocked delayed neuronal death in rats intoxicated with the organophosphate (OP) neurotoxin diisopropylflurophosphate (DFP). It has been proposed that inflammatory mediators are involved in the pathogenesis of OP neurotoxin-mediated brain damage. We examined the influence of NRG-1 on inflammatory responses in the rat brain following DFP intoxication. Microglial activation was determined by immunohistchemistry using anti-CD11b and anti-ED1 antibodies. Gene expression profiling was performed with brain tissues using Affymetrix gene arrays and analyzed using the Ingenuity Pathway Analysis software. Cytokine mRNA levels following DFP and NRG-1 treatment was validated by real-time reverse transcription polymerase chain reaction (RT-PCR). DFP administration resulted in microglial activation in multiple brain regions, and this response was suppressed by treatment with NRG-1. Using microarray gene expression profiling, we observed that DFP increased mRNA levels of approximately 1,300 genes in the hippocampus 24 h after administration. NRG-1 treatment suppressed by 50% or more a small fraction of DFP-induced genes, which were primarily associated with inflammatory responses. Real-time RT-PCR confirmed that the mRNAs for pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6) were significantly increased following DFP exposure and that NRG-1 significantly attenuated this transcriptional response. In contrast, tumor necrosis factor α (TNFα) transcript levels were unchanged in both DFP and DFP + NRG-1 treated brains relative to controls. Neuroprotection by NRG-1 against OP neurotoxicity is associated with the suppression of pro-inflammatory responses in brain microglia. These findings provide new insight regarding the molecular mechanisms involved in the neuroprotective role

  12. Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury

    PubMed Central

    Brosius Lutz, Amanda; Sloan, Steven A.; Carson, Glenn A.; Zhou, Lu; Lovelett, Emilie; Posada, Sean; Zuchero, J. Bradley; Barres, Ben A.

    2017-01-01

    Ineffective myelin debris clearance is a major factor contributing to the poor regenerative ability of the central nervous system. In stark contrast, rapid clearance of myelin debris from the injured peripheral nervous system (PNS) is one of the keys to this system’s remarkable regenerative capacity, but the molecular mechanisms driving PNS myelin clearance are incompletely understood. We set out to discover new pathways of PNS myelin clearance to identify novel strategies for activating myelin clearance in the injured central nervous system, where myelin debris is not cleared efficiently. Here we show that Schwann cells, the myelinating glia of the PNS, collaborate with hematogenous macrophages to clear myelin debris using TAM (Tyro3, Axl, Mer) receptor-mediated phagocytosis as well as autophagy. In a mouse model of PNS nerve crush injury, Schwann cells up-regulate TAM phagocytic receptors Axl and Mertk following PNS injury, and Schwann cells lacking both of these phagocytic receptors exhibit significantly impaired myelin phagocytosis both in vitro and in vivo. Autophagy-deficient Schwann cells also display reductions in myelin clearance after mouse nerve crush injury, as has been recently shown following nerve transection. These findings add a mechanism, Axl/Mertk-mediated myelin clearance, to the repertoire of cellular machinery used to clear myelin in the injured PNS. Given recent evidence that astrocytes express Axl and Mertk and have previously unrecognized phagocytic potential, this pathway may be a promising avenue for activating myelin clearance after CNS injury. PMID:28874532

  13. The role of renal sympathetic nerves in ischemia reperfusion injury.

    PubMed

    Lambert, Elisabeth; Schlaich, Markus

    2017-05-01

    Decreased blood flow supply to the kidneys known as renal ischemia/reperfusion is a common occurrence during various clinical and surgical settings. This remains highly concerning as it is a major cause of acute kidney injury (AKI). The kidneys have a rich supply of efferent and afferent sympathetic nerves playing a crucial physiological role in regulation of renal function. Studies in animal models of renal ischemia/reperfusion injury have indicated that very early during an ischemic event, the sympathetic nerves are activated and in concert with decreased nitric oxide availability, increased angiotensin II and several other molecules results in renal damage. Renal sympathetic inhibition or denervation seems to prevent or decrease some of the renal damage induced by ischemia/reperfusion injury but the evidence at present is based on animal studies and remains to be confirmed in the clinical setting. Remote ischemic preconditioning (IPC) has gained a lot of interest as a strategy to limit ischemia/reperfusion damage with some recent evidence suggesting that intact sympathetic nerves may be relevant in mediating protective effects. In this article, we review the experimental studies and emerging clinical studies that have investigated the role of sympathetic nerves following ischemia/reperfusion injury and studies exploring the role of sympathetic nerves in IPC and preventing tissue dysfunction induced by renal ischemia/reperfusion. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A continuous spinal cord stimulation model attenuates pain-related behavior in vivo following induction of a peripheral nerve injury.

    PubMed

    Tilley, Dana M; Vallejo, Ricardo; Kelley, Courtney A; Benyamin, Ramsin; Cedeño, David L

    2015-04-01

    Models that simulate clinical conditions are needed to gain an understanding of the mechanism involved during spinal cord stimulation (SCS) treatment of chronic neuropathic pain. An animal model has been developed for continuous SCS in which animals that have been injured to develop neuropathic pain behavior were allowed to carry on with regular daily activities while being stimulated for 72 hours. Sprague-Dawley rats were randomized into each of six different groups (N = 10-13). Three groups included animals in which the spared nerve injury (SNI) was induced. Animals in two of these groups were implanted with a four-contact electrode in the epidural space. Animals in one of these groups received stimulation for 72 hours continuously. Three corresponding sham groups (no SNI) were included. Mechanical and cold-thermal allodynia were evaluated using von Frey filaments and acetone drops, respectively. Mean withdrawal thresholds were compared. Statistical significance was established using one-way ANOVAs followed by Holm-Sidak post hoc analysis. Continuous SCS attenuates mechanical allodynia in animals with neuropathic pain behavior. Mechanical withdrawal threshold increases significantly in SNI animals after 24 and 72 hours stimulation vs. SNI no stimulation (p = 0.007 and p < 0.001, respectively). SCS for 24 and 72 hours provides significant increase in mechanical withdrawal thresholds relative to values before stimulation (p = 0.001 and p < 0.001, respectively). Stimulation did not provide recovery to baseline values. SCS did not seem to attenuate cold-thermal allodynia. A continuous SCS model has been developed. Animals with neuropathic pain behavior that were continuously stimulated showed significant increase in withdrawal thresholds proportional to stimulation time. © 2015 International Neuromodulation Society.

  15. N-11C-Methyl-Dopamine PET Imaging of Sympathetic Nerve Injury in a Swine Model of Acute Myocardial Ischemia: A Comparison with 13N-Ammonia PET

    PubMed Central

    Zhou, Weina; Wang, Xiangcheng; He, Yulin; Nie, Yongzhen; Zhang, Guojian; Wang, Cheng; Wang, Chunmei; Wang, Xuemei

    2016-01-01

    Objective. Using a swine model of acute myocardial ischemia, we sought to validate N-11C-methyl-dopamine (11C-MDA) as an agent capable of imaging cardiac sympathetic nerve injury. Methods. Acute myocardial ischemia was surgically generated in Chinese minipigs. ECG and serum enzyme levels were used to detect the presence of myocardial ischemia. Paired 11C-MDA PET and 13N-ammonia PET scans were performed at baseline, 1 day, and 1, 3, and 6 months after surgery to relate cardiac sympathetic nerve injury to blood perfusion. Results. Seven survived the surgical procedure. The ECG-ST segment was depressed, and levels of the serum enzymes increased. Cardiac uptake of tracer was quantified as the defect volume. Both before and immediately after surgery, the images obtained with 11C-MDA and 13N-ammonia were similar. At 1 to 6 months after surgery, however, 11C-MDA postsurgical left ventricular myocardial defect volume was significantly greater compared to 13N-ammonia. Conclusions. In the Chinese minipig model of acute myocardial ischemia, the extent of the myocardial defect as visualized by 11C-MDA is much greater than would be suggested by blood perfusion images, and the recovery from myocardial sympathetic nerve injury is much slower than the restoration of blood perfusion. 11C-MDA PET may provide additional biological information during recovery from ischemic heart disease. PMID:27034950

  16. GLIAL RESPONSES AFTER CHORDA TYMPANI NERVE INJURY

    PubMed Central

    Bartel, Dianna L.

    2013-01-01

    The chorda tympani (CT) nerve innervates lingual taste buds and is susceptible to damage during dental and inner ear procedures. Interruption of the CT results in a disappearance of taste buds, which can be accompanied by taste disturbances. Because the CT usually regenerates to reinnervate taste buds successfully in a few weeks, a persistence of taste disturbances may indicate alterations in central nervous function. Peripheral injury to other sensory nerves leads to glial responses at central terminals, which actively contribute to abnormal sensations arising from nerve damage. Therefore, the current study examined microglial and astrocytic responses in the first central gustatory relay -the nucleus of the solitary tract (nTS)- after transection of the CT. Damage to the CT resulted in significant microglial responses in terms of morphological reactivity and an increased density of microglial cells from 2-20 days after injury. This increased microglial population primarily resulted from microglial proliferation from 1.5-3 days, which was supplemented by microglial migration within sub-divisions of the nTS between days 2-3. Unlike other nerve injuries, CT injury did not result in recruitment of bone marrow-derived precursors. Astrocytes also reacted in the nTS with increased levels of GFAP by 3 days, although none showed evidence of cell division. GFAP levels remained increased at 30 days by which time microglial responses had resolved. These results show that nerve damage to the CT results in central glial responses, which may participate in long lasting taste alterations following CT lesion. PMID:22315167

  17. [Neurosurgical position causes peripheral nerve injuries?

    PubMed

    Esquivel-Enríquez, Pedro; Pérez-Neri, Iván; Manrique-Carmona, Luisa

    2016-12-16

    Positioning during neurosurgical procedures is a challenge for surgical teams even if precautions are taken, the mechanisms underlying peripheral nerve injury (elongation, compression or ischaemia) are latent and it is important to know the frequency of occurrence in our environment. To analyze the frequency of peripheral nerve injury secondary to surgical positioning. Prospective study including 163 patients scheduled for neurosurgical procedures. Four groups: supine, lateral, ventral and park bench were analyzed by neurological exploration in order to detect injury and relate with risk factors already described. In this study 112 patients were included, two patients who were under park bench position experienced paresthesias in ulnar region of less than 24 hours' duration; statistically significant correlation with body weight greater than 85kg. The incidence of peripheral nerve injury is low, understanding the mechanisms that may originate it helps towards prevention and early detection of complications. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  18. Vitamin B complex and vitamin B12 levels after peripheral nerve injury

    PubMed Central

    Altun, Idiris; Kurutaş, Ergül Belge

    2016-01-01

    The aim of the present study was to evaluate whether tissue levels of vitamin B complex and vitamin B12 were altered after crush-induced peripheral nerve injury in an experimental rat model. A total of 80 male Wistar rats were randomized into one control (n = 8) and six study groups (1, 6, 12, 24 hours, 3, and 7 days after experimental nerve injury; n = 12 for each group). Crush-induced peripheral nerve injury was performed on the sciatic nerves of rats in six study groups. Tissue samples from the sites of peripheral nerve injury were obtained at 1, 6, 12, 24 hours, 3 and 7 days after experimental nerve injury. Enzyme-linked immunosorbent assay results showed that tissue levels of vitamin B complex and vitamin B12 in the injured sciatic nerve were significantly greater at 1 and 12 hours after experimental nerve injury, while they were significantly lower at 7 days than in control group. Tissue level of vitamin B12 in the injured sciatic nerve was significantly lower at 1, 6, 12 and 24 hours than in the control group. These results suggest that tissue levels of vitamin B complex and vitamin B12 vary with progression of crush-induced peripheral nerve injury, and supplementation of these vitamins in the acute period may be beneficial for acceleration of nerve regeneration. PMID:27335572

  19. Increased BACE1 activity inhibits peripheral nerve regeneration after injury.

    PubMed

    Tallon, Carolyn; Rockenstein, Edward; Masliah, Eliezer; Farah, Mohamed H

    2017-10-01

    Axons of the peripheral nervous system possess the capacity to regenerate following injury. Previously, we showed that genetically knocking out Beta-Site APP-Cleaving Enzyme 1 (BACE1) leads to increased nerve regeneration. Two cellular components, macrophages and neurons, contribute to enhanced nerve regeneration in BACE1 knockout mice. Here, we utilized a transgenic mouse model that overexpresses BACE1 in its neurons to investigate whether neuronal BACE1 has an inverse effect on regeneration following nerve injury. We performed a sciatic nerve crush in BACE1 transgenic mice and control wild-type littermates, and evaluated the extent of both morphological and physiological improvements over time. At the earliest time point of 3days, we observed a significant decrease in the length of axonal sprouts growing out from the crush site in BACE1 transgenic mice. At later times (10 and 15days post-crush), there were significant reductions in the number of myelinated axons in the sciatic nerve and the percentage of re-innervated neuromuscular junctions in the gastrocnemius muscle. Transgenic mice had a functional electrophysiological delay in the recovery up to 8weeks post-crush compared to controls. These results indicate that BACE1 activity levels have an inverse effect on peripheral nerve repair after injury. The results obtained in this study provide evidence that neuronal BACE1 activity levels impact peripheral nerve regeneration. This data has clinical relevance by highlighting a novel drug target to enhance peripheral nerve repair, an area which currently does not have any approved therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Axoplasmic importins enable retrograde injury signaling in lesioned nerve.

    PubMed

    Hanz, Shlomit; Perlson, Eran; Willis, Dianna; Zheng, Jun-Qi; Massarwa, R'ada; Huerta, Juan J; Koltzenburg, Martin; Kohler, Matthias; van-Minnen, Jan; Twiss, Jeffery L; Fainzilber, Mike

    2003-12-18

    Axoplasmic proteins containing nuclear localization signals (NLS) signal retrogradely by an unknown mechanism in injured nerve. Here we demonstrate that the importin/karyopherin alpha and beta families underlie this process. We show that importins are found in axons at significant distances from the cell body and that importin beta protein is increased after nerve lesion by local translation of axonal mRNA. This leads to formation of a high-affinity NLS binding complex that traffics retrogradely with the motor protein dynein. Trituration of synthetic NLS peptide at the injury site of axotomized dorsal root ganglion (DRG) neurons delays their regenerative outgrowth, and NLS introduction to sciatic nerve concomitantly with a crush injury suppresses the conditioning lesion induced transition from arborizing to elongating growth in L4/L5 DRG neurons. These data suggest a model whereby lesion-induced upregulation of axonal importin beta may enable retrograde transport of signals that modulate the regeneration of injured neurons.

  1. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury.

    PubMed

    Boyer, Richard B; Kelm, Nathaniel D; Riley, D Colton; Sexton, Kevin W; Pollins, Alonda C; Shack, R Bruce; Dortch, Richard D; Nanney, Lillian B; Does, Mark D; Thayer, Wesley P

    2015-09-01

    Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries.

  2. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury

    PubMed Central

    Boyer, Richard B.; Kelm, Nathaniel D.; Riley, D. Colton; Sexton, Kevin W.; Pollins, Alonda C.; Shack, R. Bruce; Dortch, Richard D.; Nanney, Lillian B.; Does, Mark D.; Thayer, Wesley P.

    2015-01-01

    Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries. PMID:26323827

  3. Exploring vocal recovery after cranial nerve injury in Bengalese finches.

    PubMed

    Urbano, Catherine M; Peterson, Jennifer R; Cooper, Brenton G

    2013-02-08

    Songbirds and humans use auditory feedback to acquire and maintain their vocalizations. The Bengalese finch (Lonchura striata domestica) is a songbird species that rapidly modifies its vocal output to adhere to an internal song memory. In this species, the left side of the bipartite vocal organ is specialized for producing louder, higher frequencies (≥2.2kHz) and denervation of the left vocal muscles eliminates these notes. Thus, the return of higher frequency notes after cranial nerve injury can be used as a measure of vocal recovery. Either the left or right side of the syrinx was denervated by resection of the tracheosyringeal portion of the hypoglossal nerve. Histologic analyses of syringeal muscle tissue showed significant muscle atrophy in the denervated side. After left nerve resection, songs were mainly composed of lower frequency syllables, but three out of five birds recovered higher frequency syllables. Right nerve resection minimally affected phonology, but it did change song syntax; syllable sequence became abnormally stereotyped after right nerve resection. Therefore, damage to the neuromuscular control of sound production resulted in reduced motor variability, and Bengalese finches are a potential model for functional vocal recovery following cranial nerve injury.

  4. Statins alleviate experimental nerve injury-induced neuropathic pain.

    PubMed

    Shi, Xiang Qun; Lim, Tony K Y; Lee, Seunghwan; Zhao, Yuan Qing; Zhang, Ji

    2011-05-01

    The statins are a well-established class of drugs that lower plasma cholesterol levels by inhibiting HMG-CoA (3-hydroxy-3-methyl-glutaryl-coenzyme A) reductase. They are widely used for the treatment of hypercholesterolemia and for the prevention of coronary heart disease. Recent studies suggest that statins have anti-inflammatory effects beyond their lipid-lowering properties. We sought to investigate whether statins could affect neuropathic pain by mediating nerve injury-associated inflammatory responses. The effects of hydrophilic rosuvastatin and lipophilic simvastatin were examined in the mouse partial sciatic nerve ligation model. Systemic daily administration of either statin from days 0 to 14 completely prevented the development of mechanical allodynia and thermal hyperalgesia. When administered from days 8 to 14 after injury, both statins dose-dependently reduced established hypersensitivity. After treatment, the effects of the statins were washed out within 2 to 7 days, depending on dose. Effects of both statins in alleviating mechanical allodynia were further confirmed in a different injury-associated neuropathic pain model, mental nerve chronic constriction, in rats. Both statins were able to abolish interleukin-1β expression in sciatic nerve triggered by nerve ligation. Additionally, quantitative analysis with Iba-1 and glial fibrillary acid protein immunoreactivity demonstrated that rosuvastatin and simvastatin significantly reduced the spinal microglial and astrocyte activation produced by sciatic nerve injury. The increase of interleukin-1β mRNA in the ipsilateral side of spinal cords was also reduced by the treatment of either statin. We identified a potential new application of statins in the treatment of neuropathic pain. The pain-alleviating effects of statins are likely attributable to their immunomodulatory effects.

  5. Effect of icariin in combination with daily sildenafil on penile atrophy and erectile dysfunction in a rat model of bilateral cavernous nerves injury.

    PubMed

    Xu, Y; Xin, H; Wu, Y; Guan, R; Lei, H; Fu, X; Xin, Z; Yang, Y

    2017-05-01

    The commonly utilized phosphodiesterase type 5 inhibitors do not lead to satisfactory penile erection after radical prostatectomy mainly because of insufficient nitric oxide drive from the damaged cavernous nerves. The aim of this study was to assess the efficacy and mechanisms of icariin in combination with daily sildenafil on neurogenic erectile dysfunction and penile atrophy in a rat model of bilateral cavernous nerves injury. Sixty male Sprague-Dawley rats injected with 5-ethynyl-2-deoxyuridine (50 mg/kg) at postnatal day 1 for the purpose of tracking endogenous stem cells in penis. Forty-eight rats of bilateral cavernous nerves injury were randomized equally into gavage feeding of vehicle, sildenafil (10 mg/kg), icariin (1.5 mg/kg) and sildenafil + icariin, respectively. Twelve sham-operated rats served as control. The intracavernous pressure and mean arterial pressure was measured and mid-penile cross sections were histologically examined 5 weeks after surgery. Western blotting of cavernous tissue protein was also performed. Animals treated with sildenafil + icariin had significantly higher mean intracavernous pressure/mean arterial pressure ratio relative to other rats with bilateral cavernous nerves injury (p < 0.05). The circumference and mean cross-sectional area of the paired corpus cavernosum were effectively preserved in the sildenafil + icariin. Treatment with sildenafil + icariin significantly increased the cavernous cyclic guanosine monophosphate concentration compared with the icariin group (p < 0.05). In addition, the numbers of neuronal nitric oxide synthase-positive nerves and 5-ethynyl-2-deoxyuridine-positive cells co-expressing S100 in the icariin-treated groups were greater compared with the bilateral cavernous nerves injury control group (p < 0.05). These data suggest that the combined use of icariin and daily sildenafil holds promise as a potential therapy for neurogenic erectile dysfunction in the future. The underlying

  6. Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury: electrophysiological characteristics

    PubMed Central

    Liu, Ying; Xu, Xun-cheng; Zou, Yi; Li, Su-rong; Zhang, Bin; Wang, Yue

    2015-01-01

    Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ‘excellent’ and ‘good’ muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery. PMID:25883637

  7. Radial head fracture associated with posterior interosseous nerve injury.

    PubMed

    Terra, Bernardo Barcellos; Sassine, Tannus Jorge; Lima, Guilherme de Freitas; Rodrigues, Leandro Marano; Padua, David Victoria Hoffmann; Nadai, Anderson de

    2016-01-01

    Fractures of the radial head and radial neck correspond to 1.7-5.4% of all fractures and approximately 30% may present associated injuries. In the literature, there are few reports of radial head fracture with posterior interosseous nerve injury. This study aimed to report a case of radial head fracture associated with posterior interosseous nerve injury.

  8. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    SciTech Connect

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin

    2013-10-18

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  9. The treatment of peripheral nerve injuries using irradiated allografts and temporary host immunosuppression (in a rat model)

    SciTech Connect

    Easterling, K.J.; Trumble, T.E. )

    1990-10-01

    Irradiation of allografts prior to transplantation and host immunosuppression with cyclosporin-A were studied separately and in combination as means of lessening the rejection of transplanted peripheral nerve tissue. Lewis and Brown Norway rats were used in the animal model, as they differ at both major and minor histocompatibility loci. Sciatic nerve grafts (2.5 cm) were used and the animals were followed for 16 weeks after nerve grafting. The outcome was studied by functional measurements (sensory testing, gait analysis, joint flexion contracture, and muscle weight), as well as by measurements of biochemical and histologic parameters (hydroxyproline concentration and axon counts, respectively). Sensory testing was not reliable because of crossover innervation by the saphenous nerve. Evaluation by standard gait-testing techniques was found to be unsatisfactory. However, the allografted animals receiving cyclosporin-A had significantly smaller flexion contractures, compared to the allografted animals without immunosuppression (17 degrees +/- 12 degrees vs. 44 degrees +/- 13 degrees and 51 degrees +/- 13 degrees, p less than 0.005). Allografted animals receiving short-term cyclosporin-A had contractures that were not significantly different from those seen in isografted control animals (17 degrees +/- 12 degrees vs. 22 degrees +/- 15 degrees, NS). Muscle hydroxyproline concentration analysis revealed a lower hydroxyproline concentration among the allografted groups that received irradiated allografts, compared to groups receiving nonirradiated allogeneic grafts. The studies of muscle hydroxyproline concentration and muscle weight both showed substantial reinnervation, even in allografted animals without pretreatment of the grafts or immunosuppression of the recipient animal.

  10. Abdominoplasty-related nerve injuries: systematic review and treatment options.

    PubMed

    Ducic, Ivica; Zakaria, Hesham M; Felder, John M; Arnspiger, Sarah

    2014-02-01

    Abdominoplasty is a common cosmetic procedure; nerve injury is an underexplored risk of the procedure. The authors review existing literature to examine the incidence and treatment of nerve injuries after abdominoplasty procedures and provide a treatment algorithm based on their results. A search of the literature on MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews was undertaken. After full-text review, 23 articles met our criteria. Any mentions of nerve injury, including references to a lack of nerve injury, were documented. All data were pooled for analysis. From our combined data, we calculated the risks of postabdominoplasty nerve injury by dividing the total number of nerve injuries by the total number of patients. Pooled data showed that 1.94% of patients sustained specific nerve injury, and 1.02% of patients sustained permanent injury after abdominoplasty. In addition, 7.67% experienced decreased sensation, 1.07% reported chronic pain, and 0.44% reported temporary weakness or paralysis. Nerves directly injured were the lateral femoral cutaneous (1.36% of patients) and iliohypogastric (0.10%) nerves. Nerves injured from surgical positioning were the brachial plexus (0.10%), musculocutaneous (0.10%), radial (0.05%), sciatic (0.19%), and common peroneal (0.05%) nerves. Although our results showed a low incidence of postabdominoplasty nerve injury, the lasting impact on affected patients' quality of life can be significant. Appropriate and timely treatment by a multidisciplinary team is critical to optimize patient outcomes. Better reporting of nerve injuries in future studies of abdominoplasty will provide more accurate information about the incidence and consequences of these injuries. 4.

  11. Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury

    PubMed Central

    Albersen, Maarten; Fandel, Thomas M.; Lin, Guiting; Wang, Guifang; Banie, Lia; Lin, Ching-Shwun; Lue, Tom F.

    2013-01-01

    Introduction Erectile dysfunction (ED) remains a major complication after radical prostatectomy. The use of adipose tissue-derived stem cells (ADSC) has shown promising results for the treatment of ED. However, the mechanisms of action for stem cell therapy remain controversial, with increasing evidence pointing to paracrine pathways. Aim To determine the effects and to identify the mechanism of action of ADSC and ADSC-derived lysate in a rat model of cavernous nerve (CN) crush injury. Methods Thirty-two male Sprague-Dawley rats were randomly divided into four equal groups: one group underwent sham operation, while three groups underwent bilateral CN crush. Crush-injury groups were treated at the time of injury with intracavernous injection of ADSC, lysate, or vehicle only (injured controls). Erectile function was assessed by cavernous nerve electrostimulation at 4 weeks. Penile tissue was collected for histology. Main Outcome Measures Intracavernous pressure increase upon CN stimulation; neuronal nitric oxide synthase (nNOS) content in the dorsal penile nerve; smooth muscle content, collagen content, and number of apoptotic cells in the corpus cavernosum. Results Both ADSC and lysate treatments resulted in significant recovery of erectile function, as compared to vehicle treatment. nNOS content was preserved in both the ADSC and lysate group, with significantly higher expression compared to vehicle-treated animals. There was significantly less fibrosis and a significant preservation of smooth muscle content in the ADSC and lysate groups compared to injured controls. The observed functional improvement after lysate injection supports the hypothesis that ADSC act through release of intracellular preformed substances or by active secretion of certain biomolecules. The underlying mechanism of recovery appears to involve neuron preservation and cytoprotection by inhibition of apoptosis. Conclusions Penile injection of both ADSC and ADSC-derived lysate can improve

  12. Recombinant hNeuritin Promotes Structural and Functional Recovery of Sciatic Nerve Injury in Rats

    PubMed Central

    Wang, Haiyan; Li, Xinli; Shan, Liya; Zhu, Jingling; Chen, Rong; Li, Yuan; Yuan, Wumei; Yang, Lei; Huang, Jin

    2016-01-01

    Neuritin is a new neurotropic factor implicated in nervous system development and plasticity. Studies have shown that Neuritin is upregulated in injured nerves, suggesting that it is involved in nerve repair. To test this hypothesis, we investigated whether recombinant human Neuritin could restore nerve structure and function in a rat model of sciatic nerve injury. Neuritin treatment had a dose-dependent effect on functional recovery 4 weeks after injury, as determined by the walking-track test. Similar trends were observed for gastrocnemius muscular strength and nerve conduction velocity. Additionally, sciatic nerve fiber density and organization as well as degree of remyelination were increased, while growth-associated protein 43 and neurofilament 200 expression was upregulated upon treatment with Neuritin. These findings demonstrate that Neuritin stimulates nerve regeneration and functional recovery and thus promotes the repair of injured sciatic nerves. PMID:28066172

  13. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury

    PubMed Central

    Pushchina, Evgeniya V.; Shukla, Sachin; Varaksin, Anatoly A.; Obukhov, Dmitry K.

    2016-01-01

    Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult trout Oncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury. In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1–4 days of culture. The present findings suggest that trout can be used as a novel model for studying neuronal regeneration. PMID:27212918

  14. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury.

    PubMed

    Pushchina, Evgeniya V; Shukla, Sachin; Varaksin, Anatoly A; Obukhov, Dmitry K

    2016-04-01

    Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult trout Oncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury. In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1-4 days of culture. The present findings suggest that trout can be used as a novel model for studying neuronal regeneration.

  15. A novel animal model of partial optic nerve transection established using an optic nerve quantitative amputator.

    PubMed

    Wang, Xu; Li, Ying; He, Yan; Liang, Hong-Sheng; Liu, En-Zhong

    2012-01-01

    Research into retinal ganglion cell (RGC) degeneration and neuroprotection after optic nerve injury has received considerable attention and the establishment of simple and effective animal models is of critical importance for future progress. In the present study, the optic nerves of Wistar rats were semi-transected selectively with a novel optic nerve quantitative amputator. The variation in RGC density was observed with retro-labeled fluorogold at different time points after nerve injury. The densities of surviving RGCs in the experimental eyes at different time points were 1113.69±188.83 RGC/mm² (the survival rate was 63.81% compared with the contralateral eye of the same animal) 1 week post surgery; 748.22±134.75/mm² (46.16% survival rate) 2 weeks post surgery; 505.03±118.67/mm² (30.52% survival rate) 4 weeks post surgery; 436.86±76.36/mm² (24.01% survival rate) 8 weeks post surgery; and 378.20±66.74/mm² (20.30% survival rate) 12 weeks post surgery. Simultaneously, we also measured the axonal distribution of optic nerve fibers; the latency and amplitude of pattern visual evoke potentials (P-VEP); and the variation in pupil diameter response to pupillary light reflex. All of these observations and profiles were consistent with post injury variation characteristics of the optic nerve. These results indicate that we effectively simulated the pathological process of primary and secondary injury after optic nerve injury. The present quantitative transection optic nerve injury model has increased reproducibility, effectiveness and uniformity. This model is an ideal animal model to provide a foundation for researching new treatments for nerve repair after optic nerve and/or central nerve injury.

  16. A Novel Animal Model of Partial Optic Nerve Transection Established Using an Optic Nerve Quantitative Amputator

    PubMed Central

    Wang, Xu; Li, Ying; He, Yan; Liang, Hong-Sheng; Liu, En-Zhong

    2012-01-01

    Background Research into retinal ganglion cell (RGC) degeneration and neuroprotection after optic nerve injury has received considerable attention and the establishment of simple and effective animal models is of critical importance for future progress. Methodology/Principal Findings In the present study, the optic nerves of Wistar rats were semi-transected selectively with a novel optic nerve quantitative amputator. The variation in RGC density was observed with retro-labeled fluorogold at different time points after nerve injury. The densities of surviving RGCs in the experimental eyes at different time points were 1113.69±188.83 RGC/mm2 (the survival rate was 63.81% compared with the contralateral eye of the same animal) 1 week post surgery; 748.22±134.75 /mm2 (46.16% survival rate) 2 weeks post surgery; 505.03±118.67 /mm2 (30.52% survival rate) 4 weeks post surgery; 436.86±76.36 /mm2 (24.01% survival rate) 8 weeks post surgery; and 378.20±66.74 /mm2 (20.30% survival rate) 12 weeks post surgery. Simultaneously, we also measured the axonal distribution of optic nerve fibers; the latency and amplitude of pattern visual evoke potentials (P-VEP); and the variation in pupil diameter response to pupillary light reflex. All of these observations and profiles were consistent with post injury variation characteristics of the optic nerve. These results indicate that we effectively simulated the pathological process of primary and secondary injury after optic nerve injury. Conclusions/Significance The present quantitative transection optic nerve injury model has increased reproducibility, effectiveness and uniformity. This model is an ideal animal model to provide a foundation for researching new treatments for nerve repair after optic nerve and/or central nerve injury. PMID:22973439

  17. Nerve Injuries of the Upper Extremity

    MedlinePlus

    ... of individual nerve fibers and surrounding outer sheath (“insulation”) Figure 2: Nerve repair with realignment of bundles © ... of individual nerve fibers and surrounding outer sheath insulation Figure 2 - Nerve repair with realignment of bundles ...

  18. [Study of peripheral nerve injury in trauma patients].

    PubMed

    Castillo-Galván, Marina Lizeth; Martínez-Ruiz, Fernando Maximiliano; de la Garza-Castro, Oscar; Elizondo-Omaña, Rodrigo Enrique; Guzmán-López, Santos

    2014-01-01

    To determine the prevalence, location, mechanism, and characteristics of peripheral nerve injury (PNI) in trauma patients. A retrospective study of medical records with PNI diagnosis secondary to trauma in the period of 2008-2012. The following information was collected: gender, age, occupation, anatomic location, affected nerve, mechanism of injury, degree of injury, costs, and hospitalization time. The prevalence of PNI is 1.12%. The location of the nerve injury was 61% upper limb, the highest incidence was presented to the brachial plexus (35%) and ulnar nerve (18%). The mechanism of the lesion was sharp injury (19%). The PNI are commonly present in people of a productive age. Neurotmesis was the most frequent degree of lesion. The patients stayed at hospital 2.51 ± 1.29 days and the average cost was 12,474.00 Mexican pesos ± 5,595.69 (US$ 1,007.54 ± 452.21) for one nerve injury.

  19. Nerve injuries in supracondylar fractures of the humerus in children: is nerve exploration indicated?

    PubMed

    Khademolhosseini, Majid; Abd Rashid, Abdul Halim; Ibrahim, Sharaf

    2013-03-01

    A retrospective study of nerve injuries with displaced supracondylar fractures of the humerus in children younger than 12 years of age, treated in Hospital Universiti Kebangsaan Malaysia. Our objectives were to determine the incidence of primary and iatrogenic nerve injuries in supracondylar humerus fractures Gartland types II and III and to determine the outcome of nerve recovery. A total of 272 patients with displaced supracondylar humerus fractures who required admission to Hospital Universiti Kebangsaan Malaysia from January 2000 to December 2007 were reviewed. There were 182 boys (67%) and 90 girls (33%). The mean age was 6.0 years, ranging from 1 to 12 years. Of 272 supracondylar fractures, 79 were type II and 193 were type III. Fifty-one (19%) patients had closed reduction, 160 (59%) had closed reduction and percutaneous crossed Kirschner (K) wires, and 61 (22%) had open reduction and crossed K-wires. Associated nerve injuries involving the median, radial, and ulnar nerves were observed in 48 (18%) patients. Nerve injuries were observed in nine (3%) patients upon admission. Thirty-nine (14%) patients developed nerve injuries following treatment. Of these 39 patients, 34 had ulnar, three had radial, and two had median nerve injuries. Nerve exploration was performed in five patients (in four patients following debridement of open fracture and in one because of unacceptable postoperative radiographs, and they subsequently underwent open reduction and exploration). Except for these five patients, the K-wires were not removed earlier nor were the nerves surgically explored in others. The nerve injuries resolved clinically on an average time of 3.5 months (range from 3 weeks to 8 months). Our study found complete resolution of all patients with nerve injuries confirmed by clinical assessment. On the basis of our study, we believe that there is no indication to remove the K-wires immediately or to explore the nerve surgically following a mini-open technique, which

  20. Analgesic effect of coumarins from Radix angelicae pubescentis is mediated by inflammatory factors and TRPV1 in a spared nerve injury model of neuropathic pain.

    PubMed

    Li, Ruili; Zhao, Chao; Yao, Minna; Song, Ying; Wu, Yin; Wen, Aidong

    2017-01-04

    Coumarins from Radix angelicae pubescentis (CRAP) are a major active component that are isolated from dried roots of Angelica biserrata Yuan et Shan, which has been used clinically to cure headaches for a long period of time, and it is an effective treatment for pain. The aim of the present study was to investigate the analgesic effect of CRAP on a spared nerve injury (SNI) model of neuropathy. Antinociceptive effects of CRAP were assessed in Sprague-Dawley male rats using a spared nerve injury model of neuropathic pain. Inflammatory factors were determined by Enzyme-linked immunosorbent assay (ELISA). Transient receptor potential cation channel 1 (TRPV1) and Phosphorylated extracellular regulated protein kinases (pERK) were detected by Immunofluorescence and Western blotting, respectively. The high performance liquid chromatography (HPLC) analysis showed the presence of osthole and columbianadin in Radix angelicae pubescentis. CRAP induced the dose-dependent effect of on attenuating the development of mechanical hypersensitivity. Molecular profiling revealed that CRAP reduced the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) and significantly attenuated the expression of TRPV1 and pERK in damaged DRG neurons. This results demonstrate that CRAP possess remarkable antinociceptive activities which may be due to osthole and columbianadin at least in part, supporting the folkloric usage of the plant to treat various pain diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Comparative Study of Nerve Grafting versus Distal Nerve Transfer for Treatment of Proximal Injuries of the Ulnar Nerve.

    PubMed

    Flores, Leandro Pretto

    2015-11-01

    The prognosis for motor recovery associated with ulnar nerve injuries at a level proximal to the elbow is usually considered poor. Nerve transfers techniques were introduced as an alternative for the management of nerve lesions of the upper limb, aiming to improve the surgical results of those nerves for which direct reconstruction has not historically yielded good outcomes. A retrospective chart review was conducted to compare the outcomes obtained using nerve grafting (20 cases) with those of distal nerve transfer (15 patients) for the treatment of proximal injuries of the ulnar nerve. Nerve transfer combined the suture of the anterior interosseous nerve to the motor branch of the ulnar nerve and the cooptation of its sensory branch to the third common digital nerve via an end-to-side suture. The Medical Research Council M3/M4 outcomes were observed significantly more often in the nerve transfer group (80 vs. 22%), and the mean values for handgrip strength were higher (31.3 ± 5.8 vs. 14.5 ± 7.2 kg). The groups were similar in attaining good sensory recovery (40 vs. 30%) and mean two-point-discrimination (grafting: 11 ± 2 mm; nerve transfer: 9 ± 1 mm). The mean value of the disabilities of arm, shoulder, and hand for the nerve transfer group (23.6 ± 6.7) was significantly lower than for grafting (34.2 ± 8.3). Distal nerve transfer resulted in better motor and functional outcomes than nerve grafting. Both techniques resulted in similar sensory outcomes, and nerve grafting was demonstrated to be a better technique for managing the painful symptoms associated with the nerve injury. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury.

    PubMed

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-09-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue.

  3. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  4. Peripheral nerve injuries in athletes. Treatment and prevention.

    PubMed

    Lorei, M P; Hershman, E B

    1993-08-01

    Peripheral nerve lesions are uncommon but serious injuries which may delay or preclude an athlete's safe return to sports. Early, accurate anatomical diagnosis is essential. Nerve lesions may be due to acute injury (e.g. from a direct blow) or chronic injury secondary to repetitive microtrauma (entrapment). Accurate diagnosis is based upon physical examination and a knowledge of the relative anatomy. Palpation, neurological testing and provocative manoeuvres are mainstays of physical diagnosis. Diagnostic suspicion can be confirmed by electrophysiological testing, including electromyography and nerve conduction studies. Proper equipment, technique and conditioning are the keys to prevention. Rest, anti-inflammatories, physical therapy and appropriate splinting are the mainstays of treatment. In the shoulder, spinal accessory nerve injury is caused by a blow to the neck and results in trapezius paralysis with sparing of the sternocleidomastoid muscle. Scapular winging results from paralysis of the serratus anterior because of long thoracic nerve palsy. A lesion of the suprascapular nerve may mimic a rotator cuff tear with pain a weakness of the rotator cuff. Axillary nerve injury often follows anterior shoulder dislocation. In the elbow region, musculocutaneous nerve palsy is seen in weightlifters with weakness of the elbow flexors and dysesthesias of the lateral forearm. Pronator syndrome is a median nerve lesion occurring in the proximal forearm which is diagnosed by several provocative manoeuvres. Posterior interosseous nerve entrapment is common among tennis players and occurs at the Arcade of Froshe--it results in weakness of the wrist and metacarpophalangeal extensors. Ulnar neuritis at the elbow is common amongst baseball pitchers. Carpal tunnel syndrome is a common neuropathy seen in sport and is caused by median nerve compression in the carpal tunnel. Paralysis of the ulnar nerve at the wrist is seen among bicyclists resulting in weakness of grip and

  5. “Three Methods and Three Points” regulates p38 mitogen-activated protein kinase in the dorsal horn of the spinal cord in a rat model of sciatic nerve injury

    PubMed Central

    Guo, Xin; Yu, Tian-yuan; Steven, Wong; Jia, Wen-duan; Ma, Chi; Tao, Yan-hong; Yang, Chao; Lv, Tao-tao; Wu, Shuai; Lu, Meng-qian; Liu, Jia-li

    2016-01-01

    Tuina is a traditional Chinese treatment for sensory disturbances caused by peripheral nerve injury and related diseases. Our previous studies showed that tuina regulates relevant regions and indices of the spinal dorsal horn using the Dian, Bo, and Rou method in Yinmen (BL37), Yanglingquan (GB34), and Weizhong (BL40). Treatment prevents muscle atrophy, protects spinal cord neurons, and promotes sciatic nerve repair. The mechanisms of action of tuina for treating peripheral nerve injury remain poorly understood. This study established rat models of sciatic nerve injury using the crushing method. Rats received Chinese tuina in accordance with the principle of “Three Methods and Three Points,” once daily for 20 days. Tuina intervention reduced paw withdrawal latency and improved wet weight of the gastrocnemius muscle, as well as promoting morphological recovery of sciatic nerve fibers, Schwann cells, and axons. The protein expression levels of phospho-p38 mitogen-activated protein kinase, tumor necrosis factor-α, and interleukin-1β also decreased. These findings indicate that “Three Methods and Three Points” promoted morphological recovery and improved behavior of rats with peripheral nerve injury. PMID:28197201

  6. Nerve injuries of the upper extremity and hand

    PubMed Central

    Dahlin, Lars B.; Wiberg, Mikael

    2017-01-01

    A nerve injury has a profound impact on the patient’s daily life due to the impaired sensory and motor function, impaired dexterity, sensitivity to cold as well as eventual pain problems. To perform an appropriate treatment of nerve injuries, a correct diagnosis must be made, where the injury is properly classified, leading to an optimal surgical approach and technique, where timing of surgery is also important for the outcome. Knowledge about the nerve regeneration process, where delicate processes occur in neurons, non-neuronal cells (i.e. Schwann cells) and other cells in the peripheral as well as the central nervous systems, is crucial for the treating surgeon. The surgical decision to perform nerve repair and/or reconstruction depends on the type of injury, the condition of the wound as well as the vascularity of the wound. To reconnect injured nerve ends, various techniques can be used, which include both epineurial and fascicular nerve repair, and if a nerve defect is caused by the injury, a nerve reconstruction procedure has to be performed, including bridging the defect using nerve-grafts or nerve transfer techniques. The patients must be evaluated properly and regularly after the surgical procedure and appropriate rehabilitation programmes are useful to improve the final outcome. Cite this article: EFORT Open Rev 2017;2. DOI: 10.1302/2058-5241.2.160071. Originally published online at www.efortopenreviews.org PMID:28630754

  7. Peripheral nerve grafts support regeneration after spinal cord injury.

    PubMed

    Côté, Marie-Pascale; Amin, Arthi A; Tom, Veronica J; Houle, John D

    2011-04-01

    Traumatic insults to the spinal cord induce both immediate mechanical damage and subsequent tissue degeneration leading to a substantial physiological, biochemical, and functional reorganization of the spinal cord. Various spinal cord injury (SCI) models have shown the adaptive potential of the spinal cord and its limitations in the case of total or partial absence of supraspinal influence. Meaningful recovery of function after SCI will most likely result from a combination of therapeutic strategies, including neural tissue transplants, exogenous neurotrophic factors, elimination of inhibitory molecules, functional sensorimotor training, and/or electrical stimulation of paralyzed muscles or spinal circuits. Peripheral nerve grafts provide a growth-permissive substratum and local neurotrophic factors to enhance the regenerative effort of axotomized neurons when grafted into the site of injury. Regenerating axons can be directed via the peripheral nerve graft toward an appropriate target, but they fail to extend beyond the distal graft-host interface because of the deposition of growth inhibitors at the site of SCI. One method to facilitate the emergence of axons from a graft into the spinal cord is to digest the chondroitin sulfate proteoglycans that are associated with a glial scar. Importantly, regenerating axons that do exit the graft are capable of forming functional synaptic contacts. These results have been demonstrated in acute injury models in rats and cats and after a chronic injury in rats and have important implications for our continuing efforts to promote structural and functional repair after SCI.

  8. Electrical stimulation does not enhance nerve regeneration if delayed after sciatic nerve injury: the role of fibrosis

    PubMed Central

    Han, Na; Xu, Chun-gui; Wang, Tian-bing; Kou, Yu-hui; Yin, Xiao-feng; Zhang, Pei-xun; Xue, Feng

    2015-01-01

    Electrical stimulation has been shown to accelerate and enhance nerve regeneration in sensory and motor neurons after injury, but there is little evidence that focuses on the varying degrees of fibrosis in the delayed repair of peripheral nerve tissue. In this study, a rat model of sciatic nerve transection injury was repaired with a biodegradable conduit at 1 day, 1 week, 1 month and 2 months after injury, when the rats were divided into two subgroups. In the experimental group, rats were treated with electrical stimuli of frequency of 20 Hz, pulse width 100 ms and direct current voltage of 3 V; while rats in the control group received no electrical stimulation after the conduit operation. Histological results showed that stained collagen fibers comprised less than 20% of the total operated area in the two groups after delayed repair at both 1 day and 1 week but after longer delays, the collagen fiber area increased with the time after injury. Immunohistochemical staining revealed that the expression level of transforming growth factor β (an indicator of tissue fibrosis) decreased at both 1 day and 1 week after delayed repair but increased at both 1 and 2 months after delayed repair. These findings indicate that if the biodegradable conduit repair combined with electrical stimulation is delayed, it results in a poor outcome following sciatic nerve injury. One month after injury, tissue degeneration and distal fibrosis are apparent and are probably the main reason why electrical stimulation fails to promote nerve regeneration after delayed repair. PMID:25788926

  9. Recruitment of Intracavernously Injected Adipose-Derived Stem Cells to the Major Pelvic Ganglion Improves Erectile Function in a Rat Model of Cavernous Nerve Injury

    PubMed Central

    Fandel, Thomas M.; Albersen, Maarten; Lin, Guiting; Qiu, Xuefeng; Ning, Hongxiu; Banie, Lia; Lue, Tom F.; Lin, Ching-Shwun

    2011-01-01

    Background Intracavernous (IC) injection of stem cells has been shown to ameliorate cavernous-nerve (CN) injury-induced erectile dysfunction (ED). However, the mechanisms of action of adipose-derived stem cells (ADSC) remain unclear. Objectives To investigate the mechanism of action and fate of IC injected ADSC in a rat model of CN crush injury. Design, setting, and participants Sprague-Dawley rats (n = 110) were randomly divided into five groups. Thirty-five rats underwent sham surgery and IC injection of ADSC (n = 25) or vehicle (n = 10). Another 75 rats underwent bilateral CN crush injury and were treated with vehicle or ADSC injected either IC or in the dorsal penile perineural space. At 1, 3, 7 (n = 5), and 28 d (n = 10) postsurgery, penile tissues and major pelvic ganglia (MPG) were harvested for histology. ADSC were labeled with 5-ethynyl-2-deoxyuridine (EdU) before treatment. Rats in the 28-d groups were examined for erectile function prior to tissue harvest. Measurements IC pressure recording on CN electrostimulation, immunohistochemistry of the penis and the MPG, and number of EdU-positive (EdU+) cells in the injection site and the MPG. Results and limitations IC, but not perineural, injection of ADSC resulted in significantly improved erectile function. Significantly more EdU+ ADSC appeared in the MPG of animals with CN injury and IC injection of ADSC compared with those injected perineurally and those in the sham group. One day after crush injury, stromal cell-derived factor-1 (SDF-1) was upregulated in the MPG, providing an incentive for ADSC recruitment toward the MPG. Neuroregeneration was observed in the group that underwent IC injection of ADSC, and IC ADSC treatment had beneficial effects on the smooth muscle/collagen ratio in the corpus cavernosum. Conclusions CN injury upregulates SDF-1 expression in the MPG and thereby attracts intracavernously injected ADSC. At the MPG, ADSC exert neuroregenerative effects on the cell bodies of injured nerves

  10. Recruitment of intracavernously injected adipose-derived stem cells to the major pelvic ganglion improves erectile function in a rat model of cavernous nerve injury.

    PubMed

    Fandel, Thomas M; Albersen, Maarten; Lin, Guiting; Qiu, Xuefeng; Ning, Hongxiu; Banie, Lia; Lue, Tom F; Lin, Ching-Shwun

    2012-01-01

    Intracavernous (IC) injection of stem cells has been shown to ameliorate cavernous-nerve (CN) injury-induced erectile dysfunction (ED). However, the mechanisms of action of adipose-derived stem cells (ADSC) remain unclear. To investigate the mechanism of action and fate of IC injected ADSC in a rat model of CN crush injury. Sprague-Dawley rats (n=110) were randomly divided into five groups. Thirty-five rats underwent sham surgery and IC injection of ADSC (n=25) or vehicle (n=10). Another 75 rats underwent bilateral CN crush injury and were treated with vehicle or ADSC injected either IC or in the dorsal penile perineural space. At 1, 3, 7 (n=5), and 28 d (n=10) postsurgery, penile tissues and major pelvic ganglia (MPG) were harvested for histology. ADSC were labeled with 5-ethynyl-2-deoxyuridine (EdU) before treatment. Rats in the 28-d groups were examined for erectile function prior to tissue harvest. IC pressure recording on CN electrostimulation, immunohistochemistry of the penis and the MPG, and number of EdU-positive (EdU+) cells in the injection site and the MPG. IC, but not perineural, injection of ADSC resulted in significantly improved erectile function. Significantly more EdU+ ADSC appeared in the MPG of animals with CN injury and IC injection of ADSC compared with those injected perineurally and those in the sham group. One day after crush injury, stromal cell-derived factor-1 (SDF-1) was upregulated in the MPG, providing an incentive for ADSC recruitment toward the MPG. Neuroregeneration was observed in the group that underwent IC injection of ADSC, and IC ADSC treatment had beneficial effects on the smooth muscle/collagen ratio in the corpus cavernosum. CN injury upregulates SDF-1 expression in the MPG and thereby attracts intracavernously injected ADSC. At the MPG, ADSC exert neuroregenerative effects on the cell bodies of injured nerves, resulting in enhanced erectile response. Copyright © 2011 European Association of Urology. Published by Elsevier

  11. Effect of bilateral median nerve excision on sciatic functional index in rat: an applicable animal model for autologous nerve grafting.

    PubMed

    Nabian, Mohammad Hosein; Nadji-Tehrani, Mehdi; Zanjani, Leila Oryadi; Kamrani, Reza Shahryar; Rahimi-Movaghar, Vafa; Firouzi, Masoumeh

    2011-01-01

    Autologous nerve graft is still the treatment of choice in peripheral nerve injury when end-to-end nerve repair is not possible. The sciatic nerve is the most widely used nerve in rat experimental studies. To assess the possibility of using the rat median nerve as a delayed animal autologous nerve graft model in nerve regeneration studies, the effect of median nerve excision on the sciatic functional index (SFI) was evaluated. Thirty rats were distributed into three equal groups: in the sciatic and median nerve excision (SMNE) group, 10 mm of the right sciatic nerve was excised and 5 mm of both median nerves were excised a week later; in the median nerve excision (MNE) group, 5 mm of both median nerves were excised (both sciatic nerves remained intact); in the control group, no intervention was performed. SFI was calculated before and after each intervention. There was no significant difference between mean SFI values calculated before and after median nerve excision in SMNE (-86.8 versus -88.4, P = 0.61) and MNE groups (-3.9 versus -3.3, P = 0.93). Therefore, it may be suggested that median nerve excision does not affect SFI measurements in intact and/or completely injured sciatic nerve, which may propose the median nerve as an autologous donor nerve graft model in rats. © Thieme Medical Publishers.

  12. Nerve injury complicating multiligament knee injury: current concepts and treatment algorithm.

    PubMed

    Mook, William Randolph; Ligh, Cassandra A; Moorman, Claude T; Leversedge, Fraser J

    2013-06-01

    Multiligament knee injuries account for <0.02% of all orthopaedic injuries, and 16% to 40% of these patients suffer associated injury to the common peroneal nerve (CPN). The proximity of the CPN to the proximal fibula predisposes the nerve to injury during local trauma and dislocation; the nerve is highly vulnerable to stretch injury during varus stress, particularly in posterolateral corner injuries. CPN injuries have a poor prognosis compared with that of other peripheral nerve injuries. Management is determined based on the severity and location of nerve injury, timing of presentation, associated injuries requiring surgical management, and the results of serial clinical evaluations and electrodiagnostic studies. Nonsurgical treatment options include orthosis wear and physical therapy. Surgical management includes one or more of the following: neurolysis, primary nerve repair, intercalary nerve grafting, tendon transfer, and nerve transfer. Limited evidence supports the use of early one-stage nerve reconstruction combined with tendon transfer; however, optimal management of these rare injuries continues to change, and treatment should be individualized.

  13. Dexamethasone enhanced functional recovery after sciatic nerve crush injury in rats.

    PubMed

    Feng, Xinhong; Yuan, Wei

    2015-01-01

    Dexamethasone is currently used for the treatment of peripheral nerve injury, but its mechanisms of action are not completely understood. Inflammation/immune response at the site of nerve lesion is known to be an essential trigger of the pathological changes that have a critical impact on nerve repair and regeneration. In this study, we observed the effects of various doses of dexamethasone on the functional recovery after sciatic nerve crush injury in a rat model. Motor functional recovery was monitored by walking track analysis and gastrocnemius muscle mass ratio. The myelinated axon number was counted by morphometric analysis. Rats administered dexamethasone by local intramuscular injection had a higher nerve function index value, increased gastrocnemius muscle mass ratio, reduced Wallerian degeneration severity, and enhanced regenerated myelinated nerve fibers. Immunohistochemical analysis was performed for CD3 expression, which is a marker for T-cell activation, and infiltration in the sciatic nerve. Dexamethasone-injected rats had fewer CD3-positive cells compared to controls. Furthermore, we found increased expression of GAP-43, which is a factor associated with development and plasticity of the nervous system, in rat nerves receiving dexamethasone. These results provide strong evidence that dexamethasone enhances sciatic nerve regeneration and function recovery in a rat model of sciatic nerve injury through immunosuppressive and potential neurotrophic effects.

  14. Neuronal plasticity of trigeminal ganglia in mice following nerve injury

    PubMed Central

    Lynds, Randi; Lyu, Chuang; Lyu, Gong-Wei; Shi, Xie-Qi; Rosén, Annika; Mustafa, Kamal; Shi, Tie-Jun Sten

    2017-01-01

    Background Nerve injury may induce neuropathic pain. In studying the mechanisms of orofacial neuropathic pain, attention has been paid to the plastic changes that occur in the trigeminal ganglia (TGs) and nucleus in response to an injury of the trigeminal nerve branches. Previous studies have explored the impact of sciatic nerve injury on dorsal root ganglia (DRGs) and it has shown dramatic changes in the expression of multiple biomarkers. In large, the changes in biomarker expression in TGs after trigeminal nerve injury are similar to that in DRGs after sciatic nerve injury. However, important differences exist. Therefore, there is a need to study the plasticity of biomarkers in TGs after nerve injury in the context of the development of neuropathic pain-like behaviors. Aim The aim of this study was to investigate the plasticity of biomarkers associated with chronic persistent pain in TGs after trigeminal nerve injury. Materials and methods To mimic the chronic nature of the disorder, we used an intraoral procedure to access the infraorbital nerve (ION) and induced a nerve injury in mice. Immunohistochemistry and quantification were used for revealing the expression level of each biomarker in TGs after nerve injury. Results Two weeks after partial ION injury, immunohistochemistry results showed strongly upregulated expressions of activating transcription factor 3 and neuropeptide Y (NPY) in the ipsilateral TGs. Microglial cells were also activated after nerve injury. In regard to positive neuronal profile counting, however, no significant difference in expression was observed in galanin, substance P, calcitonin gene-related peptide, neuronal nitric oxide synthase, phosphorylated AKT, or P2X3 in ipsilateral TGs when compared to contralateral TGs. Conclusion In this study, the expression and regulation of biomarkers in TGs have been observed in response to trigeminal nerve injury. Our results suggest that NPY and Iba1 might play crucial roles in the pathogenesis of

  15. Meta-analysis of recurrent laryngeal nerve injury in thyroid surgery with or without intraoperative nerve monitoring.

    PubMed

    Rulli, F; Ambrogi, V; Dionigi, G; Amirhassankhani, S; Mineo, T C; Ottaviani, F; Buemi, A; DI Stefano, P; Mourad, M

    2014-08-01

    Intraoperative nerve monitoring (IONM) aimed at reducing the injuries of recurrent laryngeal nerve during thyroidectomy is controversial. We conducted a meta-analysis to assess the incidence of nerve injuries with or without IONM. Studies published from January 1994 to February 2012 in English language on humans were identified. Heterogeneity of studies was checked by the Higgins test. Summary estimates of predictive values of injury were made using the Mantel-Haenszel test based on the fixed-effects model. Publication bias was assessed by a funnel plot and Egger's method. Eight articles were selected accounting a total of 5257 nerves at risk. IONM revealed a significant impact in preventing transient injuries (positive predictive value = 5% [95% CI: 2-8], negative = 96% [95% CI: 91-100], relative risk = 0.73 [95% CI: 0.54-0.98], p = 0.035), whereas they failed to demonstrate effect on permanent injuries (positive predictive value = 2% [95% CI: 0.6-3.8], negative 99% [95% CI: 97-100], relative risk = 0.73 [95% CI: 0.44-1.23], p = 0.235). This meta-analysis demonstrated the merit of IONM in preventing transient injury during thyroidectomy. No advantage was found in permanent injuries.

  16. Peripheral nerve injuries attributable to sport and recreation.

    PubMed

    Toth, Cory

    2008-02-01

    Many different sports and recreational activities are associated with injuries to the peripheral nervous system (PNS). Although some of those injuries are specific to an individual sport, other peripheral nerve injuries occur ubiquitously within many sporting activities. This review of sport-specific PNS injuries should assist in the understanding of morbidity associated with particular sporting activities, professional or amateur. Proper recognition of these syndromes can prevent unnecessary diagnostic testing and delays in proper diagnosis. The sports most commonly associated with peripheral nerve injuries are likely football, hockey, and baseball, but many other sports have unique associations with peripheral nerve injury. This article should be of assistance for the neurologist, neurosurgeon, orthopedic surgeon, physiatrist, sports medicine doctor, and general physician in contact with athletes at risk for neurologic injuries.

  17. Peripheral nerve injuries attributable to sport and recreation.

    PubMed

    Toth, Cory

    2009-02-01

    Many different sports and recreational activities are associated with injuries to the peripheral nervous system (PNS). Although some of those injuries are specific to an individual sport, other peripheral nerve injuries occur ubiquitously within many sporting activities. This review of sport-specific PNS injuries should assist in the understanding of morbidity associated with particular sporting activities, professional or amateur. Proper recognition of these syndromes can prevent unnecessary diagnostic testing and delays in proper diagnosis. The sports most commonly associated with peripheral nerve injuries are likely football, hockey, and baseball, but many other sports have unique associations with peripheral nerve injury. This article should be of assistance for the neurologist, neurosurgeon, orthopedic surgeon, physiatrist, sports medicine doctor, and general physician in contact with athletes at risk for neurologic injuries.

  18. How Far Have We Come in the Field of Nerve Regeneration After Trigeminal Nerve Injury?

    PubMed

    Rosén, Annika; Tardast, Arezo; Shi, Tie-Jun

    2016-01-01

    Patients suffering from nerve injury with sensory disturbances or orofacial pain have greatly reduced quality of life, and it is a big cost for the society. Abnormal sensations caused by trigeminal nerve injury often become chronic, severely debilitating, and extremely difficult to treat. In general, non-invasive treatment such as drug treatment has been insufficient, and there are currently few available effective treatments. Surgical interventions such as end-to-end connection or nerve grafting have disadvantages such as donor site morbidity or formation of neuroma. There is need for optimizing the technique for nerve repair, especially for the trigeminal nerve system, which has so far not yet been well explored. Recently, tissue engineering using biodegradable synthetic material and cell-based therapies represents a promising approach to nerve repair and it has been reported that mesenchymal stem cell (MSC) has an anti-inflammatory effect and seems to play an important role in nerve healing and regeneration.

  19. A novel bioactive nerve conduit for the repair of peripheral nerve injury

    PubMed Central

    Li, Bin-bin; Yin, Yi-xia; Yan, Qiong-jiao; Wang, Xin-yu; Li, Shi-pu

    2016-01-01

    The use of a nerve conduit provides an opportunity to regulate cytokines, growth factors and neurotrophins in peripheral nerve regeneration and avoid autograft defects. We constructed a poly-D-L-lactide (PDLLA)-based nerve conduit that was modified using poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} and β-tricalcium phosphate. The effectiveness of this bioactive PDLLA-based nerve conduit was compared to that of PDLLA-only conduit in the nerve regeneration following a 10-mm sciatic nerve injury in rats. We observed the nerve morphology in the early period of regeneration, 35 days post injury, using hematoxylin-eosin and methylene blue staining. Compared with the PDLLA conduit, the nerve fibers in the PDLLA-based bioactive nerve conduit were thicker and more regular in size. Muscle fibers in the soleus muscle had greater diameters in the PDLLA bioactive group than in the PDLLA only group. The PDLLA-based bioactive nerve conduit is a promising strategy for repair after sciatic nerve injury. PMID:26981105

  20. Use of superficial peroneal nerve graft for treating peripheral nerve injuries.

    PubMed

    Ribak, Samuel; da Silva Filho, Paulo Roberto Ferreira; Tietzmann, Alexandre; Hirata, Helton Hiroshi; de Mattos, Carlos Augusto; da Gama, Sérgio Augusto Machado

    2016-01-01

    To evaluate the clinical results from treating chronic peripheral nerve injuries using the superficial peroneal nerve as a graft donor source. This was a study on eleven patients with peripheral nerve injuries in the upper limbs that were treated with grafts from the sensitive branch of the superficial peroneal nerve. The mean time interval between the dates of the injury and surgery was 93 days. The ulnar nerve was injured in eight cases and the median nerve in six. There were three cases of injury to both nerves. In the surgery, a longitudinal incision was made on the anterolateral face of the ankle, thus viewing the superficial peroneal nerve, which was located anteriorly to the extensor digitorum longus muscle. Proximally, the deep fascia between the extensor digitorum longus and the peroneal longus muscles was dissected. Next, the motor branch of the short peroneal muscle (one of the branches of the superficial peroneal nerve) was identified. The proximal limit of the sensitive branch was found at this point. The average space between the nerve stumps was 3.8 cm. The average length of the grafts was 16.44 cm. The number of segments used was two to four cables. In evaluating the recovery of sensitivity, 27.2% evolved to S2+, 54.5% to S3 and 18.1% to S3+. Regarding motor recovery, 72.7% presented grade 4 and 27.2% grade 3. There was no motor deficit in the donor area. A sensitive deficit in the lateral dorsal region of the ankle and the dorsal region of the foot was observed. None of the patients presented complaints in relation to walking. Use of the superficial peroneal nerve as a graft source for treating peripheral nerve injuries is safe and provides good clinical results similar to those from other nerve graft sources.

  1. Iatrogenic nerve injuries in the treatment of supracondylar humerus fractures: are we really just missing nerve injuries on preoperative examination?

    PubMed

    Joiner, Elizabeth R A; Skaggs, David L; Arkader, Alexandre; Andras, Lindsay M; Lightdale-Miric, Nina R; Pace, J Lee; Ryan, Deirdre D

    2014-06-01

    Recent studies report the rate of iatrogenic nerve injury in operatively treated supracondylar humerus (SCH) fractures is 3% to 4%. A reliable neurological examination can be difficult to obtain in a young child in pain. We hypothesized that nerve injuries may be missed preoperatively, later noted postoperatively in a more compliant patient, and then falsely considered an iatrogenic injury. A prospective study was conducted on patients who presented between April 2011 and April 2013 with an extension-type SCH fracture that was managed surgically. A neurological examination was performed preoperatively, postoperatively, and at follow-up visits by a fellowship-trained attending pediatric orthopaedic surgeon. Only patients in whom the attending surgeon felt a reliable neurovascular examination was obtained were included in this study. Of the 100 patients, 16% had a nerve injury recognized on preoperative examination and 3% had a new nerve injury on postoperative examination (1 anterior interosseous, 1 median sensory, and 1 radial motor). The Gartland type (P=0.421), type of reduction (open vs. closed; P=0.720), and number of lateral-entry (P=0.898) or medial-entry (P=0.938) pins used were not associated with patients who had a new nerve injury found postoperatively. A trend was seen between fracture severity and rate of a preoperative nerve injury: type II 7% (2/28), type III 19% (9/58), and type IV 36% (5/14) (P=0.058). Preoperatively, nerve injuries were noted at the following rates: median 12% (12/100) (including 8 anterior interosseous nerve injuries), radial 8% (8/100), ulnar 3% (3/100). In this prospective study, in patients who were able to comply with a preoperative neurological examination done by an attending pediatric orthopaedic surgeon, the rate of iatrogenic nerve injury after operative treatment of SCH fractures is 3%. We conclude that this finding is true, and not a result of inadequate preoperative neurological examinations. Level I prognostic study.

  2. Intraoperative peripheral nerve injury in colorectal surgery. An update.

    PubMed

    Colsa Gutiérrez, Pablo; Viadero Cervera, Raquel; Morales-García, Dieter; Ingelmo Setién, Alfredo

    2016-03-01

    Intraoperative peripheral nerve injury during colorectal surgery procedures is a potentially serious complication that is often underestimated. The Trendelenburg position, use of inappropriately padded armboards and excessive shoulder abduction may encourage the development of brachial plexopathy during laparoscopic procedures. In open colorectal surgery, nerve injuries are less common. It usually involves the femoral plexus associated with lithotomy position and self-retaining retractor systems. Although in most cases the recovery is mostly complete, treatment consists of physical therapy to prevent muscular atrophy, protection of hypoesthesic skin areas and analgesics for neuropathic pain. The aim of the present study is to review the incidence, prevention and management of intraoperative peripheral nerve injury.

  3. Gait analysis in rats with peripheral nerve injury.

    PubMed

    Yu, P; Matloub, H S; Sanger, J R; Narini, P

    2001-02-01

    Rats are commonly used to study peripheral nerve repair and grafting. The traditional footprint method to assess functional recovery is messy, indirect, and not useful when contractures develop in the animal model. The aim of the present study was to establish an accurate, reproducible, but simple, method to assess dynamic limb function. The basic quantitative aspects of a normal gait were characterized from 59 recorded walks in 23 rats. The video was digitized and analyzed frame by frame on a personal computer. Seven parameters of the gait were assessed: (1) walking speed; (2) stance phase, swing phase and right to left stance/swing ratio; (3) step length and step length ratio; (4) ankle angles at terminal stance and midswing; (5) tail height; (6) midline deviation; and (7) tail deviation. These gait parameters were then applied to groups of animals with sciatic (group S), tibial (group T), and peroneal (group P) nerve injuries. A discriminant analysis was performed to analyze each parameter and to compute a functional score. We found that the video gait analysis was superior to the footprint method and believe it will be very useful in future studies on peripheral nerve injury.

  4. Nerve injuries sustained during warfare: part I--Epidemiology.

    PubMed

    Birch, R; Misra, P; Stewart, M P M; Eardley, W G P; Ramasamy, A; Brown, K; Shenoy, R; Anand, P; Clasper, J; Dunn, R; Etherington, J

    2012-04-01

    We describe 261 peripheral nerve injuries sustained in war by 100 consecutive service men and women injured in Iraq and Afghanistan. Their mean age was 26.5 years (18.1 to 42.6), the median interval between injury and first review was 4.2 months (mean 8.4 months (0.36 to 48.49)) and median follow-up was 28.4 months (mean 20.5 months (1.3 to 64.2)). The nerve lesions were predominantly focal prolonged conduction block/neurapraxia in 116 (45%), axonotmesis in 92 (35%) and neurotmesis in 53 (20%) and were evenly distributed between the upper and the lower limbs. Explosions accounted for 164 (63%): 213 (82%) nerve injuries were associated with open wounds. Two or more main nerves were injured in 70 patients. The ulnar, common peroneal and tibial nerves were most commonly injured. In 69 patients there was a vascular injury, fracture, or both at the level of the nerve lesion. Major tissue loss was present in 50 patients: amputation of at least one limb was needed in 18. A total of 36 patients continued in severe neuropathic pain. This paper outlines the methods used in the assessment of these injuries and provides information about the depth and distribution of the nerve lesions, their associated injuries and neuropathic pain syndromes.

  5. Clinical aspects of ballistic peripheral nerve injury: shrapnel versus gunshot.

    PubMed

    Rochkind, Shimon; Strauss, Ido; Shlitner, Zvi; Alon, Malvina; Reider, Evgeny; Graif, Moshe

    2014-08-01

    Ballistic injuries to peripheral nerves pose special challenges in terms of indications, timing and type of surgical intervention. The aim of the present work was to analyze our experience in the surgical treatment of peripheral nerve ballistic injuries with respect to the mechanism of injury (gunshot versus shrapnel), and identify common and dissimilar prognostic factors in both types of injury. This study was conducted on 42 patients totaling 58 nerves. Twenty-two patients (32 nerves) were injured by gunshot and 20 patients (26 nerves) by shrapnel. Median postoperative follow-up was 33 months (range 12 months to 14 years). Overall postoperative outcome appears to be more favorable for gunshot-wound (GSW) patients than shrapnel-injured patients, especially in terms of neuropathic pain relief (75 % vs. 58 % respectively, p < 0.05). Presence of foreign particles in shrapnel injured patients has a negative impact on the surgical outcome in terms of rate of pain improvement (28 % compared to 67 % in patients with and without foreign particles, respectively). Nerve graft reconstruction, rather than neurolysis, seems to be the more beneficial treatment for shrapnel-induced neuropathic pain (100 % vs. 47 % in improvement rate, respectively). Early surgical intervention (median 2 months after injury) significantly relieved neuropathic pain in 83 % of shrapnel-injured patients compared to 58 % in patients operated later. This study suggests that shrapnel injury is more destructive for nerve tissue than gunshot injury. Our impression is that early surgical intervention in shrapnel injuries and split nerve grafting (especially when small fragments are recognized in the nerve) significantly improve the patient's functional activity and quality of life.

  6. Increased expression of Gem after rat sciatic nerve injury.

    PubMed

    Wang, Youhua; Cheng, Xinghai; Zhou, Zhengming; Wu, Hao; Long, Long; Gu, Xingxing; Xu, Guangfei

    2013-02-01

    Gem belongs to the Rad/Gem/Kir subfamily of Ras-related GTPases, whose expression is induced in several cell types upon activation by extracellular stimuli. Two functions of Gem have been demonstrated, including regulation of voltage-gated calcium channel activity and inhibition of Rho kinase-mediated cytoskeletal reorganization, such as stress fiber formation and neurite retraction. Because of the essential relationship between actin reorganization and peripheral nerve regeneration, we investigated the spatiotemporal expression of Gem in a rat sciatic nerve crush (SNC) model. After never injury, we observed that Gem had a significant up-regulation from 1 day, peaked at day 5 and then gradually decreased to the normal level. At its peak expression, Gem expressed mainly in Schwann cells (SCs) and macrophages of the distal sciatic nerve segment, but had few colocalization in axons. In addition, the peak expression of Gem was in parallel with PCNA, and numerous SCs expressing Gem were PCNA positive. Thus, all of our findings suggested that Gem may be involved in the pathophysiology of sciatic nerve after SNC.

  7. Antioxidative mechanism of Lycium barbarum polysaccharides promotes repair and regeneration following cavernous nerve injury

    PubMed Central

    Zhao, Zhan-kui; Yu, Hong-lian; Liu, Bo; Wang, Hui; Luo, Qiong; Ding, Xie-gang

    2016-01-01

    Polysaccharides extracted from Lycium barbarum exhibit antioxidant properties. We hypothesized that these polysaccharides resist oxidative stress-induced neuronal damage following cavernous nerve injury. In this study, rat models were intragastrically administered Lycium barbarum polysaccharides for 2 weeks at 1, 7, and 14 days after cavernous nerve injury. Serum superoxide dismutase and glutathione peroxidase activities significantly increased at 1 and 2 weeks post-injury. Serum malondialdehyde levels decreased at 2 and 4 weeks. At 12 weeks, peak intracavernous pressure, the number of myelinated axons and nicotinamide adenine dinucleotide phosphate-diaphorase-positive nerve fibers, levels of phospho-endothelial nitric oxide synthase protein and 3-nitrotyrosine were higher in rats administered at 1 day post-injury compared with rats administered at 7 and 14 days post-injury. These findings suggest that application of Lycium barbarum polysaccharides following cavernous nerve crush injury effectively promotes nerve regeneration and erectile functional recovery. This neuroregenerative effect was most effective in rats orally administered Lycium barbarum polysaccharides at 1 day after cavernous nerve crush injury. PMID:27651780

  8. Nerve injuries associated with supracondylar fractures of the humerus in children: our experience in a specialist peripheral nerve injury unit.

    PubMed

    Kwok, I H Y; Silk, Z M; Quick, T J; Sinisi, M; MacQuillan, A; Fox, M

    2016-06-01

    We aimed to identify the pattern of nerve injury associated with paediatric supracondylar fractures of the humerus. Over a 17 year period, between 1996 and 2012, 166 children were referred to our specialist peripheral nerve injury unit. From examination of the medical records and radiographs were recorded the nature of the fracture, associated vascular and neurological injury, treatment provided and clinical course. Of the 166 patients (111 male, 55 female; mean age at time of injury was seven years (standard deviation 2.2)), 26 (15.7%) had neurological dysfunction in two or more nerves. The injury pattern in the 196 affected nerves showed that the most commonly affected nerve was the ulnar nerve (43.4%), followed by the median (36.7%) and radial (19.9%) nerves. A non-degenerative injury was seen in 27.5%, whilst 67.9% were degenerative in nature. Surgical exploration of the nerves was undertaken in 94 (56.6%) children. The mean follow-up time was 12.8 months and 156 (94%) patients had an excellent or good clinical outcome according to the grading of Birch, Bonney and Parry. Following paediatric supracondylar fractures we recommend prompt referral to a specialist unit in the presence of complete nerve palsy, a positive Tinel's sign, neuropathic pain or vascular compromise, for consideration of nerve exploration. When managed appropriately, nerve recovery and clinical outcomes for this paediatric population are extremely favourable. Cite this article: Bone Joint J 2016;98-B:851-6. ©2016 The British Editorial Society of Bone & Joint Surgery.

  9. Investigation of infraorbital nerve injury following zygomaticomaxillary complex fractures.

    PubMed

    Sakavicius, D; Juodzbalys, G; Kubilius, R; Sabalys, G P

    2008-12-01

    The aim of this study was to investigate the severity of infraorbital nerve injury following zygomaticomaxillary complex fractures and to estimate the treatment methods facilitating its functional recovery. A total of 478 patients with unilateral zygomaticomaxillary complex fractures were treated. Infraorbital nerve sensory disturbances were diagnosed in 64.4% of the patients. Injury of the infraorbital nerve was expressed as asymmetry index, which was calculated as a ratio between the affected side and the intact side electric pain detection thresholds at the innervation zone skin before treatment and 14 days, 1, 3, 6 and 12 months postoperatively. A mean asymmetry index of 0.6 +/- 0.03 and 1.9 +/- 0.5 was registered for 57 (11.9%) patients with hyperalgesia and for 251 (52.5%) patients with hypoalgesia, respectively. As a result of retrospective analysis of infraorbital nerve sensory disturbances and its functional recovery, infraorbital nerve injury severity was classified as mild, moderate and severe. It was found that the dynamics and outcome of the functional infraorbital nerve recovery depend on the severity of the injury and the presence of infraorbital canal damage. Function was completely recovered within 3 months after treatment in cases with mild nerve injury. In moderate cases, complete recovery was seen within 6 months and in 34.6% of the severe cases, within a 12-month period after treatment when infraorbital nerve decompression was performed according to the stated indication. Treatment based on infraorbital nerve injury classification offers a better prognosis for complete recovery of the infraorbital nerve function.

  10. Chronic postoperative breast pain: danger zones for nerve injuries.

    PubMed

    Ducic, Ivica; Seiboth, Laura A; Iorio, Matthew L

    2011-01-01

    Postoperative breast pain is a frequent complaint, reported by 50 percent of women following a breast procedure. Breast pain interferes with sexual activity, as reported by 48 percent of patients, exercise (36 percent), social activity (13 percent), and employment (6 percent). To define neurogenic causes of chronic postoperative breast pain, the authors performed a retrospective review of consecutive patients from a single surgeon and performed 10 anatomical bilateral dissections. The authors evaluated the most commonly injured nerves, based on zone of injury, injury type, and precedent breast procedure. Dissections referenced the zone of injury with the specific procedure and designated the individual nerves at risk. The authors identified 57 patients with chronic breast pain from breast reconstruction (n = 38), reduction (n = 2), mastopexy (n = 2), augmentation (n = 4) and irradiation (n = 11). On the basis of anatomic innervation, the authors designated five zones of nerve injury: superior, medial, inferior, lateral, and central/nipple-areola complex. The lateral zone was most commonly injured (79 percent), followed by inferior (10.5 percent), medial (5 percent), central (3.5 percent), and superior (2 percent) zones. Forty-two patients suffered intercostal nerve neuromas from mechanical nerve trauma/entrapment, with pain at the surgical scar or nearby tissue dissection. Four patients with traction-stretch neuropathy had pain from blunt augmentation pocket dissection. Eleven patients with irradiation-induced neuropathy had diffuse, nonlocalized nerve pain. By shifting the approach to chronic breast pain from "global chronic breast pain" to defined danger zones of nerve injury, the practitioner can identify the type of nerve injury and associate the most common nerve injury to a given breast procedure. This approach should assist in diagnosis and treatment, and ultimately improve patient morbidity.

  11. Effectiveness of intracavernous delivery of adenovirus encoding Smad7 gene on erectile function in a mouse model of cavernous nerve injury.

    PubMed

    Song, Kang Moon; Chung, Jae-Seung; Choi, Min Ji; Jin, Hai-Rong; Yin, Guo Nan; Kwon, Mi-Hye; Park, Jin-Mi; Kim, Woo Jean; Lee, Sang-Jin; Kim, Seong-Jin; Ryu, Ji-Kan; Suh, Jun-Kyu

    2014-01-01

    Men with erectile dysfunction (ED) respond poorly to oral phosphodiesterase-5 inhibitors following radical prostatectomy. Recent studies have reported that up-regulation of transforming growth factor-β1 (TGF-β1) and activation of the Smad signaling pathway play important roles in cavernous fibrosis and in the deterioration of erectile function in a mouse model of cavernous nerve injury (CNI) and in patients with spinal cord injury. The mothers against decapentaplegic homolog 7 (Smad7) is known to inhibit the phosphorylation of Smad2 and Smad3. To investigate the effectiveness of adenoviruses encoding Smad7 gene (Ad-Smad7) on erectile function in a mouse model of CNI. Twelve-week-old C57BL/6J mice were used and distributed into 7 groups: sham operation group, untreated CNI group, and CNI groups receiving a single intracavernous injection of adenovirus encoding LacZ (1 × 10(8) virus particles [vp]/20 μL) or adenovirus encoding Smad7 (Ad-Smad7; 1 × 10(7), 1 × 10(8), 2 × 10(8), or 1 × 10(9) vp/20 μL). Two weeks after bilateral cavernous nerve crushing and treatment, erectile function was measured by electrical stimulation of the cavernous nerve. The penis was harvested for histologic examinations and Western blot analysis. The highest erectile response was noted in CNI mice treated with Ad-Smad7 at a dose of 1 × 10(8)  vp, which reached up to 82-85% of sham control values. Local delivery of Ad-Smad7 significantly decreased endothelial cell apoptosis and the production of extracellular matrix proteins, including plasminogen activator inhibitor-1, fibronectin, collagen I, and collagen IV, and induced endothelial nitric oxide synthase phosphorylation in the corpus cavernosum tissue of CNI mice. The adenovirus-mediated gene transfer of Smad7 successfully restored erectile function by enhancing endothelial cell function and through antifibrotic effects. These findings suggest that inhibition of the TGF-β signaling pathway by use of

  12. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury

    PubMed Central

    Li, Hong-fei; Wang, Yi-ru; Huo, Hui-ping; Wang, Yue-xiang; Tang, Jie

    2015-01-01

    Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration. PMID:26807123

  13. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury.

    PubMed

    Li, Hong-Fei; Wang, Yi-Ru; Huo, Hui-Ping; Wang, Yue-Xiang; Tang, Jie

    2015-11-01

    Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration.

  14. Conservative rehabilitation of sciatic nerve injury following hamstring tear.

    PubMed

    Aggen, Peter D; Reuteman, Paul

    2010-09-01

    Resident's case report There have been only a few case reports in the literature mentioning sciatic nerve injury following a hamstring tear. In previous cases surgical intervention was performed to debride scar tissue around the sciatic nerve with the goal of full return to function for the patient. The purpose of this case report is to describe the conservative interventions that allowed for recovery from a hamstring tear with sciatic nerve involvement. The subject was a 53 year old female who developed foot drop and weakness in the common fibular nerve distribution following a grade 3 hamstring injury sustained during Nordic skiing. Nerve function and strength gradually returned over the course of several months of conservative rehabilitation which included on neural gliding and strengthening exercises. At 18 months post injury, the subject had returned to 95% of full sport function and 98% of full function with activities of daily living, as rated by the Hip Outcome Scale, and had full strength with manual muscle testing. Isokinetic testing revealed strength deficits of 11-23% in knee flexion peak torque at 60 degrees/second and 180 degrees/second respectively. Sciatic nerve injury is a rare, but important potential consequence of severe hamstring strains. Clinicians should be cognizant of the potential injury to the nerve tissue following hamstring strains, so they may be dealt with in a prompt and appropriate manner. The use of neural gliding may be worth considering for a prophylactic effect following hamstring strains.

  15. Biomechanical analysis of optic nerve injury treated by compound light granules and ciliary neurotrophic factor☆

    PubMed Central

    Jiang, Yuying; Xu, Haitao; Liu, Jingxiang; Li, Peng; Wu, Yazhen

    2012-01-01

    In this study, rabbit models of optic nerve injury were reproduced by the clamp method. After modeling, rabbit models were given one injection of 50 ng recombinant human ciliary neurotrophic factor into the vitreous body and/or intragastric injection of 4 g/kg compound light granules containing Radix Angelicae Sinensis and Raidix Paeoniae Alba at 4 days after modeling, once per day for 30 consecutive days. After administration, the animals were sacrificed and the intraorbital optic nerve was harvested. Hematoxylin-eosin staining revealed that the injured optic nerve was thinner and optic nerve fibers were irregular. After treatment with recombinant human ciliary neurotrophic factor, the arrangement of optic nerve fibers was disordered but they were not markedly thinner. After treatment with compound light granules, the arrangement of optic nerve fibers was slightly disordered and their structure was intact. After combined treatment with recombinant human ciliary neurotrophic factor and compound light granules, the arrangement of optic nerve fibers was slightly disordered and the degree of injury was less than after either treatment alone. Results of tensile mechanical testing of the optic nerve showed that the tensile elastic limit strain, elastic limit stress, maximum stress and maximum strain of the injured optic nerve were significantly lower than the normal optic nerve. After treatment with recombinant human ciliary neurotrophic factor and/or compound light granules, the tensile elastic limit strain, elastic limit stress, maximum stress and maximum strain of the injured optic nerve were significantly increased, especially after the combined treatment. These experimental findings indicate that compound light granules and ciliary neurotrophic factor can alleviate optic nerve injury at the histological and biochemical levels, and the combined treatment is more effective than either treatment alone. PMID:25317141

  16. “Early Evaluation of Nerve Regeneration After Nerve Injury and Repair Using Functional Connectivity MRI”

    PubMed Central

    Li, Rupeng; Hettinger, Patrick C.; Liu, Xiping; Machol, Jacques; Yan, Ji-Geng; Matloub, Hani S.; Hyde, James S.

    2014-01-01

    Resting state functional connectivity magnetic resonance imaging (fcMRI) studies in rat brain show brain reorganization caused by nerve injury and repair. In this study, distinguishable differences were found in healthy, nerve transection without repair (R+) and nerve transection with repair (R−) groups in the subacute stage (two weeks after initial injury). Only forepaw on the healthy side was used to determine seed voxel regions in this study. Disturbance of neuronal network in the primary sensory region of cortex occurs within two hours after initial injury, and the network pattern was restored in R+ group in subacute stage, while the disturbed pattern remained in R− group. These are the central findings of the study. This technique provides a novel way of detecting and monitoring the effectiveness of peripheral nerve injury treatment in the early stage and potentially offers a tool for clinicians to avoid poor clinical outcomes. PMID:24515926

  17. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells

    PubMed Central

    Costantini, Todd W.; Bansal, Vishal; Krzyzaniak, Michael; Putnam, James G.; Peterson, Carrie Y.; Loomis, William H.; Wolf, Paul; Baird, Andrew; Eliceiri, Brian P.

    2010-01-01

    The enteric nervous system may have an important role in modulating gastrointestinal barrier response to disease through activation of enteric glia cells. In vitro studies have shown that enteric glia activation improves intestinal epithelial barrier function by altering the expression of tight junction proteins. We hypothesized that severe injury would increase expression of glial fibrillary acidic protein (GFAP), a marker of enteric glial activation. We also sought to define the effects of vagal nerve stimulation on enteric glia activation and intestinal barrier function using a model of systemic injury and local gut mucosal involvement. Mice with 30% total body surface area steam burn were used as model of severe injury. Vagal nerve stimulation was performed to assess the role of parasympathetic signaling on enteric glia activation. In vivo intestinal permeability was measured to assess barrier function. Intestine was collected to investigate changes in histology; GFAP expression was assessed by quantitative PCR, by confocal microscopy, and in GFAP-luciferase transgenic mice. Stimulation of the vagus nerve prevented injury-induced intestinal barrier injury. Intestinal GFAP expression increased at early time points following burn and returned to baseline by 24 h after injury. Vagal nerve stimulation prior to injury increased GFAP expression to a greater degree than burn alone. Gastrointestinal bioluminescence was imaged in GFAP-luciferase transgenic animals following either severe burn or vagal stimulation and confirmed the increased expression of intestinal GFAP. Injection of S-nitrosoglutathione, a signaling molecule released by activated enteric glia cells, following burn exerts protective effects similar to vagal nerve stimulation. Intestinal expression of GFAP increases following severe burn injury. Stimulation of the vagus nerve increases enteric glia activation, which is associated with improved intestinal barrier function. The vagus nerve may mediate the

  18. Nerve transfer helps repair brachial plexus injury by increasing cerebral cortical plasticity

    PubMed Central

    Sun, Guixin; Wu, Zuopei; Wang, Xinhong; Tan, Xiaoxiao; Gu, Yudong

    2014-01-01

    In the treatment of brachial plexus injury, nerves that are functionally less important are transferred onto the distal ends of damaged crucial nerves to help recover neuromuscular function in the target region. For example, intercostal nerves are transferred onto axillary nerves, and accessory nerves are transferred onto suprascapular nerves, the phrenic nerve is transferred onto the musculocutaneous nerves, and the contralateral C7 nerve is transferred onto the median or radial nerves. Nerve transfer has become a major method for reconstructing the brachial plexus after avulsion injury. Many experiments have shown that nerve transfers for treatment of brachial plexus injury can help reconstruct cerebral cortical function and increase cortical plasticity. In this review article, we summarize the recent progress in the use of diverse nerve transfer methods for the repair of brachial plexus injury, and we discuss the impact of nerve transfer on cerebral cortical plasticity after brachial plexus injury. PMID:25657729

  19. Identification of Changes in Gene expression of rats after Sensory and Motor Nerves Injury.

    PubMed

    Wang, Yu; Guo, Zhi-Yuan; Sun, Xun; Lu, Shi-Bi; Xu, Wen-Jing; Zhao, Qing; Peng, Jiang

    2016-06-02

    Wallerian degeneration is a sequence of events in the distal stump of axotomized nerves. Despite large numbers of researches concentrating on WD, the biological mechanism still remains unclear. Hence we constructed a rat model with both motor and sensory nerves injury and then conducted a RNA-seq analysis. Here the rats were divided into the 4 following groups: normal motor nerves (NMN), injured motor nerves (IMN), normal sensory nerves (NSN) and injured sensory nerves (ISN). The transcriptomes of rats were sequenced by the Illumina HiSeq. The differentially expressed genes (DEGs) of 4 combinations including NMN vs. IMN, NSN vs. ISN, NMN vs. NSN and IMN vs. ISN were identified respectively. For the above 4 combinations, we identified 1666, 1514, 95 and 17 DEGs. We found that NMN vs. IMN shared the most common genes with NSN vs. ISN indicating common mechanisms between motor nerves injury and sensory nerves injury. At last, we performed an enrichment analysis and observed that the DEGs of NMN vs IMN and NSN vs. ISN were significantly associated with binding and activity, immune response, biosynthesis, metabolism and development. We hope our study may shed light on the molecular mechanisms of nerves degeneration and regeneration during WD.

  20. Sympathetic fibre sprouting in the skin contributes to pain-related behaviour in spared nerve injury and cuff models of neuropathic pain.

    PubMed

    Nascimento, Francisney P; Magnussen, Claire; Yousefpour, Noosha; Ribeiro-da-Silva, Alfredo

    2015-09-17

    Cuff and spared nerve injury (SNI) in the sciatic territory are widely used to model neuropathic pain. Because nociceptive information is first detected in skin, it is important to understand how alterations in peripheral innervation contribute to pain in each model. Over 16 weeks in male rats, changes in sensory and autonomic innervation of the skin were described after cuff and SNI using immunohistochemistry to label myelinated (neurofilament 200 positive-NF200+) and peptidergic (calcitonin gene-related peptide positive-CGRP+) primary afferents and sympathetic fibres (dopamine β-hydroxylase positive-DBH+) Cuff and SNI caused an early loss and later reinnervation of NF200 and CGRP fibres in the plantar hind paw skin. In both models, DBH+ fibres sprouted into the upper dermis of the plantar skin 4 and 6 weeks after injury. Despite these similarities, behavioural pain measures were significantly different in each model. Sympathectomy using guanethidine significantly alleviated mechanical allodynia 6 weeks after cuff, when peak sympathetic sprouting was observed, having no effect at 2 weeks, when fibres were absent. In SNI animals, mechanical allodynia in the lateral paw was significantly improved by guanethidine at 2 and 6 weeks, and the development of cold hyperalgesia, which roughly paralleled the appearance of ectopic sympathetic fibres, was alleviated by guanethidine at 6 weeks. Sympathetic fibres did not sprout into the dorsal root ganglia at 2 or 6 weeks, indicating their unimportance to pain behaviour in these two models. Alterations in sympathetic innervation in the skin represents an important mechanism that contributes to pain in cuff and SNI models of neuropathic pain.

  1. [Isolated traumatic injuries of the axillary nerve. Radial nerve transfer in four cases and literatura review].

    PubMed

    Domínguez-Páez, Miguel; Socolovsky, Mariano; Di Masi, Gilda; Arráez-Sánchez, Miguel Ángel

    2012-11-01

    To analyze the results of an initial series of four cases of traumatic injuries of the axillary nerve, treated by a nerve transfer from the triceps long branch of the radial nerve. An extensive analysis of the literature has also been made. Four patients aged between 21 and 42 years old presenting an isolated traumatic palsy of the axillary nerve were operated between January 2007 and June 2010. All cases were treated by nerve transfer six to eight months after the trauma. The results of these cases are analyzed, the same as the axillary nerve injuries series presented in the literature from 1982. One year after the surgery, all patients improved their abduction a mean of 70° (range 30 to 120°), showing a M4 in the British Medical Council Scale. No patient complained of triceps weakness after the procedure. These results are similar to those published employing primary grafting for the axillary nerve. Isolated injuries of the axillary nerve should be treated with surgery when spontaneous recovery is not verified 6 months after the trauma. Primary repair with grafts is the most popular surgical technique, with a rate of success of approximately 90%. The preliminary results of a nerve transfer employing the long triceps branch are similar, and a definite comparison of both techniques with a bigger number of cases should be done in the future. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  2. Femoral nerve regeneration and its accuracy under different injury mechanisms.

    PubMed

    Aikeremujiang Muheremu; Ao, Qiang; Wang, Yu; Cao, Peng; Peng, Jiang

    2015-10-01

    Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage.

  3. Interfacing peripheral nerve with macro-sieve electrodes following spinal cord injury.

    PubMed

    Birenbaum, Nathan K; MacEwan, Matthew R; Ray, Wilson Z

    2017-06-01

    Macro-sieve electrodes were implanted in the sciatic nerve of five adult male Lewis rats following spinal cord injury to assess the ability of the macro-sieve electrode to interface regenerated peripheral nerve fibers post-spinal cord injury. Each spinal cord injury was performed via right lateral hemisection of the cord at the T9-10 site. Five months post-implantation, the ability of the macro-sieve electrode to interface the regenerated nerve was assessed by stimulating through the macro-sieve electrode and recording both electromyography signals and evoked muscle force from distal musculature. Electromyography measurements were recorded from the tibialis anterior and gastrocnemius muscles, while evoked muscle force measurements were recorded from the tibialis anterior, extensor digitorum longus, and gastrocnemius muscles. The macro-sieve electrode and regenerated sciatic nerve were then explanted for histological evaluation. Successful sciatic nerve regeneration across the macro-sieve electrode interface following spinal cord injury was seen in all five animals. Recorded electromyography signals and muscle force recordings obtained through macro-sieve electrode stimulation confirm the ability of the macro-sieve electrode to successfully recruit distal musculature in this injury model. Taken together, these results demonstrate the macro-sieve electrode as a viable interface for peripheral nerve stimulation in the context of spinal cord injury.

  4. An unusual presentation of whiplash injury: long thoracic and spinal accessory nerve injury

    PubMed Central

    Omar, N.; Srinivasan, M. S.

    2007-01-01

    Whiplash injuries from motor vehicle accidents are very common. The usual presentation and course of this condition normally results in resolution of symptoms within a few weeks. Brachial plexus traction injuries without any bone or joint lesion of the cervical spine have been reported before. We report a case where a gentleman was involved in a rear end vehicle collision, sustained a whiplash injury and was later found to have a long thoracic nerve palsy and spinal accessory nerve palsy. Although isolated injuries of both nerves following a whiplash injury have been reported, combined injury of the two nerves following a whiplash injury is very uncommon and is being reported for the first time. PMID:17587067

  5. Nerve injury and neuropathic pain — A question of age

    PubMed Central

    Fitzgerald, Maria; McKelvey, Rebecca

    2016-01-01

    The effects of peripheral nerve injury on somatosensory processing and pain are highly dependent upon the age at which the damage occurs. Adult nerve injury rapidly triggers neuropathic pain, but this is not so if the same nerve injury is performed in animals below postnatal day (P) 28, consistent with observations in paediatric patients. However, longitudinal studies show that pain hypersensitivity emerges later in life, when the animal reaches adolescence, an observation that could be of clinical importance. Here we discuss the evidence that the central consequences of nerve damage are critically determined by the status of neuroimmune regulation at different ages. In the first postnatal weeks, when spinal somatosensory circuits are undergoing synaptic reorganisation, the ‘default’ neuroimmune response is skewed in an anti-inflammatory direction, suppressing the excitation of dorsal horn neurons and preventing the onset of neuropathic pain. As animals grow up and the central nervous system matures, the neuroimmune profile shifts in a pro-inflammatory direction, unmasking a ‘latent’ pain response to an earlier nerve injury. The data predicts that nerve injury in infancy and childhood could go unnoticed at the time, but emerge as clinically ‘unexplained’ or ‘functional’ pain in adolescence. PMID:26220898

  6. SynCAM1 expression correlates with restoration of central synapses on spinal motoneurons after two different models of peripheral nerve injury.

    PubMed

    Zelano, Johan; Berg, Alexander; Thams, Sebastian; Hailer, Nils P; Cullheim, Staffan

    2009-12-10

    SynCAM1 and neuroligins (NLGs) are adhesion molecules that govern synapse formation in vitro. In vivo, the molecules are expressed during synaptogenesis, and altered NLG function is linked to synapse dysfunction in autism. Less is known about SynCAM1 and NLGs in adult synapse remodeling. CNS synapse elimination occurs after peripheral nerve injury, which causes a transient decrease in synapse number on spinal motoneurons. Here we have studied the expression of SynCAM1 and NLGs in relation to changes in synaptic covering on spinal motoneurons. We performed sciatic nerve transection (SNT) or crush (SNC), axotomy models that result in poor or good conditions for axon regeneration, respectively. The two lesions resulted in similar synapse elimination and in poor (SNT) and good (SNC) return of synapses after 70 days. Functional recovery was good after SNC but absent after SNT. SynCAM1 mRNA decreased after 14 days in both models and was restored 70 days after SNC, but not after SNT. NLG2 and -3 mRNAs decreased to a smaller degree after SNC than after SNT. Synaptophysin immunoreactivity correlated with SynCAM1 mRNA 70 days after SNT and NLG2 mRNA 70 days after SNC. Surprisingly, an inverse correlation was seen between NLG3 mRNA and Vglut2, a marker for excitatory synapses, 70 days after SNT. We conclude that 1) SynCAM1 mRNA levels seem to reflect the loss and restoration of synapses on motoneurons, 2) down-regulation of NLGs is not a prerequisite for synapse elimination, and 3) expression of SynCAM1 and NLGs is regulated by different mechanisms during regeneration.

  7. Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury

    PubMed Central

    Muheremu, Aikeremujiang

    2015-01-01

    With significant advances in the research and application of nerve conduits, they have been used to repair peripheral nerve injury for several decades. Nerve conduits range from biological tubes to synthetic tubes, and from nondegradable tubes to biodegradable tubes. Researchers have explored hollow tubes, tubes filled with scaffolds containing neurotrophic factors, and those seeded with Schwann cells or stem cells. The therapeutic effect of nerve conduits is improving with increasing choice of conduit material, new construction of conduits, and the inclusion of neurotrophic factors and support cells in the conduits. Improvements in functional outcomes are expected when these are optimized for use in clinical practice. PMID:26491662

  8. Meaningful power grip recovery after salvage reconstruction of a median nerve avulsion injury with a pedicled vascularized ulnar nerve

    PubMed Central

    Van Slyke, Aaron C; Jansen, Leigh A; Hynes, Sally; Hicks, Jane; Bristol, Sean; Carr, Nicholas

    2015-01-01

    In cases of median nerve injury alongside an unsalvageable ulnar nerve, a vascularized ulnar nerve graft to reconstruct the median nerve is a viable option. While restoration of median nerve sensation is consistently reported, recovery of significant motor function is less frequently observed. The authors report a case involving a previously healthy man who sustained upper arm segmental median and ulnar nerve injuries and, after failure of sural nerve grafts, was treated with a pedicled vascularized ulnar nerve graft to restore median nerve function. Long-term follow-up showed near full fist, with 12 kg of grip strength, key pinch with 1.5 kg of strength and protective sensation in the median nerve distribution. The present case demonstrates that pedicled ulnar vascularized nerve grafts can provide significant improvements to median nerve sensory and motor function in a heavily scarred environment. PMID:26665144

  9. Long thoracic nerve injury due to an electric burn.

    PubMed

    Still, J M; Law, E J; Duncan, J W; Hughes, H F

    1996-01-01

    A 19-year-old white man was burned over 7.5% of his body when he sustained an electric injury from a transformer. There was no associated fall or loss of consciousness. Debridement and grafting were required. The patient had some transient weakness of the muscles of his right arm associated with lower cervical nerve-root injury. This subsequently improved. He also was found to have paralysis of the serratus anterior muscle, with winging of the scapula due to long thoracic nerve injury. This has not improved. A surgical procedure suggested to improve function of the shoulder was rejected by the patient. This is only the second case reported of long thoracic nerve injury due to an electric burn of which we are aware.

  10. Pattern of Mas expression in acute and post-acute stage of nerve injury in mice.

    PubMed

    Assis, Alex Dias; de Assis Araújo, Fernanda; Dos Santos, Robson Augusto Souza; Andrade, Silvia Passos; Zanon, Renata Graciele

    2017-09-01

    Angiotensin-(1-7) (Ang [1-7]) and its receptor Mas are involved in a number of physiological processes, including control of arterial pressure and modulation of nervous system actions. However, the involvement of the Ang-(1-7)/Mas axis in peripheral nerve injury has not been investigated. Using a model of sciatic nerve injury in mice, we demonstrated opposing changes in Mas receptor expression at days 2 and 14 post-injury. Mas receptor expression was more intense 2days after the nerve lesion, compared with the intensity of the intact nerve. At this time point, the sciatic nerve functional index was -20. At day 14 after the lesion, the intensity of the immunostaining labeling in longitudinal sections of the nerve was reduced (∼30%) and the functional index increased +36 (gait improvement). In the axotomized group treated with A779 (a Mas receptor antagonist), the functional recovery index decreased in relation to the untreated axotomized group. The Mas receptor inhibitor also altered the intensity of labeling of S-100, GAP43, and IBA-1 (morphological features compatible with delayed axon growth). This study demonstrated that Ang-(1-7)/Mas axis activity was differentially modulated in the acute and post-acute stages of nerve injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Blockade of transient receptor potential cation channel subfamily V member 1 promotes regeneration after sciatic nerve injury

    PubMed Central

    Ren, Fei; Zhang, Hong; Qi, Chao; Gao, Mei-ling; Wang, Hong; Li, Xia-qing

    2015-01-01

    The transient receptor potential cation channel subfamily V member 1 (TRPV1) provides the sensation of pain (nociception). However, it remains unknown whether TRPV1 is activated after peripheral nerve injury, or whether activation of TRPV1 affects neural regeneration. In the present study, we established rat models of unilateral sciatic nerve crush injury, with or without pretreatment with AMG517 (300 mg/kg), a TRPV1 antagonist, injected subcutaneously into the ipsilateral paw 60 minutes before injury. At 1 and 2 weeks after injury, we performed immunofluorescence staining of the sciatic nerve at the center of injury, at 0.3 cm proximal and distal to the injury site, and in the dorsal root ganglia. Our results showed that Wallerian degeneration occurred distal to the injury site, and neurite outgrowth and Schwann cell regeneration occurred proximal to the injury. The number of regenerating myelinated and unmyelinated nerve clusters was greater in the AMG517-pretreated rats than in the vehicle-treated group, most notably 2 weeks after injury. TRPV1 expression in the injured sciatic nerve and ipsilateral dorsal root ganglia was markedly greater than on the contralateral side. Pretreatment with AMG517 blocked this effect. These data indicate that TRPV1 is activated or overexpressed after sciatic nerve crush injury, and that blockade of TRPV1 may accelerate regeneration of the injured sciatic nerve. PMID:26487864

  12. Platelet-rich plasma limits the nerve injury caused by 10% dextrose in the rabbit median nerve.

    PubMed

    Park, Gi-Young; Kwon, Dong Rak

    2014-01-01

    We evaluated the effect of platelet-rich plasma (PRP) injection in a rabbit model of dextrose-induced median nerve injury. New Zealand white rabbits (n = 15) were divided randomly into 3 groups. Three different regimens (group 1: 0.1 ml saline; group 2: 10% dextrose with PRP; group 3: 10% dextrose with saline) were injected within the carpal tunnel. Electrophysiological and histological findings were evaluated 12 weeks after the injection. The mean median motor latency in group 3 was significantly longer than that in groups 1 and 2. The cross-sectional area of the median nerve and subsynovial connective tissue thickness in group 3 were significantly larger than those in groups 1 and 2. PRP injection may be effective in controlling median nerve injury, as demonstrated by improvement in electrophysiological and histological findings 12 weeks after dextrose injection. Copyright © 2013 Wiley Periodicals, Inc.

  13. Artemin induced functional recovery and reinnervation after partial nerve injury.

    PubMed

    Wang, Ruizhong; Rossomando, Anthony; Sah, Dinah W Y; Ossipov, Michael H; King, Tamara; Porreca, Frank

    2014-03-01

    Systemic artemin promotes regeneration of dorsal roots to the spinal cord after crush injury. However, it is unclear whether systemic artemin can also promote peripheral nerve regeneration, and functional recovery after partial lesions distal to the dorsal root ganglion (DRG) remains unknown. In the present investigation, male Sprague Dawley rats received axotomy, ligation, or crush of the L5 spinal nerve or sham surgery. Starting the day of injury, animals received intermittent subcutaneous artemin or vehicle across 2weeks. Sensory thresholds to tactile or thermal stimuli were monitored for 6weeks after injury. Immunohistochemical analyses of the DRG and nerve regeneration were performed at the 6-week time point. Artemin transiently reversed tactile and thermal hypersensitivity after axotomy, ligation, or crush injury. Thermal and tactile hypersensitivity reemerged within 1week of treatment termination. However, artemin-treated rats with nerve crush, but not axotomy or ligation, subsequently showed gradual return of sensory thresholds to preinjury baseline levels by 6weeks after injury. Artemin normalized labeling for NF200, IB4, and CGRP in nerve fibers distal to the crush injury, suggesting persistent normalization of nerve crush-induced neurochemical changes. Sciatic and intradermal administration of dextran or cholera toxin B distal to the crush injury site resulted in labeling of neuronal profiles in the L5 DRG, suggesting regeneration functional restoration of nonmyelinated and myelinated fibers across the injury site into cutaneous tissue. Artemin also diminished ATF3 and caspase 3 expression in the L5 DRG, suggesting persistent neuroprotective actions. A limited period of artemin treatment elicits disease modification by promoting sensory reinnervation of distal territories and restoring preinjury sensory thresholds. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. Effects of pudendal nerve injury in the female rat.

    PubMed

    Kerns, J M; Damaser, M S; Kane, J M; Sakamoto, K; Benson, J T; Shott, S; Brubaker, L

    2000-01-01

    To test a neurogenic hypothesis for external urethral sphincter (EUS) dysfunction associated with urinary incontinence, the proximal pudendal nerve was crushed in anesthetized retired breeder female rats (n = 5) and compared with a sham lesion group (n = 4). Outcome measures included concentric needle electromyograms (EMGs) from the target EUS, voiding patterns during a 2-hour dark period, and micturition data over a 24-hour period. Fast Blue (FB) was introduced to the crush site at the time of injury and Diamidino Yellow (DY) to the EUS at the time the rats were killed (3 months post-operative), when histological analysis of the nerve and urethra was also performed. EMG records indicated the EUS motor units undergo typical denervation changes followed by regeneration and recovery. Voiding patterns from the crush group show a significant increase of small urine marks in the front third of the cage. At 1-2 weeks post-op, the frequency of voids was significantly increased in the crush group compared to pre-op and late post-op time periods. The mean volume voided in the light phase at the early post-op time was significantly increased in the sham group. Light and electron microscopic patterns seen in nerve and muscle suggest the regenerating motor units maintain a structural integrity. Motoneurons in the lower lumbar cord were labeled with either DY (14. 5 +/- 6.8), FB (31.7 +/- 23.7), or both (35.0 +/- 17.5) tracers, indicating approximately 54% of the crushed pudendal neurons regenerated to the EUS. In conclusion, several measures suggest this reversible crush lesion induces mild urinary incontinence. This animal model is promising for further development of hypotheses regarding neural injury, the pathogenesis of incontinence, and strategies aimed at prevention and treatment. Neurourol. Urodynam. 19:53-69, 2000. Copyright 2000 Wiley-Liss, Inc.

  15. Difference in intraosseous blood vessel volume and number in osteoporotic model mice induced by spinal cord injury and sciatic nerve resection.

    PubMed

    Ding, Wen-Ge; Yan, Wei-hong; Wei, Zhao-Xiang; Liu, Jin-Bo

    2012-07-01

    In the present study, we examined intraosseous blood vessel parameters of the tibial metaphysis in mice using microcomputed tomography (µCT) to investigate the relationship between post-nerve-injury osteoporosis and local intraosseous blood vessel volume and number. Mice were randomly divided into groups receiving spinal cord injury (SCI), sciatic nerve resection group (NX), or intact controls (30 mice/group). Four weeks after surgery, mice were perfused with silicone and the distribution of intraosseous blood vessels analyzed by μCT. The bone density, μCT microstructure, biomechanical properties, and the immunohistochemical and biochemical indicators of angiogenesis were also measured. The SCI group showed significantly reduced tibial metaphysis bone density, μCT bone microstructure, tibial biomechanical properties, indicators of angiogenesis, and intraosseous blood vessel parameters compared to the NX group. Furthermore, the spinal cord-injured mice exhibited significantly decreased intraosseous blood vessel volume and number during the development of osteoporosis. In conclusion, these data suggest that decreased intraosseous blood vessel volume and number may play an important role in the development of post-nerve-injury osteoporosis.

  16. Facial reanimation after facial nerve injury using hypoglossal to facial nerve anastomosis: the gruppo otologico experience.

    PubMed

    Tanbouzi Husseini, Sami; Kumar, David Victor; De Donato, Giuseppe; Almutair, Tamama; Sanna, Mario

    2013-12-01

    To evaluate the results of facial nerve reanimation after facial nerve injury by means of hypoglossal to facial nerve anastomosis. Retrospective case review. Private neuro-otologic and cranial base quaternary referral center. Sixty patients underwent hypoglossal to facial nerve anastomosis for facial nerve reanimation between April 1987 and December 2010. Only forty patients completed a minimal follow up of 24 months at the time of evaluation and were included in the study population. Facial nerve paralysis was present for a mean duration of 11.3 months (range 2-42 months) and all the patients had a HB grade VI prior their surgery. Final facial nerve motor function. The most common cause of facial paralysis was vestibular Schwannoma surgery. All the patients achieved a postoperative HB grade III or IV after a mean follow-up time of 20 months. The facial movements were detected after a period that ranged from ranged from 5 to 9 months. Only 4 patients suffered from difficulties during eating and drinking and three of them had associated lower cranial nerve deficit. Despite the various techniques in facial reanimation following total facial nerve paralysis, the end to end of hypoglossal to facial nerve anastomosis remains one of the best treatments in cases of viable distal facial stump and nonatrophic musculature.

  17. Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury

    PubMed Central

    Ma, Ki H.; Hung, Holly A.

    2016-01-01

    The rapid and dynamic transcriptional changes of Schwann cells in response to injury are critical to peripheral nerve repair, yet the epigenomic reprograming that leads to the induction of injury-activated genes has not been characterized. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3), which produces a transcriptionally repressive chromatin environment. We find that many promoters and/or gene bodies of injury-activated genes of mature rat nerves are occupied with H3K27me3. In contrast, the majority of distal enhancers that gain H3K27 acetylation after injury are not repressed by H3K27 methylation before injury, which is normally observed in developmentally poised enhancers. Injury induces demethylation of H3K27 in many genes, such as Sonic hedgehog (Shh), which is silenced throughout Schwann cell development before injury. In addition, experiments using a Schwann cell-specific mouse knock-out of the Eed subunit of PRC2 indicate that demethylation is a rate-limiting step in the activation of such genes. We also show that some transcription start sites of H3K27me3-repressed injury genes of uninjured nerves are bound with a mark of active promoters H3K4me3, for example, Shh and Gdnf, and the reduction of H3K27me3 results in increased trimethylation of H3K4. Our findings identify reversal of polycomb repression as a key step in gene activation after injury. SIGNIFICANCE STATEMENT Peripheral nerve regeneration after injury is dependent upon implementation of a novel genetic program in Schwann cells that supports axonal survival and regeneration. Identifying means to enhance Schwann cell reprogramming after nerve injury could be used to foster effective remyelination in the treatment of demyelinating disorders and in identifying pathways involved in regenerative process of myelination. Although recent progress has identified transcriptional determinants of successful reprogramming of the Schwann cell transcriptome

  18. Role of Intraoperative Nerve Monitoring During Parathyroidectomy to Prevent Recurrent Laryngeal Nerve Injury

    PubMed Central

    Assad, Salman; Assad, Shuja

    2016-01-01

    Injury to the recurrent laryngeal nerve (RLN) is a well known, though less frequent, complication of parathyroid surgery. In recent years, the use of intraoperative nerve monitoring (IONM) has gained popularity amongst surgeons when operating on thyroid gland; however, its utilization in parathyroid surgery is not established. This trend continues to rise, despite multiple studies documenting no statistically significant difference that IONM decreases the incidence of RLN injury. Most surgeons use this technology as an adjunct to visualization alone for identification of RLN. The purpose of this review is to discuss the possible role of IONM in parathyroid surgery with regards to the accuracy, efficacy, and recent trends in the utilization of this technology. There is insufficient evidence that IONM reduces the risk of RLN injury in parathyroidectomy. Although IONM may decrease the likelihood of nerve injury by helping to identify and map the RLN during thyroidectomy, we did not find studies exclusive to parathyroid surgery to see if its use can be supported for parathyroidectomy. Despite this lack of evidence, we believe that IONM is a promising adjunct to visualization alone in detecting nerve structures during neck dissection, but more clinical trials are warranted to establish its role in preventing nerve injury in parathyroid surgery. PMID:28003944

  19. Enophthalmos and Hemifacial Skeletal Atrophy After Trigeminal Nerve Injury.

    PubMed

    Satchi, Khami; McNab, Alan A

    2016-01-18

    A 60-year-old woman presented with several years increasing right upper eyelid ptosis. She had undergone surgical decompression of the right trigeminal nerve in the posterior cranial fossa 15 years earlier for trigeminal neuralgia. This left her with permanent numbness in the second and third divisions of the trigeminal nerve. In addition to the ptosis, she was found to have right enophthalmos and a smaller right face. CT scans showed a smaller midfacial skeleton on the right and a depressed orbital floor. The changes were different to those seen in silent sinus syndrome. Photographs taken over many years showed the facial changes were acquired and came on gradually many years after the trigeminal nerve injury. It is possible that trigeminal nerve injury may lead to trophic changes in the facial skeleton, but these have not been previously reported.

  20. [Progress in the effects of injury and regeneration of gustatory nerves on the taste functions in animals].

    PubMed

    Fan, Yuan-Yuan; Yu, Dong-Ming; Shi, Yu-Juan; Yan, Jian-Qun; Jiang, En-She

    2014-10-25

    The sensor of the taste is the taste bud. The signals originated from the taste buds are transmitted to the central nervous system through the gustatory taste nerves. The chorda tympani nerve (innervating the taste buds of the anterior tongue) and glossopharyngeal nerve (innervating the taste buds of the posterior tongue) are the two primary gustatory nerves. The injuries of gustatory nerves cause their innervating taste buds atrophy, degenerate and disappear. The related taste function is also impaired. The impaired taste function can be restored after the gustatory nerves regeneration. The rat model of cross-regeneration of gustatory nerves is an important platform for research in the plasticity of the central nervous system. The animal behavioral responses and the electrophysiological properties of the gustatory nerves have changed a lot after the cross-regeneration of the gustatory nerves. The effects of the injury, regeneration and cross-regeneration of the gustatory nerves on the taste function in the animals will be discussed in this review. The prospective studies on the animal model of cross-regeneration of gustatory nerves are also discussed in this review. The study on the injury, regeneration and cross-regeneration of the gustatory nerves not only benefits the understanding of mechanism for neural plasticity in gustatory nervous system, but also will provide theoretical basis and new ideas for seeking methods and techniques to cure dysgeusia.

  1. Use of Processed Nerve Allografts to Repair Nerve Injuries Greater Than 25 mm in the Hand.

    PubMed

    Rinker, Brian; Zoldos, Jozef; Weber, Renata V; Ko, Jason; Thayer, Wesley; Greenberg, Jeffrey; Leversedge, Fraser J; Safa, Bauback; Buncke, Gregory

    2017-06-01

    Processed nerve allografts (PNAs) have been demonstrated to have improved clinical results compared with hollow conduits for reconstruction of digital nerve gaps less than 25 mm; however, the use of PNAs for longer gaps warrants further clinical investigation. Long nerve gaps have been traditionally hard to study because of low incidence. The advent of the RANGER registry, a large, institutional review board-approved, active database for PNA (Avance Nerve Graft; AxoGen, Inc, Alachua, FL) has allowed evaluation of lower incidence subsets. The RANGER database was queried for digital nerve repairs of 25 mm or greater. Demographics, injury, treatment, and functional outcomes were recorded on standardized forms. Patients younger than 18 and those lacking quantitative follow-up data were excluded. Recovery was graded according to the Medical Research Council Classification for sensory function, with meaningful recovery defined as S3 or greater level. Fifty digital nerve injuries in 28 subjects were included. There were 22 male and 6 female subjects, and the mean age was 45. Three patients gave a previous history of diabetes, and there were 6 active smokers. The most commonly reported mechanisms of injury were saw injuries (n = 13), crushing injuries (n = 9), resection of neuroma (n = 9), amputation/avulsions (n = 8), sharp lacerations (n = 7), and blast/gunshots (n = 4). The average gap length was 35 ± 8 mm (range, 25-50 mm). Recovery to the S3 or greater level was reported in 86% of repairs. Static 2-point discrimination (s2PD) and Semmes-Weinstein monofilament (SWF) were the most common completed assessments. Mean s2PD in 24 repairs reporting 2PD data was 9 ± 4 mm. For the 38 repairs with SWF data, protective sensation was reported in 33 repairs, deep pressure in 2, and no recovery in 3. These data compared favorably with historical data for nerve autograft repairs, with reported levels of meaningful recovery of 60% to 88%. There were no reported adverse effects

  2. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats.

    PubMed

    Huang, Jinghui; Zhang, Yongguang; Lu, Lei; Hu, Xueyu; Luo, Zhuojing

    2013-12-01

    The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro-Gold retrograde-labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain-derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF-mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. CONSERVATIVE REHABILITATION OF SCIATIC NERVE INJURY FOLLOWING HAMSTRING TEAR

    PubMed Central

    Reuteman, Paul

    2010-01-01

    Study Design: Resident's case report Background: There have been only a few case reports in the literature mentioning sciatic nerve injury following a hamstring tear. In previous cases surgical intervention was performed to debride scar tissue around the sciatic nerve with the goal of full return to function for the patient. Objectives: The purpose of this case report is to describe the conservative interventions that allowed for recovery from a hamstring tear with sciatic nerve involvement. Case Description: The subject was a 53 year old female who developed foot drop and weakness in the common fibular nerve distribution following a grade 3 hamstring injury sustained during Nordic skiing. Nerve function and strength gradually returned over the course of several months of conservative rehabilitation which included on neural gliding and strengthening exercises. Outcomes: At 18 months post injury, the subject had returned to 95% of full sport function and 98% of full function with activities of daily living, as rated by the Hip Outcome Scale, and had full strength with manual muscle testing. Isokinetic testing revealed strength deficits of 11–23% in knee flexion peak torque at 60 degrees/second and 180 degrees/second respectively. Discussion: Sciatic nerve injury is a rare, but important potential consequence of severe hamstring strains. Clinicians should be cognizant of the potential injury to the nerve tissue following hamstring strains, so they may be dealt with in a prompt and appropriate manner. The use of neural gliding may be worth considering for a prophylactic effect following hamstring strains. PMID:21589670

  4. Identification of the effects of peripheral nerves injury on the muscle control - A review

    NASA Astrophysics Data System (ADS)

    Cabaj, Anna; Zmyslowski, Wojciech

    2011-01-01

    Impairment of motor function following peripheral nerve injury is a serious clinical problem. Generally nerve injury leads to erroneous control of muscle activity that results in gait and voluntary movement abnormalities followed by muscle atrophy. This article presents a review of studies on the effects of peripheral nerve injury on the motor system performed on animal models. We focused our attention on the results that are fundamental for better understanding of the degenerative and regenerative processes induced by nerve injury as well as of the mechanisms of structural changes in neuronal networks controlling movement. Quoted results are also important for clinical applications because they allow to develop new diagnostic and therapeutic techniques that can be used after nerve injury inducing motor deficits. However, till now no efficient therapy inducing satisfactory recovery was found. There is still a need to continue an advanced basic research directed to develop effective therapies. Thus the aim of this review is to compare the results of recent studies performed on various animal models in order to propose new methods for identification of mechanisms responsible for muscle deficits and propose targets for new pharmacological therapies.

  5. Treatment of peroneal nerve injuries with simultaneous tendon transfer and nerve exploration

    PubMed Central

    2014-01-01

    Background Common peroneal nerve palsy leading to foot drop is difficult to manage and has historically been treated with extended bracing with expectant waiting for return of nerve function. Peroneal nerve exploration has traditionally been avoided except in cases of known traumatic or iatrogenic injury, with tendon transfers being performed in a delayed fashion after exhausting conservative treatment. We present a new strategy for management of foot drop with nerve exploration and concomitant tendon transfer. Method We retrospectively reviewed a series of 12 patients with peroneal nerve palsies that were treated with tendon transfer from 2005 to 2011. Of these patients, seven were treated with simultaneous peroneal nerve exploration and repair at the time of tendon transfer. Results Patients with both nerve repair and tendon transfer had superior functional results with active dorsiflexion in all patients, compared to dorsiflexion in 40% of patients treated with tendon transfers alone. Additionally, 57% of patients treated with nerve repair and tendon transfer were able to achieve enough function to return to running, compared to 20% in patients with tendon transfer alone. No patient had full return of native motor function resulting in excessive dorsiflexion strength. Conclusion The results of our limited case series for this rare condition indicate that simultaneous nerve repair and tendon transfer showed no detrimental results and may provide improved function over tendon transfer alone. PMID:25099247

  6. Orbitoethmoidal impacted injury by kitchen knife causing abducens nerve palsy.

    PubMed

    Carneiro, José Thiers; da Silva Tabosa, Ana Karla; de Souza, Fernando Jordão; Shinohara, Elio Hitoshi

    2011-06-01

    Impacted knife injuries in the maxillofacial region are rare and infrequently reported. In cases of injury involving orbit or eye, these reports are even rarer. Damage to the orbital contents may result in a rupture of the globe, extraocular muscle injury, lacrimal gland damage, and others. Orbital foreign bodies are not only difficult to detect, and clinical features vary according to its size, characteristics, shape, penetrating method, and site. In this report, a case of abducens nerve palsy after orbitoethmoidal knife injury is presented.

  7. [Incarcerated epitrochlear fracture with a cubital nerve injury].

    PubMed

    Moril-Peñalver, L; Pellicer-Garcia, V; Gutierrez-Carbonell, P

    2013-01-01

    Injuries of the medial epicondyle are relatively common, mostly affecting children between 7 and 15 years. The anatomical characteristics of this apophysis can make diagnosis difficult in minimally displaced fractures. In a small percentage of cases, the fractured fragment may occupy the retroepitrochlear groove. The presence of dysesthesias in the territory of the ulnar nerve requires urgent open reduction of the incarcerated fragment. A case of a seven-year-old male patient is presented, who required surgical revision due to a displaced medial epicondyle fracture associated with ulnar nerve injury. A review of the literature is also made.

  8. Herpes simplex virus vector-mediated delivery of neurturin rescues erectile dysfunction of cavernous nerve injury

    PubMed Central

    Kato, Ryuichi; Wolfe, Darren; Coyle, Christian H.; Wechuck, James B.; Tyagi, Pradeep; Tsukamoto, Taiji; Nelson, Joel B.; Glorioso, Joseph C.; Chancellor, Michael B.; Yoshimura, Naoki

    2008-01-01

    Summary Neurturin (NTN), a member of glial cell line-derived neurotrophic factor (GDNF) family, is known as an important neurotrphic factor for penis-projecting neurons. We recently demonstrated significant protection from erectile dysfunction (ED) following a replication defective herpes simplex virus (HSV) vector-mediated GDNF delivery to the injured cavernous nerve. Herein we applied HSV vector-mediated delivery of NTN to this ED model. Rat cavernous nerve was injured bilaterally using a clamp and dry ice. For HSV-treated groups, 20μl of vector stock was administered directly to the damaged nerve. Delivery of an HSV vector expressing both green fluorescent protein (GFP) and lacZ (HSV-LacZ) was used as a control. Intracavernous pressure along with systemic arterial pressure (ICP/AP) was measured 2 and 4 weeks after the nerve injury. Fluorogold (FG) was injected into the penile crus 7 days before sacrifice to assess neuronal survival. Four weeks after nerve injury, rats treated with HSV-NTN exhibited significantly higher ICP/AP compared to untreated or control vector treated groups. The HSV-NTN group had more FG-positive MPG neurons than control group following injury. HSV vector-mediated delivery of NTN could be a viable approach for improvement of erectile dysfunction following cavernous nerve injury. PMID:18668142

  9. Curcumin promotes nerve regeneration and functional recovery after sciatic nerve crush injury in diabetic rats.

    PubMed

    Ma, Junxiong; Yu, Hailong; Liu, Jun; Chen, Yu; Wang, Qi; Xiang, Liangbi

    2016-01-01

    Curcumin is capable of promoting peripheral nerve regeneration in normal condition. However, it is unclear whether its beneficial effect on nerve regeneration still exists under diabetic mellitus. The present study was designed to investigate such a possibility. Diabetes in rats was developed by a single dose of streptozotocin at 50 mg/kg. Immediately after nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with curcumin (50 mg/kg, 100 mg/kg and 300 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. Axonal regeneration and functional recovery was significantly enhanced by curcumin, which were significantly better than those in vehicle saline group. In addition, high doses of curcumin (100 mg/kg and 300 mg/kg) achieved better axonal regeneration and functional recovery than low dose (50 mg/kg). In conclusion, curcumin is capable of promoting nerve regeneration after sciatic nerve crush injury in diabetes mellitus, highlighting its therapeutic values as a neuroprotective agent for peripheral nerve injury repair in diabetes mellitus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Effect of subcutaneous administration of calcium channel blockers on nerve injury-induced hyperalgesia.

    PubMed

    White, D M; Cousins, M J

    1998-08-10

    Recent studies suggest that calcium contributes to peripheral neural mechanisms of hyperalgesia associated with nerve damage. In this animal behavioural study, we examined further the contribution of calcium in neuropathic pain by testing whether subcutaneous administration of either a calcium chelating agent or voltage-dependent calcium channel blockers attenuate nerve injury-induced hyperalgesia to mechanical stimulation. Studies were carried out in animals with partially ligated sciatic nerves, an established animal model of neuropathic pain. The nociceptive flexion reflex was quantified using an Ugo Basile Analgesymeter. Partial nerve injury induced a significant decrease in mechanical threshold compared to the sham operated controls. Daily subcutaneous injections of the calcium chelating agent, Quin 2 (20 microgram/2.5 microliter), significantly attenuated the nerve injury-induced hyperalgesia. Similarly, SNX-111, a N-type channel blocker, also significantly attenuated the nerve injury-induced hyperalgesia. SNX-230, a P and/or Q-type channel blocker, and nifedipine, a L-type channel blocker, had no effect on the hyperalgesia to mechanical stimulation. In control experiments, SNX-111 had no effect on mechanical thresholds when administered subcutaneously in either the hindpaw of normal animals or the back of the neck in nerve injury animals. This study shows that neuropathic pain involves a local calcium-dependent mechanism in the receptive field of intact neurons of an injured nerve, since it can be alleviated by subcutaneous injections of either a calcium chelating agent or SNX-111, a N-type calcium channel blocker. These agents may be effective, peripherally acting therapeutic agents for neuropathic pain.

  11. Clinical Relevance of Cranial Nerve Injury following Carotid Endarterectomy

    PubMed Central

    Fokkema, M.; de Borst, G.J.; Nolan, B.W.; Indes, J.; Buck, D.B.; Lo, R.C.; Moll, F.L.; Schermerhorn, M.L.

    2014-01-01

    Objectives The benefit of carotid endarterectomy (CEA) may be diminished by cranial nerve injury (CNI). Using a quality improvement registry, we aimed to identify the nerves affected, duration of symptoms (transient vs. persistent), and clinical predictors of CNI. Methods We identified all patients undergoing CEA in the Vascular Study Group of New England (VSGNE) between 2003 and 2011. Surgeon-observed CNI rate was determined at discharge (postoperative CNI) and at follow-up to determine persistent CNI (CNIs that persisted at routine follow-up visit). Hierarchical multivariable model controlling for surgeon and hospital was used to assess independent predictors for postoperative CNI. Results A total of 6,878 patients (33.8% symptomatic) were included for analyses. CNI rate at discharge was 5.6% (n = 382). Sixty patients (0.7%) had more than one nerve affected. The hypoglossal nerve was most frequently involved (n = 185, 2.7%), followed by the facial (n = 128, 1.9%), the vagus (n = 49, 0.7%), and the glossopharyngeal (n = 33, 0.5%) nerve. The vast majority of these CNIs were transient; only 47 patients (0.7%) had a persistent CNI at their follow-up visit (median 10.0 months, range 0.3–15.6 months). Patients with perioperative stroke (0.9%, n = 64) had significantly higher risk of CNI (n = 15, CNI risk 23.4%, p < .01). Predictors for CNI were urgent procedures (OR 1.6, 95% CI 1.2–2.1, p < .01), immediate re-exploration after closure under the same anesthetic (OR 2.0, 95% CI 1.3–3.0, p < .01), and return to the operating room for a neurologic event or bleeding (OR 2.3, 95% CI 1.4–3.8, p < .01), but not redo CEA (OR 1.0, 95% CI 0.5–1.9, p = .90) or prior cervical radiation (OR 0.9, 95% CI 0.3–2.5, p = .80). Conclusions As patients are currently selected in the VSGNE, persistent CNI after CEA is rare. While conditions of urgency and (sub)acute reintervention carried increased risk for postoperative CNI, a history of prior ipsilateral CEA or cervical

  12. Nerve transfers for the restoration of hand function after spinal cord injury.

    PubMed

    Mackinnon, Susan E; Yee, Andrew; Ray, Wilson Z

    2012-07-01

    Spinal cord injury (SCI) remains a significant public health problem. Despite advances in understanding of the pathophysiological processes of acute and chronic SCI, corresponding advances in translational applications have lagged behind. Nerve transfers using an expendable nearby motor nerve to reinnervate a denervated nerve have resulted in more rapid and improved functional recovery than traditional nerve graft reconstructions following a peripheral nerve injury. The authors present a single case of restoration of some hand function following a complete cervical SCI utilizing nerve transfers.

  13. Intact subepidermal nerve fibers mediate mechanical hypersensitivity via the activation of protein kinase C gamma in spared nerve injury

    PubMed Central

    Ko, Miau-Hwa; Yang, Ming-Ling; Youn, Su-Chung; Tseng, To-Jung

    2016-01-01

    Background Spared nerve injury is an important neuropathic pain model for investigating the role of intact primary afferents in the skin on pain hypersensitivity. However, potential cellular mechanisms remain poorly understood. In phosphoinositide-3 kinase pathway, pyruvate dehydrogenase kinase 1 (PDK1) participates in the regulation of neuronal plasticity for central sensitization. The downstream cascades of PDK1 include: (1) protein kinase C gamma (PKCγ) controls the trafficking and phosphorylation of ionotropic glutamate receptor; (2) protein kinase B (Akt)/the mammalian target of rapamycin (mTOR) signaling is responsible for local protein synthesis. Under these statements, we therefore hypothesized that an increase of PKCγ activation and mTOR-dependent PKCγ synthesis in intact primary afferents after SNI might contribute to pain hypersensitivity. Results The variants of spared nerve injury were performed in Sprague-Dawley rats by transecting any two of the three branches of the sciatic nerve, leaving only one branch intact. Following SNIt (spared tibial branch), mechanical hyperalgesia and mechanical allodynia, but not thermal hyperalgesia, were significantly induced. In the first footpad, normal epidermal innervations were verified by the protein gene product 9.5 (PGP9.5)- and growth-associated protein 43 (GAP43)-immunoreactive (IR) intraepidermal nerve fibers (IENFs) densities. Furthermore, the rapid increases of phospho-PKCγ- and phospho-mTOR-IR subepidermal nerve fibers (SENFs) areas were distinct gathered from the results of PGP9.5-, GAP43-, and neurofilament 200 (NF200)-IR SENFs areas. The efficacy of PKC inhibitor (GF 109203X) or mTOR complex 1 inhibitor (rapamycin) for attenuating mechanical hyperalgesia and mechanical allodynia by intraplantar injection was dose-dependent. Conclusions From results obtained in this study, we strongly recommend that the intact SENFs persistently increase PKCγ activation and mTOR-dependent PKCγ synthesis participate

  14. (-)-Epigallocatechin-3-gallate (EGCG) attenuates peripheral nerve degeneration in rat sciatic nerve crush injury.

    PubMed

    Renno, Waleed M; Al-Maghrebi, May; Alshammari, Ahmad; George, Preethi

    2013-02-01

    Recently, we have shown that green tea (GT) consumption improves both reflexes and sensation in unilateral chronic constriction injury to the sciatic nerve. Considering the substantial neuroprotective properties of GT polyphenols, we sought to investigate whether (-)-epigallocatechin-3-gallate (EGCG) could protect the sciatic nerve and improve functional impairments induced by a crushing injury. We also examined whether neuronal cell apoptosis induced by the crushing injury is affected by EGCG treatment. Histological examination of sciatic nerves from EGCG-treated (50mg/kg; i.p.) showed that axonotmized rats had a remarkable axonal and myelin regeneration with significant decrease in the number of myelinated axonal fibers compared to vehicle-treated crush group. Similarly, ultrastructural evaluation of EGCG-treated nerves displayed normal unmyelinated and myelinated axons with regular myelin sheath thickness and normalized appearance of Schmidt-Lantermann clefts. Extracellular matrix displayed normal collagen fibers appearance with distinctively organized distribution similar to sham animals. Analysis of foot position and extensor postural thrust test showed a progressive and faster recovery in the EGCG-treated group compared to vehicle-treated animals. EGCG-treated rats showed significant increase in paw withdrawal thresholds to mechanical stimulation compared to vehicle-treated crush group. EGCG treatment also restored the mRNA expression of Bax, Bcl-2 and survivin but not that of p53 to sham levels on days 3 and 7 post-injury. Our results demonstrate that EGCG treatment enhanced functional recovery, advanced morphological nerve rescue and accelerated nerve regeneration following crush injury partly due to the down regulation of apoptosis related genes.

  15. Peptide therapy with pentadecapeptide BPC 157 in traumatic nerve injury.

    PubMed

    Gjurasin, Miroslav; Miklic, Pavle; Zupancic, Bozidar; Perovic, Darko; Zarkovic, Kamelija; Brcic, Luka; Kolenc, Danijela; Radic, Bozo; Seiwerth, Sven; Sikiric, Predrag

    2010-02-25

    We focused on the healing of rat transected sciatic nerve and improvement made by stable gastric pentadecapeptide BPC 157 (10 microg, 10ng/kg) applied shortly after injury (i) intraperitoneally/intragastrically/locally, at the site of anastomosis, or after (ii) non-anastomozed nerve tubing (7 mm nerve segment resected) directly into the tube. Improvement was shown clinically (autotomy), microscopically/morphometrically and functionally (EMG, one or two months post-injury, walking recovery (sciatic functional index (SFI)) at weekly intervals). BPC 157-rats exhibited faster axonal regeneration: histomorphometrically (improved presentation of neural fascicles, homogeneous regeneration pattern, increased density and size of regenerative fibers, existence of epineural and perineural regeneration, uniform target orientation of regenerative fibers, and higher proportion of neural vs. connective tissue, all fascicles in each nerve showed increased diameter of myelinated fibers, thickness of myelin sheet, number of myelinated fibers per area and myelinated fibers as a percentage of the nerve transected area and the increased blood vessels presentation), electrophysiologically (increased motor action potentials), functionally (improved SFI), the autotomy absent. Thus, BPC 157 markedly improved rat sciatic nerve healing.

  16. Nanostructured Guidance for Peripheral Nerve Injuries: A Review with a Perspective in the Oral and Maxillofacial Area

    PubMed Central

    Sivolella, Stefano; Brunello, Giulia; Ferrarese, Nadia; Puppa, Alessandro Della; D’Avella, Domenico; Bressan, Eriberto; Zavan, Barbara

    2014-01-01

    Injury to peripheral nerves can occur as a result of various surgical procedures, including oral and maxillofacial surgery. In the case of nerve transaction, the gold standard treatment is the end-to-end reconnection of the two nerve stumps. When it cannot be performed, the actual strategies consist of the positioning of a nerve graft between the two stumps. Guided nerve regeneration using nano-structured scaffolds is a promising strategy to promote axon regeneration. Biodegradable electrospun conduits composed of aligned nanofibers is a new class of devices used to improve neurite extension and axon outgrowth. Self assembled peptide nanofibrous scaffolds (SAPNSs) demonstrated promising results in animal models for central nervous system injuries, and, more recently, for peripheral nerve injury. Aims of this work are (1) to review electrospun and self-assembled nanofibrous scaffolds use in vitro and in vivo for peripheral nerve regeneration; and (2) its application in peripheral nerve injuries treatment. The review focused on nanofibrous scaffolds with a diameter of less than approximately 250 nm. The conjugation in a nano scale of a natural bioactive factor with a resorbable synthetic or natural material may represent the best compromise providing both biological and mechanical cues for guided nerve regeneration. Injured peripheral nerves, such as trigeminal and facial, may benefit from these treatments. PMID:24562333

  17. Nuclear factor-kappa B decoy suppresses nerve injury and improves mechanical allodynia and thermal hyperalgesia in a rat lumbar disc herniation model

    PubMed Central

    Suzuki, Munetaka; Inoue, Gen; Gemba, Takefumi; Watanabe, Tomoko; Ito, Toshinori; Koshi, Takana; Yamauchi, Kazuyo; Yamashita, Masaomi; Orita, Sumihisa; Eguchi, Yawara; Ochiai, Nobuyasu; Kishida, Shunji; Takaso, Masashi; Aoki, Yasuchika; Takahashi, Kazuhisa

    2009-01-01

    Nuclear factor-kappa B (NF-κB) is a gene transcriptional regulator of inflammatory cytokines. We investigated the transduction efficiency of NF-κB decoy to dorsal root ganglion (DRG), as well as the decrease in nerve injury, mechanical allodynia, and thermal hyperalgesia in a rat lumbar disc herniation model. Forty rats were used in this study. NF-κB decoy–fluorescein isothiocyanate (FITC) was injected intrathecally at the L5 level in five rats, and its transduction efficiency into DRG measured. In another 30 rats, mechanical pressure was placed on the DRG at the L5 level and nucleus pulposus harvested from the rat coccygeal disc was transplanted on the DRG. Rats were classified into three groups of ten animals each: a herniation + decoy group, a herniation + oligo group, and a herniation only group. For behavioral testing, mechanical allodynia and thermal hyperalgesia were evaluated. In 15 of the herniation rats, their left L5 DRGs were resected, and the expression of activating transcription factor 3 (ATF-3) and calcitonin gene-related peptide (CGRP) was evaluated immunohistochemically compared to five controls. The total transduction efficiency of NF-κB decoy–FITC in DRG neurons was 10.8% in vivo. The expression of CGRP and ATF-3 was significantly lower in the herniation + decoy group than in the other herniation groups. Mechanical allodynia and thermal hyperalgesia were significantly suppressed in the herniation + decoy group. NF-κB decoy was transduced into DRGs in vivo. NF-κB decoy may be useful as a target for clarifying the mechanism of sciatica caused by lumbar disc herniation. PMID:19308465

  18. Nuclear factor-kappa B decoy suppresses nerve injury and improves mechanical allodynia and thermal hyperalgesia in a rat lumbar disc herniation model.

    PubMed

    Suzuki, Munetaka; Inoue, Gen; Gemba, Takefumi; Watanabe, Tomoko; Ito, Toshinori; Koshi, Takana; Yamauchi, Kazuyo; Yamashita, Masaomi; Orita, Sumihisa; Eguchi, Yawara; Ochiai, Nobuyasu; Kishida, Shunji; Takaso, Masashi; Aoki, Yasuchika; Takahashi, Kazuhisa; Ohtori, Seiji

    2009-07-01

    Nuclear factor-kappa B (NF-kappaB) is a gene transcriptional regulator of inflammatory cytokines. We investigated the transduction efficiency of NF-kappaB decoy to dorsal root ganglion (DRG), as well as the decrease in nerve injury, mechanical allodynia, and thermal hyperalgesia in a rat lumbar disc herniation model. Forty rats were used in this study. NF-kappaB decoy-fluorescein isothiocyanate (FITC) was injected intrathecally at the L5 level in five rats, and its transduction efficiency into DRG measured. In another 30 rats, mechanical pressure was placed on the DRG at the L5 level and nucleus pulposus harvested from the rat coccygeal disc was transplanted on the DRG. Rats were classified into three groups of ten animals each: a herniation + decoy group, a herniation + oligo group, and a herniation only group. For behavioral testing, mechanical allodynia and thermal hyperalgesia were evaluated. In 15 of the herniation rats, their left L5 DRGs were resected, and the expression of activating transcription factor 3 (ATF-3) and calcitonin gene-related peptide (CGRP) was evaluated immunohistochemically compared to five controls. The total transduction efficiency of NF-kappaB decoy-FITC in DRG neurons was 10.8% in vivo. The expression of CGRP and ATF-3 was significantly lower in the herniation + decoy group than in the other herniation groups. Mechanical allodynia and thermal hyperalgesia were significantly suppressed in the herniation + decoy group. NF-kappaB decoy was transduced into DRGs in vivo. NF-kappaB decoy may be useful as a target for clarifying the mechanism of sciatica caused by lumbar disc herniation.

  19. Inter-hemispheric plasticity in patients with median nerve injury.

    PubMed

    Fornander, Lotta; Nyman, Torbjörn; Hansson, Thomas; Brismar, Tom; Engström, Maria

    2016-08-15

    Peripheral nerve injuries result in reorganization within the contralateral hemisphere. Furthermore, recent animal and human studies have suggested that the plastic changes in response to peripheral nerve injury also include several areas of the ipsilateral hemisphere. The objective of this study was to map the inter-hemispheric plasticity in response to median nerve injury, to investigate normal differences in contra- and ipsilateral activation, and to study the impact of event-related or blocked functional magnetic resonance imaging (fMRI) design on ipsilateral activation. Four patients with median nerve injury at the wrist (injured and epineurally sutured >2 years earlier) and ten healthy volunteers were included. 3T fMRI was used to map the hemodynamic response to brain activity during tactile stimulation of the fingers, and a laterality index (LI) was calculated. Stimulation of Digits II-III of the injured hand resulted in a reduction in contralateral activation in the somatosensory area SI. Patients had a lower LI (0.21±0.15) compared to healthy controls (0.60±0.26) indicating greater ipsilateral activation of the primary somatosensory cortex. The spatial dispersion of the coordinates for areas SI and SII was larger in the ipsilateral than in the contralateral hemisphere in the healthy controls, and was increased in the contralateral hemisphere of the patients compared to the healthy controls. There was no difference in LI between the event-related and blocked paradigms. In conclusion, patients with median nerve injury have increased ipsilateral SI area activation, and spatially more dispersed contralateral SI activation during tactile stimulation of their injured hand. In normal subjects ipsilateral activation has larger spatial distribution than the contralateral. Previous findings in patients performed with the blocked fMRI paradigm were confirmed. The increase in ipsilateral SI activation may be due to an interhemispheric disinhibition associated with

  20. Effects of peripheral nerve injury on parvalbumin expression in adult rat dorsal root ganglion neurons.

    PubMed

    Medici, Tom; Shortland, Peter J

    2015-12-16

    Parvalbumin (PV) is a calcium binding protein that identifies a subpopulation of proprioceptive dorsal root ganglion (DRG) neurons. Calcitonin gene-related peptide (CGRP) is also expressed in a high proportion of muscle afferents but its relationship to PV is unclear. Little is known of the phenotypic responses of muscle afferents to nerve injury. Sciatic nerve axotomy or L5 spinal nerve ligation and section (SNL) lesions were used to explore these issues in adult rats using immunocytochemistry. In naive animals, the mean PV expression was 25 % of L4 or L5 dorsal root ganglion (DRG) neurons, and this was unchanged 2 weeks after sciatic nerve axotomy. Colocalization studies with the injury marker activating transcription factor 3 (ATF3) showed that approximately 24 % of PV neurons expressed ATF3 after sciatic nerve axotomy suggesting that PV may show a phenotypic switch from injured to uninjured neurons. This possibility was further assessed using the spinal nerve ligation (SNL) injury model where injured and uninjured neurons are located in different DRGs. Two weeks after L5 SNL there was no change in total PV staining and essentially all L5 PV neurons expressed ATF3. Additionally, there was no increase in PV-ir in the adjacent uninjured L4 DRG cells. Co-labelling of DRG neurons revealed that less than 2 % of PV neurons normally expressed CGRP and no colocalization was seen after injury. These experiments clearly show that axotomy does not produce down regulation of PV protein in the DRG. Moreover, this lack of change is not due to a phenotypic switch in PV immunoreactive (ir) neurons, or de novo expression of PV-ir in uninjured neurons after nerve injury. These results further illustrate differences that occur when muscle afferents are injured as compared to cutaneous afferents.

  1. The Histological Effects of Ozone Therapy on Sciatic Nerve Crush Injury in Rats.

    PubMed

    Somay, Hakan; Emon, Selin Tural; Uslu, Serap; Orakdogen, Metin; Meric, Zeynep Cingu; Ince, Umit; Hakan, Tayfun

    2017-09-01

    Peripheral nerve injury is a common, important problem that lacks a definitive, effective treatment. It can cause neurologic deficits ranging from paresthesia to paralysis. This study evaluated the effect of ozone therapy on sciatic nerve crush injury in rats. Twenty-four male rats were divided into control sham surgery, sciatic nerve injury, and sciatic nerve injury with ozone groups (each n = 8). The sciatic nerve injury was inflicted via De Koning's crush-force method. The sciatic nerve injury group received medical air and the sciatic nerve injury ozone group received 0.7 mg/kg ozone. Sciatic nerve samples were obtained 4 weeks after injury. Vascular congestion, vacuolization, edema formation, S100 expression, and the thicknesses of the perineurium and endoneurium and diameter of the injured sciatic nerves were evaluated. The diameter of the sciatic nerve and thicknesses of the perineurium and epineurium were significantly greater in the sciatic nerve injury group (P < 0.05) and significantly less in the sciatic nerve injury with ozone group (P < 0.001). High S100 immunoreactivity was seen in the sciatic nerve injury group compared with the other 2 groups (P < 0.05). The distributions of vascular congestion and vacuolization were significantly less in the sciatic nerve injury with ozone group (P < 0.05). Ozone therapy improved sciatic nerve injury recovery without causing an increase in fibrotic tissue. Ozone reduced fibrosis, vascular congestion, vacuolization, and edema in rodents. Ozone treatment might be used to assist in sciatic nerve injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Isolated optic nerve oedema as unusual presentation of electric injury.

    PubMed

    Izzy, Saef; Deeb, Wissam; Peters, George B; Mitchell, Ann

    2014-10-15

    A 45-year-old man with no significant medical history presented following an electric current injury (380 V). He developed multiple systemic injuries including third degree burns and after 1 week of hospitalisation he reported unilateral visual changes. Examination suggested the presence of optic nerve oedema without evidence of haemorrhage, exudate or vessel abnormality. This was considered to be related to the electric shock. A trial of corticosteroids was considered. He was followed up to 5 months in clinic and was noted to have developed unilateral optic atrophy and no other systemic manifestations. Initial and 5 months follow-up optic nerve colour photograph and optical coherence topography were documented. The present case highlights the fact that electric current injury can present with only a unilateral ischaemic optic neuropathy, the need for early diagnosis for timely treatment and the controversial role of corticosteroids.

  3. Locally Produced BDNF Promotes Sclerotic Change in Alveolar Bone after Nerve Injury

    PubMed Central

    Ida-Yonemochi, Hiroko; Yamada, Yurie; Yoshikawa, Hiroyuki

    2017-01-01

    Brain-derived neurotrophic factor (BDNF), which is released due to nerve injury, is known to promote the natural healing of injured nerves. It is often observed that damage of mandibular canal induces local sclerotic changes in alveolar bone. We reported that peripheral nerve injury promotes the local production of BDNF; therefore, it was possible to hypothesize that peripheral nerve injury affects sclerotic changes in the alveolar bone. This study aimed to evaluate the effect of BDNF on osteogenesis using in vitro osteoblast-lineage cell culture and an in vivo rat osteotomy model. MC3T3-E1 cells were cultured with BDNF and were examined for cell proliferative activity, chemotaxis and mRNA expression levels of osteoblast differentiation markers. For in vivo study, inferior alveolar nerve (IAN) injury experiments and mandibular cortical osteotomy were performed using a rat model. In the osteotomy model, exogenous BDNF was applied to bone surfaces after corticotomy of the mandible, and we morphologically analyzed the new bone formation. As a result, mRNA expression of osteoblast differentiation marker, osteocalcin, was significantly increased by BDNF, although cell proliferation and migration were not affected. In the in vivo study, osteopontin-positive new bone formation was significantly accelerated in the BDNF-grafted groups, and active bone remodeling, involving trkB-positive osteoblasts and osteocytes, continued after 28 days. In conclusion, BDNF stimulated the differentiation of MC3T3-E1 cells and it promoted new bone formation and maturation. These results suggested that local BDNF produced by peripheral nerve injury contributes to accelerating sclerotic changes in the alveolar bone. PMID:28072837

  4. Anterograde degeneration along the visual pathway after optic nerve injury.

    PubMed

    You, Yuyi; Gupta, Vivek K; Graham, Stuart L; Klistorner, Alexander

    2012-01-01

    To investigate anterograde degenerative changes along the visual pathway in a rat model of optic nerve axotomy. Optic nerve transection was performed in adult Sprague-Dawley rats. Animals were sacrificed at regular time intervals and tissues harvested. Immunoblotting followed by densitometric analysis was used to determine the phosphorylation profile of Akt in the dorsal lateral geniculate nucleus (dLGN) and the primary visual cortex (V1). The neuronal cell size and cell density were measured in the dLGN and the V1 using Nissl staining. The prevalence of apoptosis was characterized by terminal deoxynucleotidyl-transferase-mediated biotin-dUTP nick end labelling (TUNEL) histochemistry. Caspase-3 antibodies were also used to identify apoptotic cells. Neurons and astrocytes were detected using NeuN and glial fibrillary acidic protein (GFAP), respectively. An early and sustained loss of Akt phosphorylation was observed after optic nerve transection in both dLGN and V1. At week one, a decrease in the neuronal cell size (50.5±4.9 vs 60.3±5.0 µm(2), P = 0.042) and an increase of TUNEL positive cells (7.9±0.6 vs 1.4±0.5 ×10(2) cells/mm(2), P<0.001) were evident in the dLGN but not in V1. A significant decline in neuronal cell number (14.5±0.1 vs 17.4±1.3 ×10(2) cells/mm(2), P = 0.048), cell size (42.5±4.3 vs 62.1±4.7 µm(2), P = 0.001) and an increase in apoptotic cells (5.6±0.5 vs 2.0±0.4 ×10(2) cells/mm(2), P<0.001) appeared in V1 initially at one month post-transection. The changes in the visual pathway continued through two months. Both neuronal cells and GFAP-positive glial cells were affected in this anterograde degeneration along the visual pathway. Anterograde degeneration along the visual pathway takes place in target relay (LGN) and visual cortex following the optic nerve injury. Apoptosis was observed in both neural and adjacent glial cells. Reduction of Akt phosphorylation preceded cellular and apoptotic changes.

  5. Anterograde Degeneration along the Visual Pathway after Optic Nerve Injury

    PubMed Central

    Graham, Stuart L.; Klistorner, Alexander

    2012-01-01

    Purpose To investigate anterograde degenerative changes along the visual pathway in a rat model of optic nerve axotomy. Methods Optic nerve transection was performed in adult Sprague-Dawley rats. Animals were sacrificed at regular time intervals and tissues harvested. Immunoblotting followed by densitometric analysis was used to determine the phosphorylation profile of Akt in the dorsal lateral geniculate nucleus (dLGN) and the primary visual cortex (V1). The neuronal cell size and cell density were measured in the dLGN and the V1 using Nissl staining. The prevalence of apoptosis was characterized by terminal deoxynucleotidyl-transferase-mediated biotin-dUTP nick end labelling (TUNEL) histochemistry. Caspase-3 antibodies were also used to identify apoptotic cells. Neurons and astrocytes were detected using NeuN and glial fibrillary acidic protein (GFAP), respectively. Results An early and sustained loss of Akt phosphorylation was observed after optic nerve transection in both dLGN and V1. At week one, a decrease in the neuronal cell size (50.5±4.9 vs 60.3±5.0 µm2, P = 0.042) and an increase of TUNEL positive cells (7.9±0.6 vs 1.4±0.5 ×102 cells/mm2, P<0.001) were evident in the dLGN but not in V1. A significant decline in neuronal cell number (14.5±0.1 vs 17.4±1.3 ×102 cells/mm2, P = 0.048), cell size (42.5±4.3 vs 62.1±4.7 µm2, P = 0.001) and an increase in apoptotic cells (5.6±0.5 vs 2.0±0.4 ×102 cells/mm2, P<0.001) appeared in V1 initially at one month post-transection. The changes in the visual pathway continued through two months. Both neuronal cells and GFAP-positive glial cells were affected in this anterograde degeneration along the visual pathway. Conclusions Anterograde degeneration along the visual pathway takes place in target relay (LGN) and visual cortex following the optic nerve injury. Apoptosis was observed in both neural and adjacent glial cells. Reduction of Akt phosphorylation preceded cellular and apoptotic changes

  6. Effect of vagus nerve stimulation on thermal injury in rats.

    PubMed

    Song, Xue-Min; Li, Jian-Guo; Wang, Yan-Lin; Liang, Hui; Huang, Yue; Yuan, Xiang; Zhou, Qing; Zhang, Zong-Ze

    2010-02-01

    To investigate the effects of vagus nerve stimulation on haemodynamics, pulmonary histopathology, arterial blood gas and pro-inflammatory responses to thermal injury. Forty-eight male Sprague-Dawley (SD) rats were randomly divided into six equal groups: normal control (NC) group; thermal injury (TEM) group subjected to 40% total body surface area (%TBSA) third-degree thermal injury; vagotomy (VGX) group subjected to bilateral cervical vagotomy after thermal injury; electrical stimulation (STM) group subjected to bilateral cervical vagotomy plus the left vagus nerve trunk electrical stimulation (5 V, 2 ms and 1 Hz) after thermal injury; the antagonist of muscarinic acetylcholine receptor (MRA) group administrated with atropine (0.1 mg kg(-1)) before electrical stimulation and the antagonist of nicotinic acetylcholine receptor (NRA) group administrated with hexamethonium (10 mg kg(-1)) before electrical stimulation. The haemodynamics, histopathology of lung tissue, arterial blood gas, lactic acid, tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) levels were measured. Vagus nerve electrical stimulation not only significantly increased the mean arterial pressure (MAP) and heart rate (HR), but also decreased the infiltration of inflammatory cells into interstitial and alveolar spaces after thermal challenge and attenuated TNF-alpha and IL-6 production. Hexamethonium pre-treatment significantly reversed the effects of vagal electrical stimulation, but atropine administration before electrical stimulation had no such effects. Direct electrical stimulation of the vagus nerve might produce therapeutic effect on thermal injury. The effect may be realised by limiting the inflammatory response via nicotinic acetylcholine receptors in rats. Copyright (c) 2009 Elsevier Ltd and ISBI. All rights reserved.

  7. Intrathecal AAV Serotype 9-mediated Delivery of shRNA Against TRPV1 Attenuates Thermal Hyperalgesia in a Mouse Model of Peripheral Nerve Injury

    PubMed Central

    Hirai, Takashi; Enomoto, Mitsuhiro; Kaburagi, Hidetoshi; Sotome, Shinichi; Yoshida-Tanaka, Kie; Ukegawa, Madoka; Kuwahara, Hiroya; Yamamoto, Mariko; Tajiri, Mio; Miyata, Haruka; Hirai, Yukihiko; Tominaga, Makoto; Shinomiya, Kenichi; Mizusawa, Hidehiro; Okawa, Atsushi; Yokota, Takanori

    2014-01-01

    Gene therapy for neuropathic pain requires efficient gene delivery to both central and peripheral nervous systems. We previously showed that an adenoassociated virus serotype 9 (AAV9) vector expressing short-hairpin RNA (shRNA) could suppress target molecule expression in the dorsal root ganglia (DRG) and spinal cord upon intrathecal injection. To evaluate the therapeutic potential of this approach, we constructed an AAV9 vector encoding shRNA against vanilloid receptor 1 (TRPV1), which is an important target gene for acute pain, but its role in chronic neuropathic pain remains unclear. We intrathecally injected it into the subarachnoid space at the upper lumbar spine of mice 3 weeks after spared nerve injury (SNI). Delivered shTRPV1 effectively suppressed mRNA and protein expression of TRPV1 in the DRG and spinal cord, and it attenuated nerve injury-induced thermal allodynia 10–28 days after treatment. Our study provides important evidence for the contribution of TRPV1 to thermal hypersensitivity in neuropathic pain and thus establishes intrathecal AAV9-mediated gene delivery as an investigative and potentially therapeutic platform for the nervous system. PMID:24322332

  8. Ingenuity Pathway Analysis of Gene Expression Profiles in Distal Nerve Stump following Nerve Injury: Insights into Wallerian Degeneration

    PubMed Central

    Yu, Jun; Gu, Xiaosong; Yi, Sheng

    2016-01-01

    Nerve injury is a common and difficult clinical problem worldwide with a high disability rate. Different from the central nervous system, the peripheral nervous system is able to regenerate after injury. Wallerian degeneration in the distal nerve stump contributes to the construction of a permissible microenvironment for peripheral nerve regeneration. To gain new molecular insights into Wallerian degeneration, this study aimed to identify differentially expressed genes and elucidate significantly involved pathways and cellular functions in the distal nerve stump following nerve injury. Microarray analysis showed that a few genes were differentially expressed at 0.5 and 1 h post nerve injury and later on a relatively larger number of genes were up-regulated or down-regulated. Ingenuity pathway analysis indicated that inflammation and immune response, cytokine signaling, cellular growth and movement, as well as tissue development and function were significantly activated following sciatic nerve injury. Notably, a cellular function highly related to nerve regeneration, which is called Nervous System Development and Function, was continuously activated from 4 days until 4 weeks post injury. Our results may provide further understanding of Wallerian degeneration from a genetic perspective, thus aiding the development of potential therapies for peripheral nerve injury. PMID:27999531

  9. Iatrogenic Injury to the Long Thoracic Nerve

    PubMed Central

    Bizzarri, Federico; Davoli, Giuseppe; Bouklas, Dimitri; Oricchio, Luca; Frati, Giacomo; Neri, Eugenio

    2001-01-01

    After heart surgery, complications affecting the brachial plexus have been reported in 2% to 38% of cases. The long thoracic nerve is vulnerable to damage at various levels, due to its long and superficial course. This nerve supplies the serratus anterior muscle, which has an important role in the abduction and elevation of the superior limb; paralysis of the serratus anterior causes “winged scapula,” a condition in which the arm cannot be lifted higher than 90° from the side. Unfortunately, the long thoracic nerve can be damaged by a wide variety of traumatic and nontraumatic occurrences, ranging from viral or nonviral disease to improper surgical technique, to the position of the patient during transfer to a hospital bed. Our patient, a 62-year-old man with triple-vessel disease, underwent myocardial revascularization in which right and left internal thoracic arteries and the left radial artery were grafted to the right coronary, descending anterior, and obtuse marginal arteries, respectively. Despite strong recovery and an apparently good postoperative course, the patient sued for damages due to subsequent winging of the left scapula. In this instance, the legal case has less to do with the cause of the lesion (which remains unclear) than with failure to adequately inform the patient of possible complications at the expense of the nervous system. The lesson is that each patient must receive detailed written and oral explanation of the potential benefits and all conceivable risks of a procedure. (Tex Heart Inst J 2001;28:315–7) PMID:11777160

  10. Reverse transcription quantitative real-time polymerase chain reaction reference genes in the spared nerve injury model of neuropathic pain: validation and literature search

    PubMed Central

    2013-01-01

    Background The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated. We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system – specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. Results We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the

  11. Rat rotator cuff muscle responds differently from hindlimb muscle to a combined tendon-nerve injury.

    PubMed

    Davies, Michael R; Ravishankar, Bharat; Laron, Dominique; Kim, Hubert T; Liu, Xuhui; Feeley, Brian T

    2015-07-01

    Rotator cuff tears (RCTs) are among the most common musculoskeletal injuries seen by orthopaedic surgeons. Clinically, massive cuff tears lead to unique pathophysiological changes in rotator cuff muscle, including atrophy, and massive fatty infiltration, which are rarely seen in other skeletal muscles. Studies in a rodent model for RCT have demonstrated that these histologic findings are accompanied by activation of the Akt/mammalian target of rapamycin (mTOR) and transforming growth factor-β (TGF-β) pathways following combined tendon-nerve injury. The purpose of this study was to compare the histologic and molecular features of rotator cuff muscle and gastrocnemius muscle--a major hindlimb muscle, following combined tendon-nerve injury. Six weeks after injury, the rat gastrocnemius did not exhibit notable fatty infiltration compared to the rotator cuff. Likewise, the adipogenic markers SREBP-1 and PPARγ as well as the TGF-β canonical pathway were upregulated in the rotator cuff, but not the gastrocnemius. Our study suggests that the rat rotator cuff and hindlimb muscles differ significantly in their response to a combined tendon-nerve injury. Clinically, these findings highlight the unique response of the rotator cuff to injury, and may begin to explain the poor outcomes of massive RCTs compared to other muscle-tendon injuries.

  12. Late radiation injury to muscle and peripheral nerves

    SciTech Connect

    Gillette, E.L.; Powers, B.E.; Vujaskovic, Z.

    1995-03-30

    Late radiation injury to muscles and peripheral nerves is infrequently observed. However, the success of radiation oncology has led to longer patient survival, providing a greater opportunity for late effects to develop, increase in severity and, possibly, impact the quality of life of the patient. In addition, when radiation therapy is combined with surgery and/or chemotherapy, the risk of late complications is likely to increase. It is clear that the incidence of complications involving muscles and nerves increases with time following radiation. The influence of volume has yet to be determined; however, an increased volume is likely to increase the risk of injury to muscles and nerves. Experimental and clinical studies have indicated that the {alpha}/{beta} ratio for muscle is approximately 4 Gy and, possibly, 2 Gy for peripheral nerve, indicating the great influence of fractionation on response of these tissues. This is of concern for intraoperative radiation therapy, and for high dose rate brachytherapy. This review of clinical and experimental data discusses the response of muscle and nerves late after radiation therapy. A grading system has been proposed and endpoints suggested. 36 refs., 3 figs., 3 tabs.

  13. Spatiotemporal expression of postsynaptic density 95 in rat retina after optic nerve injury.

    PubMed

    Li, Chen; Zhou, Yi; Liu, ZhiQiang; Tuo, JingSheng; Hu, Nan; Guan, HuaiJin

    2012-03-01

    Postsynaptic density protein 95 (PSD95) contains three PSD95/Drosophilia disk large/ZO-1[PDZ] homology domains and links neuronal nitric oxide synthase (nNOS) with the N-methyl-D: -aspartic acid receptor. Previous studies showed that the assembly of PSD95/nNOS signaling played an important role in rat ischemic brain injury. In this study, we aimed to elucidate the changes of PSD95 expression and location in retina after optic nerve crush. The optic nerve injury model of rats was created by crushing optic nerve at 2 mm retrobulbarly. Real-time PCR and Western blot analysis were used to analyze mRNA and protein expression of PSD95. The spatial distribution of PSD95 were evaluated by immunohistochemistry. Immunofluorescence was performed to observe the co-localization of PSD95. The PSD95 expression diminished at 1 day and elevated and peaked on the 7th day of post-injury. The mRNA and protein levels of PSD95 underwent the similar change. The association of PSD95 and rhodopsin was detected by immunofluorescence double staining. The injury-induced expression of PSD95 was physically co-existed with active caspase-3 (apoptotic marker) and nNOS. The spatiotemporal changes of PSD95 expression suggests that this protein likely to play a role in the degenerative process of never cells induced by optic nerve injury in the retina.

  14. Synaptic ultrastructure changes in trigeminocervical complex post trigeminal nerve injury

    PubMed Central

    Park, John; Trinh, Van Nancy; Sears-Kraxberger, Ilse; Li, Kang-Wu; Steward, Oswald; Luo, Z. David

    2015-01-01

    Trigeminal nerves collecting sensory information from the orofacial area synapse on second order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here, we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states. Transmission electron microscopy was used to examine synaptic profiles in Vc/C2 at three-weeks post-injury, corresponding to the time of peak behavioral hypersensitivity following chronic constriction injury to the infraorbital nerve (CCI-ION). Using established criteria, synaptic profiles were classified as associated with excitatory (R-), inhibitory (F-), and primary afferent (C-) terminals. Each type was counted within the superficial dorsal horn of the Vc/C2 and the means from each rat were compared between sham and injured animals; synaptic contact length was also measured. The overall analysis indicates that rats with orofacial pain states had increased numbers and decreased mean synaptic length of R-profiles within the Vc/C2 superficial dorsal horn (lamina I) three-weeks post CCI-ION. Increases in the number of excitatory synapses in the superficial dorsal horn of Vc/C2 could lead to enhanced activation of nociceptive pathways, contributing to the development of orofacial pain states. PMID:26132987

  15. CatWalk gait analysis in assessment of functional recovery after sciatic nerve injury.

    PubMed

    Bozkurt, A; Deumens, R; Scheffel, J; O'Dey, D M; Weis, J; Joosten, E A; Führmann, T; Brook, G A; Pallua, N

    2008-08-15

    Following peripheral nerve injury repair, improved behavioural outcome may be the most important evidence of functionality of axon regeneration after any repair strategy. A range of behavioural testing paradigms have been developed for peripheral nerve injury research. Complete injury of the adult rat sciatic nerve is frequently used in combination with walking track analysis. Despite its wide-spread use, these walking track analyses are unsuitable for the simultaneous assessment of both dynamic and static gait parameters. Conversely, a novel automated gait analysis system, i.e. CatWalk can simultaneously measure dynamic as well as static gait parameters and, importantly, it's easy to control for the speed of locomotion which can strongly affect gait parameters. In a previous study, CatWalk was already successfully used to examine deficits in both dynamic and static gait parameters using the sciatic nerve lesion model with a 1cm gap characterized by absence of recovery [Deumens R, Jaken RJ, Marcus MA, Joosten EA. The CatWalk gait analysis in assessment of both dynamic and static gait changes after adult rat sciatic nerve resection. J Neurosci Methods 2007;164:120-30]. Using the sciatic nerve crush injury model (validated with the static sciatic index) and a follow-up period of 12 weeks, we now show that CatWalk can also measure behavioural recovery. In particular dynamic gait parameters, coordination measures, and the intensity of paw prints are of interest in detecting recovery as far as these parameters completely return to pre-operative values after crush injury. We conclude that CatWalk can be used as a complementary approach to other behavioural testing paradigms to assess clinically relevant behavioural benefits, with a main advantage that CatWalk demonstrates both static and dynamic gait parameters at the same time.

  16. Effect of Frankincense Extract on Nerve Recovery in the Rat Sciatic Nerve Damage Model

    PubMed Central

    Jiang, Xiaowen; Ma, Jun; Wei, Qingwei; Feng, Xinxin; Qiao, Lu; Liu, Lin; Zhang, Binqing; Yu, Wenhui

    2016-01-01

    This study investigated the effect of frankincense extract on peripheral nerve regeneration in a crush injury rat model. Forty-eight Sprague-Dawley rats were randomly divided into four groups: control and frankincense extract low-, medium-, and high-dose groups. At days 7, 14, 21, and 28 following the surgery, nerve regeneration and functional recovery were evaluated using the sciatic functional index (SFI), expression of GAP-43, and the proliferation of Schwann cells (SCs) in vivo and in vitro. At day 7, the SFI in the frankincense extract high-dose group was significantly improved compared with the control group. After day 14, SFI was significantly improved in the medium- and high-dose groups. There was no significant difference in GAP-43 expression among the groups at day 7. However, after day 14, expression of GAP-43 in the high-dose group was higher than that in the control group. Histological evaluation showed that the injured nerve of frankincense extract high-dose group recovered better than the other groups 28 days after surgery. Further, S100 immunohistochemical staining, MTT colorimetry, and flow cytometry assays all showed that frankincense extract could promote the proliferation of SCs. In conclusion, frankincense extract is able to promote sciatic nerve regeneration and improve the function of a crushed sciatic nerve. This study provides a new direction for the repair of peripheral nerve injury. PMID:27143985

  17. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injury

    PubMed Central

    Aloe, Luigi; Bianchi, Patrizia; De Bellis, Alberto; Soligo, Marzia; Rocco, Maria Luisa

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an increased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deficits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells. PMID:25206755

  18. Availability of CBCT and iatrogenic alveolar nerve injuries.

    PubMed

    Suomalainen, Anni; Apajalahti, Satu; Vehmas, Tapio; Ventä, Irja

    2013-01-01

    To examine whether the rapid increase in the availability of cone-beam computed tomography (CBCT) has changed the number of inferior alveolar nerve (IAN) injuries related to the removal of mandibular third molars in Finland. The hypothesis was that the number of nerve injuries should diminish due to better imaging methods. The number of CBCT devices, the annual number of CBCT examinations and the number of permanent IAN injuries occurring between 1997 and 2007 were analyzed. The data was collected from three national registers: the Radiation and Nuclear Safety Authority, the Social Insurance Institution and the Patient Insurance Centre. A detailed analysis was made from the cases of permanent IAN injuries. The first CBCT device was registered in 2002 and the cumulative number of these devices in 2009 was 22. There was an increase from 555 to 3160 in the number of annual CBCT examinations during the period 2004-2009. The total number of permanent IAN injuries during the years 1997-2007 was 129 and remained stable throughout the period (regression analysis, p = 0.974, r (2) = 0.01). Contrary to this hypothesis, the availability of CBCT devices has had no significant influence on the number of IAN injuries related to mandibular third molar removals in Finland. More education should be given to optimize the use of CBCT to cover difficult cases that may give rise to complications.

  19. Dorsal clitoral nerve injury following transobturator midurethral sling

    PubMed Central

    Moss, Chailee F; Damitz, Lynn A; Gracely, Richard H; Mintz, Alice C; Zolnoun, Denniz A; Dellon, A Lee

    2016-01-01

    Introduction Transobturator slings can be successfully used to treat stress urinary incontinence and improve quality of life through a minimally invasive vaginal approach. Persistent postoperative pain can occur and pose diagnostic and therapeutic dilemmas. Following a sling procedure, a patient complained of pinching clitoral and perineal pain. Her symptoms of localized clitoral pinching and pain became generalized over the ensuing years, eventually encompassing the entire left vulvovaginal region. Aim The aim of this study was to highlight the clinical utility of conventional pain management techniques used for the evaluation and management of patients with postoperative pain following pelvic surgery. Methods We described a prototypical patient with persistent pain in and around the clitoral region complicating the clinical course of an otherwise successful sling procedure. We specifically discussed the utility of bedside sensory assessment techniques and selective nerve blocks in the evaluation and management of this prototypical patient. Results Neurosensory assessments and a selective nerve block enabled us to trace the source of the patient’s pain to nerve entrapment along the dorsal nerve of the clitoris. We then utilized a nerve stimulator-guided hydrodissection technique to release the scar contracture Conclusion This case demonstrates that the dorsal nerve of the clitoris is vulnerable to injury directly and/or indirectly. Assimilation of a time-honored pain management construct for the evaluation and management of patients’ pain may improve outcomes while obviating the need for invasive surgery. PMID:27729812

  20. [The changes of the muscular fiber phynotype at different condition of nerve injury].

    PubMed

    Luo, Quan-feng; Qi, Zuo-liang; Wang, Wei; Wang, Xing

    2006-01-01

    To observe the change of the muscular fiber phynotype at different condition of nerve injury. Rabbits were used as an animal model in this study. The trigeminus and facial nerves of the animal were simultaneously severed (group 1) or only the latter was severed (group 2). The morphologic change of the muscular fibers was observed with histochemical methods; the tension of contraction and the threshold value of electrical stimulation were observed with electrical physiological methods. Trigeminus nerve play an important role in delaying muscular atrophy after facial nerve was severed. The atrophy degree of type II a and II b muscular fibers was less in group 2 than that in group 1. The change of type 1 muscular fibers was not affected by trigeminus nerve. New muscular fibers emerged in group 2. The tension of contraction and the threshold value of electrical stimulation were better in group 2 than that of in group 1. Sensory nerve could delay muscle atrophy after denervation. Sensory nerve should be repaired simultaneously when the motor nerve was sutured. The results of this study would facilitate clinical treatment for facial palsy.

  1. The Effect of Sildenafil on Recuperation from Sciatic Nerve Injury in Rats

    PubMed Central

    Korkmaz, Mehmet Fatih; Parlakpınar, Hakan; Ceylan, Mehmet Fethi; Ediz, Levent; Şamdancı, Emine; Kekilli, Ersoy; Sağır, Mustafa

    2016-01-01

    Background: Severe functional and anatomical defects can be detected after the peripheral nerve injury. Pharmacological approaches are preferred rather than surgical treatment in the treatment of nerve injuries. Aims: The aim of this study is to perform histopathological, functional and bone densitometry examinations of the effects of sildenafil on nerve regeneration in a rat model of peripheral nerve crush injury. Study Design: Animal experiment. Methods: The study included a total of thirty adult Sprague-Dawley rats that were divided into three groups of ten rats each. In all rats, a crush injury was created by clamping the right sciatic nerve for one minute. One day before the procedure, rats in group 1 were started on a 28-day treatment consisting of a daily dose of 20 mg/kg body weight sildenafil citrate given orally via a nasogastric tube, while the rats in group 2 were started on an every-other-day dose of 10 mg/kg body weight sildenafil citrate. Rats from group 3 were not administered any drugs. Forty-two days after the nerve damage was created, functional and histopathological examination of both sciatic nerves and bone densitometric evaluation of the extremities were conducted. Results: During the rotarod test, rats from group 3 spent the least amount of time on the rod compared to the drug treatment groups at speeds of 20 rpm, 30 rpm and 40 rpm. In addition, the duration for which each animal could stay on the rod throughout the accelerod test significantly reduced in rats from group 3 compared to rats from groups 1 and 2 in the 4-min test. For the hot-plate latency time, there were no differences among the groups in either the basal level or after sciatic nerve injury. Moreover, there was no significant difference between the groups in terms of the static sciatic index (SSI) on the 42nd day (p=0.147). The amplitude was better evaluated in group 1 compared to the other two groups (p<0.05). Under microscopic evaluation, we observed the greatest amount of

  2. Restoration of shoulder abduction by nerve transfer in avulsed brachial plexus injury: evaluation of 99 patients with various nerve transfers.

    PubMed

    Chuang, D C; Lee, G W; Hashem, F; Wei, F C

    1995-07-01

    During the 5-year period between 1987 and 1991, 99 patients with total root or upper root (C5, C6, or C7) injuries were treated by nerve transfer to obtain shoulder abduction. More than eight different combinations of coaptation between donor nerves (intercostal nerves, phrenic nerve, spinal accessory nerve, ipsilateral C7, or cervical motor nerves) and recipient nerves (suprascapular nerve, axillary nerve, and upper trunk or C5) were applied. All patients had at least 2 years of follow-up. Different results were obtained in each category. Simultaneous neurotization of the suprascapular and axillary nerves with the phrenic and spinal accessory nerves obtained much better and more reliable shoulder abduction. Neurotization of the C5 spinal nerve by multiple nerve transfers was another good option that yielded good shoulder abduction in a single patient. If the phrenic nerve was traumatized, neurotization of the suprascapular nerve solely with the spinal accessory nerve was still capable of achieving an acceptable range of shoulder abduction.

  3. Deletion of Nrf2 impairs functional recovery, reduces clearance of myelin debris and decreases axonal remyelination after peripheral nerve injury

    PubMed Central

    Zhang, Linxia; Johnson, Delinda; Johnson, Jeffrey A.

    2013-01-01

    Oxidative stress is generated in several peripheral nerve injury models. In response to oxidative stress, the transcription factor Nrf2 is activated to induce expression of antioxidant responsive element (ARE) genes. The role of Nrf2 in peripheral nerve injury has not been studied to date. In this study, we used a sciatic nerve crush model to examine how deletion of Nrf2 affects peripheral nerve degeneration and regeneration. Our study demonstrated that functional recovery in the Nrf2-/- mice were impaired compared to the wild type mice after sciatic nerve crush. Larger myelin debris were present in the distal nerve stump of the Nrf2-/- mice than in the wild type mice. The presence of larger myelin debris in the Nrf2-/- mice coincides with less macrophages accumulation in the distal nerve stump. Less accumulation of macrophages may have contributed to slower clearance of myelin and thus resulted in the presence of larger myelin debris. Meanwhile, axonal regeneration is comparatively lower in the Nrf2-/- mice than in the wild type mice. Even after 3 months post the injury, more thinly myelinated axon fibers were present in the Nrf2-/- mice than in the wild type mice. Taken collectively, these data support the concept of therapeutic intervention with Nrf2 activators following nerve injury. PMID:23328769

  4. Clinical Decision Support and Perioperative Peripheral Nerve Injury: A Quality Improvement Project.

    PubMed

    Bouyer-Ferullo, Sharon; Androwich, Ida M; Dykes, Patricia C

    2015-06-01

    Decision support at the point of care has been demonstrated to be an effective tool in providing a safe environment and improving patient outcomes. The operating room is typically an area where advanced technology is introduced to nurses on a regular basis. This quality improvement project focused on preventing a peripheral nerve injury, which is an example of a postoperative adverse event that is considered preventable. Injury of a peripheral nerve is the result of compression, hyperextension, flexion, or ischemia surrounding the nerve. The goals for this project were to improve the knowledge of peripheral nerve injury of the operating room nurses, design and implement a peripheral nerve injury assessment screen that could provide decision support within the operating room record, improve the nursing documentation of peripheral nerve injury interventions, and (long term) decrease the incidence of peripheral nerve injury. A decision support screen within the operating room record was designed to supplement the operating room nurse's risk assessment for peripheral nerve injury. The components of this project involved a preliminary and postproject surveys on peripheral nerve injury knowledge, an educational presentation, and a retrospective random review of nursing documentation in the operating room electronic health records. Project results demonstrated a significant increase in nursing documentation of peripheral nerve injury interventions (63%-92%) and a positive attitude toward their exposure to basic decision support (P = .046). Recommendations for future studies and establishing a standardized coding system for peripheral nerve injury identification were identified.

  5. Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury.

    PubMed

    Park, John; Trinh, Van Nancy; Sears-Kraxberger, Ilse; Li, Kang-Wu; Steward, Oswald; Luo, Z David

    2016-02-01

    Trigeminal nerves collecting sensory information from the orofacial area synapse on second-order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states. Transmission electron microscopy was used to examine synaptic profiles in Vc/C2 at 3 weeks postinjury, corresponding to the time of peak behavioral hypersensitivity following chronic constriction injury to the infraorbital nerve (CCI-ION). Using established criteria, synaptic profiles were classified as associated with excitatory (R-), inhibitory (F-), and primary afferent (C-) terminals. Each type was counted within the superficial dorsal horn of the Vc/C2 and the means from each rat were compared between sham and injured animals; synaptic contact length was also measured. The overall analysis indicates that rats with orofacial pain states had increased numbers and decreased mean synaptic length of R-profiles within the Vc/C2 superficial dorsal horn (lamina I) 3 weeks post-CCI-ION. Increases in the number of excitatory synapses in the superficial dorsal horn of Vc/C2 could lead to enhanced activation of nociceptive pathways, contributing to the development of orofacial pain states. © 2015 Wiley Periodicals, Inc.

  6. Ethical considerations in elective amputation after traumatic peripheral nerve injuries

    PubMed Central

    Myers, Keith P.; Holloway, Robert G.; Landau, Mark E.

    2014-01-01

    Summary Traumatic peripheral nerve injuries often complicate extremity trauma, and may cause substantial functional deficits. We have encountered patients who request amputation of such injured extremities, with the goal of prosthetic replacement as a means to restore function. Data on long-term outcomes of limb salvage vs amputation are limited and somewhat contradictory, leaving how to respond to such requests in the hands of the treating physician. We present example cases, drawn from our experience with wounded soldiers in a peripheral nerve injury clinic, in order to facilitate discussion of the ways in which these patients stress the system of medical decision-making while identifying ethical questions central to responding to these requests. PMID:25279253

  7. Exogenous Neuritin Promotes Nerve Regeneration After Acute Spinal Cord Injury in Rats.

    PubMed

    Gao, Rui; Li, Xingyi; Xi, Shaosong; Wang, Haiyan; Zhang, Hong; Zhu, Jingling; Shan, Liya; Song, Xiaoming; Luo, Xing; Yang, Lei; Huang, Jin

    2016-07-01

    Insufficient local levels of neurotrophic factor after spinal cord injury (SCI) are the leading cause of secondary injury and limited axonal regeneration. Neuritin belongs to a family of neurotrophic factors that promote neurite outgrowth, maintain neuronal survival, and provide a favorable microenvironment for the regeneration and repair of nerve cells after injury. However, it is not known whether the exogenously applied neuritin protein has a positive effect on nerve repair after SCI. This was investigated in the present study using purified human recombinant neuritin expressed in and purified from Pichia pastoris, which was tested in a rat SCI model. A recombinant neuritin concentration of 60 μg/ml induced the recovery of hind limb motor function and stimulated nerve regeneration in rats with SCI. Continuous administration of neuritin at this dose at an early stage after SCI inhibited poly ADP ribose polymerase (PARP) protein degradation and decreased neuronal apoptosis. In addition, during the critical postinjury period of axonal regeneration, exogenous neuritin treatment increased the expression of neurofilament 200 and growth-associated protein 43 in the damaged tissue, which was associated with the restoration of hind limb movement. These results suggest that neuritin creates an environment that promotes nerve cell survival and neurite regeneration after SCI, which contribute to nerve regeneration and the recovery of motor function.

  8. Effects of swimming exercise on nerve regeneration in a rat sciatic nerve transection model

    PubMed Central

    Liao, Chien-Fu; Yang, Tse-Yen; Chen, Yung-Hsiang; Yao, Chun-Hsu; Way, Tzong-Der; Chen, Yueh-Sheng

    2017-01-01

    Background: Swimming is commonly considered to be an efficient rehabilitation exercise to treat peripheral nerve injury. However, the most effective resistance level and exercise duration is still unclear. We investigated the effects and mechanisms of swimming at various exertion levels in a rat sciatic nerve transection model. Methods: Sciatic nerve transection rats were randomized into the following four groups based on swimming duration (from the 7th day to the 28th day post-surgery): sedentary control group (SC), S10 group (10 min/3 times/week), S20 group (20 min/3 times/week), and S30 group (30 min/3 times/week) (n = 10 each). Axon regeneration, electrophysiological properties, muscular weights, macrophage infiltration, and nerve repair associated maker, calcitonin gene-related peptide (CGRP), were measured. Results: Dramatic higher successful percentages of nerve regeneration across the 10-mm gaps in swimming groups compared to the SC group. Total area of nerve regeneration significantly improved in the S10 group; however, electrophysiological properties, muscular weights, and macrophage infiltration in the regenerated nerves of rats did not differ significantly between the various exercise groups. CGRP expression was significantly increased in the spinal cord of rats in the S20 group. Conclusions: Our data indicated that CGRP-related axonal regeneration improved significantly with moderate swimming. These results should inspire new studies in physiotherapeutic practice for related human treatment. PMID:28474579

  9. Phonatory characteristics of patients undergoing thyroidectomy without laryngeal nerve injury.

    PubMed

    Hong, K H; Kim, Y K

    1997-10-01

    Complications that arise after thyroid surgery may be associated with infection, hemorrhage, hormonal problems, and laryngeal nerve injury. Voice alteration after thyroidectomy is usually caused by recurrent or superior laryngeal nerve injury. This voice dysfunction may also be associated with laryngotracheal fixation with impairment of vertical movement or by temporary malfunction of the strap muscles after surgery. In this study, we evaluated the voice function phonetically before and after thyroidectomy in 54 patients, although function of the recurrent and superior laryngeal nerves was normal. During surgery, the superior and recurrent laryngeal nerves were identified and protected, and after surgery electromyographic testing of the cricothyroid muscle was performed. Typical voice symptoms after surgery were easy fatigue during phonation and difficulty with high pitch and singing voice. Acoustic analysis revealed that the phonation time and fundamental frequency were not changed after surgery, but the speaking fundamental frequency, range of speaking fundamental frequency, and vocal range were significantly diminished after surgery. These data allowed us to suggest that the cause of voice dysfunction is not seen in neural lesions, but in a disturbance of the extralaryngeal skeleton. These voice changes emphasize the importance of the extralaryngeal mechanism for pitch control.

  10. HuD-mediated distinct BDNF regulatory pathways promote regeneration after nerve injury.

    PubMed

    Sanna, Maria Domenica; Ghelardini, Carla; Galeotti, Nicoletta

    2017-03-15

    Up-regulation of brain-derived neurotrophic factor (BDNF) synthesis is an important mechanism of peripheral nerve regeneration after injury. However, the cellular and molecular mechanisms underlying this process are not fully understood. This study examines the role of BDNF in the spared nerve injury (SNI) mice model. Protein expression and cellular localization were investigated in the dorsal root ganglia (DRG) and spinal cord by western blotting and immunofluorescence experiments respectively. BDNF protein was markedly increased 3 and 7days post-injury in the spinal cord and DRG. Following nerve injury sensory neurons produce molecules to promote regeneration, such as growth-associated protein 43 (GAP-43) and cytoskeletal proteins. Our results show that the expression of GAP-43 was increased in the DRG and spinal cord while, an increased of p-NFH content was detected in the spinal cord, with no modification in the DRG. Both events were counteracted by the administration of an anti-BDNF antibody. In DRG of SNI mice we also detected an increase of HuD expression, a RNA-binding protein known to stabilize BDNF and GAP-43 mRNA. Silencing of HuD prevented the nerve injury-induced BDNF and GAP-43 enhanced expression in the DRG. HuD-mediated BDNF synthesis in the primary sensory neurons, is followed by an anterograde transport of the neurotrophin to the central terminals of the primary afferents in the spinal dorsal horn, to modulate GAP-43 and NFH activation. Our data suggest that BDNF, GAP-43 and p-NFH proteins increase are linked events required for the enhanced regeneration after nerve injury.

  11. Tips to avoid nerve injury in elbow arthroscopy

    PubMed Central

    Hilgersom, Nick F J; Oh, Luke S; Flipsen, Mark; Eygendaal, Denise; van den Bekerom, Michel P J

    2017-01-01

    Elbow arthroscopy is a technical challenging surgical procedure because of close proximity of neurovascular structures and the limited articular working space. With the rising number of elbow arthroscopies being performed nowadays due to an increasing number of surgeons performing this procedure and a broader range of indications, a rise in complications is foreseen. With this editorial we hope to create awareness of possible complications of elbow arthroscopy, particularly nerve injuries, and provide a guideline to avoid complications during elbow arthroscopy. PMID:28251060

  12. Bruxism elicited by inferior alveolar nerve injury: a case report.

    PubMed

    Melis, Marcello; Coiana, Carlo; Secci, Simona

    2012-02-01

    The aim of this case report is to describe the history of a patient who received an injury to the right inferior alveolar nerve after placement of a dental implant, with bruxism noted afterward. The symptoms were managed by the use of an occlusal appliance worn at night and occasionally during the day, associated with increased awareness of parafunction during the day to reduce muscle pain and fatigue. Paresthesia of the teeth, gingiva, and lower lip persisted but were reduced during appliance use.

  13. Immunoreactive Changes in the Hypoglossal Nucleus after Nerve Injury

    DTIC Science & Technology

    1991-07-25

    Skene & Willard, 1981a,b). Levels of synthetic enzymes for neurotransmitter biosynthesis have been shown to be reduced after nerve injury (Ross et...significantly with maturity ( Skene & Willard, 1981b); GAPs have also been shown to increase after axotomy ( Skene & Willard, 1981a). In rat hypoglossal...proteins (Willard & Skene , 1981a,b; Redshaw and Bisby, 1984). Calcitonin Gene-Related Peptide Calcitonin gene-related peptide (CGRP) is a novel

  14. Injury of the Inferior Alveolar Nerve during Implant Placement: a Literature Review

    PubMed Central

    Wang, Hom-Lay; Sabalys, Gintautas

    2011-01-01

    ABSTRACT Objectives The purpose of present article was to review aetiological factors, mechanism, clinical symptoms, and diagnostic methods as well as to create treatment guidelines for the management of inferior alveolar nerve injury during dental implant placement. Material and Methods Literature was selected through a search of PubMed, Embase and Cochrane electronic databases. The keywords used for search were inferior alveolar nerve injury, inferior alveolar nerve injuries, inferior alveolar nerve injury implant, inferior alveolar nerve damage, inferior alveolar nerve paresthesia and inferior alveolar nerve repair. The search was restricted to English language articles, published from 1972 to November 2010. Additionally, a manual search in the major anatomy, dental implant, periodontal and oral surgery journals and books were performed. The publications there selected by including clinical, human anatomy and physiology studies. Results In total 136 literature sources were obtained and reviewed. Aetiological factors of inferior alveolar nerve injury, risk factors, mechanism, clinical sensory nerve examination methods, clinical symptoms and treatment were discussed. Guidelines were created to illustrate the methods used to prevent and manage inferior alveolar nerve injury before or after dental implant placement. Conclusions The damage of inferior alveolar nerve during the dental implant placement can be a serious complication. Clinician should recognise and exclude aetiological factors leading to nerve injury. Proper presurgery planning, timely diagnosis and treatment are the key to avoid nerve sensory disturbances management. PMID:24421983

  15. Concepts in Neural Coaptation: Using the Facial Nerve as a Paradigm in Understanding Principles Surrounding Nerve Injury and Repair.

    PubMed

    Kadakia, Sameep; Helman, Samuel; Saman, Masoud; Cooch, Nisha; Wood-Smith, Donald

    2015-06-01

    Individuals with nerve transection face unpredictable outcomes, and microsurgical interventions have variable success. The facial nerve in particular is prone to traumatic transection and leads to debilitating sequelae. Surgeons have used multiple modalities of enhancing nerve regeneration and restoring premorbid functionality. The success of nerve regeneration is predicated on multiple physiologic factors. This article sought to collate the literature on factors influencing nerve damage and repair, using the facial nerve as a paradigm. As such, facial reanimation will also be briefly discussed as it relates to the central theme. A PubMed search was conducted to find articles published on nerve physiology and anatomy, as well as repair. Articles from 1947 to 2013 were studied; however, the preponderance of articles in the study was from the past 15 years to include recent advances. The type and severity of nerve injury, as well as timing of intervention, influence the anatomical and functional outcomes of nerve repair. As there is no uniform solution for all reconstructive challenges, multiple factors must be considered when planning an intervention. Future advances suggest a potential role for engineered nerve conduits in providing a tool for nerve regrowth. Our review has detailed mechanisms of nerve injury, physiology, interventions in nerve repair, and future direction of this expanding field. This review provides a guide for the microsurgeon in factors involved in restorative success.

  16. Peripheral nerve regeneration following transection injury to rat sciatic nerve by local application of adrenocorticotropic hormone.

    PubMed

    Mohammadi, Rahim; Yadegarazadi, Mohammad-Javad; Amini, Keyvan

    2014-09-01

    The objective of this study was to assess local effect of adrenocorticotropic hormone (ACTH) on the functional recovery of the sciatic nerve in a transection model. Sixty male healthy white Wistar rats were randomized into four experimental groups of 15 animals each: In the sham-operated group (SHAM), the sciatic nerve was exposed and manipulated. In the transected group (TC), the left sciatic nerve was transected and the cut nerve ends were fixed in the adjacent muscle. In the silicone graft group (SIL) a 10-mm defect was made and bridged using a silicone tube. The graft was filled with phosphated-buffer saline alone. In the treatment group a silicone tube (SIL/ACTH) was filled with 10 μL ACTH (0.1 mg/mL). Each group was subdivided into three subgroups of five animals each and regenerated nerve fibres were studied at 4, 8 and 12 weeks post operation. Behavioral testing, functional, gastrocnemius muscle mass and morphometric indices showed earlier regeneration of axons in SIL/ACTH than in SIL group (p < 0.05). Immunohistochemistry clearly showed more positive location of reactions to S-100 in SIL/ACTH than in SIL group. ACTH improved functional recovery and morphometric indices of sciatic nerve. This finding supports role of ACTH after peripheral nerve repair and may have clinical implications for the surgical management of patients after nerve transection.

  17. Sciatic Nerve Injury After Proximal Hamstring Avulsion and Repair.

    PubMed

    Wilson, Thomas J; Spinner, Robert J; Mohan, Rohith; Gibbs, Christopher M; Krych, Aaron J

    2017-07-01

    Muscle bellies of the hamstring muscles are intimately associated with the sciatic nerve, putting the sciatic nerve at risk of injury associated with proximal hamstring avulsion. There are few data informing the magnitude of this risk, identifying risk factors for neurologic injury, or determining neurologic outcomes in patients with distal sciatic symptoms after surgery. To characterize the frequency and nature of sciatic nerve injury and distal sciatic nerve-related symptoms after proximal hamstring avulsion and to characterize the influence of surgery on these symptoms. Cohort study; Level of evidence, 3. This was a retrospective review of patients with proximal partial or complete hamstring avulsion. The outcome of interest was neurologic symptoms referable to the sciatic nerve distribution below the knee. Neurologic symptoms in operative patients were compared pre- and postoperatively. The cohort consisted of 162 patients: 67 (41.4%) operative and 95 (58.6%) nonoperative. Sciatic nerve-related symptoms were present in 22 operative and 23 nonoperative patients, for a total of 45 (27.8%) patients (8 [4.9%] motor deficits, 11 [6.8%] sensory deficits, and 36 [22.2%] with neuropathic pain). Among the operative cohort, 3 of 3 (100.0%) patients showed improvement in their motor deficit postoperatively, 3 of 4 (75.0%) patients' sensory symptoms improved, and 17 of 19 (89.5%) patients had improvement in pain. A new or worsening deficit occurred in 5 (7.5%) patients postoperatively (2 [3.1%] motor deficits, 1 [1.5%] sensory deficit, and 3 [4.5%] with new pain). Predictors of operative intervention included lower age (odds ratio [OR], 0.952; 95% CI, 0.921-0.982; P = .001) and complete avulsion (OR, 10.292; 95% CI, 2.526-72.232; P < .001). Presence of neurologic deficit was not predictive. Sciatic nerve-related symptoms after proximal hamstring avulsion are underrecognized. Currently, neurologic symptoms are not considered when determining whether to pursue operative

  18. ROLE OF IMMUNOPHILINS IN RECOVERY OF ERECTILE FUNCTION AFTER CAVERNOUS NERVE INJURY

    PubMed Central

    Sezen, Sena F.; Lagoda, Gwen; Burnettt, Arthur L.

    2012-01-01

    Introduction Immunophilin ligands provide potentially new alternatives for the treatment of erectile dysfunction (ED) which occurs after injury of the cavernous nerves (CN). Aim To review and update current knowledge of the neurotrophic effects and likely mechanism of action of immunophilin proteins with emphasis on the FK506-binding protein (FKBP) subfamily and the role of immunophilin ligands for the treatment of CN injury induced ED. Methods Review of available reports of studies investigating the effects and neurotrophic mechanisms of immunophilin ligands involved in erectile function recovery in rodent models of CN injury. Main Outcome Measures Erection parameters and molecular correlations associated with CN injury and functional recovery. Results Treatment with prototype immunosuppressive immunophilin ligands FK506 (FK) and Rapamycin (Rapa) improve erectile function in animal models of CN injury. Similarly, non-immunousuppressive analogs such as GPI-1046 and FK1706 are effective in recovery of erections after CN injury. Neuronal nitric oxide may influence the erection recovery effects of immunophilin ligands after CN injury. FKBPs 38 and 65 expression changes in the penis and its innervation coincide with the neurotrophic effects of immunophilin ligands. Antioxidative actions of immunophilin ligands contribute to their neurotrophic effects. Immunophilins are localized to nerves coursing in human prostate and penile tissue. Conclusions The findings support the hypothesis that immunophilin ligands, working through specific receptor mechanisms which are specific to injured CN, are potentially useful to sustain erectile function in men following radical prostatectomy. PMID:19267858

  19. Distinct degree of radiculopathy at different levels of peripheral nerve injury

    PubMed Central

    2012-01-01

    Background Lumbar radiculopathy is a common clinical problem, characterized by dorsal root ganglion (DRG) injury and neural hyperactivity causing intense pain. However, the mechanisms involved in DRG injury have not been fully elucidated. Furthermore, little is known about the degree of radiculopathy at the various levels of nerve injury. The purpose of this study is to compare the degree of radiculopathy injury at the DRG and radiculopathy injury proximal or distal to the DRG. Results The lumbar radiculopathy rat model was created by ligating the L5 nerve root 2 mm proximal to the DRG or 2 mm distal to the DRG with 6.0 silk. We examined the degree of the radiculopathy using different points of mechanical sensitivity, immunohistochemistry and in vivo patch-clamp recordings, 7 days after surgery. The rats injured distal to the DRG were more sensitive than those rats injured proximal to the DRG in the behavioral study. The number of activated microglia in laminas I–II of the L5 segmental level was significantly increased in rats injured distal to the DRG when compared with rats injured proximal to the DRG. The amplitudes and frequencies of EPSC in the rats injured distal to the DRG were higher than those injured proximal to the DRG. The results indicated that there is a different degree of radiculopathy at the distal level of nerve injury. Conclusions Our study examined the degree of radiculopathy at different levels of nerve injury. Severe radiculopathy occurred in rats injured distal to the DRG when compared with rats injured proximal to the DRG. This finding helps to correctly diagnose a radiculopathy. PMID:22537715

  20. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    PubMed Central

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  1. Nerve cross-bridging to enhance nerve regeneration in a rat model of delayed nerve repair.

    PubMed

    Gordon, Tessa; Hendry, Michael; Lafontaine, Christine A; Cartar, Holliday; Zhang, Jennifer J; Borschel, Gregory H

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays.

  2. [The effects of sacral nerve root electrostimulation on the colon function and its mechanisms in a rat model of spinal cord injury].

    PubMed

    Bai, Chun-hong; Ma, Xin-long

    2016-01-01

    To study the effects of sacral nerve root electrostimulation (SNS) on the colon function and its mechanisms in rats with spinal cord injury (SCI). One hundred and four Wistar rats were divided into three groups: A, B and C. A group ( n = 24) was divided into three subgroups (n = 8) for studying the bioelectricity: Normal group (NG), SCI group (SCI) and SCI group with SNS(SNS); B group( n = 24) was divided into three subgroups( n = 8) for studying the colon motility: NG, SCI and SNS. C group( n = 56) were divided into three groups for studying the change of morphology and neurotransmitters(SP and VIP): NG (n = 8), SCI (n = 24), and SNS (n = 24) . In SCI and SNS, included of three subgroups: 24, 48, 72 h after spinal cord injury (n = 8). In SCI group, the activity of bioelectricity in proximal and distal colon was reduced; the colon motility was lessened, and colon mucosa appeared different degree of damage; cell-cell connections between intestinal epithelial cells were destroyed. The expressions of substance P(SP) and vasoactive intestinal peptide (VIP) in colon were decreased obviously. SNS was found to activate the bioelectricity, promote the colon motility, improve the intestinal mucosal, and increase the expressions of SP and VIP. Conclusion: SNS can activate the peristalsis, rehabilitate the motility of denervated colon, protection of the intestinal mechanical barrier between intestinal epithelial cells and tight junction, rebuild the colon function through activating the bioelectricity and increase the expressions of SP and VIP.

  3. Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury

    PubMed Central

    Oñate, Maritza; Catenaccio, Alejandra; Martínez, Gabriela; Armentano, Donna; Parsons, Geoffrey; Kerr, Bredford; Hetz, Claudio; Court, Felipe A.

    2016-01-01

    Although protein-folding stress at the endoplasmic reticulum (ER) is emerging as a driver of neuronal dysfunction in models of spinal cord injury and neurodegeneration, the contribution of this pathway to peripheral nerve damage remains poorly explored. Here we targeted the unfolded protein response (UPR), an adaptive reaction against ER stress, in mouse models of sciatic nerve injury and found that ablation of the transcription factor XBP1, but not ATF4, significantly delay locomotor recovery. XBP1 deficiency led to decreased macrophage recruitment, a reduction in myelin removal and axonal regeneration. Conversely, overexpression of XBP1s in the nervous system in transgenic mice enhanced locomotor recovery after sciatic nerve crush, associated to an improvement in key pro-regenerative events. To assess the therapeutic potential of UPR manipulation to axonal regeneration, we locally delivered XBP1s or an shRNA targeting this transcription factor to sensory neurons of the dorsal root ganglia using a gene therapy approach and found an enhancement or reduction of axonal regeneration in vivo, respectively. Our results demonstrate a functional role of specific components of the ER proteostasis network in the cellular changes associated to regeneration and functional recovery after peripheral nerve injury. PMID:26906090

  4. Follow-up evaluation with ultrasonography of peripheral nerve injuries after an earthquake

    PubMed Central

    Lu, Man; Wang, Yue; Yue, Linxian; Chiu, Jack; He, Fanding; Wu, Xiaojing; Zang, Bin; Lu, Bin; Yao, Xiaoke; Jiang, Zirui

    2014-01-01

    Published data on earthquake-associated peripheral nerve injury is very limited. Ultrasonography has been proven to be efficient in the clinic to diagnose peripheral nerve injury. The aim of this study was to assess the role of ultrasound in the evaluation of persistent peripheral nerve injuries 1 year after the Wenchuan earthquake. Thirty-four patients with persistent clinical symptoms and neurologic signs of impaired nerve function were evaluated with sonography prior to surgical repair. Among 34 patients, ultrasonography showed that 48 peripheral nerves were entrapped, and 11 peripheral nerves were disrupted. There was one case of misdiagnosis on ultrasonography. The concordance rate of ultrasonographic findings with those of surgical findings was 98%. A total of 48 involved nerves underwent neurolysis and the symptoms resolved. Only five nerves had scar tissue entrapment. Preoperative and postoperative clinical and ultrasonographic results were concordant, which verified that ultrasonography is useful for preoperative diagnosis and postoperative evaluation of injured peripheral nerves. PMID:25206859

  5. Risk of injury to vascular-nerve bundle after calcaneal fracture: comparison among three techniques

    PubMed Central

    Labronici, Pedro José; Reder, Vitor Rodrigues; de Araujo Marins Filho, Guilherme Ferreira; Pires, Robinson Esteves Santos; Fernandes, Hélio Jorge Alvachian; Mercadante, Marcelo Tomanik

    2016-01-01

    Objective To ascertain whether the number of screws or pins placed in the calcaneus might increase the risk of injury when three different techniques for treating calcaneal fractures. Method 126 radiographs of patients who suffered displaced calcaneal fractures were retrospectively analyzed. Three surgical techniques were analyzed on an interobserver basis: 31 radiographs of patients treated using plates that were not specific for the calcaneus, 48 using specific plates and 47 using an external fixator. The risk of injury to the anatomical structures in relation to each Kirschner wire or screw was determined using a graded system in accordance with the Licht classification. The total risk of injury to the anatomical structures through placement of more than one wire/screw was quantified using the additive law of probabilities for the product, for independent events. Results All of the models presented high explanatory power for the risk evaluated, since the coefficient of determination values (R2) were greater than 98.6 for all the models. Therefore, the set of variables studied explained more than 98.6% of the variations in the risks of injury to arteries, veins or nerves and can be classified as excellent models for prevention of injuries. Conclusion The risk of injury to arteries, veins or nerves is not defined by the total number of pins/screws. The region and the number of pins/screws in each region define and determine the best distribution of the risk. PMID:27069891

  6. Prevention of iatrogenic inferior alveolar nerve injuries in relation to dental procedures.

    PubMed

    Renton, T

    2010-09-01

    This article aims to review current hypotheses on the aetiology and prevention of inferior alveolar nerve (IAN) injuries in relation to dental procedures. The inferior alveolar nerve can be damaged during many dental procedures, including administration of local anaesthetic, implant bed preparation and placement, endodontics, third molar surgery and other surgical interventions. Damage to sensory nerves can result in anaesthesia, paraesthesia, pain, or a combination of the three. Pain is common in inferior alveolar nerve injuries, resulting in significant functional problems. The significant disability associated with these nerve injuries may also result in increasing numbers of medico-legal claims. Many of these iatrogenic nerve injuries can be avoided with careful patient assessment and planning. Furthermore, if the injury occurs there are emerging strategies that may facilitate recovery. The emphasis of this review is on how we may prevent these injuries and facilitate resolution in the early post surgical phase.

  7. Modified Quad surgery significantly improves the median nerve conduction and functional outcomes in obstetric brachial plexus nerve injury

    PubMed Central

    2013-01-01

    Background Nerve conduction studies or somatosensory evoked potentials (SSEPs) have become an important tool in the investigation of peripheral nerve lesions, and is sensitive in detecting brachial plexus nerve injury, and other nerve injuries. To investigate whether the modified Quad surgical procedure improves nerve conductivity and functional outcomes in obstetric brachial plexus nerve injury (OBPI) patients. Methods All nerves were tested with direct functional electrical stimulation. A Prass probe was used to stimulate the nerves, and recording the response, the compound motor action potential (CMAP) in the muscle. SSEP monitoring was performed pre- and post modified Quad surgery, stimulating the median and ulnar nerves at the wrist, the radial nerve over the dorsum of the hand, recording the peripheral, cervical and cortical responses. All patients have had the modified Quad surgery (n = 19). The modified Quad surgery is a muscle release and transfer surgery with nerve decompressions. All patients were assessed preoperatively and postoperatively by evaluating video recordings of standardized movements, the modified Mallet scale to index active shoulder movements. Results The cervical responses were significantly lower in amplitude in the affected arm than the un-affected arm. The median nerve conduction was significantly improved from 8.04 to 9.26 (P < 0.022) post-operatively. The shoulder abduction was also significantly improved (pre-op 30° ± 23.3 to 143° ± 33.7, p < 0.0001), with a mean follow-up of 43 months after the modified Quad surgery in these patients. Conclusion Median nerve conduction, and shoulder abduction were significantly improved in OBPI children, who have undergone the modified Quad procedure with neuroplasty, internal microneurolysis and tetanic stimulation of the median nerve. PMID:23714699

  8. Modified Quad surgery significantly improves the median nerve conduction and functional outcomes in obstetric brachial plexus nerve injury.

    PubMed

    Nath, Rahul K; Kumar, Nirupuma; Somasundaram, Chandra

    2013-01-01

    Nerve conduction studies or somatosensory evoked potentials (SSEPs) have become an important tool in the investigation of peripheral nerve lesions, and is sensitive in detecting brachial plexus nerve injury, and other nerve injuries. To investigate whether the modified Quad surgical procedure improves nerve conductivity and functional outcomes in obstetric brachial plexus nerve injury (OBPI) patients. All nerves were tested with direct functional electrical stimulation. A Prass probe was used to stimulate the nerves, and recording the response, the compound motor action potential (CMAP) in the muscle. SSEP monitoring was performed pre- and post modified Quad surgery, stimulating the median and ulnar nerves at the wrist, the radial nerve over the dorsum of the hand, recording the peripheral, cervical and cortical responses. All patients have had the modified Quad surgery (n = 19). The modified Quad surgery is a muscle release and transfer surgery with nerve decompressions. All patients were assessed preoperatively and postoperatively by evaluating video recordings of standardized movements, the modified Mallet scale to index active shoulder movements. The cervical responses were significantly lower in amplitude in the affected arm than the un-affected arm. The median nerve conduction was significantly improved from 8.04 to 9.26 (P < 0.022) post-operatively. The shoulder abduction was also significantly improved (pre-op 30° ± 23.3 to 143° ± 33.7, p < 0.0001), with a mean follow-up of 43 months after the modified Quad surgery in these patients. Median nerve conduction, and shoulder abduction were significantly improved in OBPI children, who have undergone the modified Quad procedure with neuroplasty, internal microneurolysis and tetanic stimulation of the median nerve.

  9. Peripheral Nerve Injuries and Transplantation of Olfactory Ensheathing Cells for Axonal Regeneration and Remyelination: Fact or Fiction?

    PubMed Central

    Radtke, Christine; Kocsis, Jeffery D.

    2012-01-01

    Successful nerve regeneration after nerve trauma is not only important for the restoration of motor and sensory functions, but also to reduce the potential for abnormal sensory impulse generation that can occur following neuroma formation. Satisfying functional results after severe lesions are difficult to achieve and the development of interventional methods to achieve optimal functional recovery after peripheral nerve injury is of increasing clinical interest. Olfactory ensheathing cells (OECs) have been used to improve axonal regeneration and functional outcome in a number of studies in spinal cord injury models. The rationale is that the OECs may provide trophic support and a permissive environment for axonal regeneration. The experimental transplantation of OECs to support and enhance peripheral nerve regeneration is much more limited. This chapter reviews studies using OECs as an experimental cell therapy to improve peripheral nerve regeneration. PMID:23202929

  10. Mesenchymal Stem Cells Enhance Nerve Regeneration in a Rat Sciatic Nerve Repair and Hindlimb Transplant Model

    PubMed Central

    Cooney, Damon S.; Wimmers, Eric G.; Ibrahim, Zuhaib; Grahammer, Johanna; Christensen, Joani M.; Brat, Gabriel A.; Wu, Lehao W.; Sarhane, Karim A.; Lopez, Joseph; Wallner, Christoph; Furtmüller, Georg J.; Yuan, Nance; Pang, John; Sarkar, Kakali; Lee, W. P. Andrew; Brandacher, Gerald

    2016-01-01

    This study investigates the efficacy of local and intravenous mesenchymal stem cell (MSC) administration to augment neuroregeneration in both a sciatic nerve cut-and-repair and rat hindlimb transplant model. Bone marrow-derived MSCs were harvested and purified from Brown-Norway (BN) rats. Sciatic nerve transections and repairs were performed in three groups of Lewis (LEW) rats: negative controls (n = 4), local MSCs (epineural) injection (n = 4), and systemic MSCs (intravenous) injection (n = 4). Syngeneic (LEW-LEW) (n = 4) and allogeneic (BN-LEW) (n = 4) hindlimb transplants were performed and assessed for neuroregeneration after local or systemic MSC treatment. Rats undergoing sciatic nerve cut-and-repair and treated with either local or systemic injection of MSCs had significant improvement in the speed of recovery of compound muscle action potential amplitudes and axon counts when compared with negative controls. Similarly, rats undergoing allogeneic hindlimb transplants treated with local injection of MSCs exhibited significantly increased axon counts. Similarly, systemic MSC treatment resulted in improved nerve regeneration following allogeneic hindlimb transplants. Systemic administration had a more pronounced effect on electromotor recovery while local injection was more effective at increasing fiber counts, suggesting different targets of action. Local and systemic MSC injections significantly improve the pace and degree of nerve regeneration after nerve injury and hindlimb transplantation. PMID:27510321

  11. The re-formation of connections in the nervous sytem of Lymnaea stagnalis after nerve injury.

    PubMed

    Janse, C; Kits, K S; Lever, A J

    1979-01-01

    Changes in the tentacle reflex pathway of the pond snail Lymnaea stagnalis induced by peripheral nerve injury were studied with behavioural and electrophysiological techniques. After nerve injury regeneration of sensory axons is obtained in 6-12 days, suggesting an axonal outgrowth at a rate of 1 mm per day. Recovery of the tentacle reflex takes much more time indicating that synaptic efficacy is affected considerably by the period of sensory deprivation following nerve injury.

  12. Combined common peroneal and tibial nerve injury after knee dislocation: one injury or two? An MRI-clinical correlation.

    PubMed

    Reddy, Chandan G; Amrami, Kimberly K; Howe, Benjamin M; Spinner, Robert J

    2015-09-01

    OBJECT Knee dislocations are often accompanied by stretch injuries to the common peroneal nerve (CPN). A small subset of these injuries also affect the tibial nerve. The mechanism of this combined pattern could be a single longitudinal stretch injury of the CPN extending to the sciatic bifurcation (and tibial division) or separate injuries of both the CPN and tibial nerve, either at the level of the tibiofemoral joint or distally at the soleal sling and fibular neck. The authors reviewed cases involving patients with knee dislocations with CPN and tibial nerve injuries to determine the localization of the combined injury and correlation between degree of MRI appearance and clinical severity of nerve injury. METHODS Three groups of cases were reviewed. Group 1 consisted of knee dislocations with clinical evidence of nerve injury (n = 28, including 19 cases of complete CPN injury); Group 2 consisted of knee dislocations without clinical evidence of nerve injury (n = 19); and Group 3 consisted of cases of minor knee trauma but without knee dislocation (n = 14). All patients had an MRI study of the knee performed within 3 months of injury. MRI appearance of tibial and common peroneal nerve injury was scored by 2 independent radiologists in 3 zones (Zone I, sciatic bifurcation; Zone II, knee joint; and Zone III, soleal sling and fibular neck) on a severity scale of 1-4. Injury signal was scored as diffuse or focal for each nerve in each of the 3 zones. A clinical score was also calculated based on Medical Research Council scores for strength in the tibial and peroneal nerve distributions, combined with electrophysiological data, when available, and correlated with the MRI injury score. RESULTS Nearly all of the nerve segments visualized in Groups 1 and 2 demonstrated some degree of injury on MRI (95%), compared with 12% of nerve segments in Group 3. MRI nerve injury scores were significantly more severe in Group 1 relative to Group 2 (2.06 vs 1.24, p < 0.001) and Group

  13. Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury.

    PubMed

    Li, Xiaoqing; Gonias, Steven L; Campana, W Marie

    2005-09-01

    Erythropoietin (Epo) expresses potent neuroprotective activity in the peripheral nervous system; however, the underlying mechanism remains incompletely understood. In this study, we demonstrate that Epo is upregulated in sciatic nerve after chronic constriction injury (CCI) and crush injury in rats, largely due to local Schwann cell production. In uninjured and injured nerves, Schwann cells also express Epo receptor (EpoR), and its expression is increased during Wallerian degeneration. CCI increased the number of Schwann cells at the injury site and the number was further increased by exogenously administered recombinant human Epo (rhEpo). To explore the activity of Epo in Schwann cells, primary cultures were established. These cells expressed cell-surface Epo receptors, with masses of 71 and 62 kDa, as determined by surface protein biotinylation and affinity precipitation. The 71-kDa species was rapidly but transiently tyrosine-phosphorylated in response to rhEpo. ERK/MAP kinase was also activated in rhEpo-treated Schwann cells; this response was blocked by pharmacologic antagonism of JAK-2. RhEpo promoted Schwann cell proliferation, as determined by BrdU incorporation. Cell proliferation was ERK/MAP kinase-dependent. These results support a model in which Schwann cells are a major target for Epo in injured peripheral nerves, perhaps within the context of an autocrine signaling pathway. EpoR-induced cell signaling and Schwann cell proliferation may protect injured peripheral nerves and promote regeneration.

  14. Musculocutaneous nerve injury after simulated freefall in a vertical wind-tunnel: a case report.

    PubMed

    Mautner, Kenneth; Keel, John C

    2007-03-01

    We report a case of a skydiver with isolated musculocutaneous nerve injury, which occurred after prolonged positioning of the arm during simulated freefall in a vertical wind-tunnel. Musculocutaneous nerve injury is rare, and the mechanism of isolated injury to this nerve is not entirely understood. Isolated peripheral nerve injuries such as this easily mimic other injuries and can be difficult to diagnose. The skydiver complained of right arm weakness and numbness that began after training in a vertical wind-tunnel. Exam revealed weakness in right elbow flexion and forearm supination, and diminished sensation in the right lateral forearm. Electrodiagnostic testing revealed a decreased amplitude in the right lateral antebrachial cutaneous nerve sensory nerve action potential, and fibrillations and positive sharp waves in the biceps and brachialis muscles. By 5 months, the subject reported complete sensory and motor recovery. Physical and electrodiagnostic findings corresponded to the distribution of the musculocutaneous nerve. The mechanism of injury was likely the prolonged abducted, extended, and externally rotated position of the shoulder during simulated freefall. Although isolated nerve injuries are uncommon, unusual activities and physiologic demands of athletes can result in such injuries. It is important to be aware of peripheral nerve injuries to facilitate proper diagnosis and management.

  15. Redoxins in peripheral neurons after sciatic nerve injury.

    PubMed

    Valek, Lucie; Kanngießer, Maike; Häussler, Annett; Agarwal, Nitin; Lillig, Christopher Horst; Tegeder, Irmgard

    2015-12-01

    Peripheral nerve injury causes redox stress in injured neurons by upregulations of pro-oxidative enzymes, but most neurons survive suggesting an activation of endogenous defense against the imbalance. As potential candidates we assessed thioredoxin-fold proteins, called redoxins, which maintain redox homeostasis by reduction of hydrogen peroxide or protein dithiol-disulfide exchange. Using a histologic approach, we show that the peroxiredoxins (Prdx1-6), the glutaredoxins (Glrx1, 2, 3 and 5), thioredoxin (Txn1 and 2) and their reductases (Txnrd1 and 2) are expressed in neurons, glial and/or vascular cells of the dorsal root ganglia (DRGs) and in the spinal cord. They show distinct cellular and subcellular locations in agreement with the GO terms for "cellular component". The expression and localization of Glrx, Txn and Txnrd proteins was not affected by sciatic nerve injury but peroxiredoxins were upregulated in the DRGs, Prdx1 and Prdx6 mainly in non-neuronal cells and Prdx4 and Prdx5 in DRG neurons, the latter associated with an increase of respective mRNAs and protein accumulation in peripheral and/or central fibers. The upregulation of Prdx4 and Prdx5 in DRG neurons was reduced in mice with a cre-loxP mediated deficiency of hypoxia inducible factor 1 alpha (HIF1α) in these neurons. The results identify Prdx4 and Prdx5 as endogenous HIF1α-dependent, transcriptionally regulated defenders of nerve injury evoked redox stress that may be important for neuronal survival and regeneration.

  16. Neuropathic Pain Phenotype Does Not Involve the NLRP3 Inflammasome and Its End Product Interleukin-1β in the Mice Spared Nerve Injury Model

    PubMed Central

    Curto-Reyes, Verdad; Kirschmann, Guylène; Pertin, Marie; Drexler, Stephan K.; Decosterd, Isabelle; Suter, Marc R.

    2015-01-01

    The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the main sources of interleukin-1β (IL-1β) and is involved in several inflammatory-related pathologies. To date, its relationship with pain has not been studied in depth. The aim of our study was to elucidate the role of NLRP3 inflammasome and IL-1β production on neuropathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well as responses to formalin test. Spared nerve injury (SNI) surgery induced the development of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord. Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like protein (ASC), caspase-1 and IL-1β expression in both wildtype and NLRP3-/- mice. Those data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of IL-1β are implicated in neuroinflammatory responses induced by LPS. PMID:26218747

  17. Suprascapular nerve injury: A cause to consider in shoulder pain and dysfunction.

    PubMed

    Yao, Kaihan; Yew, Wei Ping

    2016-05-13

    Suprascapular nerve injury is increasingly being recognized as an important cause of shoulder dysfunction. The non-specific clinical features of suprascapular nerve injury can make diagnosis difficult. However, it is essential for clinicians to consider it as part of the differential diagnoses in patients with vague pain or sensory disturbances over the posterosuperior part of their shoulder or have unexplained atrophy and weakness of their supraspinatus or infraspinatus muscle. Electrodiagnostic studies are useful in confirming and localising the nerve injury, while MRIs can be employed to determine the cause of nerve injury and assess the integrity of the rotator cuff muscles. Isolated suprascapular nerve injury can be managed with a trial of conservative management for at least 6 months. Subsequently, decompression of the nerve through open or arthroscopic techniques can be considered - both are associated with high rates of pain relief and functional improvement.

  18. Rules to limp by: joint compensation conserves limb function after peripheral nerve injury.

    PubMed

    Bauman, Jay M; Chang, Young-Hui

    2013-10-23

    Locomotion persists across all manner of internal and external perturbations. The objective of this study was to identify locomotor compensation strategies in rodent models of peripheral nerve injury. We found that hip-to-toe limb length and limb angle was preferentially preserved over individual joint angles after permanent denervation of rat ankle extensor muscles. These findings promote further enquiry into the significance of limb-level function for neuromechanical control of legged locomotion.

  19. Morphology of Donor and Recipient Nerves Utilised in Nerve Transfers to Restore Upper Limb Function in Cervical Spinal Cord Injury

    PubMed Central

    Messina, Aurora; Van Zyl, Natasha; Weymouth, Michael; Flood, Stephen; Nunn, Andrew; Cooper, Catherine; Hahn, Jodie; Galea, Mary P.

    2016-01-01

    Loss of hand function after cervical spinal cord injury (SCI) impacts heavily on independence. Multiple nerve transfer surgery has been applied successfully after cervical SCI to restore critical arm and hand functions, and the outcome depends on nerve integrity. Nerve integrity is assessed indirectly using muscle strength testing and intramuscular electromyography, but these measures cannot show the manifestation that SCI has on the peripheral nerves. We directly assessed the morphology of nerves biopsied at the time of surgery, from three patients within 18 months post injury. Our objective was to document their morphologic features. Donor nerves included teres minor, posterior axillary, brachialis, extensor carpi radialis brevis and supinator. Recipient nerves included triceps, posterior interosseus (PIN) and anterior interosseus nerves (AIN). They were fixed in glutaraldehyde, processed and embedded in Araldite Epon for light microscopy. Eighty percent of nerves showed abnormalities. Most common were myelin thickening and folding, demyelination, inflammation and a reduction of large myelinated axon density. Others were a thickened perineurium, oedematous endoneurium and Renaut bodies. Significantly, very thinly myelinated axons and groups of unmyelinated axons were observed indicating regenerative efforts. Abnormalities exist in both donor and recipient nerves and they differ in appearance and aetiology. The abnormalities observed may be preventable or reversible. PMID:27690115

  20. Use of nerve conduits for peripheral nerve injury repair: A Web of Science-based literature analysis.

    PubMed

    Nan, Jinniang; Hu, Xuguang; Li, Hongxiu; Zhang, Xiaonong; Piao, Renjing

    2012-12-15

    To identify global research trends in the use of nerve conduits for peripheral nerve injury repair. Numerous basic and clinical studies on nerve conduits for peripheral nerve injury repair were performed between 2002-2011. We performed a bibliometric analysis of the institutions, authors, and hot topics in the field, from the Web of Science, using the key words peripheral nerve and conduit or tube. peer-reviewed published articles on nerve conduits for peripheral nerve injury repair, indexed in the Web of Science; original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items. articles requiring manual searching or telephone access; documents not published in the public domain; and several corrected papers. (a) Annual publication output; (b) publication type; (c) publication by research field; (d) publication by journal; (e) publication by funding agency; (f) publication by author; (g) publication by country and institution; (h) publications by institution in China; (i) most-cited papers. A total of 793 publications on the use of nerve conduits for peripheral nerve injury repair were retrieved from the Web of Science between 2002-2011. The number of publications gradually increased over the 10-year study period. Articles constituted the main type of publication. The most prolific journals were Biomaterials, Microsurgery, and Journal of Biomedical Materials Research Part A. The National Natural Science Foundation of China supported 27 papers, more than any other funding agency. Of the 793 publications, almost half came from American and Chinese authors and institutions. Nerve conduits have been studied extensively for peripheral nerve regeneration; however, many problems remain in this field, which are difficult for researchers to reach a consensus.

  1. Pain relief from preganglionic injury to the brachial plexus by late intercostal nerve transfer.

    PubMed

    Berman, J; Anand, P; Chen, L; Taggart, M; Birch, R

    1996-09-01

    We performed intercostal nerve transfer in 19 patients to relieve pain from preganglionic injury to the brachial plexus. The procedure was successful in 16 patients at a mean of 28.6 months (12 to 68) after the injury.

  2. AlphaB-crystallin regulates remyelination after peripheral nerve injury

    PubMed Central

    Lim, Erin-Mai F.; Nakanishi, Stan T.; Hoghooghi, Vahid; Eaton, Shane E. A.; Palmer, Alexandra L.; Frederick, Ariana; Stratton, Jo A.; Stykel, Morgan G.; Zochodne, Douglas W.; Biernaskie, Jeffrey; Ousman, Shalina S.

    2017-01-01

    AlphaB-crystallin (αBC) is a small heat shock protein that is constitutively expressed by peripheral nervous system (PNS) axons and Schwann cells. To determine what role this crystallin plays after peripheral nerve damage, we found that loss of αBC impaired remyelination, which correlated with a reduced presence of myelinating Schwann cells and increased numbers of nonmyelinating Schwann cells. The heat shock protein also seems to regulate the cross-talk between Schwann cells and axons, because expected changes in neuregulin levels and ErbB2 receptor expression after PNS injury were disrupted in the absence of αBC. Such dysregulations led to defects in conduction velocity and motor and sensory functions that could be rescued with therapeutic application of the heat shock protein in vivo. Altogether, these findings show that αBC plays an important role in regulating Wallerian degeneration and remyelination after PNS injury. PMID:28137843

  3. Laser facial nerve welding in a rabbit model.

    PubMed

    Bloom, Jason D; Bleier, Benjamin S; Goldstein, Stephen A; Carniol, Paul J; Palmer, James N; Cohen, Noam A

    2012-01-01

    To assess the feasibility of laser tissue welding for repair of facial nerve injury. In a prospective in vivo animal survival surgery model, rabbit facial nerve injury was followed by either standard suture neurorrhaphy or laser tissue welding using a diode laser (808 ± 1 nm) to weld biological solder. Rabbits were evaluated at 4, 8, 12, and 16 weeks by facial videography and electromyography. Histopathological analysis of the repair was performed at 4 and 16 weeks. Videographic analysis demonstrated the laser tissue welding repair trended toward superior outcomes compared with suture neurorrhaphy at all 4 time points. Electrophysiological analysis demonstrated similar or better results, with statistically significant improvement at week 16 (P < .05). Histologic analysis demonstrated no difference in axon organization or extravasation between groups; however, the laser nerve repair created a greater initial inflammatory reaction. An analysis of operative time demonstrated significantly decreased time and ease of use for laser tissue welding. This pilot study demonstrates that laser nerve welding may be an expedient, feasible, and safe method for facial nerve repair in a rabbit model. Further experiments with larger numbers are needed to provide additional evidence that laser tissue welding produces a neurorrhaphy that has functional, electrophysiological, and histological results that could rival traditional suture neurorrhaphy.

  4. Medicolegal Aspects of Iatrogenic Dysphonia and Recurrent Laryngeal Nerve Injury.

    PubMed

    Ta, Jennifer H; Liu, Yuan F; Krishna, Priya

    2016-01-01

    To examine aspects of litigation involving iatrogenic dysphonia and injury to the recurrent laryngeal nerve in the adult population. Legal database review. Medicolegal judicial system. Jury verdicts and settlement reports listing voice impairment or recurrent laryngeal nerve dysfunction as a primary injury in adult patients were identified in the Westlaw Database. Reports were examined for plaintiff demographics, defendant specialty, procedure performed, rates of settlements and verdicts, monetary awards, primary plaintiff symptoms, and common allegations. A total of 123 jury verdict and settlement reports were identified. General surgeons (24%), otolaryngologists (20%), and anesthesiologists (18%) were involved in the majority of cases. The procedure causing the alleged injury was primarily thyroidectomy (34%), followed by intubation (18%) and spinal instrumentation (10%). The majority of cases (70%) were decided in favor of the defendant. Where monetary awards were recorded, settlements and jury verdicts in favor of the plaintiff ranged between $4250 and $3,000,000, with a mean of $788,713. In addition to voice disturbances, complaints of dyspnea and dysphagia were commonly listed alleged injuries. The only factors associated with plaintiff verdicts were general surgery specialty (odds ratio, 6.3; 95% confidence interval, 1.7-23.2) and claims of loss of consortium (odds ratio, 8.5; 95% confidence interval, 1.2-60.7). Dysphonia is a common complication in a number of procedures across multiple specialties. Although the majority of cases are decided in favor or the defendant, payments awarded can be considerable. Awareness of factors involved in these medical malpractice cases can help limit physician liability. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  5. Vagal nerve stimulation modulates gut injury and lung permeability in trauma-hemorrhagic shock

    PubMed Central

    Levy, Gal; Fishman, Jordan E.; Xu, Da-zhong; Dong, Wei; Palange, Dave; Vida, Gergely; Mohr, Alicia; Ulloa, Luis; Deitch, Edwin A.

    2013-01-01

    BACKGROUND Hemorrhagic shock is known to disrupt the gut barrier leading to end-organ dysfunction. The vagus nerve can inhibit detrimental immune responses that contribute to organ damage in hemorrhagic shock. Therefore, we explored whether stimulation of the vagus nerve can protect the gut and recover lung permeability in trauma-hemorrhagic shock (THS). METHODS Male Sprague-Dawley rats were subjected to left cervical vagus nerve stimulation at 5 V for 10 minutes. The right internal jugular and femoral artery were cannulated for blood withdrawal and blood pressure monitoring, respectively. Animals were then subjected to hemorrhagic shock to a mean arterial pressure between 30 mm Hg and 35 mm Hg for 90 minutes then reperfused with their own whole blood. After observation for 3 hours, gut permeability was assessed with fluorescein dextran 4 in vivo injections in a ligated portion of distal ileum followed by Evans blue dye injection to assess lung permeability. Pulmonary myeloperoxidase levels were measured and compared. RESULTS Vagal nerve stimulation abrogated THS-induced lung injury (mean [SD], 8.46 [0.36] vs. 4.87 [0.78]; p < 0.05) and neutrophil sequestration (19.39 [1.01] vs. 12.83 [1.16]; p < 0.05). Likewise, THS gut permeability was reduced to sham levels. CONCLUSION Neuromodulation decreases injury in the THS model as evidenced by decreased gut permeability as well as decreased lung permeability and pulmonary neutrophil sequestration in a rat model. PMID:22846937

  6. Nicotine effects on muscarinic receptor-mediated free Ca[Formula: see text] level changes in the facial nucleus following facial nerve injury.

    PubMed

    Sun, Dawei; Zhou, Rui; Dong, Anbing; Sun, Wenhai; Zhang, Hongmei; Tang, Limin

    2016-06-01

    It was suggested that muscarinic, and nicotinic receptors increase free Ca[Formula: see text] levels in the facial nerve nucleus via various channels following facial nerve injury. However, intracellular Ca[Formula: see text] overload can trigger either necrotic or apoptotic cell death. It is assumed that, following facial nerve injury, the interactions of nicotinic and muscarinic acetylcholine receptors in facial nerve nucleus may negatively regulate free Ca[Formula: see text] concentrations in the facial nerve nucleus, which provide important information for the repair and regeneration of the facial nerve. The present study investigated the regulatory effects of nicotine on muscarinic receptor-mediated free calcium ion level changes in the facial nucleus in a rat model of facial nerve injury at 7, 30, and 90 days following facial nerve injury using laser confocal microscopy. The dose-dependent regulation of nicotine on muscarinic receptor-mediated free calcium ion level changes in the facial nucleus may decrease the range of free Ca[Formula: see text] increases following facial nerve injury, which is important for nerve cell regeneration. It is concluded that the negative effects of nicotine on muscarinic receptors are related to the [Formula: see text] subtype of nicotinic receptors.

  7. The effects of simvastatin on ischemia-reperfusion injury of sciatic nerve in adult rats.

    PubMed

    Gholami, Mohammad Reza; Abolhassani, Farid; Pasbakhsh, Parichehr; Akbari, Mohammad; Sobhani, Aligholi; Eshraghian, Mohammad Reza; Kamalian, Naser; Amoli, Fahimeh Asadi; Dehpour, Ahmad Reza; Dehpoor, Ahmad Reza; Sohrabi, Davood

    2008-08-20

    Severe ischemia to nerve results in fiber degeneration and reperfusion results in oxidative injury to endothelial cells and augments fiber degeneration. Statins, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, the most widely used lipid-lowering drugs, have been demonstrated to play a neuroprotective role. So we evaluated the effectiveness of simvastatin in protecting sciatic nerve from ischemia-reperfusion injury using the model of experimental nerve ischemia. Sixty adult male Sprague-Dawley rats weighing 250-300 g were used. They were divided into ten groups (N=6 per group). We used ischemia model in these groups by occluding the femoral artery and vein with a silk suture 6-0 using slipknot technique. All ischemia groups were rendered in ischemic for 3 h reperfused for various times of zero (0 h), 3 h (3 hour reperfusion), 7 days (7 day reperfusion), 14 days (14 day reperfusion). Half of the groups had experimental simvastatin (1 mg/kg) i.v. injection treatment via tail vein 1 h before ischemia. The other half experienced only ischemia-reperfusion as control groups. After euthanasia, histological samples were taken from distal part of the sciatic nerve. Sections were cut at 5 microm and then were stained with H and E and modified trichrome. We used H and E stain for edema and trichrome gomori for ischemic fiber degeneration. Samples were observed to assess their fiber degeneration and edema changes. By observation the level of fiber degeneration and endoneurial edema were also decreased in these recent groups (in both ischemia and reperfusion duration). In conclusion, pre-ischemic administration of simvastatin exhibits neuroprotective properties in ischemia-reperfusion nerve injury.

  8. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation

    PubMed Central

    Zhang, Zhong-jun; Li, Ya-jun; Liu, Xiao-guang; Huang, Feng-xiao; Liu, Tie-jun; Jiang, Dong-mei; Lv, Xue-man; Luo, Min

    2015-01-01

    Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury. PMID:26330839

  9. Peripheral nerve injuries in sports-related surgery: presentation, evaluation, and management: AAOS exhibit selection.

    PubMed

    Maak, Travis G; Osei, Daniel; Delos, Demetris; Taylor, Samuel; Warren, Russell F; Weiland, Andrew J

    2012-08-15

    Peripheral nerve injuries during sports-related operative interventions are rare complications, but the associated morbidity can be substantial. Early diagnosis, efficient and effective evaluation, and appropriate management are crucial to maximizing the prognosis, and a clear and structured algorithm is therefore required. We describe the surgical conditions and interventions that are commonly associated with intraoperative peripheral nerve injuries. In addition, we review the common postoperative presentations of patients with these injuries as well as the anatomic structures that are directly injured or associated with these injuries during the operation. Some examples of peripheral nerve injuries incurred during sports-related surgery include ulnar nerve injury during ulnar collateral ligament reconstruction of the elbow and elbow arthroscopy, median nerve injury during ulnar collateral ligament reconstruction of the elbow, axillary nerve injury during Bankart repair and the Bristow transfer, and peroneal nerve injury during posterolateral corner reconstruction of the knee and arthroscopic lateral meniscal repair. We also detail the clinical and radiographic evaluation of these patients, including the utility and timing of radiographs, magnetic resonance imaging (MRI), ultrasonography, electromyography (EMG), and nonoperative or operative management. The diagnosis, evaluation, and management of peripheral nerve injuries incurred during sports-related surgical interventions are critical to minimizing patient morbidity and maximizing postoperative function. Although these injuries occur during a variety of procedures, common themes exist regarding evaluation techniques and treatment algorithms. Nonoperative treatment includes physical therapy and medical management. Operative treatments include neurolysis, transposition, neurorrhaphy, nerve transfer, and tendon transfer. This article provides orthopaedic surgeons with a simplified, literature-based algorithm for

  10. Glial NF-kappa B inhibition alters neuropeptide expression after sciatic nerve injury in mice

    PubMed Central

    Zhang, Yan Ping; Fu, Eugene S.; Sagen, Jacqueline; Levitt, Roy C.; Candiotti, Keith A.; Bethea, John R.; Brambilla, Roberta

    2015-01-01

    We utilized a transgenic mouse model where nuclear factor kappa B (NF-κB) is selectively inhibited in glial fibrillary acidic protein (GFAP) expressing cells. The transgene, GFAP-IκBα-dn, overexpresses a dominant negative form of the inhibitor of NF-κB (IκBα) under the control of the GFAP promoter. In the present work, we sought to understand the impact of glial NF-κB inhibition on the expression of pain mediating sensory neuropeptides galanin and calcitonin gene related peptide (CGRP) in a model of neuropathic pain in mice. Chronic constriction injury (CCI) of the left sciatic nerve was performed on wild type (WT) and GFAP-IκBα-dn transgenic mice. RT-PCR and immunohistological staining were performed in sciatic nerve and/or L4-L5 DRG tissue for galanin, CGRP and macrophage marker CD11b. GFAP-IκBα-dn mice had less mechanical and thermal hyperalgesia compared to WT mice post-CCI. After CCI, we observed galanin upregulation in DRG and sciatic nerve, which was less in GFAP-IκBα-dn mice. CGRP gene expression in the DRG increased transiently on day 1 post-CCI in WT but not in GFAP-IκBα-dn mice, and no evidence of CGRP upregulation in sciatic nerve post-CCI was found. After CCI, upregulation of CD11b in sciatic nerve was less in GFAP-IκBα-dn mice compared to WT mice, indicative of less macrophage infiltration. Our results showed that glial NF-κB inhibition reduces galanin and CGRP expression, which are neuropeptides that correlate with pain behavior and inflammation after peripheral nerve injury. PMID:21352816

  11. Sciatic Nerve Injury After Proximal Hamstring Avulsion and Repair

    PubMed Central

    Wilson, Thomas J.; Spinner, Robert J.; Mohan, Rohith; Gibbs, Christopher M.; Krych, Aaron J.

    2017-01-01

    Background: Muscle bellies of the hamstring muscles are intimately associated with the sciatic nerve, putting the sciatic nerve at risk of injury associated with proximal hamstring avulsion. There are few data informing the magnitude of this risk, identifying risk factors for neurologic injury, or determining neurologic outcomes in patients with distal sciatic symptoms after surgery. Purpose: To characterize the frequency and nature of sciatic nerve injury and distal sciatic nerve–related symptoms after proximal hamstring avulsion and to characterize the influence of surgery on these symptoms. Study Design: Cohort study; Level of evidence, 3. Methods: This was a retrospective review of patients with proximal partial or complete hamstring avulsion. The outcome of interest was neurologic symptoms referable to the sciatic nerve distribution below the knee. Neurologic symptoms in operative patients were compared pre- and postoperatively. Results: The cohort consisted of 162 patients: 67 (41.4%) operative and 95 (58.6%) nonoperative. Sciatic nerve–related symptoms were present in 22 operative and 23 nonoperative patients, for a total of 45 (27.8%) patients (8 [4.9%] motor deficits, 11 [6.8%] sensory deficits, and 36 [22.2%] with neuropathic pain). Among the operative cohort, 3 of 3 (100.0%) patients showed improvement in their motor deficit postoperatively, 3 of 4 (75.0%) patients’ sensory symptoms improved, and 17 of 19 (89.5%) patients had improvement in pain. A new or worsening deficit occurred in 5 (7.5%) patients postoperatively (2 [3.1%] motor deficits, 1 [1.5%] sensory deficit, and 3 [4.5%] with new pain). Predictors of operative intervention included lower age (odds ratio [OR], 0.952; 95% CI, 0.921-0.982; P = .001) and complete avulsion (OR, 10.292; 95% CI, 2.526-72.232; P < .001). Presence of neurologic deficit was not predictive. Conclusion: Sciatic nerve–related symptoms after proximal hamstring avulsion are underrecognized. Currently, neurologic

  12. Perspectives on tissue-engineered nerve regeneration for the treatment of spinal cord injury.

    PubMed

    Kim, Moon Suk; Lee, Hai Bang

    2014-07-01

    Over the past few decades, substantial progress has been made to safely improve nerve function in spinal cord injury (SCI) patients through the regeneration of injured nerve tissue. This perspective focuses on an extensive overview of SCI research as well as tissue-engineered nerve regeneration for the treatment of SCI.

  13. Treatment of Peroneal Nerve Injuries in the Multiligament Injured/Dislocated Knee.

    PubMed

    O'Malley, Michael P; Pareek, Ayoosh; Reardon, Patrick; Krych, Aaron; Stuart, Michael J; Levy, Bruce A

    2016-05-01

    Tibiofemoral knee dislocations are typically a consequence of high-energy mechanisms, causing significant damage to the soft tissue and osseous structures of the knee. Concomitant neurovascular injuries such as popliteal artery and peroneal nerve injuries are also common and can have significant long-term consequences. The mechanism typically involves a traction injury to the peroneal nerve subsequent to an extreme varus moment applied to the knee. Complete nerve injuries typically hold a worse prognosis than incomplete palsies. Rates of functional recovery in the setting of a complete palsy following a knee dislocation event have been dismal. A period of observation and nonoperative treatment is initially performed, utilizing orthotic devices to assist with lower extremity deficits. Surgical treatment options include neurolysis, nerve grafting, tendon transfer, arthrodesis, and direct motor nerve transfers. Motor nerve transfers continue to be explored with initial reports showing promising results.

  14. Thermoregulation in peripheral nerve injury-induced cold-intolerant rats.

    PubMed

    Duraku, L S; Smits, E S; Niehof, S P; Hovius, S E R; Walbeehm, E T; Selles, R W

    2012-06-01

    Cold intolerance is defined as pain after exposure to non-painful cold. It is suggested that cold intolerance may be related to dysfunctional thermoregulation in upper extremity nerve injury patients. The purpose of this study was to examine if the re-warming of a rat hind paw is altered in different peripheral nerve injury models and if these patterns are related to severity of cold intolerance. In the spared nerve injury (SNI) and complete sciatic lesion (CSL) model, the re-warming patterns after cold stress exposure were investigated preoperatively and at 3, 6 and 9 weeks postoperatively with a device to induce cooling of the hind paws. Thermocouples were attached on the dorsal side of the hind paw to monitor re-warming patterns. The Von Frey test and cold plate test indicated a significantly lower paw-withdrawal threshold and latency in the SNI compared to the Sham model. The CSL group, however, had only significantly lower paw-withdrawal latency on the cold plate test compared to the Sham group. While we found no significantly different re-warming patterns in the SNI and CSL group compared to Sham group, we did find a tendency in temperature increase in the CSL group 3 weeks postoperatively. Overall, our findings indicate that re-warming patterns are not altered after peripheral nerve injury in these rat models despite the fact that these animals did develop cold intolerance. This suggests that disturbed thermoregulation may not be the prime mechanism for cold intolerance and that, other, most likely, neurological mechanisms may play a more important role. There is no direct correlation between cold intolerance and re-warming patterns in different peripheral nerve injury rat models. This is an important finding for future developing treatments for this common problem, since treatment focussing on vaso-regulation may not help diminish symptoms of cold-intolerant patients. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons

  15. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats.

    PubMed

    Park, Kevin K; Luo, Xueting; Mooney, Skyler J; Yungher, Benjamin J; Belin, Stephane; Wang, Chen; Holmes, Melissa M; He, Zhigang

    2017-02-01

    In the adult mammalian central nervous system (CNS), axonal damage often triggers neuronal cell death and glial activation, with very limited spontaneous axon regeneration. In this study, we performed optic nerve injury in adult naked mole-rats, the longest living rodent, with a maximum life span exceeding 30 years, and found that injury responses in this species are quite distinct from those in other mammalian species. In contrast to what is seen in other mammals, the majority of injured retinal ganglion cells (RGCs) survive with relatively high spontaneous axon regeneration. Furthermore, injured RGCs display activated signal transducer and activator of transcription-3 (STAT3), whereas astrocytes in the optic nerve robustly occupy and fill the lesion area days after injury. These neuron-intrinsic and -extrinsic injury responses are reminiscent of those in "cold-blooded" animals, such as fish and amphibians, suggesting that the naked mole-rat is a powerful model for exploring the mechanisms of neuronal injury responses and axon regeneration in mammals. J. Comp. Neurol. 525:380-388, 2017. © 2016 Wiley Periodicals, Inc.

  16. Paintball trauma and mechanisms of optic nerve injury: rotational avulsion and rebound evulsion.

    PubMed

    Sponsel, William E; Gray, Walt; Groth, Sylvia L; Stern, Amber R; Walker, James D

    2011-12-20

    Ballistic impact studies and supercomputer modeling were performed to elicit the mechanisms of optic nerve rupture that may accompany blunt ocular trauma. Paintball ocular impact responses were studied with abattoir-fresh porcine eyes. Physics-based numerical code CTH was used to produce robust geometric and constitutive models of the eye and orbit, providing a comparative 3-D finite volume model to help determine the mechanisms underlying empirical ballistic observations. Among 59 porcine eye specimens submitted to paintball impact in the 1- to 13-J range, 10 (17%) disengaged completely from the orbital mount. In each instance the paintball penetrated the orbit adjacent to the globe, producing rotation and eventual globe repulsion, dramatically evident on high-speed film images. Supercomputer modeling yielded similar globe-expulsive results when orbital constraints were in place, but not when these were removed. In these models, tangential (grazing) impact sheared the nerve flush with the globe via a strain rate effect within 260 μs, with minimal posterior displacement and just 5° of globe rotation. Midperipheral impact produced compressive globe distortion and posterior displacement, followed by rebound and tractional nerve avulsion 10 mm behind the lamina after 700 μs and 20° of globe rotation. Constitutive modeling studies suggest at least two trajectory-dependent mechanisms for optic nerve rupture with paintball impact on the eye. Tangential glancing blows produce strain-rate rotational avulsion, abscising the optic nerve with minimal internal globe disruption, whereas off-center direct impact produces slower rotational-rebound evulsion, traumatizing the globe and breaching the nerve posteriorly. The latter mechanism would be expected to arise more commonly and would most likely be clinically masked by accompanying intraocular injury.

  17. Debates to personal conclusion in peripheral nerve injury and reconstruction: A 30-year experience at Chang Gung Memorial Hospital.

    PubMed

    Chuang, David Chwei-Chin

    2016-01-01

    Significant progress has been achieved in the science and management of peripheral nerve injuries over the past 40 years. Yet there are many questions and few answers. The author, with 30 years of experience in treating them at the Chang Gung Memorial Hospital, addresses debates on various issues with personal conclusions. These include: (1) Degree of peripheral nerve injury, (2) Timing of nerve repair, (3)Technique of nerve repair, (4) Level of brachial plexus injury,(5) Level of radial nerve injury,(6) Traction avulsion amputation of major limb, (7) Proximal Vs distal nerve transfers in brachial plexus injuries and (8) Post paralysis facial synkinesis.

  18. Stress and IL-1β contribute to the development of depressive-like behavior following peripheral nerve injury

    PubMed Central

    Norman, GJ; Karelina, K; Zhang, N; Walton, JC; Morris, JS; DeVries, AC

    2016-01-01

    The physiological link between neuropathic pain and depression remains unknown despite a high comorbidity between these two disorders. A mouse model of spared nerve injury (SNI) was used to test the hypothesis that nerve injury precipitates depression through the induction of inflammation in the brain, and that prior exposure to stress exacerbates the behavioral and neuroinflammatory consequences of nerve injury. As compared with sham surgery, SNI induced mechanical allodynia, and significantly increased depressive-like behavior. Moreover, SNI animals displayed increased interleukin-1β (IL-1β) gene expression within the frontal cortex and concurrent increases in the expression of glial fibrillary acidic protein (GFAP) within the periaqueductal grey (PAG). Additionally, exposure to chronic restraint stress for 2 weeks before SNI exacerbated mechanical allodynia and depressive-like behavior, and resulted in an increase in IL-1β gene expression in the frontal cortex and brain-derived neurotrophic factor (BDNF) gene expression in PAG. Treatment with metyrapone (MET), a corticosteroid synthesis inhibitor, before stress eliminated deleterious effects of chronic stress on SNI. Finally, this study showed that interference with IL-1β signaling, through administration of IL-1 receptor antagonist (IL-1ra), ameliorated the effects of neuropathic pain on depressive-like behavior. Taken together, these data suggest that peripheral nerve injury leads to increased cytokine expression in the brain, which in turn, contributes to the development of depressive-like behavior. Furthermore, stress can facilitate the development of depressive-like behavior after nerve injury by promoting IL-1β expression. PMID:19773812

  19. Overuse Injury Assessment Model

    DTIC Science & Technology

    2005-03-01

    2.1 Model Framework It is well established that training is needed to increase performance, but overtraining is detrimental and can cause injury ...DAMD17-02-C-0073 TITLE: Overuse Injury Assessment Model PRINCIPAL INVESTIGATOR: James H. Stuhmiller, Ph.D...2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER DAMD17-02-C-0073 Overuse Injury Assessment Model 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  20. Nerve Injuries in Aesthetic Breast Surgery: Systematic Review and Treatment Options.

    PubMed

    Ducic, Ivica; Zakaria, Hesham M; Felder, John M; Fantus, Sarah

    2014-08-01

    The risk of nerve injuries in aesthetic breast surgery has not been well explored. The authors conducted a systematic review to provide evidence-based information on the incidence and treatment of nerve injuries resulting from aesthetic breast surgery. A broad literature search of Medline, Embase, and the Cochrane Database of Systematic Reviews was undertaken to identify studies in which nerve injury occurred after breast augmentation or mastopexy. Specific inclusion and exclusion criteria were established before the search was performed. The initial 4806 citations were narrowed by topic, title, and abstract to 53 articles. After full-text review, 36 studies were included. The risk of any nerve injury after breast augmentation ranged from 13.57% to 15.44%. Specific nerve injury rates were calculated for the intercostal cutaneous nerves, branches to the nipple-areola complex, intercostobrachial nerve, long thoracic nerve, and brachial plexus. Also calculated were the total estimated risks of chronic pain, hyperesthesia, hypoesthesia, and numbness. The meta-analysis showed no associations between the rates of breast nerve injury or sensation change and implant size, incision type, or implant position in patients who underwent breast augmentation. The data were insufficient to determine rates of nerve injury in mastopexy. The possibility of nerve injury, sensation change, or chronic pain with breast augmentation is real, and estimating the incidences of these conditions is useful to both patients and surgeons. Optimizing patient outcomes requires timely treatment by a multidisciplinary team and may include peripheral nerve surgery. 3. © 2014 The American Society for Aesthetic Plastic Surgery, Inc.

  1. Medial antebrachial cutaneous nerve injury after brachial plexus block: two case reports.

    PubMed

    Jung, Mi Jin; Byun, Ha Young; Lee, Chang Hee; Moon, Seung Won; Oh, Min-Kyun; Shin, Heesuk

    2013-12-01

    Medial antebrachial cutaneous (MABC) nerve injury associated with iatrogenic causes has been rarely reported. Local anesthesia may be implicated in the etiology of such injury, but has not been reported. Two patients with numbness and painful paresthesia over the medial aspect of the unilateral forearm were referred for electrodiagnostic study, which revealed MABC nerve lesion in each case. The highly selective nature of the MABC nerve injuries strongly suggested that they were the result of direct nerve injury by an injection needle during previous brachial plexus block procedures. Electrodiagnostic studies can be helpful in evaluating cases of sensory disturbance after local anesthesia. To our knowledge, these are the first documented cases of isolated MABC nerve injury following ultrasound-guided axillary brachial plexus block.

  2. Digital nerve injuries: epidemiology, results, costs, and impact on daily life.

    PubMed

    Thorsén, Frida; Rosberg, Hans-Eric; Steen Carlsson, Katarina; Dahlin, Lars B

    2012-09-01

    Epidemiology, results of treatment, impact on activity of daily living (ADL), and costs for treatment of digital nerve injuries have not been considered consistently. Case notes of patients of 0-99 years of age living in Malmö municipality, Sweden, who presented with a digital nerve injury and were referred to the Department of Hand Surgery in 1995-2005 were analysed retrospectively. The incidence was 6.2/100 000 inhabitants and year. Most commonly men (75%; median age 29 years) were injured. Isolated nerve injuries and concomitant tendon injuries were equally common. The direct costs (hospital stay, operation, outpatient visits, visits to a nurse and/or a hand therapist) for a concomitant tendon injury was almost double compared with an isolated digital nerve injury (6136 EUR [range, 744-29 689 EUR] vs 2653 EUR [range, 468-6949 EUR]). More than 50% of the patients who worked were injured at work and 79% lost time from work (median 59 days [range 3-337]). Permanent nerve dysfunction for the individual patient with ADL problems and subjective complaints of fumbleness, cold sensitivity, and pain occur in the patients despite surgery. It is concluded that digital nerve injuries, often considered as a minor injury and that affect young people at productive age, cause costs, and disability. Focus should be directed against prevention of the injury and to improve nerve regeneration from different aspects.

  3. GFAP immunoreactivity within the rat nucleus ambiguus after laryngeal nerve injury

    PubMed Central

    Berdugo-Vega, G; Arias-Gil, G; Rodriguez-Niedenführ, M; Davies, D C; Vázquez, T; Pascual-Font, A

    2014-01-01

    Changes that occur in astroglial populations of the nucleus ambiguus after recurrent (RLN) or superior (SLN) laryngeal nerve injury have hitherto not been fully characterised. In the present study, rat RLN and SLN were lesioned. After 3, 7, 14, 28 or 56 days of survival, the nucleus ambiguus was investigated by means of glial fibrillary acidic protein (GFAP) immunofluorescence or a combination of GFAP immunofluorescence and the application of retrograde tracers. GFAP immunoreactivity was significantly increased 3 days after RLN resection and it remained significantly elevated until after 28 days post injury (dpi). By 56 dpi it had returned to basal levels. In contrast, following RLN transection with repair, GFAP immunoreactivity was significantly elevated at 7 dpi and remained significantly elevated until 14 dpi. It had returned to basal levels by 28 dpi. Topographical analysis of the distribution of GFAP immunoreactivity revealed that after RLN injury, GFAP immunoreactivity was increased beyond the area of the nucleus ambiguus within which RLN motor neuron somata were located. GFAP immunoreactivity was also observed in the vicinity of neuronal somata that project into the uninjured SLN. Similarly, lesion of the SLN resulted in increased GFAP immunoreactivity around the neuronal somata projecting into it and also in the vicinity of the motor neuron somata projecting into the RLN. The increase in GFAP immunoreactivity outside of the region containing the motor neurons projecting into the injured nerve, may reflect the onset of a regenerative process attempting to compensate for impairment of one of the laryngeal nerves and may occur because of the dual innervation of the posterior cricoarytenoid muscle. This dual innervation of a very specialised muscle could provide a useful model system for studying the molecular mechanisms underlying axonal regeneration process and the results of the current study could provide the basis for studies into functional regeneration

  4. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury.

    PubMed

    Lopes, Cátia D F; Gonçalves, Nádia P; Gomes, Carla P; Saraiva, Maria J; Pêgo, Ana P

    2017-03-01

    Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the brain-derived neurotrophic factor (BDNF) in a peripheral nerve injury model. The TMCSH-HC/BDNF nanoparticle treatment promoted the release and significant expression of BDNF in neural tissues, which resulted in an enhanced functional recovery after injury as compared to control treatments (vehicle and non-targeted nanoparticles), associated with an improvement in key pro-regenerative events, namely, the increased expression of neurofilament and growth-associated protein GAP-43 in the injured nerves. Moreover, the targeted nanoparticle treatment was correlated with a significantly higher density of myelinated axons in the distal stump of injured nerves, as well as with preservation of unmyelinated axon density as compared with controls and a protective role in injury-denervated muscles, preventing them from denervation. These results highlight the potential of TMCSH-HC nanoparticles as non-viral gene carriers to deliver therapeutic genes into the peripheral neurons and thus, pave the way for their use as an effective therapeutic intervention for peripheral neuropathies.

  5. Exacerbation of Charcot-Marie-Tooth type 2E neuropathy following traumatic nerve injury.

    PubMed

    Villalón, Eric; Dale, Jeffrey M; Jones, Maria; Shen, Hailian; Garcia, Michael L

    2015-11-19

    Charcot-Marie-Tooth disease (CMT) is the most commonly inherited peripheral neuropathy. CMT disease signs include distal limb neuropathy, abnormal gait, sensory defects, and deafness. We generated a novel line of CMT2E mice expressing hNF-L(E397K), which displayed muscle atrophy of the lower limbs without denervation, proximal reduction in large caliber axons, and decreased nerve conduction velocity. In this study, we challenged wild type, hNF-L and hNF-L(E397K) mice with crush injury to the sciatic nerve. We analyzed functional recovery by measuring toe spread and analyzed gait using the Catwalk system. hNF-L(E397K) mice demonstrated reduced recovery from nerve injury consistent with increased susceptibility to neuropathy observed in CMT patients. In addition, hNF-L(E397K) developed a permanent reduction in their ability to weight bear, increased mechanical allodynia, and premature gait shift in the injured limb, which led to increasingly disrupted interlimb coordination in hNF-L(E397K). Exacerbation of neuropathy after injury and identification of gait alterations in combination with previously described pathology suggests that hNF-L(E397K) mice recapitulate many of clinical signs associated with CMT2. Therefore, hNF-L(E397K) mice provide a model for determining the efficacy of novel therapies.

  6. Inferior Alveolar Nerve Injury in Trauma-Induced Mandible Fractures.

    PubMed

    Tay, Andrew Ban Guan; Lai, Juen Bin; Lye, Kok Weng; Wong, Wai Yee; Nadkarni, Nivedita V; Li, Wenyun; Bautista, Dianne

    2015-07-01

    This prospective observational cohort study sought to determine the prevalence of inferior alveolar nerve (IAN) injury after mandibular fractures before and after treatment and to elucidate factors associated with the incidence of post-treatment IAN injury and time to normalization of sensation. Consenting patients with mandibular fractures (excluding dentoalveolar, pathologic, previous fractures, or mandibular surgery) were prospectively evaluated for subjective neurosensory disturbance (NSD) and underwent neurosensory testing before treatment and then 1 week, 1.5, 3, 6, and 12 months after treatment. Eighty patients (men, 83.8%; mean age, 30.0 yr; standard deviation, 12.6 yr) with 123 mandibular sides (43 bilateral) were studied. Injury etiology included assault (33.8%), falls (31.3%), motor vehicle accidents (25.0%), and sports injuries (6.3%). Half the fractures (49.6%) involved the IAN-bearing posterior mandible; all condylar fractures (13.0%) had no NSD. Treatment included open reduction and internal fixation (ORIF; 74.8%), closed reduction and fixation (22.0%), or no treatment (3.3%). Overall prevalence of IAN injury was 33.7% (95% confidence interval [CI], 24.8-42.6) before treatment and 53.8% (95% CI, 46.0-61.6) after treatment. In the IAN-bearing mandible, the prevalence was 56.2% (95% CI, 43.2-69.2) before treatment and 72.9% (95% CI, 63.0-82.7) after treatment. In contrast, this prevalence in the non-IAN-bearing mandible was 12.6% (95% CI, 4.1-21.1) before treatment and 31.6% (95% CI, 20.0-43.3) after treatment. Factors associated with the development of post-treatment IAN injury included fracture site and gap distance (a 1-mm increase was associated with a 27% increase in odds of post-treatment sensory alteration). Time to normalization after treatment was associated with type of treatment (ORIF inhibited normalization) and fracture site (IAN-bearing sites took longer to normalize). IAN injury was 4 times more likely in IAN-bearing posterior mandibular

  7. Histological Consequences of Needle-Nerve Contact following Nerve Stimulation in a Pig Model

    PubMed Central

    Steinfeldt, T.; Graf, J.; Schneider, J.; Nimphius, W.; Weihe, E.; Borgeat, A.; Wulf, H.; Wiesmann, T.

    2011-01-01

    Background. Nerve stimulation can facilitate correct needle placement in peripheral regional anesthesia. The aim of this study was to determine whether the high threshold current is associated with reduced nerve injury due to fewer needle-nerve contacts compared with low current. Methods. In anaesthetized pigs, thirty-two nerves of the brachial plexus underwent needle placement at low (0.2 mA) or high current (1.0 mA). The occurrence of needle-nerve contact was recorded. After 48 hours, the nerves were analyzed for occurrence of histological changes. Nerve injury was scored ranging from 0 (no injury) to 4 (severe injury). Results. The frequency of needle-nerve contact was 94% at low compared to 6% at high current. The score was significantly higher at low (median [interquartile range] 2.0 [1.0-2.0]) compared to high current (0.0 [0.0-1.0] P = .001). Conclusions. Inflammatory responses were directly related to needle-nerve contacts. Hence, posttraumatic inflammation may be diminished using higher current for nerve localization. PMID:21716736

  8. Beneficial Effect of Metformin on Nerve Regeneration and Functional Recovery After Sciatic Nerve Crush Injury in Diabetic Rats.

    PubMed

    Ma, Junxiong; Liu, Jun; Yu, Hailong; Chen, Yu; Wang, Qi; Xiang, Liangbi

    2016-05-01

    Neuroprotective effects of metformin have been increasingly recognized in both diabetic and non-diabetic conditions. Thus far, no information has been available on the potential beneficial effects of metformin on peripheral nerve regeneration in diabetes mellitus. The present study was designed to investigate such a possibility. Diabetes was established by a single injection of streptozotocin at 50 mg/kg in rats. After sciatic nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with metformin (30, 200 and 500 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. It was found that metformin significantly enhanced axonal regeneration and functional recovery compared to saline after sciatic nerve injury in diabetic rats. In addition, metformin at 200 and 500 mg/kg showed better performance than that at 30 mg/kg. Taken together, metformin is capable of promoting nerve regeneration after sciatic nerve injuries in diabetes mellitus, highlighting its therapeutic values for peripheral nerve injury repair in diabetes mellitus.

  9. Nerve Transfers in Birth Related Brachial Plexus Injuries: Where Do We Stand?

    PubMed

    Davidge, Kristen M; Clarke, Howard M; Borschel, Gregory H

    2016-05-01

    This article reviews the assessment and management of obstetrical brachial plexus palsy. The potential role of distal nerve transfers in the treatment of infants with Erb's palsy is discussed. Current evidence for motor outcomes after traditional reconstruction via interpositional nerve grafting and extraplexal nerve transfers is reviewed and compared with the recent literature on intraplexal distal nerve transfers in obstetrical brachial plexus injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Changes in microtubule-associated protein tau during peripheral nerve injury and regeneration

    PubMed Central

    Zha, Guang-bin; Shen, Mi; Gu, Xiao-song; Yi, Sheng

    2016-01-01

    Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerative diseases has been well demonstrated, whether tau is involved in peripheral nerve regeneration remains unknown. In the current study, we obtained sciatic nerve tissue from adult rats 0, 1, 4, 7, and 14 days after sciatic nerve crush and examined tau mRNA and protein expression levels and the location of tau in the sciatic nerve following peripheral nerve injury. The results from our quantitative reverse transcription polymerase chain reaction analysis showed that compared with the uninjured control sciatic nerve, mRNA expression levels for both tau and tau tubulin kinase 1, a serine/threonine kinase that regulates tau phosphorylation, were decreased following peripheral nerve injury. Our western blot assay results suggested that the protein expression levels of tau and phosphorylated tau initially decreased 1 day post nerve injury but then gradually increased. The results of our immunohistochemical labeling showed that the location of tau protein was not altered by nerve injury. Thus, these results showed that the expression of tau was changed following sciatic nerve crush, suggesting that tau may be involved in peripheral nerve repair and regeneration. PMID:27857758

  11. Ulnar Nerve Injury as a Result of Galeazzi Fracture: A Case Report and Literature Review.

    PubMed

    Roettges, Paul; Turker, Tolga

    2017-09-01

    Sparse documentation of Galeazzi fracture with associated nerve injury exists in the medical literature. The purpose of this report is to review the available literature in regard to incidence, nerve injury type, treatment strategies, and expected outcomes. We present a classic Galeazzi fracture dislocation with associated complete ulnar nerve transection injury at the level of the wrist. After rigid internal bony stabilization, allograft nerve repair was performed. The patient's presentation, operative management, recovery, and a thorough literature review are discussed. Fracture union was attained with near full wrist and elbow range of motion. Despite lack of ulnar nerve function return, the patient was able to resume manual labor occupation. Despite its close proximity to the dislocating distal radioulnar joint (DRUJ), thorough review reveals rare associated ulnar nerve palsy. If there is suspicion for nerve injury in the setting of open DRUJ dislocation, the nerve should be explored to identify possible entrapment or transection. Literature supports likely return of nerve function in cases of intact nerve; however, management of nerve transection remains debatable.

  12. The pattern of peripheral nerve injuries among Pakistani soldiers in the war against terror.

    PubMed

    Razaq, Sarah; Yasmeen, Rehana; Butt, Aamir Waheed; Akhtar, Noreen; Mansoor, Sahibzada Nasir

    2015-05-01

    To determine the pattern of peripheral nerve injuries in Pakistani soldiers in the War against terror. Case series. Department of Electrodiagnosis at Armed Forces Institute of Rehabilitation Medicine (AFIRM), Rawalpindi, Pakistan, from June 2008 to June 2011. All new cases of war wounded soldiers with peripheral nerve injuries were consecutively enrolled. Physical examination and electrodiagnostic study was carried out by experienced physiatrists. Data was entered in pretested especially designed questionnaire which was analysed using SPSS version 17.0. Seddon's classification system was used to assess the severity of injury. There were 418 cases of peripheral nerve injuries with 504 different nerve segments. Mean age was 29.41 ±8 years. Blast was the main cause of nerve injury in 244 (48.5%) cases followed by gunshot in 215 (42.7%) and 45 (8.9%) cases had nerve injuries secondary to fall, burial under debris and motor vehicle accidents. Eighty six (17%) cases had multiple nerve injuries. Most commonly injured nerve was ulnar (20.6%) followed by sciatic (16.7%), median (16.5%), radial (16.3%), peroneal (8.7%), brachial plexus (8.5%), axillary (4.8%), tibial (2%), femoral (1.8%), long thoracic (0.4%) and others (3.8%). Axonotmesis was seen in 459 (91.1%) cases, 44 (8.7%) cases revealed neurotmesis and 1 (0.2%) case had neuropraxia. Peripheral nerve injuries are a major component of war related injuries mainly involving the upper limbs. Electrodiagnostic studies help in assessing severity and determining prognosis. Precise documentation of severity of nerve injuries is important to estimate the burden on our resources and to extend rehabilitation services.

  13. The importance of a good evaluation in order to prevent oral nerve injuries: a review.

    PubMed

    Céspedes-Sánchez, Juan M; Ayuso-Montero, Raúl; Marí-Roig, Antoni; Arranz-Obispo, Carlos; López-López, José

    2014-04-01

    Oral nerve injuries are a less frequent complication but they involve a decrease in the patient life quality. The purpose of the current review is to know the described risk factors to prevent injuries and to know the therapies against an established injury. A Pubmed search of the English and Spanish language literature from 2000-2012 using the keywords 'oral surgery' or 'trigeminal nerve injuries' or 'lingual nerve injuries' or 'mandibular nerve injuries' was performed. Review articles were included and important articles from the references were added. A total of 662 were obtained from the search, from which 25 were selected accomplishing the inclusion criteria. Moreover, seven important articles were selected from the references of the ones mentioned, obtaining a total of 32 articles for the review. There is a relationship between the position of the extracted tooth and the incidence of the inferior alveolar nerve and lingual nerve injuries; as well as the age of the patient, the intra-operatory exposition of the nerve, the technique access for the lower third molar extraction and the surgeon's inexperience. The radiological examination is useful to evaluate the nerve damage and to decide on the surgical technique.

  14. Early treatment with UR13870, a novel inhibitor of p38α mitogenous activated protein kinase, prevents hyperreflexia and anxiety behaviors, in the spared nerve injury model of neuropathic pain.

    PubMed

    Galan-Arriero, Iriana; Avila-Martin, Gerardo; Ferrer-Donato, Agueda; Gomez-Soriano, Julio; Piazza, Stefano; Taylor, Julian

    2015-09-14

    Microglia cell activation plays a role in the development of neuropathic pain partly due to the activation of the p38α MAPK signaling pathway after nerve injury. In this study we assessed the effect of UR13870, a p38α MAPK inhibitor, in the "spared nerve injury" (SNI) model, to study its effects on modulation of spinal microglial activation and to test behavioral hyperreflexia responses and cerebral-mediated pain behavior. The effect of daily administration of UR13870 (10mg/kg p.o.) and Pregabalin (50mg/kg p.o.) on reflex hypersensitivity to mechanical and cold test stimuli and on affective related pain responses measured with the place escape avoidance paradigm and the open field-induced anxiety test, were evaluated after SNI in Sprague Dawley rats. Microglial reactivity in the ipsilateral lumbar laminae I/II dorsal horn was evaluated with OX-42 immunohistochemistry. UR13870 treatment significantly decreased hindlimb hyperreflexia to both mechanical and cold stimuli after SNI without loss of general motor function, in addition to a reduction in pain-related anxiety behavior at day 21 after SNI, accompanied by normalization of OX-42 immunoreactivity within the ipsilateral lumbar dorsal horn. Pregabalin treatment only reduced mechanical hyperreflexia and affected general motor function. Oral administration of the p38α MAPK inhibitor, UR13870, mediates antinociception to both mechanical and cold stimuli, and significantly restored inner-zone exploration in the open field test, accompanied by normalization in dorsal horn microglial activation in the SNI model.

  15. Reconstruction of sciatic nerve after traumatic injury in humans - factors influencing outcome as related to neurobiological knowledge from animal research

    PubMed Central

    2012-01-01

    Background The aim was to evaluate what can be learned from rat models when treating patients suffering from a sciatic nerve injury. Methods Two patients with traumatic sciatic nerve injury are presented with examination of motor and sensory function with a five-year follow-up. Reconstruction of the nerve injury was performed on the second and third day, respectively, after injury using sural nerve grafts taken from the injured leg. The patients were examined during follow-up by electromyography (EMG), MRI and functionalMRI (fMRI) to evaluate nerve reinnervation, cell death in dorsal root ganglia (DRG) and cortical activation; factors that were related to clinical history in the patients. Results One patient regained good motor function of the lower leg and foot, confirmed by EMG showing good activation in the leg muscles and some reinnervation in the foot muscles, as well as some sensory function of the sole of the foot. The other patient regained no motor (confirmed by EMG) or sensory function in the leg or foot. Factors most influential on outcome in two cases were type of injury, nerve gap length and particularly type of reconstruction. A difference in follow-up and rehabilitation likely also influence outcome. MRI did not show any differences in DRG size of injured side compared to the uninjured side. fMRI showed normal activation in the primary somatosensory cortex as a response to cutaneous stimulation of the normal foot. However, none of the two patients showed any activation in the primary somatosensory cortex following cutaneous stimulation of the injured foot. Conclusions In decision making of nerve repair and reconstruction data from animal experiments can be translated to clinical practice and to predict outcome in patients, although such data should be interpreted with caution and linked to clinical experience. Rat models may be useful to identify and study factors that influence outcome after peripheral nerve repair and reconstruction; procedures

  16. Supracondylar humeral fractures with isolated anterior interosseous nerve injuries: is urgent treatment necessary?

    PubMed

    Barrett, Kody K; Skaggs, David L; Sawyer, Jeffrey R; Andras, Lindsay; Moisan, Alice; Goodbody, Christine; Flynn, John M

    2014-11-05

    It is unclear if pediatric patients with a supracondylar humeral fracture and isolated anterior interossous nerve injury require urgent treatment. A retrospective, multicenter study of 4409 patients with operatively treated supracondylar humeral fractures was conducted. Exclusion criteria were additional nerve injuries other than the anterior interosseous nerve, any sensory changes, pulselessness, ipsilateral forearm fractures, open fractures, less than two months of follow-up, or pathological fractures. Thirty-five of 4409 patients met inclusion criteria. The average time to surgery was 14.6 hours (range, two to thirty-six hours). No patient developed compartment syndrome. There was no significant difference in time to return of anterior interosseous nerve function relative to the time to surgical reduction and fixation (p = 0.668). A complete return of anterior interosseous nerve function occurred in all patients with an average time of forty-nine days (range, two to 224 days). Ninety percent of patients recovered anterior interosseous nerve function by 149 days. To our knowledge, this is the largest series to date of supracondylar humeral fractures with anterior interosseous nerve injuries. There is no evidence that a supracondylar humeral fracture with an isolated anterior interosseous nerve injury requires urgent treatment. A delay in treatment up to twenty-four hours was not associated with an increased time of nerve recovery or other complications. This series excluded patients with sensory nerve injuries, pulselessness, and ipsilateral forearm fractures, which all may require urgent surgery. Barring other clinical indications for urgent treatment of a supracondylar humeral fracture, an isolated anterior interosseous nerve injury (no sensory changes) may not by itself be an indication for urgent surgery. The anterior interosseous nerve injuries in this series showed complete recovery at a mean time of forty-nine days. Copyright © 2014 by The Journal of Bone

  17. Different patterns of morphological changes in the hippocampus and dentate gyrus accompany the differential expression of disability following nerve injury

    PubMed Central

    Kalman, Eszter; Keay, Kevin A

    2014-01-01

    Physical and psychological trauma which results in mood disorders and the disruption of complex behaviours is associated with reductions in hippocampal volume. Clinical evaluation of neuropathic pain reveals mood and behavioural change in a significant number of patients. A rat model of neuropathic injury results in complex behavioural changes in a subpopulation (∼30%) of injured rats; these changes are co-morbid with a range of other ‘disabilities’. The specific objective of this study was to determine in rats the morphology of the hippocampus and dentate gyrus in individuals with and without complex behavioural disruptions following a constriction injury of the sciatic nerve, and to determine whether rats that develop disabilities following nerve injury have a reduced hippocampal volume compared with injured rats with no disabilities. The social behaviours of nerve-injured rats were evaluated before and after nerve injury. The morphology of the hippocampus of rats with and without behavioural disruptions was compared in serial histological sections. Single-housing and repeated social-interaction testing had no effect on the morphology of either the hippocampus or the dentate gyrus. Rats with transient or ongoing disability identified by behavioural disruption following sciatic nerve injury, show bilateral reductions in hippocampal volume, and lateralised reduction in the dentate gyrus (left side). Disabled rats display a combination of behavioural and physiological changes, which resemble many of the criteria used clinically to diagnose mood disorders. They also show reductions in the volume of the hippocampus similar to people with clinically diagnosed mood disorders. The sciatic nerve injury model reveals a similarity to the human neuropathic pain presentation presenting an anatomically specific focus for the investigation of the neural mechanisms underpinning the co-morbidity of chronic pain and mood disorder. PMID:25269883

  18. An approach to identify microRNAs involved in neuropathic pain following a peripheral nerve injury

    PubMed Central

    Norcini, Monica; Sideris, Alexandra; Martin Hernandez, Lourdes A.; Zhang, Jin; Blanck, Thomas J. J.; Recio-Pinto, Esperanza

    2014-01-01

    Peripheral nerve injury alters the expression of hundreds of proteins in dorsal root ganglia (DRG). Targeting some of these proteins has led to successful treatments for acute pain, but not for sustained post-operative neuropathic pain. The latter may require targeting multiple proteins. Since a single microRNA (miR) can affect the expression of multiple proteins, here, we describe an approach to identify chronic neuropathic pain-relevant miRs. We used two variants of the spared nerve injury (SNI): Sural-SNI and Tibial-SNI and found distinct pain phenotypes between the two. Both models induced strong mechanical allodynia, but only Sural-SNI rats maintained strong mechanical and cold allodynia, as previously reported. In contrast, we found that Tibial-SNI rats recovered from mechanical allodynia and never developed cold allodynia. Since both models involve nerve injury, we increased the probability of identifying differentially regulated miRs that correlated with the quality and magnitude of neuropathic pain and decreased the probability of detecting miRs that are solely involved in neuronal regeneration. We found seven such miRs in L3-L5 DRG. The expression of these miRs increased in Tibial-SNI. These miRs displayed a lower level of expression in Sural-SNI, with four having levels lower than those in sham animals. Bioinformatic analysis of how these miRs could affect the expression of some ion channels supports the view that, following a peripheral nerve injury, the increase of the seven miRs may contribute to the recovery from neuropathic pain while the decrease of four of them may contribute to the development of chronic neuropathic pain. The approach used resulted in the identification of a small number of potentially neuropathic pain relevant miRs. Additional studies are required to investigate whether manipulating the expression of the identified miRs in primary sensory neurons can prevent or ameliorate chronic neuropathic pain following peripheral nerve

  19. Peroneal nerve injuries as a complication of injection.

    PubMed

    Kirdi, N; Yakut, E; Meriç, A

    1998-01-01

    Ten children (8 males, 2 females) diagnosed with peroneal nerve injury as a complication of injection were included in this study. The age of the children ranged between four to seven years (mean 6.5 +/- 1.25 years). Physiotherapy and rehabilitation protocol included superficial heat, neuromuscular electrical stimulation (either galvanic or faradic current according to the response elicited), electromyographic biofeedback, exercises (passive, active-assistive and active), and orthotic support. Before treatment, foot-drop and steppage gait were observed in all the patients; both were remedied. The post-treatment muscle strength and electrodiagnostic test results showed statistically significant improvement when compared with pretreatment values (p < 0.05). We believe that our relatively favorable results in this study, manifested as shorter recovery time with no residual deficits, may be related to early intervention with an extensive physiotherapy program.

  20. Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex.

    PubMed

    Blom, Sigrid Marie; Pfister, Jean-Pascal; Santello, Mirko; Senn, Walter; Nevian, Thomas

    2014-04-23

    Neuropathic pain caused by peripheral nerve injury is a debilitating neurological condition of high clinical relevance. On the cellular level, the elevated pain sensitivity is induced by plasticity of neuronal function along the pain pathway. Changes in cortical areas involved in pain processing contribute to the development of neuropathic pain. Yet, it remains elusive which plasticity mechanisms occur in cortical circuits. We investigated the properties of neural networks in the anterior cingulate cortex (ACC), a brain region mediating affective responses to noxious stimuli. We performed multiple whole-cell recordings from neurons in layer 5 (L5) of the ACC of adult mice after chronic constriction injury of the sciatic nerve of the left hindpaw and observed a striking loss of connections between excitatory and inhibitory neurons in both directions. In contrast, no significant changes in synaptic efficacy in the remaining connected pairs were found. These changes were reflected on the network level by a decrease in the mEPSC and mIPSC frequency. Additionally, nerve injury resulted in a potentiation of the intrinsic excitability of pyramidal neurons, whereas the cellular properties of interneurons were unchanged. Our set of experimental parameters allowed constructing a neuronal network model of L5 in the ACC, revealing that the modification of inhibitory connectivity had the most profound effect on increased network activity. Thus, our combined experimental and modeling approach suggests that cortical disinhibition is a fundamental pathological modification associated with peripheral nerve damage. These changes at the cortical network level might therefore contribute to the neuropathic pain condition.

  1. Anatomical basis of the risk of injury to the right laryngeal recurrent nerve during thoracic surgery.

    PubMed

    Benouaich, Vincent; Porterie, Jean; Bouali, Ourdia; Moscovici, Jacques; Lopez, Raphaël

    2012-08-01

    Despite the intrathoracic part being short, the right laryngeal recurrent nerve is often injured during thoracic surgery. The aim of this cadaver study was to understand the mechanisms of right laryngeal recurrent nerve injuries during thoracic surgery and to describe anatomical landmarks for its preservation. Dissections were performed on 10 fresh human cadavers. A right anterolateral thoracic wall segment was removed, preserving the first rib. Dissections were carried out to identify the following structures: first rib, esophagus, trachea, right main bronchus, right brachiocephalic and subclavian vessels, azygos vein, phrenic nerve, vagus nerve, and right laryngeal recurrent nerve. The distance between the origin of the right laryngeal recurrent nerve and its adjacent structures was assessed. Moderate traction of the thoracic part of the vagus nerve resulted in a downward translation of the right laryngeal recurrent nerve's origin. In such conditions, the right laryngeal recurrent nerve's origin was distant of 14.8 mm (±2.89 mm) from the subclavian artery. Intraoperative incidence of right laryngeal recurrent nerve direct injury could be decreased by understanding the detailed course of its intrathoracic part. Moreover, traction on the intrathoracic part of the right vagus nerve may result in indirect lesions of the right laryngeal recurrent nerve: stretch induced lesions and nerve vasculature's lesions.

  2. Acceleration of Regeneration of Large Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2016-09-01

    plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Zhongyu Li, MD, PhD RECIPIENT: Wake Forest University Health Sciences...Gap Peripheral Nerve Injuries Using 5a. CONTRACT NUMBER Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS). 5b. GRANT...include successful seeding of AFS into ANA. This accomplishment also documented that these cells remained viable up to 72 hours after seeding. The

  3. Review of Literature of Radial Nerve Injuries Associated with Humeral Fractures—An Integrated Management Strategy

    PubMed Central

    Wu, Qiang; Wu, QiuLi; Li, Yan; Feng, ShiQing

    2013-01-01

    Background Radial nerve palsy associated with fractures of the shaft of the humerus is the most common nerve lesion complicating fractures of long bones. However, the management of radial nerve injuries associated with humeral fractures is debatable. There was no consensus between observation and early exploration. Methods and Findings The PubMed, Embase, Cochrane Central Register of Controlled Trials, Google Scholar, CINAHL, International Bibliography of the Social Sciences, and Social Sciences Citation Index were searched. Two authors independently searched for relevant studies in any language from 1966 to Jan 2013. Thirty studies with 2952 humeral fractures participants were identified. Thirteen studies favored conservative strategy. No significant difference between early exploration and no exploration groups (OR, 1.03, 95% CI 0.61, 1.72; I2 = 0.0%, p = 0.918 n.s.). Three studies recommend early radial nerve exploration in patients with open fractures of humerus with radial nerve injury. Five studies proposed early exploration was performed in high-energy humeral shaft fractures with radial nerve injury. Conclusions The conservative strategy was a good choice for patients with low-energy closed fractures of humerus with radial nerve injury. We recommend early radial nerve exploration (within the first 2 weeks) in patients with open fractures or high-energy closed fractures of humerus with radial nerve injury. PMID:24250799

  4. Regenerative effect of adipose tissue-derived stem cells transplantation using nerve conduit therapy on sciatic nerve injury in rats.

    PubMed

    Liu, Bai-Shuan; Yang, Yi-Chin; Shen, Chiung-Chyi

    2014-05-01

    This study proposed a biodegradable GGT nerve conduit containing genipin crosslinked gelatin annexed with tricalcium phosphate (TCP) ceramic particles for the regeneration of peripheral nerves. Cytotoxicity tests revealed that GGT-extracts were non-toxic and promoted proliferation and neuronal differentiation in the induction of stem cells (i-ASCs) derived from adipose tissue. Furthermore, the study confirmed the effectiveness of a GGT/i-ASCs nerve conduit as a guidance channel in the repair of a 10-mm gap in the sciatic nerve of rats. At eight weeks post-implantation, walking track analysis showed a significantly higher sciatic function index (SFI) (P < 0.05) in the GGT/i-ASC group than in the autograft group. Furthermore, the mean recovery index of compound muscle action potential (CMAP) differed significantly between GGT/i-ASCs and autograft groups (P < 0.05), both of which were significantly superior to the GGT group (P < 0.05). No severe inflammatory reaction in the peripheral nerve tissue at the site of implantation was observed in either group. Histological observation and immunohistochemistry revealed that the morphology and distribution patterns of nerve fibers in the GGT/i-ASCs nerve conduits were similar to those of the autografts. These promising results achieved through a combination of regenerative cells and GGT nerve conduits suggest the potential value in the future development of clinical applications for the treatment of peripheral nerve injury.

  5. The radio-radial nerve transfer for elbow extension restoration in C5 to C7 nerve root injury.

    PubMed

    Flores, Leandro Pretto

    2012-01-01

    Extension of the elbow is required to oppose gravity; however, activation of the triceps brachii is frequently underestimated during the surgical planning for brachial plexus injuries. This report aims to describe a novel technique of distal nerve transfer designed for elbow extension reconstruction in patients sustaining a C5-C7 nerve root injury. We report a patient sustaining a brachial plexus injury with triceps palsy and preserved finger extension motion; after careful intraneural dissection of the radial nerve, a fascicle innervating the extensor digitorum communis muscle was sectioned, derouted and connected to a motor branch to the lateral head of the triceps. Eleven months after surgery, elbow extension strength scored MRC M4. No deficits on finger extension were observed. Copyright © 2011 Wiley-Liss, Inc.

  6. Peripheral nerve injury grading simplified on MR neurography: As referenced to Seddon and Sunderland classifications

    PubMed Central

    Chhabra, Avneesh; Ahlawat, Shivani; Belzberg, Allan; Andreseik, Gustav

    2014-01-01

    The Seddon and Sunderland classifications have been used by physicians for peripheral nerve injury grading and treatment. While Seddon classification is simpler to follow and more relevant to electrophysiologists, the Sunderland grading is more often used by surgeons to decide when and how to intervene. With increasing availability of high-resolution and high soft-tissue contrast imaging provided by MR neurography, the surgical treatment can be guided following the above-described grading systems. The article discusses peripheral nerve anatomy, pathophysiology of nerve injury, traditional grading systems for classifying the severity of nerve injury, and the role of MR neurography in this domain, with respective clinical and surgical correlations, as one follows the anatomic paths of various nerve injury grading systems. PMID:25114384

  7. Peripheral nerve injury grading simplified on MR neurography: As referenced to Seddon and Sunderland classifications.

    PubMed

    Chhabra, Avneesh; Ahlawat, Shivani; Belzberg, Allan; Andreseik, Gustav

    2014-07-01

    The Seddon and Sunderland classifications have been used by physicians for peripheral nerve injury grading and treatment. While Seddon classification is simpler to follow and more relevant to electrophysiologists, the Sunderland grading is more often used by surgeons to decide when and how to intervene. With increasing availability of high-resolution and high soft-tissue contrast imaging provided by MR neurography, the surgical treatment can be guided following the above-described grading systems. The article discusses peripheral nerve anatomy, pathophysiology of nerve injury, traditional grading systems for classifying the severity of nerve injury, and the role of MR neurography in this domain, with respective clinical and surgical correlations, as one follows the anatomic paths of various nerve injury grading systems.

  8. Neuroprotective and Nerve Regenerative Approaches for Treatment of Erectile Dysfunction after Cavernous Nerve Injury

    PubMed Central

    Campbell, Jeffrey D.; Burnett, Arthur L.

    2017-01-01

    Erectile dysfunction (ED) is a significant cause of reduced quality of life in men and their partners. Cavernous nerve injury (CNI) during pelvic surgery results in ED in greater than 50% of patients, regardless of additional patient factors. ED related to CNI is difficult to treat and typically poorly responsive to first- and second-line therapeutic options. Recently, a significant amount of research has been devoted to exploring neuroprotective and neuroregenerative approaches to salvage erectile function in patients with CNI. In addition, therapeutic options such as neuregulins, immunophilin ligands, gene therapy, stem cell therapy and novel surgical strategies, have shown benefit in pre-clinical, and limited clinical studies. In the era of personalized medicine, these new therapeutic technologies will be the future of ED treatment and are described in this review. PMID:28820434

  9. Vagus nerve stimulation blocks vascular permeability following burn injury in both local and distal sites

    PubMed Central

    Ortiz-Pomales, Yan T; Krzyzaniak, Michael; Coimbra, Raul; Baird, Andrew; Eliceiri, Brian P.

    2012-01-01

    Recent studies have shown that vagus nerve stimulation (VNS) can block the burn injury-induced systemic inflammatory response (SIRS). In this study we examined the potential for VNS to modulate vascular permeability (VP) in local sites (i.e. skin) and in secondary sites (i.e. lung) following burn injury. In a 30% total body surface area burn injury model, VP was measured using intravascular fluorescent dextran for quantification of the VP response in skin and lung. A peak in VP of the skin was observed 24 hours post-burn injury, that was blocked by VNS. Moreover, in the lung, VNS led to a reduction in burn-induced VP compared to sham-treated animals subjected to burn injury alone. The protective effects of VNS in this model were independent of the spleen, suggesting that the spleen was not a direct mediator of VNS. These studies identify a role for VNS in the regulation of VP in burns, with the translational potential of attenuating lung complications following burn injury. PMID:22694873

  10. Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies

    PubMed Central

    Grinsell, D.; Keating, C. P.

    2014-01-01

    Unlike other tissues in the body, peripheral nerve regeneration is slow and usually incomplete. Less than half of patients who undergo nerve repair after injury regain good to excellent motor or sensory function and current surgical techniques are similar to those described by Sunderland more than 60 years ago. Our increasing knowledge about nerve physiology and regeneration far outweighs our surgical abilities to reconstruct damaged nerves and successfully regenerate motor and sensory function. It is technically possible to reconstruct nerves at the fascicular level but not at the level of individual axons. Recent surgical options including nerve transfers demonstrate promise in improving outcomes for proximal nerve injuries and experimental molecular and bioengineering strategies are being developed to overcome biological roadblocks limiting patient recovery. PMID:25276813

  11. Nerve injuries in total hip arthroplasty with a mini invasive anterior approach.

    PubMed

    Macheras, George A; Christofilopoulos, Panayiotis; Lepetsos, Panagiotis; Leonidou, Andreas O; Anastasopoulos, Panagiotis P; Galanakos, Spyridon P

    2016-07-25

    Minimal invasive techniques in total hip arthroplasty (THA) have become increasingly popular during recent years. Despite much debate over the outcome of several minimal invasive techniques, complications arising from the use of anterior minimally invasive surgery (AMIS) for THA on a traction table are not well documented. Our study aims to focus on nerve damage during the AMIS procedure and the possible explanations of these injuries. We reviewed all primary THAs performed with the AMIS technique using a traction table, over 5 years and recorded all intraoperative and postoperative complications up to the latest follow-up. We focused on nerve injuries and nerve function impairment following the aforementioned technique. Our study included 1,512 THAs performed with the AMIS technique in 2 major hip reconstruction centres (KAT General Hospital, Athens, Greece and University Hospital of Geneva, Switzerland), on 1,238 patients (985 women, 253 men; mean age 65.24 years). Mean follow-up was 29.4 months. We observed 51 cases of transient lateral femoral cutaneous nerve neuropraxia (3.37%), 4 cases of femoral nerve paralysis (3 permanent, 1 transient [0.26%]) and 1 case of permanent sciatic nerve paralysis (0.06%). No case of obturator or pudendal nerve injury was noticed. Mean age of these cases was 68.97 years. Sciatic and femoral nerve injuries were confirmed by electromyography, showing axonotmesis of the damaged nerve. Neurological injuries are a rare but distinct complication of THAs using the AMIS technique. Possible explanations for such referred nerve injuries are direct nerve injury, extreme traction, hyperextension, extreme external rotation of the leg, use of retractors and coexisting spinal deformities. Controlled use of traction in hip extension, cautious use of retractors and potential use of dynamometers may be useful, so that neurological damage can be avoided. Further studies are needed to fully elucidate the role of the above factors in AMIS

  12. Berberine Ameliorates Allodynia Induced by Chronic Constriction Injury of the Sciatic Nerve in Rats.

    PubMed

    Kim, Hyun Jee

    2015-08-01

    The objective of this study was to investigate whether berberine could ameliorate allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in rats. After inducement of CCI, significant increases in the number of paw lifts from a cold plate test (cold allodynia) and decreased paw withdrawal threshold in the von Frey hair stimulation test (mechanical allodynia) were observed. However, these cold and mechanical allodynia were markedly alleviated by berberine administration in a dose-dependent manner. Sciatic nerve myeloperoxidase and malondialdehyde activities were also attenuated by berberine administration. Continuous injection for 7 days induced no development of tolerance. The antiallodynic effect of 20 mg/kg berberine was comparable to that of amitriptyline 10 mg/kg. This study demonstrated that berberine could mitigate allodynia induced by CCI, a neuropathic pain model, and it suggested that the anti-inflammatory and antioxidative properties of berberine contributed to the antiallodynic effect in the CCI model.

  13. Investigation of the effect of telmisartan on experimentally induced peripheral nerve injury in rats.

    PubMed

    Yuksel, Tugba Nurcan; Halici, Zekai; Demir, Recep; Cakir, Murteza; Calikoglu, Cagatay; Ozdemir, Gokhan; Unal, Deniz

    2015-06-01

    The aim of this study was to investigate the effects of telmisartan on nerve healing in a rat peripheral nerve injury model. Thirty adult male Wistar albino rats were divided into five groups: healthy, axonotmesis, anastomosis, axonotmesis+10 mg/kg telmisartan and anastomosis+10 mg/kg telmisartan. Walking track analyses were performed 4 weeks after the surgery. The right sciatic nerves of all the animals were examined histopathologically, stereologically and molecularly. Many badly damaged axons were detected in the axonotmesis group, in addition to enlarged spaces between the axons. In the anastomosis group, both ir- regular and degenerated axons at different severities were observed. The sections of the telmisartan group after the axonotmesis were similar to those of the healthy group. The sections of the telmisartan group after the anastomosis were similar to those of the healthy group and the telmisartan group after the axonotmesis. Interleukin-1 beta (IL-1β) gene expression increased in both the axonotmesis and the anastomosis groups when compared with the healthy group. Telmisartan had a significant down-regulatory effect on IL-1β expression. Caspase-3 mRNA expression was significantly increased in the anastomosis group, and the administration of telmisartan in this group significantly decreased this rise in caspase-3 mRNA expression. As a functional outcome, telmisartan also increased the walking distance of the rats after axonotmesis and anastomosis. The histopathological, stereological, functional and molecular data suggest that telmisartan improves nerve regeneration in peripheral nerve injuries by inhibiting inflammatory cytokine IL-1β and apoptotic caspase-3.

  14. Restoration of elbow flexion in brachial plexus avulsion injury: comparing spinal accessory nerve transfer with intercostal nerve transfer.

    PubMed

    Waikakul, S; Wongtragul, S; Vanadurongwan, V

    1999-05-01

    This study was performed to compare the clinical outcome of 2 types of commonly used nerve transfers, the spinal accessory nerve transfer and the intercostal nerve transfer. This study was a prospective randomized parallel trial involving 205 patients presenting between 1989 and 1994. All patients were males ranging in age from 16 to 43 years. All patients underwent surgery within 6 months of injury. Spinal accessory nerve transfer was performed in 130 patients; better results were obtained in terms of less operative time, fewer blood transfusions, fewer immediate complications, and better motor function (very good and good power in 83% of patients). Intercostal nerve transfer was performed in 75 patients; better results were observed in terms of earlier electromyographic evidence of motor reinnervation, improvement in protective sensation, and reduction of pain. However, very good and good motor recovery was observed in only 64% of patients. There was no significant difference with regard to tidal volume, vital capacity, and the FEV1 to FEV ratio before and after surgery in either group. Smoking adversely affected the rate of recovery. Spinal accessory nerve transfer should be used when motor function of the elbow flexors is the major concern. Intercostal nerve transfer should be performed in patients who need both motor and sensory reconstruction and in those who have chronic pain syndrome after brachial plexus injury.

  15. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury

    PubMed Central

    Kızılay, Zahir; Erken, Haydar Ali; Çetin, Nesibe Kahraman; Aktaş, Serdar; Abas, Burçin İrem; Yılmaz, Ali

    2016-01-01

    The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I), and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions. PMID:27904499

  16. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury.

    PubMed

    Kızılay, Zahir; Erken, Haydar Ali; Çetin, Nesibe Kahraman; Aktaş, Serdar; Abas, Burçin İrem; Yılmaz, Ali

    2016-10-01

    The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I), and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions.

  17. Therapeutic efficacy of G207 in a novel peripheral nerve sheath tumor model.

    PubMed

    Mashour, G A; Moulding, H D; Chahlavi, A; Khan, G A; Rabkin, S D; Martuza, R L; Driever, P H; Kurtz, A; Chalavi, A

    2001-05-01

    Nerve involvement poses a significant obstacle for the management of peripheral nervous system tumors, and nerve injury provides a frequent source of postoperative morbidity. The lack of suitable animal models for peripheral nerve tumors has impeded the development of alternative nerve-sparing therapies. To evaluate the effect of a multimutated replication-competent herpes simplex virus (G207) on the growth of peripheral nerve tumors and on nerve function, we developed a novel peripheral nerve sheath tumor model. Human neuroblastoma-derived cells injected into murine sciatic nerve consistently caused tumor development within the nerve sheath after 2 weeks followed by increasingly severe impairment of nerve function. Tumor treatment by a single intratumoral injection of G207 resulted in significant reduction of functional impairment, inhibition of tumor growth and prolonged survival. Direct injection of G207 viral particles into the healthy nerve sheath caused no obvious neurologic sequelae, whereas injections of wild-type virus resulted in uniform lethality. The results indicate that viral therapy might be considered as a safe alternative to surgical removal of tumors with peripheral nerve involvement. Copyright 2001 Academic Press.

  18. Transplantation of olfactory ensheathing cells to evaluate functional recovery after peripheral nerve injury.

    PubMed

    Guerout, Nicolas; Paviot, Alexandre; Bon-Mardion, Nicolas; Honoré, Axel; Obongo, Rais; Duclos, Célia; Marie, Jean-Paul

    2014-02-23

    Olfactory ensheathing cells (OECs) are neural crest cells which allow growth and regrowth of the primary olfactory neurons. Indeed, the primary olfactory system is characterized by its ability to give rise to new neurons even in adult animals. This particular ability is partly due to the presence of OECs which create a favorable microenvironment for neurogenesis. This property of OECs has been used for cellular transplantation such as in spinal cord injury models. Although the peripheral nervous system has a greater capacity to regenerate after nerve injury than the central nervous system, complete sections induce misrouting during axonal regrowth in particular after facial of laryngeal nerve transection. Specifically, full sectioning of the recurrent laryngeal nerve (RLN) induces aberrant axonal regrowth resulting in synkinesis of the vocal cords. In this specific model, we showed that OECs transplantation efficiently increases axonal regrowth. OECs are constituted of several subpopulations present in both the olfactory mucosa (OM-OECs) and the olfactory bulbs (OB-OECs). We present here a model of cellular transplantation based on the use of these different subpopulations of OECs in a RLN injury model. Using this paradigm, primary cultures of OB-OECs and OM-OECs were transplanted in Matrigel after section and anastomosis of the RLN. Two months after surgery, we evaluated transplanted animals by complementary analyses based on videolaryngoscopy, electromyography (EMG), and histological studies. First, videolaryngoscopy allowed us to evaluate laryngeal functions, in particular muscular cocontractions phenomena. Then, EMG analyses demonstrated richness and synchronization of muscular activities. Finally, histological studies based on toluidine blue staining allowed the quantification of the number and profile of myelinated fibers. All together, we describe here how to isolate, culture, identify and transplant OECs from OM and OB after RLN section-anastomosis and how

  19. Collateral development and spinal motor reorganization after nerve injury and repair.

    PubMed

    Yu, Youlai; Zhang, Peixun; Han, Na; Kou, Yuhui; Yin, Xiaofeng; Jiang, Baoguo

    2016-01-01

    Functional recovery is often unsatisfactory after severe extended nerve defects or proximal nerve trunks injuries repaired by traditional repair methods, as the long regeneration distance for the regenerated axons to reinnervate their original target end-organs. The proximal nerve stump can regenerate with many collaterals that reinnervate the distal stump after peripheral nerve injury, it may be possible to use nearby fewer nerve fibers to repair more nerve fibers at the distal end to shorten the regenerating distance. In this study, the proximal peroneal nerve was used to repair both the distal peroneal and tibial nerve. The number and location of motor neurons in spinal cord as well as functional and morphological recovery were assessed at 2 months, 4 months and 8 months after nerve repair, respectively. Projections from the intact peroneal and tibial nerves were also studied in normal animals. The changes of motor neurons were assessed using the retrograde neurotracers FG and DiI to backlabel motor neurons that regenerate axons into two different pathways. To evaluate the functional recovery, the muscle forces and sciatic function index were examined. The muscles and myelinated axons were assessed using electrophysiology and histology. The results showed that all labeled motor neurons after nerve repair were always confined within the normal peroneal nerve pool and nearly all the distribution of motor neurons labeled via distal different nerves was disorganized as compared to normal group. However, there was a significant decline in the number of double labeled motor neurons and an obvious improvement with respect to the functional and morphological recovery between 2 and 8 months. In addition, the tibial/peroneal motor neuron number ratio at different times was 2.11±0.05, 2.13±0.08, 2.09±0.12, respectively, and was close to normal group (2.21±0.09). Quantitative analysis showed no significant morphological differences between myelinated nerve fibers

  20. Collateral development and spinal motor reorganization after nerve injury and repair

    PubMed Central

    Yu, Youlai; Zhang, Peixun; Han, Na; Kou, Yuhui; Yin, Xiaofeng; Jiang, Baoguo

    2016-01-01

    Functional recovery is often unsatisfactory after severe extended nerve defects or proximal nerve trunks injuries repaired by traditional repair methods, as the long regeneration distance for the regenerated axons to reinnervate their original target end-organs. The proximal nerve stump can regenerate with many collaterals that reinnervate the distal stump after peripheral nerve injury, it may be possible to use nearby fewer nerve fibers to repair more nerve fibers at the distal end to shorten the regenerating distance. In this study, the proximal peroneal nerve was used to repair both the distal peroneal and tibial nerve. The number and location of motor neurons in spinal cord as well as functional and morphological recovery were assessed at 2 months, 4 months and 8 months after nerve repair, respectively. Projections from the intact peroneal and tibial nerves were also studied in normal animals. The changes of motor neurons were assessed using the retrograde neurotracers FG and DiI to backlabel motor neurons that regenerate axons into two different pathways. To evaluate the functional recovery, the muscle forces and sciatic function index were examined. The muscles and myelinated axons were assessed using electrophysiology and histology. The results showed that all labeled motor neurons after nerve repair were always confined within the normal peroneal nerve pool and nearly all the distribution of motor neurons labeled via distal different nerves was disorganized as compared to normal group. However, there was a significant decline in the number of double labeled motor neurons and an obvious improvement with respect to the functional and morphological recovery between 2 and 8 months. In addition, the tibial/peroneal motor neuron number ratio at different times was 2.11±0.05, 2.13±0.08, 2.09±0.12, respectively, and was close to normal group (2.21±0.09). Quantitative analysis showed no significant morphological differences between myelinated nerve fibers

  1. Differentiation of Pre- and Postganglionic Nerve Injury Using MRI of the Spinal Cord

    PubMed Central

    Novikova, Liudmila N.; Orädd, Greger; Wiberg, Mikael; Novikov, Lev N.

    2016-01-01

    Brachial plexus injury (BPI) is a devastating type of nerve injury, potentially causing loss of motor and sensory function. Principally, BPI is either categorized as preganglionic or postganglionic, with the early establishment of injury level being crucial for choosing the correct treatment strategy. Despite diagnostic advances, the need for a reliable, non-invasive method for establishing the injury level remains. We studied the usefulness of in vivo magnetic resonance imaging (MRI) of the spinal cord for determination of injury level. The findings were related to neuronal and glial changes. Rats underwent unilateral L4 & L5 ventral roots avulsion or sciatic nerve axotomy. The injuries served as models for pre- and postganglionic BPI, respectively. MRI of the L4/L5 spinal cord segments 4 weeks after avulsion showed ventral horn (VH) shrinkage on the injured side compared to the uninjured side. Axotomy induced no change in the VH size on MRI. Following avulsion, histological sections of L4/L5 revealed shrinkage in the VH grey matter area occupied by NeuN-positive neurons, loss of microtubular-associated protein-2 positive dendritic branches (MAP2), pan-neurofilament positive axons (PanNF), synaptophysin-positive synapses (SYN) and increase in immunoreactivity for the microglial OX42 and astroglial GFAP markers. Axotomy induced no changes in NeuN-reactivity, modest decrease of MAP2 immunoreactivity, no changes in SYN and PanNF labelling, and a modest increase in OX42 and SYN labeling. Histological and radiological findings were congruent when assessing changes after axotomy, while MRI somewhat underestimated the shrinkage. This study indicates a potential diagnostic value of structural spinal cord MRI following BPI. PMID:28036395

  2. Heritability of nociception IV: neuropathic pain assays are genetically distinct across methods of peripheral nerve injury.

    PubMed

    Young, Erin E; Costigan, Michael; Herbert, Teri A; Lariviere, William R

    2014-05-01

    Prior genetic correlation analysis of 22 heritable behavioral measures of nociception and hypersensitivity in the mouse identified 5 genetically distinct pain types. In the present study, we reanalyzed that dataset and included the results of an additional 9 assays of nociception and hypersensitivity, with the following goals: to replicate the previously identified 5 pain types; to test whether any of the newly added pain assays represent novel genetically distinct pain types; and to test the level of genetic relatedness among 9 commonly used neuropathic pain assays. Multivariate analysis of pairwise correlations between assays shows that the newly added zymosan-induced heat hypersensitivity assay does not conform to the 2 previously identified groups of heat hypersensitivity assays and cyclophosphamide-induced cystitis, the first organ-specific visceral pain model examined, is genetically distinct from other inflammatory assays. The 4 included mechanical hypersensitivity assays are genetically distinct and do not comprise a single pain type as previously reported. Among the 9 neuropathic pain assays including autotomy, chemotherapy, nerve ligation and spared nerve injury assays, at least 4 genetically distinct types of neuropathic sensory abnormalities were identified, corresponding to differences in nerve injury method. In addition, 2 itch assays and Comt genotype were compared to the expanded set of nociception and hypersensitivity assays. Comt genotype was strongly related only to spontaneous inflammatory nociception assays. These results indicate the priority for continued investigation of genetic mechanisms in several assays newly identified to represent genetically distinct pain types.

  3. Heritability of Nociception IV: Neuropathic pain assays are genetically distinct across methods of peripheral nerve injury

    PubMed Central

    Young, Erin E.; Costigan, Michael; Herbert, Teri A.; Lariviere, William R.

    2013-01-01

    Prior genetic correlation analysis of 22 heritable behavioral measures of nociception and hypersensitivity in the mouse identified five genetically distinct pain types. In the present study, we reanalyzed that dataset and included the results of an additional nine assays of nociception and hypersensitivity to: 1) replicate the previously identified five pain types; 2) test whether any of the newly added pain assays represent novel genetically distinct pain types; 3) test the level of genetic relatedness among nine commonly employed neuropathic pain assays. Multivariate analysis of pairwise correlations between assays shows that the newly added zymosan-induced heat hypersensitivity assay does not conform to the two previously identified groups of heat hypersensitivity assays and cyclophosphamide-induced cystitis, the first organ-specific visceral pain model examined, is genetically distinct from other inflammatory assays. The four included mechanical hypersensitivity assays are genetically distinct, and do not comprise a single pain type as previously reported. Among the nine neuropathic pain assays including autotomy, chemotherapy, nerve ligation and spared nerve injury assays, at least four genetically distinct types of neuropathic sensory abnormalities were identified, corresponding to differences in nerve injury method. In addition, two itch assays and Comt genotype were compared to the expanded set of nociception and hypersensitivity assays. Comt genotype was strongly related only to spontaneous inflammatory nociception assays. These results indicate the priority for continued investigation of genetic mechanisms in several assays newly identified to represent genetically distinct pain types. PMID:24071598

  4. Chronic nerve injury-induced Mas receptor expression in dorsal root ganglion neurons alleviates neuropathic pain.

    PubMed

    Zhao, Yuanting; Qin, Yue; Liu, Tuanjiang; Hao, Dingjun

    2015-12-01

    Neuropathic pain, which is characterized by hyperalgesia, allodynia and spontaneous pain, is one of the most painful symptoms that can be experienced in the clinic. It often occurs as a result of injury to the peripheral nerves, dorsal root ganglion (DRG), spinal cord or brain. The renin-angiotensin system (RAS) plays an important role in nociception. As an essential component of the RAS, the angiotensin (Ang)-(1-7)/Mas axis may be involved in antinociception. The aim of the present study was to explore the expression pattern of Mas in DRG neurons following chronic nerve injury and examine the effects of Mas inhibition and activation on neuropathic pain in a chronic constriction injury (CCI) rat model. The results showed, that compared with the sham group, CCI caused a time-dependent induction of Mas expression at both the mRNA and the protein levels in DRG neurons. Consistent with the results, isolated DRG neurons showed a time-dependent increase in Ang-(1-7) binding on the cell membrane following the CCI surgery, but not the sham surgery. Compared with the sham control groups, CCI significantly decreased the paw withdrawal latency and threshold, and this was markedly improved and aggravated by intrathecal injection of the selective Mas agonist Ang-(1-7) and the selective Mas inhibitor D-Pro7-Ang-(1-7), respectively. In conclusion, this study has provided the first evidence, to the best of our knowledge, that the Mas expression in DRG neurons is time-dependently induced by chronic nerve injury and that the intrathecal activation and inhibition of Mas can improve and aggravate CCI-induced neuropathic pain, respectively. This study has provided novel insights into the pathophysiological process of neuropathic pain and suggests that the Ang-(1-7)/Mas axis could be an effective therapeutic target for neuropathic pain, warranting further study.

  5. Reconstruction of posterior interosseous nerve injury following biceps tendon repair: case report and cadaveric study.

    PubMed

    Mokhtee, David B; Brown, Justin M; Mackinnon, Susan E; Tung, Thomas H

    2009-06-01

    Surgical repair of distal biceps tendon rupture is a technically challenging procedure that has the potential for devastating and permanently disabling complications. We report two cases of posterior interosseous nerve (PIN) injury following successful biceps tendon repair utilizing both the single-incision and two-incision approaches. We also describe our technique of posterior interosseous nerve repair using a medial antebrachial cutaneous nerve graft (MABC) and a new approach to the terminal branches of the posterior interosseous nerve that makes this reconstruction possible. Finally, we advocate consideration for identification of the posterior interosseous nerve prior to reattachment of the biceps tendon to the radial tuberosity.

  6. NERVE GROWTH FACTOR MAINTAINS POTASSIUM CONDUCTANCE AFTER NERVE INJURY IN ADULT CUTANEOUS AFFERENT DORSAL ROOT GANGLION NEURONS

    PubMed Central

    EVERILL, B.; KOCSIS, J. D.

    2008-01-01

    Whole-cell patch-clamp techniques were used to study the effects of nerve growth factor on voltage-dependent potassium conductance in normal and axotomized identified large cutaneous afferent dorsal root ganglion neurons (48–50 μm diameter) many of which probably give rise to myelinated Aβ fibers. K-currents were isolated by blocking Na- and Ca-currents with appropriate ion replacement and channel blockers. Separation of current components was achieved on the basis of response to variation in conditioning voltage. Cutaneous afferents were labeled by the retrograde marker hydroxy-stilbamide (FluoroGold) which was injected into the skin of the foot. The sciatic nerve was either ligated or crushed with fine forceps five to seven days later. Neurons were dissociated 14–17 days after injury. The cut ends of the sciatic nerves were positioned into polyethylene tubes, which were connected to mini-osmotic pumps filled with either nerve growth factor or sterile saline. Control neurons displayed a prominent sustained K-current and the transient potassium currents “A” and “D”. Nerve ligation, which blocks target reconnection resulted in near 50% reduction of total outward current; isolated sustained K-current and transient A-current were reduced by a comparable amount. Nerve crush, which allows regeneration to peripheral targets and exposure of the regenerating nerve to the distal nerve segment, resulted in a small reduction in sustained K-current but no reduction in transient A-current compared to controls. Levels of transient A-current and sustained K-current were maintained at control levels after nerve growth factor treatment. These results indicate that the large reduction in transient A-current, and in sustained K-current, observed in cutaneous afferent cell bodies after nerve ligation is prevented by application of nerve growth factor. PMID:11008179

  7. Novel TRPM8 antagonist attenuates cold hypersensitivity after peripheral nerve injury in rats.

    PubMed

    Patel, Ryan; Gonçalves, Leonor; Newman, Robert; Jiang, Feng Li; Goldby, Anne; Reeve, Jennifer; Hendrick, Alan; Teall, Martin; Hannah, Duncan; Almond, Sarah; Brice, Nicola; Dickenson, Anthony H

    2014-04-01

    Abnormal cold sensitivity is a common feature of a range of neuropathies. In the murine somatosensory system, multiple aspects of cold sensitivity are dependent on TRPM8, both short term and in response to peripheral nerve injury. The specialized nature of cold-sensitive afferents and the restricted expression of TRPM8 render it an attractive target for the treatment of cold hypersensitivity. This current study examines the effect of a novel TRPM8 antagonist (M8-An) in naive and spinal nerve-ligated rats through behavioral and in vivo electrophysiological approaches. In vitro, M8-An inhibited icilin-evoked Ca(2+) currents in HEK293 cells stably expressing human TRPM8 with an IC(50) of 10.9 nM. In vivo, systemic M8-An transiently decreased core body temperature. Deep dorsal horn recordings were made in vivo from neurons innervating the hind paw. M8-An inhibited neuronal responses to innocuous and noxious cooling of the receptive field in spinal nerve-ligated rats but not in naive rats. No effect on neuronal responses to mechanical and heat stimulation was observed. In addition, M8-An also attenuated behavioral responses to cold but not mechanical stimulation after nerve ligation without affecting the uninjured contralateral response. The data presented here support a contribution of TRPM8 to the pathophysiology of cold hypersensitivity in this model and highlight the potential of the pharmacological block of TRPM8 in alleviating the associated symptoms.

  8. Autotomy following nerve injury: genetic factors in the development of chronic pain.

    PubMed

    Inbal, R; Devor, M; Tuchendler, O; Lieblich, I

    1980-12-01

    Several weeks following transection and ligation of the hind limb nerves in rats, the animals often attack their anaesthetic foot ("autotomy"). This behaviour is thought to reflect a sensory pathology analogous to anaesthesia dolorosa. We report here that the extent of autotomy varies greatly in genetically different populations of rats. Rats of one population, LC2, showed high autotomy levels; rats of another, LC1, showed very low autotomy levels. The main genetic difference between these two populations is the presence of inbred Lewis rat stock in the LC1 population. Pure Lewis strain rats proved to have very low autotomy levels. Thus, constitutional differences between different rat populations effect the extent of autotomy. These data may bear on the fact that after seemingly identical nerve injuries, some humans develop chronic pain syndromes and others do not. Our rat strains may provide a model for investigating the physiological basis of constitutional susceptibility to chronic pain.

  9. Role of neurotrophin in the taste system following gustatory nerve injury.

    PubMed

    Meng, Lingbin; Jiang, Xin; Ji, Rui

    2015-06-01

    Taste system is a perfect system to study degeneration and regeneration after nerve injury because the taste system is highly plastic and the regeneration is robust. Besides, degeneration and regeneration can be easily measured since taste buds arise in discrete locations, and nerves that innervate them can be accurately quantified. Neurotrophins are a family of proteins that regulate neural survival, function, and plasticity after nerve injury. Recent studies have shown that neurotrophins play an important role in the developmental and mature taste system, indicating neurtrophin might also regulate taste system following gustatory nerve injury. This review will summarize how taste system degenerates and regenerates after gustatory nerve cut and conclude potential roles of neurotrophin in regulating the process.

  10. Protective effect of intraoperative nerve monitoring against recurrent laryngeal nerve injury during re-exploration of the thyroid

    PubMed Central

    2013-01-01

    Background Previous thyroid or parathyroid surgery induces scarring or distorts anatomy, and increases the risk of recurrent laryngeal nerve (RLN) injury for a reoperation. The benefit of intraoperative nerve monitoring (IONM) for re-exploration (a second nerve exploration) and reoperation has not been established. Methods Two hundred and ten patients were given a thyroid or parathyroid reoperation at our hospital between 2001 and 2010. Using IONM, we re-explored 56 patients who had been operated on before June 2007. The injury rate in these patients was compared with that of the 15 patients re-explored without IONM between 2001 and 2006. Results Of the 70 nerves that were re-explored using IONM, only one was incidentally injured, significantly fewer than the three injured in the 15 nerves re-explored without using IONM (1.43% vs. 20%, P = 0.0164). Conclusions IONM helped prevent RLN damage when re-exploring nerves during thyroid and parathyroid surgery. We recommend the routine use of IONM in thyroid and parathyroid reoperations. PMID:23618223

  11. Topiramate promotes neurite outgrowth and recovery of function after nerve injury.

    PubMed

    Smith-Swintosky, V L; Zhao, B; Shank, R P; Plata-Salaman, C R

    2001-04-17

    Topiramate is a structurally novel neurotherapeutic agent with a unique combination of pharmacological properties and currently is available in most world markets for treating several seizure disorders. Because its pharmacological profile was suggestive of possible activity as a neuroprotectant, topiramate was evaluated and found to be active in several animal models of stroke or neuropathic pain. This prompted an evaluation of topiramate as a possible neurotrophic agent. In this study, topiramate enhanced the recovery of facial nerve function after injury when administered orally at therapeutically relevant doses, and significantly increased neurite outgrowth in cell cultures derived from fetal rat cortical and hippocampal tissues.

  12. Traumatic peripheral nerve injuries in children: epidemiology and socioeconomics.

    PubMed

    Missios, Symeon; Bekelis, Kimon; Spinner, Robert J

    2014-12-01

    Despite the negative effects of peripheral nerve injuries (PNIs) on long-term population health, their true prevalence among pediatric trauma patients is under debate. The authors investigated the prevalence of PNIs among children involved in trauma and investigated associations between PNIs and several patient characteristics. The authors performed a retrospective cohort study of pediatric trauma patients who were registered in the National Trauma Data Bank from 2009 through 2011 and who fulfilled the study inclusion criteria. They used regression techniques to investigate the association of demographic and socioeconomic factors with the rate of PNIs among these patients. Of the 245,470 study patients, 50,211 were involved in motor vehicle crashes, 3380 in motorcycle crashes, 20,491 in bicycle crashes, 18,262 in pedestrian accidents, 26,294 in other crashes (mainly involving all-terrain vehicles and snowmobiles), and 126,832 in falls. The respective prevalence of PNIs was 0.66% for motor vehicle crashes, 1% for motorcycle crashes, 0.38% for bicycle crashes, 0.42% for pedestrian accidents, 0.79% for other crashes, and 0.52% for falls. Multivariate logistic regression analysis demonstrated that the following were associated with an increased incidence of PNIs: increased patient age (OR 1.10, 95% CI 1.01-1.20), higher Injury Severity Score (OR 1.10, 95% CI 1.01-1.20), elevated systolic blood pressure at arrival at the emergency room (OR 1.10, 95% CI 1.01-1.20), and increased number of trauma surgeons at the institution (OR 1.10, 95% CI 1.01-1.20). The following were associated with lower incidence of PNIs: female sex (OR 0.94, 95% CI 0.87-1.02), rural hospitals (OR 0.94, 95% CI 0.87-1.02), and urban nonteaching hospitals (OR 0.94, 95% CI 0.87-1.02). PNIs are more common than previously identified for the pediatric trauma population. These injuries are associated with older age and increased severity of the overall injury.

  13. Chapter 23: Manual stimulation of target muscles has different impact on functional recovery after injury of pure motor or mixed nerves.

    PubMed

    Sinis, Nektarios; Manoli, Thodora; Werdin, Frank; Kraus, Armin; Schaller, Hans E; Guntinas-Lichius, Orlando; Grosheva, Maria; Irintchev, Andrey; Skouras, Emanouil; Dunlop, Sarah; Angelov, Doychin N

    2009-01-01

    Direct coaptation and interpositional nerve grafting (IPNG) of an injured peripheral nerve is still associated with poor functional recovery. Main reasons for that are thought to be an extensive collateral axonal branching at the site of transection and the polyinnervation of motor endplates due to terminal axonal and intramuscular sprouting. Moreover, severe changes occurring within the muscle after long-term denervation, like loss of muscle bulk and circulation as well as progressive fibrosis, have a negative effect on the quality of functional recovery after reinnervation. We have recently shown that manual stimulation (MS) of paralyzed vibrissal muscles in rat promotes full recovery after facial nerve coaptation. Furthermore, MS improved functional recovery after hypoglossal nerve repair, hypoglossal-facial IPNG of the facial nerve in rat. In contrary, MS did not improve recovery after injury of the median nerve in rat, which is however a mixed peripheral nerve comparing to the facial nerve. It is speculated that manually stimulated recovery of motor function requires an intact sensory input, which is affected in case of mixed peripheral nerves but not in case of pure motor nerves. In this article, we summarize our results of MS in several peripheral nerve injury models in order to illustrate the application potential of this method and to give insights into further investigations on that field.

  14. Biodegradable fibrin conduit promotes long-term regeneration after peripheral nerve injury in adult rats.

    PubMed

    Pettersson, Jonas; Kalbermatten, Daniel; McGrath, Aleksandra; Novikova, Liudmila N

    2010-11-01

    Peripheral nerve injuries are often associated with loss of nerve tissue and require autologous nerve grafts to provide a physical substrate for axonal growth. Biosynthetic neural conduits could be an alternative treatment strategy in such injuries. The present study investigates the long-term effects of a tubular fibrin conduit on neuronal regeneration, axonal sprouting and recovery of muscle weight following peripheral nerve injury and repair in adult rats. Sciatic axotomy was performed proximally in the thigh to create a 10-mm gap between the nerve stumps. The injury gap was bridged by using a 14-mm-long fibrin glue conduit, entubulating 2 mm of the nerve stump at each end. A reversed autologous nerve graft was used as a control. The regenerative response from sensory and motor neurones was evaluated following retrograde labelling with Fast Blue fluorescent tracer. In control experiments, at 16 weeks following peripheral nerve grafting, 5184 (±574 standard error of mean (SEM)) sensory dorsal root ganglion neurones and 1001 (±37 SEM) spinal motor neurones regenerated across the distal nerve-graft interface. The fibrin conduit promoted regeneration of 60% of sensory neurones and 52% of motor neurones when compared to the control group. The total number of myelinated axons in the distal nerve stump in the fibrin-conduit group reached 86% of the control and the weight of gastrocnemius and soleus muscles recovered to 82% and 89% of the controls, respectively. The present results suggest that a tubular fibrin conduit can be used to promote neuronal regeneration following peripheral nerve injury. Copyright © 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Transforming Growth Factor-β Promotes Axonal Regeneration After Chronic Nerve Injury.

    PubMed

    Sulaiman, Wale A R

    2016-04-01

    When spinal cord injury (SCI) occurs, injured cells must survive and regenerate to close gaps caused by the injury and to create functional motor units. After peripheral nerve injury, Wallerian degeneration in the distal nerve stump creates a neurotrophic and growth-supportive environment for injured neurons and axons via Schwann cells and secreted cytokines/neurotrophins. In both SCI and peripheral nerve injury, injured motor and sensory neurons must regenerate axons, eventually reaching and reinnervating target tissue (SDC Figure 1, http://links.lww.com/BRS/B116). This process is often unsuccessful after SCI, and the highly complex anatomy of branching axons and nerves in the peripheral nervous system leads to slow recovery of function, even with careful and appropriate techniques.

  16. Factors predicting sensory and motor recovery after the repair of upper limb peripheral nerve injuries

    PubMed Central

    He, Bo; Zhu, Zhaowei; Zhu, Qingtang; Zhou, Xiang; Zheng, Canbin; Li, Pengliang; Zhu, Shuang; Liu, Xiaolin; Zhu, Jiakai

    2014-01-01

    OBJECTIVE: To investigate the factors associated with sensory and motor recovery after the repair of upper limb peripheral nerve injuries. DATA SOURCES: The online PubMed database was searched for English articles describing outcomes after the repair of median, ulnar, radial, and digital nerve injuries in humans with a publication date between 1 January 1990 and 16 February 2011. STUDY SELECTION: The following types of article were selected: (1) clinical trials describing the repair of median, ulnar, radial, and digital nerve injuries published in English; and (2) studies that reported sufficient patient information, including age, mechanism of injury, nerve injured, injury location, defect length, repair time, repair method, and repair materials. SPSS 13.0 software was used to perform univariate and multivariate logistic regression analyses and to investigate the patient and intervention factors associated with outcomes. MAIN OUTCOME MEASURES: Sensory function was assessed using the Mackinnon-Dellon scale and motor function was assessed using the manual muscle test. Satisfactory motor recovery was defined as grade M4 or M5, and satisfactory sensory recovery was defined as grade S3+ or S4. RESULTS: Seventy-one articles were included in this study. Univariate and multivariate logistic regression analyses showed that repair time, repair materials, and nerve injured were independent predictors of outcome after the repair of nerve injuries (P < 0.05), and that the nerve injured was the main factor affecting the rate of good to excellent recovery. CONCLUSION: Predictors of outcome after the repair of peripheral nerve injuries include age, gender, repair time, repair materials, nerve injured, defect length, and duration of follow-up. PMID:25206870

  17. Convergent nociceptive input to spinal dorsal horn neurons after peripheral nerve injury.

    PubMed

    Terayama, Ryuji; Kishimoto, Noriko; Yamamoto, Yuya; Maruhama, Kotaro; Tsuchiya, Hiroki; Mizutani, Masahide; Iida, Seiji; Sugimoto, Tomosada

    2015-03-01

    The number of c-Fos protein-like immunoreactive (c-Fos-IR) neurons in the spinal dorsal horn evoked by noxious stimulation was previously shown to be increased following peripheral nerve injury, and this increase was proposed to reflect the neuropathic pain state. The aim of this study was to investigate whether anomalous convergent primary afferent input to spinal dorsal horn neurons contributed to nerve injury-induced c-Fos hyperinducibility. Double immunofluorescence labeling for c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) was performed to detect convergent synaptic input from different branches of the sciatic nerve after injury to the tibial nerve. c-Fos expression and the phosphorylation of ERK were induced by noxious heat stimulation of the hindpaw and also by electrical stimulation (ES) of the injured tibial nerve, respectively. The number of c-Fos-IR neurons was significantly decreased 3 days after the injury. However, the number of c-Fos-IR neurons returned to the control level 14 days after the injury. P-ERK immunoreactive (p-ERK-IR) neurons were induced in the central terminal field of the tibial nerve by ES of the tibial nerve. The topographic distribution pattern and number of such p-ERK-IR neurons remained unchanged after the nerve injury. The time course of changes in the number of double-labeled neurons, that presumably received convergent primary afferent input, showed a pattern similar to that of c-Fos-IR neurons after the injury. These results indicate that convergent primary nociceptive input through neighboring intact nerves may contribute to c-Fos hyperinducibility in the spinal dorsal horn.

  18. Association of Electroencephalography (EEG) Power Spectra with Corneal Nerve Fiber Injury in Retinoblastoma Patients.

    PubMed

    Liu, Jianliang; Sun, Juanjuan; Diao, Yumei; Deng, Aijun

    2016-09-04

    BACKGROUND In our clinical experience we discovered that EEG band power may be correlated with corneal nerve injury in retinoblastoma patients. This study aimed to investigate biomarkers obtained from electroencephalography (EEG) recordings to reflect corneal nerve injury in retinoblastoma patients. MATERIAL AND METHODS Our study included 20 retinoblastoma patients treated at the Department of Ophthalmology, Affiliated Hospital of Weifang Medical University between 2010 and 2014. Twenty normal individuals were included in the control group. EEG activity was recorded continuously with 32 electrodes using standard EEG electrode placement for detecting EEG power. A cornea confocal microscope was used to examine corneal nerve injury in retinoblastoma patients and normal individuals. Spearman rank correlation analysis was used to analyze the correlation between corneal nerve injury and EEG power changes. The sensitivity and specificity of changed EEG power in diagnosis of corneal nerve injury were also analyzed. RESULTS The predominantly slow EEG oscillations changed gradually into faster waves in retinoblastoma patients. The EEG pattern in retinoblastoma patients was characterized by a distinct increase of delta (P<0.01) and significant decrease of theta power P<0.05). Corneal nerves were damaged in corneas of retinoblastoma patients. Corneal nerve injury was positively correlated with delta EEG spectra power and negatively correlated with theta EEG spectra power. The diagnostic sensitivity and specificity by compounding in the series were 60% and 67%, respectively. CONCLUSIONS Changes in delta and theta of EEG appear to be associated with occurrence of corneal nerve injury. Useful information can be provided for evaluating corneal nerve damage in retinoblastoma patients through analyzing EEG power bands.

  19. A single trial of transcutaneous electrical nerve stimulation reduces chronic neuropathic pain following median nerve injury in rats.

    PubMed

    Cho, Hwi-Young; Suh, Hye Rim; Han, Hee Chul

    2014-01-01

    Neuropathic pain is a devastating chronic condition and is often induced in the upper limb following nerve injury or damage. Various drugs or surgical methods have been used to manage neuropathic pain; however, these are frequently accompanied by undesirable side effects. Transcutaneous electrical nerve stimulation (TENS) is a safe and non-invasive intervention that has been used to alleviate different types of pain in the clinic, but it is unclear whether TENS can improve chronic neuropathic pain in the upper limb. Thus, the aim of this study was to investigate the effects of a single trial of TENS on chronic neuropathic pain following median nerve injury. Male rats weighing 200-250 g received median nerve-ligation of the right forearm, while the control group received only skin-incision without nerve-ligation. Neuropathic pain-behaviors, including mechanical, cold, and thermal allodynia, were measured for 4 weeks. After the development of chronic neuropathic pain, TENS (100 Hz, 200 µs, sub-motor threshold) or placebo-TENS (sham stimulation) was applied for 20 min to the ipsilateral or contralateral side. Neuropathic pain behavior was assessed before and after intervention. Median nerve-ligation significantly induced and maintained neuropathic pain in the ipsilateral side. TENS application to the ipsilateral side effectively attenuated the three forms of chronic neuropathic pain in the ipsilateral side compared to sham-treated rats (peripheral and central effects), while TENS application to contralateral side only reduced mechanical allodynia in the ipsilateral side (central effect). Our findings demonstrate that TENS can alleviate chronic neuropathic pain following median nerve injury.

  20. Strain and stress variations in the human amniotic membrane and fresh corpse autologous sciatic nerve anastomosis in a model of sciatic nerve injury☆

    PubMed Central

    Peng, Chuangang; Zhang, Qiao; Yang, Qi; Zhu, Qingsan

    2012-01-01

    A 10-mm long sciatic nerve injury model was established in fresh normal Chinese patient cadavers. Amniotic membrane was harvested from healthy maternal placentas and was prepared into multilayered, coiled, tubular specimens. Sciatic nerve injury models were respectively anastomosed using the autologous cadaveric sciatic nerve and human amniotic membrane. Tensile test results showed that maximal loading, maximal displacement, maximal stress, and maximal strain of sciatic nerve injury models anastomosed with human amniotic membrane were greater than those in the autologous nerve anastomosis group. The strain-stress curves of the human amniotic membrane and sciatic nerves indicated exponential change at the first phase, which became elastic deformation curves at the second and third phases, and displayed plastic deformation curves at the fourth phase, at which point the specimens lost their bearing capacity. Experimental findings suggested that human amniotic membranes and autologous sciatic nerves exhibit similar stress-strain curves, good elastic properties, and certain strain and stress capabilities in anastomosis of the injured sciatic nerve. PMID:25624801

  1. In vitro models for peripheral nerve regeneration.

    PubMed

    Geuna, S; Raimondo, S; Fregnan, F; Haastert-Talini, K; Grothe, C

    2016-02-01

    The study of peripheral nerve repair and regeneration is particularly relevant in the light of the high clinical incidence of nerve lesions. However, the clinical outcome after nerve lesions is often far from satisfactory and the functional recovery is almost never complete. Therefore, a number of therapeutic approaches are being investigated, ranging from local delivery of trophic factors and other molecules to bioactive biomaterials and complex nerve prostheses. Translation of the new therapeutic approaches to the patient always requires a final pre-clinical step using in vivo animal models. The need to limit as much as possible animal use in biomedical research, however, makes the preliminary use of in vitro models mandatory from an ethical point of view. In this article, the different types of in vitro models available today for the study of peripheral nerve regeneration have been ranked by adopting a three-step stair model based on their increasing ethical impact: (i) cell line-based models, which raise no ethical concern; (ii) primary cell-based models, which have low ethical impact as animal use, although necessary, is limited; and (iii) organotypic ex vivo-based models, which raise moderate ethical concerns as the use of laboratory animals is required although with much lower impact on animal wellbeing in comparison to in vivo models of peripheral nerve regeneration. This article aims to help researchers in selecting the best experimental approach for their scientific goals driven by the 'Three Rs' (3Rs) rules (Replacement, Reduction or Refinement of animal use in research) for scientific research.

  2. Study of the effects of semiconductor laser irradiation on peripheral nerve injury

    NASA Astrophysics Data System (ADS)

    Xiong, G. X.; Li, P.

    2012-11-01

    In order to study to what extent diode laser irradiation effects peripheral nerve injury, the experimental research was made on rabbits. Experimental results show that low-energy semiconductor laser can promote axonal regeneration and improve nervous function. It is also found that simultaneous exposure of the injured peripheral nerve and corresponding spinal segments to laser irradiation may achieve the most significant results.

  3. Cerebral changes after injury to the median nerve: a long-term follow up.

    PubMed

    Rosén, Birgitta; Chemnitz, Anette; Weibull, Andreas; Andersson, Gert; Dahlin, Lars B; Björkman, Anders

    2012-04-01

    Injury to the peripheral nerves in the upper extremity results in changes in the nerve, and at multiple sites throughout the central nervous system (CNS). We studied the long-term effects of an injury to the median nerve in the forearm with a focus on changes in the CNS. Four patients with isolated injuries of the median nerve in their 20s were examined a mean of 14 years after the injury. Cortical activation was monitored during tactile stimulation of the fingers of the injured and healthy hand using functional magnetic resonance imaging at 3 Tesla. The neurophysiological state and clinical outcome were also examined. Activation in the primary somatosensory cortex was substantially larger during tactile stimulation of the injured hand than with stimulation of the uninjured hand. We also saw a redistribution of hemispheric dominance. Stimulation of the injured median nerve resulted in a substantially increased dominance of the contralateral hemisphere. However, stimulation of the healthy ulnar nerve resulted in a decreased dominance of the contralateral hemisphere. Neurophysiology showed low sensory amplitudes, velocity, and increased motor latency in the injured nerve. Clinically there were abnormalities predominately in the sensory domain. However, there was an overall improved mean result compared with a five year follow-up in the same subjects. The cortical changes could be the result of cortical reorganisation after a changed afferent signal pattern from the injured nerve. Even though the clinical function improved over time it did not return to normal, and neither did the cortical response.

  4. Iatrogenic facial nerve injuries during chronic otitis media surgery: a multicentre retrospective study.

    PubMed

    Linder, T; Mulazimoglu, S; El Hadi, T; Darrouzet, V; Ayache, D; Somers, T; Schmerber, S; Vincent, C; Mondain, M; Lescanne, E; Bonnard, D

    2017-06-01

    To give an insight into why, when and where iatrogenic facial nerve (FN) injuries may occur and to explain how to deal with them in an emergency setting. Multicentre retrospective study in eight tertiary referral hospitals over 17 years. Twenty patients with partial or total FN injury during surgery for chronic otitis media (COM) were revised. Indication and type of surgery, experience of the surgeon, intra- and postoperative findings, value of CT scanning, patient management and final FN outcome were recorded. In 12 cases, the nerve was completely transected, but the surgeon was unaware in 11 cases. A minority of cases occurred in academic teaching hospitals. Tympanic segment, second genu and proximal mastoid segments were the sites involved during injury. The FN was not deliberately identified in 18 patients at the time of injury, and nerve monitoring was only applied in one patient. Before revision surgery, CT scanning correctly identified the lesion site in 11 of 12 cases and depicted additional lesions such as damage to the lateral semicircular canal. A greater auricular nerve graft was interposed in 10 cases of total transection and in one partially lesioned nerve: seven of them resulted in an HB III functional outcome. In two of the transected nerves, rerouting and direct end-to-end anastomosis was applied. A simple FN decompression was used in four cases of superficially traumatised nerves. We suggest checklists for preoperative, intraoperative and postoperative management to prevent and treat iatrogenic FN injury during COM surgery. © 2016 John Wiley & Sons Ltd.

  5. Disability following combat-sustained nerve injury of the upper limb.

    PubMed

    Rivera, J C; Glebus, G P; Cho, M S

    2014-02-01

    Injuries to the limb are the most frequent cause of permanent disability following combat wounds. We reviewed the medical records of 450 soldiers to determine the type of upper limb nerve injuries sustained, the rate of remaining motor and sensory deficits at final follow-up, and the type of Army disability ratings granted. Of 189 soldiers with an injury of the upper limb, 70 had nerve-related trauma. There were 62 men and eight women with a mean age of 25 years (18 to 49). Disabilities due to nerve injuries were associated with loss of function, neuropathic pain or both. The mean nerve-related disability was 26% (0% to 70%), accounting for over one-half of this cohort's cumulative disability. Patients injured in an explosion had higher disability ratings than those injured by gunshot. The ulnar nerve was most commonly injured, but most disability was associated with radial nerve trauma. In terms of the final outcome, at military discharge 59 subjects (84%) experienced persistent weakness, 48 (69%) had a persistent sensory deficit and 17 (24%) experienced chronic pain from scar-related or neuropathic pain. Nerve injury was the cause of frequent and substantial disability in our cohort of wounded soldiers.

  6. Intra-articular peroneal nerve incarceration following multi-ligament knee injury.

    PubMed

    Alhoukail, Amro; Panu, Anukul; Olson, Jaret; Jomha, Nadr M

    2015-10-01

    Knee dislocation with a common peroneal nerve injury is a serious problem. A case of multi-ligamentous knee injury with the unusual and interesting finding of a common peroneal nerve rupture incarcerated within the knee joint is presented. MRI and arthroscopic images are used to document this occurrence. To date, there are no published reports of a similar finding in the English orthopaedic literature. Level of evidence IV.

  7. Treatment of Combined Injuries of the Axillary and Suprascapular Nerves with Scapulothoracic Dissociation.

    PubMed

    Sano, Kazufumi; Ozeki, Satoru

    2015-12-01

    A 20-year-old man suffered the combined axillary and suprascapular nerve palsies associated with scapulothoracic dissociation by motorcycle accident. The dislocated shoulder girdle was reduced and stabilized with osteosynthesis of the fractured clavicle and reattachment of the trapezius avulsed from the scapular spine for removal of continuous traction force to these damaged nerves. Because of no evidence of recovery on manual muscle test and electromyogram, exploration for these nerves was administered 6 weeks after injury. Although neurolysis of both nerves revealed neural continuity, excessive tension still existed on the suprascapular nerve. It was thought that previous operation in which the shoulder girdle had been reduced and stabilized as much as possible could not achieve complete anatomical reduction of the scapula. As an additional treatment, medial walls of the suprascapular and spinoglenoid notches were shaven to relax the suprascapular nerve. After a year, complete recovery of both the axillary and suprascapular nerve was identified. Although scapulothoracic dissociation is commonly recognized as massive injury of the shoulder girdle with poor prognosis because of existence of accompanied severe neurovascular injuries, there are more than a few cases in which partial damage on the infraclavicular brachial plexus is only accompanied. In case of them, there is the possibility of lesions in continuity of the nerves in which good prognosis might be expected with surgical intervention including early reduction of the shoulder girdle for removal of excessive tension to the damaged nerve.

  8. Cross-chest radial nerve transfer in brachial plexus injuries. Experimental and anatomical basis.

    PubMed

    Bertelli, J A; Guizoni, M F; Dos Santos, A R; Calixto, J B; Duarte, H E

    1999-01-01

    Brachial plexus avulsion injuries are devastating injuries to the upper limb, and nerve transfer remains the only option in reconstruction. Despite the encouraging results concerning recovery of shoulder and elbow function, no option is available for treatment of the paralytic hand. In rats, we sectioned the radial nerve in the elbow region and transferred it across the chest to reinnervate the lesioned contralateral medial cord of the brachial plexus. Rats were then evaluated for motor and sensory recovery, electrophysiologically, behaviorally and morphologically. Forepaw functional recovery was estimated to be 90%. In cadavers, the radial nerve and profunda brachii artery were dissected. It was observed that the radial nerve vascularized by the profunda brachii artery was able to reach the contralateral brachial plexus distal to the shoulder region without nerve grafts. After sectioning the radial nerve, sensory loss is minimal and motor palsy can be easily restored by tendon transfers. The results of tendon transfer for radial nerve palsy are better than for any other nerve. Cross-chest radial nerve transfer might be of clinical interest in the reconstruction of hand function in entire injury to the brachial plexus.

  9. Results of nerve grafting in radial nerve injuries occurring proximal to the humerus, including those within the posterior cord.

    PubMed

    Bertelli, Jayme Augusto; Ghizoni, Marcos Flávio

    2016-01-01

    OBJECT Results of radial nerve grafting are largely unknown for lesions of the radial nerve that occur proximal to the humerus, including those within the posterior cord. METHODS The authors describe 13 patients with proximal radial nerve injuries who were surgically treated and then followed for at least 24 months. The patients' average age was 26 years and the average time between accident and surgery was 6 months. Sural nerve graft length averaged 12 cm. Recovery was scored according to the British Medical Research Council (BMRC) scale, which ranges from M0 to M5 (normal muscle strength). RESULTS After grafting, all 7 patients with an elbow extension palsy recovered elbow extension, scoring M4. Six of the 13 recovered M4 wrist extension, 6 had M3, and 1 had M2. Thumb and finger extension was scored M4 in 3 patients, M3 in 2, M2 in 2, and M0 in 6. CONCLUSIONS The authors consider levels of strength of M4 for elbow and wrist extension and M3 for thumb and finger extension to be good results. Based on these criteria, overall good results were obtained in only 5 of the 13 patients. In proximal radial nerve lesions, the authors now advocate combining nerve grafts with nerve or tendon transfers to reconstruct wrist, thumb, and finger extension.

  10. Recombinant human fibroblast growth factor-2 promotes nerve regeneration and functional recovery after mental nerve crush injury.

    PubMed

    Lee, Sung Ho; Jin, Wei-Peng; Seo, Na Ri; Pang, Kang-Mi; Kim, Bongju; Kim, Soung-Min; Lee, Jong-Ho

    2017-04-01

    Several studies have shown that fibroblast growth factor-2 (FGF2) can directly affect axon regeneration after peripheral nerve damage. In this study, we performed sensory tests and histological analyses to study the effect of recombinant human FGF-2 (rhFGF2) treatment on damaged mental nerves. The mental nerves of 6-week-old male Sprague-Dawley rats were crush-injured for 1 minute and then treated with 10 or 50 μg/mL rhFGF2 or PBS in crush injury area with a mini Osmotic pump. Sensory test using von Frey filaments at 1 week revealed the presence of sensory degeneration based on decreased gap score and increased difference score. However, at 2 weeks, the gap score and difference score were significantly rebounded in the mental nerve crush group treated with 10 μg/mL rhFGF2. Interestingly, treatment with 10 μg/mL rhFGF had a more obviously positive effect on the gap score than treatment with 50 μg/mL rhFGF2. In addition, retrograde neuronal tracing with Dil revealed a significant increase in nerve regeneration in the trigeminal ganglion at 2 and 4 weeks in the rhFGF2 groups (10 μg/mL and 50 μg/mL) than in the PBS group. The 10 μg/mL rhFGF2 group also showed an obviously robust regeneration in axon density in the mental nerve at 4 weeks. Our results demonstrate that 10 μg/mL rhFGF induces mental nerve regeneration and sensory recovery after mental nerve crush injury.

  11. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-infammatory mechanism

    PubMed Central

    Xiang, Yao-xian; Wang, Wen-xin; Xue, Zhe; Zhu, Lei; Wang, Sheng-bao; Sun, Zheng-hui

    2015-01-01

    Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimulation (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes) 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-α and interleukin-6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor-α and interleukin-6 expression. PMID:26170817

  12. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  13. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  14. Enhancing recovery from peripheral nerve injury using treadmill training

    PubMed Central

    English, Arthur W.; Wilhelm, Jennifer C.; Sabatier, Manning J.

    2011-01-01

    Summary Full functional recovery after traumatic peripheral nerve injury is rare. We postulate three reasons for the poor functional outcome measures observed. Axon regeneration is slow and not all axons participate. Significant misdirection of regenerating axons to reinnervate inappropriate targets occurs. Seemingly permanent changes in neural circuitry in the central nervous system are found to accompany axotomy of peripheral axons. Exercise in the form of modest daily treadmill training impacts all three of these areas. Compared to untrained controls, regenerating axons elongate considerably farther in treadmill trained animals and do so via an autocrine/paracrine neurotrophin signaling pathway. This enhancement of axon regeneration takes place without an increase in the amount of misdirection of regenerating axons found without training. The enhancement also occurs in a sex-dependent manner. Slow continuous training is effective only in males, while more intense interval training is effective only in females. In treadmill trained, but not untrained mice the extent of coverage of axotomized motoneurons is maintained, thus preserving important elements of the spinal circuitry. PMID:21498059

  15. Pharmacologic management of trigeminal nerve injury pain after dental implant surgery.

    PubMed

    Park, Ju Hyun; Lee, Seok Hyoung; Kim, Seong Taek

    2010-01-01

    Injuries to the trigeminal nerve are a common postoperative complication of dental implant surgery. Usually, the altered sensation and neuropathic pain caused by the nerve injury is temporary, but a permanent neurosensory disorder can sometimes occur. Surgery is commonly used to treat this condition, but the treatment is associated with some complications and a relatively low success rate. This study analyzed the characteristics of pharmacologic management of trigeminal nerve injury pain after dental implant surgery. Eighty-five patients who visited a temporomandibular joint and orofacial pain clinic with a history of trigeminal nerve injury pain after dental implant surgery were enrolled in this study. The pharmacologic management for trigeminal nerve injury pain was evaluated by prescribing a variety of medications for 12 weeks according to the prescription protocol of the study. The patients' pain characteristics, average percentage of pain reduction, and pain relieving factors were investigated prospectively. Patients who took anticonvulsants and antidepressants for at least 12 weeks reported a mean reduction in pain of 24.8%. Interestingly, patients who experienced an altered sensation and neuropathic pain for more than 1 year also reported a reduction in pain and discomfort, with an average decrease of 17.1%. In addition, it was found that early treatment using medications had a significant effect on reducing the level of pain and discomfort. These results suggest that pharmacologic management can be used for treating trigeminal nerve injury pain after dental implant surgery.

  16. A Novel Cytokine Pathway Suppresses Glial Cell Melanogenesis after Injury to Adult Nerve

    PubMed Central

    Rizvi, Tilat A.; Huang, Yuan; Sidani, Amer; Atit, Radhika; Largaespada, David A.; Boissy, Raymond E.; Ratner, Nancy

    2006-01-01

    The neural crest gives rise to numerous cell types, including Schwann cells, neurons, and melanocytes. The extent to which adult neural crest-derived cells retain plasticity has not been tested previously. We report that cutting adult mouse sciatic nerve induces pigmentation around nerve fascicles, among muscle bundles, and in the hypodermis. Pigmented cells are derived from adult nerve, because pigmentation occurs even when nerve fragments are grafted into tyrosinase null albino mice. Pigmentation defects are pervasive in patients with neurofibromatosis type 1 (NF1). Mice hemizygous for Nf1 mutations show enhanced pigmentation after nerve lesion and occasionally form pigmented and unpigmented tumors. The Nf1 nerve and the Nf1 host environment both contribute to enhanced pigmentation. Grafted purified Nf1 mutant glial cells [S100+–p75NGFR+–GFAP+–EGFR+ or S100+–p75NGFR+–GFAP+–EGFR−] mimic nerve-derived pigmentation. The NF1 protein, neurofibromin, is a Ras-GAP that acts downstream of a few defined receptor tyrosine kinases, including [β-common (βc)] the shared common receptor for granulocyte and monocyte colony-stimulating factor, interleukin-3 (IL3), and IL5. Cytokines in the environment have the potential to suppress pigmentation as shown by nerve injury experiments in null mice; when is βc absent or Nf1 is mutant, melanogenesis is increased. Thus, the adult nerve glial cell phenotype is maintained after nerve injury by response to cytokines, through neurofibromin. PMID:12427839

  17. Lingual nerve injury after third molar removal: Unilateral atrophy of fungiform papillae

    PubMed Central

    de-Pablo-Garcia-Cuenca, Alba; Bescós-Atín, Maria S.

    2014-01-01

    Background: Pain and sensory changes due to lingual nerve injury are one of the most common alterations that follow surgical removal of third molar. They are usually transient but other less common complications, such as the atrophy of fungiform papillae, have an uncertain prognosis. Case Description: We report a case of a 34-year-old woman who presented a unilateral lingual atrophy of fungiform papillae after third molar extraction accompanied by severe dysesthesia that altered her daily life significantly during the following months and how this complication evolved over time. We conducted a literature review on the different factors that can lead to a lingual nerve injury. Clinical Implications: The clinical evolution of temporary and permanent somatosensitve injuries is an important fact to take into consideration during the postoperative management because it will indicate the lesion prognosis. Key words:Lingual nerve, third molar removal, somatosensitive alteration, papillae atrophy, permanent injury, temporary injury. PMID:24790723

  18. A Romanian therapeutic approach to peripheral nerve injury.

    PubMed

    Zegrea, I; Chivu, Laura Ioana; Albu, Mădălina Georgiana; Zamfirescu, D; Chivu, R D; Ion, Daniela Adriana; Lascăr, I

    2012-01-01

    The study of nerve regeneration and functional recovery of the injured peripheral nerves represents a worldwide subject of clinical and scientific research. Our team aimed to obtain the first guide for nerve regeneration, bioartificial and biodegradable, using exclusively Romanian resources and having the advantages of price and quality, over the imported nerve conduits already used in clinical practice. First steps of this project consisted in obtaining the prototype of nerve guide conduit and its' testing in vitro and in vivo. Tests of physicochemical characterization, FTIR (Fourier Transform Infrared) spectrometry, thermal analysis (differential calorimetry, thermo-gravimetry), electron microscopy, water absorption and enzymatic degradation of the obtained prototype were followed by in vivo testing. The first results, obtained on a group of Brown Norway rats who suffered experimental lesions of 1 cm at the level of left sciatic nerve, which have then been repaired using the Romanian conduit prototype, are favorable in terms of biocompatibility, biodegradable capacity and support of nerve regeneration.

  19. Reciprocal regulation of nuclear factor kappa B and its inhibitor ZAS3 after peripheral nerve injury

    PubMed Central

    Wu, Lai-Chu; Goettl, Virginia M; Madiai, Francesca; Hackshaw, Kevin V; Hussain, Syed-Rehan A

    2006-01-01

    Background NF-κB binds to the κB motif to regulate transcription of genes involved in growth, immunity and inflammation, and plays a pivotal role in the production of pro-inflammatory cytokines after nerve injuries. The zinc finger protein ZAS3 also binds to the κB or similar motif. In addition to competition for common DNA sites, in vitro experiments have shown that ZAS3 can inhibit NF-κB via the association with TRAF2 to inhibit the nuclear translocation of NF-κB. However, the physiological significance of the ZAS3-mediated inhibition of NF-κB has not been demonstrated. The purpose of this study is to characterize ZAS3 proteins in nervous tissues and to use spinal nerve ligation, a neuropathic pain model, to demonstrate a functional relationship between ZAS3 and NF-κB. Results Immunohistochemical experiments show that ZAS3 is expressed in specific regions of the central and peripheral nervous system. Abundant ZAS3 expression is found in the trigeminal ganglion, hippocampal formation, dorsal root ganglia, and motoneurons. Low levels of ZAS3 expressions are also found in the cerebral cortex and in the grey matter of the spinal cord. In those nervous tissues, ZAS3 is expressed mainly in the cell bodies of neurons and astrocytes. Together with results of Western blot analyses, the data suggest that ZAS3 protein isoforms with differential cellular distribution are produced in a cell-specific manner. Further, neuropathic pain confirmed by persistent mechanical allodynia was manifested in rats seven days after L5 and L6 lumbar spinal nerve ligation. Changes in gene expression, including a decrease in ZAS3 and an increase in the p65 subunit of NF-κB were observed in dorsal root ganglion ipsilateral to the ligation when compared to the contralateral side. Conclusion ZAS3 is expressed in nervous tissues involved in cognitive function and pain modulation. The down-regulation of ZAS3 after peripheral nerve injury may lead to activation of NF-κB, allowing Wallerian

  20. Upper and lower extremity nerve injuries in pediatric missile wounds: a selective approach to management.

    PubMed

    Stoebner, Andrew A; Sachanandani, Neil S; Borschel, Gregory H

    2011-06-01

    Nerve injuries from missile and gunshot wounds often produce significant disability, and their management is controversial. The role of the surgeon in cases of missile wounds with neurologic deficits is not well defined. Enhancing the trauma team's ability to recognize treatable nerve injuries will lead to improved outcomes. Further, raising awareness of the time-sensitive nature of these injuries will also improve results in these cases. We reviewed a consecutive series of 17 pediatric patients with peripheral nerve injuries caused by missile and gunshot wounds in a tertiary care children's hospital. We examined the indications for surgery, presence of associated injuries, mechanisms of injury, demographic characteristics and clinical outcomes. Urban victims were significantly more likely to have been intentionally assaulted than rural or suburban victims and they were also less likely to have completed follow-up care. High-energy weapons were more likely to require surgery compared with low-energy weapons. Patients presenting with tendon injuries were more likely to have a high-grade nerve injury requiring surgery. Patients presenting with tendon lacerations or high-energy mechanisms were significantly more likely to require surgery. Early exploration should be undertaken in cases where transection is likely to have occurred. Early decompression of common entrapment sites distal to repairs or injuries should be performed. Because follow-up is poor in this population, treatment should be prompt and thorough.

  1. Distal anterior interosseous nerve transfer to the deep ulnar nerve and end-to-side suture of the superficial ulnar nerve to the third common palmar digital nerve for treatment of high ulnar nerve injuries: experience in five cases.

    PubMed

    Flores, Leandro Pretto

    2011-06-01

    To demonstrate the results of a double nerve transfer at the level of the hand for recovery of the motor and sensory function of the hand in cases of high ulnar nerve injuries. Five patients underwent a transfer of the distal branch of the anterior interosseous nerve to the deep ulnar nerve, and an end-to-side suture of the superficial ulnar nerve to the third common palmar digital nerve. Two patients recovered strength M3 and three cases were graded as M4; recovery of protective sensation (S3+ in three patients and S4 in two) was observed in the fourth and fifth fingers, and at the hypothenar region. The monofilament test showed values of 3.61 or less in all cases and the two-point discrimination test demonstrated values of 7 mm in three cases and 5 mm in two. This technique of double nerve transfer is effective for motor and sensory recovery of the distal ulnar-innervated side of the hand.

  2. Connexin 43 contributes to ectopic orofacial pain following inferior alveolar nerve injury

    PubMed Central

    Shinoda, Masamichi; Honda, Kuniya; Unno, Syumpei; Shimizu, Noriyoshi; Iwata, Koichi

    2016-01-01

    Background Clinically, it is well known that injury of mandibular nerve fiber induces persistent ectopic pain which can spread to a wide area of the orofacial region innervated by the uninjured trigeminal nerve branches. However, the exact mechanism of such persistent ectopic orofacial pain is not still known. The present study was undertaken to determine the role of connexin 43 in the trigeminal ganglion on mechanical hypersensitivity in rat whisker pad skin induced by inferior alveolar nerve injury. Here, we examined changes in orofacial mechanical sensitivity following inferior alveolar nerve injury. Furthermore, changes in connexin 43 expression in the trigeminal ganglion and its localization in the trigeminal ganglion were also examined. In addition, we investigated the functional significance of connexin 43 in relation to mechanical allodynia by using a selective gap junction blocker (Gap27). Results Long-lasting mechanical allodynia in the whisker pad skin and the upper eyelid skin, and activation of satellite glial cells in the trigeminal ganglion, were induced after inferior alveolar nerve injury. Connexin 43 was expressed in the activated satellite glial cells encircling trigeminal ganglion neurons innervating the whisker pad skin, and the connexin 43 protein expression was significantly increased after inferior alveolar nerve injury. Administration of Gap27 in the trigeminal ganglion significantly reduced satellite glial cell activation and mechanical hypersensitivity in the whisker pad skin. Moreover, the marked activation of satellite glial cells encircling trigeminal ganglion neurons innervating the whisker pad skin following inferior alveolar nerve injury implies that the satellite glial cell activation exerts a major influence on the excitability of nociceptive trigeminal ganglion neurons. Conclusions These findings indicate that the propagation of satellite glial cell activation throughout the trigeminal ganglion via gap junctions, which are

  3. Inferior Alveolar Nerve Injury after Mandibular Third Molar Extraction: a Literature Review

    PubMed Central

    Juodzbalys, Gintaras

    2014-01-01

    ABSTRACT Objectives The purpose of this study was to systematically review the comprehensive overview of literature data about injury to the inferior alveolar nerve after lower third molar extraction to discover the prevalence of injury, the risk factors, recovery rates, and alternative methods of treatment. Material and Methods Literature was selected through a search of PubMed electronic databases. Articles from January 2009 to June 2014 were searched. English language articles with a minimum of 6 months patient follow-up and injury analysis by patient’s reporting, radiographic, and neurosensory testing were selected. Results In total, 84 literature sources were reviewed, and 14 of the most relevant articles that are suitable to the criteria were selected. Articles were analyzed on men and women. The influence of lower third molar extraction (especially impacted) on the inferior alveolar nerve was clearly seen. Conclusions The incidence of injury to the inferior alveolar nerve after lower third molar extraction was about 0.35 - 8.4%. The injury of the inferior alveolar nerve can be predicted by various radiological signs. There are few risk factors that may increase the risk of injury to the nerve such as patients over the age of 24 years old, with horizontal impactions, and extraction by trainee surgeons. Recovery is preferable and permanent injury is very rare. PMID:25635208

  4. Electrical nerve stimulation to promote micturition in spinal cord injury patients: A review of current attempts.

    PubMed

    Ren, Jian; Chew, Daniel J; Biers, Suzanne; Thiruchelvam, Nikesh

    2016-03-01

    In this review, we focus on the current attempts of electrical nerve stimulation for micturition in spinal cord injury (SCI) patients. A literature search was performed through PubMed using "spinal cord injury," "electrical nerve stimulation AND bladder," "sacral anterior root stimulation/stimulator" and "Brindley stimulator" from January 1975 to January 2014. Twenty studies were selected for this review. Electrical nerve stimulation is a clinical option for promoting micturition in SCI patients. Well-designed, randomized and controlled studies are essential for further investigation. © 2015 Wiley Periodicals, Inc.

  5. Possible role of alpha-lipoic acid in the treatment of peripheral nerve injuries

    PubMed Central

    2010-01-01

    Recent findings on the antioxidant effects of pretreatment with α-lipoic acid (α-LA) on the crush injury of rat sciatic nerve confirm the possible usefulness of α-LA administration in humans with peripheral nerve injuries. We discussed this issue in relation with our recent results in which the combined employment of α-LA and γ-linolenic acid with a rehabilitation program for six weeks reduced sensory symptoms and neuropathic pain in patients with compressive radiculopathy syndrome from disc-nerve root conflict in comparison with patients submitted to rehabilitation program alone for six weeks. PMID:20807428

  6. Effect of melatonin supplemented at the light or dark period on recovery of sciatic nerve injury in rats

    PubMed Central

    Rateb, Enas Ezzat; Amin, Shaimaa Nasr; El-Tablawy, Nashwa; Rashed, Laila Ahmed; El-Attar, Samah

    2017-01-01

    Peripheral nerve injuries can cause disabilities, social or economic problems. Melatonin, the secretory product of the pineal gland has antioxidant and anti-inflammatory actions. The aim of the present study was to investigate the effect of melatonin on the recovery of sciatic nerve after injury, comparing its effect when given in the light or the dark periods. Forty adult male Albino rats were allocated into four groups: control, nerve injury, nerve injury + melatonin given at light and nerve injury + melatonin given at dark. Nerve injury was initiated by clamping the sciatic nerve. Sciatic functional index (SFI) was measured preoperatively and postoperatively. Melatonin was given daily for six weeks. Recovery of the function was analyzed by functional analysis, electrophysiological analysis and biochemical measurement of Superoxide dismutase (SOD), Interleukin 1-beta (IL-1 β), Nerve growth factor (NGF), and bcl-2. Melatonin improved SFI, nerve conduction velocity (NCV) and the force of gastrocnemius muscle contraction as compared to the untreated rats. SOD activity, NGF, and bcl-2 were significantly increased, while IL-1β was significantly decreased after melatonin treatment as compared to the untreated injury group. SFI reached the control level; muscle contraction and IL-1B were significantly improved in the group treated with melatonin in the dark. Melatonin fastened the neural recovery and may be used in the treatment of nerve injury and it induced better nerve regeneration when the rats were treated during the dark period. PMID:28435433

  7. Mrpl10 and Tbp Are Suitable Reference Genes for Peripheral Nerve Crush Injury

    PubMed Central

    Wang, Yaxian; Shan, Qianqian; Meng, Yali; Pan, Jiacheng; Yi, Sheng

    2017-01-01

    Peripheral nerve injury triggers the dysregulation of a large number of genes at multiple sites, including neurons, peripheral nerve stump, and the target organ. Housekeeping genes were frequently used as reference genes to normalize the expression values of target genes. Suitable selection of housekeeping genes that are stably expressed after nerve injury minimizes bias elicited by reference genes and thus helps to better and more sensitively reflect gene expression changes. However, many housekeeping genes have been used as reference genes without testing the expression patterns of themselves. In the current study, we calculated the expression stability of nine commonly used housekeeping genes, such as 18S (18S ribosomal RNA), Actb (β-actin), CypA (cyclophilin A), Gapdh (glyceraldehydes-3-phosphate dehydrogenase), Hprt (hypoxanthine guanine phosphoribosyl transferase), Pgk1 (phosphoglycerate kinase 1), Tbp (TATA box binding protein), Ubc (ubiquitin C), YwhaZ (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation), and four newly identified housekeeping genes, including Ankrd27 (Ankyrin repeat domain 27), Mrpl10 (mitochondrial ribosomal protein L10), Rictor (rapamycin-insensitive companion of mTOR, Complex 2), and Ubxn 11 (UBX domain protein 11), in both distal sciatic nerve samples and dorsal root ganglion (DRG) samples after sciatic nerve injury. Our results suggested that following peripheral nerve injury, Mrpl10 and Tbp might be used as suitable reference genes for sciatic nerve stump and DRGs, respectively. PMID:28134789

  8. Soluble complement receptor 1 protects the peripheral nerve from early axon loss after injury.

    PubMed

    Ramaglia, Valeria; Wolterman, Ruud; de Kok, Maryla; Vigar, Miriam Ann; Wagenaar-Bos, Ineke; King, Rosalind Helen Mary; Morgan, Brian Paul; Baas, Frank

    2008-04-01

    Complement activation is a crucial early event in Wallerian degeneration. In this study we show that treatment of rats with soluble complement receptor 1 (sCR1), an inhibitor of all complement pathways, blocked both systemic and local complement activation after crush injury of the sciatic nerve. Deposition of membrane attack complex (MAC) in the nerve was inhibited, the nerve was protected from axonal and myelin breakdown at 3 days after injury, and macrophage infiltration and activation was strongly reduced. We show that both classical and alternative complement pathways are activated after acute nerve trauma. Inhibition of the classical pathway by C1 inhibitor (Cetor) diminished, but did not completely block, MAC deposition in the injured nerve, blocked myelin breakdown, inhibited macrophage infiltration, and prevented macrophage activation at 3 days after injury. However, in contrast to sCR1 treatment, early signs of axonal degradation were visible in the nerve, linking MAC deposition to axonal damage. We conclude that sCR1 protects the nerve from early axon loss after injury and propose complement inhibition as a potential therapy for the treatment of diseases in which axon loss is the main cause of disabilities.

  9. Early surgical exploration of radial nerve injury associated with fracture shaft humerus.

    PubMed

    Noaman, Hassan; Khalifa, Abdel Rahman; El-Deen, Mohamed Alam; Shiha, Anis

    2008-01-01

    The series included 36 patients, predominantly male, mean age 30.3 years. The most common cause of injury was motor car accident in 20 patients. Postreduction radial nerve injury occurred in nine cases. Open fracture humerus with radial nerve injury in seven cases. The fractures were situated in the middle or distal third of the humeral shaft. Most were transverse fractures. Twelve patients had surgery on the day of injury and the other 24 at a mean of 8 days later (3-14). Narrow dynamic compression plate was generally used for fixation. Exploration of the radial nerve demonstrated compression at the lateral intermuscular septum in 19 cases, entrapment in the fracture site in nine cases, and loss of its continuity in eight cases. Neurolysis was required in 20 cases, epineurorrhaphy in nine cases, interfascicular nerve grafts in five, and first-intention tendon transfer in two. Results of nerve surgery were assessed with the MRC (Medical Research Council) at a mean follow-up of 8.2 years. Outcome was rated good to excellent in 28 patients, fair in 1, and poor (failure) in 3. First-intention tendon transfers were performed in 2 patients and 2 patients were lost to follow-up. Mean delay to recovery was 7 months after neurolysis and nerve repair and 15 months after nerve grafts. The fracture was united in all cases. The mean time of union was 5 months. (c) 2008 Wiley-Liss, Inc. Microsurgery, 2008.

  10. Experimental study on the effect of electrostimulation on neural regeneration after oculomotor nerve injury.

    PubMed

    Zhu, Ningxi; Zhang, Chunmei; Li, Zhen; Meng, Youqiang; Feng, Baohui; Wang, Xuhui; Yang, Min; Wan, Liang; Ning, Bo; Li, Shiting

    2014-12-01

    The oculomotor nerve can regenerate anatomically and histologically after injury; however, the degree of functional recovery of extraocular muscles and the pupil sphincter muscle was not satisfactory. Electrostimulation was one potential intervention that was increasingly being studied for use in nerve injury settings. However, the effect of electrostimulation on regeneration of the injured oculomotor nerve was still obscure. In this study, we studied the effects of electrostimulation on neural regeneration in terms of neurofunction, myoelectrophysiology, neuroanatomy, and neurohistology after oculomotor nerve injury and found that electrostimulation on the injured oculomotor nerve enhanced the speed and final level of its functional and electrophysiological recovery, promoted neural regeneration, and enhanced the selectivity and specificity of reinnervation of the regenerated neuron, the conformity among the electrophysiological and functional recovery of extraocular muscles, and neural regeneration, and that the function of extraocular muscles recovered slower than electrophysiology. Thus, we speculated that electrostimulation on the injured oculomotor nerve produced a marked effect on all phases of neural regeneration including neuronal survival, sprout formation, axonal elongation, target reconnection, and synaptogenesis. We think that neural electrostimulation can be used in oculomotor nerve injury.

  11. Facial nerve injury following surgery for the treatment of ankylosis of the temporomandibular joint.

    PubMed

    Nogueira, Ricardo Viana Bessa; Vasconcelos, Belmiro Cavalcanti do Egito

    2007-03-01

    The purpose of the present paper was to carry out a longitudinal study of a series of cases in which injury of the facial nerve was observed following surgery for the treatment of temporomandibular ankylosis. The sample was composed of 13 patients, both male and female, in whom 18 surgical approaches were made. A postoperative assessment of the motor function of the facial nerve was made in accordance with the House-Brackmann grading system. All the patients were photographed and assessed at the following postoperative times: 24 hours, one week, one month and three months. The results showed that injury of the facial nerve occurred in 31% of the cases. An increase in the frequency of nerve injury was observed in the cases in which the interpositional arthroplasty technique was employed, as well as the fact that 75% of the patients had undergone at least one surgical intervention prior to the study. After three months all the patients displayed normal function of the facial nerve. The frequency of facial nerve injury is related to the degree of difficulty involved in the surgery determined by the type of ankylosis. The nerve lesions were shown to be of a temporary nature.

  12. Nerve injuries associated with pediatric supracondylar humeral fractures: a meta-analysis.

    PubMed

    Babal, Jessica C; Mehlman, Charles T; Klein, Guy

    2010-01-01

    Supracondylar fractures of the humerus are the most common type of elbow fracture in children. Of all complications associated with supracondylar fractures, nerve injury ranks highest, although reports of the incidence of specific neurapraxia vary. This meta-analysis aims primarily to determine the risk of traumatic neurapraxia in extension-type supracondylar fractures as compared with that of flexion-type fractures; secondarily it aims to use subgroup analysis to assess the risk of iatrogenic neurapraxia induced by pin fixation. A literature search identified studies that reported the incidence of nerve injury presenting with displaced supracondylar fractures of the humerus in children. Meta-analysis was subsequently performed to evaluate the risk of traumatic neurapraxia associated with supracondylar fractures. Subgroup analysis of included articles was additionally performed to assess the risk of iatrogenic neurapraxia associated with lateral-only or medial/lateral pin fixation. Data from 5148 patients with 5154 fractures were pooled for meta-analysis. Among these patients, traumatic neurapraxia occurred at a weighted event rate of 11.3%. Anterior interosseous nerve injury predominated in extension-type fractures, representing 34.1% of associated neurapraxias; meanwhile, ulnar neuropathy occurred most frequently in flexion-type injuries, representing 91.3% of associated neurapraxias. Nerve injury induced by lateral-only pinning occurred at a weighted event rate of 3.4%, while the introduction of a medial pin elicited neurapraxia at a weighted event rate of 4.1%. Lateral pinning carried increased risk of median neuropathy, whereas the use of a medial pin significantly increased the risk of ulnar nerve injury. Of nerve injury associated with extension-type fractures, anterior interosseous neurapraxia ranks highest, whereas of flexion-type neuropathy, ulnar nerve injury predominates. We confirm that medial pinning carries the greater overall risk of nerve injury as

  13. Profiling of the dynamically alteredgene expression in peripheral nerve injury using NGS RNA sequencing technique

    PubMed Central

    Han, Duanyang; Chen, Yixun; Kou, Yuhui; Weng, Jian; Chen, Bo; Yu, Youlai; Zhang, Peixun; Jiang, Baoguo

    2016-01-01

    Functional recovery of peripheral nerve injuries is of major demand in clinical practice worldwide. Although, to some extent, peripheral nervous system can spontaneously regenerate, post-injury recovery is often associated with poor functional outcome. The molecular mechanism controlling the peripheral nerve repair process is still majorly unclear. In this study, by utilizing the Next Generation Sequencing (NGS) RNA sequencing technique, we aim to profile the gene expression spectrum of the peripheral nerve repair. In total, we detected 2847 were differentially expressed at day 7 post crush nerve injury. The GO, Panther, IPA and GSEA analysis was performed to decipher the biological processes involving the differentially expressed genes. Collectively, our results highlighted the inflammatory response and related signaling pathway (NFkB and TNFa signaling) play key role in peripheral nerve repair regulation. Furthermore, Network analysis illustrated that the IL10, IL18, IFN-γ and PDCD1 were four key regulators with multiple participations in peripheral nerve repair and potentially exert influence to the repair process. The expression changes of IL10, IL18, IFN-γ, PDCD1 and TNFSF14 (LIGHT) were further validated by western blot analysis. Hopefully, the present study may provide useful platform to further reveal the molecular mechanism of peripheral nerve repair and discover promising treatment target to enhance peripheral nerve regeneration. PMID:27158375

  14. The superior laryngeal nerve injury of a famous soprano, Amelita Galli-Curci.

    PubMed

    Marchese-Ragona, R; Restivo, D A; Mylonakis, I; Ottaviano, G; Martini, A; Sataloff, R T; Staffieri, A

    2013-02-01

    The superior laryngeal nerve (SLN) has been attributed much less clinical significance than the recurrent laryngeal nerve. It has sometimes been described as the 'neglected' nerve in thyroid surgery, although injury to this nerve can cause significant disability. The external branch of the SLN is the only motor supply to the cricothyroid muscle, which increases the tension of the ipsilateral vocal fold during highfrequency phonation, particularly in women and voice professionals. Damage to this nerve can manifest as ipsilateral cricothyroid muscle paralysis, and clinical symptoms may include a hoarse, breathy voice, frequent throat clearing, vocal fatigue or diminished vocal frequency range, especially when rising pitch. SLN paralysis can be a significant issue for those whose careers depend largely on a full range of voice. The famous opera soprano, Amelita Galli-Curci, suffered SLN injury during thyroid surgery with distressing consequences.

  15. Saphenous nerve injury during harvesting of one or two hamstring tendons for anterior cruciate ligament reconstruction☆

    PubMed Central

    de Padua, Vitor Barion Castro; Nascimento, Paulo Emílio Dourado; Silva, Sergio Candido; de Gusmão Canuto, Sergio Marinho; Zuppi, Guilherme Nunes; de Carvalho, Sebastião Marcos Ribeiro

    2015-01-01

    Objective The aim of this study was to assess whether harvesting of two hamstring tendons (semitendinosus and gracilis) has the same rate of nerve injury as harvesting of the semitendinosus tendon alone, used as a triple graft. Methods Changes in sensitivity relating to injury of the infrapatellar branch of the saphenous nerve were evaluated in 110 patients six months after they underwent anterior cruciate ligament (ACL) reconstruction using hamstring tendons. They were divided into two groups: one in which only the semitendinosus was used and the other, the semitendinosus and gracilis. Results The group in which only the semitendinosus was used as a graft presented a nerve injury rate of 36.1%. In the group in which the semitendinosus and gracilis tendons were used, 58.1% of the patients presented altered sensitivity. In the general assessment on all the patients, the nerve injury rate was 50.9%. Conclusion Harvesting the semitendinosus alone and using it in triple form is a viable option for ACL reconstruction and may give rise to fewer nerve injuries relating to branches of the saphenous nerve. PMID:26535201

  16. Saphenous nerve injury during harvesting of one or two hamstring tendons for anterior cruciate ligament reconstruction.

    PubMed

    de Padua, Vitor Barion Castro; Nascimento, Paulo Emílio Dourado; Silva, Sergio Candido; de Gusmão Canuto, Sergio Marinho; Zuppi, Guilherme Nunes; de Carvalho, Sebastião Marcos Ribeiro

    2015-01-01

    The aim of this study was to assess whether harvesting of two hamstring tendons (semitendinosus and gracilis) has the same rate of nerve injury as harvesting of the semitendinosus tendon alone, used as a triple graft. Changes in sensitivity relating to injury of the infrapatellar branch of the saphenous nerve were evaluated in 110 patients six months after they underwent anterior cruciate ligament (ACL) reconstruction using hamstring tendons. They were divided into two groups: one in which only the semitendinosus was used and the other, the semitendinosus and gracilis. The group in which only the semitendinosus was used as a graft presented a nerve injury rate of 36.1%. In the group in which the semitendinosus and gracilis tendons were used, 58.1% of the patients presented altered sensitivity. In the general assessment on all the patients, the nerve injury rate was 50.9%. Harvesting the semitendinosus alone and using it in triple form is a viable option for ACL reconstruction and may give rise to fewer nerve injuries relating to branches of the saphenous nerve.

  17. Behavioral indices of ongoing pain are largely unchanged in male mice with tissue or nerve injury-induced mechanical hypersensitivity

    PubMed Central

    Urban, Rochelle; Scherrer, Gregory; Goulding, Evan H.; Tecott, Laurence H.; Basbaum, Allan I.

    2010-01-01

    Despite the impact of chronic pain on the quality of life in patients, including changes to affective state and daily life activities, rodent preclinical models rarely address this aspect of chronic pain. To better understand the behavioral consequences of the tissue and nerve injuries typically used to model neuropathic and inflammatory pain in mice, we measured home cage and affective state behaviors in animals with spared nerve injury (SNI), chronic constriction injury (CCI) or intraplantar CFA. Mechanical hypersensitivity is prominent in each of these conditions and persists for many weeks. Home cage behavior was continuously monitored for 16 days in a system that measures locomotion, feeding and drinking and allows for precise analysis of circadian patterns. When monitored after injury, animals with SNI and CFA behaved no differently from controls in any aspect of daily life. Animals with CCI were initially less active, but the difference between CCI and controls disappeared by 2 weeks after injury. Further, in all pain models, there was no change in any measure of affective state. We conclude that in these standard models of persistent pain, despite the development of prolonged hypersensitivity, the mice do not have significantly altered “quality of life”. As alteration in daily life activities is the feature that is so disrupted in patients with chronic pain, our results suggest that the models used here do not fully reflect the human conditions and point to a need for development of a murine chronic pain model in which lifestyle changes are manifest. PMID:21256675

  18. Sensoric protection after median nerve injury: babysitter-procedure prevents muscular atrophy and improves neuronal recovery.

    PubMed

    Beck-Broichsitter, Benedicta E; Becker, Stephan T; Lamia, Androniki; Fregnan, Federica; Geuna, Stefano; Sinis, Nektarios

    2014-01-01

    The babysitter-procedure might offer an alternative when nerve reconstruction is delayed in order to overcome muscular atrophy due to denervation. In this study we aimed to show that a sensomotoric babysitter-procedure after median nerve injury is capable of preserving irreversible muscular atrophy. The median nerve of 20 female Wistar rats was denervated. 10 animals received a sensory protection with the N. cutaneous brachii. After six weeks the median nerve was reconstructed by autologous nerve grafting from the contralateral median nerve in the babysitter and the control groups. Grasping tests measured functional recovery over 15 weeks. At the end of the observation period the weight of the flexor digitorum sublimis muscle was determined. The median nerve was excised for histological examinations. Muscle weight (P < 0.0001) was significantly superior in the babysitter group compared to the control group at the end of the study. The histological evaluation revealed a significantly higher diameter of axons (P = 0.0194), nerve fiber (P = 0.0409), and nerve surface (P = 0.0184) in the babysitter group. We conclude that sensory protection of a motor nerve is capable of preserving muscule weight and we may presume that metabolism of the sensory nerve was sufficient to keep the target muscle's weight and vitality.

  19. Sensoric Protection after Median Nerve Injury: Babysitter-Procedure Prevents Muscular Atrophy and Improves Neuronal Recovery

    PubMed Central

    Beck-Broichsitter, Benedicta E.; Becker, Stephan T.; Lamia, Androniki; Fregnan, Federica; Sinis, Nektarios

    2014-01-01

    The babysitter-procedure might offer an alternative when nerve reconstruction is delayed in order to overcome muscular atrophy due to denervation. In this study we aimed to show that a sensomotoric babysitter-procedure after median nerve injury is capable of preserving irreversible muscular atrophy. The median nerve of 20 female Wistar rats was denervated. 10 animals received a sensory protection with the N. cutaneous brachii. After six weeks the median nerve was reconstructed by autologous nerve grafting from the contralateral median nerve in the babysitter and the control groups. Grasping tests measured functional recovery over 15 weeks. At the end of the observation period the weight of the flexor digitorum sublimis muscle was determined. The median nerve was excised for histological examinations. Muscle weight (P < 0.0001) was significantly superior in the babysitter group compared to the control group at the end of the study. The histological evaluation revealed a significantly higher diameter of axons (P = 0.0194), nerve fiber (P = 0.0409), and nerve surface (P = 0.0184) in the babysitter group. We conclude that sensory protection of a motor nerve is capable of preserving muscule weight and we may presume that metabolism of the sensory nerve was sufficient to keep the target muscle's weight and vitality. PMID:25133176

  20. Forced exercise protects the aged optic nerve against intraocular pressure injury.

    PubMed

    Chrysostomou, Vicki; Kezic, Jelena M; Trounce, Ian A; Crowston, Jonathan G

    2014-07-01

    We have previously shown that the optic nerve of mice becomes increasingly vulnerable to injury with advancing age. Here, we investigated whether regular exercise can modify this age-related vulnerability and improve optic nerve recovery after injury. Aged (12-month-old) C57BL/6J mice were exercised by swimming for 60 min/d, 5 d/wk for 6 weeks. After 5 weeks, injury to the optic nerve was induced by short-term elevation of intraocular pressure. Retinal function was recorded using the electroretinogram and the cellular and biochemical changes induced by injury were assessed using immunohistochemistry and quantitative polymerase chain reaction. We found that exercise almost completely reversed age-related vulnerability of the optic nerve to injury such that exercised aged mice had a similar functional response to injury as non-exercised young (3-month-old) mice. Exercise also abrogated injury-induced astrocytic gliosis and macrophage activation in the aged retina. These data suggest that the known benefits of exercise also extend to the visual system and support further investigation of physical activity as a means of protecting against injury, dysfunction, and degeneration in the aging eye.

  1. Postoperative headache following acoustic neuroma resection: occipital nerve injuries are associated with a treatable occipital neuralgia.

    PubMed

    Ducic, Ivica; Felder, John M; Endara, Matthew

    2012-01-01

    To demonstrate that occipital nerve injury is associated with chronic postoperative headache in patients who have undergone acoustic neuroma excision and to determine whether occipital nerve excision is an effective treatment for these headaches. Few previous reports have discussed the role of occipital nerve injury in the pathogenesis of the postoperative headache noted to commonly occur following the retrosigmoid approach to acoustic neuroma resection. No studies have supported a direct etiologic link between the two. The authors report on a series of acoustic neuroma patients with postoperative headache presenting as occipital neuralgia who were found to have occipital nerve injuries and were treated for chronic headache by excision of the injured nerves. Records were reviewed to identify patients who had undergone surgical excision of the greater and lesser occipital nerves for refractory chronic postoperative headache following acoustic neuroma resection. Primary outcomes examined were change in migraine headache index, change in number of pain medications used, continued use of narcotics, patient satisfaction, and change in quality of life. Follow-up was in clinic and via telephone interview. Seven patients underwent excision of the greater and lesser occipital nerves. All met diagnostic criteria for occipital neuralgia and failed conservative management. Six of 7 patients experienced pain reduction of greater than 80% on the migraine index. Average pain medication use decreased from 6 to 2 per patient; 3 of 5 patients achieved independence from narcotics. Six patients experienced 80% or greater improvement in quality of life at an average follow-up of 32 months. There was one treatment failure. Occipital nerve neuroma or nerve entrapment was identified during surgery in all cases where treatment was successful but not in the treatment failure. In contradistinction to previous reports, we have identified a subset of patients in whom the syndrome of

  2. Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury.

    PubMed

    Frattini, Flávia; Lopes, Fatima Rosalina Pereira; Almeida, Fernanda Martins; Rodrigues, Rafaela Fintelman; Boldrini, Leonardo Cunha; Tomaz, Marcelo A; Baptista, Abrahão Fontes; Melo, Paulo A; Martinez, Ana Maria Blanco

    2012-10-01

    Despite the fact that the peripheral nervous system is able to regenerate after traumatic injury, the functional outcomes following damage are limited and poor. Bone marrow mesenchymal stem cells (MSCs) are multipotent cells that have been used in studies of peripheral nerve regeneration and have yielded promising results. The aim of this study was to evaluate sciatic nerve regeneration and neuronal survival in mice after nerve transection followed by MSC treatment into a polycaprolactone (PCL) nerve guide. The left sciatic nerve of C57BL/6 mice was transected and the nerve stumps were placed into a biodegradable PCL tube leaving a 3-mm gap between them; the tube was filled with MSCs obtained from GFP+ animals (MSC-treated group) or with a culture medium (Dulbecco's modified Eagle's medium group). Motor function was analyzed according to the sciatic functional index (SFI). After 6 weeks, animals were euthanized, and the regenerated sciatic nerve, the dorsal root ganglion (DRG), the spinal cord, and the gastrocnemius muscle were collected and processed for light and electron microscopy. A quantitative analysis of regenerated nerves showed a significant increase in the number of myelinated fibers in the group that received, within the nerve guide, stem cells. The number of neurons in the DRG was significantly higher in the MSC-treated group, while there was no difference in the number of motor neurons in the spinal cord. We also found higher values of trophic factors expression in MSC-treated groups, especially a nerve growth factor. The SFI revealed a significant improvement in the MSC-treated group. The gastrocnemius muscle showed an increase in weight and in the levels of creatine phosphokinase enzyme, suggesting an improvement of reinnervation and activity in animals that received MSCs. Immunohistochemistry documented that some GFP+ -transplanted cells assumed a Schwann-cell-like phenotype, as evidenced by their expression of the S-100 protein, a Schwann cell

  3. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury.

    PubMed

    Zhao, Qun; Li, Zhi-Yue; Zhang, Ze-Peng; Mo, Zhou-Yun; Chen, Shi-Jie; Xiang, Si-Yu; Zhang, Qing-Shan; Xue, Min

    2015-09-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.

  4. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    PubMed Central

    Zhao, Qun; Li, Zhi-yue; Zhang, Ze-peng; Mo, Zhou-yun; Chen, Shi-jie; Xiang, Si-yu; Zhang, Qing-shan; Xue, Min

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury. PMID:26604912

  5. Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury.

    PubMed

    Chang, Young-Hui; Auyang, Arick G; Scholz, John P; Nichols, T Richard

    2009-11-01

    Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function.

  6. Rehabilitation, Using Guided Cerebral Plasticity, of a Brachial Plexus Injury Treated with Intercostal and Phrenic Nerve Transfers.

    PubMed

    Dahlin, Lars B; Andersson, Gert; Backman, Clas; Svensson, Hampus; Björkman, Anders

    2017-01-01

    Recovery after surgical reconstruction of a brachial plexus injury using nerve grafting and nerve transfer procedures is a function of peripheral nerve regeneration and cerebral reorganization. A 15-year-old boy, with traumatic avulsion of nerve roots C5-C7 and a non-rupture of C8-T1, was operated 3 weeks after the injury with nerve transfers: (a) terminal part of the accessory nerve to the suprascapular nerve, (b) the second and third intercostal nerves to the axillary nerve, and (c) the fourth to sixth intercostal nerves to the musculocutaneous nerve. A second operation-free contralateral gracilis muscle transfer directly innervated by the phrenic nerve-was done after 2 years due to insufficient recovery of the biceps muscle function. One year later, electromyography showed activation of the biceps muscle essentially with coughing through the intercostal nerves, and of the transferred gracilis muscle by deep breathing through the phrenic nerve. Voluntary flexion of the elbow elicited clear activity in the biceps/gracilis muscles with decreasing activity in intercostal muscles distal to the transferred intercostal nerves (i.e., corresponding to eighth intercostal), indicating cerebral plasticity, where neural control of elbow flexion is gradually separated from control of breathing. To restore voluntary elbow function after nerve transfers, the rehabilitation of patients operated with intercostal nerve transfers should concentrate on transferring coughing function, while patients with phrenic nerve transfers should focus on transferring deep breathing function.

  7. Flexion-Type Supracondylar Humeral Fractures: Ulnar Nerve Injury Increases Risk of Open Reduction.

    PubMed

    Flynn, Kelly; Shah, Apurva S; Brusalis, Christopher M; Leddy, Kelly; Flynn, John M

    2017-09-06

    The vast majority of displaced pediatric supracondylar humeral fractures can be treated successfully with closed reduction and percutaneous pinning. The need for open reduction is difficult to determine a priori and is typically due to the failure of closed reduction attempts or persistent limb ischemia. The aims of this study were to determine the prevalence of flexion-type supracondylar humeral fractures, the rate of open reduction for flexion-type fractures, and the predictive impact of ulnar nerve injury on the need for open reduction for flexion-type supracondylar humeral fractures. We developed a database of consecutive pediatric supracondylar humeral fractures treated operatively at a tertiary care pediatric trauma center from 2000 to 2015. Data recorded included age, mechanism of injury, fracture type (open or closed), fracture pattern (flexion-type or extension-type), concomitant skeletal injury, neurovascular injury, treatment, and surgeon. Radiographs of all flexion-type supracondylar humeral fractures were reviewed in order to confirm the classification of the injury pattern. The rate of open reduction for fractures with a flexion-type injury pattern and for such fractures with and without ulnar nerve injury at presentation was assessed. Of 2,783 consecutive pediatric supracondylar humeral fractures treated by surgeons at our center, 95 (3.4%) were flexion-type fractures. Ulnar nerve injury was noted for 10 (10.5%) of the 95 flexion-type fractures. Open injuries were identified at presentation in 3 (3.2%) of the 95 cases. Among closed fractures, 21 (22.8%) of 92 flexion-type fractures required open reduction compared with 50 (1.9%) of 2,647 extension-type fractures (odds ratio [OR] = 15.4; 95% confidence interval [CI] = 8.8 to 27.0; p < 0.001). Among closed flexion-type fractures, open reduction was performed in 6 (60%) of 10 fractures with associated ulnar nerve injury and in 15 (18.3%) of 82 fractures without ulnar nerve injury (OR = 6.7; 95% CI = 1

  8. L-carnitine alleviates sciatic nerve crush injury in rats: functional and electron microscopy assessments

    PubMed Central

    Avsar, Ümmü Zeynep; Avsar, Umit; Aydin, Ali; Yayla, Muhammed; Ozturkkaragoz, Berna; Un, Harun; Saritemur, Murat; Mercantepe, Tolga

    2014-01-01

    Several studies have demonstrated that L-carnitine exhibits neuroprotective effects on injured sciatic nerve of rats with diabetes mellitus. It is hypothesized that L-carnitine exhibits neuroprotective effects on injured sciatic nerve of rats. Rat sciatic nerve was crush injured by a forceps and exhibited degenerative changes. After intragastric administration of 50 and 100 mg/kg L-carnitine for 30 days, axon area, myelin sheath area, axon diameter, myelin sheath diameter, and numerical density of the myelinated axons of injured sciatic nerve were similar to normal, and the function of injured sciatic nerve also improved significantly. These findings suggest that L-carnitine exhibits neuroprotective effects on sciatic nerve crush injury in rats. PMID:25206754

  9. Instability of spatial encoding by CA1 hippocampal place cells after peripheral nerve injury.

    PubMed

    Cardoso-Cruz, Helder; Lima, Deolinda; Galhardo, Vasco

    2011-06-01

    Several authors have shown that the hippocampus responds to painful stimulation and suggested that prolonged painful conditions could lead to abnormal hippocampal functioning. The aim of the present study was to evaluate whether the induction of persistent peripheral neuropathic pain would affect basic hippocampal processing such as the spatial encoding performed by CA1 place cells. These place cells fire preferentially in a certain spatial position in the environment, and this spatial mapping remains stable across multiple experimental sessions even when the animal is removed from the testing environment. To address the effect of prolonged pain on the stability of place cell encoding, we chronically implanted arrays of electrodes in the CA1 hippocampal region of adult rats and recorded the multichannel neuronal activity during a simple food-reinforced alternation task in a U-shaped runway. The activity of place cells was followed over a 3-week period before and after the establishment of an animal model of neuropathy, spared nerve injury. Our results show that the nerve injury increased the number of place fields encoded per cell and the mapping size of the place fields. In addition, there was an increase in in-field coherence while the amount of spatial information content that a single spike conveyed about the animal location decreased over time. Other measures of spatial tuning (in-field firing rate, firing peak and number of spikes) were unchanged between the experimental groups. These results demonstrate that the functioning of spatial place cells is altered during neuropathic pain conditions.

  10. Changes induced by peripheral nerve injury in the morphology and nanomechanics of sensory neurons

    NASA Astrophysics Data System (ADS)

    Benzina, Ouafa; Szabo, Vivien; Lucas, Olivier; Saab, Marie-belle; Cloitre, Thierry; Scamps, Frédérique; Gergely, Csilla; Martin, Marta

    2013-06-01

    Peripheral nerve injury in vivo promotes a regenerative growth in vitro characterized by an improved neurite regrowth. Knowledge of the conditioning injury effects on both morphology and mechanical properties of live sensory neurons could be instrumental to understand the cellular and molecular mechanisms leading to this regenerative growth. In the present study, we use differential interference contrast microscopy, fluorescence microscopy and atomic force microscopy (AFM) to show that conditioned axotomy, induced by sciatic nerve injury, does not increase somatic size of sensory neurons from adult mice lumbar dorsal root ganglia but promotes the appearance of longer and larger neurites and growth cones. AFM on live neurons is also employed to investigate changes in morphology and membrane mechanical properties of somas of conditioned neurons following sciatic nerve injury. Mechanical analysis of the soma allows distinguishing neurons having a regenerative growth from control ones, although they show similar shapes and sizes.

  11. Sciatic nerve injury caused by a stretching exercise in a trained dancer.

    PubMed

    Shim, Ho Yong; Lim, Oh Kyung; Bae, Keun Hwan; Park, Seok Min; Lee, Ju Kang; Park, Ki Deok

    2013-12-01

    Sciatic nerve injury after stretching exercise is uncommon. We report a case of an 18-year-old female trained dancer who developed sciatic neuropathy primarily involving the tibial division after routine stretching exercise. The patient presented with dysesthesia and weakness of the right foot during dorsiflexion and plantarflexion. The mechanism of sciatic nerve injury could be thought as hyperstretching alone, not caused by both hyperstretching and compression. Electrodiagnostic tests and magnetic resonance imaging revealed evidence of the right sciatic neuropathy from the gluteal fold to the distal tibial area, and partial tear of the left hamstring origin and fluid collection between the left hamstring and ischium without left sciatic nerve injury. Recovery of motor weakness was obtained by continuous rehabilitation therapy and some evidence of axonal regeneration was obtained by follow-up electrodiagnostic testing performed at 3, 5, and 12 months after injury.

  12. Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve.

    PubMed

    Curtis, R; Scherer, S S; Somogyi, R; Adryan, K M; Ip, N Y; Zhu, Y; Lindsay, R M; DiStefano, P S

    1994-01-01

    Leukemia inhibitory factor (LIF) is a cytokine that affects the survival and differentiation of certain neuronal populations in vitro. To identify LIF-responsive neurons in the adult rat, we have demonstrated retrograde axonal transport of 125I-LIF to sensory and motor neurons. The accumulation of 125I-LIF by both cell types was significantly increased by prior sciatic nerve crush. Retrograde transport of 125I-LIF was inhibited by excess unlabeled LIF but not by related cytokines, indicating a specific receptor-mediated mechanism. Northern blot analysis revealed LIF expression in peripheral nerve that was increased in distal segments after axotomy. The correlation between LIF expression and increased retrograde transport following injury suggests that LIF plays a role in peripheral nerve regeneration.

  13. Bioartificial reconstruction of peripheral nerves using the rat median nerve model.

    PubMed

    Sinis, Nektarios; Kraus, Armin; Drakotos, Dimitris; Doser, Michael; Schlosshauer, Burkhard; Müller, Hans-Werner; Skouras, Emmanouil; Bruck, Johannes C; Werdin, Frank

    2011-07-01

    Different bioartificial tubes were recommended for peripheral nerve reconstruction in the past. In order to replace autologous nerve grafts this materials are still under review in different animal studies. Most of them are dealing with the rodent peripheral nerves. One very popular animal model to study different materials is the rat median nerve model. With its easy excess, simple behavioral tests and reliable long term results it is attractive to many scientists in this field. This review gives an overview about the past, current and future options in this model for bioartificial nerve tubes. It summarizes the evolution of successful implantation of different materials across short nerve gaps and demonstrates the obstacles arising from long nerve gaps and the problems associated to them. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Enhancement of nerve-injury-induced thermal and mechanical hypersensitivity in adult male and female mice following early life stress.

    PubMed

    Nishinaka, Takashi; Nakamoto, Kazuo; Tokuyama, Shogo

    2015-01-15

    Early life stress contributes to the pathogenesis of psychiatric disorders and chronic pain in adult patients. However, information about the effect of early life stress on chronic pain in mice is limited. In the present study, we evaluated the effect of early life stress on baseline pain sensitivity and thermal or mechanical hypersensitivity induced by nerve injury in male and female mice. Early life stress was induced by maternal separation and social isolation (MSSI). Mice were separated from dam and littermates for 6h/day during postnatal days 15-21 and then were housed individually until the end of the study. At 9 weeks of age, the sciatic nerve was partially ligated to elicit neuropathic pain. Thermal and mechanical sensitivity were measured by plantar and von Frey tests. At 7 weeks of age, MSSI induced depression-like behaviors in both male and female mice, but induced anxiety-like behaviors only in female mice. MSSI had no effect on thermal and mechanical sensitivity before nerve injury. However, MSSI enhanced nerve-injury-induced thermal and mechanical hypersensitivity in both male and female mice. MSSI exacerbated neuropathic pain in adult male and female mice. Overall, this model may be useful for understanding the molecular mechanisms underlying the reciprocal relationship between early life stress and chronic pain. Copyright © 2014. Published by Elsevier Inc.

  15. Upregulation of EMMPRIN (OX47) in Rat Dorsal Root Ganglion Contributes to the Development of Mechanical Allodynia after Nerve Injury.

    PubMed

    Wang, Qun; Sun, Yanyuan; Ren, Yingna; Gao, Yandong; Tian, Li; Liu, Yang; Pu, Yanan; Gou, Xingchun; Chen, Yanke; Lu, Yan

    2015-01-01

    Matrix metalloproteinases (MMPs) are widely implicated in inflammation and tissue remodeling associated with various neurodegenerative diseases and play an important role in nociception and allodynia. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) plays a key regulatory role for MMP activities. However, the role of EMMPRIN in the development of neuropathic pain is not clear. Western blotting, real-time quantitative RT-PCR (qRT-PCR), and immunofluorescence were performed to determine the changes of messenger RNA and protein of EMMPRIN/OX47 and their cellular localization in the rat dorsal root ganglion (DRG) after nerve injury. Paw withdrawal threshold test was examined to evaluate the pain behavior in spinal nerve ligation (SNL) model. The lentivirus containing OX47 shRNA was injected into the DRG one day before SNL. The expression level of both mRNA and protein of OX47 was markedly upregulated in ipsilateral DRG after SNL. OX47 was mainly expressed in the extracellular matrix of DRG. Administration of shRNA targeted against OX47 in vivo remarkably attenuated mechanical allodynia induced by SNL. In conclusion, peripheral nerve injury induced upregulation of OX47 in the extracellular matrix of DRG. RNA interference against OX47 significantly suppressed the expression of OX47 mRNA and the development of mechanical allodynia. The altered expression of OX47 may contribute to the development of neuropathic pain after nerve injury.

  16. Comparative study of phrenic and intercostal nerve transfers for elbow flexion after global brachial plexus injury.

    PubMed

    Liu, Yuzhou; Lao, Jie; Zhao, Xin

    2015-04-01

    Global brachial plexus injuries (BPIs) are devastating events frequently resulting in severe functional impairment. The widely used nerve transfer sources for elbow flexion in patients with global BPIs include intercostal and phrenic nerves. The aim of this study was to compare phrenic and intercostal nerve transfers for elbow flexion after global BPI. A retrospective review of 33 patients treated with phrenic and intercostal nerve transfer for elbow flexion in posttraumatic global root avulsion BPI was carried out. In the phrenic nerve transfer group, the phrenic nerve was transferred to the anterolateral bundle of the anterior division of the upper trunk (23 patients); in the intercostal nerve transfer group, three intercostal nerves were coapted to the anterolateral bundles of the musculocutaneous nerve. The British Medical Research Council (MRC) grading system, angle of elbow flexion, and electromyography (EMG) were used to evaluate the recovery of elbow flexion at least 3 years postoperatively. The efficiency of motor function in the phrenic nerve transfer group was 83%, while it was 70% in the intercostal nerve transfer group. The two groups were not statistically different in terms of the MRC grade (p=0.646) and EMG results (p=0.646). The outstanding rates of angle of elbow flexion were 48% and 40% in the phrenic and intercostal nerve transfer groups, respectively. There was no significant difference of outstanding rates in the angle of elbow flexion between the two groups. Phrenic nerve transfer had a higher proportion of good prognosis for elbow flexion than intercostal nerve transfer, but the effective and outstanding rate had no significant difference for biceps reinnervation between the two groups according to MRC grading, angle of elbow flexion, and EMG. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Combined treatment with FK506 and nerve growth factor for spinal cord injury in rats.

    PubMed

    Chen, Guang; Zhang, Zhen; Wang, Shouyu; Lv, Decheng

    2013-10-01

    Following spinal cord injury in rats, FK506 is able to protect local nerve tissue, promote neural regeneration, reduce neuronal apoptosis and accelerate the recovery of spinal cord functions. Nerve growth factor (NGF) is important in the regulation of central and peripheral nerve cell regeneration, growth differentiation and functions. Previous studies have shown that FK506 and NGF exhibit a synergistic effect in the treatment of peripheral nerve injury; however, it remains unclear whether the synergistic effect is present in the treatment of spinal cord injury. In this study, we combined FK506 and NGF for the treatment of spinal cord injury in rats. The NF200 protein expression in rats with spinal cord injury was determined using immunohistochemical staining and NF200 mRNA expression levels were observed using the reverse transcription-polymerase chain reaction method. The restoration of spinal cord functions was evaluated using the Basso, Beattie and Bresnahan score. The results demonstrated that the combined treatment significantly enhanced the expression of NF200 and improved spinal cord functions compared with the results of the single treatment. Our experimental observations indicated that FK506 and NGF exhibit a synergistic effect in the treatment of spinal cord injury in rats and that the combined treatment may effectively promote neural regeneration and functional recovery in rats following spinal cord injury.

  18. Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration.

    PubMed

    Li, Yiqing; Andereggen, Lukas; Yuki, Kenya; Omura, Kumiko; Yin, Yuqin; Gilbert, Hui-Ya; Erdogan, Burcu; Asdourian, Maria S; Shrock, Christine; de Lima, Silmara; Apfel, Ulf-Peter; Zhuo, Yehong; Hershfinkel, Michal; Lippard, Stephen J; Rosenberg, Paul A; Benowitz, Larry

    2017-01-10

    Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn(2+)) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn(2+) increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn(2+) accumulation in amacrine cell processes involves the Zn(2+) transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn(2+) chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn(2+) chelation extends for several days after nerve injury. These results show that retinal Zn(2+) dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn(2+) chelation as a strategy to promote long-term RGC protection and enhance axon regeneration.

  19. Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration

    PubMed Central

    Li, Yiqing; Andereggen, Lukas; Yuki, Kenya; Omura, Kumiko; Yin, Yuqin; Gilbert, Hui-Ya; Erdogan, Burcu; Asdourian, Maria S.; Shrock, Christine; de Lima, Silmara; Apfel, Ulf-Peter; Zhuo, Yehong; Hershfinkel, Michal; Lippard, Stephen J.; Benowitz, Larry

    2017-01-01

    Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn2+) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn2+ increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn2+ accumulation in amacrine cell processes involves the Zn2+ transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn2+ chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn2+ chelation extends for several days after nerve injury. These results show that retinal Zn2+ dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn2+ chelation as a strategy to promote long-term RGC protection and enhance axon regeneration. PMID:28049831

  20. Dorsal scapular nerve injury after trigger point injection into the rhomboid major muscle: A case report.

    PubMed

    Lee, Dong Gyu; Chang, Min Cheol

    2017-08-14

    We report the case of a patient who presented with right dorsal scapular neuropathy after a trigger point injection into the right rhomboid major muscle. Through a nerve conduction study and electromyography, we demonstrated dorsal scapular nerve injury in this patient. A 38-year-old man complained that his right shoulder functioned less optimally during push-up exercises after a trigger point injection 4 weeks prior. Physical examination revealed mildly reduced right shoulder retractor muscle strength compared with the left side. We performed a nerve conduction velocity test and electromyography 5 weeks after the injection. The compound muscle action potential of the right dorsal scapular nerve showed low amplitude (left vs. right side: 5.2 vs. 1.6 mV) and delayed latency (left vs. right side: 4.9 vs. 6.8 ms). Positive sharp wave (1+) and mildly reduced recruitment were seen on electromyography of the rhomboid major muscle. The findings of the nerve conduction velocity test and electromyography indicated partial right dorsal scapular neuropathy. The nerve injury seemed to have been caused by the needle inserted during trigger point injection. Clinicians should pay attention to the occurrence of dorsal scapular nerve injury when performing trigger point injection into the rhomboid muscle.

  1. Use of antioxidants for the prophylaxis of cold-induced peripheral nerve injury.

    PubMed

    Teixeira, Fernanda; Pollock, Martin; Karim, Alveera; Jiang, Yuying

    2002-09-01

    "Trench foot" is a particular risk for those involved in adventure tourism, for soldiers in winter mountain training exercises, and for the homeless. Nonfreezing cold nerve injury is characterized by axonal degeneration, which is attributed to free radicals released during cycles of ischemia and reperfusion. This pilot study sought to determine whether the administration of antioxidants might prevent or ameliorate the development of cold nerve injury. Twenty-six rats were divided into two groups. Group 1 animals received, by gavage, a mixture of vitamin C (150 mg/kg/d), vitamin E (100 mg/kg/d), and N-acetyl-L-cysteine (250 mg/kg/d) daily for 4 weeks. Allopurinol (20 mg/kg/d) was added in the last 4 days of treatment. Group 2 animals served as controls and did not receive any antioxidant supplements. After 1 month, two cycles of sciatic nerve cooling (0 degrees C) were induced in 10 controls and 10 experimental animals using circulating water through a nerve cuff. Six additional control animals were subjected to surgery but did not undergo nerve cooling. All animals were killed on the third postoperative day, and their nerves were processed for ultrastructural and quantitative studies. The proportion of degenerated myelinated and unmyelinated axons showed no significant difference between treated and untreated animals. We conclude that the administration of commonly used antioxidants does not prevent cold nerve injury.

  2. Rehabilitation, Using Guided Cerebral Plasticity, of a Brachial Plexus Injury Treated with Intercostal and Phrenic Nerve Transfers

    PubMed Central

    Dahlin, Lars B.; Andersson, Gert; Backman, Clas; Svensson, Hampus; Björkman, Anders

    2017-01-01

    Recovery after surgical reconstruction of a brachial plexus injury using nerve grafting and nerve transfer procedures is a function of peripheral nerve regeneration and cerebral reorganization. A 15-year-old boy, with traumatic avulsion of nerve roots C5–C7 and a non-rupture of C8–T1, was operated 3 weeks after the injury with nerve transfers: (a) terminal part of the accessory nerve to the suprascapular nerve, (b) the second and third intercostal nerves to the axillary nerve, and (c) the fourth to sixth intercostal nerves to the musculocutaneous nerve. A second operation—free contralateral gracilis muscle transfer directly innervated by the phrenic nerve—was done after 2 years due to insufficient recovery of the biceps muscle function. One year later, electromyography showed activation of the biceps muscle essentially with coughing through the intercostal nerves, and of the transferred gracilis muscle by deep breathing through the phrenic nerve. Voluntary flexion of the elbow elicited clear activity in the biceps/gracilis muscles with decreasing activity in intercostal muscles distal to the transferred intercostal nerves (i.e., corresponding to eighth intercostal), indicating cerebral plasticity, where neural control of elbow flexion is gradually separated from control of breathing. To restore voluntary elbow function after nerve transfers, the rehabilitation of patients operated with intercostal nerve transfers should concentrate on transferring coughing function, while patients with phrenic nerve transfers should focus on transferring deep breathing function. PMID:28316590

  3. A novel function of neuroglobin for neuroregeneration in mice after optic nerve injury.

    PubMed

    Sugitani, Kayo; Koriyama, Yoshiki; Sera, Mayuko; Arai, Kunizo; Ogai, Kazuhiro; Wakasugi, Keisuke

    2017-09-23

    Neuroglobin (Ngb) is a recently discovered heme protein in the vertebrate brain that can bind to oxygen molecules. Mammalian Ngb plays a crucial role in neuroprotection under conditions of oxidative stress. To investigate other potential functions of Ngb, we investigated the mouse retinal Ngb system following optic nerve injury. In the retina of control mice, Ngb immunoreactivity was limited to the retinal ganglion cell (RGC) layer, and this immunoreactivity rapidly decreased to less than 50% of the control level 5 days after optic nerve injury. On the basis of this decrease, we designed in vivo experiments with enhanced expression of Ngb using adult mouse retina. The enhanced expression of Ngb was achieved by injecting chimeric human Ngb protein, which included the cell membrane-penetrating module of fish Ngb. One-day pretreatment with chimeric Ngb increased immunoreactivity levels of Ngb two-fold in mouse RGCs and increased the number of surviving RGCs three-fold by 14 days after optic nerve injury compared with vehicle controls. Furthermore, in the mouse retinas showing enhanced Ngb expression, several regenerating central optic axons exhibited outgrowth and were found to pass through the nerve crush site 14 days after nerve injury. No such regenerating optic axons were observed in the control mouse optic nerve during the same time frame. The data obtained from in vivo experiments strongly indicate that mammalian Ngb has neuroprotective and neuroregenerative properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The effect of pericardial insulation on hypothermic phrenic nerve injury during open-heart surgery.

    PubMed

    Esposito, R A; Spencer, F C

    1987-03-01

    Phrenic nerve injury was evaluated prospectively in 133 patients undergoing open-heart surgery using iced saline slush for topical hypothermia. In the control group of 70 patients no attempt was made to shield the phrenic nerves from direct exposure to ice. Phrenic nerve damage occurred in 73% of these patients, as assessed by persistent diaphragm paralysis evident on inspiratory chest roentgenogram. In 2 patients the paralysis was bilateral. In the second group of 63 patients a pericardial insulation pad was used to prevent contact of the iced slush to the phrenic nerve. Diaphragm paralysis was observed in 17% of these patients. This difference was highly significant (p less than .001). Diaphragm paralysis in the control group was clinically significant; life-threatening respiratory complications developed in 7 patients (14%), frequently resulting in multiple reintubations, tracheostomy, and prolonged mechanical ventilation. In addition, 4 patients with phrenic nerve injury exhibited a clinical syndrome consistent with gastric ileus, which may possibly represent hypothermic injury to the thoracic vagi. The likelihood of phrenic nerve injury when iced saline slush is used for topical myocardial cooling and the possibility of developing serious respiratory disability would support the routine use of pericardial insulation when this method of hypothermia is used.

  5. Intraperitoneal aminoguanidine improves sciatic nerve ischemia-reperfusion injury in male sprague-dawley rats.

    PubMed

    Alipour, Mohsen; Gholami, Mohammad Reza; Jafari Anarkooli, Iraj; Sohrabi, Davood; Tajki, Javad; Pourheidar, Maryam

    2011-07-01

    The present work was designed to investigate the potential protective effects of post-ischemic treatment with aminoguanidine (AG) on sciatic nerve ischemia/reperfusion (I/R) injury in rat. Seventy-two rats were divided into 12 groups (n = 6). We used ischemia model in these groups by occluding the right common iliac and femoral arteries for 3 h with a silk suture 6-0 using slipknot technique. Treatment groups (2, 4, 6, 8, 10, and 12) received 150 mg/kg AG intraperitoneally 24 h after induction of ischemia. After certain time intervals of reperfusion (2, 4, 7, 14, and 28 days), the function of the hind limb was assessed using behavioral scores based on gait, racing reflex, toe spread, pinch sensitivity, paw position, and grasp. After euthanasia, sciatic nerves were removed at the end of reperfusion times and sections were cut at 5 μm, then were stained for light microscopy studies and graded for ischemic fiber degeneration (IFD), edema, and apoptosis. Maximal behavioral deficit occurred at 7 days of reperfusion. The comparison of behavioral score pertaining to the control and AG groups revealed significant differences and showed also a better time course in recovery (P < 0.05). Other than 3 and 4 groups, the amount of edema in AG treatment groups showed significant differences compared with control groups (P < 0.05). IFD was also significantly decreased in the AG treatment groups than controls. Most importantly, I/R-induced apoptosis were improved significantly on the 4th, 7(th), and 14th days of reperfusion in AG-treated groups compared to controls. In conclusion, our findings suggest that post-ischemic administration of AG exhibits protective effect against sciatic nerve I/R injury.

  6. Nerve Transfers to Restore Upper Extremity Function in Cervical Spinal Cord Injury: Update and Preliminary Outcomes.

    PubMed

    Fox, Ida K; Davidge, Kristen M; Novak, Christine B; Hoben, Gwendolyn; Kahn, Lorna C; Juknis, Neringa; Ruvinskaya, Rimma; Mackinnon, Susan E

    2015-10-01

    Cervical spinal cord injury can result in profound loss of upper extremity function. Recent interest in the use of nerve transfers to restore volitional control is an exciting development in the care of these complex patients. In this article, the authors review preliminary results of nerve transfers in spinal cord injury. Review of the literature and the authors' cases series of 13 operations in nine spinal cord injury nerve transfer recipients was performed. Representative cases were reviewed to explore critical concepts and preliminary outcomes. The nerve transfers used expendable donors (e.g., teres minor, deltoid, supinator, and brachialis) innervated above the level of the spinal cord injury to restore volitional control of missing function such as elbow extension, wrist extension, and/or hand function (posterior interosseous nerve or anterior interosseous nerve/finger flexors reinnervated). Results from the literature and the authors' patients (after a mean postsurgical follow-up of 12 months) indicate gains in function as assessed by both manual muscle testing and patients' self-reported outcomes measures. Nerve transfers can provide an alternative and consistent means of reestablishing volitional control of upper extremity function in people with cervical level spinal cord injury. Early outcomes provide evidence of substantial improvements in self-reported function despite relatively subtle objective gains in isolated muscle strength. Further work to investigate the optimal timing and combination of nerve transfer operations, the combination of these with traditional treatments (tendon transfer and functional electrical stimulation), and measurement of outcomes is imperative for determining the precise role of these operations. Therapeutic, IV.