Science.gov

Sample records for nerve root displacement

  1. Five Roots Pattern of Median Nerve Formation.

    PubMed

    Natsis, Konstantinos; Paraskevas, George; Tzika, Maria

    2016-01-01

    An unusual combination of median nerve's variations has been encountered in a male cadaver during routine educational dissection. In particular, the median nerve was formed by five roots; three roots originated from the lateral cord of the brachial plexus joined individually the median nerve's medial root. The latter (fourth) root was united with the lateral (fifth) root of the median nerve forming the median nerve distally in the upper arm and not the axilla as usually. In addition, the median nerve was situated medial to the brachial artery. We review comprehensively the relevant variants, their embryologic development and their potential clinical applications. PMID:27131354

  2. Dorsal displacement of the ulnar nerve after a displaced distal radius fracture: case report.

    PubMed

    Sohal, Jennifer Kaur R; Chia, Benjamin; Catalano, Louis W

    2009-03-01

    We report on a patient in whom ulnar nerve palsy developed after a closed distal radius fracture due to displacement of the ulnar nerve dorsal to the ulnar styloid. After delayed exploration and decompression of the ulnar nerve, the patient had recovery of both motor and sensory function of the ulnar nerve.

  3. Chronic nerve root entrapment: compression and degeneration

    NASA Astrophysics Data System (ADS)

    Vanhoestenberghe, A.

    2013-02-01

    Electrode mounts are being developed to improve electrical stimulation and recording. Some are tight-fitting, or even re-shape the nervous structure they interact with, for a more selective, fascicular, access. If these are to be successfully used chronically with human nerve roots, we need to know more about the possible damage caused by the long-term entrapment and possible compression of the roots following electrode implantation. As there are, to date, no such data published, this paper presents a review of the relevant literature on alternative causes of nerve root compression, and a discussion of the degeneration mechanisms observed. A chronic compression below 40 mmHg would not compromise the functionality of the root as far as electrical stimulation and recording applications are concerned. Additionally, any temporary increase in pressure, due for example to post-operative swelling, should be limited to 20 mmHg below the patient’s mean arterial pressure, with a maximum of 100 mmHg. Connective tissue growth may cause a slower, but sustained, pressure increase. Therefore, mounts large enough to accommodate the root initially without compressing it, or compliant, elastic, mounts, that may stretch to free a larger cross-sectional area in the weeks after implantation, are recommended.

  4. Posterior interosseous and ulnar nerve motor palsies after a minimally displaced radial neck fracture.

    PubMed

    Stepanovich, Matthew T; Hogan, Christopher J

    2012-08-01

    Peripheral nerve injury is a serious potential complication following an upper extremity fracture. A rare case of acute posterior interosseous nerve and ulnar nerve palsy following a minimally displaced radial neck fracture is reported. With nonsurgical management, both nerves demonstrated excellent functional recovery. Although rare, nerve palsies can occur during a variety of upper extremity clinical situations, including minimally displaced fractures, and the importance of a detailed neurologic examination cannot be overstated.

  5. Study on lumbosacral nerve root compression using DTI

    PubMed Central

    Li, Jinfeng; Wang, Yonghao; Wang, Yueyi; Lv, Yang; Ma, Lin

    2016-01-01

    Diffusion tensor imaging (DTI) can objectively describe the distribution of nerve roots in morphology, and provide a set of objective reference data on the quantitative indicators. The present study aimed to investigate the value of DTI in lumbosacral nerve root compression in patients with lumbar intervertebral disc degeneration. DTI was performed in 45 patients with lumbar intervertebral disc degeneration. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in compressed and normal nerve roots. Fiber tracking imaging was also applied to observe the lumbosacral nerve roots. ADC value was significantly lower in the compressed group (1.314±0.14 mm2/sec) compared to in the uncompressed group (1.794±0.11 mm2/sec) (P<0.05). The FA value was significantly lower in the compressed group (0.196±0.020) compared to the uncompressed group (0.272±0.016) (P<0.05). DTI can evidently reveal the compressed nerve roots. DTI could be used to evaluate the lumbosacral nerve injury in patients with lumbar intervertebral disc degeneration to quantitatively assess nerve roots.

  6. Study on lumbosacral nerve root compression using DTI

    PubMed Central

    Li, Jinfeng; Wang, Yonghao; Wang, Yueyi; Lv, Yang; Ma, Lin

    2016-01-01

    Diffusion tensor imaging (DTI) can objectively describe the distribution of nerve roots in morphology, and provide a set of objective reference data on the quantitative indicators. The present study aimed to investigate the value of DTI in lumbosacral nerve root compression in patients with lumbar intervertebral disc degeneration. DTI was performed in 45 patients with lumbar intervertebral disc degeneration. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in compressed and normal nerve roots. Fiber tracking imaging was also applied to observe the lumbosacral nerve roots. ADC value was significantly lower in the compressed group (1.314±0.14 mm2/sec) compared to in the uncompressed group (1.794±0.11 mm2/sec) (P<0.05). The FA value was significantly lower in the compressed group (0.196±0.020) compared to the uncompressed group (0.272±0.016) (P<0.05). DTI can evidently reveal the compressed nerve roots. DTI could be used to evaluate the lumbosacral nerve injury in patients with lumbar intervertebral disc degeneration to quantitatively assess nerve roots. PMID:27602215

  7. Morphological characteristics of the cranial root of the accessory nerve.

    PubMed

    Liu, Hong-Fu; Won, Hyung-Sun; Chung, In-Hyuk; Kim, In-Beom; Han, Seung-Ho

    2014-11-01

    There has been the controversy surrounding the cranial root (CR) of the accessory nerve. This study was performed to clarify the morphological characteristics of the CR in the cranial cavity. Fifty sides of 25 adult cadaver heads were used. The accessory nerve was easily distinguished from the vagus nerve by the dura mater in the jugular foramen in 80% of 50 specimens. The trunk of the accessory nerve from the spinal cord penetrated the dura mater at various distances before entering the jugular foramen. In 20% of the specimens there was no dural boundary. In these cases, the uppermost cranial rootlet of the accessory nerve could be identified by removing the dura mater around the jugular foramen where it joined to the trunk of the accessory nerve at the superior vagal ganglion. The cranial rootlet was formed by union of two to four short filaments emerging from the medulla oblongata (66%) and emerged single, without filament (34%), and usually joined the trunk of the accessory nerve directly before the jugular foramen. The mean number of rootlets of the CR was 4.9 (range 2-9) above the cervicomedullary junction. The CR of the accessory nerve was composed of two to nine rootlets, which were formed by the union of two to four short filaments and joined the spinal root of the accessory nerve. The CR is morphologically distinct from the vagus nerve, confirming its existence.

  8. Proposed classification of auriculotemporal nerve, based on the root system.

    PubMed

    Komarnitki, Iulian; Tomczyk, Jacek; Ciszek, Bogdan; Zalewska, Marta

    2015-01-01

    The topography of the auriculotemporal nerve (ATN) root system is the main criterion of this nerve classification. Previous publications indicate that ATN may have between one and five roots. Most common is a one- or two-root variant of the nerve structure. The problem of many publications is the inconsistency of nomenclature which concerns the terms "roots", "connecting branches", or "branches" that are used to identify the same structures. This study was performed on 80 specimens (40 adults and 40 fetuses) to propose a classification based on: (i) the number of roots, (ii) way of root division, and (iii) configuration of interradicular fibers that form the ATN trunk. This new classification is a remedy for inconsistency of nomenclature of ATN in the infratemporal fossa. This classification system has proven beneficial when organizing all ATN variants described in previous studies and could become a helpful tool for surgeons and dentists. Examination of ATN from the infratemporal fossa of fetuses (the youngest was at 18 weeks gestational age) showed that, at that stage, the nerve is fully developed.

  9. High Frequency Sacral Root Nerve Block Allows Bladder Voiding

    PubMed Central

    Boger, Adam S.; Bhadra, Narendra; Gustafson, Kenneth J

    2013-01-01

    1) Aims Dyssynergic reflexive external urethral sphincter (EUS) activity following spinal cord injury can prevent bladder voiding, resulting in significant medical complications. Irreversible sphincterotomies or neurotomies can prevent EUS activation and allow bladder voiding, but may cause incontinence or loss of sacral reflexes. We investigated whether kilohertz frequency (KF) electrical conduction block of the sacral roots could prevent EUS activation and allow bladder voiding. 2) Methods The S2 sacral nerve roots were stimulated bilaterally to generate bladder pressure in 6 cats. One S1 nerve root was stimulated proximally (20 Hz biphasic pulse trains) to evoke EUS pressure, simulating worst-case dyssynergic EUS reflexes. KF waveforms (12.5 kHz biphasic square wave) applied to an electrode implanted distally on the S1 nerve root blocked nerve conduction, preventing the increase in EUS pressure and allowing voiding. 3) Results Applying KF waveforms increased bladder voiding in single, limited-duration trials from 3 ± 6% to 59 ± 12%. Voiding could be increased to 82 ± 9% of the initial bladder volume by repeating or increasing the duration of the trials. 4) Conclusions Sacral nerve block can prevent EUS activation and allow complete bladder voiding, potentially eliminating the need for a neurotomy. Eliminating neurotomy requirements could increase patient acceptance of bladder voiding neuroprostheses, increasing patient quality of life and reducing the cost of patient care. PMID:22473837

  10. Proposed Classification of Auriculotemporal Nerve, Based on the Root System

    PubMed Central

    Komarnitki, Iulian; Tomczyk, Jacek; Ciszek, Bogdan; Zalewska, Marta

    2015-01-01

    The topography of the auriculotemporal nerve (ATN) root system is the main criterion of this nerve classification. Previous publications indicate that ATN may have between one and five roots. Most common is a one- or two-root variant of the nerve structure. The problem of many publications is the inconsistency of nomenclature which concerns the terms “roots”, “connecting branches”, or “branches” that are used to identify the same structures. This study was performed on 80 specimens (40 adults and 40 fetuses) to propose a classification based on: (i) the number of roots, (ii) way of root division, and (iii) configuration of interradicular fibers that form the ATN trunk. This new classification is a remedy for inconsistency of nomenclature of ATN in the infratemporal fossa. This classification system has proven beneficial when organizing all ATN variants described in previous studies and could become a helpful tool for surgeons and dentists. Examination of ATN from the infratemporal fossa of fetuses (the youngest was at 18 weeks gestational age) showed that, at that stage, the nerve is fully developed. PMID:25856464

  11. The diameters and number of nerve fibers in spinal nerve roots

    PubMed Central

    Liu, YongTao; Zhou, XiaoJi; Ma, Jun; Ge, YingBin; Cao, Xiaojian

    2015-01-01

    Objective To investigate the anatomical and histological features of spinal nerve roots and provide base data for neuroanastomosis therapy for paraplegia. Methods Spinal nerve roots from C1 to S5 were exposed on six adult cadavers. The diameter and the number of nerve fibers of each nerve root were measured, respectively, with a caliper and image analysis software. Results As for ventral roots, the diameter of C5 (2.50 ± 0.55 mm) was the largest in cervical segments. In thoracic and lumbosacral segments, the diameter gradually increased from T11 to S1 and then decreased from S1 to S5 except L3. S1 (1.43 ± 0.16 mm) was the thickest root and S5 (0.14 ± 0.02 mm) was the thinnest one. As for dorsal roots, the diameter of C7 (4.61 ± 0.87 mm) was the largest in cervical segments. From T11 to S1, the diameter increased and then decreased gradually from S1 to S5. The diameter of dorsal roots from T1 to S5 was largest at S1 (2.95 ± 0.57 mm) and smallest at S5 (0.27 ± 0.13 mm), respectively. C7 (8467 ± 1019), T12 (6538 ± 892), L3 (9169 ± 1160), and S1 (8253 ± 1419) ventral roots contained the most nerve fibers in cervical, thoracic, lumbar, and sacral segments, respectively. Similarly, C7 (39 653 ± 8458), T1 (26 507 ± 7617), L5 (34 455 ± 2740), and S1 (41 543 ± 3036) dorsal roots, respectively, contained the most nerve fibers in their corresponding segments. Conclusion The findings in the current study provided the imperative data and may be valuable for spinal nerve root microanastomosis surgery in the paraplegic patients. PMID:24605949

  12. The use of the phrenic nerve communicating branch to the fifth cervical root for nerve transfer to the suprascapular nerve in infants with obstetric brachial plexus palsy.

    PubMed

    Al-Qattan, M M; El-Sayed, A A F

    2014-01-01

    Traditionally, suprascapular nerve reconstruction in obstetric brachial plexus palsy is done using either the proximal C5 root stump or the spinal accessory nerve. This paper introduces another potential donor nerve for neurotizing the suprascapular nerve: the phrenic nerve communicating branch to the C5 root. The prevalence of this communicating branch ranges from 23% to 62% in various anatomical dissections. Over the last two decades, the phrenic communicating branch was used to reconstruct the suprascapular nerve in 15 infants. Another 15 infants in whom the accessory nerve was used to reconstruct the suprascapular nerve were selected to match the former 15 cases with regard to age at the time of surgery, type of palsy, and number of avulsed roots. The results showed that there is no significant difference between the two groups with regard to recovery of external rotation of the shoulder. It was concluded that the phrenic nerve communicating branch may be considered as another option to neurotize the suprascapular nerve.

  13. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration.

    PubMed

    Conovaloff, Aaron; Panitch, Alyssa

    2011-10-01

    Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin. It was also revealed that nerve growth factor exhibits a slightly stronger affinity for hyaluronic acid than for chondroitin sulfate. However, E8 chick dorsal root ganglia cultured in the presence of nerve growth factor revealed that ganglia cultured in chondroitin sulfate scaffolds showed more robust growth than those cultured in control gels of hyaluronic acid. It is hypothesized that, despite the stronger affinity of nerve growth factor for hyaluronic acid, chondroitin sulfate serves as a better scaffold for neurite outgrowth, possibly due to inhibition of growth by hyaluronic acid chains. PMID:21804177

  14. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration

    NASA Astrophysics Data System (ADS)

    Conovaloff, Aaron; Panitch, Alyssa

    2011-10-01

    Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin. It was also revealed that nerve growth factor exhibits a slightly stronger affinity for hyaluronic acid than for chondroitin sulfate. However, E8 chick dorsal root ganglia cultured in the presence of nerve growth factor revealed that ganglia cultured in chondroitin sulfate scaffolds showed more robust growth than those cultured in control gels of hyaluronic acid. It is hypothesized that, despite the stronger affinity of nerve growth factor for hyaluronic acid, chondroitin sulfate serves as a better scaffold for neurite outgrowth, possibly due to inhibition of growth by hyaluronic acid chains.

  15. Infrared neural stimulation of human spinal nerve roots in vivo

    PubMed Central

    Cayce, Jonathan M.; Wells, Jonathon D.; Malphrus, Jonathan D.; Kao, Chris; Thomsen, Sharon; Tulipan, Noel B.; Konrad, Peter E.; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2015-01-01

    Abstract. Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients (n=7) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and 1.23  J/cm2. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at 1.09  J/cm2 and a 2∶1 safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans. PMID:26157986

  16. Familial risks for nerve, nerve root and plexus disorders in siblings based on hospitalisations in Sweden

    PubMed Central

    Hemminki, Kari; Li, Xinjun; Sundquist, Kristina

    2007-01-01

    Background Nerve, nerve root and plexus disorders are common diseases, but little is known about familial clustering in these diseases. This is, to our knowledge, the first systematic family study carried out on these diseases. Methods Familial risks for siblings who were hospitalised for nerve, nerve root and plexus disorders in Sweden were defined. A nationwide database for neurological diseases was constructed by linking the Multigeneration Register on 0–69‐year‐old siblings to the Hospital Discharge Register covering the years 1987–2001. Standardised risk ratios (SIRs) were calculated for affected sibling pairs by comparing them with those whose siblings had no neurological disease. Results 29 686 patients, 43% men and 57% women, were diagnosed at a mean age of 37.5 years. 191 siblings were hospitalised for these disorders, giving an overall SIR of 2.59 (95% CI 1.58 to 4.22), with no sex difference. Plantar nerve mononeuritis and carpal tunnel syndrome showed the highest familial risks: 4.82 (1.08 to 16.04) and 4.08 (2.07 to 7.84), respectively. Lateral poplitean and plantar nerve neuritis preferentially affected women, with SIRs of >8; disorders of the other cranial nerves affected only men, with an SIR of >10. Concordant trigeminal neuralgia, Bell's palsy and carpal tunnel syndrome showed familial risks, but, with the exception of Bell's palsy, they also showed correlation between spouses, implying environmental sharing of risk factors. Conclusions The results cannot distinguish between inheritable or shared environmental factors, or their interactions, but they clearly show familial clustering, suggestive of multifactorial aetiology and inviting for aetiological research. PMID:17183020

  17. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia.

    PubMed

    Li, Qinwen; Chen, Jianghai; Chen, Yanhua; Cong, Xiaobin; Chen, Zhenbing

    2016-03-01

    In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription‑quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post‑compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR‑labeled DRG neurons were significantly higher, relative to the sham‑operated group, however, the numbers of FG‑labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor‑β1 (TGF‑β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)‑extracellular signal‑regulated kinase 1/2, and significantly lower levels of p‑c‑Jun N‑terminal kinase and p‑p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF‑β1, CTGF and collagen type I, with involvement of the mitogen‑activated protein kinase signaling pathway. PMID:26820076

  18. Clinical applications of diffusion magnetic resonance imaging of the lumbar foraminal nerve root entrapment

    PubMed Central

    Ohtori, Seiji; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Orita, Sumihisa; Kamoda, Hiroto; Arai, Gen; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Ochiai, Nobuyasu; Kishida, Shunji; Masuda, Yoshitada; Ochi, Shigehiro; Kikawa, Takashi; Takaso, Masashi; Aoki, Yasuchika; Toyone, Tomoaki; Suzuki, Takane; Takahashi, Kazuhisa

    2010-01-01

    Diffusion-weighted imaging (DWI) can provide valuable structural information about tissues that may be useful for clinical applications in evaluating lumbar foraminal nerve root entrapment. Our purpose was to visualize the lumbar nerve root and to analyze its morphology, and to measure its apparent diffusion coefficient (ADC) in healthy volunteers and patients with lumbar foraminal stenosis using 1.5-T magnetic resonance imaging. Fourteen patients with lumbar foraminal stenosis and 14 healthy volunteers were studied. Regions of interest were placed at the fourth and fifth lumbar root at dorsal root ganglia and distal spinal nerves (at L4 and L5) and the first sacral root and distal spinal nerve (S1) on DWI to quantify mean ADC values. The anatomic parameters of the spinal nerve roots can also be determined by neurography. In patients, mean ADC values were significantly higher in entrapped roots and distal spinal nerve than in intact ones. Neurography also showed abnormalities such as nerve indentation, swelling and running transversely in their course through the foramen. In all patients, leg pain was ameliorated after selective decompression (n = 9) or nerve block (n = 5). We demonstrated the first use of DWI and neurography of human lumbar nerves to visualize and quantitatively evaluate lumbar nerve entrapment with foraminal stenosis. We believe that DWI is a potential tool for diagnosis of lumbar nerve entrapment. PMID:20632042

  19. Transforaminal ligament may play a role in lumbar nerve root compression of foraminal stenosis.

    PubMed

    Qian, Yu; Qin, An; Zheng, Ming H

    2011-12-01

    Lumbar foraminal stenosis is a common pathological change, and lumbar nerve root compression in stenotic foramina was recently considered as one of the main causes of low back pain and leg pain. However, the exact mechanism of lumbar nerve root compression in foramina is still not clear. Previous studies indicated that loss of the intervertebral disc height could reduce the cross-sectional area of lumbar foramina, while lumbar nerve root compression by boundaries of foramina has not been observed in experimental reduction of the intervertebral disc height. Given the close anatomic relationship between transforaminal ligaments and lumbar nerve roots, we hypothesize that transforaminal ligament can be the leading cause of lumbar nerve root compression in foraminal stenosis. We also propose that there are two possible mechanisms of lumbar nerve root compression by transforaminal ligaments: (1) nerve roots are compressed by the transforaminal ligament which moves downward with the loss of the intervertebral disc height; (2) pathological transforaminal ligaments increase the risk of nerve root compression in foramina.

  20. Ultrasonographic reference sizes of the median and ulnar nerves and the cervical nerve roots in healthy Japanese adults.

    PubMed

    Sugimoto, Takamichi; Ochi, Kazuhide; Hosomi, Naohisa; Mukai, Tomoya; Ueno, Hiroki; Takahashi, Tetsuya; Ohtsuki, Toshiho; Kohriyama, Tatsuo; Matsumoto, Masayasu

    2013-09-01

    The objective of this study was to identify, for practical use, ultrasonographic reference values for nerve sizes at multiple sites, including entrapment and non-entrapment sites along the median and ulnar nerves and among the cervical nerve roots. We verified reliable sites and site-based differences between the reference values. In addition, we found associations between the reference nerve sizes and several physical characteristics (gender, dominant hand, age, height, weight, body mass index [BMI] and wrist circumference). Nerves were measured bilaterally at 26 sites or levels in 60 healthy Japanese adults (29 males; age, 35.4 ± 9.7 y; BMI, 22.3 ± 3.6 kg/m(2); wrist circumference, 16.0 ± 1.3 cm on the right side and 15.9 ± 1.2 cm on the left side). The mean reference nerve sizes were 5.6-9.1 mm(2) along the median nerve, 4.1-6.7 mm(2) along the ulnar nerve and 2.14-3.39 mm among the cervical nerve roots. Multifactorial regression analyses revealed that the physical characteristics most strongly associated with nerve size were age, BMI and wrist circumference at the entrapment sites (F = 7.6, p < 0.01, at the pisiform bone level of the carpal tunnel; F = 15.1, p < 0.001, at the level of Guyon's canal), as well as wrist circumference and gender at the non-entrapment sites (F = 70.6, p < 0.001, along the median nerve; F = 24.7, p < 0.001, along the ulnar nerve). Our results suggest that the factors with the greatest influence on nerve size differed between entrapment and non-entrapment sites. Site-based differences in nerve size were determined using one-way analyses of variance (p < 0.001). Intra- and inter-observer reliability was highest for the median nerve, at both the distal wrist crease and mid-humerus; at the arterial split along the ulnar nerve; and at the fifth cervical nerve root level. No systematic error was indicated by Bland-Altman analysis; the coefficients of variation were 5.5%-9.2% for intra-observer reliability and 7.1%-8.7% for inter

  1. Ultrasonographic reference sizes of the median and ulnar nerves and the cervical nerve roots in healthy Japanese adults.

    PubMed

    Sugimoto, Takamichi; Ochi, Kazuhide; Hosomi, Naohisa; Mukai, Tomoya; Ueno, Hiroki; Takahashi, Tetsuya; Ohtsuki, Toshiho; Kohriyama, Tatsuo; Matsumoto, Masayasu

    2013-09-01

    The objective of this study was to identify, for practical use, ultrasonographic reference values for nerve sizes at multiple sites, including entrapment and non-entrapment sites along the median and ulnar nerves and among the cervical nerve roots. We verified reliable sites and site-based differences between the reference values. In addition, we found associations between the reference nerve sizes and several physical characteristics (gender, dominant hand, age, height, weight, body mass index [BMI] and wrist circumference). Nerves were measured bilaterally at 26 sites or levels in 60 healthy Japanese adults (29 males; age, 35.4 ± 9.7 y; BMI, 22.3 ± 3.6 kg/m(2); wrist circumference, 16.0 ± 1.3 cm on the right side and 15.9 ± 1.2 cm on the left side). The mean reference nerve sizes were 5.6-9.1 mm(2) along the median nerve, 4.1-6.7 mm(2) along the ulnar nerve and 2.14-3.39 mm among the cervical nerve roots. Multifactorial regression analyses revealed that the physical characteristics most strongly associated with nerve size were age, BMI and wrist circumference at the entrapment sites (F = 7.6, p < 0.01, at the pisiform bone level of the carpal tunnel; F = 15.1, p < 0.001, at the level of Guyon's canal), as well as wrist circumference and gender at the non-entrapment sites (F = 70.6, p < 0.001, along the median nerve; F = 24.7, p < 0.001, along the ulnar nerve). Our results suggest that the factors with the greatest influence on nerve size differed between entrapment and non-entrapment sites. Site-based differences in nerve size were determined using one-way analyses of variance (p < 0.001). Intra- and inter-observer reliability was highest for the median nerve, at both the distal wrist crease and mid-humerus; at the arterial split along the ulnar nerve; and at the fifth cervical nerve root level. No systematic error was indicated by Bland-Altman analysis; the coefficients of variation were 5.5%-9.2% for intra-observer reliability and 7.1%-8.7% for inter

  2. Radiological anatomical consideration of conjoined nerve root with a case review

    PubMed Central

    Oh, Chang Hyun; Park, Jae Suk; Choi, Won-Seok; Choi, Eunhwa

    2013-01-01

    Nerve root anomalies are frequently underrecognized regardless of the advances in imaging studies; they are also underappreciated and underreported when encountered surgically. The classification of conjoined nerve roots is based on whether the nerve root emerges at an abnormal level or from an anastomotic branch. In the present report, we describe case with a conjoined nerve root that emerged at a more caudal level than that normally observed that was an undiagnosed on preoperative imaging studies. We also discuss the atypical imaging features obtained through preoperative imaging studies. As observed in the present case, preoperative recognition and diagnosis of such anomalies offer the best opportunity of performing a successful procedure and preventing inadvertent damage to nerve roots intraoperatively. PMID:24386602

  3. The effect of the rotational angle on MR diffusion indices in nerves: Is the rms displacement of the slow-diffusing component a good measure of fiber orientation?

    NASA Astrophysics Data System (ADS)

    Bar-Shir, Amnon; Cohen, Yoram

    2008-01-01

    In recent years, much effort has been made to increase our ability to infer nerve fiber direction through the use of diffusion MR. The present study examines the effect of the rotational angle ( α), i.e. the angle between the diffusion sensitizing gradients and the main axis of the fibers in the nerves, on different NMR indices. The indices examined were the apparent diffusion coefficient (ADC), extracted from low b-values ( bmax ≈ 1200 s/mm 2), and the root mean square (rms) displacement of the fast and the slow-diffusing components extracted from high b-value q-space diffusion MR data. In addition, the effect of both the diffusion time and myelination was evaluated. We found that the most sensitive index to the rotational angle is the rms displacement of the slow-diffusing component extracted from the high b-value q-space diffusion MR experiment. For this component the rms displacement was nearly constant for α values ranging from -10° to +80° (where α = 0° is the z direction), but it changed dramatically when diffusion was measured nearly perpendicular to the nerve fiber direction, i.e., for α = 90 ± 10°. The ADC and the rms displacement of the fast-diffusing component exhibited only gradual changes, with a maximal change at α = 45 ± 15°. The sensitivity of the rms displacement of the slow-diffusing component to the rotational angle was found to be higher at longer diffusion times and in mature fully myelinated nerves. The relevance of these observations for determining the fiber direction is briefly discussed.

  4. Contralateral C7 nerve root transfer in treatment of cerebral palsy in a child: case report.

    PubMed

    Xu, Wen-Dong; Hua, Xu-Yun; Zheng, Mou-Xiong; Xu, Jian-Guang; Gu, Yu-Dong

    2011-07-01

    A 4-year-old girl who sustained the hemiplegic cerebral palsy and subsequent spasticity in the left upper extremity underwent the C7 nerve root rhizotomy and the contralateral C7 nerve root transfer to the ipsilateral middle trunk of brachial plexus through an interpositional sural nerve graft. In a 2-year follow-up, the results showed a reduction in spasticity and an improvement in extension power of the elbow, the wrist, and the second to fifth fingers. Scores from both Quality of Upper Extremity Skills Test and Modified Ashworth Scale tests had been significantly improved during follow-up. The outcomes from this case provided the evidence that combined the C7 nerve root rhizotomy and contralateral healthy C7 nerve root transfer to the ipsilateral middle trunk of brachial plexus not only partially released flexional spasticity but also strengthened extension power of the spastic upper extremity in children with the cerebral palsy. PMID:21503970

  5. A widely displaced Galeazzi-equivalent lesion with median nerve compromise.

    PubMed

    Galanopoulos, Ilias; Fogg, Quentin; Ashwood, Neil; Fu, Katherine

    2012-08-18

    We present the case of a 14-year-old boy with a right distal radial fracture accompanied by a severely displaced complete distal ulnar physeal separation and associated median nerve compromise. This injury is known as Galeazzi-equivalent lesion in children and is an extremely rare injury associated with growth arrest. Recognition of the lesion can be difficult but wide displacement may be associated with other significant injuries such as neurovascular compromise. Prompt intervention reversed the neurological symptoms. At 10-month postoperation there was neither growth arrest nor loss of motion. Complete separation of the ulna physis remains often because of soft tissue interposition or capsule problems and prompt reduction is recommended in the literature as a priority.

  6. A widely displaced Galeazzi-equivalent lesion with median nerve compromise

    PubMed Central

    Galanopoulos, Ilias; Fogg, Quentin; Ashwood, Neil; Fu, Katherine

    2012-01-01

    We present the case of a 14-year-old boy with a right distal radial fracture accompanied by a severely displaced complete distal ulnar physeal separation and associated median nerve compromise. This injury is known as Galeazzi-equivalent lesion in children and is an extremely rare injury associated with growth arrest. Recognition of the lesion can be difficult but wide displacement may be associated with other significant injuries such as neurovascular compromise. Prompt intervention reversed the neurological symptoms. At 10-month postoperation there was neither growth arrest nor loss of motion. Complete separation of the ulna physis remains often because of soft tissue interposition or capsule problems and prompt reduction is recommended in the literature as a priority. PMID:22907852

  7. Primary glioblastoma of the trigeminal nerve root entry zone: case report.

    PubMed

    Breshears, Jonathan D; Ivan, Michael E; Cotter, Jennifer A; Bollen, Andrew W; Theodosopoulos, Phillip V; Berger, Mitchel S

    2015-01-01

    Gliomas of the cranial nerve root entry zone are rare clinical entities. There have been 11 reported cases in the literature, including only 2 glioblastomas. The authors report the case of a 67-year-old man who presented with isolated facial numbness and was found to have a glioblastoma involving the trigeminal nerve root entry zone. After biopsy the patient completed treatment with conformal radiation and concomitant temozolomide, and at 23 weeks after surgery he demonstrated symptom progression despite the treatment described. This is the first reported case of a glioblastoma of the trigeminal nerve root entry zone. PMID:25380115

  8. Redundant Nerve Roots of Cauda Equina Mimicking Intradural Disc Herniation: A Case Report

    PubMed Central

    Yang, Sang Mi; Park, Hyung Ki; Cho, Sung Jin

    2013-01-01

    Redundant Nerve Roots (RNRs) is an uncommon clinical condition characterized by a tortuous, serpentine, large and elongated nerve root of the cauda equina. To our knowledge, most cases of RNRs are associated with lumbar stenosis, and RNRs associated with lumbar disc herniation has not been reported until now. Here we present a rare case of unusual RNRs associated with lumbar disc herniation mimicking intradural disc herniation. PMID:24757458

  9. Perineurial differentiation in interchange grafts of rat peripheral nerve and spinal root.

    PubMed Central

    Radek, A; Thomas, P K; King, R H

    1986-01-01

    The differentiation of the perineurium has been examined in replacement nerve grafts in which segments of the third lumbar dorsal root and the peroneal division of the sciatic nerve of rats were excised and resutured into the gaps. This was compared with perineurial differentiation in interchange grafts in which segments of peroneal nerve were grafted into the third lumbar dorsal root and vice versa. It was concluded that not only the origin of the graft but also the local tissue environment is important in determining the morphological outcome, the latter having the predominant influence. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:3693073

  10. Spinal nerve root ganglionitis as a cause of disc herniation: case report.

    PubMed

    Roser, Florian; Ritz, Rainer; Morgalla, Matthias; Tatagiba, Marcos; Bornemann, Antje

    2005-04-01

    The authors report on a patient in whom monoradicular pain was caused by ganglionitis of a spinal nerve. Neuroimaging and intraoperative findings identified what were thought to be tumorlike changes in the affected nerve root. The neuropathological examination, however, revealed typical signs of ganglionitis. This rare inflammation usually appears with viral infections, as part of paraneoplastic symptoms, or in the presence of Sjögren disease. Because all of these differential diagnoses were negative in the treated patient, chronic nerve root compression due to disc herniation was suspected as the causative factor for the spinal ganglionitis.

  11. Skin Sympathetic Nerve Activity is Modulated during Slow Sinusoidal Linear Displacements in Supine Humans

    PubMed Central

    Bolton, Philip S.; Hammam, Elie; Kwok, Kenny; Macefield, Vaughan G.

    2016-01-01

    Low-frequency sinusoidal linear acceleration (0.08 Hz, ±4 mG) modulates skin sympathetic nerve activity (SSNA) in seated subjects (head vertical), suggesting that activation of the utricle in the peripheral vestibular labyrinth modulates SSNA. The aim of the current study was to determine whether SSNA is also modulated by input from the saccule. Tungsten microelectrodes were inserted into the common peroneal nerve to record oligounitary SSNA in 8 subjects laying supine on a motorized platform with the head aligned with the longitudinal axis of the body. Slow sinusoidal (0.08 Hz, 100 cycles) linear acceleration-decelerations (peak ±4 mG) were applied rostrocaudally to predominately activate the saccules, or mediolaterally to predominately activate the utricles. Cross-correlation histograms were constructed between the negative-going sympathetic spikes and the positive peaks of the sinusoidal stimuli. Sinusoidal linear acceleration along the rostrocaudal axis or mediolateral axis both resulted in sinusoidal modulation of SSNA (Median, IQR 27.0, 22–33% and 24.8, 17–39%, respectively). This suggests that both otolith organs act on sympathetic outflow to skin and muscle in a similar manner during supine displacements. PMID:26909019

  12. The Relation Between Rotation Deformity and Nerve Root Stress in Lumbar Scoliosis

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Joong; Lee, Hwan-Mo; Moon, Seong-Hwan; Chun, Heoung-Jae; Kang, Kyoung-Tak

    Even though several finite element models of lumbar spine were introduced, there has been no model including the neural structure. Therefore, the authors made the novel lumbar spine finite element model including neural structure. Using this model, we investigated the relation between the deformity pattern and nerve root stress. Two lumbar models with different types of curve pattern (lateral bending and lateral bending with rotation curve) were made. In the model of lateral bending curves without rotation, the principal compressive nerve root stress on the concave side was greater than the principal tensile stress on the convex side at the apex vertebra. Contrarily, in the lateral bending curve with rotational deformity, the nerve stress on the convex side was higher than that on the concave side. Therefore, this study elicit that deformity pattern could have significantly influence on the nerve root stress in the lumbar spine.

  13. More nerve root injuries occur with minimally invasive lumbar surgery: Let's tell someone

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: In a recent study entitled: “More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion (XLIF): A review”, Epstein documented that more nerve root injuries occurred utilizing minimally invasive surgery (MIS) versus open lumbar surgery for diskectomy, decompression of stenosis (laminectomy), and/or fusion for instability. Methods: In large multicenter Spine Patient Outcomes Research Trial reviews performed by Desai et al., nerve root injury with open diskectomy occurred in 0.13–0.25% of cases, occurred in 0% of laminectomy/stenosis with/without fusion cases, and just 2% for open laminectomy/stenosis/degenerative spondylolisthesis with/without fusion. Results: In another MIS series performed largely for disc disease (often contained nonsurgical disc herniations, therefore unnecessary procedures) or spondylolisthesis, the risk of root injury was 2% for transforaminal lumbar interbody fusion (TLIF) versus 7.8% for posterior lumbar interbody fusion (PLIF). Furthermore, the high frequencies of radiculitis/nerve root/plexus injuries incurring during anterior lumbar interbody fusions (ALIF: 15.8%) versus extreme lumbar interbody fusions (XLIF: 23.8%), addressing disc disease, failed back surgery, and spondylolisthesis, were far from acceptable. Conclusions: The incidence of nerve root injuries following any of the multiple MIS lumbar surgical techniques (TLIF/PLIF/ALIF/XLIF) resulted in more nerve root injuries when compared with open conventional lumbar surgical techniques. Considering the majority of these procedures are unnecessarily being performed for degenerative disc disease alone, spine surgeons should be increasingly asked why they are offering these operations to their patients? PMID:26904373

  14. The Effect of Optic Disc Center Displacement on Retinal Nerve Fiber Layer Measurement Determined by Spectral Domain Optical Coherence Tomography

    PubMed Central

    Uhm, Ki Bang; Sung, Kyung Rim; Kang, Min Ho; Cho, Hee Yoon; Seong, Mincheol

    2016-01-01

    Purpose To investigate the effect of optic disc center displacement on retinal nerve fiber layer (RNFL) measurement determined by spectral domain optical coherence tomography (SD-OCT). Methods The optic disc center was manipulated at 1-pixel intervals in horizontal, vertical, and diagonal directions. According to the manipulated optic disc center location, the RNFL thickness data were resampled: (1) at a 3.46-mm diameter circle; and (2) between a 2.5-mm diameter circle and 5.4-mm square. Error was calculated between the original and resampled RNFL measurements. The tolerable error threshold of the optic disc center displacement was determined by considering test-retest variability of SD-OCT. The unreliable zone was defined as an area with 10% or more variability. Results The maximum tolerable error thresholds of optic disc center displacement on the RNFL thickness map were distributed from 0.042 to 0.09 mm in 8 directions. The threshold shape was vertically elongated. Clinically important unreliable zones were located: (1) at superior and inferior region in the vertical displacement; (2) at inferotemporal region in the horizontal displacement, and (3) at superotemporal or inferotemporal region in the diagonal displacement. The unreliable zone pattern and threshold limit varied according to the direction of optic disc displacement. Conclusions Optic disc center displacement had a considerable impact on whole RNFL thickness measurements. Understanding the effect of optic disc center displacement could contribute to reliable RNFL measurements. PMID:27783663

  15. New Treatments for Spinal Nerve Root Avulsion Injury.

    PubMed

    Carlstedt, Thomas

    2016-01-01

    Further progress in the treatment of the longitudinal spinal cord injury has been made. In an inverted translational study, it has been demonstrated that return of sensory function can be achieved by bypassing the avulsed dorsal root ganglion neurons. Dendritic growth from spinal cord sensory neurons could replace dorsal root ganglion axons and re-establish a reflex arch. Another research avenue has led to the development of adjuvant therapy for regeneration following dorsal root to spinal cord implantation in root avulsion injury. A small, lipophilic molecule that can be given orally acts on the retinoic acid receptor system as an agonist. Upregulation of dorsal root ganglion regenerative ability and organization of glia reaction to injury were demonstrated in treated animals. The dual effect of this substance may open new avenues for the treatment of root avulsion and spinal cord injuries. PMID:27602018

  16. New Treatments for Spinal Nerve Root Avulsion Injury

    PubMed Central

    Carlstedt, Thomas

    2016-01-01

    Further progress in the treatment of the longitudinal spinal cord injury has been made. In an inverted translational study, it has been demonstrated that return of sensory function can be achieved by bypassing the avulsed dorsal root ganglion neurons. Dendritic growth from spinal cord sensory neurons could replace dorsal root ganglion axons and re-establish a reflex arch. Another research avenue has led to the development of adjuvant therapy for regeneration following dorsal root to spinal cord implantation in root avulsion injury. A small, lipophilic molecule that can be given orally acts on the retinoic acid receptor system as an agonist. Upregulation of dorsal root ganglion regenerative ability and organization of glia reaction to injury were demonstrated in treated animals. The dual effect of this substance may open new avenues for the treatment of root avulsion and spinal cord injuries. PMID:27602018

  17. New Treatments for Spinal Nerve Root Avulsion Injury

    PubMed Central

    Carlstedt, Thomas

    2016-01-01

    Further progress in the treatment of the longitudinal spinal cord injury has been made. In an inverted translational study, it has been demonstrated that return of sensory function can be achieved by bypassing the avulsed dorsal root ganglion neurons. Dendritic growth from spinal cord sensory neurons could replace dorsal root ganglion axons and re-establish a reflex arch. Another research avenue has led to the development of adjuvant therapy for regeneration following dorsal root to spinal cord implantation in root avulsion injury. A small, lipophilic molecule that can be given orally acts on the retinoic acid receptor system as an agonist. Upregulation of dorsal root ganglion regenerative ability and organization of glia reaction to injury were demonstrated in treated animals. The dual effect of this substance may open new avenues for the treatment of root avulsion and spinal cord injuries.

  18. Cervical myelography of nerve root avulsion injuries using water-soluble contrast media.

    PubMed

    Cobby, M J; Leslie, I J; Watt, I

    1988-08-01

    Eight cases of cervical nerve root avulsion injury are presented which were investigated by cervical myelography using a water-soluble contrast medium. The previous literature describes the appearances of this lesion using an oil-based agent and has resulted in emphasis being placed on looking for a traumatic meningocele rather than an abnormality of the roots themselves. The excellent definition of the nerve rootlets and axillary pouch that are obtained with a water-soluble contrast medium resulted in more root lesions per patient being detected than with an oil-based medium. There was complete correlation with the surgical findings at all but one root level explored. The appearances of root avulsion injuries and the advantages of using a water-soluble contrast medium are discussed. PMID:3416107

  19. Spinal nerve root β-APP staining in infants is not a reliable indicator of trauma.

    PubMed

    Squier, W; Scheimberg, I; Smith, C

    2011-10-10

    This preliminary communication describes seven babies with β-amyloid precursor protein (βAPP) positive axonal swellings in nerve roots at multiple levels of the spinal cord. All seven babies died of natural causes. Two died in utero providing evidence for nerve root injury in the absence of trauma, two died within one day of birth and the possibility of birth related injury has to be considered. Three babies were over one month of age and had no history or pathological evidence of trauma. These findings show that if axonal injury is carefully sought in every infant death, not just in babies where trauma is suspected, it will be found in a proportion of babies dying from natural diseases. While spinal nerve root axonal injury in infants may suggest trauma, it is not, in itself, diagnostic of trauma.

  20. Transverse ultrasound assessment of median nerve deformation and displacement in the human carpal tunnel during wrist movements.

    PubMed

    Wang, Yuexiang; Zhao, Chunfeng; Passe, Sandra M; Filius, Anika; Thoreson, Andrew R; An, Kai-Nan; Amadio, Peter C

    2014-01-01

    The symptoms of carpal tunnel syndrome, a compression neuropathy of the median nerve at the wrist, are aggravated by wrist motion, but the effect of these motions on median nerve motion are unknown. To better understand the biomechanics of the abnormal nerve, it is first necessary to understand normal nerve movement. The purpose of this study was to evaluate the deformation and displacement of the normal median nerve at the proximal carpal tunnel level on transverse ultrasound images during different wrist movements, to have a baseline for comparison with abnormal movements. Dynamic ultrasound images of both wrists of 10 asymptomatic volunteers were obtained during wrist maximal flexion, extension and ulnar deviation. To simplify the analysis, the initial and final shape and position of the median nerve were measured and analyzed. The circularity of the median nerve was significantly increased and the aspect ratio and perimeter were significantly decreased in the final image compared with the first image during wrist flexion with finger extension, wrist flexion with finger flexion and wrist ulnar deviation with finger extension (p < 0.01). There were significant differences in median nerve displacement vector between finger flexion, wrist flexion with finger extension and wrist ulnar deviation with finger extension (all p's < 0.001). The mean amplitudes of median nerve motion in wrist flexion with finger extension (2.36 ± 0.79 normalized units [NU]), wrist flexion with finger flexion (2.46 ± 0.84 NU) and wrist ulnar deviation with finger extension (2.86 ± 0.51 NU) were higher than those in finger flexion (0.82 ± 0.33 NU), wrist extension with finger extension (0.77 ± 0.46 NU) and wrist extension with finger flexion (0.81 ± 0.58 NU) (p < 0.0001). In the normal carpal tunnel, wrist flexion and ulnar deviation could induce significant transverse displacement and deformation of the median nerve.

  1. A Case of Delusional Parasitosis Associated with Multiple Lesions at the Root of Trigeminal Nerve

    PubMed Central

    Azad, Alvi; Scholma, Randal S.; Joshi, Kaustubh G.

    2010-01-01

    The authors present a patient with multiple pontine lesions who exhibited symptoms consistent with delusional parasitosis. The trigeminal nerve nuclei are located throughout the brainstem. Pathology in either the nuclei or the branches of the fifth cranial nerve has been associated with both sensory and motor disturbances. Delusional parasitosis is a condition in which the patient has the firm belief that small, living organisms have infested his or her skin or other organs. To our knowledge, this is the first case report of delusional parasitosis associated with lesions at the root of the trigeminal nerve. PMID:20877531

  2. Migratory Reed Warblers Need Intact Trigeminal Nerves to Correct for a 1,000 km Eastward Displacement

    PubMed Central

    Heyers, Dominik; Mouritsen, Henrik

    2013-01-01

    Several studies have shown that experienced night-migratory songbirds can determine their position, but it has remained a mystery which cues and sensory mechanisms they use, in particular, those used to determine longitude (east–west position). One potential solution would be to use a magnetic map or signpost mechanism like the one documented in sea turtles. Night-migratory songbirds have a magnetic compass in their eyes and a second magnetic sense with unknown biological function involving the ophthalmic branch of the trigeminal nerve (V1). Could V1 be involved in determining east–west position? We displaced 57 Eurasian reed warblers (Acrocephalus scirpaceus) with or without sectioned V1. Sham operated birds corrected their orientation towards the breeding area after displacement like the untreated controls did. In contrast, V1-sectioned birds did not correct for the displacement. They oriented in the same direction after the displacement as they had done at the capture site. Thus, an intact ophthalmic branch of the trigeminal nerve is necessary for detecting the 1,000 km eastward displacement in this night-migratory songbird. Our results suggest that V1 carries map-related information used in a large-scale map or signpost sense that the reed warblers needed to determine their approximate geographical position and/or an east–west coordinate. PMID:23840374

  3. Migratory Reed Warblers Need Intact Trigeminal Nerves to Correct for a 1,000 km Eastward Displacement.

    PubMed

    Kishkinev, Dmitry; Chernetsov, Nikita; Heyers, Dominik; Mouritsen, Henrik

    2013-01-01

    Several studies have shown that experienced night-migratory songbirds can determine their position, but it has remained a mystery which cues and sensory mechanisms they use, in particular, those used to determine longitude (east-west position). One potential solution would be to use a magnetic map or signpost mechanism like the one documented in sea turtles. Night-migratory songbirds have a magnetic compass in their eyes and a second magnetic sense with unknown biological function involving the ophthalmic branch of the trigeminal nerve (V1). Could V1 be involved in determining east-west position? We displaced 57 Eurasian reed warblers (Acrocephalus scirpaceus) with or without sectioned V1. Sham operated birds corrected their orientation towards the breeding area after displacement like the untreated controls did. In contrast, V1-sectioned birds did not correct for the displacement. They oriented in the same direction after the displacement as they had done at the capture site. Thus, an intact ophthalmic branch of the trigeminal nerve is necessary for detecting the 1,000 km eastward displacement in this night-migratory songbird. Our results suggest that V1 carries map-related information used in a large-scale map or signpost sense that the reed warblers needed to determine their approximate geographical position and/or an east-west coordinate. PMID:23840374

  4. Microanatomy and Histological Features of Central Myelin in the Root Exit Zone of Facial Nerve

    PubMed Central

    Yoo, Chan-Jong; Han, Seong-Rok; Choi, Chan-Young

    2014-01-01

    Objective The aim of this study was to evaluate the microanatomy and histological features of the central myelin in the root exit zone of facial nerve. Methods Forty facial nerves with brain stem were obtained from 20 formalin fixed cadavers. Among them 17 facial nerves were ruined during preparation and 23 root entry zone (REZ) of facial nerves could be examined. The length of medial REZ, from detach point of facial nerve at the brain stem to transitional area, and the thickness of glial membrane of central myelin was measured. We cut brain stem along the facial nerve and made a tissue block of facial nerve REZ. Each tissue block was embedded with paraffin and serially sectioned. Slices were stained with hematoxylin and eosin (H&E), periodic acid-Schiff, and glial fibrillary acid protein. Microscopy was used to measure the extent of central myelin and thickness of outer glial membrane of central myelin. Thickness of glial membrane was examined at two different points, the thickest area of proximal and distal REZ. Results Special stain with PAS and GFAP could be differentiated the central and peripheral myelin of facial nerve. The length of medial REZ was mean 2.6 mm (1.6-3.5 mm). The glial limiting membrane of brain stem is continued to the end of central myelin. We called it glial sheath of REZ. The thickness of glial sheath was mean 66.5 µm (40-110 µm) at proximal REZ and 7.4 µm (5-10 µm) at distal REZ. Conclusion Medial REZ of facial nerve is mean 2.6 mm in length and covered by glial sheath continued from glial limiting membrane of brain stem. Glial sheath of central myelin tends to become thin toward transitional zone. PMID:25132929

  5. Dorsal root ganglion transcriptome analysis following peripheral nerve injury in mice

    PubMed Central

    Wu, Shaogen; Marie Lutz, Brianna; Miao, Xuerong; Liang, Lingli; Mo, Kai; Chang, Yun-Juan; Du, Peicheng; Soteropoulos, Patricia; Tian, Bin; Kaufman, Andrew G.; Bekker, Alex; Hu, Yali

    2016-01-01

    Background Peripheral nerve injury leads to changes in gene expression in primary sensory neurons of the injured dorsal root ganglia. These changes are believed to be involved in neuropathic pain genesis. Previously, these changes have been identified using gene microarrays or next generation RNA sequencing with poly-A tail selection, but these approaches cannot provide a more thorough analysis of gene expression alterations after nerve injury. Methods The present study chose to eliminate mRNA poly-A tail selection and perform strand-specific next generation RNA sequencing to analyze whole transcriptomes in the injured dorsal root ganglia following spinal nerve ligation. Quantitative real-time reverse transcriptase polymerase chain reaction assay was carried out to verify the changes of some differentially expressed RNAs in the injured dorsal root ganglia after spinal nerve ligation. Results Our results showed that more than 50 million (M) paired mapped sequences with strand information were yielded in each group (51.87 M–56.12 M in sham vs. 51.08 M–57.99 M in spinal nerve ligation). Six days after spinal nerve ligation, expression levels of 11,163 out of a total of 27,463 identified genes in the injured dorsal root ganglia significantly changed, of which 52.14% were upregulated and 47.86% downregulated. The largest transcriptional changes were observed in protein-coding genes (91.5%) followed by noncoding RNAs. Within 944 differentially expressed noncoding RNAs, the most significant changes were seen in long interspersed noncoding RNAs followed by antisense RNAs, processed transcripts, and pseudogenes. We observed a notable proportion of reads aligning to intronic regions in both groups (44.0% in sham vs. 49.6% in spinal nerve ligation). Using quantitative real-time polymerase chain reaction, we confirmed consistent differential expression of selected genes including Kcna2, Oprm1 as well as lncRNAs Gm21781 and 4732491K20Rik following spinal nerve

  6. The Role of Selective Nerve Root Block in the Treatment of Lumbar Radicular Leg Pain.

    PubMed

    Jonayed, S A; Kamruzzaman, M; Saha, M K; Alam, S; Akter, S

    2016-01-01

    The objective of this retrospective study was to investigate the clinical effectiveness of nerve root blocks (i.e., periradicular injection of Lidocaine and triamcinolone) for lumbar monoradiculopathy in patients with a mild neurological deficit in National Institute of Traumatology & Orthopaedic Rehabilitation (NITOR), Dhaka, Bangladesh from March 2014 to December 2014. We Included 24 patients (32-74 years) with a minor sensory/motor deficit and an unequivocal MRI finding (18 disc herniations, 6 foraminal stenosis) treated with a selective nerve root block. Based on the clinical and imaging findings, surgery (decompression of the nerve root) was justifiable in all cases. Seventeen patients (87%) had rapid (1-4 days) and substantial regression of pain, four required a repeat injection. Sixty percent (60%) of the patients with disc herniation or foraminal stenosis had permanent resolution of pain, so that an operation was avoided over an average of 6 months (2-9 months) follow-up. Nerve root blocks are very effective in the non-operative treatment of minor monoradiculopathy and should be recommended as the initial treatment of choice for this condition. PMID:26931264

  7. Mechanical properties of nerve roots and rami radiculares isolated from fresh pig spinal cords

    PubMed Central

    Nishida, Norihiro; Kanchiku, Tsukasa; Ohgi, Junji; Ichihara, Kazuhiko; Chen, Xian; Taguchi, Toshihiko

    2015-01-01

    No reports have described experiments designed to determine the strength characteristics of spinal nerve roots and rami radiculares for the purpose of explaining the complexity of symptoms of medullary cone lesions and cauda equina syndrome. In this study, to explain the pathogenesis of cauda equina syndrome, monoaxial tensile tests were performed to determine the strength characteristics of spinal nerve roots and rami radiculares, and analysis was conducted to evaluate the stress-strain relationship and strength characteristics. Using the same tensile test device, the nerve root and ramus radiculares isolated from the spinal cords of pigs were subjected to the tensile test and stress relaxation test at load strain rates of 0.1, 1, 10, and 100 s-1 under identical settings. The tensile strength of the nerve root was not rate dependent, while the ramus radiculares tensile strength tended to decrease as the strain rate increased. These findings provide important insights into cauda equina symptoms, radiculopathy, and clinical symptoms of the medullary cone. PMID:26807127

  8. The Role of Selective Nerve Root Block in the Treatment of Lumbar Radicular Leg Pain.

    PubMed

    Jonayed, S A; Kamruzzaman, M; Saha, M K; Alam, S; Akter, S

    2016-01-01

    The objective of this retrospective study was to investigate the clinical effectiveness of nerve root blocks (i.e., periradicular injection of Lidocaine and triamcinolone) for lumbar monoradiculopathy in patients with a mild neurological deficit in National Institute of Traumatology & Orthopaedic Rehabilitation (NITOR), Dhaka, Bangladesh from March 2014 to December 2014. We Included 24 patients (32-74 years) with a minor sensory/motor deficit and an unequivocal MRI finding (18 disc herniations, 6 foraminal stenosis) treated with a selective nerve root block. Based on the clinical and imaging findings, surgery (decompression of the nerve root) was justifiable in all cases. Seventeen patients (87%) had rapid (1-4 days) and substantial regression of pain, four required a repeat injection. Sixty percent (60%) of the patients with disc herniation or foraminal stenosis had permanent resolution of pain, so that an operation was avoided over an average of 6 months (2-9 months) follow-up. Nerve root blocks are very effective in the non-operative treatment of minor monoradiculopathy and should be recommended as the initial treatment of choice for this condition.

  9. Intraoral management of iatrogenically displaced lower third molar roots in the sublingual space: a report of 2 cases

    PubMed Central

    Zhao, Sufeng; Huang, Zheng; Geng, Tengyu; Huang, Lanzhu

    2015-01-01

    Surgical removal of the mandibular third molars is one of the most common procedures performed by dentists, as well as by oral and maxillofacial surgeons. Accidental displacement of teeth or roots into the fascial spaces, during surgical removal of the mandibular third molars, is a rare, but serious complication. Herein, we present 2 cases of iatrogenically displaced mandibular third molar roots into the sublingual space, which were successfully removed under local anesthesia intraorally. In addition to methods to minimize the risk of accidental tooth or root displacement, the importance of recognizing this complication and the methods of retrieval are also discussed. PMID:26770616

  10. Lack of effectiveness of laser therapy applied to the nerve course and the correspondent medullary roots

    PubMed Central

    Sousa, Fausto Fernandes de Almeida; Ribeiro, Thaís Lopes; Fazan, Valéria Paula Sassoli; Barbieri, Claudio Henrique

    2013-01-01

    OBJECTIVE: To investigate the influence of low intensity laser irradiation on the regeneration of the fibular nerve of rats after crush injury. METHODS: Twenty-five rats were used, divided into three groups: 1) intact nerve, no treatment; 2) crushed nerve, no treatment; 3) crush injury, laser irradiation applied on the medullary region corresponding to the roots of the sciatic nerve and subsequently on the course of the damaged nerve. Laser irradiation was carried out for 14 consecutive days. RESULTS: Animals were evaluated by functional gait analysis with the peroneal functional index and by histomorphometric analysis using the total number of myelinated nerve fibers and their density, total number of Schwann cells, total number of blood vessels and the occupied area, minimum diameter of the fiber diameter and G-quotient. CONCLUSION: According to the statistical analysis there was no significant difference among groups and the authors conclude that low intensity laser irradiation has little or no influence on nerve regeneration and functional recovery. Laboratory investigation. PMID:24453650

  11. Microstructural changes in compressed nerve roots treated by percutaneous transforaminal endoscopic discectomy in patients with lumbar disc herniation

    PubMed Central

    Wu, Weifei; Liang, Jie; Chen, Ying; Chen, Aihua; Wu, Bin; Yang, Zong

    2016-01-01

    Abstract To investigate the microstructural changes in compressed nerves using diffusion tensor imaging (DTI) of herniated disc treated with percutaneous transforaminal endoscopic discectomy. Diffusion tensor imaging has been widely used to visualize peripheral nerves, and the microstructure of compressed nerve roots can be assessed using DTI. However, the microstructural changes after surgery are not well-understood in patients with lumbar disc herniation. Thirty-four consecutive patients with foraminal disc herniation affecting unilateral sacral 1 (S1) nerve roots were enrolled in this study. DTI with tractography was performed on S1 nerve roots before and after surgery. The mean fractional anisotropy (FA) and apparent diffusion coefficient values were calculated from tractography images. In compressed nerve roots, the FA value before surgery was significantly lower than that after surgery (P = 0.000). A significant difference in FA values was found between the compressed and normal sides before surgery (P = 0.000). However, no significant difference was found between the compressed and normal sides after surgery (P = 0.057). A significant difference in apparent diffusion coefficient values was found before and after surgery at the compressed side (P = 0.023). However, no significant difference was found between the compressed and normal sides after surgery (P = 0.203). We show that the diffusion parameters of compressed nerve roots were not significantly different before and after percutaneous transforaminal endoscopic discectomy, indicating that the microstructure of the nerve root recovered after surgery. PMID:27749591

  12. The management of weakness caused by lumbar and lumbosacral nerve root compression.

    PubMed

    Sharma, H; Lee, S W J; Cole, A A

    2012-11-01

    Spinal stenosis and disc herniation are the two most frequent causes of lumbosacral nerve root compression. This can result in muscle weakness and present with or without pain. The difficulty when managing patients with these conditions is knowing when surgery is better than non-operative treatment: the evidence is controversial. Younger patients with a lesser degree of weakness for a shorter period of time have been shown to respond better to surgical treatment than older patients with greater weakness for longer. However, they also constitute a group that fares better without surgery. The main indication for surgical treatment in the management of patients with lumbosacral nerve root compression should be pain rather than weakness.

  13. Spinal Cord and Spinal Nerve Root Involvement (Myeloradiculopathy) in Tuberculous Meningitis

    PubMed Central

    Gupta, Rahul; Garg, Ravindra Kumar; Jain, Amita; Malhotra, Hardeep Singh; Verma, Rajesh; Sharma, Praveen Kumar

    2015-01-01

    Abstract Most of the information about spinal cord and nerve root involvement in tuberculous meningitis is available in the form of isolated case reports or case series. In this article, we evaluated the incidence, predictors, and prognostic impact of spinal cord and spinal nerve root involvement in tuberculous meningitis. In this prospective study, 71 consecutive patients of newly diagnosed tuberculous meningitis were enrolled. In addition to clinical evaluation, patients were subjected to magnetic resonance imaging (MRI) of brain and spine. Patients were followed up for at least 6 months. Out of 71 patients, 33 (46.4%) had symptoms/signs of spinal cord and spinal nerve root involvement, 22 (30.9%) of whom had symptoms/signs at enrolment. Eleven (15.4%) patients had paradoxical involvement. Paraparesis was present in 22 (31%) patients, which was of upper motor neuron type in 6 (8.4%) patients, lower motor neuron type in 10 (14%) patients, and mixed type in 6 (8.4%) patients. Quadriparesis was present in 3 (4.2%) patients. The most common finding on spinal MRI was meningeal enhancement, seen in 40 (56.3%) patients; in 22 (30.9%), enhancement was present in the lumbosacral region. Other MRI abnormalities included myelitis in 16 (22.5%), tuberculoma in 4 (5.6%), cerebrospinal fluid (CSF) loculations in 4 (5.6%), cord atrophy in 3 (4.2%), and syrinx in 2 (2.8%) patients. The significant predictor associated with myeloradiculopathy was raised CSF protein (>250 mg/dL). Myeloradiculopathy was significantly associated with poor outcome. In conclusion, spinal cord and spinal nerve root involvement in tuberculous meningitis is common. Markedly raised CSF protein is an important predictor. Patients with myeloradiculopathy have poor outcome. PMID:25621686

  14. Extramedullary Conus Ependymoma Involving a Lumbar Nerve Root with Filum Terminale Attachment

    PubMed Central

    Moriwaki, Takashi; Iwatsuki, Koichi; Ohnishi, Yu-ichiro; Ninomiya, Koshi; Yoshimine, Toshiki

    2015-01-01

    PURPOSE In the current report, we describe a case of an extramedullary ependymoma involving a lumbar nerve root near conus medullaris. Spinal ependymomas commonly present as intramedullary tumors in the cervical or thoracic cord or as tumors arising from the conus medullaris or the filum terminale. In this case, we showed an extramedullary conus ependymoma involving a lumbar nerve root with filum terminale attachment. CASE PRESENTATION A 69-year-old woman presented with lower back pain, but without sensory disturbance or motor weakness in her lower extremities. CLINICAL ASSESSMENT Magnetic resonance imaging revealed an intradural mass at T12–L1 at the conus medullaris, which was totally resected. Histopathology revealed a non-myxopapillary ependymoma (WHO grade 2). Postoperatively, the patient did well and displayed no neurological deficits. Moreover, no radiotherapy was required. CONCLUSIONS This report documented a rare case of intradural extramedullary ependymoma located at the conus medullaris, involving the lumbar nerve root, and attached to the filum terminale. Although extramedullary ependymomas at this region are more frequently classified as myxopapillary, histopathological examination revealed this tumor as a non-myxopapillary ependymoma. PMID:26648765

  15. Robot-assisted C7 nerve root transfer from the contralateral healthy side: A preliminary cadaver study.

    PubMed

    Jiang, Su; Ichihara, Satoshi; Prunières, Guillaume; Peterson, Brett; Facca, Sybille; Xu, Wen-Dong; Liverneaux, Philippe

    2016-04-01

    Patients with cerebral palsy and spastic hemiplegia may have extremely poor upper extremity function. Unfortunately, many current therapies and treatments for patients with spastic hemiplegia offer very limited improvements. One innovative technique for treating these patients is the use a contralateral C7 nerve root transfer to neurotize the C7 nerve root in the affected limb. This may result not only in less spasticity in the affected limb, but also improved control and motor function vis-a-vis the new connection to the normal cerebral hemisphere. However, contralateral C7 transfers can require large incisions and long nerve grafts. The aim of this study was to test the feasibility of a contralateral C7 nerve root transfer procedure with the use of a prevertebral minimally invasive robot-assisted technique. In a cadaver, both sides of the C7 root were dissected. The right recipient C7 root was resected as proximally as possible, while the left donor C7 root was resected as distally as possible. With the use of the da Vinci (®) SI surgical robot (Intuitive Surgical ™, Sunnyvale, CA, USA), we were able to eliminate the large incision and use a much shorter nerve graft when performing contralateral C7 nerve transfer. PMID:27117122

  16. Intercellular junctions between palisade nerve endings and outer root sheath cells of rat vellus hairs.

    PubMed

    Kaidoh, T; Inoué, T

    2000-05-15

    Hair follicles have a longitudinal set of sensory nerve endings called palisade nerve endings (PN). We examined the junctional structures between the PN and outer root sheath (ORS) cells of hair follicles in the rat external ear. Transmission electron microscopy of serial thin sections showed that the processes of the ORS cells penetrated the basal lamina of the hair follicle, forming intercellular junctions with the PN (PN-ORS junctions). Two types of junctions were found: junctions between nerve endings and ORS cells (N-ORS junctions) and those between Schwann cell processes and ORS cells (S-ORS junctions). The N-ORS junctions had two subtypes: 1) a short process or small eminence of the ORS cell was attached to the nerve ending (type I); or 2) a process of the ORS cell was invaginated into the nerve ending (type II). The S-ORS junctions also had two subtypes: 1) a short process or small eminence of the ORS cell was abutted on the Schwann cell process (type I); or 2) a process of the ORS cell was invaginated into the Schwann cell process (type II). Vesicles, coated pits, coated vesicles, and endosomes were sometimes seen in nerve endings, Schwann cells, and ORS cells near the junctions. Computer-aided reconstruction of the serial thin sections displayed the three-dimensional structure of these junctions. These results suggested that the PN-ORS junctions provided direct relationships between the PN and ORS in at least four different patterns. The discovery of these junctions shows the PN-ORS relationship to be closer than previously realized. We speculate that these junctions may have roles in attachment of the PN to the ORS, contributing to increases in the sensitivity of the PN, and in chemical signaling between the PN and ORS.

  17. Comparison with Magnetic Resonance Three-Dimensional Sequence for Lumbar Nerve Root with Intervertebral Foramen

    PubMed Central

    Takashima, Hiroyuki; Shishido, Hiroki; Yoshimoto, Mitsunori; Imamura, Rui; Akatsuka, Yoshihiro; Terashima, Yoshinori; Fujiwara, Hiroyoshi; Nagae, Masateru; Kubo, Toshikazu; Yamashita, Toshihiko

    2016-01-01

    Study Design Prospective study based on magnetic resonance (MR) imaging of the lumbar spinal root of the intervertebral foramen. Purpose This study was to compare MR three-dimensional (3D) sequences for the evaluation of the lumbar spinal root of the intervertebral foramen. Overview of Literature The diagnosis of spinal disorders by MR imaging is commonly performed using two-dimensional T1- and T2-weighted images, whereas 3D MR images can be used for acquiring further detailed data using thin slices with multi-planar reconstruction. Methods On twenty healthy volunteers, we investigated the contrast-to-noise ratio (CNR) of the lumbar spinal root of the intervertebral foramen with a 3D balanced sequence. The sequences used were the fast imaging employing steady state acquisition and the coherent oscillatory state acquisition for the manipulation of image contrast (COSMIC). COSMIC can be used with or without fat suppression (FS). We compared these sequence to determine the optimized visualization sequence for the lumbar spinal root of the intervertebral foramen. Results For the CNR between the nerve root and the peripheral tissue, these were no significant differences between the sequences at the entry of foramen. There was a significant difference and the highest CNR was seen with COSMIC-FS for the intra- and extra-foramen. Conclusions In this study, the findings suggest that the COSMIC-FS sequences should be used for the internal or external foramen for spinal root disorders. PMID:26949459

  18. Microvascular decompression of trigeminal nerve root for treatment of a patient with hemimasticatory spasm.

    PubMed

    Dou, Ning-Ning; Zhong, Jun; Zhou, Qiu-Meng; Zhu, Jin; Wang, Yong-Nan; Li, Shi-Ting

    2014-05-01

    Hemimasticatory spasm is a rare disease; with little knowledge of the pathogenesis, it has still been intractable today. We presented a 56-year-old woman with involuntary painful spasm in her left masseter muscle for 11 years. The patient was successfully treated with microvascular decompression surgery. An offending superior cerebellar artery was found to contact with the motor branch of the trigeminal nerve root, which was then removed away and pieces of soft wadding were interposed between the nerve and the vessel to assure the separation. Postoperatively, the symptom totally disappeared and no recurrence was observed during the 7 months' follow-up. The treatment as well as the pathogenesis of the disease was reviewed, and we put forward a new hypothesis.

  19. Cervical foraminal selective nerve root block: a 'two-needle technique' with results.

    PubMed

    Kumar, Naresh; Gowda, Veda

    2008-04-01

    Several techniques have been described for selective nerve root blocks. We describe a novel 'two-needle technique', performed through the postero-lateral route with the patient in lateral position under C-arm guidance. The aim of the current study is to highlight the effectiveness and safety of cervical selective nerve root block for radiculopathy using this technique. We present results of a retrospective 2-year follow-up study of 33 injections carried out on 33 patients with radiculopathy due to cervical disc disease and or foraminal stenosis using this procedure. Patients with myelopathy, gross motor weakness and any other pathology were excluded. The outcome was measured comparing 'Visual Analogue Score' (VAS) and 'Neck Disability Index' (NDI) before the procedure with those at 6 weeks and 12 months after the procedure. Thirty patients were included in the final analysis. Average pre-operative VAS score was 7.4 (range 5-10), which improved to 2.2 (range 0-7) at 6 weeks and 2.0 (range 0-4) at 1 year and the mean NDI score prior to intervention was 66.9 (range 44-84), which improved to 31.7 (range 18-66) at 6 weeks and 31.1 (range 16-48) at 1 year. The improvements were statistically significant. Patients with involvement of C6 or C7 nerve roots responded slightly better at 6 weeks with regards to VAS improvement. Mean duration of radiation exposure during the procedure was 27.8 s (range 10-90 s). Only minor complications were noted-transient dizziness in two and transient nystagmus in one patient. Our 'two-needle technique' is a new, safe and effective non-surgical treatment for cervical radiculopathy.

  20. Dorsal root ganglion myeloid zinc finger protein 1 contributes to neuropathic pain after peripheral nerve trauma.

    PubMed

    Li, Zhisong; Gu, Xiyao; Sun, Linlin; Wu, Shaogen; Liang, Lingli; Cao, Jing; Lutz, Brianna Marie; Bekker, Alex; Zhang, Wei; Tao, Yuan-Xiang

    2015-04-01

    Peripheral nerve injury-induced changes in gene transcription and translation in primary sensory neurons of the dorsal root ganglion (DRG) are considered to contribute to neuropathic pain genesis. Transcription factors control gene expression. Peripheral nerve injury increases the expression of myeloid zinc finger protein 1 (MZF1), a transcription factor, and promotes its binding to the voltage-gated potassium 1.2 (Kv1.2) antisense (AS) RNA gene in the injured DRG. However, whether DRG MZF1 participates in neuropathic pain is still unknown. Here, we report that blocking the nerve injury-induced increase of DRG MZF1 through microinjection of MZF1 siRNA into the injured DRG attenuated the initiation and maintenance of mechanical, cold, and thermal pain hypersensitivities in rats with chronic constriction injury (CCI) of the sciatic nerve, without affecting locomotor functions and basal responses to acute mechanical, heat, and cold stimuli. Mimicking the nerve injury-induced increase of DRG MZF1 through microinjection of recombinant adeno-associated virus 5 expressing full-length MZF1 into the DRG produced significant mechanical, cold, and thermal pain hypersensitivities in naive rats. Mechanistically, MZF1 participated in CCI-induced reductions in Kv1.2 mRNA and protein and total Kv current and the CCI-induced increase in neuronal excitability through MZF1-triggered Kv1.2 AS RNA expression in the injured DRG neurons. MZF1 is likely an endogenous trigger of neuropathic pain and might serve as a potential target for preventing and treating this disorder. PMID:25630025

  1. Displacement of Ca2+ by Na+ from the Plasmalemma of Root Cells 1

    PubMed Central

    Cramer, Grant R.; Läuchli, André; Polito, Vito S.

    1985-01-01

    A microfluorometric assay using chlorotetracycline (CTC) as a probe for membrane-associated Ca2+ in intact cotton (Gossypium hirsutum L. cv Acala SJ-2) root hairs indicated displacement of Ca2+ by Na+ from membrane sites with increasing levels of NaCl (0 to 250 millimolar). K+(86Rb) efflux increased dramatically at high salinity. An increase in external Ca2+ concentration (10 millimolar) mitigated both responses. Other cations and mannitol, which did not affect Ca2+-CTC chelation properties, were found to have no effect on Ca2+-CTC fluorescence, indicating a Na+-specific effect. Reduction of Ca2+-CTC fluorescence by ethyleneglycol-bis-(β-aminoethyl ether) N,N′-tetraacetic acid, which does not cross membranes, provided an indication that reduction by Na+ of Ca2+-CTC fluorescence may be occurring primarily at the plasmalemma. The findings support prior proposals that Ca2+ protects membranes from adverse effects of Na+ thereby maintaining membrane integrity and minimizing leakage of cytosolic K+. PMID:16664372

  2. Extrachromosomal DNA of pea (Pisum sativum) root-tip cells replicates by strand displacement

    SciTech Connect

    Krimer, D.B.; Van't Hof, J.

    1983-04-01

    In cultured pea roots there is extrachromosomal DNA associated with cells that differentiate from the G/sub 2/ phase of the cell cycle that is absent from those that differentiate from the G/sub 1/ phase. The authors examined this extrachromosomal DNA by electron microscopy and found that it consisted of three types: (i) double-stranded linear molecules with single-stranded branches (74%), (ii) double-stranded molecules without branches (26%), and (iii) free single-stranded molecules. The double-stranded molecules with or without branches were similar in length, having a modal length of 10-15 ..mu..m. The free single-stranded molecules were shorter and had a mean length of 3.8 ..mu..m. The length of the branches attached to the duplex molecules was only slightly less than that of the free form. The duplex molecules with branches were interpreted as configurations reflecting an ongoing strand-displacement process that results in free single-stranded molecules. Finally, measurements on duplex molecules with multiple branches suggested that the extrachromosomal DNA may exist in the form of tandemly repeated sequences. 8 references, 8 figures.

  3. GRAVI-2 space experiment: investigating statoliths displacement and location effects on early stages of gravity perception pathways in lentil roots.

    NASA Astrophysics Data System (ADS)

    Bizet, François; Eche, Brigitte; Pereda Loth, Veronica; Badel, Eric; Legue, Valerie; Brunel, Nicole; Label, Philippe; Gérard, Joëlle

    2016-07-01

    The plants ability to orient their growth with respect to external stimuli such as gravity is a key factor for survival and acclimation to their environment. Belowground, plant roots modulate their growth towards gravity, allowing soil exploration and uptake of water and nutrients. In roots, gravity sensing cells called statocytes are located in the center of the root cap. Statocytes contain starch-filled plastids denser than the cytoplasm, which sedimentation along the direction of gravity is widely accepted as being involved into early stages of gravity perception (the starch-statolith hypothesis; Sack, 1991). Root gravitropism following statoliths displacement is based on auxin redistribution in the root apex, inducing differential growth between the root upward and downward sides. However at the cell scale, the chain of transduction starting from statoliths displacement and leading to auxin redistribution remains poorly documented. Signaling molecules such as calcium, reactive oxygen species, nitric oxide and inositol 1,4,5-triphosphate are serious candidates previously shown to be involved within minutes before modification of the expression of auxin-related genes (Morita, 2010; Sato et al., 2015). Here, we observe and quantify statoliths displacements and locations at various levels of gravity to investigate two hypothesis: (i) Are contacts between statoliths and the endoplasmic reticulum necessary to induce gravitropism? (ii) Are very low displacements of statoliths sufficient to initiate transduction pathways such as the calcium's one? These questionings have led to an experiment called GRAVI-2 which took place aboard the ISS in 2014. During the experiment, lentil roots were grown in the European modular cultivation system for several hours in microgravity and were then submitted to short high gravity stimulus (5 and 15 minutes at 2 g) before the return to Earth for analyses. Ongoing cytological measurements will reveal the effects of statoliths

  4. Antral bony wall erosion, trigeminal nerve injury, and enophthalmos after root canal surgery

    PubMed Central

    Ferreira, Eduardo; Antunes, Luís; Dinis, Paulo Borges

    2016-01-01

    Introduction: The frequently used irrigant in dental surgery, sodium hypochlorite, is occasionally the cause of minor, usually circumscribed, adverse effects. Severe, extensive complications, with lasting sequelae, however, also can occur, as in the case we report herein. Case Report: A 55-year-old woman underwent an endodontic procedure on a maxillary molar, whose roots, unknown to the surgeon, were protruding into the maxillary sinus. After sodium hypochlorite root canal irrigation, the patient immediately developed intense facial pain, facial edema, and periorbital cellulitis. An emergency department evaluation diagnosed an intense inflammatory disease of the maxillary sinus, with significant destruction of its bony walls, accompanied by midface paraesthesia due to infraorbital nerve injury. In the following weeks, the patient slowly developed enophthalmos due to bone erosion of the orbit floor. Treatment, besides prolonged oral steroids, required the endoscopic endonasal opening of the maxillary sinus for profuse irrigation. Two years later, the patient maintained a complete loss of function of the maxillary sinus, anesthesia-paraesthesia of the midface, and inferior dystonia of the eye with an enophthalmos. Conclusion: Dentists, maxillofacial surgeons, and otorhinolaryngologists should all be aware of the whole spectrum of complications of even the simplest dental work. Sodium hypochlorite irrigations should be used cautiously in root canal surgery, with the full awareness of its potential for causing soft-tissue damage. PMID:27465790

  5. Lower cervical nerve root block using CT fluoroscopy in patients with large body habitus: another benefit of the swimmer's position.

    PubMed

    Bartynski, W S; Whitt, D S; Sheetz, M A; Jennings, R B; Rothfus, W E

    2007-04-01

    We describe a method of performing lower cervical nerve root block (CNRB) with CT fluoroscopy in patients with large body habitus using the swimmer's position. This approach reduces image noise with acceptable visualization of vital structures and improved foraminal/root access. Anticipated use of the swimmer's position coupled with minimally modified radiation exposure parameters can limit radiation dose to operator/patient and reduce procedure time to match that of CNRB using CT fluoroscopy in typical patients.

  6. More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion: A review

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: In the lumbar spine, do more nerve root injuries occur utilizing minimally invasive surgery (MIS) techniques versus open lumbar procedures? To answer this question, we compared the frequency of nerve root injuries for multiple open versus MIS operations including diskectomy, laminectomy with/without fusion addressing degenerative disc disease, stenosis, and/or degenerative spondylolisthesis. Methods: Several of Desai et al. large Spine Patient Outcomes Research Trial studies showed the frequency for nerve root injury following an open diskectomy ranged from 0.13% to 0.25%, for open laminectomy/stenosis with/without fusion it was 0%, and for open laminectomy/stenosis/degenerative spondylolisthesis with/without fusion it was 2%. Results: Alternatively, one study compared the incidence of root injuries utilizing MIS transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) techniques; 7.8% of PLIF versus 2% of TLIF patients sustained root injuries. Furthermore, even higher frequencies of radiculitis and nerve root injuries occurred during anterior lumbar interbody fusions (ALIFs) versus extreme lateral interbody fusions (XLIFs). These high frequencies were far from acceptable; 15.8% following ALIF experienced postoperative radiculitis, while 23.8% undergoing XLIF sustained root/plexus deficits. Conclusions: This review indicates that MIS (TLIF/PLIF/ALIF/XLIF) lumbar surgery resulted in a higher incidence of root injuries, radiculitis, or plexopathy versus open lumbar surgical techniques. Furthermore, even a cursory look at the XLIF data demonstrated the greater danger posed to neural tissue by this newest addition to the MIS lumbar surgical armamentariu. The latter should prompt us as spine surgeons to question why the XLIF procedure is still being offered to our patients? PMID:26904372

  7. Multidimensional ultrasound imaging of the wrist: Changes of shape and displacement of the median nerve and tendons in carpal tunnel syndrome.

    PubMed

    Filius, Anika; Scheltens, Marjan; Bosch, Hans G; van Doorn, Pieter A; Stam, Henk J; Hovius, Steven E R; Amadio, Peter C; Selles, Ruud W

    2015-09-01

    Dynamics of structures within the carpal tunnel may alter in carpal tunnel syndrome (CTS) due to fibrotic changes and increased carpal tunnel pressure. Ultrasound can visualize these potential changes, making ultrasound potentially an accurate diagnostic tool. To study this, we imaged the carpal tunnel of 113 patients and 42 controls. CTS severity was classified according to validated clinical and nerve conduction study (NCS) classifications. Transversal and longitudinal displacement and shape (changes) were calculated for the median nerve, tendons and surrounding tissue. To predict diagnostic value binary logistic regression modeling was applied. Reduced longitudinal nerve displacement (p≤ 0.019), increased nerve cross-sectional area (p≤ 0.006) and perimeter (p≤ 0.007), and a trend of relatively changed tendon displacements were seen in patients. Changes were more convincing when CTS was classified as more severe. Binary logistic modeling to diagnose CTS using ultrasound showed a sensitivity of 70-71% and specificity of 80-84%. In conclusion, CTS patients have altered dynamics of structures within the carpal tunnel.

  8. The comparative performance of Roots type aircraft engine superchargers as affected by change in impeller speed and displacement

    NASA Technical Reports Server (NTRS)

    Ware, Marsden; Wilson, Ernest E

    1929-01-01

    This report presents the results of tests made on three sizes of roots type aircraft engine superchargers. The impeller contours and diameters of these machines were the same, but the length were 11, 8 1/4, and 4 inches, giving displacements of 0.509, 0.382, and 0.185 cubic foot per impeller revolution. The information obtained serves as a basis for the examination of the individual effects of impeller speed and displacement on performance and of the comparative performance when speed and displacement are altered simultaneously to meet definite service requirements. According to simple theory, when assuming no losses, the air weight handled and the power required for a given pressure difference are directly proportional to the speed and the displacement. These simple relations are altered considerably by the losses. When comparing the performance of different sizes of machines whose impeller speeds are so related that the same service requirements are met, it is found that the individual effects of speed and displacement are canceled to a large extent, and the only considerable difference is the difference in the power losses which decrease with increase in the displacement and the accompanying decrease in speed. This difference is small in relation to the net power of the engine supercharger unit, so that a supercharger with short impellers may be used in those applications where the space available is very limited with any considerable sacrifice in performance.

  9. The effectiveness of motorised lumbar traction in the management of LBP with lumbo sacral nerve root involvement: a feasibility study

    PubMed Central

    Harte, Annette A; Baxter, George D; Gracey, Jacqueline H

    2007-01-01

    Background Traction is commonly used for the treatment of low back pain (LBP), predominately with nerve root involvement; however its benefits remain to be established. The aim of this study was to test the feasibility of a pragmatic randomized controlled trial to compare the difference between two treatment protocols (manual therapy, exercise and advice, with or without traction) in the management of acute/sub acute LBP with 'nerve root' involvement. Methods 30 LBP patients with nerve root pain were recruited and randomly assigned to one of two treatment groups. Primary outcome measures were the: McGill pain questionnaire, Roland Morris disability questionnaire, and the SF36 Questionnaire; recorded at baseline, discharge, 3 and 6 months post-discharge. Results 27 patients completed treatment with a loss of another four patients at follow up. Intention to treat analysis demonstrated an improvement in all outcomes at follow up points but there appeared to be little difference between the groups. Conclusion This study has shown that a trial recruiting patients with 'nerve root' problems is feasible. Further research based upon a fully powered trial is required to ascertain if the addition of traction has any benefit in the management of these patients. Trial Registration Registration number: ISRCTN78417198 PMID:18047650

  10. The effect of severing a normal S1 nerve root to use for reconstruction of an avulsed contralateral lumbosacral plexus: a pilot study.

    PubMed

    Zhu, L; F Zhang; Yang, D; Chen, A

    2015-03-01

    The aim of this study was to evaluate the feasibility of using the intact S1 nerve root as a donor nerve to repair an avulsion of the contralateral lumbosacral plexus. Two cohorts of patients were recruited. In cohort 1, the L4-S4 nerve roots of 15 patients with a unilateral fracture of the sacrum and sacral nerve injury were stimulated during surgery to establish the precise functional distribution of the S1 nerve root and its proportional contribution to individual muscles. In cohort 2, the contralateral uninjured S1 nerve root of six patients with a unilateral lumbosacral plexus avulsion was transected extradurally and used with a 25 cm segment of the common peroneal nerve from the injured leg to reconstruct the avulsed plexus. The results from cohort 1 showed that the innervation of S1 in each muscle can be compensated for by L4, L5, S2 and S3. Numbness in the toes and a reduction in strength were found after surgery in cohort 2, but these symptoms gradually disappeared and strength recovered. The results of electrophysiological studies of the donor limb were generally normal. Severing the S1 nerve root does not appear to damage the healthy limb as far as clinical assessment and electrophysiological testing can determine. Consequently, the S1 nerve can be considered to be a suitable donor nerve for reconstruction of an avulsed contralateral lumbosacral plexus.

  11. Intrathecal Spread of Injectate Following an Ultrasound-Guided Selective C5 Nerve Root Injection in a Human Cadaver Model.

    PubMed

    Falyar, Christian R; Abercrombie, Caroline; Becker, Robert; Biddle, Chuck

    2016-04-01

    Ultrasound-guided selective C5 nerve root blocks have been described in several case reports as a safe and effective means to anesthetize the distal clavicle while maintaining innervation of the upper extremity and preserving diaphragmatic function. In this study, cadavers were injected with 5 mL of 0.5% methylene blue dye under ultrasound guidance to investigate possible proximal and distal spread of injectate along the brachial plexus, if any. Following the injections, the specimens were dissected and examined to determine the distribution of dye and the structures affected. One injection revealed dye extended proximally into the epidural space, which penetrated the dura mater and was present on the spinal cord and brainstem. Dye was noted distally to the divisions in 3 injections. The anterior scalene muscle and phrenic nerve were stained in all 4 injections. It appears unlikely that local anesthetic spread is limited to the nerve root following an ultrasound-guided selective C5 nerve root injection. Under certain conditions, intrathecal spread also appears possible, which has major patient safety implications. Additional safety measures, such as injection pressure monitoring, should be incorporated into this block, or approaches that are more distal should be considered for the acute pain management of distal clavicle fractures. PMID:27311148

  12. Intrathecal Spread of Injectate Following an Ultrasound-Guided Selective C5 Nerve Root Injection in a Human Cadaver Model.

    PubMed

    Falyar, Christian R; Abercrombie, Caroline; Becker, Robert; Biddle, Chuck

    2016-04-01

    Ultrasound-guided selective C5 nerve root blocks have been described in several case reports as a safe and effective means to anesthetize the distal clavicle while maintaining innervation of the upper extremity and preserving diaphragmatic function. In this study, cadavers were injected with 5 mL of 0.5% methylene blue dye under ultrasound guidance to investigate possible proximal and distal spread of injectate along the brachial plexus, if any. Following the injections, the specimens were dissected and examined to determine the distribution of dye and the structures affected. One injection revealed dye extended proximally into the epidural space, which penetrated the dura mater and was present on the spinal cord and brainstem. Dye was noted distally to the divisions in 3 injections. The anterior scalene muscle and phrenic nerve were stained in all 4 injections. It appears unlikely that local anesthetic spread is limited to the nerve root following an ultrasound-guided selective C5 nerve root injection. Under certain conditions, intrathecal spread also appears possible, which has major patient safety implications. Additional safety measures, such as injection pressure monitoring, should be incorporated into this block, or approaches that are more distal should be considered for the acute pain management of distal clavicle fractures.

  13. Charcot-Marie-Tooth syndrome and neurofibromatosis type 1 with multiple neurofibromas of the entire spinal nerve roots

    PubMed Central

    Onu, David O; Hunn, Andrew W; Peters-Willke, Jens

    2013-01-01

    The coexistence of polyneuropathy which has the definite clinical and electromyographical findings consistent with Charcot-Marie-Tooth (CMT) syndrome and neurofibromatosis type 1 (NF1) has infrequently been reported. We describe a patient with both CMT and NF1, who had multiple neurofibromas involving the entire spinal neural axis. In addition, he had multiple neurofibromas distributed within the ileopsoas and gluteus muscles and subcutaneous tissues. These lesions were detected readily by MRI and the patient underwent successful surgical resection of the largest tumours compressing bilateral C2 nerve roots. To our knowledge, this is the first reported case of CMT syndrome coexisting with NF1 in which multiple neurofibromas involved the entire spinal nerve roots. We discuss the diagnostic and therapeutic challenges, emphasising the role of MRI and electrophysiology in such cases and provide a literature review. PMID:23853192

  14. Charcot-Marie-Tooth syndrome and neurofibromatosis type 1 with multiple neurofibromas of the entire spinal nerve roots.

    PubMed

    Onu, David O; Hunn, Andrew W; Peters-Willke, Jens

    2013-01-01

    The coexistence of polyneuropathy which has the definite clinical and electromyographical findings consistent with Charcot-Marie-Tooth (CMT) syndrome and neurofibromatosis type 1 (NF1) has infrequently been reported. We describe a patient with both CMT and NF1, who had multiple neurofibromas involving the entire spinal neural axis. In addition, he had multiple neurofibromas distributed within the ileopsoas and gluteus muscles and subcutaneous tissues. These lesions were detected readily by MRI and the patient underwent successful surgical resection of the largest tumours compressing bilateral C2 nerve roots. To our knowledge, this is the first reported case of CMT syndrome coexisting with NF1 in which multiple neurofibromas involved the entire spinal nerve roots. We discuss the diagnostic and therapeutic challenges, emphasising the role of MRI and electrophysiology in such cases and provide a literature review.

  15. Paresis of the L5 nerve root after reduction of low-grade lumbosacral dysplastic spondylolisthesis: a case report.

    PubMed

    Lykissas, Marios G; Aichmair, Alexander; Widmann, Roger; Sama, Andrew A

    2014-09-01

    We present a unique case of a 16-year-old patient who underwent lumbar decompression surgery (L4-S1), low-grade spondylolisthesis reduction surgery at L5-S1, and posterior instrumented fusion from L4 to the pelvis. Neurologic monitoring did not show any sustained changes throughout the operation. The patient was awoken from endotracheal anesthesia with grade 0 muscle function of the left extensor hallucis longus and tibialis anterior muscles resulting in left-sided foot drop. At the last follow-up 12 months after surgery, the patient had partial recovery, with grade 4 muscle function of the left extensor hallucis longus and tibialis anterior muscles. We suggest that early identification with direct nerve root stimulation and wake-up test immediately after reduction of spondylolisthesis will allow prompt release of the reduction and further foramen exploration, and increase the possibility of good postoperative nerve root recovery. PMID:24887052

  16. Cranial nerve root entry zone primary cerebellopontine angle gliomas: a rare and poorly recognized subset of extraparenchymal tumors.

    PubMed

    Arnautovic, K I; Husain, M M; Linskey, M E

    2000-09-01

    With the exception of patients with neurofibromatosis type II, pediatric extraparenchymal cerebellopontine angle (CPA) tumors of any sort are extremely rare. Most gliomas encountered in the CPA in either children or adults involve the CPA as exophytic extensions of primary brain stem and/or cerebellar tumors. We encountered an unusual case of a giant CPA pilocytic astrocytoma arising from the proximal trigeminal nerve, completely separate from the brain stem. A nine-year-old girl with no evidence for any neurocutaneous syndrome, presented with headaches, mild obstructive hydrocephalus, trigeminal hypesthesia and a subtle peripheral facial paresis. Pre-operative neuroimaging suggested a petroclival meningioma. The tumor was completely resected via a right pre-sigmoid, retro-labyrinthine, subtemporal, transtentorial ('petrosal') approach, using intraoperative neurophysiological monitoring, with minimal morbidity. This appears to be the first reported case of a pediatric primary CPA glioma and the seventh reported case of primary CPA glioma, overall. It represents the second reported case of a primary CPA pilocytic astrocytoma. Given the findings in this case and the six other cases of primary CPA gliomas reported in the literature, as well as the results of histological studies of normal cranial nerves, we hypothesize that the point of origin of these rare and unusual tumors is the root entry zone of the involved cranial nerves. The differential diagnosis of primary CPA tumors should be expanded to include cranial nerve root entry zone primary CPA gliomas.

  17. Blood-nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina of dorsal root ganglia.

    PubMed

    Bush, M S; Reid, A R; Allt, G

    1991-09-01

    Previous investigations of the blood-nerve barrier have correlated the greater permeability of ganglionic endoneurial vessels, compared to those of nerve trunks, with the presence of fenestrations and open intercellular junctions. Recent studies have demonstrated reduced endothelial cell surface charge in blood vessels showing greater permeability. To determine the distribution of anionic sites on the plasma membranes and basal laminae of endothelial cells in dorsal root ganglia, cationic colloidal gold and cationic ferritin were used. Electron microscopy revealed the existence of endothelial microdomains with differing labelling densities. Labelling indicated that caveolar and fenestral diaphragms and basal laminae are highly anionic at physiological pH, luminal plasma membranes and endothelial processes are moderately charged and abluminal plasma membranes are weakly anionic. Tracers did not occur in caveolae or cytoplasmic vesicles. In vitro tracer experiments at pH values of 7.3, 5.0, 3.5 and 2.0 indicated that the anionic charge on the various endothelial domains was contributed by chemical groups with differing pKa values. In summary, the labelling of ganglionic and sciatic nerve vessels was similar except for the heavy labelling of diaphragms in a minority of endoneurial vessels in ganglia. This difference is likely to account in part for the greater permeability of ganglionic endoneurial vessels. The results are discussed with regard to the blood-nerve and -brain barriers and vascular permeability in other tissues and a comparison made between the ultrastructure and anionic microdomains of epi-, peri- and endoneurial vessels of dorsal root ganglia and sciatic nerves.

  18. Blood-nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina of dorsal root ganglia.

    PubMed

    Bush, M S; Reid, A R; Allt, G

    1991-09-01

    Previous investigations of the blood-nerve barrier have correlated the greater permeability of ganglionic endoneurial vessels, compared to those of nerve trunks, with the presence of fenestrations and open intercellular junctions. Recent studies have demonstrated reduced endothelial cell surface charge in blood vessels showing greater permeability. To determine the distribution of anionic sites on the plasma membranes and basal laminae of endothelial cells in dorsal root ganglia, cationic colloidal gold and cationic ferritin were used. Electron microscopy revealed the existence of endothelial microdomains with differing labelling densities. Labelling indicated that caveolar and fenestral diaphragms and basal laminae are highly anionic at physiological pH, luminal plasma membranes and endothelial processes are moderately charged and abluminal plasma membranes are weakly anionic. Tracers did not occur in caveolae or cytoplasmic vesicles. In vitro tracer experiments at pH values of 7.3, 5.0, 3.5 and 2.0 indicated that the anionic charge on the various endothelial domains was contributed by chemical groups with differing pKa values. In summary, the labelling of ganglionic and sciatic nerve vessels was similar except for the heavy labelling of diaphragms in a minority of endoneurial vessels in ganglia. This difference is likely to account in part for the greater permeability of ganglionic endoneurial vessels. The results are discussed with regard to the blood-nerve and -brain barriers and vascular permeability in other tissues and a comparison made between the ultrastructure and anionic microdomains of epi-, peri- and endoneurial vessels of dorsal root ganglia and sciatic nerves. PMID:1960538

  19. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection

    PubMed Central

    Chang, Ming-Fong; Hsieh, Jung-Hsien; Chiang, Hao; Kan, Hung-Wei; Huang, Cho-Min; Chellis, Luke; Lin, Bo-Shiou; Miaw, Shi-Chuen; Pan, Chun-Liang; Chao, Chi-Chao; Hsieh, Sung-Tsang

    2016-01-01

    Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection. PMID:27748450

  20. The Influence of Random Element Displacement on DOA Estimates Obtained with (Khatri–Rao-)Root-MUSIC

    PubMed Central

    Inghelbrecht, Veronique; Verhaevert, Jo; van Hecke, Tanja; Rogier, Hendrik

    2014-01-01

    Although a wide range of direction of arrival (DOA) estimation algorithms has been described for a diverse range of array configurations, no specific stochastic analysis framework has been established to assess the probability density function of the error on DOA estimates due to random errors in the array geometry. Therefore, we propose a stochastic collocation method that relies on a generalized polynomial chaos expansion to connect the statistical distribution of random position errors to the resulting distribution of the DOA estimates. We apply this technique to the conventional root-MUSIC and the Khatri-Rao-root-MUSIC methods. According to Monte-Carlo simulations, this novel approach yields a speedup by a factor of more than 100 in terms of CPU-time for a one-dimensional case and by a factor of 56 for a two-dimensional case. PMID:25393783

  1. S3 Dorsal Root Ganglion/Nerve Root Stimulation for Refractory Postsurgical Perineal Pain: Technical Aspects of Anchorless Sacral Transforaminal Lead Placement

    PubMed Central

    Zuidema, X.; Breel, J.; Wille, F.

    2016-01-01

    Chronic perineal pain limits patients in physical and sexual activities, leading to social and psychological distress. In most cases, this pain develops after surgery in the urogenital area or as a consequence of trauma. Neuromodulation is one of the options in chronic postsurgical perineal pain treatment. We present a case of refractory perineal pain after right sided surgical resection of a Bartholin's cyst which was treated with third sacral nerve root/dorsal root ganglion stimulation using the transforaminal approach. We describe a new anchorless lead placement technique using a unique curved lead delivery sheath. We postulate that this new posterior foraminal technique of lead placement is simple, safe, and reversible and may lower the occurrence of lead related complications. PMID:27123351

  2. Three-Dimensional Analysis of Nuclear Size, Shape and Displacement in Clover Root Cap Statocytes from Space and a Clinostat

    NASA Technical Reports Server (NTRS)

    Smith, J.D.; Todd, P. W.; Staehelin, L. A.; Holton, Emily (Technical Monitor)

    1997-01-01

    Under normal (l-g) conditions the statocytes of root caps have a characteristic polarity with the nucleus in tight association with the proximal cell wall; but, in altered gravity environments including microgravity (mu-g) and the clinostat (c-g) movement of the nucleus away from the proximal cell wall is not uncommon. To further understand the cause of gravity-dependent nuclear displacement in statocytes, three-dimensional cell reconstruction techniques were used to precisely measure the volumes, shapes, and positions of nuclei in white clover (Trifolium repens) flown in space and rotated on a clinostat. Seeds were germinated and grown for 72 hours aboard the Space Shuttle (STS-63) in the Fluid Processing Apparatus (BioServe Space Technologies, Univ. of Colorado, Boulder). Clinorotation experiments were performed on a two-axis clinostat (BioServe). Computer reconstruction of selected groups of statocytes were made from serial sections (0.5 microns thick) using the ROSS (Reconstruction Of Serial Sections) software package (Biocomputation Center, NASA Ames Research Center). Nuclei were significantly displaced from the tops of cells in mu-g (4.2 +/- 1.0 microns) and c-g (4.9 +/- 1.4 microns) when compared to l-g controls (3.4 +/- 0.8 gm); but, nuclear volume (113 +/- 36 cu microns, 127 +/- 32 cu microns and 125 +/- 28 cu microns for l-g, mu-g and c-g respectively) and the ratio of nuclear volume to cell volume (4.310.7%, 4.211.0% and 4.911.4% respectively) were not significantly dependent on gravity treatment (ANOVA; alpha = 0.05). Three-dimensional analysis of nuclear shape and proximity to the cell wall, however, showed that nuclei from l-g controls appeared ellipsoidal while those from space and the clinostat were more spherically shaped. This change in nuclear shape may be responsible for its displacement under altered gravity conditions. Since the cytoskeleton is known to affect nuclear polarity in root cap statocytes, those same cytoskeletal elements could also

  3. Emotional stress and orthodontic tooth movement: effects on apical root resorption, tooth movement, and dental tissue expression of interleukin-1 alpha and calcitonin gene-related peptide immunoreactive nerve fibres in rats.

    PubMed

    Vandevska-Radunovic, Vaska; Murison, Robert

    2010-06-01

    The aim of the study was to investigate the effect of emotional stress on apical root resorption (ARR) and tooth displacement during orthodontic tooth movement in rats. A further area of interest was to evaluate if the expression of interleukin-1 alpha (IL-1alpha) as well as the density and distribution of peptidergic nerve fibres immunoreactive to calcitonin gene-related peptide (CGRP) in the periodontal ligament (PDL) are associated with possible stress-induced changes in root resorption and tooth movement. A total of 52 male Wistar rats, aged 6 weeks, were divided in three experimental and one control group (n = 4). Group 1 had orthodontic tooth movement and received foot shocks (OTMS; n = 16), group 2 had orthodontic tooth movement but received no foot shocks (OTMNS; n = 16), and group 3 had no orthodontic tooth movement and received foot shocks (NOTMS; n = 16). Each group was further divided into four subgroups (n = 4), corresponding to the period of the experiment, i.e. 3, 7, 13, and 21 days. At the end of each experimental period, the blood samples were taken, the animals were sacrificed, and the jaws excised, deminerialized, and processed for immunocytochemistry. One-way analysis of variance was used to detect inter-group differences for all investigated variables. CGRP immunopositive nerve fibres were evaluated qualitatively. All the experimental groups demonstrated higher corticosterone levels than the control group, suggesting a stress-induced experience by orthodontic treatment per se. The OTMS group had the least amount of cellular cementum throughout the experimental periods and showed significant reduction in tooth displacement, especially at 3 and 7 days. No obvious changes were observed in the dental tissue expression of IL-1alpha and CGRP immunoreactive nerve fibres between the stressed and non-stressed orthodontically treated groups.

  4. Downregulation of ClC-3 in dorsal root ganglia neurons contributes to mechanical hypersensitivity following peripheral nerve injury.

    PubMed

    Pang, Rui-Ping; Xie, Man-Xiu; Yang, Jie; Shen, Kai-Feng; Chen, Xi; Su, Ying-Xue; Yang, Chao; Tao, Jing; Liang, Si-Jia; Zhou, Jia-Guo; Zhu, He-Quan; Wei, Xu-Hong; Li, Yong-Yong; Qin, Zhi-Hai; Liu, Xian-Guo

    2016-11-01

    ClC-3 chloride channel/antiporter has been demonstrated to play an important role in synaptic transmission in central nervous system. However, its expression and function in sensory neurons is poorly understood. In present work, we found that ClC-3 is expressed at high levels in dorsal root ganglia (DRG). Co-immunofluorescent data showed that ClC-3 is mainly distributed in A- and C-type nociceptive neurons. ClC-3 expression in DRG is decreased in the spared nerve injury (SNI) model of neuropathic pain. Knockdown of local ClC-3 in DRG neurons with siRNA increased mechanical sensitivity in naïve rats, while overexpression of ClC-3 reversed the hypersensitivity to mechanical stimuli after peripheral nerve injury. In addition, genetic deletion of ClC-3 enhances mouse mechanical sensitivity but did not affect thermal and cold threshold. Restoration of ClC-3 expression in ClC-3 deficient mice reversed the mechanical sensitivity. Mechanistically, loss of ClC-3 enhanced mechanical sensitivity through increasing the excitability of DRG neurons. These data indicate that ClC-3 is an endogenous inhibitor of neuropathic pain development. Downregulation of ClC-3 by peripheral nerve injury is critical for mechanical hypersensitivity. Our findings suggest that ClC-3 is a novel therapeutic target for treating neuropathic pain. PMID:27460962

  5. Downregulation of ClC-3 in dorsal root ganglia neurons contributes to mechanical hypersensitivity following peripheral nerve injury.

    PubMed

    Pang, Rui-Ping; Xie, Man-Xiu; Yang, Jie; Shen, Kai-Feng; Chen, Xi; Su, Ying-Xue; Yang, Chao; Tao, Jing; Liang, Si-Jia; Zhou, Jia-Guo; Zhu, He-Quan; Wei, Xu-Hong; Li, Yong-Yong; Qin, Zhi-Hai; Liu, Xian-Guo

    2016-11-01

    ClC-3 chloride channel/antiporter has been demonstrated to play an important role in synaptic transmission in central nervous system. However, its expression and function in sensory neurons is poorly understood. In present work, we found that ClC-3 is expressed at high levels in dorsal root ganglia (DRG). Co-immunofluorescent data showed that ClC-3 is mainly distributed in A- and C-type nociceptive neurons. ClC-3 expression in DRG is decreased in the spared nerve injury (SNI) model of neuropathic pain. Knockdown of local ClC-3 in DRG neurons with siRNA increased mechanical sensitivity in naïve rats, while overexpression of ClC-3 reversed the hypersensitivity to mechanical stimuli after peripheral nerve injury. In addition, genetic deletion of ClC-3 enhances mouse mechanical sensitivity but did not affect thermal and cold threshold. Restoration of ClC-3 expression in ClC-3 deficient mice reversed the mechanical sensitivity. Mechanistically, loss of ClC-3 enhanced mechanical sensitivity through increasing the excitability of DRG neurons. These data indicate that ClC-3 is an endogenous inhibitor of neuropathic pain development. Downregulation of ClC-3 by peripheral nerve injury is critical for mechanical hypersensitivity. Our findings suggest that ClC-3 is a novel therapeutic target for treating neuropathic pain.

  6. A literature review reveals that trials evaluating treatment of non-specific low back pain use inconsistent criteria to identify serious pathologies and nerve root involvement

    PubMed Central

    Williams, Ciaran; Hancock, Mark J; Ferreira, Manuela; Ferreira, Paulo; Maher, Chris G

    2012-01-01

    Objectives The broad aim of this study was to assess the homogeneity of patients included in trials of non-specific low back pain (NSLBP). To do this, we investigated the consistency and clarity of criteria used to identify and exclude participants with serious pathologies and nerve root compromise in randomized controlled trials, investigating interventions for NSLBP. Methods We searched Medline database for randomized controlled trials of low back pain (LBP). published between 2000 and 2009. We then randomly selected and screened trials for inclusion until we had 50 eligible trials. Data were extracted on the criteria used to identify cases of serious conditions (e.g. cancer, fracture) and nerve root involvement. Results The majority of papers (35/50) explicitly excluded patients with serious pathology. However, the terminology used and examples given were highly variable. Nerve root involvement was an exclusion criterion in the majority but not all studies. The criteria used for excluding patients with nerve root involvement varied greatly between studies. The most common criteria were ‘motor, sensory or reflex changes’ (nine studies), followed by ‘pain radiating below the knee’ (five studies) and ‘reduced straight leg raise which reproduces leg pain’ (five studies). In half of the included studies, the criteria used, while alluding to nerve root involvement, were not explained adequately for us to determine the types of patients included or excluded. Discussion The inconsistent and unclear criteria used to identify cases of serious pathology and nerve root compromise means that published trials of LBP likely include heterogeneous patient populations. This trait limits our ability to make comparisons across trials or pool studies. Standardization and consensus is important for future research. PMID:23633884

  7. Fatty acid binding protein is induced in neurons of the dorsal root ganglia after peripheral nerve injury.

    PubMed

    De León, M; Welcher, A A; Nahin, R H; Liu, Y; Ruda, M A; Shooter, E M; Molina, C A

    1996-05-01

    Peripheral nerve trauma induces the expression of genes presumed to be involved in the process of nerve degeneration and repair. In the present study, an in vivo paradigm was employed to identify molecules which may have important roles in these processes. A cDNA library was constructed with RNA extracted from rat dorsal root ganglia (DRG) 3 days after a sciatic nerve crush. After differential hybridization to this library, several cDNAs were identified that encoded mRNAs that were upregulated in the DRG ipsilateral to the crush injury, as opposed to the contralateral or naive DRG. Approximately 0.15% of all the clones screened were found to be induced. This report presents the types of induced sequences identified and characterizes one of them, DA11. The 0.7 kb DA11 full length cDNA clone contains a 405 nucleotide open reading frame that encodes a putative protein of 15.2 kDa (135 amino acid residues) and is a member of the family of fatty acid binding proteins (FABP). The DA11 protein differs by one amino acid residue from the sequence of the C-FAPB protein and by eight residues from the sequence of mal1, proteins found in rat and mouse skin, respectively. Northern and Western blot analyses showed that the DA11 mRNA and protein were induced in the injured DRG. Furthermore, studies using antibodies generated against DA11 found that the DA11-like immunoreactivity was more pronounced in the nuclei of neurons located in the DRG ipsilateral to the sciatic cut than those located in the contralateral DRG. The induction of DA11 mRNA and protein in DRG neurons suggests, for the first time, the involvement of a neuronal FABP in the process of degeneration and repair in the nervous system.

  8. Neural-Dural Transition at the Thoracic and Lumbar Spinal Nerve Roots: A Histological Study of Human Late-Stage Fetuses

    PubMed Central

    Cho, Kwang Ho; Jin, Zhe Wu; Abe, Hiroshi; Shibata, Shunichi; Murakami, Gen; Rodríguez-Vázquez, Jose Francisco

    2016-01-01

    Epidural blocks have been used extensively in infants. However, little histological information is available on the immature neural-dural transition. The neural-dural transition was histologically investigated in 12 late-stage (28–30 weeks) fetuses. The dural sheath of the spinal cord was observed to always continue along the nerve roots with varying thicknesses between specimens and segments, while the dorsal root ganglion sheath was usually very thin or unclear. Immature neural-dural transitions were associated with effective anesthesia. The posterior radicular artery was near the dorsal root ganglion and/or embedded in the nerve root, whereas the anterior radicular artery was separated from the nearest nerve root. The anterior radicular artery was not associated with the dural sheath but with thin mesenchymal tissue. The numbers of radicular arteries tended to become smaller in larger specimens. Likewise, larger specimens of the upper thoracic and lower lumbar segments did not show the artery. Therefore, elimination of the radicular arteries to form a single artery of Adamkiewicz was occurring in late-stage fetuses. The epidural space was filled with veins, and the loose tissue space extended ventrolaterally to the subpleural tissue between the ribs. Consequently, epidural blocks in infants require special attention although immature neural-dural transitions seemed to increase the effect. PMID:27069926

  9. Dejerine-Sottas neuropathy with multiple nerve roots enlargement and hypomyelination associated with a missense mutation of the transmembrane domain of MPZ/P0.

    PubMed

    Simonati, Alessandro; Fabrizi, Gian Maria; Taioli, Federica; Polo, Alberto; Cerini, Roberto; Rizzuto, Nicolò

    2002-09-01

    In a patient affected with a slowly progressive, severe form of Dejerine-Sottas syndrome, symmetric enlargement of cranial nerves and focal hypertrophy of cervical and caudal roots were detected following MRI. Neuropathological features of the sural nerve disclosed a dramatic loss of myelinated fibres, with skewed-to-the-left, unimodal distribution of the few residual fibres, consistent with the diagnosis of congenital hypomyelination neuropathy. Genetic analysis revealed this condition to be associated with a heterozygous G to A transition at codon 167 in the exon 4 of the MPZ/P0 gene causing a Gly138Arg substitution in the transmembrane domain of the mature MPZ/P0 protein. Focal enlargement of the nerve trunks in demyelinating, hereditary motor and sensory neuropathies (HMSN) was previously reported in both asymptomatic and symptomatic cases with root compression, but peculiar to this case is the diffuse involvement of both cranial and spinal nerves. We believe that the relevance of nerve trunk hypertrophy in HMSN is probably underevaluated: therefore MRI investigation of the head and spine should be included in the diagnostic study of selected HMSN patients. Molecular analysis of peripheral myelin genes will help to rule out misdiagnosed cases. PMID:12242557

  10. Dorsal root ganglion-derived Schwann cells combined with poly(lactic-co-glycolic acid)/chitosan conduits for the repair of sciatic nerve defects in rats.

    PubMed

    Zhao, Li; Qu, Wei; Wu, Yuxuan; Ma, Hao; Jiang, Huajun

    2014-11-15

    Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and purification of Schwann cells are complicated by contamination with fibroblasts. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. In this study, we collected dorsal root ganglia from neonatal rats from which we obtained highly purified Schwann cells using serum-free melanocyte culture medium. The purity of Schwann cells (> 95%) using our method was higher than that using standard medium containing fetal bovine serum. The obtained Schwann cells were implanted into poly(lactic-co-glycolic acid)/chitosan conduits to repair 10-mm sciatic nerve defects in rats. Results showed that axonal diameter and area were significantly increased and motor functions were obviously improved in the rat sciatic nerve tissue. Experimental findings suggest that serum-free melanocyte culture medium is conducive to purify Schwann cells and poly(lactic-co-glycolic acid)/chitosan nerve conduits combined with Schwann cells contribute to restore sciatic nerve defects.

  11. Treatment outcomes of intradiscal steroid injection/selective nerve root block for 161 patients with cervical radiculopathy.

    PubMed

    Ito, Keigo; Yukawa, Yasutsugu; Machino, Masaaki; Inoue, Taro; Ouchida, Jun; Tomita, Keisuke; Kato, Fumihiko

    2015-02-01

    Patients with cervical radiculopathy (CR) were treated with intradiscal injection of steroids (IDIS) and/or selective nerve root block (SNRB) at our hospital. We retrospectively report the outcomes of these nonsurgical treatments for CR. 161 patients who were followed up for >2months were enrolled in this study. Patients' clinical manifestations were classified as arm pain, arm numbness, neck and/or scapular pain, and arm paralysis. Improvement in each manifestation was classified as "disappeared," "improved," "poor," or "worsened." Responses of "disappeared" or "improved" manifestations suggested treatment effectiveness. Final clinical outcomes were evaluated using the Odom criteria. Changes in herniated disc size were evaluated by comparing the initial and final MRI scans. On the basis of these changes, the patients were divided into regression, no-change, or progression groups. We investigated the relationship between the Odom criteria and changes observed on MRI. Effectiveness rates were 89% for arm pain, 77% for arm numbness, 82% for neck and/or scapular pain, and 76% for arm paralysis. In total, 91 patients underwent repeated MRI. In 56 patients (62%), the size of the herniated disc decreased, but 31 patients (34%) exhibited no change in disc size. The regression group showed significantly better Odom criteria results than the no-change group. In conclusion, IDIS and SNRB for CR are not widely performed. However, other extremely effective therapies that can rapidly improve neuralgia should be considered before surgery. PMID:25797986

  12. Monocyte Traffic, Dorsal Root Ganglion Histopathology, and Loss of Intraepidermal Nerve Fiber Density in SIV Peripheral Neuropathy

    PubMed Central

    Lakritz, Jessica R.; Bodair, Ayman; Shah, Neal; O'Donnell, Ryan; Polydefkis, Michael J.; Miller, Andrew D.; Burdo, Tricia H.

    2016-01-01

    HIV-associated sensory neuropathy remains the most common neurological complication of HIV infection and is characterized by dorsal root ganglion (DRG) inflammation and intraepidermal nerve fiber density (IENFD) loss. Chronic peripheral immune cell activation and accumulation may cause damage to the DRG, but has not been fully investigated yet. By using an SIV-infected, CD8-lymphocyte–depleted rhesus macaque model, we defined immune cells surrounding DRG neurons and their role in DRG pathology, measured cell traffic from the bone marrow to the DRGs using 5-bromo-2-deoxyuridine (BrdU) pulse, and serially measured IENFD. We found an increase in CD68+ and CD163+ macrophages in DRGs of SIV-infected animals. MAC387+ recently recruited monocytes/macrophages were increased, along with BrdU+ cells, in the DRGs of SIV-infected macaques. We demonstrated that 78.1% of all BrdU+ cells in DRGs were also MAC387+. The number of BrdU+ monocytes correlated with severe DRG histopathology, which included neuronophagia, neuronal loss, and Nageotte nodules. These data demonstrate that newly recruited MAC387+BrdU+ macrophages may play a significant role in DRG pathogenesis. IENFD decreased early (day 21), consistent with the development of sensory neuropathy in SIV-infected macaques. Decreased IENFD was associated with elevated BrdU+ cells in the DRG. These data suggest that increased recruitment of macrophages to DRG is associated with severe DRG histopathology and IENFD loss. PMID:25956030

  13. Multi-scale simulations predict responses to non-invasive nerve root stimulation

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Matsumoto, Hideyuki; Hirata, Akimasa; Terao, Yasuo; Hanajima, Ritsuko; Ugawa, Yoshikazu

    2014-10-01

    Objective. Established biophysical neurone models have achieved limited success in reproducing electrophysiological responses to non-invasive stimulation of the human nervous system. This is related to our insufficient knowledge of the induced electric currents inside the human body. Despite the numerous research and clinical applications of non-invasive stimulation, it is still unclear which internal sites are actually affected by it. Approach. We performed multi-scale computer simulations that, by making use of advances in computing power and numerical algorithms, combine a microscopic model of electrical excitation of neurones with a macroscopic electromagnetic model of the realistic whole-body anatomy. Main results. The simulations yield responses consistent with those experimentally recorded following magnetic and electrical motor root stimulation in human subjects, and reproduce the observed amplitudes and latencies for a wide variety of stimulation parameters. Significance. Our findings demonstrate that modern computational techniques can produce detailed predictions about which and where neurones are activated, leading to improved understanding of the physics and basic mechanisms of non-invasive stimulation and enabling potential new applications that make use of improved targeting of stimulation.

  14. Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy.

    PubMed

    Sleeper, A A; Cummins, T R; Dib-Hajj, S D; Hormuzdiar, W; Tyrrell, L; Waxman, S G; Black, J A

    2000-10-01

    Two TTX-resistant sodium channels, SNS and NaN, are preferentially expressed in c-type dorsal root ganglion (DRG) neurons and have been shown recently to have distinct electrophysiological signatures, SNS producing a slowly inactivating and NaN producing a persistent sodium current with a relatively hyperpolarized voltage-dependence. An attenuation of SNS and NaN transcripts has been demonstrated in small DRG neurons after transection of the sciatic nerve. However, it is not known whether changes in the currents associated with SNS and NaN or in the expression of SNS and NaN channel protein occur after axotomy of the peripheral projections of DRG neurons or whether similar changes occur after transection of the central (dorsal root) projections of DRG neurons. Peripheral and central projections of L4/5 DRG neurons in adult rats were axotomized by transection of the sciatic nerve and the L4 and L5 dorsal roots, respectively. DRG neurons were examined using immunocytochemical and patch-clamp methods 9-12 d after sciatic nerve or dorsal root lesion. Levels of SNS and NaN protein in the two types of injuries were paralleled by their respective TTX-resistant currents. There was a significant decrease in SNS and NaN signal intensity in small DRG neurons after peripheral, but not central, axotomy compared with control neurons. Likewise, there was a significant reduction in slowly inactivating and persistent TTX-resistant currents in these neurons after peripheral, but not central, axotomy compared with control neurons. These results indicate that peripheral, but not central, axotomy results in a reduction in expression of functional SNS and NaN channels in c-type DRG neurons and suggest a basis for the altered electrical properties that are observed after peripheral nerve injury. PMID:11007885

  15. Conus medulla-cauda compression from nerve root hypertrophy in a child with Dejerine-Sottas syndrome: improvement with laminectomy and duraplasty. Case report.

    PubMed

    Kleopa, Kleopas A; Sutton, Leslie N; Ong, Joseph; Tennekoon, Gihan; Telfeian, Albert E

    2002-09-01

    This 7-year-old boy with Dejerine-Sottas syndrome caused by a mutation in the myelin protein zero gene began to suffer rapid deterioration with increasing leg weakness, loss of the ability to ambulate, and bowel and bladder incontinence. Magnetic resonance imaging of the spine revealed nerve root hypertrophy resulting in compression of the conus medullaris and cauda equina. Decompressive surgery was successful in reversing some of his deficits. PMID:12296688

  16. Nuclear factor erythroid 2-related factor 2 antibody attenuates thermal hyperalgesia in the dorsal root ganglion: Neurochemical changes and behavioral studies after sciatic nerve-pinch injury.

    PubMed

    Xiang, Qiong; Yu, Chao; Zhu, Yao-Feng; Li, Chun-Yan; Tian, Rong-Bo; Li, Xian-Hui

    2016-08-01

    Oxidative stress is generated in several peripheral nerve injury models.Nuclear factor erythroid 2-related factor 2 (Nrf2) is activated to have a role in antioxidant effect. After nerve injury, the severely painful behavior is also performed. However, little has been explored regarding the function of Nrf2 in this painful process. Therefore, in this study, we compared the effects of Nrf2 antibody administration following sciatic nerve-pinch injury on painful behavior induced in young mice and neurochemical changes in dorsal root ganglion neurons. After pinch nerve injury, we found that the magnitude of the thermal allodynia was significantly decreased after application of Nrf2 antibody (5ul, 1mg/ml) in such injured animals and phosphorylated ERK(p-ERK) as well as the apoptotic protein (i.e., Bcl-6) in DRG neurons were also down-regulated in the anti-Nrf2-treated injured groups compared to the saline-treated groups. Taken collectively, these data suggested that the Nrf2 antibody reduced thermal hyperalgesia via ERK pathway and the down regulation of Bcl-6 protein from the apoptosis pathway might be protecting against the protein deletions caused by anti-Nrf2 effect and suggested the new therapeutic strategy with Nrf2 inhibitor following nerve injury. PMID:27316447

  17. Differential action potentials and firing patterns in injured and uninjured small dorsal root ganglion neurons after nerve injury.

    PubMed

    Zhang, Xu-Feng; Zhu, Chang Z; Thimmapaya, Rama; Choi, Won S; Honore, Prisca; Scott, Victoria E; Kroeger, Paul E; Sullivan, James P; Faltynek, Connie R; Gopalakrishnan, Murali; Shieh, Char-Chang

    2004-05-29

    The profile of tetrodotoxin sensitive (TTX-S) and resistant (TTX-R) Na(+) channels and their contribution to action potentials and firing patterns were studied in isolated small dorsal root ganglion (DRG) neurons after L5/L6 spinal nerve ligation (SNL). Total TTX-R Na(+) currents and Na(v) 1.8 mRNA were reduced in injured L5 DRG neurons 14 days after SNL. In contrast, TTX-R Na(+)currents and Na(v) 1.8 mRNA were upregulated in uninjured L4 DRG neurons after SNL. Voltage-dependent inactivation of TTX-R Na(+) channels in these neurons was shifted to hyperpolarized potentials by 4 mV. Two types of neurons were identified in injured L5 DRG neurons after SNL. Type I neurons (57%) had significantly lower threshold but exhibited normal resting membrane potential (RMP) and action potential amplitude. Type II neurons (43%) had significantly smaller action potential amplitude but retained similar RMP and threshold to those from sham rats. None of the injured neurons could generate repetitive firing. In the presence of TTX, only 26% of injured neurons could generate action potentials that had smaller amplitude, higher threshold, and higher rheobase compared with sham rats. In contrast, action potentials and firing patterns in uninjured L4 DRG neurons after SNL, in the presence or absence of TTX, were not affected. These results suggest that TTX-R Na(+) channels play important roles in regulating action potentials and firing patterns in small DRG neurons and that downregulation in injured neurons and upregulation in uninjured neurons confer differential roles in shaping electrogenesis, and perhaps pain transmission, in these neurons. PMID:15120592

  18. Re-evaluation of the phenotypic changes in L4 dorsal root ganglion neurons after L5 spinal nerve ligation.

    PubMed

    Fukuoka, Tetsuo; Yamanaka, Hiroki; Kobayashi, Kimiko; Okubo, Masamichi; Miyoshi, Kan; Dai, Yi; Noguchi, Koichi

    2012-01-01

    The L5 spinal nerve ligation (SNL) is a widely used animal neuropathic pain model. There are conflicting reports regarding the extent of injury to the L4 dorsal root ganglion (DRG) neurons in this model. If a significant number of these neurons were injured, the previously reported phenotypic and electrophysiological changes at this level are in need of re-evaluation by separating the injured neurons and the frankly spared ones. So, we immunostained activating transcription factor 3 (ATF3) and examined the change in expression of transcripts for neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF) and several voltage-gated sodium channel α-subunits (Nav1.1, Nav1.3, Nav1.6, Nav1.7, Nav1.8, and Nav1.9) in the L4 DRG by comparing signal intensities of individual neurons using in situ hybridization histochemistry. ATF3-immunoreactivity was similarly observed in 4-6% of neuronal nuclei of the SNL and sham-operated ipsilateral L4 DRGs. Comparison between ATF3+ and ATF3- neurons in the SNL L4 DRG revealed that (1) whereas NPY induction occurred in ATF3+ cells, BDNF increased mainly in ATF3- neurons; (2) although ATF3+ neurons had higher Nav1.3 signals than ATF3- neurons, these signals were much lower than those of the L5 DRG neurons; and (3) ATF3+/N52- neurons selectively lost Nav1.8 and Nav1.9 mRNAs. Comparison of the total neuronal populations among naïve, SNL, and sham-operated rats revealed no significant differences for all examined Nav mRNAs. Because neuropathic pain behaviors were developed by rats with SNL but not the sham-operation, the small number of injured L4 neurons likely do not contribute to the pathomechanisms of neuropathic pain. PMID:22054598

  19. Depression of Ca2+/Calmodulin-Dependent Protein Kinase II in Dorsal Root Ganglion Neurons after Spinal Nerve Ligation

    PubMed Central

    Kojundzic, Sanja Lovric; Puljak, Livia; Hogan, Quinn; Sapunar, Damir

    2014-01-01

    The enzyme calcium/calmodulin-dependent protein kinase II (CaMKII) is associated with memory and its α isoform is critical for development of activity-induced synaptic changes. Therefore, we hypothesized that CaMKII is involved in altered function of dorsal root ganglion (DRG) neurons after neuronal injury. To test this hypothesis, Sprague–Dawley rats were made hyperalgesic by L5 and L6 spinal nerve ligation (SNL), and changes in total phosphorylated and unphosphorylated CaMKII (tCaMKII) and phosphorylated form of its α isoform (pCaMKIIα) were analyzed using immunochemistry in different subpopulations of DRG. SNL did not induce any changes in tCaMKII between experimental groups, while the overall percentage of pCaMKIIα-positive neurons in injured L5 DRG SNL (24.8%) decreased significantly when compared to control (41.7%). SNL did not change the percentage of pCaMKIIα/N52 colabeled neurons but decreased the percentage of N52-negative nonmyelinated neurons that expressed pCaMKIIα from 27% in control animals to 11% after axotomy. We also observed a significant decrease in the percentage of small nonpeptidergic neurons labeled with IB4 (37.6% in control vs. 4.0% in L5 SNL DRG), as well as a decrease in the percentage of pCaMKIIα/IB4 colabeled neurons in injured L5 DRGs (27% in control vs. 1% in L5 DRG of SNL group). Our results show that reduction in pCaMKIIα levels following peripheral injury is due to the loss of IB4-positive neurons. These results indicate that diminished afferent activity after axotomy may lead to decreased phosphorylation of CaMKIIα. PMID:19882720

  20. The Impact of Spinal Cord Nerve Roots and Denticulate Ligaments on Cerebrospinal Fluid Dynamics in the Cervical Spine

    PubMed Central

    Heidari Pahlavian, Soroush; Yiallourou, Theresia; Tubbs, R. Shane; Bunck, Alexander C.; Loth, Francis; Goodin, Mark; Raisee, Mehrdad; Martin, Bryn A.

    2014-01-01

    Cerebrospinal fluid (CSF) dynamics in the spinal subarachnoid space (SSS) have been thought to play an important pathophysiological role in syringomyelia, Chiari I malformation (CM), and a role in intrathecal drug delivery. Yet, the impact that fine anatomical structures, including nerve roots and denticulate ligaments (NRDL), have on SSS CSF dynamics is not clear. In the present study we assessed the impact of NRDL on CSF dynamics in the cervical SSS. The 3D geometry of the cervical SSS was reconstructed based on manual segmentation of MRI images of a healthy volunteer and a patient with CM. Idealized NRDL were designed and added to each of the geometries based on in vivo measurments in the literature and confirmation by a neuroanatomist. CFD simulations were performed for the healthy and patient case with and without NRDL included. Our results showed that the NRDL had an important impact on CSF dynamics in terms of velocity field and flow patterns. However, pressure distribution was not altered greatly although the NRDL cases required a larger pressure gradient to maintain the same flow. Also, the NRDL did not alter CSF dynamics to a great degree in the SSS from the foramen magnum to the C1 level for the healthy subject and CM patient with mild tonsillar herniation (∼6 mm). Overall, the NRDL increased fluid mixing phenomena and resulted in a more complex flow field. Comparison of the streamlines of CSF flow revealed that the presence of NRDL lead to the formation of vortical structures and remarkably increased the local mixing of the CSF throughout the SSS. PMID:24710111

  1. Monitoring of immune cell response to B cell depletion therapy and nerve root injury using SPIO enhanced MRI

    NASA Astrophysics Data System (ADS)

    Thorek, Daniel L.

    2009-12-01

    Magnetic resonance (MR) is a robust platform for non-invasive, high-resolution anatomical imaging. However, MR imaging lacks the requisite sensitivity and contrast for imaging at the cellular level. This represents a clinical impediment to greater diagnostic accuracy. Recent advances have allowed for the in vivo visualization of populations and even of individual cells using superparamagnetic iron oxide (SPIO) MR contrast agents. These nanoparticles, commonly manifested as a core of a single iron oxide crystal or cluster of crystals coated in a biocompatible shell, function to shorten proton relaxation times. In MR imaging these constructs locally dephase protons, resulting in a decrease in signal (hypointensity) localized to the region of accumulation of SPIO. In the context of immune cell imaging, SPIO can provide insight into the cellular migration patterns, trafficking, temporal dynamics and progression of diseases and their related pathological states. Furthermore, by visualizing the presence and activity of immune cells, SPIO-enabled cellular imaging can help evaluate the efficacy of therapy in immune disorders. This thesis examines the production, modification and application of SPIO in a range of in vitro and in vivo immune-response-relevant cellular systems. The role of different nanoparticle characteristics including diameter, surface charge and concentration are investigated in the labeling of T cells in culture. Following optimization of SPIO loading conditions for lymphocytes, the effect these particles have on the activation of primary B cells are elucidated. B cells are tracked using a variety of modalities, with and without the application of B cell depleting therapy. This is to evaluate the efficacy of SPIO as in vivo marker for B cell distribution. Unmodified SPIO were applied to monitor macrophage infiltration in a transient nerve root compression model, with implications for neck pain diagnosis and treatment. Nanoparticle accumulation and MR

  2. TNF-α enhances the currents of voltage gated sodium channels in uninjured dorsal root ganglion neurons following motor nerve injury.

    PubMed

    Chen, Xi; Pang, Rui-Ping; Shen, Kai-Feng; Zimmermann, Manfred; Xin, Wen-Jun; Li, Yong-Yong; Liu, Xian-Guo

    2011-02-01

    The ectopic discharges observed in uninjured dorsal root ganglion (DRG) neurons following various lesions of spinal nerves have been attributed to functional alterations of voltage-gated sodium channels (VGSCs). Such mechanisms may be important for the development of neuropathic pain. However, the pathophysiology underlying the functional modulation of VGSCs following nerve injury is largely unknown. Here, we studied this issue with use of a selective lumbar 5 ventral root transection (L5-VRT) model, in which dorsal root ganglion (DRG) neurons remain intact. We found that the L5-VRT increased the current densities of TTX-sensitive Na channels as well as currents in Nav1.8, but not Nav1.9 channels in uninjured DRG neurons. The thresholds of action potentials decreased and firing rates increased in DRG neurons following L5-VRT. As we found that levels of tumor necrosis factor-alpha (TNF-α) increased in cerebrospinal fluid (CSF) and in DRG tissue after L5-VRT, we tested whether the increased TNF-α might result in the changes in sodium channels. Indeed, recombinant rat TNF (rrTNF) enhanced the current densities of TTX-S and Nav1.8 in cultured DRG neurons dose-dependently. Furthermore, genetic deletion of TNF receptor 1 (TNFR-1) in mice attenuated the mechanical allodynia and prevented the increase in sodium currents in DRG neurons induced by L5-VRT. These data suggest that the increase in sodium currents in uninjured DRG neurons following nerve injury might be mediated by over-production of TNF-α. PMID:21145890

  3. Nerve Injuries in Athletes.

    PubMed

    Collins, K; Storey, M; Peterson, K; Nutter, P

    1988-01-01

    In brief: Nerve injuries in athletes may be serious and may delay or prevent an athlete's return to his or her sport. Over a two-year period, the authors evaluated the condition of 65 patients who had entrapments of a nerve or nerve root, documented with electromyography. They describe four case histories: Two patients had radial nerve entrapments, one caused by baseball pitching and the other by kayaking; one football player had combined suprascapular neuropathy and upper trunk brachial plexopathy; and one patient had carpal tunnel syndrome of a median nerve secondary to rowing. Sports-related peripheral nerve lesions of the lower extremity were not seen during the study period. Based on a literature review, the nerve injuries discussed represent the spectrum of nerve entrapments likely to be seen in US clinics. The authors conclude that peripheral nerve lesions should be considered in the differential diagnosis of sports injuries, particularly at the shoulder, elbow, and wrist.

  4. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  5. Navigated Transtubular Extraforaminal Decompression of the L5 Nerve Root at the Lumbosacral Junction: Clinical Data, Radiographic Features, and Outcome Analysis

    PubMed Central

    Stavrinou, P.; Härtl, R.; Krischek, B.; Kabbasch, C.; Mpotsaris, A.; Goldbrunner, R.

    2016-01-01

    Purpose. Extraforaminal decompression of the L5 nerve root remains a challenge due to anatomic constraints, severe level-degeneration, and variable anatomy. The purpose of this study is to introduce the use of navigation for transmuscular transtubular decompression at the L5/S1 level and report on radiological features and clinical outcome. Methods. Ten patients who underwent a navigation-assisted extraforaminal decompression of the L5 nerve root were retrospectively analyzed. Results. Six patients had an extraforaminal herniated disc and four had a foraminal stenosis. The distance between the L5 transverse process and the para-articular notch of the sacrum was 12.1 mm in patients with a herniated disc and 8.1 mm in those with a foraminal stenosis. One patient had an early recurrence and another developed dysesthesia that resolved after 3 months. There was a significant improvement from preoperative to postoperative NRS with the results being sustainable at follow-up. ODI was also significantly improved after surgery. According to the Macnab grading scale, excellent or good outcomes were obtained in 8 patients and fair ones in 2. Conclusions. The navigated transmuscular transtubular approach to the lumbosacral junction allows for optimal placement of the retractor and excellent orientation particularly for foraminal stenosis or in cases of complex anatomy. PMID:27127783

  6. Rescue of alpha-SNS sodium channel expression in small dorsal root ganglion neurons after axotomy by nerve growth factor in vivo.

    PubMed

    Dib-Hajj, S D; Black, J A; Cummins, T R; Kenney, A M; Kocsis, J D; Waxman, S G

    1998-05-01

    Small (18-25 microm diam) dorsal root ganglion (DRG) neurons are known to express high levels of tetrodotoxin-resistant (TTX-R) sodium current and the mRNA for the alpha-SNS sodium channel, which encodes a TTX-R channel when expressed in oocytes. These neurons also preferentially express the high affinity receptor for nerve growth factor (NGF), TrkA. Levels of TTX-R sodium current and of alpha-SNS mRNA are reduced in these cells after axotomy. To determine whether NGF participates in the regulation of TTX-R current and alpha-SNS mRNA in small DRG neurons in vivo, we axotomized small lumbar DRG neurons by sciatic nerve transection and administered NGF or Ringer solution to the proximal nerve stump using osmotic pumps. Ten to 12 days after pump implant, whole cell patch-clamp recording demonstrated that TTX-R current density was decreased in Ringer-treated axotomized neurons (154 +/- 45 pA/pF; mean +/- SE) compared with nonaxotomized control neurons (865 +/- 123 pA/pF) and was restored partially toward control levels in NGF-treated axotomized neurons (465 +/- 78 pA/pF). The V1/2 for steady-state activation and inactivation of TTX-R currents were similar in control, Ringer- and NGF-treated axotomized neurons. Reverse transcription polymerase chain reaction revealed an upregulation of alpha-SNS mRNA levels in NGF-treated compared with Ringer-treated axotomized DRG. In situ hybridization showed that alpha-SNS mRNA levels were decreased significantly in small Ringer-treated axotomized DRG neurons in vivo and also in small DRG neurons that were dissociated and maintained in vitro, so as to correspond to the patch-clamp conditions. NGF-treated axotomized neurons had a significant increase in alpha-SNS mRNA expression, compared with Ringer-treated axotomized cells. These results show that the administration of exogenous NGF in vivo, to the proximal nerve stump of the transected sciatic nerve, results in an upregulation of TTX-R sodium current and of alpha-SNS mRNA levels in

  7. Spinal Nerve Ligation Decreases γ-Aminobutyric AcidB Receptors on Specific Populations of Immunohistochemically Identified Neurons in L5 Dorsal Root Ganglion of the Rat

    PubMed Central

    Engle, Mitchell P.; Merrill, Michelle A.; De Prado, Blanca Marquez; Hammond, Donna L.

    2014-01-01

    This study examined the distribution of γ-aminobutyric acid (GABA)B receptors on immunohistochemically identified neurons, and levels of GABAB(1) and GABAB(2) mRNA, in the L4 and L5 dorsal root ganglia (DRG) of the rat in the absence of injury and 2 weeks after L5 spinal nerve ligation. In uninjured DRG, GABAB(1) immunoreactivity colocalized exclusively with the neuronal marker (NeuN) and did not colocalize with the satellite cell marker S-100. The GABAB(1) subunit colocalized to >97% of DRG neurons immunoreactive (IR) for neurofilament 200 (N52) or calcitonin gene-related peptide (CGRP), or labeled by isolectin B4 (IB4). Immunoreactivity for GABAB(2) was not detectable. L5 spinal nerve ligation did not alter the number of GABAB(1)-IR neurons or its colocalization pattern in the L4 DRG. However, ligation reduced the number of GABAB(1)-IR neurons in the L5 DRG by ≈38% compared with sham-operated and naïve rats. Specifically, ligation decreased the number of CGRP-IR neurons in the L5 DRG by 75%, but did not decrease the percent colocalization of GABAB(1) in those that remained. In the few IB4-positive neurons that remained in the L5 DRG, colocalization of GABAB(1)-IR decreased to 75%. Ligation also decreased levels of GABAB(1) and GABAB(2) mRNA in the L5, but not the L4 DRG compared with sham-operated or naïve rats. These findings indicate that the GABAB receptor is positioned to presynaptically modulate afferent transmission by myelinated, unmyelinated, and peptidergic afferents in the dorsal horn. Loss of GABAB receptors on primary afferent neurons may contribute to the development of mechanical allodynia after L5 spinal nerve ligation. PMID:22120979

  8. In Vivo Regulation of Brain-Derived Neurotrophic Factor in Dorsal Root Ganglia Is Mediated by Nerve Growth Factor-Triggered Akt Activation during Cystitis

    PubMed Central

    Qiao, Li-Ya; Yu, Sharon J.; Kay, Jarren C.; Xia, Chun-Mei

    2013-01-01

    The role of brain-derived neurotrophic factor (BDNF) in sensory hypersensitivity has been suggested; however the molecular mechanisms and signal transduction that regulate BDNF expression in primary afferent neurons during visceral inflammation are not clear. Here we used a rat model of cystitis and found that the mRNA and protein levels of BDNF were increased in the L6 dorsal root ganglia (DRG) in response to bladder inflammation. BDNF up-regulation in the L6 DRG was triggered by endogenous nerve growth factor (NGF) because neutralization of NGF with a specific NGF antibody reduced BDNF levels during cystitis. The neutralizing NGF antibody also subsequently reduced cystitis-induced up-regulation of the serine/threonine kinase Akt activity in L6 DRG. To examine whether the NGF-induced Akt activation led to BDNF up-regulation in DRG in cystitis, we found that in cystitis the phospho-Akt immunoreactivity was co-localized with BDNF in L6 DRG, and prevention of the endogenous Akt activity in the L6 DRG by inhibition of phosphoinositide 3-kinase (PI3K) with a potent inhibitor LY294002 reversed cystitis-induced BDNF up-regulation. Further study showed that application of NGF to the nerve terminals of the ganglion-nerve two-compartmented preparation enhanced BDNF expression in the DRG neuronal soma; which was reduced by pre-treatment of the ganglia with the PI3K inhibitor LY294002 and wortmannin. These in vivo and in vitro experiments indicated that NGF played an important role in the activation of Akt and subsequent up-regulation of BDNF in the sensory neurons in visceral inflammation such as cystitis. PMID:24303055

  9. Validity of the vertical tube-shift method in determining the relationship between the mandibular third molar roots and the inferior alveolar nerve canal

    PubMed Central

    2015-01-01

    Objectives To assess the validity of the vertical tube-shift method using intraoral periapical radiography (IOPAR) for determining the relationship between the mandibular third molar roots and the inferior alveolar nerve (IAN) canal in comparison with cone-beam computed tomography (CBCT). Materials and Methods Fifty impacted mandibular third molars were analyzed using the IOPAR vertical tube-shift method and CBCT. The relationship of the IAN canal to the impacted mandibular third molar was recorded as buccal, lingual or in line with the apex and was compared with CBCT findings. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the vertical tube-shift method in depicting the relationship (buccal/lingual/in line with the apex) of the IAN canal to the third molar root apex was calculated. Results The sensitivity and specificity PPV and NPV of the IOPAR vertical tube-shift technique was found to be highest for a lingual relationship (100%) followed by buccal (94.4%, 92.3%, 97.1%, and 85.7%) and in line with the apex relationship (88.9%, 95.0%, 80.0%, and 97.4%) of the IAN canal with the third molar root apex, respectively. A statistically significant association was observed between the IOPAR vertical tube-shift method and the CBCT with a P-value <0.01. Conclusion The vertical tube-shift method can be used as an effective diagnostic tool in assessing the relationship of the IAN canal to the third molar root apex with high sensitivity, specificity, PPV, and NPV. PMID:25922817

  10. Control of leg-powered paraplegic cycling using stimulation of the lumbo-sacral anterior spinal nerve roots.

    PubMed

    Perkins, Tim A; de N Donaldson, Nick; Hatcher, Neil A C; Swain, Ian D; Wood, Duncan E

    2002-09-01

    We investigated leg-powered cycling in a recumbent tricycle for a paraplegic using functional electrical stimulation (FES) with the lumbo-sacral anterior root stimulator implant (LARSI). A female complete T9 paraplegic had a stimulator for the anterior L2 to S2 spinal roots (bilaterally) implanted in 1994. She was provided with equipment for daily FES cycling exercise at home. The cycling controller applies a pattern of stimulation in each of 16 crank angle phases. A 7-bit shaft encoder measures the crank angle with adequate precision. Each pattern was originally chosen to give the greatest propulsive force in that position when there was no motion. However, dynamically, some reduction in co-contraction is needed; also the patterns are applied with a preset advance time. Maximal power is obtained with an advance of 250 ms, which compensates for muscle response delay and accommodates changes in cadence (from about 25 to 85 rpm). With this system, she has cycled 1.2 km at a time on gently undulating road. We found that spinal root stimulation gives sufficient control over the muscles in the legs to produce a fluid cycling gait. We propose that root stimulation for leg cycling exercise may be a practicable and valuable function for paraplegics following spinal cord injury.

  11. Control of leg-powered paraplegic cycling using stimulation of the lumbo-sacral anterior spinal nerve roots.

    PubMed

    Perkins, Tim A; de N Donaldson, Nick; Hatcher, Neil A C; Swain, Ian D; Wood, Duncan E

    2002-09-01

    We investigated leg-powered cycling in a recumbent tricycle for a paraplegic using functional electrical stimulation (FES) with the lumbo-sacral anterior root stimulator implant (LARSI). A female complete T9 paraplegic had a stimulator for the anterior L2 to S2 spinal roots (bilaterally) implanted in 1994. She was provided with equipment for daily FES cycling exercise at home. The cycling controller applies a pattern of stimulation in each of 16 crank angle phases. A 7-bit shaft encoder measures the crank angle with adequate precision. Each pattern was originally chosen to give the greatest propulsive force in that position when there was no motion. However, dynamically, some reduction in co-contraction is needed; also the patterns are applied with a preset advance time. Maximal power is obtained with an advance of 250 ms, which compensates for muscle response delay and accommodates changes in cadence (from about 25 to 85 rpm). With this system, she has cycled 1.2 km at a time on gently undulating road. We found that spinal root stimulation gives sufficient control over the muscles in the legs to produce a fluid cycling gait. We propose that root stimulation for leg cycling exercise may be a practicable and valuable function for paraplegics following spinal cord injury. PMID:12503780

  12. Neuronal expression of the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: modulation in the spared nerve injury model of neuropathic pain.

    PubMed

    Cachemaille, M; Laedermann, C J; Pertin, M; Abriel, H; Gosselin, R-D; Decosterd, I

    2012-12-27

    Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltage-gated sodium channels (VGSCs), which gives rise to allodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC α-subunits (Na(v)), in particular Na(v)1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Na(v)1.7 and Na(v)1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in sham-operated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7 ± 2.7% and 55.0 ± 3.6% of Nedd4-2-positive cells are co-labeled with Na(v)1.7 and Na(v)1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9 ± 1.9% to 33.5 ± 0.7% (p<0.01) and the total Nedd4-2 protein to 44% ± 0.13% of its basal level (p<0.01, n=4 animals in each group, mean ± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Na(v)s involved in the hyperexcitability associated with peripheral nerve injuries. PMID:23022218

  13. Increased expression of HCN2 channel protein in L4 dorsal root ganglion neurons following axotomy of L5- and inflammation of L4-spinal nerves in rats.

    PubMed

    Smith, T; Al Otaibi, M; Sathish, J; Djouhri, L

    2015-06-01

    A hallmark of peripheral neuropathic pain (PNP) is chronic spontaneous pain and/or hypersensitivity to normally painful stimuli (hyperalgesia) or normally nonpainful stimuli (allodynia).This pain results partly from abnormal hyperexcitability of dorsal root ganglion (DRG) neurons. We have previously shown, using a modified version of the lumbar 5 (L5)-spinal nerve ligation model of PNP (mSNA model involving L5-spinal nerve axotomy plus loose ligation of the lumbar 4 (L4)-spinal nerve with neuroinflammation-inducing chromic-gut), that L4 DRG neurons exhibit increased spontaneous activity, the key characteristic of neuronal hyperexcitability. The underlying ionic and molecular mechanisms of the hyperexcitability of L4 DRG neurons are incompletely understood, but could result from changes in expression and/or function of ion channels including hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are active near the neuron's resting membrane potential, and which produce an excitatory inward current that depolarizes the membrane potential toward the threshold of action potential generation. Therefore, in the present study we used the mSNA model to investigate whether: (a) expression of HCN1-HCN3 channels is altered in L4 DRG neurons which, in the mSNA model, are essential for transmission of the evoked pain, and which contribute to chronic spontaneous pain, and (b) local (intraplantar) blockade of these HCN channels, with a specific blocker, ZD7288, attenuates chronic spontaneous pain and/or evoked pain in mSNA rats. We found 7days after mSNA: (1) a significant increase in HCN2-immunoreactivity in small (<30μm) DRG neurons (predominantly IB4-negative neurons), and in the proportion of small neurons expressing HCN2 (putative nociceptors); (2) no significant change in HCN1- or HCN3-immunoreactivity in all cell types; and (3) attenuation, with ZD7288 (100μM intraplantar), of chronic spontaneous pain behavior (spontaneous foot lifting) and mechanical

  14. A diagnosis challenge-L4 nerve root compression as the initial presentation of chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Cojocaru, Inimioara Mihaela; Alexianu, Marilena; Bastian, Alexandra; Sapira, Violeta; Herţea, Cristina; Cojocaru, M

    2012-01-01

    The authors present the case of a 65-year-old woman who was admitted for paraparesis and paresthesias in the inferior limbs. The neurological examination revealed the difficulty in extension of the right foot and of the right toe, accompanied by paresthesias located in the anterolateral area of the right leg, dorsum and plantar area of the foot, the reduction of the right knee jerk, and of the ankle tendon jerk both sides. The vertebro-spinal MRI showed lumbar canal stenosis with L4 intraforaminal compression on the right, and L2-L3 on the left. CSF examination revealed mild increase in protein concentration. The morphological picture of the sural nerve biopsy was compatible with a chronic inflammatory neuropathy and severe muscular lesions of neurogenic origin were observed on right gastrocnemius muscle biopsy. The diagnosis of chronic inflammatory demyelinating polyneuropathy (CIDP) was established. Solu-medrol (0.5 g/d)-5 days, then medrol (prednisolone) was done, followed by improving of the symptomatology. For the relapse of the disease intravenous immunoglobulins (IVIG)-0.4 g/kg/d-5 days was the elective treatment. Six months later she presented a new relapse. IVIG were administered with the remission of the sensitive symptoms. A chronic treatment with medrol was recommended. The diagnosis of L4 disc herniation was obvious in the studied case, but the electroneurographic examination brought extra data for the associated diagnosis of CIDP whose onset was asymmetrical and initially paucisymptomatic. Neither the electroneurographic examination nor the CSF examination were total relevant for CIDP, imposing the sural nerve biopsy. The diagnosis of CIDP involves a team-work composed of neurologist, electroneurophysiologist and neuropathologist. PMID:23610977

  15. Impacts of anti-nerve growth factor antibody on pain-related behaviors and expressions of opioid receptor in spinal dorsal horn and dorsal root ganglia of rats with cancer-induced bone pain

    PubMed Central

    Ding, Yuanyuan; Wang, Zhibin; Ma, Jiaming; Hong, Tao; Zhu, Yongqiang; Li, Hongxi; Pan, Shinong

    2016-01-01

    Objective To investigate the impacts of anti-nerve growth factor antibody on pain-related behaviors and expressions of μ-opioid receptor in spinal dorsal horn and dorsal root ganglia of rats with cancer-induced bone pain. Methods The rats were randomly grouped and then injected with 10 μl of phosphate buffer saline or Walker256 tumor cells into the upper segment of left tibia. Thirteen days after the injection, the intrathecal catheterization was performed, followed by the injection of saline, anti-nerve growth factor, nerve growth factor, and naloxone twice a day. The pain ethological changes were measured at the set time points; the expression changes of μ-opioid receptor protein and mRNA in spinal dorsal horn and dorsal root ganglia were detected on the 18th day. Results After the tumor cells were injected into the tibia, hyperalgesia appeared and the expression of μ-opioid receptor protein and mRNA in spinal dorsal horn and dorsal root ganglia was increased, compared with the sham group; after intrathecally injected anti-nerve growth factor, the significant antinociceptive effects appeared, and the μ-opioid receptor expression was increased, compared with the cancer pain group; the μ-opioid receptor expressions in the other groups showed no statistical significance. The naloxone pretreatment could mostly inverse the antinociception effects of anti-nerve growth factor. Conclusions Anti-nerve growth factor could reduce hyperalgesia in the cancer-induced bone pain rats, and the antinociceptive effects were related with the upregulation of μ-opioid receptor. PMID:27118770

  16. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    SciTech Connect

    Wright, K.T.; Seabright, R.; Logan, A.; Lilly, A.J.; Khanim, F.; Bunce, C.M.; Johnson, W.E.B.

    2010-07-16

    Research highlights: {yields} Extracellular Nm23H1 stimulates nerve growth. {yields} Extracellular Nm23H1 provides pathfinding cues to growth cones. {yields} The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. {yields} The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  17. Effects of sciatic nerve transection on glucose uptake in the presence and absence of lactate in the frog dorsal root ganglia and spinal cord.

    PubMed

    Rigon, F; Horst, A; Kucharski, L C; Silva, R S M; Faccioni-Heuser, M C; Partata, W A

    2014-08-01

    Frogs have been used as an alternative model to study pain mechanisms because the simplicity of their nervous tissue and the phylogenetic aspect of this question. One of these models is the sciatic nerve transection (SNT), which mimics the clinical symptoms of "phantom limb", a condition that arises in humans after amputation or transverse spinal lesions. In mammals, the SNT increases glucose metabolism in the central nervous system, and the lactate generated appears to serve as an energy source for nerve cells. An answerable question is whether there is elevated glucose uptake in the dorsal root ganglia (DRG) after peripheral axotomy. As glucose is the major energy substrate for frog nervous tissue, and these animals accumulate lactic acid under some conditions, bullfrogs Lithobates catesbeianus were used to demonstrate the effect of SNT on DRG and spinal cord 1-[14C] 2-deoxy-D-glucose (14C-2-DG) uptake in the presence and absence of lactate. We also investigated the effect of this condition on the formation of 14CO2 from 14C-glucose and 14C-L-lactate, and plasmatic glucose and lactate levels. The 3-O-[14C] methyl-D-glucose (14C-3-OMG) uptake was used to demonstrate the steady-state tissue/medium glucose distribution ratio under these conditions. Three days after SNT, 14C-2-DG uptake increased, but 14C-3-OMG uptake remained steady. The increase in 14C-2-DG uptake was lower when lactate was added to the incubation medium. No change was found in glucose and lactate oxidation after SNT, but lactate and glucose levels in the blood were reduced. Thus, our results showed that SNT increased the glucose metabolism in the frog DRG and spinal cord. The effect of lactate on this uptake suggests that glucose is used in glycolytic pathways after SNT. PMID:25627385

  18. Solitary fibrous tumour of the vagus nerve.

    PubMed

    Scholsem, Martin; Scholtes, Felix

    2012-04-01

    We describe the complete removal of a foramen magnum solitary fibrous tumour in a 36-year-old woman. It originated on a caudal vagus nerve rootlet, classically described as the 'cranial' accessory nerve root. This ninth case of immunohistologically confirmed cranial or spinal nerve SFT is the first of the vagus nerve.

  19. Deficits in foot skin sensation are related to alterations in balance control in chronic low back patients experiencing clinical signs of lumbar nerve root impingement.

    PubMed

    Frost, Lydia R; Bijman, Marc; Strzalkowski, Nicholas D J; Bent, Leah R; Brown, Stephen H M

    2015-05-01

    Chronic low back pain (LBP) patients with radiculopathy, or sciatica, experience pain, tingling or numbness radiating down their leg due to compression of the lumbar nerve root. The resulting reduction in somatosensory information from the foot sole may contribute to deficits in standing balance control. This work was designed to investigate the relationship between foot skin sensitivity and standing balance control in chronic LBP patients with associated radiculopathy. Patients (n=9) and matched healthy controls (n=9) were recruited to the study, and were tested for balance control in both quiet standing as well as during rapid arm raise perturbation trials on a force plate. Foot skin sensitivity was tested bilaterally for vibratory threshold (3, 40 and 250 Hz) and touch (monofilament) threshold. Results demonstrate that patients had reduced sensitivity to 250 Hz vibration in their affected compared to unaffected foot (at the great toe and heel), as well as compared to controls (at the great toe), but there were no differences with lower frequency vibratory testing or with monofilament testing. While there were no significant between-group differences in balance measures, moderate statistically significant correlations between 250 Hz sensitivity and quiet standing balance parameters were uncovered. Thus, patients demonstrate reduced high-frequency vibratory sensitivity at the foot sole, and correlations with quiet standing balance measures indicate a connection between these foot skin sensitivity deficits and alterations in balance control. Clinically, this identifies high frequency vibration testing as an important measure of skin sensitivity in patients with radiculopathy.

  20. Fine structure of the cell clusters in the cochlear nerve root: stellate, granule, and mitt cells offer insights into the synaptic organization of local circuit neurons.

    PubMed

    Hutson, K A; Morest, D K

    1996-07-29

    The small cell shell of the cochlear nucleus contains a complex integrative machinery which can be used to study the roles of interneurons in sensory processing. The cell clusters in the cochlear nerve root of the chinchilla provide the simplest example of this structure. Reported here are the neuronal architecture and synaptic organization of the three principal cell types and the three distinctive neuropil structures that could be characterized with the Nissl and Golgi methods and electron microscopy. Granule cells were characterized by several dendrites with claw-like terminals that received synaptic contacts from multiple excitatory mossy fiber rosettes. Given their relatively large number and their prolific parallel fiber synapses, the granule cells provide a suitable substrate for a tangential spread of excitatory activity, which could build to considerable proportions. The mitt cells had a thickened, single dendrite, its terminal branches arranged in a shape reminiscent of a baseball catcher's mitt. The dendritic mitt enclosed an enormous, convoluted mossy fiber rosette forming many excitatory synapses on just one cell. This could provide for a discrete, comparatively fast input-output relay of signals. Small stellate cells had longer, radiating dendrites that engaged the synaptic nests. These nests were strung in long strands, containing heterogeneous synapses from putative excitatory and inhibitory inputs. Given the prevalence of the synaptic nests, the small stellate cells appear to have the greatest integrative capacity. They provide the main output of the synaptic nests.

  1. Ulnar nerve tuberculoma.

    PubMed

    Ramesh Chandra, V V; Prasad, Bodapati Chandramowliswara; Varaprasad, Gangumolu

    2013-01-01

    The authors report a very rare case of tuberculoma involving the ulnar nerve. The patient, a 7-year-old girl, presented with swelling over the medial aspect of her right forearm just below the elbow joint, with features of ulnar nerve palsy, including paresthesias along the little and ring fingers and claw hand deformity. There was a history of trauma and contact with a contagious case of tuberculosis. There were no other signs of tuberculosis. At surgical exploration the ulnar nerve was found to be thickened, and on opening the sheath there was evidence of caseous material enclosed in a fibrous capsule compressing and displacing the nerve fibers. The lesion, along with the capsule, was subtotally removed using curettage, and a part of the capsule that was densely adherent to the nerve fibers was left in the patient. Histopathological examination of the specimen was consistent with tuberculoma. The patient received adequate antitubercular treatment and showed significant improvement.

  2. Profiling of dynamically changed gene expression in dorsal root ganglia post peripheral nerve injury and a critical role of injury-induced glial fibrillary acidic protein in maintenance of pain behaviors [corrected].

    PubMed

    Kim, Doo-Sik; Figueroa, Katherine W; Li, Kang-Wu; Boroujerdi, Amin; Yolo, Tim; Luo, Z David

    2009-05-01

    To explore cellular changes in sensory neurons after nerve injury and to identify potential target genes contributing to different stages of neuropathic pain development, we used Affymetrix oligo arrays to profile gene expression patterns in L5/6 dorsal root ganglia (DRG) from the neuropathic pain model of left L5/6 spinal nerve ligation at different stages of neuropathic pain development. Our data indicated that nerve injury induced changes in expression of genes with similar biological functions in a temporal specific manner that correlates with particular stages of neuropathic pain development, indicating dynamic neuroplasticity in the DRG in response to peripheral nerve injury and during neuropathic pain development. Data from post-array validation indicated that there was a temporal correlation between injury-induced expression of the glial fibrillary acidic protein (GFAP), a marker for activated astrocytes, and neuropathic pain development. Spinal nerve ligation injury in GFAP knockout mice resulted in neuropathic pain states with similar onset, but a shortened duration compared with that in age, and gender-matched wild-type littermates. Intrathecal GFAP antisense oligonucleotide treatment in injured rats with neuropathic pain states reversed injury-induced behavioral hypersensitivity and GFAP upregulation in DRG and spinal cord. Together, these findings indicate that injury-induced GFAP upregulation not only serves as a marker for astrocyte activation, but it may also play a critical, but yet identified, role in the maintenance of neuropathic pain states. PMID:19307059

  3. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury.

    PubMed Central

    Costigan, Michael; Befort, Katia; Karchewski, Laurie; Griffin, Robert S; D'Urso, Donatella; Allchorne, Andrew; Sitarski, Joanne; Mannion, James W; Pratt, Richard E; Woolf, Clifford J

    2002-01-01

    Background Rat oligonucleotide microarrays were used to detect changes in gene expression in the dorsal root ganglion (DRG) 3 days following sciatic nerve transection (axotomy). Two comparisons were made using two sets of triplicate microarrays, naïve versus naïve and naïve versus axotomy. Results Microarray variability was assessed using the naïve versus naïve comparison. These results support use of a P < 0.05 significance threshold for detecting regulated genes, despite the large number of hypothesis tests required. For the naïve versus axotomy comparison, a 2-fold cut off alone led to an estimated error rate of 16%; combining a >1.5-fold expression change and P < 0.05 significance reduced the estimated error to 5%. The 2-fold cut off identified 178 genes while the combined >1.5-fold and P < 0.05 criteria generated 240 putatively regulated genes, which we have listed. Many of these have not been described as regulated in the DRG by axotomy. Northern blot, quantitative slot blots and in situ hybridization verified the expression of 24 transcripts. These data showed an 83% concordance rate with the arrays; most mismatches represent genes with low expression levels reflecting limits of array sensitivity. A significant correlation was found between actual mRNA differences and relative changes between microarrays (r2 = 0.8567). Temporal patterns of individual genes regulation varied. Conclusions We identify parameters for microarray analysis which reduce error while identifying many putatively regulated genes. Functional classification of these genes suggest reorganization of cell structural components, activation of genes expressed by immune and inflammatory cells and down-regulation of genes involved in neurotransmission. PMID:12401135

  4. An Evaluation of the Effectiveness of Hyaluronidase in the Selective Nerve Root Block of Radiculopathy: A Double Blind, Controlled Clinical Trial

    PubMed Central

    Ko, Sang-Bong; Vaccaro, Alexander R; Shin, Dong-Young

    2015-01-01

    Study Design Prospective, double-blind, randomized controlled trial. Purpose To determine the ability of hyaluronidase to provide longer lasting pain relief and functional improvement in patients with lumbar radiculopathy. Overview of Literature Selective nerve root block (SNRB) is a good treatment option in lumbar radiculopathy. We studied the effectiveness of hyaluronidase when added to the traditional SNRB regimen. Methods A sample size of 126 patients per group was necessary. A sample of 252 patients who underwent an injection procedure with or without hyaluronidase due to radiculopathy was included in this study. The patients were randomly divided into two groups: the control (C) group and the hyaluronidase (H) group. After SNRB due to radiculopathy, the visual analog scale (VAS) was compared at 2, 4, 6, 8, and 12 weeks between the two groups, and the Oswestry disability index (ODI) was compared at 12 weeks between the two groups. Results Both groups seemed to have general improvement in VAS, but in C group, the VAS was higher than the H group 2 and 4 weeks after the surgery, and the difference in time-group change between 2 groups was statistically significant (p <0.05). ODI improved in both groups, and the difference in time-group change between 2 groups was not statistically significant (p >0.05). Conclusions The rebound pain (the re-occurrence of pain within 2-4 weeks after injection) that occurs within 2-4 weeks after the injection of the routine regimen can be reduced when hyaluronidase is added to the routine SNRB regimen. PMID:25705339

  5. Normative Values for Intertrial Variability of Motor Responses to Nerve Root and Transcranial Stimulation: A Condition for Follow-Up Studies in Individual Subjects

    PubMed Central

    Malucchi, Simona; Capobianco, Marco; Sperli, Francesca

    2016-01-01

    Objective Intertrial variability (ITV) of motor responses to peripheral (CMAP) and transcranial (MEP) stimulation prevents their use in follow-up studies. Our purpose was to develop strategies to reduce and measure CMAP and MEP ITV to guide long-term monitoring of conduction slowing and conduction failure of peripheral and central motor pathway in the individual patient. Methods Maximal compound muscle action potentials to High Voltage Electrical Stimulation (HVES) of lumbo-sacral nerve roots (r-CMAP) and activated, averaged motor evoked potentials (MEPs) to Transcranial Magnetic Stimulation (TMS) using double cone coil were recorded from 10 proximal and distal muscle districts of lower limbs. The procedure was repeated twice, 1–2 days apart, in 30 subjects, including healthy volunteers and clinically stable multiple sclerosis patients, using constant stimulating and recording sites and adopting a standardized procedure of voluntary activation. ITV for latency and area indexes and for the ratio between MEP and r-CMAP areas (a-Ratio) was expressed as Relative Intertrial Variation (RIV, 5th-95th percentile). As an inverse correlation between the size of area and ITV was found, raw ITV values were normalized as a function of area to make them comparable with one another. Results All RIV values for latencies were significantly below the optimum threshold of ± 10%, with the exception of r-CMAP latencies recorded from Vastus Lateralis muscle. RIVs for a-Ratio, the most important index of central conduction failure, ranged from a maximum of -25.3% to +32.2% (Vastus Medialis) to a minimum of -15.0% to + 17.4% (Flexor Hallucis Brevis). Conclusions The described procedure represents an effort to lower as much as possible variability of motor responses in serial recording; the reported ITV normative values are the necessary premise to detect significant changes of motor conduction slowing and failure in the individual patient in follow-up studies. PMID:27182973

  6. Effects of sciatic nerve transection on ultrastructure, NADPH-diaphorase reaction and serotonin-, tyrosine hydroxylase-, c-Fos-, glucose transporter 1- and 3-like immunoreactivities in frog dorsal root ganglion.

    PubMed

    Rigon, F; Rossato, D; Auler, V B; Dal Bosco, L; Faccioni-Heuser, M C; Partata, W A

    2013-06-01

    Frogs have been used as an alternative model to study pain mechanisms. Since we did not find any reports on the effects of sciatic nerve transection (SNT) on the ultrastructure and pattern of metabolic substances in frog dorsal root ganglion (DRG) cells, in the present study, 18 adult male frogs (Rana catesbeiana) were divided into three experimental groups: naive (frogs not subjected to surgical manipulation), sham (frogs in which all surgical procedures to expose the sciatic nerve were used except transection of the nerve), and SNT (frogs in which the sciatic nerve was exposed and transected). After 3 days, the bilateral DRG of the sciatic nerve was collected and used for transmission electron microscopy. Immunohistochemistry was used to detect reactivity for glucose transporter (Glut) types 1 and 3, tyrosine hydroxylase, serotonin and c-Fos, as well as nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase). SNT induced more mitochondria with vacuolation in neurons, satellite glial cells (SGCs) with more cytoplasmic extensions emerging from cell bodies, as well as more ribosomes, rough endoplasmic reticulum, intermediate filaments and mitochondria. c-Fos immunoreactivity was found in neuronal nuclei. More neurons and SGCs surrounded by tyrosine hydroxylase-like immunoreactivity were found. No change occurred in serotonin- and Glut1- and Glut3-like immunoreactivity. NADPH-diaphorase occurred in more neurons and SGCs. No sign of SGC proliferation was observed. Since the changes of frog DRG in response to nerve injury are similar to those of mammals, frogs should be a valid experimental model for the study of the effects of SNT, a condition that still has many unanswered questions. PMID:23739744

  7. Expression patterns of T-type Cav3.2 channel and insulin-like growth factor-1 receptor in dorsal root ganglion neurons of mice after sciatic nerve axotomy.

    PubMed

    Lin, Si-Fang; Yu, Xiao-Lu; Liu, Xiao-Ya; Wang, Bing; Li, Cheng-Hui; Sun, Yan-Gang; Liu, Xing-Jun

    2016-10-19

    Substantial evidence indicates that T-type Cav3.2 channel and insulin-like growth factor-1 (IGF-1) contribute to pain hypersensitivity within primary sensory nerves. A recent study suggested that activation of IGF-1 receptor (IGF-1R) could increase Cav3.2 channel currents and further contribute to inflammatory pain sensitivity. However, the expression patterns of Cav3.2 and IGF-1R and their colocalization in dorsal root ganglion (DRG) in chronic neuropathic pain condition remain unknown. In this study, we explored expression patterns of Cav3.2, IGF-1R and their colocalization, and whether phenotypic switch occurs in a subpopulation of Cav3.2 or IGF-1R neurons in mouse DRGs after sciatic nerve axotomy with immunofluorescence, real-time reverse transcription-PCR, and western blot assays. We found that expressions of Cav3.2 and IGF-1R, and their colocalization were not increased in DRGs of mice following axotomy. In addition, Cav3.2 or IGF-1R subpopulation neurons did not acquire significant switch in expression phenotype after sciatic nerve axotomy. Our findings argue for an upregulation of Cav3.2 and IGF-1R expression in lumbar DRGs post-sciatic nerve axotomy and provided an insight for understanding the functions of peripheral afferent Cav3.2 channel and IGF-1/IGF-1R signaling in chronic neuropathic pain. PMID:27571431

  8. Nerve biopsy

    MedlinePlus

    ... Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis Risks Allergic reaction to the local anesthetic Discomfort ... Neurosarcoidosis Peripheral neuropathy Primary amyloidosis Radial nerve dysfunction Sarcoidosis Tibial nerve dysfunction Update Date 6/1/2015 ...

  9. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee.

    PubMed

    Rossini, P M; Burke, D; Chen, R; Cohen, L G; Daskalakis, Z; Di Iorio, R; Di Lazzaro, V; Ferreri, F; Fitzgerald, P B; George, M S; Hallett, M; Lefaucheur, J P; Langguth, B; Matsumoto, H; Miniussi, C; Nitsche, M A; Pascual-Leone, A; Paulus, W; Rossi, S; Rothwell, J C; Siebner, H R; Ugawa, Y; Walsh, V; Ziemann, U

    2015-06-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments. PMID:25797650

  10. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee.

    PubMed

    Rossini, P M; Burke, D; Chen, R; Cohen, L G; Daskalakis, Z; Di Iorio, R; Di Lazzaro, V; Ferreri, F; Fitzgerald, P B; George, M S; Hallett, M; Lefaucheur, J P; Langguth, B; Matsumoto, H; Miniussi, C; Nitsche, M A; Pascual-Leone, A; Paulus, W; Rossi, S; Rothwell, J C; Siebner, H R; Ugawa, Y; Walsh, V; Ziemann, U

    2015-06-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.

  11. Cranial Nerves IX, X, XI, and XII

    PubMed Central

    Sanders, Richard D.

    2010-01-01

    This article concludes the series on cranial nerves, with review of the final four (IX–XII). To summarize briefly, the most important and common syndrome caused by a disorder of the glossopharyngeal nerve (craniel nerve IX) is glossopharyngeal neuralgia. Also, swallowing function occasionally is compromised in a rare but disabling form of tardive dyskinesia called tardive dystonia, because the upper motor portion of the glossopharyngel nerve projects to the basal ganglia and can be affected by lesions in the basal ganglia. Vagus nerve funtion (craniel nerve X) can be compromised in schizophrenia, bulimia, obesity, and major depression. A cervical lesion to the nerve roots of the spinal accessory nerve (craniel nerve XI) can cause a cervical dystonia, which sometimes is misdiagnosed as a dyskinesia related to neuroleptic use. Finally, unilateral hypoglossal (craniel nerve XII) nerve palsy is one of the most common mononeuropathies caused by brain metastases. Supranuclear lesions of cranial nerve XII are involved in pseudobulbar palsy and ALS, and lower motor neuron lesions of cranial nerve XII can also be present in bulbar palsy and in ALS patients who also have lower motor neuron involvement. This article reviews these and other syndromes related to cranial nerves IX through XII that might be seen by psychiatry. PMID:20532157

  12. Silencing the α2 subunit of GABAA receptors in rat dorsal root ganglia reveals its major role in antinociception post-traumatic nerve injury

    PubMed Central

    Obradović, Aleksandar LJ; Scarpa, Joseph; Osuru, Hari P; Weaver, Janelle L; Park, Ji-Yong; Pathirathna, Sriyani; Peterkin, Alexander; Lim, Yunhee; Jagodic, Miljenko M; Todorovic, Slobodan M; Jevtovic-Todorovic, Vesna

    2015-01-01

    Background Neuropathic pain is likely the result of repetitive high frequency bursts of peripheral afferent activity leading to long-lasting changes in synaptic plasticity in the spinal dorsal horn (DH). Drugs that promote GABA activity in the DH provide partial relief of neuropathic symptoms. We examined how in vivo silencing of the GABAA α2 gene in DRG controls of NPP. Methods After crush injury to the right sciatic nerve of female rats, the α2 GABAA antisense and mismatch oligodeoxynucleotides or NO-711 (a GABA uptake inhibitor) were applied to the L5 DRG. In vivo behavioral assessment of nociception was conducted prior to the injury and ensuing 10 days (n=4–10). In vitro quantification of α2 GABAA protein and electrophysiology studies of GABAA currents were performed on acutely dissociated L5 DRG neurons at relevant time-points (n=6–14). Results NPP post-crush injury of a sciatic nerve in adult female rats coincides with significant down-regulation of the α2 subunit expression in the ipsilateral DRG (about 30%). Selective down-regulation of α2 expression in DRGs significantly worsens mechanical (2.55±0.75 to 5.16±1.16) and thermal (7.97±0.96 to 5.51±0.75) hypersensitivity in crush-injured animals and causes development of significant mechanical (2.33±0.40 to 5.00±0.33) and thermal (10.80±0.29 to 7.34±0.81) hypersensitivity in sham animals (data shown as MEAN±SD). Conversely, up-regulation of endogenous GABA via blockade of its uptake in DRG alleviates NPP. Conclusions The GABAA receptor in the DRG plays an important role in pathophysiology of NPP caused by sciatic nerve injury and represent promising target for novel pain therapies. PMID:26164299

  13. Development of a CT-guided standard approach for tined lead implantation at the sacral nerve root S3 in minipigs for chronic neuromodulation

    PubMed Central

    Foditsch, Elena Esra; Zimmermann, Reinhold

    2016-01-01

    Purpose The aim of this study was to develop a controlled approach for sacral neuromodulation (SNM) to improve both nerve targeting and tined lead placement, for which a new computed tomography (CT)-guided implantation technique was analyzed in minipigs. Materials and methods This study included five female, adult Göttingen minipigs. In deep sedoanalgesia, the minipigs were placed in an extended prone position. Commercially available SNM materials were used (needle, introduction sheath, and quadripolar tined lead electrode). Gross anatomy was displayed by CT, and the nerves were bilaterally identified. The optimal angles to puncture the S3 foramen, the resulting access path, and the site for the skin incision were defined subsequently. The needle puncture and the tined lead placement were followed by successive CT scans/3D-reconstruction images. Once proper CT-guided placement of the needle and electrode was established, response to functional stimuli was intraoperatively checked to verify correct positioning. Results Successful bilateral tined lead implantation was performed in four out of five minipigs. Implantation was different from the clinical situation because the puncture was done from the contralateral side at a 30° angle to the midline and 60° horizontal angle to ensure both passage through the foramen and nerve access. Surgery time was 50–150 minutes. Stimulation response comprised a twitch of the perianal musculature and tail rotation to the contralateral side. Conclusion We have established a new, minimally invasive, highly standardized, CT-guided SNM electrode implantation technique. Functional outcomes are clearly defined and reproducible. All procedures can be performed without complications. Future chronic stimulation studies in minipigs can thereby be conducted using a controlled and highly standardized protocol. PMID:27730097

  14. Nerve conduction

    MedlinePlus

    ... fascicles) that contain hundreds of individual nerve fibers (neurons). Neurons consist of dendrites, axon, and cell body. The ... tree-like structures that receive signals from other neurons and from special sensory cells that sense the ...

  15. Lateral displacement and rotational displacement sensor

    DOEpatents

    Duden, Thomas

    2014-04-22

    A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.

  16. Peripheral Nerve Disorders

    MedlinePlus

    ... spinal cord. Like static on a telephone line, peripheral nerve disorders distort or interrupt the messages between the brain ... body. There are more than 100 kinds of peripheral nerve disorders. They can affect one nerve or many nerves. ...

  17. Nerve biopsy (image)

    MedlinePlus

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  18. Neurophysiological approach to disorders of peripheral nerve.

    PubMed

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves, plexus, or root lesions). Furthermore pathological processes may result in either demyelination, axonal degeneration or both. In order to reach an exact diagnosis of any neuropathy electrophysiological studies are crucial to obtain information about these variables. Conventional electrophysiological methods including nerve conduction studies and electromyography used in the study of patients suspected of having a neuropathy and the significance of the findings are discussed in detail and more novel and experimental methods are mentioned. Diagnostic considerations are based on a flow chart classifying neuropathies into eight categories based on mode of onset, distribution, and electrophysiological findings, and the electrophysiological characteristics in each type of neuropathy are discussed. PMID:23931776

  19. Rotation and Displacement Predict Adverse Events in Pediatric Supracondylar Fractures.

    PubMed

    Flierl, Michael A; Carry, Patrick M; Scott, Frank; Georgopoulos, Gaia; Hadley-Miller, Nancy

    2015-08-01

    The goal of this study was to identify supracondylar fracture patterns that were predictive of adverse events and poor outcomes. The study consisted of a retrospective review of patients admitted for surgical treatment of a supracondylar humerus fracture between June 2008 and August 2010. Preoperative radiographs were assessed based on appearance (simple vs oblique vs comminuted), coronal plane displacement (angulated, posterior, posteromedial vs posterolateral), and rotation (rotation vs no rotation). Logistic regression models were used to examine the relationship between fracture pattern and clinical outcome parameters in 373 patients who were followed for 4 weeks or more postoperatively. Outcome parameters included postoperative complications (infection, delayed healing, pin migration, revision surgery), need for physical or occupational therapy, need for postoperative intravenous narcotics, and preoperative nerve injury. Rotation and coronal displacement patterns of the fracture segments were significantly associated with postoperative complications, postoperative need for physical or occupational therapy as a result of residual stiffness, and nerve injury (P<.05). Compared with posteriorly displaced fractures, posterolaterally displaced fractures were associated with significantly greater odds of complications (P=.045), need for physical or occupational therapy (P<.001), and nerve injury (P<.001). Additionally, fractures with rotation were associated with significantly greater odds of complications (P<.001), need for physical or occupational therapy (P<.001), and nerve injury (P<.001) compared with fractures without rotation. Rotation and coronal plane displacement were predictive of complications, need for physical or occupational therapy, and nerve injury, and thus should be considered as potential prognostic variables when evaluating the initial injury pattern.

  20. Transitional Nerve: A New and Original Classification of a Peripheral Nerve Supported by the Nature of the Accessory Nerve (CN XI)

    PubMed Central

    Benninger, Brion; McNeil, Jonathan

    2010-01-01

    Classically, the accessory nerve is described as having a cranial and a spinal root. Textbooks are inconsistent with regard to the modality of the spinal root of the accessory nerve. Some authors report the spinal root as general somatic efferent (GSE), while others list a special visceral efferent (SVE) modality. We investigated the comparative, anatomical, embryological, and molecular literature to determine which modality of the accessory nerve was accurate and why a discrepancy exists. We traced the origin of the incongruity to the writings of early comparative anatomists who believed the accessory nerve was either branchial or somatic depending on the origin of its target musculature. Both theories were supported entirely by empirical observations of anatomical and embryological dissections. We find ample evidence including very recent molecular experiments to show the cranial and spinal root are separate entities. Furthermore, we determined the modality of the spinal root is neither GSE or SVE, but a unique peripheral nerve with a distinct modality. We propose a new classification of the accessory nerve as a transitional nerve, which demonstrates characteristics of both spinal and cranial nerves. PMID:21318044

  1. Rehabilitation of the trigeminal nerve

    PubMed Central

    Iro, Heinrich; Bumm, Klaus; Waldfahrer, Frank

    2005-01-01

    When it comes to restoring impaired neural function by means of surgical reconstruction, sensory nerves have always been in the role of the neglected child when compared with motor nerves. Especially in the head and neck area, with its either sensory, motor or mixed cranial nerves, an impaired sensory function can cause severe medical conditions. When performing surgery in the head and neck area, sustaining neural function must not only be highest priority for motor but also for sensory nerves. In cases with obvious neural damage to sensory nerves, an immediate neural repair, if necessary with neural interposition grafts, is desirable. Also in cases with traumatic trigeminal damage, an immediate neural repair ought to be considered, especially since reconstructive measures at a later time mostly require for interposition grafts. In terms of the trigeminal neuralgia, commonly thought to arise from neurovascular brainstem compression, a pharmaceutical treatment is considered as the state of the art in terms of conservative therapy. A neurovascular decompression of the trigeminal root can be an alternative in some cases when surgical treatment is sought after. Besides the above mentioned therapeutic options, alternative treatments are available. PMID:22073060

  2. Thermally drawn fibers as nerve guidance scaffolds.

    PubMed

    Koppes, Ryan A; Park, Seongjun; Hood, Tiffany; Jia, Xiaoting; Abdolrahim Poorheravi, Negin; Achyuta, Anilkumar Harapanahalli; Fink, Yoel; Anikeeva, Polina

    2016-03-01

    Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth. PMID:26717246

  3. Thermally drawn fibers as nerve guidance scaffolds.

    PubMed

    Koppes, Ryan A; Park, Seongjun; Hood, Tiffany; Jia, Xiaoting; Abdolrahim Poorheravi, Negin; Achyuta, Anilkumar Harapanahalli; Fink, Yoel; Anikeeva, Polina

    2016-03-01

    Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth.

  4. Lumbar nerve root: the enigmatic eponyms.

    PubMed

    Dyck, P

    1984-01-01

    Man's quest for recognition has not escaped the physician, whose contributions to medicine perpetuate his name in print. It is a final grasp for professional immortality, which for men like Imhotep and Hippocrates, has prevailed for millennia. This fervor was particularly evident in the latter 19th century, which created a flurry of eponyms, often two or more physicians publishing the same clinical observation. This article reviews the eponym epidemic as it relates to lumbar radiculopathy.

  5. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  6. Facial nerve paralysis after cervical traction.

    PubMed

    So, Edmund Cheung

    2010-10-01

    Cervical traction is a frequently used treatment in rehabilitation clinics for cervical spine problems. This modality works, in principle, by decompressing the spinal cord or its nerve roots by applying traction on the cervical spine through a harness placed over the mandible (Olivero et al., Neurosurg Focus 2002;12:ECP1). Previous reports on treatment complications include lumbar radicular discomfort, muscle injury, neck soreness, and posttraction pain (LaBan et al., Arch Phys Med Rehabil 1992;73:295-6; Lee et al., J Biomech Eng 1996;118:597-600). Here, we report the first case of unilateral facial nerve paralysis developed after 4 wks of intermittent cervical traction therapy. Nerve conduction velocity examination revealed a peripheral-type facial nerve paralysis. Symptoms of facial nerve paralysis subsided after prednisolone treatment and suspension of traction therapy. It is suspected that a misplaced or an overstrained harness may have been the cause of facial nerve paralysis in this patient. Possible causes were (1) direct compression by the harness on the right facial nerve near its exit through the stylomastoid foramen; (2) compression of the right external carotid artery by the harness, causing transient ischemic injury at the geniculate ganglion; or (3) coincidental herpes zoster virus infection or idiopathic Bell's palsy involving the facial nerve.

  7. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  8. Secondary optic nerve tumors.

    PubMed

    Christmas, N J; Mead, M D; Richardson, E P; Albert, D M

    1991-01-01

    Secondary tumors of the optic nerve are more common than primary optic nerve tumors. The involvement of the optic nerve may arise from direct invasion from intraocular malignancies, from hematopoietic malignancy, from meningeal carcinomatosis, or from distant primary tumors. Orbital tumors rarely invade the optic nerve, and brain tumors involve it only in their late stages.

  9. Let-7 microRNAs Regenerate Peripheral Nerve Regeneration by Targeting Nerve Growth Factor

    PubMed Central

    Li, Shiying; Wang, Xinghui; Gu, Yun; Chen, Chu; Wang, Yaxian; Liu, Jie; Hu, Wen; Yu, Bin; Wang, Yongjun; Ding, Fei; Liu, Yan; Gu, Xiaosong

    2015-01-01

    Peripheral nerve injury is a common clinical problem. Nerve growth factor (NGF) promotes peripheral nerve regeneration, but its clinical applications are limited by several constraints. In this study, we found that the time-dependent expression profiles of eight let-7 family members in the injured nerve after sciatic nerve injury were roughly similar to each other. Let-7 microRNAs (miRNAs) significantly reduced cell proliferation and migration of primary Schwann cells (SCs) by directly targeting NGF and suppressing its protein translation. Following sciatic nerve injury, the temporal change in let-7 miRNA expression was negatively correlated with that in NGF expression. Inhibition of let-7 miRNAs increased NGF secretion by primary cultured SCs and enhanced axonal outgrowth from a coculture of primary SCs and dorsal root gangalion neurons. In vivo tests indicated that let-7 inhibition promoted SCs migration and axon outgrowth within a regenerative microenvironment. In addition, the inhibitory effect of let-7 miRNAs on SCs apoptosis might serve as an early stress response to nerve injury, but this effect seemed to be not mediated through a NGF-dependent pathway. Collectively, our results provide a new insight into let-7 miRNA regulation of peripheral nerve regeneration and suggest a potential therapy for repair of peripheral nerve injury. PMID:25394845

  10. Aberrant Dual Origin of the Dorsal Scapular Nerve and Its Communication with Long Thoracic Nerve: An Unusual Variation of the Brachial Plexus.

    PubMed

    Shilal, Poonam; Sarda, Rohit Kumar; Chhetri, Kalpana; Lama, Polly; Tamang, Binod Kumar

    2015-06-01

    Pre and post-fixed variations at roots of the brachial plexus have been well documented, however little is known about the variations that exist in the branches which arise from the brachial plexus. In this paper, we describe about one such rare variation related to the dorsal scapular and the long thoracic nerve, which are the branches arising from the roots of the brachial plexus. The variation was found during routine dissection. The dorsal scapular nerve, which routinely arises from the fifth cervical nerve root (C5), was seen to receive contributions from C5 as well as sixth cervical nerve (C6), while the long thoracic nerve arose from C6 and seventh cervical nerves (C7) only. Furthermore along with variations in origin of the dorsal scapular and long thoracic nerves, the brachial plexus was seen to exist as a prefixed plexus receiving a contribution from C4 nerve root. An aberrant communicating branch between the dorsal scapular and long thoracic nerve was also identified. Knowledge about the course and anatomy of such variations can be vital for understanding the aetiology of various conditions such as winging of scapula, interscapular pain, administration of cervical nerve blocks, surgeries and for effective management of regions and muscles supplied by dorsal scapular and long thoracic nerve.

  11. Alterations of the rat temporomandibular joint in functional posterior displacement of the mandible.

    PubMed

    Cholasueksa, Purisa; Warita, Hiroyuki; Soma, Kunimichi

    2004-10-01

    Functional malocclusion that induces posterior condylar displacement may affect the remodeling processes of the temporomandibular joint structures. We tested the hypothesis that intermittent posterior condylar displacement due to functional malocclusion traumatizes condylar cartilage and joint innervated nerve fibers. Thirty-nine eight-week-old Wistar rats were used. To induce functional posterior condylar displacement, guiding appliances were attached to maxillary incisors of 24 rats for four, seven, and 14 days. Fifteen normal rats served as controls. Sections were stained with hematoxylin and eosin or processed for immunohistochemistry of protein gene product 9.5 and growth-associated protein-43 (GAP-43). Functional posterior condylar displacement led to a diminution in proliferative cells, reduction in cartilage width, and re-expression of GAP-43-immunoreactive nerve fibers. These results indicate that intermittent posterior condylar displacement due to functional malocclusion causes dysfunctional remodeling of condylar cartilage and nerve injury.

  12. [Anatomical rationale for lingual nerve injury prevention during mandibular block].

    PubMed

    Semkin, V A; Dydikin, S S; Kuzin, A V; Sogacheva, V V

    2015-01-01

    The topographic and anatomical study of lingual nerve structural features was done. It was revealed that during mandibular anesthesia possible lingual nerve injury can occur if puncture needle is lower than 1 cm. of molars occlusal surface level. The position of the lingual nerve varies withmandible movements. At the maximum open mouth lingual nerve is not mobile and is pressed against the inner surface of the mandibular ramus by the medial pterygoid muscle and the temporal muscle tendon. When closing the mouth to 1.25±0.2 cmfrom the physiological maximum, lingual nerve is displaced posteriorly from the internal oblique line of the mandible and gets mobile. On the basis of topographic and anatomic features of the lingual nervestructure the authors recommend the re-do of inferior alveolar nerve block, a semi-closed mouth position or the use the "high block techniques" (Torus anesthesia, Gow-Gates, Vazirani-Akinozi). PMID:26271698

  13. Regenerative scaffold electrodes for peripheral nerve interfacing.

    PubMed

    Clements, Isaac P; Mukhatyar, Vivek J; Srinivasan, Akhil; Bentley, John T; Andreasen, Dinal S; Bellamkonda, Ravi V

    2013-07-01

    Advances in neural interfacing technology are required to enable natural, thought-driven control of a prosthetic limb. Here, we describe a regenerative electrode design in which a polymer-based thin-film electrode array is integrated within a thin-film sheet of aligned nanofibers, such that axons regenerating from a transected peripheral nerve are topographically guided across the electrode recording sites. Cultures of dorsal root ganglia were used to explore design parameters leading to cellular migration and neurite extension across the nanofiber/electrode array boundary. Regenerative scaffold electrodes (RSEs) were subsequently fabricated and implanted across rat tibial nerve gaps to evaluate device recording capabilities and influence on nerve regeneration. In 20 of these animals, regeneration was compared between a conventional nerve gap model and an amputation model. Characteristic shaping of regenerated nerve morphology around the embedded electrode array was observed in both groups, and regenerated axon profile counts were similar at the eight week end point. Implanted RSEs recorded evoked neural activity in all of these cases, and also in separate implantations lasting up to five months. These results demonstrate that nanofiber-based topographic cues within a regenerative electrode can influence nerve regeneration, to the potential benefit of a peripheral nerve interface suitable for limb amputees. PMID:23033438

  14. Nerve injuries about the elbow in the athlete.

    PubMed

    Harris, Joshua D; Lintner, David M

    2014-09-01

    The athlete's elbow is a remarkable example of motion, strength, and durability. The stress placed on the elbow during sport, including the throwing motion, may lead to soft-tissue ligamentous and nerve injury. The thrower's elbow illustrates one example of possible nerve injury about the elbow in sport, related to chronic repetitive tensile and compressive stresses to the ulnar nerve associated with elbow flexion and valgus position. Besides the throwing athlete, nerve injury from high-energy direct-impact forces may also damage nerves around the elbow in contact sports. Detailed history and physical examination can often make the diagnosis of most upper extremity neuropathies. The clinician must be aware of the possibility of isolated or combined nerve injury as far proximal as the cervical nerve roots, through the brachial plexus, to the peripheral nerve terminal branches. Electrodiagnostic studies are occasionally beneficial for diagnosis with certain nerves. Nonoperative management is often successful in most elbow and upper extremity neuropathies. If conservative treatment fails, then surgical treatment should address all potentially offending structures. In the presence of medial laxity and concurrent ulnar neuritis, the medial ulnar collateral ligament warrants surgical treatment, in addition to transposition of the ulnar nerve. The morbidity of open surgical decompression of nerves in and around the elbow is potentially career threatening in the throwing athlete. This mandates an assessment of the adequacy of the nonsurgical treatment and a thorough preoperative discussion of the risks and benefits of surgery.

  15. Nerve injuries about the elbow in the athlete.

    PubMed

    Harris, Joshua D; Lintner, David M

    2014-09-01

    The athlete's elbow is a remarkable example of motion, strength, and durability. The stress placed on the elbow during sport, including the throwing motion, may lead to soft-tissue ligamentous and nerve injury. The thrower's elbow illustrates one example of possible nerve injury about the elbow in sport, related to chronic repetitive tensile and compressive stresses to the ulnar nerve associated with elbow flexion and valgus position. Besides the throwing athlete, nerve injury from high-energy direct-impact forces may also damage nerves around the elbow in contact sports. Detailed history and physical examination can often make the diagnosis of most upper extremity neuropathies. The clinician must be aware of the possibility of isolated or combined nerve injury as far proximal as the cervical nerve roots, through the brachial plexus, to the peripheral nerve terminal branches. Electrodiagnostic studies are occasionally beneficial for diagnosis with certain nerves. Nonoperative management is often successful in most elbow and upper extremity neuropathies. If conservative treatment fails, then surgical treatment should address all potentially offending structures. In the presence of medial laxity and concurrent ulnar neuritis, the medial ulnar collateral ligament warrants surgical treatment, in addition to transposition of the ulnar nerve. The morbidity of open surgical decompression of nerves in and around the elbow is potentially career threatening in the throwing athlete. This mandates an assessment of the adequacy of the nonsurgical treatment and a thorough preoperative discussion of the risks and benefits of surgery. PMID:25077754

  16. α-Synuclein pathology in the cranial and spinal nerves in Lewy body disease.

    PubMed

    Nakamura, Keiko; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Kakita, Akiyoshi; Takahashi, Hitoshi; Yamada, Masahito; Wakabayashi, Koichi

    2016-06-01

    Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA.

  17. Advanced Triangulation Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Poteet, Wade M.; Cauthen, Harold K.

    1996-01-01

    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  18. Internal displacement in Burma.

    PubMed

    Lanjouw, S; Mortimer, G; Bamforth, V

    2000-09-01

    The internal displacement of populations in Burma is not a new phenomenon. Displacement is caused by numerous factors. Not all of it is due to outright violence, but much is a consequence of misguided social and economic development initiatives. Efforts to consolidate the state by assimilating populations in government-controlled areas by military authorities on the one hand, while brokering cease-fires with non-state actors on the other, has uprooted civilian populations throughout the country. Very few areas in which internally displaced persons (IDPs) are found are not facing social turmoil within a climate of impunity. Humanitarian access to IDP populations remains extremely problematic. While relatively little information has been collected, assistance has been focused on targeting accessible groups. International concern within Burma has couched the problems of displacement within general development modalities, while international attention along its borders has sought to contain displacement. With the exception of several recent initiatives, few approaches have gone beyond assistance and engaged in the prevention or protection of the displaced.

  19. Common peroneal nerve dysfunction

    MedlinePlus

    ... toe-out movements Tests of nerve activity include: Electromyography (EMG, a test of electrical activity in muscles) Nerve ... Peroneal neuropathy. In: Preston DC, Shapiro BE, eds. Electromyography and Neuromuscular Disorders . 3rd ed. Philadelphia, PA: Elsevier; ...

  20. Nerve conduction velocity

    MedlinePlus

    ... to measure the speed of the nerve signals. Electromyography (recording from needles placed into the muscles) is ... Often, the nerve conduction test is followed by electromyography (EMG). In this test, needles are placed into ...

  1. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  2. Evulsion of the optic nerve in association with basketball injuries.

    PubMed

    Chow, A Y; Goldberg, M F; Frenkel, M

    1984-01-01

    A case of optic nerve evulsion resulted from a finger poke injury to the globe during a basketball game. Significantly, almost no external damage to the eye was evident. The damage may be caused by sudden forceful anterior-posterior displacement and rotation of the globe, inducing a tear of the optic nerve at the papilla. The seriousness and permanence of this injury stress the importance of protective eye wear in contact sports.

  3. [Incarcerated epitrochlear fracture with a cubital nerve injury].

    PubMed

    Moril-Peñalver, L; Pellicer-Garcia, V; Gutierrez-Carbonell, P

    2013-01-01

    Injuries of the medial epicondyle are relatively common, mostly affecting children between 7 and 15 years. The anatomical characteristics of this apophysis can make diagnosis difficult in minimally displaced fractures. In a small percentage of cases, the fractured fragment may occupy the retroepitrochlear groove. The presence of dysesthesias in the territory of the ulnar nerve requires urgent open reduction of the incarcerated fragment. A case of a seven-year-old male patient is presented, who required surgical revision due to a displaced medial epicondyle fracture associated with ulnar nerve injury. A review of the literature is also made.

  4. [Incarcerated epitrochlear fracture with a cubital nerve injury].

    PubMed

    Moril-Peñalver, L; Pellicer-Garcia, V; Gutierrez-Carbonell, P

    2013-01-01

    Injuries of the medial epicondyle are relatively common, mostly affecting children between 7 and 15 years. The anatomical characteristics of this apophysis can make diagnosis difficult in minimally displaced fractures. In a small percentage of cases, the fractured fragment may occupy the retroepitrochlear groove. The presence of dysesthesias in the territory of the ulnar nerve requires urgent open reduction of the incarcerated fragment. A case of a seven-year-old male patient is presented, who required surgical revision due to a displaced medial epicondyle fracture associated with ulnar nerve injury. A review of the literature is also made. PMID:24071050

  5. Distal nerve entrapment following nerve repair.

    PubMed

    Schoeller, T; Otto, A; Wechselberger, G; Pommer, B; Papp, C

    1998-04-01

    Failure of nerve repair or poor functional outcome after reconstruction can be influenced by various causes. Besides improper microsurgical technique, fascicular malalignment and unphysiologic tension, we found in our clinical series that a subclinical nerve compression distal to the repair site can seriously impair regeneration. We concluded that the injured nerve, whether from trauma or microsurgical intervention, could be more susceptible to distal entrapment in the regenerative stage because of its disturbed microcirculation, swelling and the increase of regenerating axons followed by increased nerve volume. In two cases we found the regenerating nerve entrapped at pre-existing anatomical sites of narrowing resulting in impaired functional recovery. In both cases the surgical therapy was decompression of the distal entrapped nerve and this was followed by continued regeneration. Thorough clinical and electrophysiologic follow-up is necessary to detect such adverse compression effects and to distinguish between the various causes of failed regeneration. Under certain circumstances primary preventive decompression may be beneficial if performed at the time of nerve coaptation.

  6. Clinical significance of sacral and pudendal nerve anatomy.

    PubMed

    Juenemann, K P; Lue, T F; Schmidt, R A; Tanagho, E A

    1988-01-01

    The neuroanatomy and neurophysiology of the external urethral closure mechanisms still are under debate because the motor fibers that emanate from the sacral plexus and pudendal nerve to supply this segment have not been traced, nor has their functional interrelationship been established. Therefore, we dissected 3 male human cadavers (aged 31 to 69 years) by tracing the entire sacral plexus, particularly the pudendal nerve, from the cauda equina throughout the branching of the nerves to their final destination. The dissection demonstrated that the extrinsic urethral sphincter, formed by the rhabdosphincter around the membranous urethra as well as the levator ani muscle and pelvic floor (especially the transversus perinei muscle), is innervated by somatic nerve fibers that emanate primarily from sacral roots S2 and S3. In 5 patients with neurogenic lower urinary tract dysfunction electrostimulation of the sacral root and pudendal nerve markedly increased intraurethral closure pressures. Stimulation of the pudendal nerve or its transversus perinei branch alone resulted in an increase in intraurethral closure pressure to 60 to 70 cm. water--an increase similar to that produced by stimulation of the sacral root without neurotomy. By means of neurotomy and/or neural blockade with lidocaine we were able to differentiate between the contributions of each muscular element to the external sphincteric mechanism. Almost 70 per cent of the closure pressure of the external urethral sphincter is induced by stimulation of the S3 ventral root, while the other 30 per cent derives from S2 and S4 neuronal impulses.

  7. Water displacement mercury pump

    DOEpatents

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  8. Water displacement mercury pump

    DOEpatents

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  9. Optical displacement sensor

    DOEpatents

    Carr, Dustin W.

    2008-04-08

    An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

  10. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  11. The Furcal Nerve Revisited

    PubMed Central

    Dabke, Harshad V.

    2014-01-01

    Atypical sciatica and discrepancy between clinical presentation and imaging findings is a dilemma for treating surgeon in management of lumbar disc herniation. It also constitutes ground for failed back surgery and potential litigations thereof. Furcal nerve (Furcal = forked) is an independent nerve with its own ventral and dorsal branches (rootlets) and forms a link nerve that connects lumbar and sacral plexus. Its fibers branch out to be part of femoral and obturator nerves in-addition to the lumbosacral trunk. It is most commonly found at L4 level and is the most common cause of atypical presentation of radiculopathy/sciatica. Very little is published about the furcal nerve and many are unaware of its existence. This article summarizes all the existing evidence about furcal nerve in English literature in an attempt to create awareness and offer insight about this unique entity to fellow colleagues/professionals involved in spine care. PMID:25317309

  12. [Nerve ultrasound is useful for the diagnosis of neuromuscular diseases].

    PubMed

    Noto, Yu-Ichi

    2013-01-01

    High-resolution ultrasound allowed for more detailed morphological assessment peripheral nerves and muscles. It is important to elucidate ultrasound features of peripheral nerves or muscles in various neuromuscular diseases because ultrasound is a widely used, non-invasive and easily accessible diagnostic tool. We attempted to demonstrate characteristic findings of nerve ultrasound in patients with Charcot-Marie-Tooth disease (CMT), Amyotrophic lateral sclerosis (ALS), and Cervical radiculopathy. In patients with CMT1A, cross sectional areas (CSAs) of all the nerves we examined were significantly larger than those in normal controls. Additionally, median nerve CSA had positive correlation with CMT neuropathy score, and negative correlation with nerve conduction velocity. In patients with ALS, increased CSA forearm/upper arm ratio of the median nerve was a characteristic finding to support the diagnosis. In patients with cervical radiculopathy, we could observe that decreased CSA and diameter of the nerve root corresponding to the findings of MRI and electromyography. These results demonstrate that the combination of electrophysiological study, diagnostic imaging, and nerve ultrasound could lead to accurate diagnosis of various neuromuscular diseases.

  13. Displaced patella fractures.

    PubMed

    Della Rocca, Gregory J

    2013-10-01

    Displaced patella fractures often result in disruption of the extensor mechanism of the knee. An intact extensor mechanism is a requirement for unassisted gait. Therefore, operative treatment of the displaced patella fracture is generally recommended. The evaluation of the patella fracture patient includes examination of extensor mechanism integrity. Operative management of patella fractures normally includes open reduction with internal fixation, although partial patellectomy is occasionally performed, with advancement of quadriceps tendon or patellar ligament to the fracture bed. Open reduction with internal fixation has historically been performed utilizing anterior tension band wiring, although comminution of the fracture occasionally makes this fixation construct inadequate. Supplementation or replacement of the tension band wire construct with interfragmentary screws, cerclage wire or suture, and/or plate-and-screw constructs may add to the stability of the fixation construct. Arthrosis of the patellofemoral joint is very common after healing of patella fractures, and substantial functional deficits may persist long after fracture healing has occurred.

  14. Tunable beam displacer

    SciTech Connect

    Salazar-Serrano, Luis José; Valencia, Alejandra; Torres, Juan P.

    2015-03-15

    We report the implementation of a tunable beam displacer, composed of a polarizing beam splitter (PBS) and two mirrors, that divides an initially polarized beam into two parallel beams whose separation can be continuously tuned. The two output beams are linearly polarized with either vertical or horizontal polarization and no optical path difference is introduced between them. The wavelength dependence of the device as well as the maximum separation between the beams achievable is limited mainly by the PBS characteristics.

  15. Peripheral nerve regeneration and neurotrophic factors

    PubMed Central

    TERENGHI, GIORGIO

    1999-01-01

    The role of neurotrophic factors in the maintenance and survival of peripheral neuronal cells has been the subject of numerous studies. Administration of exogenous neurotrophic factors after nerve injury has been shown to mimic the effect of target organ-derived trophic factors on neuronal cells. After axotomy and during peripheral nerve regeneration, the neurotrophins NGF, NT-3 and BDNF show a well defined and selective beneficial effect on the survival and phenotypic expression of primary sensory neurons in dorsal root ganglia and of motoneurons in spinal cord. Other neurotrophic factors such as CNTF, GDNF and LIF also exert a variety of actions on neuronal cells, which appear to overlap and complement those of the neurotrophins. In addition, there is an indirect contribution of GGF to nerve regeneration. GGF is produced by neurons and stimulates proliferation of Schwann cells, underlining the close interaction between neuronal and glial cells during peripheral nerve regeneration. Different possibilities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. The studies reviewed in this article show the therapeutic potential of neurotrophic factors for the treatment of peripheral nerve injury and for neuropathies. PMID:10227662

  16. Inferior alveolar nerve repositioning.

    PubMed

    Louis, P J

    2001-09-01

    Nerve repositioning is a viable alternative for patients with an atrophic edentulous posterior mandible. Patients, however, should be informed of the potential risks of neurosensory disturbance. Documentation of the patient's baseline neurosensory function should be performed with a two-point discrimination test or directional brush stroke test preoperatively and postoperatively. Recovery of nerve function should be expected in 3 to 6 months. The potential for mandibular fracture when combining nerve repositioning with implant placement also should be discussed with the patient. This can be avoided by minimizing the amount of buccal cortical plate removal during localization of the nerve and maintaining the integrity of the inferior cortex of the mandible. Additionally, avoid overseating the implant, thus avoiding stress along the inferior border of the mandible. The procedure does allow for the placement of longer implants, which should improve implant longevity. Patients undergoing this procedure have expressed overall satisfaction with the results. Nerve repositioning also can be used to preserve the inferior alveolar nerve during resection of benign tumors or cysts of the mandible. This procedure allows the surgeon to maintain nerve function in situations in which the nerve would otherwise have to be resected. PMID:11665379

  17. Cryotherapy and nerve palsy.

    PubMed

    Drez, D; Faust, D C; Evans, J P

    1981-01-01

    Ice application is one of the most extensively used treatments for athletic injuries. Frostbite is a recognized danger. Five cases of nerve palsy resulting from ice application are reported here. These palsies were temporary. They usually resolve spontaneously without any significant sequelae. This complication can be avoided by not using ice for more than 30 minutes and by guarding superficial nerves in the area.

  18. Imaging the cranial nerves.

    PubMed

    Parry, Andrew T; Volk, Holger A

    2011-01-01

    An understanding of the normal course of the cranial nerves (CN) is essential when interpreting images of patients with cranial neuropathies. CN foramina are depicted best using computed X-ray tomography, but the nerves are depicted best using magnetic resonance imaging. The function and anatomy of the CN in the dog are reviewed and selected examples of lesions affecting the CN are illustrated.

  19. [Sciatic nerve intraneural perineurioma].

    PubMed

    Bonhomme, Benjamin; Poussange, Nicolas; Le Collen, Philippe; Fabre, Thierry; Vital, Anne; Lepreux, Sébastien

    2015-12-01

    Intraneural perineurioma is a benign tumor developed from the perineurium and responsible for localized nerve hypertrophy. This uncommon tumor is characterized by a proliferation of perineural cells with a "pseudo-onion bulb" pattern. We report a sciatic nerve intraneural perineurioma in a 39-year-old patient. PMID:26586011

  20. Optic Nerve Decompression

    MedlinePlus

    ... canals). The optic nerve is the “nerve of vision” and extends from the brain, through your skull, and into your eye. A ... limited to, the following: loss of vision, double vision, inadequate ... leakage of brain fluid (CSF), meningitis, nasal bleeding, infection of the ...

  1. Peripheral nerve stimulation: definition.

    PubMed

    Abejón, David; Pérez-Cajaraville, Juan

    2011-01-01

    Recently, there has been a tremendous evolution in the field of neurostimulation, both from the technological point of view and from development of the new and different indications. In some areas, such as peripheral nerve stimulation, there has been a boom in recent years due to the variations in the surgical technique and the improved results documented by in multiple published papers. All this makes imperative the need to classify and define the different types of stimulation that are used today. The confusion arises when attempting to describe peripheral nerve stimulation and subcutaneous stimulation. Peripheral nerve stimulation, in its pure definition, involves implanting a lead on a nerve, with the aim to produce paresthesia along the entire trajectory of the stimulated nerve.

  2. Evolution of rapid nerve conduction.

    PubMed

    Castelfranco, Ann M; Hartline, Daniel K

    2016-06-15

    Rapid conduction of nerve impulses is a priority for organisms needing to react quickly to events in their environment. While myelin may be viewed as the crowning innovation bringing about rapid conduction, the evolution of rapid communication mechanisms, including those refined and enhanced in the evolution of myelin, has much deeper roots. In this review, a sequence is traced starting with diffusional communication, followed by transport-facilitated communication, the rise of electrical signaling modalities, the invention of voltage-gated channels and "all-or-none" impulses, the emergence of elongate nerve axons specialized for communication and their fine-tuning to enhance impulse conduction speeds. Finally within the evolution of myelin itself, several innovations have arisen and have been interactively refined for speed enhancement, including the addition and sealing of layers, their limitation by space availability, and the optimization of key parameters: channel density, lengths of exposed nodes and lengths of internodes. We finish by suggesting several design principles that appear to govern the evolution of rapid conduction. This article is part of a Special Issue entitled SI: Myelin Evolution.

  3. Optogenetic control of nerve growth

    PubMed Central

    Park, Seongjun; Koppes, Ryan A.; Froriep, Ulrich P.; Jia, Xiaoting; Achyuta, Anil Kumar H.; McLaughlin, Bryan L.; Anikeeva, Polina

    2015-01-01

    Due to the limited regenerative ability of neural tissue, a diverse set of biochemical and biophysical cues for increasing nerve growth has been investigated, including neurotrophic factors, topography, and electrical stimulation. In this report, we explore optogenetic control of neurite growth as a cell-specific alternative to electrical stimulation. By investigating a broad range of optical stimulation parameters on dorsal root ganglia (DRGs) expressing channelrhodopsin 2 (ChR2), we identified conditions that enhance neurite outgrowth by three-fold as compared to unstimulated or wild-type (WT) controls. Furthermore, optogenetic stimulation of ChR2 expressing DRGs induces directional outgrowth in WT DRGs co-cultured within a 10 mm vicinity of the optically sensitive ganglia. This observed enhancement and polarization of neurite growth was accompanied by an increased expression of neural growth and brain derived neurotrophic factors (NGF, BDNF). This work highlights the potential for implementing optogenetics to drive nerve growth in specific cell populations. PMID:25982506

  4. Synthesis of finite displacements and displacements in continental margins

    NASA Technical Reports Server (NTRS)

    Speed, R. C.; Elison, M. W.; Heck, F. R.; Russo, R. M.

    1988-01-01

    The scope of the project is the analysis of displacement-rate fields in the transitional regions between cratonal and oceanic lithospheres over Phanerozoic time (last 700 ma). Associated goals are an improved understanding of range of widths of major displacement zones; the partition of displacement gradients and rotations with position and depth in such zones; the temporal characteristics of such zones-the steadiness, episodicity, and duration of uniform versus nonunifrom fields; and the mechanisms and controls of the establishment and kinematics of displacement zones. The objective is to provide a context of time-averaged kinematics of displacement zones. The initial phase is divided topically among the methodology of measurement and reduction of displacements in the lithosphere and the preliminary analysis from geologic and other data of actual displacement histories from the Cordillera, Appalachians, and southern North America.

  5. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  6. Purinergic nerves and receptors.

    PubMed

    Burnstock, G

    1980-01-01

    The presence of a non-cholinergic, non-adrenergic component in the vertebrate autonomic nervous system is now well established. Evidence that ATP is the transmitter released from some of these nerves (called "purinergic') includes: (a) synthesis and storage of ATP in nerves: (b) release of ATP from the nerves when they are stimulated; (c) exogenously applied ATP mimicking the action of nerve-released transmitter; (d) the presence of ectoenzymes which inactivate ATP; (e) drugs which produce similar blocking or potentiating effects on the response to exogenously applied ATP and nerve stimulation. A basis for distinguishing two types of purinergic receptors has been proposed according to four criteria: relative potencies of agonists, competitive antagonists, changes in levels of cAMP and induction of prostaglandin synthesis. Thus P1 purinoceptors are most sensitive to adenosine, are competitively blocked by methylxanthines and their occupation leads to changes in cAMP accumulation; while P2 purinoceptors are most sensitive to ATP, are blocked (although not competitively) by quinidine, 2-substituted imidazolines, 2,2'-pyridylisatogen and apamin, and their occupation leads to production of prostaglandin. P2 purinoceptors mediate responses of smooth muscle to ATP released from purinergic nerves, while P1 purinoceptors mediate the presynaptic actions of adenosine on adrenergic, cholinergic and purinergic nerve terminals. PMID:6108568

  7. The initial appearance of the cranial nerves and related neuronal migration in staged human embryos.

    PubMed

    Müller, Fabiola; O'Rahilly, Ronan

    2011-01-01

    The initial development of the cranial nerves was studied in 245 human embryos of stages 10-23 (4-8 postfertilizational weeks). Significant findings in the human embryo include the following. (1) Neuronal migration is a characteristic feature in the development of all the cranial nerves at stages 13-18, with the exception of the somatic efferent group. (2) The somatic efferent and the visceral efferent neurons are arranged respectively in ventrolateral and ventromedial columns (stages 13-17). (3) The ventrolateral column gives rise to somatic efferent nuclei; the neurons of the hypoglossal nerve develop rapidly and show a segmental organization as four roots that innervate three of the four occipital somites (stage 13); the abducent nucleus becomes displaced rostrally by a change in the rhombomeric pattern at stage 16. (4) The ventromedial column, originally continuous in rhombomeres 2-7, gives rise to visceral efferent and pharyngeal efferent nuclei. (5) All the 'true' cranial nerves (III-XII) are recognizable by stage 16. (6) In a primary migration the visceral efferent neurons proceed mediolaterally and accumulate dorsolaterally as nuclei (stages 13, 14); they differentiate into salivatory nuclei (stages 16, 17). (7) A secondary migration involves the pharyngeal efferent neurons (of nerves V and IX-XI), which also proceed mediolaterally and then form ventrolateral nuclei (stages 17, 18). (8) The facial complex shows a distinctive development in that its neural crest arises from the lateral wall of the neural folds/tube. Moreover, the migration of its pharyngeal efferent neurons is delayed, which may be related to the formation of the internal genu, and the motor nucleus begins to appear only at stage 23. (9) The sequence of appearance of afferent constituents is: cranial ganglia (stage 12), mesencephalic trigeminal nucleus (stage 15), vestibular nuclei (stages 18-22), and cochlear nuclei (stage 19). The unsatisfactory term special is avoided and the term

  8. Adapting to variable prismatic displacement

    NASA Technical Reports Server (NTRS)

    Welch, Robert B.; Cohen, Malcolm M.

    1989-01-01

    In each of two studies, subjects were exposed to a continuously changing prismatic displacement with a mean value of 19 prism diopters (variable displacement) and to a fixed 19-diopter displacement (fixed displacement). In Experiment 1, significant adaptation (post-pre shifts in hand-eye coordination) was found for fixed, but not for variable, displacement. Experiment 2 demonstrated that adaptation was obtained for variable displacement, but it was very fragile and is lost if the measures of adaptation are preceded by even a very brief exposure of the hand to normal or near-normal vision. Contrary to the results of some previous studies, an increase in within-S dispersion was not found of target pointing responses as a result of exposure to variable displacement.

  9. Intraparotid facial nerve neurofibroma.

    PubMed

    Sullivan, M J; Babyak, J W; Kartush, J M

    1987-02-01

    Neurogenic neoplasms of the intraparotid facial nerve are uncommon and are usually diagnosed intraoperatively by tissue biopsy. Fifty-six cases of primary neurogenic neoplasms involving the facial nerve have been reported. The majority of these have been schwannomas. A case of a solitary neurofibroma involving the main trunk of the facial nerve is presented. Schwannomas and neurofibromas have distinct histological features which must be considered prior to the management of these tumors. The management of neurogenic tumors associated with normal facial function is a particularly difficult problem. A new approach for the diagnosis and management of neurogenic neoplasms is described utilizing electroneurography. PMID:3807626

  10. Radial Nerve Tendon Transfers.

    PubMed

    Cheah, Andre Eu-Jin; Etcheson, Jennifer; Yao, Jeffrey

    2016-08-01

    Radial nerve palsy typically occurs as a result of trauma or iatrogenic injury and leads to the loss of wrist extension, finger extension, thumb extension, and a reduction in grip strength. In the absence of nerve recovery, reconstruction of motor function involves tendon transfer surgery. The most common donor tendons include the pronator teres, wrist flexors, and finger flexors. The type of tendon transfer is classified based on the donor for the extensor digitorum communis. Good outcomes have been reported for most methods of radial nerve tendon transfers as is typical for positional tendon transfers not requiring significant power. PMID:27387076

  11. Trigeminal nerve section for chronic migrainous neuralgia.

    PubMed

    Kirkpatrick, P J; O'Brien, M D; MacCabe, J J

    1993-01-01

    We report a series of 14 patients who underwent partial or complete trigeminal nerve root section for chronic unremitting migrainous neuralgia. They had all suffered attacks with severe pain for over 18 months without remission (mean duration 5.5 years). Symptoms were refractory to extended medical intervention and had caused prolonged disruption of lifestyle. The sensory root was completely divided in two cases with complete relief of pain (mean follow-up period 5.6 years). In the other 12 patients, 50-90% of the superomedial portion of the sensory root was divided. Of these, five received no further surgery, and experienced complete (n = 2), near complete (n = 2), or incomplete (n = 1) relief of neuralgia (mean follow-up 5.5 years). The remaining seven patients in the partially divided group were not relieved of pain after operation (n = 5) or suffered early recurrence of pain (n = 2). They showed incomplete sensory loss in the first trigeminal division (V1) and had a second operation to extend the nerve division. V1 anaesthesia was established in all cases after the second procedure, and as a result, four are currently completely free of pain and one has near complete relief of pain. The remaining two patients are still experiencing severe neuralgia (mean follow up 4.1 years). Twelve out of 14 patients (85.7%) receiving surgery for chronic migrainous neuralgia experienced adequate pain relief and are able to follow a normal life (mean follow up 5.6 years). Corneal abrasion was the commonest long-term complication, occurring in three cases (28.5%) and progressing to chronic keratitis in one. We conclude that total trigeminal nerve root section is an effective treatment for patients suffering from chronic migrainous neuralgia and can be safely offered as a primary surgical treatment.

  12. Strategies for displacing oil

    NASA Astrophysics Data System (ADS)

    Rao, Vikram; Gupta, Raghubir

    2015-03-01

    Oil currently holds a monopoly on transportation fuels. Until recently biofuels were seen as the means to break this stranglehold. They will still have a part to play, but the lead role has been handed to natural gas, almost solely due to the increased availability of shale gas. The spread between oil and gas prices, unprecedented in its scale and duration, will cause a secular shift away from oil as a raw material. In the transport fuel sector, natural gas will gain traction first in the displacement of diesel fuel. Substantial innovation is occurring in the methods of producing liquid fuel from shale gas at the well site, in particular in the development of small scale distributed processes. In some cases, the financing of such small-scale plants may require new business models.

  13. Variable displacement blower

    DOEpatents

    Bookout, Charles C.; Stotts, Robert E.; Waring, Douglass R.; Folsom, Lawrence R.

    1986-01-01

    A blower having a stationary casing for rotatably supporting a rotor assembly having a series of open ended chambers arranged to close against the surrounding walls of the casing. Pistons are slidably mounted within each chamber with the center of rotation of the pistons being offset in regard to the center of rotation of the rotor assembly whereby the pistons reciprocate in the chambers as the rotor assembly turns. As inlet port communicates with the rotor assembly to deliver a working substance into the chamber as the pistons approach a top dead center position in the chamber while an outlet port also communicates with the rotor to exhaust the working substance as the pistons approach a bottom dead center position. The displacement of the blower is varied by adjusting the amount of eccentricity between the center of rotation of the pistons and the center of rotation of the rotor assembly.

  14. High Ulnar Nerve Injuries: Nerve Transfers to Restore Function.

    PubMed

    Patterson, Jennifer Megan M

    2016-05-01

    Peripheral nerve injuries are challenging problems. Nerve transfers are one of many options available to surgeons caring for these patients, although they do not replace tendon transfers, nerve graft, or primary repair in all patients. Distal nerve transfers for the treatment of high ulnar nerve injuries allow for a shorter reinnervation period and improved ulnar intrinsic recovery, which are critical to function of the hand. PMID:27094893

  15. Facial Nerve Neuroma Management

    PubMed Central

    Weber, Peter C.; Osguthorpe, J. David

    1998-01-01

    Three facial nerve neuromas were identified in the academic year 1994-1995. Each case illustrates different management dilemmas. One patient with a grade III facial nerve palsy had a small geniculate ganglion neuroma with the dilemma of decompression versus resection clear nerve section margins. The second patient underwent facial neuroma resection with cable graft reconstruction, but the permanent sections were positive. The last patient had a massive neuroma in which grafting versus other facial reconstructive options were considered. These three cases illustrate some of the major controversies in facial nerve neuroma management. We discuss our decision-making plan and report our results. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:17171043

  16. Diabetes and nerve damage

    MedlinePlus

    Diabetic neuropathy; Diabetes - neuropathy; Diabetes - peripheral neuropathy ... In people with diabetes, the body's nerves can be damaged by decreased blood flow and a high blood sugar level. This condition is ...

  17. Vagus Nerve Stimulation

    PubMed Central

    Howland, Robert H.

    2014-01-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality. PMID:24834378

  18. Sacral nerve stimulation.

    PubMed

    Matzel, K E; Stadelmaier, U; Besendörfer, M

    2004-01-01

    The current concept of recruiting residual function of an inadequate pelvic organ by electrostimulation involves stimulation of the sacral spinal nerves at the level of the sacral canal. The rationale for applying SNS to fecal incontinence was based on clinical observations of its effect on bowel habits and anorectal continence function in urologic patients (increased anorectal angulation and anal canal closure pressure) and on anatomic considerations: dissection demonstrated a dual peripheral nerve supply of the striated pelvic floor muscles that govern these functions. Because the sacral spinal nerve site is the most distal common location of this dual nerve supply, stimulating here can elicit both functions. Since the first application of SNS in fecal incontinence in 1994, this technique has been improved, the patient selection process modified, and the spectrum of indications expanded. At present SNS has been applied in more than 1300 patients with fecal incontinence limited.

  19. Degenerative Nerve Diseases

    MedlinePlus

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many of these diseases are genetic. Sometimes the cause is a medical ...

  20. Damaged axillary nerve (image)

    MedlinePlus

    Conditions associated with axillary nerve dysfunction include fracture of the humerus (upper arm bone), pressure from casts or splints, and improper use of crutches. Other causes include systemic disorders that cause neuritis (inflammation of ...

  1. Iatrogenic accessory nerve injury.

    PubMed Central

    London, J.; London, N. J.; Kay, S. P.

    1996-01-01

    Accessory nerve injury produces considerable disability. The nerve is most frequently damaged as a complication of radical neck dissection, cervical lymph node biopsy and other surgical procedures. The problem is frequently compounded by a failure to recognise the error immediately after surgery when surgical repair has the greatest chance of success. We present cases which outline the risk of accessory nerve injury, the spectrum of clinical presentations and the problems produced by a failure to recognise the deficit. Regional anatomy, consequences of nerve damage and management options are discussed. Diagnostic biopsy of neck nodes should not be undertaken as a primary investigation and, when indicated, surgery in this region should be performed by suitably trained staff under well-defined conditions. Awareness of iatrogenic injury and its consequences would avoid delays in diagnosis and treatment. Images Figure 2 PMID:8678450

  2. Femoral nerve dysfunction

    MedlinePlus

    Neuropathy - femoral nerve; Femoral neuropathy ... Craig EJ, Clinchot DM. Femoral neuropathy. In: Frontera WR, Silver JK, Rizzo TD Jr, eds. Essentials of Physical Medicine and Rehabilitation: Musculoskeletal Disorders, Pain, and Rehabilitation . 3rd ...

  3. Diabetic Nerve Problems

    MedlinePlus

    ... the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get it. ... change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. Controlling ...

  4. Displacement parameter inversion for a novel electromagnetic underground displacement sensor.

    PubMed

    Shentu, Nanying; Li, Qing; Li, Xiong; Tong, Renyuan; Shentu, Nankai; Jiang, Guoqing; Qiu, Guohua

    2014-05-22

    Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor) by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA). Based on that work, this paper presents an underground displacement inversion approach named "EELA forward modeling-approximate inversion method". Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0-100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  5. Displacement parameter inversion for a novel electromagnetic underground displacement sensor.

    PubMed

    Shentu, Nanying; Li, Qing; Li, Xiong; Tong, Renyuan; Shentu, Nankai; Jiang, Guoqing; Qiu, Guohua

    2014-01-01

    Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor) by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA). Based on that work, this paper presents an underground displacement inversion approach named "EELA forward modeling-approximate inversion method". Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0-100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications. PMID:24858960

  6. Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor

    PubMed Central

    Shentu, Nanying; Li, Qing; Li, Xiong; Tong, Renyuan; Shentu, Nankai; Jiang, Guoqing; Qiu, Guohua

    2014-01-01

    Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor) by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA). Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications. PMID:24858960

  7. Lower cranial nerves.

    PubMed

    Soldatos, Theodoros; Batra, Kiran; Blitz, Ari M; Chhabra, Avneesh

    2014-02-01

    Imaging evaluation of cranial neuropathies requires thorough knowledge of the anatomic, physiologic, and pathologic features of the cranial nerves, as well as detailed clinical information, which is necessary for tailoring the examinations, locating the abnormalities, and interpreting the imaging findings. This article provides clinical, anatomic, and radiological information on lower (7th to 12th) cranial nerves, along with high-resolution magnetic resonance images as a guide for optimal imaging technique, so as to improve the diagnosis of cranial neuropathy.

  8. Structural changes of the carpal tunnel, median nerve and flexor tendons in MRI before and after endoscopic carpal tunnel release.

    PubMed

    Momose, Toshimitsu; Uchiyama, Shigeharu; Kobayashi, Seneki; Nakagawa, Hiroyuki; Kato, Hiroyuki

    2014-01-01

    The purpose of this study is to investigate the structural changes of the carpal tunnel, median nerve, and flexor tendons in magnetic resonance imaging (MRI) before and after endoscopic carpal tunnel release (ECTR). We studied 36 hands undergoing ECTR. In MRI, the cross-sectional area of the carpal tunnel and the median nerve at the hamate and the pisiform levels were measured. The distance from the volar side of carpal bone to the median nerve or tendons and the volar displacement were measured. In post-operative MRI, the transverse carpal ligament could not be well delineated and the carpal tunnel was significantly enlarged both at the hamate and pisiform levels. The median nerve was enlarged at the hamate level. The median nerve and flexor tendons significantly moved to the volar side. The volar displacement of the median nerve and flexor digitorum superficialis in the long and ring fingers was greater than the other tendons.

  9. Measuring vulnerability to disaster displacement

    NASA Astrophysics Data System (ADS)

    Brink, Susan A.; Khazai, Bijan; Power, Christopher; Wenzel, Friedemann

    2015-04-01

    Large scale disasters can cause devastating impacts in terms of population displacement. Between 2008 and 2013, on average 27 million people were displaced annually by disasters (Yonetani 2014). After large events such as hurricane Katrina or the Port-au-Prince earthquake, images of inadequate public shelter and concerns about large scale and often inequitable migration have been broadcast around the world. Population displacement can often be one of the most devastating and visible impacts of a natural disaster. Despite the importance of population displacement in disaster events, measures to understand the socio-economic vulnerability of a community often use broad metrics to estimate the total socio-economic risk of an event rather than focusing on the specific impacts that a community faces in a disaster. Population displacement is complex and multi-causal with the physical impact of a disaster interacting with vulnerability arising from the response, environmental issues (e.g., weather), cultural concerns (e.g., expectations of adequate shelter), and many individual factors (e.g., mobility, risk perception). In addition to the complexity of the causes, population displacement is difficult to measure because of the wide variety of different terms and definitions and its multi-dimensional nature. When we speak of severe population displacement, we may refer to a large number of displaced people, an extended length of displacement or associated difficulties such as poor shelter quality, risk of violence and crime in shelter communities, discrimination in aid, a lack of access to employment or other difficulties that can be associated with large scale population displacement. We have completed a thorough review of the literature on disaster population displacement. Research has been conducted on historic events to understand the types of negative impacts associated with population displacement and also the vulnerability of different groups to these impacts. We

  10. Mandibular nerve paresthesia caused by endodontic treatment.

    PubMed

    Gallas-Torreira, M Mercedes; Reboiras-López, M Dolores; García-García, Abel; Gándara-Rey, José

    2003-01-01

    The paresthesias of the inferior dental nerve consists of a complication that can occur after performing various dental procedures such as cystectomies, extraction of impacted teeth, apicoectomies, endodontic treatments, local anesthetic deposition, preprosthetic or implantologic surgery. The possible mechanisms of nervous lesions are mechanical, chemical and thermal. Mechanical injury includes compression, stretching, partial or total resection and laceration. The lesion can cause a discontinuity to the nerve with Wallerian degeneration of the distal and integrated fibers of the covering (axonotmesis) or can cause the total sectioning of the nerve (neurotmesis). Chemical trauma can be due to certain toxic components of the endodontic filling materials (paraformaldehyde, corticoids or eugenol) and irrigating solutions (sodium hypochlorite) or local anesthetics. Thermal injury is a consequence of bone overheating during the execution of surgical techniques. We present a clinical case of paresthesia of the inferior dental nerve after the introduction of a gutta-percha point in the mandibular canal during the performance of a root canal therapy of the inferior first molar. The etiology and the treatment of this endodontic complication are described. PMID:12937392

  11. Assessment of Median Nerve Mobility by Ultrasound Dynamic Imaging for Diagnosing Carpal Tunnel Syndrome.

    PubMed

    Kuo, Tai-Tzung; Lee, Ming-Ru; Liao, Yin-Yin; Chen, Jiann-Perng; Hsu, Yen-Wei; Yeh, Chih-Kuang

    2016-01-01

    Carpal tunnel syndrome (CTS) is the most common peripheral neuropathy and is characterized by median nerve entrapment at the wrist and the resulting median nerve dysfunction. CTS is diagnosed clinically as the gold standard and confirmed with nerve conduction studies (NCS). Complementing NCS, ultrasound imaging could provide additional anatomical information on pathological and motion changes of the median nerve. The purpose of this study was to estimate the transverse sliding patterns of the median nerve during finger movements by analyzing ultrasound dynamic images to distinguish between normal subjects and CTS patients. Transverse ultrasound images were acquired, and a speckle-tracking algorithm was used to determine the lateral displacements of the median nerve in radial-ulnar plane in B-mode images utilizing the multilevel block-sum pyramid algorithm and averaging. All of the averaged lateral displacements at separate acquisition times within a single flexion-extension cycle were accumulated to obtain the cumulative lateral displacements, which were curve-fitted with a second-order polynomial function. The fitted curve was regarded as the transverse sliding pattern of the median nerve. The R2 value, curvature, and amplitude of the fitted curves were computed to evaluate the goodness, variation and maximum value of the fit, respectively. Box plots, the receiver operating characteristic (ROC) curve, and a fuzzy c-means clustering algorithm were utilized for statistical analysis. The transverse sliding of the median nerve during finger movements was greater and had a steeper fitted curve in the normal subjects than in the patients with mild or severe CTS. The temporal changes in transverse sliding of the median nerve within the carpal tunnel were found to be correlated with the presence of CTS and its severity. The representative transverse sliding patterns of the median nerve during finger movements were demonstrated to be useful for quantitatively estimating

  12. Cauda equina repair in the rat: part 1. Stimulus-evoked EMG for identifying spinal nerves innervating intrinsic tail muscles.

    PubMed

    Blaskiewicz, Don J; Smirnov, Igor; Cisu, Tudor; DeRuisseau, Lara R; Stelzner, Dennis J; Calancie, Blair

    2009-08-01

    Cauda equina injuries may produce severe leg and pelvic floor dysfunction, for which no effective treatments exist. We are developing a rat cauda equina injury model to allow nerve root identification and surgical repair. One possible difficulty in implementing any repair strategy after trauma in humans involves the correct identification of proximal and distal ends of nerve roots separated by the injury. Two series of studies were carried out. In Series 1, we electrically stimulated segmental contributors to the dorsal and ventral caudales nerves in order to characterize the recruitment patterns of muscles controlling rat tail movements. In Series 2, we attempted to identify individual nerve roots forming the cauda equina by both level of origin and function (i.e., dorsal or ventral), based solely upon the recruitment patterns in response to electrical stimulation. For Series 1 studies, electrical stimulation of the segmental contributors showed that all nerve roots-from the sixth lumbar to the first coccygeal-contributed to recruitment of muscles found at the base of the tail. Intrinsic tail muscles lying more distally in the tail showed a more root-specific pattern of innervation. For Series 2, the rate of successful identification of an unknown nerve root as being ventral was very high (>95%), and only somewhat lower (approximately 80%) for dorsal roots. Correctly identifying the level of origin of that root was more difficult, but for ventral roots this rate still exceeded 90%. Using the rat cauda equina model, we have shown that stimulus-evoked EMG can be used to identify ventral nerve roots innervating tail muscles with a high degree of accuracy. These findings support the feasibility of using this conceptual approach for identifying and repairing damaged human cauda equina nerve roots based on stimulus-evoked recruitment of muscles in the leg and pelvic floor. PMID:19203211

  13. Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Cohen, D.; Or, D.

    2011-06-01

    Root-soil mechanical interactions are key to soil stability on steep hillslopes. Motivated by new advances and applications of the Root Bundle Model (RBM), we conducted a series of experiments in the laboratory and in the field to study the mechanical response of pulled roots. We systematically quantified the influence of different factors such as root geometry and configuration, soil type, and soil water content considering individual roots and root bundles. We developed a novel pullout apparatus for strain-controlled field and laboratory tests of up to 13 parallel roots measured individually and as a bundle. Results highlight the importance of root tortuosity and root branching points for prediction of individual root pullout behavior. Results also confirm the critical role of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Friction between root and soil matrix varied with soil type and water content and affected the force-displacement behavior. Friction in sand varied from 1 to 17 kPa, with low values obtained in wet sand at a confining pressure of 2 kPa and high values obtained in dry sand with 4.5 kPa confining pressure. In a silty soil matrix, friction ranged between 3 kPa under wet and low confining pressure (2 kPa) and 6 kPa in dry and higher confining pressure (4.5 kPa). Displacement at maximum pullout force increased with increasing root diameter and with tortuosity. Laboratory experiments were used to calibrate the RBM that was later validated using six field measurements with natural root bundles of Norway spruce (Picea abies L.). These tests demonstrate the progressive nature of root bundle failure under strain-controlled pullout force and provide new insights regarding force-displacement behavior of root reinforcement, highlighting the importance of considering displacement in slope stability models. Results show that the magnitude of maximum root pullout forces (1-5 kPa) are important for slope

  14. Selective vulnerability of peripheral nerves in avian riboflavin deficiency demyelinating polyneuropathy.

    PubMed

    Cai, Z; Blumbergs, P C; Finnie, J W; Manavis, J; Thompson, P D

    2009-01-01

    Riboflavin (vitamin B2) deficiency in young chickens produces a demyelinating peripheral neuropathy. In this study, day-old broiler meat chickens were fed a riboflavin-deficient diet (1.8 mg/kg) and killed on posthatch days 6, 11, 16, 21, and 31, while control chickens were given a conventional diet containing 5.0 mg/kg riboflavin. Pathologic changes were found in sciatic, cervical, and lumbar spinal nerves of riboflavin-deficient chickens from day 11 onwards, characterized by endoneurial oedema, hypertrophic Schwann cells, tomacula (redundant myelin swellings), demyelination/remyelination, lipid deposition, and fibroblastic onion bulb formation. Similar changes were also found in large and medium intramuscular nerves, although they were less severe in the latter. However, by contrast, ventral and dorsal spinal nerve roots, distal intramuscular nerves, and subcutaneous nerves were normal at all time points examined. These findings demonstrate, for the first time, that riboflavin deficiency in young, rapidly growing chickens produces selective injury to peripheral nerve trunks, with relative sparing of spinal nerve roots and distal nerve branches to muscle and skin. These novel findings suggest that the response of Schwann cells in peripheral nerves with riboflavin deficiency differs because either there are subsets of these cells in, or there is variability in access of nutrients to, different sites within the nerves. PMID:19112122

  15. Comparison of safety and efficiency of microendoscopic discectomy with automatic nerve retractor and with nerve hook

    PubMed Central

    Yin, He-Ping; Wang, Yu-Peng; Qiu, Zhi-Ye; Du, Zhi-Cai; Wu, Yi-Min; Li, Shu-Wen

    2016-01-01

    This study compares the safety and efficiency of two techniques in microendoscopic discectomy (MED) for lumbar disc herniation. The two techniques are MED with automatic nerve retractor and MED with nerve hook which had been widely used for many years. The former involves a newly developed MED device which contains three parts to protect nerve roots during operation. Four hundred and twenty-eight patients underwent MED treatments between October 2010 and September 2015 were recruited and randomized to either intraoperative utilization of automatic nerve retractor (n = 315, group A) or application of nerve hook during surgery (n = 113, group B). Operation time and intraoperative bleeding volume were evaluated. Simultaneously, Visual Analogue Scales (VAS) and muscle strength grading were performed preoperatively, and 1, 2, 3 days, 1, 2 weeks, 3 and 6 months postoperatively. No dramatic difference of pain intensity was observed between the two groups before surgery and 6 months after surgery (P > 0.05). The operation time was shorter in group A (30.30 ± 1.89 min) than that in group B (59.41 ± 3.25 min). Group A (67.83 ± 13.14 ml) experienced a significant decrease in the amount of blood loss volume when compared with group B (100.04 ± 15.10 ml). There were remarkable differences of VAS score and muscle strength grading after postoperative 1, 2, 3 days, 1, 2 weeks and 3 months between both groups (P ≤ 0.05). MED with automatic nerve retractor effectively shortened operation time, decreased the amount of bleeding, down-regulated the incidence of nerve traction injury. PMID:27699062

  16. Comparison of safety and efficiency of microendoscopic discectomy with automatic nerve retractor and with nerve hook

    PubMed Central

    Yin, He-Ping; Wang, Yu-Peng; Qiu, Zhi-Ye; Du, Zhi-Cai; Wu, Yi-Min; Li, Shu-Wen

    2016-01-01

    This study compares the safety and efficiency of two techniques in microendoscopic discectomy (MED) for lumbar disc herniation. The two techniques are MED with automatic nerve retractor and MED with nerve hook which had been widely used for many years. The former involves a newly developed MED device which contains three parts to protect nerve roots during operation. Four hundred and twenty-eight patients underwent MED treatments between October 2010 and September 2015 were recruited and randomized to either intraoperative utilization of automatic nerve retractor (n = 315, group A) or application of nerve hook during surgery (n = 113, group B). Operation time and intraoperative bleeding volume were evaluated. Simultaneously, Visual Analogue Scales (VAS) and muscle strength grading were performed preoperatively, and 1, 2, 3 days, 1, 2 weeks, 3 and 6 months postoperatively. No dramatic difference of pain intensity was observed between the two groups before surgery and 6 months after surgery (P > 0.05). The operation time was shorter in group A (30.30 ± 1.89 min) than that in group B (59.41 ± 3.25 min). Group A (67.83 ± 13.14 ml) experienced a significant decrease in the amount of blood loss volume when compared with group B (100.04 ± 15.10 ml). There were remarkable differences of VAS score and muscle strength grading after postoperative 1, 2, 3 days, 1, 2 weeks and 3 months between both groups (P ≤ 0.05). MED with automatic nerve retractor effectively shortened operation time, decreased the amount of bleeding, down-regulated the incidence of nerve traction injury.

  17. A novel chondroitin sulfate hydrogel for nerve repair

    NASA Astrophysics Data System (ADS)

    Conovaloff, Aaron William

    Brachial plexus injuries affect numerous patients every year, with very debilitating results. The majority of these cases are very severe, and involve damage to the nerve roots. To date, repair strategies for these injuries address only gross tissue damage, but do not supply cells with adequate regeneration signals. As a result, functional recovery is often severely lacking. Therefore, a chondroitin sulfate hydrogel that delivers neurotrophic signals to damaged neurons is proposed as a scaffold to support nerve root regeneration. Capillary electrophoresis studies revealed that chondroitin sulfate can physically bind with a variety of neurotrophic factors, and cultures of chick dorsal root ganglia demonstrated robust neurite outgrowth in chondroitin sulfate hydrogels. Outgrowth in chondroitin sulfate gels was greater than that observed in control gels of hyaluronic acid. Furthermore, the chondroitin sulfate hydrogel's binding activity with nerve growth factor could be enhanced by incorporation of a synthetic bioactive peptide, as revealed by fluorescence recovery after photobleaching. This enhanced binding was observed only in chondroitin sulfate gels, and not in hyaluronic acid control gels. This enhanced binding activity resulted in enhanced dorsal root ganglion neurite outgrowth in chondroitin sulfate gels. Finally, the growth of regenerating dorsal root ganglia in these gels was imaged using label-free coherent anti-Stokes scattering microscopy. This technique generated detailed, high-quality images of live dorsal root ganglion neurites, which were comparable to fixed, F-actin-stained samples. Taken together, these results demonstrate the viability of this chondroitin sulfate hydrogel to serve as an effective implantable scaffold to aid in nerve root regeneration.

  18. Perineural tumor spread - Interconnection between spinal and cranial nerves.

    PubMed

    Kozić, Duško; Njagulj, Vesna; Gaćeša, Jelena Popadić; Semnic, Robert; Prvulović, Nataša

    2012-12-15

    The secondary neoplastic involvement of the cervical plexus in patients with head and neck malignancies is extremely rare. MR examination of the neck revealed the diffuse neoplastic infiltration of the right C2 root, in a 57-year-old patient with several months long pain in the right ear region and a history of the tongue squamous cell carcinoma. Associated perineural tumor spread and consequent distal involvement of great auricular nerve and vagus nerve were evident. Best of our knowledge, this is the first reported involvement of the cervical plexus in patients with head and neck cancers, associated with the clearly documented interconnection between the cervical plexus and cranial nerves via great auricular nerve.

  19. How minimum detectable displacement in a GNSS Monitoring Network change?

    NASA Astrophysics Data System (ADS)

    Hilmi Erkoç, Muharrem; Doǧan, Uǧur; Aydın, Cüneyt

    2016-04-01

    The minimum detectable displacement in a geodetic monitoring network shows the displacement magnitude which may be just discriminated with known error probabilities. This displacement, which is originally deduced from sensitivity analysis, depends on network design, observation accuracy, datum of the network, direction of the displacement and power of the statistical test used for detecting the displacements. One may investigate how different scenarios on network design and observation accuracies influence the minimum detectable displacements for the specified datum, a-priorly forecasted directions and assumed power of the test and decide which scenario is the best or most optimum. It is sometimes difficult to forecast directions of the displacements. In that case, the minimum detectable displacements in a geodetic monitoring network are derived on the eigen-directions associated with the maximum eigen-values of the network stations. This study investigates how minimum detectable displacements in a GNSS monitoring network change depending on the accuracies of the network stations. For this, CORS-TR network in Turkey with 15 stations (a station fixed) is used. The data with 4h, 6h, 12 h and 24 h observing session duration in three sequential days of 2011, 2012 and 2013 were analyzed with Bernese 5.2 GNSS software. The repeatabilities of the daily solutions belonging to each year were analyzed carefully to scale the Bernese cofactor matrices properly. The root mean square (RMS) values for daily repeatability with respect to the combined 3-day solution are computed (the RMS values are generally less than 2 mm in the horizontal directions (north and east) and < 5 mm in the vertical direction for 24 h observing session duration). With the obtained cofactor matrices for these observing sessions, the minimum detectable displacements along the (maximum) eigen directions are compared each other. According to these comparisons, more session duration less minimum detectable

  20. Communications Between the Facial Nerve and the Vestibulocochlear Nerve, the Glossopharyngeal Nerve, and the Cervical Plexus.

    PubMed

    Hwang, Kun; Song, Ju Sung; Yang, Su Cheol

    2015-10-01

    The aim of this review is to elucidate the communications between the facial nerves or facial nerve and neighboring nerves: the vestibulocochlear nerve, the glossopharyngeal nerve, and the cervical plexus.In a PubMed search, 832 articles were searched using the terms "facial nerve and communication." Sixty-two abstracts were read and 16 full-text articles were reviewed. Among them, 8 articles were analyzed.The frequency of communication between the facial nerve and the vestibulocochlear nerve was the highest (82.3%) and the frequency of communication between the facial nerve and the glossopharyngeal nerve was the lowest (20%). The frequency of communication between the facial nerve and the cervical plexus was 65.2 ± 43.5%. The frequency of communication between the cervical branch and the marginal mandibular branch of the facial nerve was 24.7 ± 1.7%.Surgeons should be aware of the nerve communications, which are important during clinical examinations and surgical procedures of the facial nerves such as those communications involved in facial reconstructive surgery, neck dissection, and various nerve transfer procedures.

  1. Histopathological effects of radiosurgery on a human trigeminal nerve

    PubMed Central

    Al-Otaibi, Faisal; Alhindi, Hindi; Alhebshi, Adnan; Albloushi, Monirah; Baeesa, Saleh; Hodaie, Mojgan

    2013-01-01

    Background: Radiosurgery is a well-established treatment modality for medically refractory trigeminal neuralgia. The exact mechanism of pain relief after radiosurgery is not clearly understood. Histopathology examination of the trigeminal nerve in humans after radiosurgery is rarely performed and has produced controversial results. Case Description: We report on a 45-year-old female who received radiosurgery treatment for trigeminal neuralgia by Cyberknife. A 6-mm portion of the cisternal segment of trigeminal nerve received a dose of 60 Gy. The clinical benefit started 10 days after therapy and continued for 8 months prior to a recurrence of her previous symptoms associated with mild background pain. She underwent microvascular decompression and partial sensory root sectioning. Atrophied trigeminal nerve rootlets were grossly noted intraoperatively under surgical microscope associated with changes in trigeminal nerve color to gray. A biopsy from the inferolateral surface of the nerve proximal to the midcisternal segment showed histological changes in the form of fibrosis and axonal degeneration. Conclusion: This case study supports the evidence of histological damage of the trigeminal nerve fibers after radiosurgery therapy. Whether or not the presence and degree of nerve damage correlate with the degree of clinical benefit and side effects are not revealed by this study and need to be explored in future studies. PMID:24605252

  2. [Structural anatomy of cranial nerves (V, VII, VIII, IX, X)].

    PubMed

    Guclu, B; Meyronet, D; Simon, E; Streichenberger, N; Sindou, M; Mertens, P

    2009-04-01

    This study reports a review of the literature on the structural anatomy of the Vth, VIIth, VIIIth, IXth, and Xth cranial nerves, known to harbor dysfunction syndromes in humans. Because these dysfunctions are hypothesized to be caused by neurovascular conflicts at the root entry/exit zone and the transitional zone between central and peripheral myelinization, this investigation focused on the study and description of this junction. All the cranial nerves, except the optic and olfactory nerves, which are considered to be more a direct expansion of the central nervous system, have a transitional zone between central myelin (coming from oligodendrocytes) and peripheral myelin (produced by Schwann cells). The human studies reported in the literature argue in favor of a dome-shaped transitional zone directed to the periphery. It seems that this junctional region is situated more peripherally in sensory nerves than in motor nerves. The transitional zone is situated very peripherally for the cochlear and vestibular nerves, and on the contrary very close to its exit from the brain stem for the facial nerve.

  3. Bladder emptying by intermittent electrical stimulation of the pudendal nerve

    NASA Astrophysics Data System (ADS)

    Boggs, Joseph W.; Wenzel, Brian J.; Gustafson, Kenneth J.; Grill, Warren M.

    2006-03-01

    Persons with a suprasacral spinal cord injury cannot empty their bladder voluntarily. Bladder emptying can be restored by intermittent electrical stimulation of the sacral nerve roots (SR) to cause bladder contraction. However, this therapy requires sensory nerve transection to prevent dyssynergic contraction of the external urethral sphincter (EUS). Stimulation of the compound pudendal nerve trunk (PN) activates spinal micturition circuitry, leading to a reflex bladder contraction without a reflex EUS contraction. The present study determined if PN stimulation could produce bladder emptying without nerve transection in cats anesthetized with α-chloralose. With all nerves intact, intermittent PN stimulation emptied the bladder (64 ± 14% of initial volume, n = 37 across six cats) more effectively than either distention-evoked micturition (40 ± 19%, p < 0.001, n = 27 across six cats) or bilateral intermittent SR stimulation (25 ± 23%, p < 0.005, n = 4 across two cats). After bilateral transection of the nerves innervating the urethral sphincter, intermittent SR stimulation voided 79 ± 17% (n = 12 across three cats), comparable to clinical results obtained with SR stimulation. Voiding via intermittent PN stimulation did not increase after neurotomy (p > 0.10), indicating that PN stimulation was not limited by bladder-sphincter dyssynergia. Intermittent PN stimulation holds promise for restoring bladder emptying following spinal injury without requiring nerve transection.

  4. Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study

    PubMed Central

    Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.

    2011-01-01

    Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979

  5. Displacement, Substitution, Sublimation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Sigmund Freund worked with the mechanisms of displacement, substitution, and sublimation. These mechanisms have many similarities and have been studied diagnostically and therapeutically. Displacement and substitution seem to fit in well with phobias, hysterias, somatiyations, prejudices, and scapegoating. Phobias, prejudices, and scapegoating…

  6. Displaced Homemakers Project. Leader's Guide.

    ERIC Educational Resources Information Center

    Musickant, Claire

    This handbook is designed to assist vocational technical adult education providers in developing workshops for displaced homemakers. Covered first are various aspects of planning a displaced homemakers workshop, including format, time, location, publicity and recruitment, staff and presenters, community resources, budget items, and other…

  7. C2 nerve dysfunction associated with C1 lateral mass screw fixation.

    PubMed

    Huang, Da-geng; Hao, Ding-jun; Li, Guang-lin; Guo, Hao; Zhang, Yu-chen; He, Bao-rong

    2014-11-01

    The C1 lateral mass screw technique is widely used for atlantoaxial fixation. However, C2 nerve dysfunction may occur as a complication of this procedure, compromising the quality of life of affected patients. This is a review of the topic of C2 nerve dysfunction associated with C1 lateral mass screw fixation and related research developments. The C2 nerve root is located in the space bordered superiorly by the posterior arch of C1 , inferiorly by the C2 lamina, anteriorly by the lateral atlantoaxial joint capsule, and posteriorly by the anterior edge of the ligamentum flavum. Some surgeons suggest cutting the C2 nerve root during C1 lateral mass screw placement, whereas others prefer to preserve it. The incidence, clinical manifestations, causes, management, and prevention of C2 nerve dysfunction associated with C(1) lateral mass screw fixation are reviewed. Sacrifice of the C2 nerve root carries a high risk of postoperative numbness, whereas postoperative nerve dysfunction can occur when it has been preserved. Many surgeons have been working hard on minimizing the risk of postoperative C2 nerve dysfunction associated with C1 lateral mass screw fixation. PMID:25430709

  8. Peripheral Nerve Repair in Rats Using Composite Hydrogel-Filled Aligned Nanofiber Conduits with Incorporated Nerve Growth Factor

    PubMed Central

    Jin, Jenny; Limburg, Sonja; Joshi, Sunil K.; Landman, Rebeccah; Park, Michelle; Zhang, Qia; Kim, Hubert T.

    2013-01-01

    Repair of peripheral nerve defects with current synthetic, tubular nerve conduits generally shows inferior recovery when compared with using nerve autografts, the current gold standard. We tested the ability of composite collagen and hyaluronan hydrogels, with and without the nerve growth factor (NGF), to stimulate neurite extension on a promising aligned, nanofiber poly-L-lactide-co-caprolactone (PLCL) scaffold. In vitro, the hydrogels significantly increased neurite extension from dorsal root ganglia explants. Consistent with these results, the addition of hydrogels as luminal fillers within aligned, nanofiber tubular PLCL conduits led to improved sensory function compared to autograft repair in a critical-size defect in the sciatic nerve in a rat model. Sensory recovery was assessed 3 and 12 weeks after repair using a withdrawal assay from thermal stimulation. The addition of hydrogel did not enhance recovery of motor function in the rat model. The NGF led to dose-dependent improvements in neurite out-growth in vitro, but did not have a significant effect in vivo. In summary, composite collagen/hyaluronan hydrogels enhanced sensory neurite outgrowth in vitro and sensory recovery in vivo. The use of such hydrogels as luminal fillers for tubular nerve conduits may therefore be useful in assisting restoration of protective sensation following peripheral nerve injury. PMID:23659607

  9. Neuromuscular ultrasound of cranial nerves.

    PubMed

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  10. Spectral and spatial dependence of
diffuse optical signals in response to
peripheral nerve stimulation

    PubMed Central

    Chen, Debbie K.; Erb, M. Kelley; Tong, Yunjie; Yu, Yang; Sassaroli, Angelo; Bergethon, Peter R.; Fantini, Sergio

    2010-01-01

    Using non-invasive, near-infrared spectroscopy we have previously reported optical signals measured at or around peripheral nerves in response to their stimulation. Such optical signals featured amplitudes on the order of 0.1% and peaked about 100 ms after peripheral nerve stimulation in human subjects. Here, we report a study of the spatial and spectral dependence of the optical signals induced by stimulation of the human median and sural nerves, and observe that these optical signals are: (1) unlikely due to either dilation or constriction of blood vessels, (2) not associated with capillary bed hemoglobin, (3) likely due to blood vessel(s) displacement, and (4) unlikely due to fiber-skin optical coupling effects. We conclude that the most probable origin of the optical response to peripheral nerve stimulation is from displacement of blood vessels within the optically probed volume, as a result of muscle twitch in adjacent areas. PMID:21258519

  11. Regenerative rotary displacer Stirling engine

    SciTech Connect

    Isshiki, Naotsugu; Watanabe, Hiroichi; Raggi, L.; Isshiki, Seita; Hirata, Koichi

    1996-12-31

    A few rotary displacer Stirling engines in which the displacer has one gas pocket space at one side and rotates in a main enclosed cylinder, which is heated from one side and cooled from opposite side without any regenerator, have been studied for some time by the authors. The authors tried to improve this engine by equipping it with a regenerator, because without a regenerator, pressure oscillation and efficiency are too small. Here, several types of regenerative rotary displacer piston Stirling engines are proposed. One is the contra-rotating tandem two disc type displacer engine using axial heat conduction through side walls or by heat pipes and another is a single disc type with circulating fluid regenerator or heat pipes. Stirling engines of this new rotary displacer type are thought to attain high speed. Here, experimental results of the original rotary displacer Stirling engine without a regenerator, and one contra-rotating tandem displacer engine with side wall regenerator by axial heat conduction are reported accompanied with a discussion of the results.

  12. Borehole optical lateral displacement sensor

    DOEpatents

    Lewis, R.E.

    1998-10-20

    There is provided by this invention an optical displacement sensor that utilizes a reflective target connected to a surface to be monitored to reflect light from a light source such that the reflected light is received by a photoelectric transducer. The electric signal from the photoelectric transducer is then imputed into electronic circuitry to generate an electronic image of the target. The target`s image is monitored to determine the quantity and direction of any lateral displacement in the target`s image which represents lateral displacement in the surface being monitored. 4 figs.

  13. Lewis acid-assisted detection of nerve agents in water.

    PubMed

    Butala, Rahul R; Creasy, William R; Fry, Roderick A; McKee, Michael L; Atwood, David A

    2015-06-01

    The five-coordinate compound, Salen((t)Bu)Al(Ac), prepared in situ from Salen((t)Bu)AlBr and NH4Ac, forms Lewis acid-base adducts in aqueous solution with the G-type nerve agents, Sarin and Soman, and the VX hydrolysis product, ethylmethylphosphonate (EMPA). The resulting compounds, [Salen((t)Bu)Al(NA)](+)[Ac] (-) (with NA = Sarin, Soman, and EMPA) are sufficiently stable to be identified by ESI-MS. Molecular ion peaks were detected for every compound with little or no fragmentation. The distinctive MS signatures for the [Salen((t)Bu)Al(NA)](+) compounds provide a new technique for identifying nerve agents from aqueous solution. The energetics of the displacement of Ac(-) by the nerve agents to form [Salen((t)Bu)Al(NA)](+)[Ac](-) were determined computationally.

  14. Peripheral nerve response to injury.

    PubMed

    Steed, Martin B

    2011-03-01

    Oral and maxillofacial surgeons caring for patients who have sustained a nerve injury to a branch of the peripheral trigeminal nerve must possess a basic understanding of the response of the peripheral nerves to trauma. The series of events that subsequently take place are largely dependent on the injury type and severity. Regeneration of the peripheral nerve is possible in many instances and future manipulation of the regenerative microenvironment will lead to advances in the management of these difficult injuries.

  15. Ischemic Nerve Block.

    ERIC Educational Resources Information Center

    Williams, Ian D.

    This experiment investigated the capability for movement and muscle spindle function at successive stages during the development of ischemic nerve block (INB) by pressure cuff. Two male subjects were observed under six randomly ordered conditions. The duration of index finger oscillation to exhaustion, paced at 1.2Hz., was observed on separate…

  16. Optic Nerve Atrophy

    MedlinePlus

    ... with the occipital lobe (the part of the brain that interprets vision) like a cable wire. What is optic nerve ... nystagmus. In older patients, peripheral vision and color vision assessment ... around the brain and spinal cord (hydrocephalus) may prevent further optic ...

  17. Polyimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.

    1990-01-01

    Experiments show variety of polyimidazoles prepared by aromatic nucleophilic displacement, from reactions of bisphenol imidazoles with activated difluoro compounds. Polyimidazoles have good mechanical properties making them suitable for use as films, moldings, and adhesives.

  18. Displacement sensing system and method

    DOEpatents

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  19. Development of Kinematic Graphs of Median Nerve during Active Finger Motion: Implications of Smartphone Use

    PubMed Central

    2016-01-01

    Background Certain hand activities cause deformation and displacement of the median nerve at the carpal tunnel due to the gliding motion of tendons surrounding it. As smartphone usage escalates, this raises the public’s concern whether hand activities while using smartphones can lead to median nerve problems. Objective The aims of this study were to 1) develop kinematic graphs and 2) investigate the associated deformation and rotational information of median nerve in the carpal tunnel during hand activities. Methods Dominant wrists of 30 young adults were examined with ultrasonography by placing a transducer transversely on their wrist crease. Ultrasound video clips were recorded when the subject performing 1) thumb opposition with the wrist in neutral position, 2) thumb opposition with the wrist in ulnar deviation and 3) pinch grip with the wrist in neutral position. Six still images that were separated by 0.2-second intervals were then captured from the ultrasound video for the determination of 1) cross-sectional area (CSA), 2) flattening ratio (FR), 3) rotational displacement (RD) and 4) translational displacement (TD) of median nerve in the carpal tunnel, and these collected information of deformation, rotational and displacement of median nerve were compared between 1) two successive time points during a single hand activity and 2) different hand motions at the same time point. Finally, kinematic graphs were constructed to demonstrate the mobility of median nerve during different hand activities. Results Performing different hand activities during this study led to a gradual reduction in CSA of the median nerve, with thumb opposition together with the wrist in ulnar deviation causing the greatest extent of deformation of the median nerve. Thumb opposition with the wrist in ulnar deviation also led to the largest extent of TD when compared to the other two hand activities of this study. Kinematic graphs showed that the motion pathways of median nerve during

  20. Magnetoneurography: theory and application to peripheral nerve disorders.

    PubMed

    Mackert, Bruno-Marcel

    2004-12-01

    Magnetoneurography (MNG) is a non-invasive method to trace and visualize three-dimensionally the propagation path of compound action currents (CAC) along peripheral nerves. The basic physical and physiological principle is the mapping of extremely weak magnetic fields generated by the intraaxonal longitudinal ion flows of evoked nerval CAC using SQUID sensors (Superconducting Quantum Interference Devices). During recent years, MNG protocols have been established which allow for a non-invasive spatiotemporal tracing of impulse propagation along peripheral nerves in humans and in particular along proximal nerve segments in a clinical setting. Thereby, the three-dimensional path, the local nerve conduction velocity, the length and strength of the CAC de- and repolarization phase have been reconstructed. First recordings in patients demonstrated that the method is sensitive enough to detect and to localize nerve conduction anomalities along nerve roots, as, e.g. caused by lumbosacral disc herniation. This review on MNG will focus on those studies which provide data from humans and thereby reveal perspectives for its future clinical applications. PMID:15546775

  1. Magnetoneurography: theory and application to peripheral nerve disorders.

    PubMed

    Mackert, Bruno-Marcel

    2004-12-01

    Magnetoneurography (MNG) is a non-invasive method to trace and visualize three-dimensionally the propagation path of compound action currents (CAC) along peripheral nerves. The basic physical and physiological principle is the mapping of extremely weak magnetic fields generated by the intraaxonal longitudinal ion flows of evoked nerval CAC using SQUID sensors (Superconducting Quantum Interference Devices). During recent years, MNG protocols have been established which allow for a non-invasive spatiotemporal tracing of impulse propagation along peripheral nerves in humans and in particular along proximal nerve segments in a clinical setting. Thereby, the three-dimensional path, the local nerve conduction velocity, the length and strength of the CAC de- and repolarization phase have been reconstructed. First recordings in patients demonstrated that the method is sensitive enough to detect and to localize nerve conduction anomalities along nerve roots, as, e.g. caused by lumbosacral disc herniation. This review on MNG will focus on those studies which provide data from humans and thereby reveal perspectives for its future clinical applications.

  2. Unusual Origin of a Double Upper Subscapular Nerve from the Suprascapular Nerve and the Posterior Division of the Upper Trunk of the Brachial Plexus: A Case Report.

    PubMed

    Paraskevas, George; Koutsouflianiotis, Konstantinos; Iliou, Kalliopi; Bitsis, Theodosios; Kitsoulis, Panagiotis

    2016-06-01

    A double upper subscapular nerve on the right side was detected in a male cadaver, with the proximal one arising from the suprascapular nerve and the distal one from the posterior division of the upper trunk of the brachial plexus. Both of them penetrated and supplied the uppermost portion of the right subscapularis muscle. That anatomic variation was associated with a median nerve formed by two lateral roots. The origin and pattern of the upper subscapular nerve displays high variability, however the presented combination of the variable origin of a double upper subscapular nerve has rarely been described in the literature. The knowledge of such an anatomic variation is essential for the surgeon operating in the region especially in instances of brachial plexus' repair after any traumatic injury. Moreover, the awareness of the precise origin and topography of these nerves is important for the physician attempting to block these nerves or utilizing these nerves as grafts for neurotization of adjacent damaged nerves of the brachial plexus. PMID:27504272

  3. Unusual Origin of a Double Upper Subscapular Nerve from the Suprascapular Nerve and the Posterior Division of the Upper Trunk of the Brachial Plexus: A Case Report

    PubMed Central

    Koutsouflianiotis, Konstantinos; Iliou, Kalliopi; Bitsis, Theodosios; Kitsoulis, Panagiotis

    2016-01-01

    A double upper subscapular nerve on the right side was detected in a male cadaver, with the proximal one arising from the suprascapular nerve and the distal one from the posterior division of the upper trunk of the brachial plexus. Both of them penetrated and supplied the uppermost portion of the right subscapularis muscle. That anatomic variation was associated with a median nerve formed by two lateral roots. The origin and pattern of the upper subscapular nerve displays high variability, however the presented combination of the variable origin of a double upper subscapular nerve has rarely been described in the literature. The knowledge of such an anatomic variation is essential for the surgeon operating in the region especially in instances of brachial plexus’ repair after any traumatic injury. Moreover, the awareness of the precise origin and topography of these nerves is important for the physician attempting to block these nerves or utilizing these nerves as grafts for neurotization of adjacent damaged nerves of the brachial plexus. PMID:27504272

  4. Root hairs aid soil penetration by anchoring the root surface to pore walls

    PubMed Central

    Bengough, A. Glyn; Loades, Kenneth; McKenzie, Blair M.

    2016-01-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3–3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0–1.5g cm−3). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm−3 soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm−3 soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm−3). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm−3 soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027

  5. Coronectomy: Partial Odontectomy or Intentional Root Retention.

    PubMed

    Pogrel, M Anthony

    2015-08-01

    Coronectomy is considered in patients older than 25, where there is an intimate relationship between the roots of a retained lower third molar (occasionally second or first molars) and the inferior alveolar nerve, in noncontraindicated circumstances. It may be used on younger patients with a medium to high risk of inferior alveolar nerve damage. The decision to use this technique is made with the aid of cone-beam computed tomography scans. Short- to medium-term success rate is excellent, but long-term studies are not yet available. The technique is gaining wider acceptance, although there are differences in the indications and actual technique used within and between countries. PMID:26093820

  6. A smartphone-based automatic diagnosis system for facial nerve palsy.

    PubMed

    Kim, Hyun Seok; Kim, So Young; Kim, Young Ho; Park, Kwang Suk

    2015-10-21

    Facial nerve palsy induces a weakness or loss of facial expression through damage of the facial nerve. A quantitative and reliable assessment system for facial nerve palsy is required for both patients and clinicians. In this study, we propose a rapid and portable smartphone-based automatic diagnosis system that discriminates facial nerve palsy from normal subjects. Facial landmarks are localized and tracked by an incremental parallel cascade of the linear regression method. An asymmetry index is computed using the displacement ratio between the left and right side of the forehead and mouth regions during three motions: resting, raising eye-brow and smiling. To classify facial nerve palsy, we used Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), and Leave-one-out Cross Validation (LOOCV) with 36 subjects. The classification accuracy rate was 88.9%.

  7. Ultrasound of Peripheral Nerves

    PubMed Central

    Suk, Jung Im; Walker, Francis O.; Cartwright, Michael S.

    2013-01-01

    Over the last decade, neuromuscular ultrasound has emerged as a useful tool for the diagnosis of peripheral nerve disorders. This article reviews sonographic findings of normal nerves including key quantitative ultrasound measurements that are helpful in the evaluation of focal and possibly generalized peripheral neuropathies. It also discusses several recent papers outlining the evidence base for the use of this technology, as well as new findings in compressive, traumatic, and generalized neuropathies. Ultrasound is well suited for use in electrodiagnostic laboratories where physicians, experienced in both the clinical evaluation of patients and the application of hands-on technology, can integrate findings from the patient’s history, physical examination, electrophysiological studies, and imaging for diagnosis and management. PMID:23314937

  8. Variable spatial magnetic field influences peripheral nerves regeneration in rats.

    PubMed

    Suszyński, Krzysztof; Marcol, Wiesław; Szajkowski, Sebastian; Pietrucha-Dutczak, Marita; Cieślar, Grzegorz; Sieroń, Aleksander; Lewin-Kowalik, Joanna

    2014-09-01

    Generator of spatial magnetic field is one of most recent achievements among the magnetostimulators. This apparatus allows to obtain the rotating magnetic field. This new method may be more effective than other widely used techniques of magnetostimulation and magnetotherapy. We investigated the influence of alternating, spatial magnetic field on the regeneration of the crushed rat sciatic nerves. Functional and morphological evaluations were used. After crush injury of the right sciatic nerve, Wistar C rats (n = 80) were randomly divided into four groups (control and three experimental). The experimental groups (A, B, C) were exposed (20 min/day, 5 d/week, 4 weeks) to alternating spatial magnetic field of three different intensities. Sciatic Functional Index (SFI) and tensometric assessments were performed every week after nerve crush. Forty-eight hours before the sacrificing of animals, DiI (1,1'-di-octadecyl-3,3,3',3'-tetramethyloindocarbocyanine perchlorate) was applied 5 mm distally to the crush site. Collected nerves and dorsal root ganglia (DRG) were subjected to histological and immunohistochemical staining. The survival rate of DRG neurons was estimated. Regrowth and myelination of the nerves was examined. The results of SFI and tensometric assessment showed improvement in all experimental groups as compared to control, with best outcome observed in group C, exposed to the strongest magnetic field. In addition, DRG survival rate and nerve regeneration intensity were significantly higher in the C group. Above results indicate that strong spatial alternating magnetic field exerts positive effect on peripheral nerve regeneration and its application could be taken under consideration in the therapy of injured peripheral nerves. PMID:23781984

  9. Cranial Nerve II: Vision.

    PubMed

    Gillig, Paulette Marie; Sanders, Richard D

    2009-09-01

    This article contains a brief review of the anatomy of the visual system, a survey of diseases of the retina, optic nerve and lesions of the optic chiasm, and other visual field defects of special interest to the psychiatrist. It also includes a presentation of the corticothalamic mechanisms, differential diagnosis, and various manifestations of visual illusions, and simple and complex visual hallucinations, as well as the differential diagnoses of these various visual phenomena. PMID:19855858

  10. [Suprascapular nerve entrapment].

    PubMed

    Fansa, H; Schneider, W

    2003-03-01

    Isolated compression of the suprascapular nerve is a rare entity, that is seldom considered in differential diagnosis of shoulder pain. Usually atrophy of supraspinatus and infraspinatus muscles is present, resulting in weakened abduction and external rotation of the shoulder. Mostly the patients do not note the paresis, but complain about a dull and burning pain over the dorsal shoulder region. In a proximal lesion (at level of the superior transverse scapular ligament) electromyography reveals changes in both muscles, while in a distal lesion (spinoglenoidal notch) only the infraspinatus shows a pathology. From 1996 to 2001 we diagnosed an isolated suprascapular entrapment in nine patients. Seven patients were operated: The ligament was removed and the nerve was neurolysed. The average age was 36 years. All patients showed pathological findings in electrophysiological and clinical examination. Five patients had an atrophy of both scapula muscles, two showed only infraspinatus muscle atrophy (one with a ganglion in the distal course of the nerve). Six patients were followed up. All showed an improvement. Pain disappeared and all patients were able to return to work and sport activities. Electrophysiological examination one year after operation revealed normal nerve conduction velocity. The number of motor units, however, showed a reduction by half compared to the healthy side. Lesions without history of trauma are usually caused by repetitive motion or posture. Weight lifting, volley ball and tennis promote the entrapment. Rarely a lesion (either idiopathic or due to external compression) is described for patients who underwent surgery. Patients with a ganglion or a defined cause of compression should be operated, patients who present without a distinct reason for compression should firstly be treated conservatively. Physiotherapy, antiphlogistic medication and avoiding of the pain triggering motion can improve the symptoms. However, if muscle atrophy is evident

  11. Peripheral nerve hyperexcitability syndromes.

    PubMed

    Küçükali, Cem Ismail; Kürtüncü, Murat; Akçay, Halil İbrahim; Tüzün, Erdem; Öge, Ali Emre

    2015-01-01

    Peripheral nerve hyperexcitability (PNH) syndromes can be subclassified as primary and secondary. The main primary PNH syndromes are neuromyotonia, cramp-fasciculation syndrome (CFS), and Morvan's syndrome, which cause widespread symptoms and signs without the association of an evident peripheral nerve disease. Their major symptoms are muscle twitching and stiffness, which differ only in severity between neuromyotonia and CFS. Cramps, pseudomyotonia, hyperhidrosis, and some other autonomic abnormalities, as well as mild positive sensory phenomena, can be seen in several patients. Symptoms reflecting the involvement of the central nervous system occur in Morvan's syndrome. Secondary PNH syndromes are generally seen in patients with focal or diffuse diseases affecting the peripheral nervous system. The PNH-related symptoms and signs are generally found incidentally during clinical or electrodiagnostic examinations. The electrophysiological findings that are very useful in the diagnosis of PNH are myokymic and neuromyotonic discharges in needle electromyography along with some additional indicators of increased nerve fiber excitability. Based on clinicopathological and etiological associations, PNH syndromes can also be classified as immune mediated, genetic, and those caused by other miscellaneous factors. There has been an increasing awareness on the role of voltage-gated potassium channel complex autoimmunity in primary PNH pathogenesis. Then again, a long list of toxic compounds and genetic factors has also been implicated in development of PNH. The management of primary PNH syndromes comprises symptomatic treatment with anticonvulsant drugs, immune modulation if necessary, and treatment of possible associated dysimmune and/or malignant conditions. PMID:25719304

  12. Optic nerve hypoplasia

    PubMed Central

    Kaur, Savleen; Jain, Sparshi; Sodhi, Harsimrat B. S.; Rastogi, Anju; Kamlesh

    2013-01-01

    Optic nerve hypoplasia (ONH) is a congenital anomaly of the optic disc that might result in moderate to severe vision loss in children. With a vast number of cases now being reported, the rarity of ONH is obviously now refuted. The major aspects of ophthalmic evaluation of an infant with possible ONH are visual assessment, fundus examination, and visual electrophysiology. Characteristically, the disc is small, there is a peripapillary double-ring sign, vascular tortuosity, and thinning of the nerve fiber layer. A patient with ONH should be assessed for presence of neurologic, radiologic, and endocrine associations. There may be maternal associations like premature births, fetal alcohol syndrome, maternal diabetes. Systemic associations in the child include endocrine abnormalities, developmental delay, cerebral palsy, and seizures. Besides the hypoplastic optic nerve and chiasm, neuroimaging shows abnormalities in ventricles or white- or gray-matter development, septo-optic dysplasia, hydrocephalus, and corpus callosum abnormalities. There is a greater incidence of clinical neurologic abnormalities in patients with bilateral ONH (65%) than patients with unilateral ONH. We present a review on the available literature on the same to urge caution in our clinical practice when dealing with patients with ONH. Fundus photography, ocular coherence tomography, visual field testing, color vision evaluation, neuroimaging, endocrinology consultation with or without genetic testing are helpful in the diagnosis and management of ONH. (Method of search: MEDLINE, PUBMED). PMID:24082663

  13. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  14. Root gravitropism

    NASA Technical Reports Server (NTRS)

    Masson, P. H.

    1995-01-01

    When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.

  15. Root canal

    MedlinePlus

    Endodontic therapy ... the root of a tooth. Generally, there is pain and swelling in the area. The infection can ... You may have some pain or soreness after the procedure. An over-the-counter anti-inflammatory drug, such as ibuprofen or naproxen, can help relieve ...

  16. Job Displacement Among Single Mothers:

    PubMed Central

    Brand, Jennie E.; Thomas, Juli Simon

    2015-01-01

    Given the recent era of economic upheaval, studying the effects of job displacement has seldom been so timely and consequential. Despite a large literature associating displacement with worker well-being, relatively few studies focus on the effects of parental displacement on child well-being, and fewer still focus on implications for children of single parent households. Moreover, notwithstanding a large literature on the relationship between single motherhood and children’s outcomes, research on intergenerational effects of involuntary employment separations among single mothers is limited. Using 30 years of nationally representative panel data and propensity score matching methods, we find significant negative effects of job displacement among single mothers on children’s educational attainment and social-psychological well-being in young adulthood. Effects are concentrated among older children and children whose mothers had a low likelihood of displacement, suggesting an important role for social stigma and relative deprivation in the effects of socioeconomic shocks on child well-being. PMID:25032267

  17. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush.

    PubMed

    Morrison, Brett M; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H; Lengacher, Sylvain; Magistretti, Pierre J; Pellerin, Luc; Rothstein, Jeffrey D

    2015-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush. PMID:25447940

  18. Neurovascular compression in cranial nerve and systemic disease.

    PubMed Central

    Jannetta, P J

    1980-01-01

    As we age, our arteries elongate and our brains "sag." As a consequence of these processes, redundant arterial loops and bridging or intrinsic hindbrain veins may cause cross-compression of cranial nerve root entry zones in the cerebellopontine angle. This pulsatile compression can be seen to produce hyperactive dysfunction of the cranial nerve. Symptoms of trigeminal or glossopharyngeal neuralgia (somatic sensory), hemifacial spasm (somatic motor), tinnitus and vertigo (special sensory) and some cases of "essential" hypertension are caused by these vessels compressing cranial nerves V, IX--X, VII, VIII, and left X and medulla oblongata. Using microsurgical techniques, the symptoms may be relieved by vascular decompression, findings and results in 695 paients are briefly reviewed and correlated. A chronic primate model of "essential" hypertension is briefly described. PMID:6968543

  19. Histochemical discrimination of fibers in regenerating rat infraorbital nerve

    NASA Technical Reports Server (NTRS)

    Wilke, R. A.; Riley, D. A.; Sanger, J. R.

    1992-01-01

    In rat dorsal root ganglia, histochemical staining of carbonic anhydrase (CA) and cholinesterase (CE) yields a reciprocal pattern of activity: Sensory processes are CA positive and CE negative, whereas motor processes are CA negative and CE positive. In rat infraorbital nerve (a sensory peripheral nerve), we saw extensive CA staining of nearly 100% of the myelinated axons. Although CE reactivity in myelinated axons was extremely rare, we did observe CE staining of unmyelinated autonomic fibers. Four weeks after transection of infraorbital nerves, CA-stained longitudinal sections of the proximal stump demonstrated 3 distinct morphological zones. A fraction of the viable axons retained CA activity to within 2 mm of the distal extent of the stump, and the stain is capable of resolving growth sprouts being regenerated from these fibers. Staining of unmyelinated autonomic fibers in serial sections shows that CE activity was not retained as far distally as is the CA sensory staining.

  20. Ewing sarcoma mimicking a peripheral nerve sheath tumor.

    PubMed

    Mitchell, B D; Fox, B D; Viswanathan, A; Mitchell, A H; Powell, S Z; Cech, D A

    2010-10-01

    We describe the first patient with an extradural, extramedullary Ewing's sarcoma tumor mimicking a nerve sheath tumor with no overt evidence of metastasis. A 28-year-old woman with no past medical history presented with a progressive 3-year history of low back pain and right-sided lower extremity radiculopathy after having failed conservative therapies. MRI of the lumbar spine revealed a right-sided enhancing, dumbbell-shaped lesion at the right neural foramen appearing to originate from the L4 nerve root, suspicious for a peripheral nerve sheath tumor or schwannoma. The patient and findings are discussed in the context of the literature, including an update on the relatively recent diagnostic redesignation of the Ewing's sarcoma family tumors.

  1. Dual pressure displacement control system

    SciTech Connect

    Louis, J.E.; Klocke, C.C.

    1988-02-02

    This patent describes a dual pressure servo control system for a variable displacement hydraulic unit having displacement setting means positioned by a hydraulic servo mechanism. The hydraulic unit is provided with main loop lines at least one of which is capable of being subjected to high main loop pressure during operation of the hydraulic unit, a control line including a displacement control valve providing a controlled flow of fluid under pressure to the servo mechanism, and a source of fluid under pressure for the control line comprising a low pressure source connected to the control line through a check valve and high pressure source comprising of a high pressure control line connected to the control line downstream of the check valve. The high pressure control line includes a flow restriction limiting flow to the control line means and generating a significant flow induced pressure drop in the high pressure control line once movement in the servo mechanism is initiated.

  2. Perceived displacement explains wolfpack effect

    PubMed Central

    Šimkovic, Matúš; Träuble, Birgit

    2014-01-01

    We investigate the influence of perceived displacement of moving agent-like stimuli on the performance in dynamic interactive tasks. In order to reliably measure perceived displacement we utilize multiple tasks with different task demands. The perceived center of an agent's body is displaced in the direction in which the agent is facing and this perceived displacement is larger than the theoretical position of the center of mass would predict. Furthermore, the displacement in the explicit judgment is dissociated from the displacement obtained by the implicit measures. By manipulating the location of the pivot point, we show that it is not necessary to postulate orientation as an additional cue utilized by perception, as has been suggested by earlier studies. These studies showed that the agent's orientation influences the detection of chasing motion and the detection-related performance in interactive tasks. This influence has been labeled wolfpack effect. In one of the demonstrations of the wolfpack effect participants control a green circle on a display with a computer mouse. It has been shown that participants avoid display areas with agents pointing toward the green circle. Participants do so in favor of areas where the agents point in the direction perpendicular to the circle. We show that this avoidance behavior arises because the agent's pivot point selected by the earlier studies is different from where people locate the center of agent's body. As a consequence, the nominal rotation confounds rotation and translation. We show that the avoidance behavior disappears once the pivot point is set to the center of agent's body. PMID:25566114

  3. [Electrical nerve stimulation for plexus and nerve blocks].

    PubMed

    Birnbaum, J; Klotz, E; Bogusch, G; Volk, T

    2007-11-01

    Despite the increasing use of ultrasound, electrical nerve stimulation is commonly used as the standard for both plexus and peripheral nerve blocks. Several recent randomized trials have contributed to a better understanding of physiological and clinical correlations. Traditionally used currents and impulse widths are better defined in relation to the distance between needle tip and nerves. Commercially available devices enable transcutaneous nerve stimulation and provide new opportunities for the detection of puncture sites and for training. The electrically ideal position of the needle usually is defined by motor responses which can not be interpreted without profound anatomical knowledge. For instance, interscalene blocks can be successful even after motor responses of deltoid or pectoral muscles. Infraclavicular blocks should be aimed at stimulation of the posterior fascicle (extension). In contrast to multiple single nerve blocks, axillary single-shot blocks more commonly result in incomplete anaesthesia. Blockade of the femoral nerve can be performed without any nerve stimulation if the fascia iliaca block is used. Independently of the various approaches to the sciatic nerve, inversion and plantar flexion are the best options for single-shot blocks. Further clinical trials are needed to define the advantages of stimulating catheters in continuous nerve blocks.

  4. Nerves and nerve endings in the skin of tropical cattle.

    PubMed

    Amakiri, S F; Ozoya, S E; Ogunnaike, P O

    1978-01-01

    The nerves and nerve endings in the skin of tropical cattle were studied using histological and histochemical techniques. Many nerve trunks and fibres were present in the reticular and papillary dermis in both hairy and non-hairy skin sites. In non-hairy skin locations such as the muzzle and lower lip, encapsulated endings akin to Krause and Ruffini end bulbs, which arise from myelinated nerve trunks situated lower down the dermis were observed at the upper papillary layer level. Some fibre trunks seen at this level extended upwards to terminate within dermal papillae as bulb-shaped longitudinally lamellated Pacinian-type endings, while other onion-shaped lamellated nerve structures were located either within dermal papillae or near the dermo-epidermal area. Intraepidermal free-ending nerve fibres, appearing non-myelinated were observed in areas with thick epidermis. Intraepidermal free-ending nerve fibres, appearing non-myelinated were observed in areas with thick epidermis. On hairy skin sites, however, organized nerve endings or intraepidermal nerve endings were not readily identifiable. PMID:76410

  5. Particle displacement tracking for PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1990-01-01

    A new Particle Imaging Velocimetry (PIV) data acquisition and analysis system, which is an order of magnitude faster than any previously proposed system has been constructed and tested. The new Particle Displacement Tracing (PDT) system is an all electronic technique employing a video camera and a large memory buffer frame-grabber board. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine velocity vectors. Application of the PDT technique to a counter-rotating vortex flow produced over 1100 velocity vectors in 110 seconds when processed on an 80386 PC.

  6. Rotor component displacement measurement system

    DOEpatents

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  7. Bidirectional inhibitory interactions between the embryonic chicken metanephros and lumbosacral nerves in vitro.

    PubMed

    Silver, Lee; Qiang, Liang; Loudon, Robert; Gallo, Gianluca

    2004-09-01

    During chicken embryonic development the metanephros forms from the uretic duct at embryonic day (E) 7. As the metanephric tissue develops between E7 and E10, it comes into close apposition with lumbosacral nerves. Coculturing of metanephric and nerve explants demonstrated that the Schwann cells of the sciatic nerve inhibit the migration of metanephric cells in a contact-dependent manner. Conversely, metanephric cells inhibit dorsal root ganglion axon extension in a contact-dependent manner. However, metanephric cells are not inhibited by contact with growth cones or axons. Dorsal root ganglion growth cones become sensitive to the inhibitory signals on the surfaces of metanephric cells around E8, a time when the metanephros is expanding into the territory occupied by nerves in vivo. These observations demonstrate inhibitory bidirectional tissue-tissue interactions in vitro and provide a novel model system for the study of contact-based guidance of both neuronal and non-neuronal cell migration.

  8. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    PubMed Central

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  9. Temporary Mental Nerve Paresthesia Originating from Periapical Infection

    PubMed Central

    Genc Sen, Ozgur; Kaplan, Volkan

    2015-01-01

    Many systemic and local factors can cause paresthesia, and it is rarely caused by infections of dental origin. This report presents a case of mental nerve paresthesia caused by endodontic infection of a mandibular left second premolar. Resolution of the paresthesia began two weeks after conventional root canal treatment associated with antibiotic therapy and was completed in eight weeks. One year follow-up radiograph indicated complete healing of the radiolucent periapical lesion. The tooth was asymptomatic and functional. PMID:26345692

  10. Cranial Nerve Schwannomas: Diagnostic Imaging Approach.

    PubMed

    Skolnik, Aaron D; Loevner, Laurie A; Sampathu, Deepak M; Newman, Jason G; Lee, John Y; Bagley, Linda J; Learned, Kim O

    2016-01-01

    Schwannomas are benign nerve sheath tumors that may arise along the complex course of the cranial nerves (CNs), anywhere in the head and neck. Sound knowledge of the CN anatomy and imaging features of schwannomas is paramount for making the correct diagnosis. In this article, we review approaches to diagnosing CN schwannomas by describing their imaging characteristics and the associated clinical presentations. Relevant anatomic considerations are highlighted by using illustrative examples and key differential diagnoses categorized according to regions, which include the anterior skull base, orbit, cavernous sinus, basal cisterns, and neck. The clinical presentations associated with CN schwannomas vary and range from no symptoms to symptoms caused by mass effect or CN deficits. Individuals with the inherited disorder neurofibromatosis type 2 are predisposed to multiple schwannomas. When a lesion follows the course of a CN, the radiologist's roles are to confirm the imaging features of schwannoma and exclude appropriate differential considerations. The characteristic imaging features of CN schwannomas reflect their slow growth as benign neoplasms and include circumscribed margins, displacement of local structures, and smooth expansion of osseous foramina. These neoplasms exhibit various degrees of solid enhancement, often with internal cystic spaces on magnetic resonance (MR) and computed tomographic (CT) images and heterogeneous high signal intensity specifically on T2-weighted MR images. Clinical and/or imaging evidence of end-organ compromise of the involved CN may exist and aid in the identification of the nerve of origin. With a detailed understanding of the course of the CNs, the diagnostic features of CN schwannomas, and the correlation between these data and the associated clinical presentations of these tumors, the radiologist can have a key role in the diagnosis of CN schwannomas and the treatment planning for affected patients. (©)RSNA, 2016. PMID

  11. 20 CFR 627.230 - Displacement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Displacement. 627.230 Section 627.230... PROGRAMS UNDER TITLES I, II, AND III OF THE ACT Program Requirements § 627.230 Displacement. (a) No currently employed worker shall be displaced by any participant (including partial displacement such as...

  12. 20 CFR 627.230 - Displacement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Displacement. 627.230 Section 627.230... PROGRAMS UNDER TITLES I, II, AND III OF THE ACT Program Requirements § 627.230 Displacement. (a) No currently employed worker shall be displaced by any participant (including partial displacement such as...

  13. 20 CFR 627.230 - Displacement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Displacement. 627.230 Section 627.230... PROGRAMS UNDER TITLES I, II, AND III OF THE ACT Program Requirements § 627.230 Displacement. (a) No currently employed worker shall be displaced by any participant (including partial displacement such as...

  14. Peripheral nerve sheath tumor in a subadult golden eagle (Aquila chrysaetos).

    PubMed

    Wernick, Morena Bernadette; Dennler, Matthias; Beckmann, Kathrin; Schybli, Martina; Albini, Sarah; Hoop, Richard K; Steffen, Frank; Kircher, Patrick; Hatt, Jean-Michel

    2014-03-01

    A 5-year-old, female golden eagle (Aquila chrysaetos) was admitted with tetraplegia that progressed to a nonambulatory, spastic tetraparesis after a few days of treatment. Clinical and radiologic examinations, including radiography, computed tomography scan, and myelography, were indicative of neoplasia involving a spinal nerve root. Postmortem magnetic resonance imaging and necropsy findings confirmed the diagnosis of a peripheral nerve sheath neoplasia, not, to our knowledge, previously reported in a raptor. PMID:24881155

  15. [Imaging anatomy of cranial nerves].

    PubMed

    Hermier, M; Leal, P R L; Salaris, S F; Froment, J-C; Sindou, M

    2009-04-01

    Knowledge of the anatomy of the cranial nerves is mandatory for optimal radiological exploration and interpretation of the images in normal and pathological conditions. CT is the method of choice for the study of the skull base and its foramina. MRI explores the cranial nerves and their vascular relationships precisely. Because of their small size, it is essential to obtain images with high spatial resolution. The MRI sequences optimize contrast between nerves and surrounding structures (cerebrospinal fluid, fat, bone structures and vessels). This chapter discusses the radiological anatomy of the cranial nerves.

  16. Histological evaluation of mandibular third molar roots retrieved after coronectomy.

    PubMed

    Patel, Vinod; Sproat, Chris; Kwok, Jerry; Beneng, Kiran; Thavaraj, Selvam; McGurk, Mark

    2014-05-01

    There is a resurgence of interest in coronectomy for the management of mandibular third molars because it has a low risk of injury to the inferior dental nerve. However, there is concern that the root that is left in place will eventually become a source of infection. We describe the histological evaluation of 26 consecutive symptomatic coronectomy roots in 21 patients. All roots had vital tissue in the pulp chamber and there was no evidence of periradicular inflammation. Persistent postoperative symptoms related predominantly to inflammation of the soft tissue, which was caused by partially erupted roots or failure of the socket to heal. PMID:24684971

  17. Retraining Displaced Workers. Policy Brief

    ERIC Educational Resources Information Center

    LaLonde, Robert; Sullivan, Daniel

    2010-01-01

    Robert LaLonde of the University of Chicago and Daniel Sullivan of the Federal Reserve Bank of Chicago suggest that retraining through our nation's community colleges is a way to reduce the skills gaps of at least some of these displaced workers and increase their reemployment earnings. Although workers may still experience significant earnings…

  18. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G.

    1994-01-01

    Soluble polybenzimidazoles (PBI's) synthesized by nucleophilic displacement reaction of di(hydroxyphenyl)-benzimidazole monomers with activated aromatic difluoride compounds in presence of anhydrous potassium carbonate. These polymers exhibit good thermal, thermo-oxidative, and chemical stability, and high mechanical properties. Using benzimidazole monomers, more economical, and new PBI's processed more easily than commercial PBI, without loss of desirable physical properties.

  19. A Morphometric Study of the Obturator Nerve around the Obturator Foramen

    PubMed Central

    Jo, Se Yeong; Chang, Jae Chil; Bae, Hack Gun; Oh, Jae-Sang; Heo, Juneyoung

    2016-01-01

    Objective Obturator neuropathy is a rare condition. Many neurosurgeons are unfamiliar with the obturator nerve anatomy. The purpose of this study was to define obturator nerve landmarks around the obturator foramen. Methods Fourteen cadavers were studied bilaterally to measure the distances from the nerve root to relevant anatomical landmarks near the obturator nerve, including the anterior superior iliac spine (ASIS), the pubic tubercle, the inguinal ligament, the femoral artery, and the adductor longus. Results The obturator nerve exits the obturator foramen and travels infero-medially between the adductors longus and brevis. The median distances from the obturator nerve exit zone (ONEZ) to the ASIS and pubic tubercle were 114 mm and 30 mm, respectively. The median horizontal and vertical distances between the pubic tubercle and the ONEZ were 17 mm and 27 mm, respectively. The shortest median distance from the ONEZ to the inguinal ligament was 19 mm. The median inguinal ligament lengths from the ASIS and the median pubic tubercle to the shortest point were 103 mm and 24 mm, respectively. The median obturator nerve lengths between the ONEZ and the adductor longus and femoral artery were 41 mm and 28 mm, respectively. Conclusion The obturator nerve exits the foramen 17 mm and 27 mm on the horizontal and sagittal planes, respectively, from the pubic tubercle below the pectineus muscle. The shallowest area is approximately one-fifth medially from the inguinal ligament. This study will help improve the accuracy of obturator nerve surgeries to better establish therapeutic plans and decrease complications. PMID:27226861

  20. Nerve-pulse interactions

    SciTech Connect

    Scott, A.C.

    1982-01-01

    Some recent experimental and theoretical results on mechanisms through which individual nerve pulses can interact are reviewed. Three modes of interactions are considered: (1) interaction of pulses as they travel along a single fiber which leads to velocity dispersion; (2) propagation of pairs of pulses through a branching region leading to quantum pulse code transformations; and (3) interaction of pulses on parallel fibers through which they may form a pulse assembly. This notion is analogous to Hebb's concept of a cell assembly, but on a lower level of the neural hierarchy.

  1. Displacement enzyme linked aptamer assay.

    PubMed

    Baldrich, Eva; Acero, Josep Lluis; Reekmans, Gunter; Laureyn, Wim; O'Sullivan, Ciara K

    2005-08-01

    Immense effort has been placed on the realization of immunoassays exploiting displacement of a suboptimum target, due to the ease of use and applicability to immunochromatographic strips and immunosensors. Most of the efforts reported to date focus on the use of a suboptimal target that is displaceable by the target toward which the antibody has higher affinity. Limited success has been achieved due to difficulty in obtaining suboptimal targets to which the antibody has enough affinity to bind while at the same time having lower levels of affinity in comparison to the target to facilitate displacement. Aptamers are synthetic oligonucleotides specifically selected to bind a certain target. Thanks to their high affinity and sensitivity, aptamers appear as alternative candidates to antibodies for analytical devices and several enzyme-linked aptamer assays and aptasensors have been reported. Aptamers, in contrast to antibodies, require the formation of a three-dimensional structure for target binding and can thus be anticipated to have a much higher affinity for binding its target rather than a modified form of the target (e.g., enzyme-labeled target). This phenomenon can be exploited for the development of a displacement assay, using enzyme-labeled target as a suboptimal displaceable molecule. Here, we report the first demonstration of the exploitation of an aptamer in an extremely rapid and highly sensitive displacement assay. Surface plasmon resonance studies demonstrated the thrombin-binding aptamer to have a lower affinity for enzyme-labeled thrombin than unmodified thrombin, with respective K(D) of 1.1 x 10(-8) and 2.9 x 10(-9) M. The assay is extremely rapid, requiring only 10 min for completion, and exhibits a detection limit lower than that obtainable with competitive enzyme-linked aptamer assays and comparable to that of hybrid aptamer-antibody assays. Optimal storage conditions for precoated microtiter plates (consisting of coated aptamer and captured

  2. Biosynthesis and transport of gangliosides in peripheral nerve

    SciTech Connect

    Yates, A.J.; Tipnis, U.R.; Hofteig, J.H.; Warner, J.K.

    1984-01-01

    Radiolabelled glucosamine was injected into L-7 dorsal root ganglion (DRG) of rabbits. At several different times after injection DRG, lumbosacral trunks (LST) and sciatic nerves (SN) were removed and gangliosides extracted. Two and 3 weeks after injection the amounts of radioactivity in the ganglioside fractions of LST and SN were significantly higher than at days 1 and 2. The TCA soluble radioactivity decreased dramatically over the same time period. Colchicine prevented the appearance of radiolabelled lipid in LST and SN. From these experiments the authors conclude that some ganglioside is synthesized in the neuronal cell bodies of DRG and transported in the axons of the sciatic nerve. In another experiment the sciatic nerve was transected and ends separated to prevent regeneration. There was no difference in the amount of radiolabelled ganglioside that was isolated from DRG or LST of transected nerves compared with control nerves. The behavior of several potential acid soluble contaminants was studied in several steps used to isolate gangliosides. Of those studied only CMP-NeuAc could cause significant contamination of the final ganglioside preparation.

  3. An analytical fiber bundle model for pullout mechanics of root bundles

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Schwarz, M.; Or, D.

    2011-09-01

    Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? < 1, small roots break first; if ? > 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without

  4. Free displacer and Ringbom displacer for a Malone refrigerator

    SciTech Connect

    Swift, G.W.; Brown, A.O.

    1994-05-01

    Malone refrigeration uses a liquid near its critical point (instead of the customary gas) as the working fluid in a Stirling, Brayton, or similar regenerative or recuperative cycle. Thus far, we have focused on the Stirling cycle, to avoid the difficult construction of the high-pressure-difference counterflow recuperator required for a Brayton machine. Our first Malone refrigerator used liquid propylene (C{sub 3}H{sub 6}) in a double-acting 4-cylinder Stirling configuration. First measurements with a free displacer used in a liquid working fluid are presented. The displacer was operated both in harmonic mode and in Ringbom mode, in liquid carbon dioxide. The results are in reasonable agreement with expectations.

  5. Sixth cranial nerve palsy caused by compression from a dolichoectatic vertebral artery.

    PubMed

    Zhu, Ying; Thulborn, Keith; Curnyn, Kimberlee; Goodwin, James

    2005-06-01

    A 68-year-old man had an unremitting left sixth cranial nerve palsy immediately after completing a long bicycle trip. High-resolution (3 Tesla) magnetic resonance imaging disclosed a dolichoectatic vertebral artery that compressed the left sixth cranial nerve against the belly of the pons at its root exit zone. It was postulated that increased blood flow in the vessel during the unusually prolonged aerobic exercise precipitated the palsy. Compressive palsies of cranial nerves caused by a dolichoectatic basilar artery have often been documented; compressive palsy caused by a dolichoectatic vertebral artery is less well-recognized.

  6. Blade Displacement Predictions for the Full-Scale UH-60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Bledron, Robert T.; Lee-Rausch, Elizabeth M.

    2014-01-01

    An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids is loosely coupled to a rotorcraft comprehensive code and used to simulate two different test conditions from a wind-tunnel test of a full-scale UH-60A rotor. Performance data and sectional airloads from the simulation are compared with corresponding tunnel data to assess the level of fidelity of the aerodynamic aspects of the simulation. The focus then turns to a comparison of the blade displacements, both rigid (blade root) and elastic. Comparisons of computed root motions are made with data from three independent measurement systems. Finally, comparisons are made between computed elastic bending and elastic twist, and the corresponding measurements obtained from a photogrammetry system. Overall the correlation between computed and measured displacements was good, especially for the root pitch and lag motions and the elastic bending deformation. The correlation of root lead-lag motion and elastic twist deformation was less favorable.

  7. Some Considerations on Horizontal Displacement and Horizontal Displacement Coefficient B

    NASA Astrophysics Data System (ADS)

    Tajduś, Krzysztof; Tajduś, Antoni

    2015-12-01

    Mining-induced deformations of the ground surface and within the rock mass may pose danger not only for surface constructions but also for underground objects (e.g., tunnels, underground storages, garages), diverse types of pipelines, electric cables, etc. For a proper evaluation of hazard for surface and underground objects, such parameters as horizontal displacement and horizontal deformations, especially their maximum values, are of crucial importance. The paper is an attempt at a critical review of hitherto accomplished studies and state of the art of predicting horizontal displacement u, in particular the coefficient B, whose value allows determination of the value of maximum displacement if the value of maximum slope is known, or the value of maximum deformation if the value of maximum trough slope is recognized. Since the geodesic observations of fully developed subsidence troughs suggest that the value of the coefficient depends on the depth H, radius of main influences range r and properties of overburden rock, in particular the occurrence of sub-eras Paleogene and Neogene layers (old name: Quaternary and Tertiary) with low strength parameters, therefore a formula is provided in the present paper allowing for the estimation of the influence of those factors on the value of coefficient B.

  8. Displacement rate dependence of irradiation creep as predicted by the production bias model

    SciTech Connect

    Woo, C.H.

    1996-04-01

    Recently, it has been shown that the non-swelling component of irradiation creep of austenitic stainless steels is relatively independent of temperature but is sensitive to the displacement rate. An earlier model of Lewthwaite and Mosedale anticipated the sensitivity of displacement rate and attributed it to the flux sensitivity of point defect recombination. The point-defect recombination process does not yield the observed temperature dependence, however, although it does predict an inverse dependence of the creep rate on the square root of the displacement rate that was experimentally observed at relatively low temperatures.

  9. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  10. Sports and peripheral nerve injury.

    PubMed

    Hirasawa, Y; Sakakida, K

    1983-01-01

    Peripheral nerve injury is one of the serious complications of athletic injuries; however, they have rarely been reported. According to the report by Takazawa et al., there were only 28 cases of peripheral nerve injury among 9,550 cases of sports injuries which had been treated in the previous 5 years at the clinic of the Japanese Athletic Association. The authors have encountered 1,167 cases of peripheral nerve injury during the past 18 years. Sixty-six of these cases were related to sports (5.7%). The nerves most frequently involved were: brachial plexus, radial nerve, ulnar, peroneal, and axillary nerves (in their order of frequency). The most common causes of such injuries were mountain climbing, gymnastics, and baseball. More often, peripheral nerve injury seemed to be caused by continuous compression and repeated trauma to the involved nerve. Usually it appeared as an entrapment neuropathy and the symptoms could be improved by conservative treatment. Some of the cases were complicated by fractures and surgical exploration became necessary. Results of treatment produced excellent to good improvement in 87.9% of the cases. With regard to compartment syndrome, the authors stress the importance of early and precise diagnosis and a fasciotomy.

  11. True navigation in migrating gulls requires intact olfactory nerves.

    PubMed

    Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A; Huttunen, Markku J; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf

    2015-01-01

    During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances. PMID:26597351

  12. True navigation in migrating gulls requires intact olfactory nerves

    PubMed Central

    Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A.; Huttunen, Markku J.; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf

    2015-01-01

    During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances. PMID:26597351

  13. True navigation in migrating gulls requires intact olfactory nerves.

    PubMed

    Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A; Huttunen, Markku J; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf

    2015-01-01

    During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances.

  14. Multiple displacement motor driven power drive unit

    SciTech Connect

    Burandt, W. A.

    1985-12-03

    A multiple displacement motor driven power drive unit having two separate hydraulic systems each with a variable displacement hydraulic motor having its output connected to a torque summing gear train. A control provides for operation of one or the other of the motors at full displacement while the other motor is at zero displacement and free-wheels. There is a manual mechanical control operation with both motors simultaneously set at one-half of full displacement and driving the torque summing gear train. The change in motor displacements to one-half full displacement accomplishes velocity summing within the hydraulics. The multiple displacement motor driven power drive unit accomplishes the power efficiency of a multiple motor driven power drive unit utilizing a speed summing gear train with fixed displacement motors, but without the complexities associated with the use of a speed summing gear train and brakes.

  15. Ultrasonographic Evaluation of Peripheral Nerves.

    PubMed

    Ali, Zarina S; Pisapia, Jared M; Ma, Tracy S; Zager, Eric L; Heuer, Gregory G; Khoury, Viviane

    2016-01-01

    There are a variety of imaging modalities for evaluation of peripheral nerves. Of these, ultrasonography (US) is often underused. There are several advantages of this imaging modality, including its cost-effectiveness, time-efficient assessment of long segments of peripheral nerves, ability to perform dynamic maneuvers, lack of contraindications, portability, and noninvasiveness. It can provide diagnostic information that cannot be obtained by electrophysiologic or, in some cases, magnetic resonance imaging studies. Ideally, the neurosurgeon can use US as a diagnostic adjunct in the preoperative assessment of a patient with traumatic, neoplastic, infective, or compressive nerve injury. Perhaps its most unique use is in intraoperative surgical planning. In this article, a brief description of normal US nerve anatomy is presented followed by a description of the US appearance of peripheral nerve disease caused by trauma, tumor, infection, and entrapment.

  16. Peripheral nerve conduits: technology update

    PubMed Central

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  17. Teeth and tooth nerves.

    PubMed

    Hildebrand, C; Fried, K; Tuisku, F; Johansson, C S

    1995-02-01

    (1) Although our knowledge on teeth and tooth nerves has increased substantially during the past 25 years, several important issues remain to be fully elucidated. As a result of the work now going on at many laboratories over the world, we can expect exciting new findings and major break-throughs in these and other areas in a near future. (2) Dentin-like and enamel-like hard tissues evolved as components of the exoskeletal bony armor of early vertebrates, 500 million years ago, long before the first appearance of teeth. It is possible that teeth developed from tubercles (odontodes) in the bony armor. The presence of a canal system in the bony plates, of tubular dentin, of external pores in the enamel layer and of a link to the lateral line system promoted hypotheses that the bony plates and tooth precursors may have had a sensory function. The evolution of an efficient brain, of a head with paired sense organs and of toothed jaws concurred with a shift from a sessile filter-feeding life to active prey hunting. (3) The wide spectrum of feeding behaviors exhibited by modern vertebrates is reflected by a variety of dentition types. While the teeth are continuously renewed in toothed non-mammalian vertebrates, tooth turnover is highly restricted in mammals. As a rule, one set of primary teeth is replaced by one set of permanent teeth. Since teeth are richly innervated, the turnover necessitates a local neural plasticity. Another factor calling for a local plasticity is the relatively frequent occurrence of age-related and pathological dental changes. (4) Tooth development is initiated through interactions between the oral epithelium and underlying neural crest-derived mesenchymal cells. The interactions are mediated by cell surface molecules, extracellular matrix molecules and soluble molecules. The possibility that the initiating events might involve a neural component has been much discussed. With respect to mammals, the experimental evidence available does not

  18. Polybenzimidazole via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)

    1994-01-01

    Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-4-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.

  19. Rupture models with dynamically determined breakdown displacement

    USGS Publications Warehouse

    Andrews, D.J.

    2004-01-01

    The critical breakdown displacement, Dc, in which friction drops to its sliding value, can be made dependent on event size by specifying friction to be a function of variables other than slip. Two such friction laws are examined here. The first is designed to achieve accuracy and smoothness in discrete numerical calculations. Consistent resolution throughout an evolving rupture is achieved by specifying friction as a function of elapsed time after peak stress is reached. Such a time-weakening model produces Dc and fracture energy proportional to the square root of distance rupture has propagated in the case of uniform stress drop. The second friction law is more physically motivated. Energy loss in a damage zone outside the slip zone has the effect of increasing Dc and limiting peak slip velocity (Andrews, 1976). This article demonstrates a converse effect, that artificially limiting slip velocity on a fault in an elastic medium has a toughening effect, increasing fracture energy and Dc proportionally to rupture propagation distance in the case of uniform stress drop. Both the time-weakening and the velocity-toughening models can be used in calculations with heterogeneous stress drop.

  20. Crustal displacements due to continental water loading

    USGS Publications Warehouse

    Van Dam, T.; Wahr, J.; Milly, P.C.D.; Shmakin, A.B.; Blewitt, G.; Lavallee, D.; Larson, K.M.

    2001-01-01

    The effects of long-wavelength (> 100 km), seasonal variability in continental water storage on vertical crustal motions are assessed. The modeled vertical displacements (??rM) have root-mean-square (RMS) values for 1994-1998 as large as 8 mm, with ranges up to 30 mm, and are predominantly annual in character. Regional strains are on the order of 20 nanostrain for tilt and 5 nanostrain for horizontal deformation. We compare ??rM with observed Global Positioning System (GPS) heights (??rO) (which include adjustments to remove estimated effects of atmospheric pressure and annual tidal and non-tidal ocean loading) for 147 globally distributed sites. When the ??rO time series are adjusted by ??rM, their variances are reduced, on average, by an amount equal to the variance of the ??rM. Of the ??rO time series exhibiting a strong annual signal, more than half are found to have an annual harmonic that is in phase and of comparable amplitude with the annual harmonic in the ??rM. The ??rM time series exhibit long-period variations that could be mistaken for secular tectonic trends or post-glacial rebound when observed over a time span of a few years.

  1. Crustal Displacements Due to Continental Water Loading

    NASA Technical Reports Server (NTRS)

    vanDam, T.; Wahr, J.; Milly, P. C. D.; Shmakin, A. B.; Blewitt, G.; Lavallee, D.; Larson, K. M.

    2001-01-01

    The effects of long-wavelength (> 100 km), seasonal variability in continental water storage on vertical crustal motions are assessed. The modeled vertical displacements (delta-r(sub M)) have root-mean-square (RMS) values for 1994-1998 as large as 8 mm with ranges up to 30 mm, and are predominantly annual in character. Regional strains are on the order of 20 nanostrain for tilt and 5 nanostrain for horizontal deformation. We compare delta-r(sub M) with observed Global Positioning System (GPS) heights (delta-r(sub O)) (which include adjustments to remove estimated effects of atmospheric pressure and annual tidal and non-tidal ocean loading) for 147 globally distributed sites. When the delta-r(sub O) time series are adjusted by delta-r(sub M), their variances are reduced, on average, by an amount equal to the variance of the delta-r(sub M). Of the delta-r(sub O) time series exhibiting a strong annual signal, more than half are found to have an annual harmonic that is in phase and of comparable amplitude with the annual harmonic in the delta-r(sub M). The delta-r(sub M) time series exhibit long-period variations that could be mistaken for secular tectonic trends or post-glacial rebound when observed over a time span of a few years.

  2. Peripheral nerve blocks for distal extremity surgery.

    PubMed

    Offierski, Chris

    2013-10-01

    Peripheral nerve block is well suited for distal extremity surgery. Blocking the nerves at the distal extremity is easily done. It does not require ultrasound or stimulators to identify the nerve. Blocking nerves in the distal extremity is safe with low risk of toxicity. The effect of the nerve block is limited to the distribution of the nerve. The distal nerves in the lower extremity are sensory branches of the sciatic nerve. This provides a sensory block only. This has the advantage of allowing the patient to actively contract tendons in the foot and ambulate more quickly after surgery. PMID:24093651

  3. Apical root resorption in orthodontically treated adults.

    PubMed

    Baumrind, S; Korn, E L; Boyd, R L

    1996-09-01

    This study analyzed the relationship in orthodontically treated adults between upper central incisor displacement measured on lateral cephalograms and apical root resorption measured on anterior periapical x-ray films. A multiple linear regression examined incisor displacements in four directions (retraction, advancement, intrusion, and extrusion) as independent variables, attempting to account for observed differences in the dependent variable, resorption. Mean apical resorption was 1.36 mm (sd +/- 1.46, n = 73). Mean horizontal displacement of the apex was -0.83 mm (sd +/- 1.74, n = 67); mean vertical displacement was 0.19 mm (sd +/- 1.48, n = 67). The regression coefficients for the intercept and for retraction were highly significant; those for extrusion, intrusion, and advancement were not. At the 95% confidence level, an average of 0.99 mm (se = +/- 0.34) of resorption was implied in the absence of root displacement and an average of 0.49 mm (se = +/- 0.14) of resorption was implied per millimeter of retraction. R2 for all four directional displacement variables (DDVs) taken together was only 0.20, which implied that only a relatively small portion of the observed apical resorption could be accounted for by tooth displacement alone. In a secondary set of univariate analyses, the associations between apical resorption and each of 14 additional treatment-related variables were examined. Only Gender, Elapsed Time, and Total Apical Displacement displayed statistically significant associations with apical resorption. Additional multiple regressions were then performed in which the data for each of these three statistically significant variables were considered separately, with the data for the four directional displacement variables. The addition of information on Elapsed Time or Total Apical Displacement did not explain a significant additional portion of the variability in apical resorption. On the other hand, the addition of information on Gender to the

  4. Recent advances in nerve tissue engineering.

    PubMed

    Zhang, Bill G X; Quigley, Anita F; Myers, Damian E; Wallace, Gordon G; Kapsa, Robert M I; Choong, Peter F M

    2014-04-01

    Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.

  5. Arterial relationships to the nerves and some rigid structures in the posterior cranial fossa.

    PubMed

    Surchev, N

    2008-09-01

    The close relationships between the cranial nerves and the arterial vessels in the posterior cranial fossa are one of the predisposing factors for artery-nerve compression. The aim of this study was to examine the relationships of the vertebral and basilar arteries to some skull and dural structures and the nerves in the posterior cranial fossa. For this purpose, the skull bases and brains of 70 cadavers were studied. The topographic relationships of the vertebral and basilar arteries to the cranial nerves in the posterior cranial fossa were studied and the distances between the arteries and some osseous formations were measured. The most significant variations in arterial position were registered in the lower half of the basilar artery. Direct contact with an artery was established for the hypoglossal canal, jugular tubercle, and jugular foramen. The results reveal additional information about the relationships of the nerves and arteries to the skull and dural formations in the posterior cranial fossa. New quantitative information is given to illustrate them. The conditions for possible artery-nerve compression due to arterial dislocation are discussed and two groups (lines) of compression points are suggested. The medial line comprises of the brain stem points, usually the nerve root entry/exit zone. The lateral line includes the skull eminences, on which the nerves lie, or skull and dural foramina through which they exit the cranial cavity.

  6. Malignant Peripheral Nerve Sheath Tumor.

    PubMed

    James, Aaron W; Shurell, Elizabeth; Singh, Arun; Dry, Sarah M; Eilber, Fritz C

    2016-10-01

    Malignant peripheral nerve sheath tumor (MPNST) is the sixth most common type of soft tissue sarcoma. Most MPNSTs arise in association with a peripheral nerve or preexisting neurofibroma. Neurofibromatosis type is the most important risk factor for MPNST. Tumor size and fludeoxyglucose F 18 avidity are among the most helpful parameters to distinguish MPNST from a benign peripheral nerve sheath tumor. The histopathologic diagnosis is predominantly a diagnosis of light microscopy. Immunohistochemical stains are most helpful to distinguish high-grade MPNST from its histologic mimics. Current surgical management of high-grade MPNST is similar to that of other high-grade soft tissue sarcomas. PMID:27591499

  7. The case for character displacement in plants

    PubMed Central

    Beans, Carolyn M

    2014-01-01

    The evidence for character displacement as a widespread response to competition is now building. This progress is largely the result of the establishment of rigorous criteria for demonstrating character displacement in the animal literature. There are, however, relatively few well-supported examples of character displacement in plants. This review explores the potential for character displacement in plants by addressing the following questions: (1) Why aren't examples of character displacement in plants more common? (2) What are the requirements for character displacement to occur and how do plant populations meet those requirements? (3) What are the criteria for testing the pattern and process of character displacement and what methods can and have been used to address these criteria in the plant literature? (4) What are some additional approaches for studying character displacement in plants? While more research is needed, the few plant systems in which character displacement hypotheses have been rigorously tested suggest that character displacement may play a role in shaping plant communities. Plants are especially amenable to character displacement studies because of the experimental ease with which they can be used in common gardens, selection analyses, and breeding designs. A deeper investigation of character displacement in plants is critical for a more complete understanding of the ecological and evolutionary processes that permit the coexistence of plant species. PMID:24683467

  8. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic...

  9. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic...

  10. 25 CFR 700.59 - Displaced person.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Displaced person. 700.59 Section 700.59 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES General Policies and Instructions Definitions § 700.59 Displaced person. Displaced person means a member of the Hopi Tribe residing within the area partitioned...

  11. 25 CFR 700.59 - Displaced person.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Displaced person. 700.59 Section 700.59 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES General Policies and Instructions Definitions § 700.59 Displaced person. Displaced person means a member of the Hopi Tribe residing within the area partitioned...

  12. 25 CFR 700.59 - Displaced person.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Displaced person. 700.59 Section 700.59 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES General Policies and Instructions Definitions § 700.59 Displaced person. Displaced person means a member of the Hopi Tribe residing within the area partitioned...

  13. 25 CFR 700.59 - Displaced person.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false Displaced person. 700.59 Section 700.59 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES General Policies and Instructions Definitions § 700.59 Displaced person. Displaced person means a member of the Hopi Tribe residing within the area partitioned...

  14. 25 CFR 700.59 - Displaced person.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Displaced person. 700.59 Section 700.59 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES General Policies and Instructions Definitions § 700.59 Displaced person. Displaced person means a member of the Hopi Tribe residing within the area partitioned...

  15. The case for character displacement in plants.

    PubMed

    Beans, Carolyn M

    2014-03-01

    The evidence for character displacement as a widespread response to competition is now building. This progress is largely the result of the establishment of rigorous criteria for demonstrating character displacement in the animal literature. There are, however, relatively few well-supported examples of character displacement in plants. This review explores the potential for character displacement in plants by addressing the following questions: (1) Why aren't examples of character displacement in plants more common? (2) What are the requirements for character displacement to occur and how do plant populations meet those requirements? (3) What are the criteria for testing the pattern and process of character displacement and what methods can and have been used to address these criteria in the plant literature? (4) What are some additional approaches for studying character displacement in plants? While more research is needed, the few plant systems in which character displacement hypotheses have been rigorously tested suggest that character displacement may play a role in shaping plant communities. Plants are especially amenable to character displacement studies because of the experimental ease with which they can be used in common gardens, selection analyses, and breeding designs. A deeper investigation of character displacement in plants is critical for a more complete understanding of the ecological and evolutionary processes that permit the coexistence of plant species.

  16. Displacement Compensation of Temperature Probe Data

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S.; Hubert, James A.; Barber, Patrick G.

    1996-01-01

    Analysis of temperature data from a probe in a vertical Bridgman furnace growing germanium crystals revealed a displacement of the temperature profile due to conduction error. A theoretical analysis shows that the displacement compensation is independent of local temperature gradient. A displacement compensation value should become a standard characteristic of temperature probes used for temperature profile measurements.

  17. Initial formation and secondary condensation of nerve pathways in the medicinal leech.

    PubMed

    Jellies, J; Kopp, D M; Johansen, K M; Johansen, J

    1996-09-01

    Invertebrates have proved to be important experimental systems for examining questions related to growth cone navigation and nerve formation, in large part because of their simpler nervous systems. However, such apparent simplicity can be deceiving because the final stereotyped patterns may be the result of multiple developmental mechanisms and not necessarily the sole consequence of the pathway choices of individual growth cones. We have examined the normal sequence of events that are involved in the formation of the major peripheral nerves in leech embryos by employing (1) an antibody directed against acetylated tubulin to label neurons growing out from the central nervous system, (2) the Lan3-2 antibody to label a specific population of peripheral neurons growing into the central nervous system, and (3) intracellular dye filling of single cells. We found that the mature pattern of nerves was characterized by a pair of large nerve roots, each of which branched into two major tracts. The earliest axonal projections did not, however, establish this pattern definitively. Rather, each of the four nerves initially formed as discrete, roughly parallel tracts without bifurcation, with the final branching pattern of the nerve roots being generated by a secondary condensation. In addition, we found that some of the nerves were pioneered in different ways and by different groups of neurons. One of the nerves was established by central neurons growing peripherally, another by peripheral neurons growing centrally. These results suggest that the formation of common nerves and neuronal pathfinding in the leech involves multiple sets of growth cone guidance strategies and morphogenetic mechanisms that belie its apparent simplicity. PMID:8876458

  18. Displaced Children: The Psychological Implications.

    PubMed

    Joshi, Paramjit T; Fayyad, John A

    2015-10-01

    Millions of people across the world have been displaced or live in exile and/or as refugees largely as a consequence of wars, acts of terrorism, and catastrophic natural disasters. There are serious psychological consequences as a result of these extremely difficult life circumstances. Adults often can express their needs and have them be heard, whereas children are unable to do so. The children may be provided food, shelter, and clothing and have their medical needs attended to, but their emotional and psychological needs go unrecognized and unmet, with dire and monumental long-term consequences. PMID:26346385

  19. Displacement Current and Surface Flashover

    SciTech Connect

    harris, J R; Caporaso, G J; Blackfield, D; Chen, Y J

    2007-07-17

    High-voltage vacuum insulator failure is generally due to surface flashover rather than insulator bulk breakdown. Vacuum surface flashover is widely believed to be initiated by a secondary electron emission avalanche along the vacuum-insulator interface. This process requires a physical mechanism to cause secondary electrons emitted from the insulator surface to return to that surface. Here, we show that when an insulator is subjected to a fast high-voltage pulse, the magnetic field due to displacement current through the insulator can provide this mechanism. This indicates the importance of the voltage pulse shape, especially the rise time, in the flashover initiation process.

  20. The breathing hand: obstetric brachial plexopathy reinnervation from thoracic roots?

    PubMed

    Friedenberg, S M; Hermann, R C

    2004-01-01

    It has been found that in cases of obstetric brachial plexopathy, injured phrenic nerve or C3/4/5 roots may sprout into the adjacent injured upper and middle trunks of the brachial plexus. This aberrant regeneration produces co-contraction of the diaphragm and proximal upper limb muscles. This phenomenon, referred to as respiratory synkinesis or "the breathing arm", may not be limited to the upper cervical roots. We present two cases, identified through electromyographic investigations, of respiratory synkinesis selectively affecting intrinsic hand muscles, and propose that upper thoracic roots and their intercostal nerves may also produce respiratory synkinesis, resulting in a "breathing hand." This novel brand of synkinesis indicates that obstetric brachial plexus neuropathies can have quite proximal nerve injury in all trunks. The findings in our patients may not be entirely unique. The time required to develop distal muscle synkinesis and the subtle nature of our findings may suggest that with time and the assistance of EMG the breathing hand may be more common. When considering brachial plexus surgery, the significance of respiratory synkinesis should not be overlooked as its presence indicates injury at a root or proximal trunk level and may come from either nerves destined for the diaphragm or for the intercostal muscles.

  1. Local interpolation of coseismic displacements measured by InSAR

    NASA Astrophysics Data System (ADS)

    Yaseen, M.; Hamm, N. A. S.; Woldai, T.; Tolpekin, V. A.; Stein, A.

    2013-08-01

    Coseismic displacements play a significant role in characterizing earthquake causative faults and understanding earthquake dynamics. They are typically measured from InSAR using pre- and post-earthquake images. The displacement map produced by InSAR may contain missing coseismic values due to the decorrelation of ASAR images. This study focused on interpolating missing values in the coseismic displacement map of the 2003 Bam earthquake using geostatistics with the aim of running a slip distribution model. The gaps were grouped into 23 patches. Variograms of the patches showed that the displacement data were spatially correlated. The variogram prepared for ordinary kriging (OK) indicated the presence of a trend and thus justified the use of universal kriging (UK). Accuracy assessment was performed in 3 ways. First, 11 patches of equal size and with an equal number of missing values generated artificially, were kriged and validated. Second, the four selected patches results were validated after shifting them to new locations without missing values and comparing them with the observed values. Finally, cross validation was performed for both types of patch at the original and shifted locations. UK results were better than OK in terms of kriging variance, mean error (ME) and root mean square error (RMSE). For both OK and UK, only 4 out of 23 patches (1, 5, 11 and 21) showed ME and RMSE values that were substantially larger than for the other patches. The accuracy assessment results were found to be satisfactory with ME and RMSE values close to zero. InSAR data inversion demonstrated the usefulness of interpolation of the missing coseismic values by improving a slip distribution model. It is therefore concluded that kriging serves as an effective tool for interpolating the missing values on a coseismic displacement map.

  2. Cupula displacement, hair bundle deflection, and physiological responses in the transparent semicircular canal of young eel.

    PubMed

    Rüsch, A; Thurm, U

    1989-03-01

    The transparent labyrinth of young eels (Anguilla anguilla L.) was used in toto for studying the configuration of cupula displacement, deflection of the hair bundle, and correlated changes in transepithelial voltage (delta TEV) and nerve activity (delta NA) in the semicircular canal. Microcapillaries were introduced into the canal through holes produced by a microthermocauter. Mechanical stimulation was applied either by injection of fluid into the ampulla or by electromagnetically displacing ferrofluid as a piston within the canal. Motion of individual kinocilia, stained cupulae or the ferrofluid piston was analysed by double-exposed microphotographs, photodiodes, or a video-system. The three-dimensional cupula displacement configuration was found to be piston- to diaphragm-like. Hair bundles at different sites on the crista exhibit differences in amplitude and time course of deflection. The transfer factor between shifts of the canal fluid and the tips of the kinocilia is 0.4-0.6. Displacements in opposite directions induce delta TEV and delta NA of opposite sign. Various tests confirmed delta TEV to reflect receptor potential responses. Nerve activity adapts to a tonic response with a time constant of 6.4 s. No similar adaptation occurred in delta TEV. Stimulus-response curves of TEV- and NA-responses are similar and sigmoid in shape with saturation at ciliary deflections of roughly +6 degrees and -3 degrees.

  3. Management of traumatic facial nerve injuries.

    PubMed

    Greywoode, Jewel D; Ho, Hao H; Artz, Gregory J; Heffelfinger, Ryan N

    2010-12-01

    Management of facial nerve injuries requires knowledge and skills that should be in every facial plastic surgeon's armamentarium. This article will briefly review the anatomy of the facial nerve, discuss the assessment of facial nerve injury, and describe the management of facial nerve injury after soft tissue trauma. PMID:21086238

  4. Nerve Transfers for the Restoration of Wrist, Finger, and Thumb Extension After High Radial Nerve Injury.

    PubMed

    Pet, Mitchell A; Lipira, Angelo B; Ko, Jason H

    2016-05-01

    High radial nerve injury is a common pattern of peripheral nerve injury most often associated with orthopedic trauma. Nerve transfers to the wrist and finger extensors, often from the median nerve, offer several advantages when compared to nerve repair or grafting and tendon transfer. In this article, we discuss the forearm anatomy pertinent to performing these nerve transfers and review the literature surrounding nerve transfers for wrist, finger, and thumb extension. A suggested algorithm for management of acute traumatic high radial nerve palsy is offered, and our preferred surgical technique for treatment of high radial nerve palsy is provided. PMID:27094891

  5. [Nerve-sparing radical prostatectomy].

    PubMed

    Okada, K; Tada, M; Nakano, A; Konno, T

    1988-04-01

    The neuroanatomy of the pelvic space was studied in order to clarify the course of cavernous nerves responsible for erectile function. The cavernous nerves travel along the dorsolateral portion at the base toward the apex of the prostate, then penetrate urogenital diaphragm at the lateral aspect of the membranous urethra. According to the anatomical findings, nerve-sparing radical prostatectomy was performed through the antegrade approach in 28 patients with prostate cancer. No significant surgical complications were encountered in the present series. Of the 28, evaluable cases were limited to 22 in terms of erection. Fifteen patients (68%) recovered their erectile function after nerve-sparing surgery. Therefore, the present surgical technique seems to be effective for the preservation of male sexual function following radical pelvic surgery.

  6. Schwannomatosis of Cervical Vagus Nerve

    PubMed Central

    Sasi, M. P.

    2016-01-01

    Cervical vagal schwannoma is a rare entity among lesions presenting as a neck mass. They are usually slow-growing benign lesions closely associated with the vagus nerve. They are usually solitary and asymptomatic. Multiple schwannomas occurring in patients without neurofibromatosis (NF) are rare and have recently been referred to as schwannomatosis. Here, we present a case of a neck mass that had imaging features suggestive of vagal schwannoma and was operated upon. Intraoperatively, it was discovered to be a case of multiple vagal cervical schwannoma, all directly related to the right vagus nerve, and could be resected from the nerve in toto preserving the function of the vagus nerve. Final HPR confirmed our pre-op suspicion of vagal schwannomatosis.

  7. Ion Channels in Nerve Membranes

    ERIC Educational Resources Information Center

    Ehrenstein, Gerald

    1976-01-01

    Discusses research that indicates that nerve membranes, which play a key role in the conduction of impulses, are traversed by protein channels with ion pathways opened and closed by the membrane electric field. (Author/MLH)

  8. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, John

    1995-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  9. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, John

    1999-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  10. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, J.

    1995-05-30

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 29 figs.

  11. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, J.

    1999-04-06

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 23 figs.

  12. Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columbia livia).

    PubMed

    Karten, J H; Fite, K V; Brecha, N

    1977-04-01

    In the pigeon, the nucleus of the basal optic root, a component of the accessory optic system, projects directly upon the vestibulo-cerebellum. This nucleus receives a prominent projection composed of large-diameter retinal axons, known as the basal optic root. The cells of origin of this tract were identified using horseradish peroxidase (donor:hydrogen-peroxide oxidoreductase, EC 1.11.1.7) as a retrograde marker. Injections of horseradish peroxidase confined primarily to the basal optic root nucleus labeled displaced ganglion cells of the contralateral retina. Cell sizes were 18-30 micronm and the dendrites of these cells were confined to the first stratum of the inner plexiform layer. Approximately 3700 displaced ganglion cells were labeled after injections of horseradish peroxidase into basal optic root. In contrast, no displaced ganglion cells were labeled after injections of horseradish peroxidase into the optic tectum, which labeled only cells in the ganglion cell layer proper. These findings indicate that displaced ganglion cells constitute a unique population of retinal neurons that give rise to a bisynaptic pathway directed to the cerebellum via the nucleus of the basal optic root. These displaced ganglion cells may play a major role inoculomotor reflexes.

  13. Optic Nerve Monitoring

    PubMed Central

    Schumann, Paul; Kokemüller, Horst; Tavassol, Frank; Lindhorst, Daniel; Lemound, Juliana; Essig, Harald; Rücker, Martin; Gellrich, Nils-Claudius

    2013-01-01

    Orbital and anterior skull base surgery is generally performed close to the prechiasmatic visual pathway, and clear strategies for detecting and handling visual pathway damage are essential. To overcome the common problem of a missed clinical examination because of an uncooperative or unresponsive patient, flash visual evoked potentials and electroretinograms should be used. These electrophysiologic examination techniques can provide evidence of intact, pathologic, or absent conductivity of the visual pathway when clinical assessment is not feasible. Visual evoked potentials and electroretinograms are thus essential diagnostic procedures not only for primary diagnosis but also for intraoperative evaluation. A decision for or against treatment of a visual pathway injury has to be made as fast as possible due to the enormous importance of the time elapsed with such injuries; this can be achieved additionally using multislice spiral computed tomography. The first-line conservative treatment of choice for such injuries is megadose methylprednisolone therapy. Surgery is used to decompress the orbital compartment by exposure of the intracanalicular part of the optic nerve in the case of optic canal compression. Modern craniomaxillofacial surgery requires detailed consideration of the diagnosis and treatment of traumatic visual pathway damage with the ultimate goal of preserving visual acuity. PMID:24436741

  14. Mechanisms of trigeminal nerve injuries.

    PubMed

    Ziccardi, V B; Assael, L A

    2001-09-01

    Injuries to the trigeminal nerve branches are a known and accepted risk in oral and maxillofacial surgery. It is prudent for the practitioner to explain the risks to patients as part of the informed consent process and to recognize and document the presence of nerve injury postoperatively. Patients should be referred to a surgeon experienced in microsurgical techniques in a timely fashion for evaluation and possible surgical intervention if an injury is not resolving.

  15. Comparison of hemihypoglossal-facial nerve transposition with a cross-facial nerve graft and muscle transplant for the rehabilitation of facial paralysis using the facial clima method.

    PubMed

    Hontanilla, Bernardo; Vila, Antonio

    2012-02-01

    To compare quantitatively the results obtained after hemihypoglossal nerve transposition and microvascular gracilis transfer associated with a cross facial nerve graft (CFNG) for reanimation of a paralysed face, 66 patients underwent hemihypoglossal transposition (n = 25) or microvascular gracilis transfer and CFNG (n = 41). The commissural displacement (CD) and commissural contraction velocity (CCV) in the two groups were compared using the system known as Facial clima. There was no inter-group variability between the groups (p > 0.10) in either variable. However, intra-group variability was detected between the affected and healthy side in the transposition group (p = 0.036 and p = 0.017, respectively). The transfer group had greater symmetry in displacement of the commissure (CD) and commissural contraction velocity (CCV) than the transposition group and patients were more satisfied. However, the transposition group had correct symmetry at rest but more asymmetry of CCV and CD when smiling.

  16. Effects of medial meniscal posterior horn avulsion and repair on meniscal displacement.

    PubMed

    Hein, Christopher N; Deperio, Jennifer Gurske; Ehrensberger, Mark T; Marzo, John M

    2011-06-01

    Medial meniscal posterior root avulsion (MMRA) leads to deleterious alteration of medial joint compartment loading profiles and increased risk of medial degenerative changes. Surgical repair restores more normal biomechanics to the knee. Our hypothesis is that MMRA will cause medial meniscal (MM) extrusion and gap formation between the root attachment site and MM. Meniscal root repair will restore the ability of the meniscus to resist extrusion, and reduce gap formation at the defect. Seven fresh frozen human cadaveric knees were dissected and mechanically loaded using a servo-hydraulic load frame (MTS ®) with 0 and 1800 N. The knees were tested under three conditions: native, avulsed, and repaired. Four measurements were obtained: meniscal displacement anteriorly, medially, posteriorly, and gap distance between the root attachment site and MM after transection and repair. The medial displacement of the avulsed MM (3.28 mm) was significantly greater (p < 0.001) than the native knee (1.60mm) and repaired knee (1.46 mm). Gap formation is significantly larger in the avulsed compared to repaired state at 0 (p < 0.02) and 1800N (p < 0.02) and also larger with loading in both avulsed (p < 0.05) and repaired (p < 0.02) conditions. Therefore, MMRA results in MM extrusion from the joint and gap formation between the MM root and the MM. Subsequent surgical repair reduces meniscal displacement and gap formation at the defect. PMID:20684881

  17. [Peripheral Nerve Injuries in Sports].

    PubMed

    Tettenborn, B; Mehnert, S; Reuter, I

    2016-09-01

    Peripheral nerve injuries due to sports are relatively rare but the exact incidence is not known due to a lack of epidemiological studies. Particular sports activities tend to cause certain peripheral nerve injuries including direct acute compression or stretching, repetitive compression and stretching over time, or another mechanism such as ischemia or laceration. These nerve lesions may be severe and delay or preclude the athlete's return to sports, especially in cases with delayed diagnosis. Repetitive and vigorous use or overuse makes the athlete vulnerable to disorders of the peripheral nerves, and sports equipment may cause compression of the nerves. Depending on etiology, the treatment is primarily conservative and includes physiotherapy, modification of movements and sports equipment, shoe inserts, splinting, antiphlogistic drugs, sometimes local administration of glucocorticoids or, lately, the use of extracorporeal shock waves. Most often, cessation of the offending physical activity is necessary. Surgery is only indicated in the rare cases of direct traumatic nerve injury or when symptoms are refractory to conservative therapy. Prognosis mainly depends on the etiology and the available options of modifying measures.This article is based on the publications "Reuter I, Mehnert S. Engpasssyndrome peripherer Nerven bei Sportlern". Akt Neurol 2012;39:292-308 and Sportverl Sportschad 2013;27:130-146. PMID:27607069

  18. Noninvasive imaging of peripheral nerves.

    PubMed

    Rangavajla, Gautam; Mokarram, Nassir; Masoodzadehgan, Nazanin; Pai, S Balakrishna; Bellamkonda, Ravi V

    2014-01-01

    Recent developments in the field of peripheral nerve imaging extend the capabilities of imaging modalities to assist in the diagnosis and treatment of patients with peripheral nerve maladies. Methods such as magnetic resonance imaging (MRI) and its derivative diffusion tensor imaging (DTI), ultrasound (US) and positron emission tomography (PET) are capable of assessing nerve structure and function following injury and relating the state of the nerve to electrophysiological and histological analysis. Of the imaging methods surveyed here, each offered unique and interesting advantages related to the field. MRI offered the opportunity to visualize immune activity on the injured nerve throughout the course of the regeneration process, and DTI offered numerical characterization of the injury and the ability to develop statistical bases for diagnosing injury. US extends imaging to the treatment phase by enabling more precise analgesic applications following surgery, and PET represents a novel method of assessing nerve injury through analysis of relative metabolism rates in injured and healthy tissue. Exciting new possibilities to enhance and extend the abilities of imaging methods are also discussed, including innovative contrast agents, some of which enable multimodal imaging approaches and present opportunities for treatment application. PMID:25766202

  19. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  20. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  1. Investigation of cranial and other nerves in the mouse with muscular dystrophy.

    PubMed Central

    Biscoe, T J; Caddy, K W; Pallot, D J; Pehrson, U M

    1975-01-01

    In the muscular dystrophic mouse mutant there is an absence of Schwann cells over circumscribed lengths of all cranial nerves except for II (I was not examined) and the lesion involves the sympathetic system. Where present, Schwann cells do not produce myelin of normal thickness. The lesion is similar to that described for the spinal roots. Causation is discussed. Images PMID:1141926

  2. Root responses to flooding.

    PubMed

    Sauter, Margret

    2013-06-01

    Soil water-logging and submergence pose a severe threat to plants. Roots are most prone to flooding and the first to suffer from oxygen shortage. Roots are vital for plant function, however, and maintenance of a functional root system upon flooding is essential. Flooding-resistant plants possess a number of adaptations that help maintain oxygen supply to the root. Plants are also capable of initiating organogenesis to replace their original root system with adventitious roots if oxygen supply becomes impossible. This review summarizes current findings on root development and de novo root genesis in response to flooding.

  3. ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter

    PubMed Central

    Hunt, David; Hossain-Ibrahim, Kismet; Mason, Matthew RJ; Coffin, Robert S; Lieberman, AR; Winterbottom, Julia; Anderson, PN

    2004-01-01

    Background Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. We have examined the expression of the transcription factors ATF3 and c-Jun by non-neuronal cells during Wallerian degeneration following injury to sciatic nerves, dorsal roots and optic nerves of rats and mice, using immunohistochemistry and in situ hybridization. Results Following sciatic nerve injury – transection or transection and reanastomosis – ATF3 was strongly upregulated by endoneurial, but not perineurial cells, of the distal stumps of the nerves by 1 day post operation (dpo) and remained strongly expressed in the endoneurium at 30 dpo when axonal regeneration was prevented. Most ATF3+ cells were immunoreactive for the Schwann cell marker, S100. When the nerve was transected and reanastomosed, allowing regeneration of axons, most ATF3 expression had been downregulated by 30 dpo. ATF3 expression was weaker in the proximal stumps of the injured nerves than in the distal stumps and present in fewer cells at all times after injury. ATF3 was upregulated by endoneurial cells in the distal stumps of injured neonatal rat sciatic nerves, but more weakly than in adult animals. ATF3 expression in transected sciatic nerves of mice was similar to that in rats. Following dorsal root injury in adult rats, ATF3 was upregulated in the part of the root between the lesion and the spinal cord (containing Schwann cells), beginning at 1 dpo, but not in the dorsal root entry zone or in the degenerating dorsal column of the spinal cord. Following optic nerve crush in adult rats, ATF3 was found in some cells at the injury site and small numbers of cells within the optic nerve displayed weak immunoreactivity. The pattern of expression of c-Jun in all types of nerve injury was similar to that of ATF3. Conclusion These findings raise the possibility that ATF3/c-Jun heterodimers may play a role in regulating changes in gene

  4. Dynamic displacement of normal and detached semicircular canal cupula.

    PubMed

    Rabbitt, Richard D; Breneman, Kathryn D; King, Curtis; Yamauchi, Angela M; Boyle, Richard; Highstein, Stephen M

    2009-12-01

    The dynamic displacement of the semicircular canal cupula and modulation of afferent nerve discharge were measured simultaneously in response to physiological stimuli in vivo. The adaptation time constant(s) of normal cupulae in response to step stimuli averaged 36 s, corresponding to a mechanical lower corner frequency for sinusoidal stimuli of 0.0044 Hz. For stimuli equivalent to 40-200 deg/s of angular head velocity, the displacement gain of the central region of the cupula averaged 53 nm per deg/s. Afferents adapted more rapidly than the cupula, demonstrating the presence of a relaxation process that contributes significantly to the neural representation of angular head motions by the discharge patterns of canal afferent neurons. We also investigated changes in time constants of the cupula and afferents following detachment of the cupula at its apex-mechanical detachment that occurs in response to excessive transcupular endolymph pressure. Detached cupulae exhibited sharply reduced adaptation time constants (300 ms-3 s, n = 3) and can be explained by endolymph flowing rapidly over the apex of the cupula. Partially detached cupulae reattached and normal afferent discharge patterns were recovered 5-7 h following detachment. This regeneration process may have relevance to the recovery of semicircular canal function following head trauma.

  5. Displaceable Gear Torque Controlled Driver

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  6. Variable delivery, fixed displacement pump

    DOEpatents

    Sommars, Mark F.

    2001-01-01

    A variable delivery, fixed displacement pump comprises a plurality of pistons reciprocated within corresponding cylinders in a cylinder block. The pistons are reciprocated by rotation of a fixed angle swash plate connected to the pistons. The pistons and cylinders cooperate to define a plurality of fluid compression chambers each have a delivery outlet. A vent port is provided from each fluid compression chamber to vent fluid therefrom during at least a portion of the reciprocal stroke of the piston. Each piston and cylinder combination cooperates to close the associated vent port during another portion of the reciprocal stroke so that fluid is then pumped through the associated delivery outlet. The delivery rate of the pump is varied by adjusting the axial position of the swash plate relative to the cylinder block, which varies the duration of the piston stroke during which the vent port is closed.

  7. Polybenzimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1995-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl) benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl) benzimidazoles are synthesizedby reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  8. Displaced electrode process for welding

    DOEpatents

    Heichel, L.J.

    1975-08-26

    A method is described for the butt-welding of a relatively heavy mass to a relatively small mass such as a thin-wall tube. In butt-welding heat is normally applied at the joint between the two pieces which are butt-welded together. The application of heat at the joint results in overheating the tube which causes thinning of the tube walls and porosity in the tube material. This is eliminated by displacing the welding electrode away from the seam toward the heavier mass so that heat is applied to the heavy mass and not at the butt seam. Examples of the parameters used in welding fuel rods are given. The cladding and end plugs were made of Zircalloy. The electrode used was of 2 percent thoriated tungsten. (auth)

  9. Polyimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)

    1991-01-01

    Polyimidazoles (Pl) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethylacetamide, sulfolane, N-methylpyrroldinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperature under nitrogen. The di(hydroxyphenyl)imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl)imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxyphenyl)imidazole monomer. This synthetic route has provided high molecular weight Pl of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  10. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergerrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1997-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  11. Polyimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)

    1992-01-01

    Polyimidazoles (PI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethyl acetamide, sulfolane, N-methylpyrrolidinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl) imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxphenyl) imidazole monomer. This synthetic route has provided high molecular weight PI of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  12. Electrophysiological evaluation of nerve function in inferior alveolar nerve injury: relationship between nerve action potentials and histomorphometric observations.

    PubMed

    Murayama, M; Sasaki, K; Shibahara, T

    2015-12-01

    The objective of this study was to improve the accuracy of diagnosis of inferior alveolar nerve (IAN) injury by determining degrees of nerve disturbance using the sensory nerve action potential (SNAP) and sensory nerve conduction velocity (SCV). Crush and partial and complete nerve amputation injuries were applied to the IAN of rabbits, then SNAPs and histomorphometric observations were recorded at 1, 5, and 10 weeks. For crush injury, most nerves were smaller in diameter at 5 weeks than at 1 week, however after 10 weeks, extensive nerve regeneration was observed. The SNAP showed a decrease in SCV at weeks 1 and 5, followed by an increase at week 10. For partial nerve amputation, small to medium-sized nerve fibres were observed at weeks 1 and 5, then larger nerves were seen at week 10. Minimal changes in SCV were observed at weeks 1 and 5, however SCV increased at week 10. For complete nerve amputation, nerve fibres were sparse at week 1, but gradual nerve regeneration was observed at weeks 5 and 10. SNAPs were detectable from week 10, however the SCV was extremely low. This study showed SCV to be an effective factor in the evaluation of nerve injury and regeneration. PMID:26433750

  13. The Study of Diagnostic Efficacy of Nerve Conduction Study Parameters in Cervical Radiculopathy

    PubMed Central

    Pawar, Sachin; Kashikar, Aditi; Shende, Vinod; Waghmare, Satish

    2013-01-01

    Background: Cervical Radiculopathy (CR) is a neurologic condition characterised by dysfunction of a cervical spinal nerve, the roots of the nerve, or both. Diagnostic criteria for CR are not well defined, and no universally accepted criteria for its diagnosis have been established. Clinical examination, radiological imaging and electrophysiologic evaluation are the different modalities to diagnose CR. The incidence of Cervical Spondylosis and related conditions is increasing in the present scenario and the use of radiologic examination is time consuming and uneconomical for the common Indian setup. Thus, there is a definite need to establish a cost effective, reliable, and accurate means for establishing the diagnosis of cervical radiculopathy. Electrodiagnostic tests are the closest to fulfill these criteria. Aim: To evaluate diagnostic utility of various motor and sensory nerve conduction study parameters in cervical radiculopathy. Setting and Design: It was a cross-sectional study conducted on 100 subjects of age > 40 years. Material and Methods: The consecutive patients clinically diagnosed to have cervical radiculopathy, referred from department of Orthopaedics were prospectively recruited for the motor and sensory nerve conduction study using RMS EMG EP Mark-II. Parameters studied were Compound Muscle Action Potential (CMAP), Distal Motor Latency (DML) and Conduction Velocity (CV) for motor nerves and Sensory Nerve Action Potential (SNAP) and CV for sensory nerves. Statistical Analysis: Study observations and results were analysed to find the Specificity, Sensitivity, Positive Predictive Value and Negative Predictive Value using SPSS 16.0. Results: Among various motor nerve conduction parameters CMAP was found to be more sensitive with high positive predicative value. CV was found to have greater specificity and DML had least negative predictive value. Sensory nerve conduction parameters were found to have less sensitivity but higher specificity as compared

  14. Competitive displacement among insects and arachnids.

    PubMed

    Reitz, Stuart R; Trumble, John T

    2002-01-01

    Competitive displacement is the most severe outcome of interspecific competition. For the purposes of this review, we define this type of displacement as the removal of a formerly established species from a habitat as a result of direct or indirect competitive interactions with another species. We reviewed the literature for recent putative cases of competitive displacement among insects and arachnids and assessed the evidence for the role of interspecific competition in these displacements. We found evidence for mechanisms of both exploitation and interference competition operating in these cases of competitive displacement. Many of the cases that we identified involve the operation of more than one competitive mechanism, and many cases were mediated by other noncompetitive factors. Most, but not all, of these displacements occurred between closely related species. In the majority of cases, exotic species displaced native species or previously established exotic species, often in anthropogenically-altered habitats. The cases that we identified have occurred across a broad range of taxa and environments. Therefore we suggest that competitive displacement has the potential to be a widespread phenomenon, and the frequency of these displacement events may increase, given the ever-increasing degree of anthropogenic changes to the environment. A greater awareness of competitive displacement events should lead to more studies documenting the relative importance of key factors and developing hypotheses that explain observed patterns.

  15. Platelet-rich plasma gel in combination with Schwann cells for repair of sciatic nerve injury.

    PubMed

    Ye, Fagang; Li, Haiyan; Qiao, Guangxi; Chen, Feng; Tao, Hao; Ji, Aiyu; Hu, Yanling

    2012-10-15

    Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-rich plasma and Schwann cell-like cells were mixed in suspension at a density of 1 × 10(6) cells/mL, prior to introduction into a poly (lactic-co-glycolic acid) conduit. Fabricated tissue-engineered nerves were implanted into rabbits to bridge 10 mm sciatic nerve defects (platelet-rich plasma group). Controls were established using fibrin as the seeding matrix for Schwann cell-like cells at identical density to construct tissue-engineered nerves (fibrin group). Twelve weeks after implantation, toluidine blue staining and scanning electron microscopy were used to demonstrate an increase in the number of regenerating nerve fibers and thickness of the myelin sheath in the platelet-rich plasma group compared with the fibrin group. Fluoro-gold retrograde labeling revealed that the number of Fluoro-gold-positive neurons in the dorsal root ganglion and the spinal cord anterior horn was greater in the platelet-rich plasma group than in the fibrin group. Electrophysiological examination confirmed that compound muscle action potential and nerve conduction velocity were superior in the platelet-rich plasma group compared with the fibrin group. These results indicate that autologous platelet-rich plasma gel can effectively serve as a seeding matrix for Schwann cell-like cells to construct tissue-engineered nerves to promote peripheral nerve regeneration. PMID:25538751

  16. Access to the Mandibular Angle Using a Sagittal Split to Address Pathologic Displacement of a Mandibular Third Molar.

    PubMed

    Kontaxis, Katrina L; Steinbacher, Derek M

    2015-12-01

    Access to the mandibular angle for removal of pathology poses a unique challenge to surgeons. Intraoral approaches result in considerable bone removal and potential damage to the inferior alveolar nerve (IAN). Extraoral approaches are associated with a cutaneous scar and the potential for facial nerve damage. This report describes the case of a 53-year-old man with a deeply impacted third molar associated with a cystic lesion that was treated by enucleation using an intraoral sagittal split osteotomy. This approach allowed for complete access and visualization of the cyst and displaced third molar and protection of the IAN with minimal surgical morbidity. PMID:26408844

  17. Validity of Ski Skating Center-of-Mass Displacement Measured by a Single Inertial Measurement Unit.

    PubMed

    Myklebust, Håvard; Gløersen, Øyvind; Hallén, Jostein

    2015-12-01

    In regard to simplifying motion analysis and estimating center of mass (COM) in ski skating, this study addressed 3 main questions concerning the use of inertial measurement units (IMU): (1) How accurately can a single IMU estimate displacement of os sacrum (S1) on a person during ski skating? (2) Does incorporating gyroscope and accelerometer data increase accuracy and precision? (3) Moreover, how accurately does S1 determine COM displacement? Six world-class skiers roller-ski skated on a treadmill using 2 different subtechniques. An IMU including accelerometers alone (IMU-A) or in combination with gyroscopes (IMU-G) were mounted on the S1. A reflective marker at S1, and COM calculated from 3D full-body optical analysis, were used to provide reference values. IMU-A provided an accurate and precise estimate of vertical S1 displacement, but IMU-G was required to attain accuracy and precision of < 8 mm (root-mean-squared error and range of displacement deviation) in all directions and with both subtechniques. Further, arm and torso movements affected COM, but not the S1. Hence, S1 displacement was valid for estimating sideways COM displacement, but the systematic amplitude and timing difference between S1 and COM displacement in the anteroposterior and vertical directions inhibits exact calculation of energy fluctuations.

  18. On the origins of dorsal root potentials.

    PubMed

    LLOYD, D P C; McINTYRE, A K

    1949-03-20

    The "dorsal root potential" consists of five successive deflections designated for convenience, D.R.I, II, III, IV, and V. Of these, D.R.V alone constitutes the dorsal root potential of prior description. A study has been made of the general properties of those deflections not previously described. Dorsal root potentials are electrotonic extensions into the extramedullary root segment, the result of electrical interactions within the cord comparable to those that have been studied in peripheral nerve. Although the anatomical and electrical conditions of interaction are infinitely more complex in the cord than in nerve, it is seen that the fact of parallel distribution of primary afferent fibers pertaining to neighboring dorsal roots provides a sufficient anatomical basis for qualitative analysis in the first approximation of dorsal root potentials. An extension of the theory of interaction between neighboring nerve fibers has been made to include an especial case of interaction between fibers orientated at right angles to one another. The predictions have been tested in a nerve model and found correct. Given this elaboration, and the stated anatomical propositions, existing knowledge of interaction provides an adequate theoretical basis for an elementary understanding of dorsal root potentials. The study of general properties and the analysis of dorsal root potentials have led to the formulation of certain conclusions that follow. D.R.I, II, and III record the electrotonic spread of polarization resulting from the external field of impulses conducted in the intramedullary segment and longitudinal trajects of primary afferent fibers. D.R.IV arises in part as the result of activity in primary afferent fibers, and in part as the result of activity in secondary neurons. In either case the mode of production is the same, and the responsible agent is residual negativity in the active collaterals, or, more precisely, the external field of current flow about the

  19. Cranial nerves of the coelacanth, Latimeria chalumnae [Osteichthyes: Sarcopterygii: Actinistia], and comparisons with other craniata.

    PubMed

    Northcutt, R G; Bemis, W E

    1993-01-01

    We reconstructed the cranial nerves of a serially sectioned prenatal coelacanth, Latimeria chalumnae. This allowed us to correct several mistakes in the literature and to make broad phylogenetic comparisons with other craniates. The genera surveyed in our phylogenetic analysis were Eptatretus, Myxine, Petromyzon, Lampetra, Chimaera, Hydrolagus, Squalus, Mustelus, Polypterus, Acipenser, Lepisosteus, Amia, Neoceratodus, Protopterus, Lepidosiren, Latimeria and Ambystoma. Cladistic analysis of our data shows that Latimeria shares with Ambystoma two characters of the cranial nerves. Our chief findings are: 1) Latimeria possesses an external nasal papilla and pedunculated olfactory bulbs but lacks a discrete terminal nerve. In other respects its olfactory system resembles the plesiomorphic pattern for craniates. 2) The optic nerve is plicated, a character found in many but not all gnathostomes. Latimeria retains an interdigitated partial decussation of the optic nerves, a character found in all craniates surveyed. 3) The oculomotor nerve supplies the same extrinsic eye muscles as in lampreys and gnathostomes. As in gnathostomes generally, Latimeria has a ciliary ganglion but its cells are located intracranially in the root of the oculomotor nerve, and their processes reach the eye via oculomotor and profundal rami. 4) The trochlear nerve supplies the superior oblique muscle as in all craniates that have not secondarily reduced the eye and its extrinsic musculature. 5) The profundal ganglion and ramus are entirely separate from the trigeminal system, with no exchange of fibers. This character has an interesting phylogenetic distribution: in hagfishes, lampreys, lungfishes and tetrapods, the profundal and trigeminal ganglia are fused, whereas in other taxa surveyed the ganglia are separate. The principal tissues innervated by the profundal nerve are the membranous walls of the tubes of the rostral organ. 6) As in lampreys and gnathostomes, the trigeminal nerve has

  20. Retinal and optic nerve diseases.

    PubMed

    Margalit, Eyal; Sadda, Srinivas R

    2003-11-01

    A variety of disease processes can affect the retina and/or the optic nerve, including vascular or ischemic disease, inflammatory or infectious disease, and degenerative disease. These disease processes may selectively damage certain parts of the retina or optic nerve, and the specific areas that are damaged may have implications for the design of potential therapeutic visual prosthetic devices. Outer retinal diseases include age-related macular degeneration, pathologic myopia, and retinitis pigmentosa. Although the retinal photoreceptors may be lost, the inner retina is relatively well-preserved in these diseases and may be a target for retinal prosthetic devices. Inner retinal diseases include retinal vascular diseases such as diabetic retinopathy, retinal venous occlusive disease, and retinopathy of prematurity. Other retinal diseases such as ocular infections (retinitis, endophthalmitis) may affect all retinal layers. Because the inner retinal cells, including the retinal ganglion cells, may be destroyed in these diseases (inner retinal or whole retinal), prosthetic devices that stimulate the inner retina may not be effective. Common optic nerve diseases include glaucoma, optic neuritis, and ischemic optic neuropathy. Because the ganglion cell nerve fibers themselves are damaged, visual prosthetics for these diseases will need to target more distal portions of the visual pathway, such as the visual cortex. Clearly, a sound understanding of retinal and optic nerve disease pathophysiology is critical for designing and choosing the optimal visual prosthetic device.

  1. Continuous Suprascapular Nerve Block With a Perineural Catheter for Reverse Shoulder Arthroplasty Rescue Analgesia in a Patient With Severe Chronic Obstructive Pulmonary Disease.

    PubMed

    Careskey, Matthew; Naidu, Ramana

    2016-07-15

    Reverse open shoulder arthroplasty requires a comprehensive analgesic plan involving regional anesthesia. The commonly performed interscalene brachial plexus blockade confers a high likelihood of diaphragmatic paralysis via phrenic nerve palsy, making this option riskier in patients with limited pulmonary reserve. Continuous blockade of the suprascapular nerve, a more distal branch of the C5 and C6 nerve roots, may be a viable alternative. We report a successful case of the use of a suprascapular nerve block with continuous programmed intermittent bolus perineural analgesia in a patient with severe chronic obstructive pulmonary disease who underwent reverse open shoulder arthroplasty. PMID:27258178

  2. Central condylar displacement with brain abscess from chronic mandibular osteomyelitis.

    PubMed

    Lee, Thomas; Green, Ross; Hsu, Jack

    2013-06-01

    In this case report, we describe a unique long-term complication from undiagnosed mandibular osteomyelitis. A 53-year-old female who underwent a dental extraction complicated by chronic postoperative odontogenic infection and cutaneous parotid fistula formation 2 years earlier presented with acute mental status change, gradual unilateral facial nerve palsy (House-Brackmann score V), and nontraumatic dislocation of the condylar head into the middle cranial fossa. The patient's chronic mandibular osteomyelitis led to glenoid fossa erosion, middle cranial fossa penetration, and temporal lobe abscess formation. A combined middle cranial fossa approach through a burr hole placed in the squamous temporal bone near the zygomatic root and intraoral mandibular approach to ipsilateral condylar head was performed to complete partial mandibulectomy, including condylectomy. The patient was treated with 6 weeks of meropenem perioperatively. Four months after the surgery, the patient had complete resolution of skull base osteomyelitis, parotid fistula, and neurologic deficits and full recovery of facial nerve function (House-Brackmann score of I).

  3. Displacement speeds in turbulent premixed flame simulations

    SciTech Connect

    Day, Marcus S.; Shepherd, Ian G.; Bell, J.; Grcar, Joseph F.; Lijewski, Michael J.

    2007-07-01

    The theory of turbulent premixed flames is based on acharacterization of the flame as a discontinuous surface propagatingthrough the fluid. The displacement speed, defined as the local speed ofthe flame front normal to itself, relative to the unburned fluid,provides one characterization of the burning velocity. In this paper, weintroduce a geometric approach to computing displacement speed anddiscuss the efficacy of the displacement speed for characterizing aturbulent flame.

  4. A schwannoma of the S1 dural sleeve was resected while the intact nerve fibers were preserved using a microscope. Report of a case with early MRI findings.

    PubMed

    Kobayashi, S; Uchida, K; Kokubo, Y; Yayama, T; Nakajima, H; Inukai, T; Nomura, E; Baba, H

    2007-04-01

    In this report, we describe a small schwannoma of the dural sleeve and mention that it is often difficult to differentiate this tumor from lumbar disc herniation, especially a sequestered hernia, or a discal cyst. Gadolinium-enhanced MR images were a useful preoperative examination modality for differentiating this lesion from other diseases. Microscopically, the intradural tumor was successfully removed. The dura mater of the S1 nerve root was opened microsurgically, allowing the nerve fibers involved in the tumor to be identified. The involved fibers were cut around the tumor, and the lesion was resected while the intact nerve fibers were preserved. Based on histological examination of the resected specimen, the tumor was diagnosed as a schwannoma with multilocular cystic degeneration. Microsurgery allowed the tumor to be removed with minimal impairment from cutting of nerve fibers in the nerve root. PMID:17674301

  5. Displacement based multilevel structural optimization

    NASA Technical Reports Server (NTRS)

    Striz, Alfred G.

    1995-01-01

    Multidisciplinary design optimization (MDO) is expected to play a major role in the competitive transportation industries of tomorrow, i.e., in the design of aircraft and spacecraft, of high speed trains, boats, and automobiles. All of these vehicles require maximum performance at minimum weight to keep fuel consumption low and conserve resources. Here, MDO can deliver mathematically based design tools to create systems with optimum performance subject to the constraints of disciplines such as structures, aerodynamics, controls, etc. Although some applications of MDO are beginning to surface, the key to a widespread use of this technology lies in the improvement of its efficiency. This aspect is investigated here for the MDO subset of structural optimization, i.e., for the weight minimization of a given structure under size, strength, and displacement constraints. Specifically, finite element based multilevel optimization of structures (here, statically indeterminate trusses and beams for proof of concept) is performed. In the system level optimization, the design variables are the coefficients of assumed displacement functions, and the load unbalance resulting from the solution of the stiffness equations is minimized. Constraints are placed on the deflection amplitudes and the weight of the structure. In the subsystems level optimizations, the weight of each element is minimized under the action of stress constraints, with the cross sectional dimensions as design variables. This approach is expected to prove very efficient, especially for complex structures, since the design task is broken down into a large number of small and efficiently handled subtasks, each with only a small number of variables. This partitioning will also allow for the use of parallel computing, first, by sending the system and subsystems level computations to two different processors, ultimately, by performing all subsystems level optimizations in a massively parallel manner on separate

  6. Displacement of Propagating Squeezed Microwave States

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, L.; Pogorzalek, S.; Eder, P.; Fischer, M.; Goetz, J.; Xie, E.; Wulschner, F.; Inomata, K.; Yamamoto, T.; Nakamura, Y.; Di Candia, R.; Las Heras, U.; Sanz, M.; Solano, E.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R.

    2016-07-01

    Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power.

  7. Displacement of Propagating Squeezed Microwave States.

    PubMed

    Fedorov, Kirill G; Zhong, L; Pogorzalek, S; Eder, P; Fischer, M; Goetz, J; Xie, E; Wulschner, F; Inomata, K; Yamamoto, T; Nakamura, Y; Di Candia, R; Las Heras, U; Sanz, M; Solano, E; Menzel, E P; Deppe, F; Marx, A; Gross, R

    2016-07-01

    Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power. PMID:27447495

  8. Displacement of Propagating Squeezed Microwave States.

    PubMed

    Fedorov, Kirill G; Zhong, L; Pogorzalek, S; Eder, P; Fischer, M; Goetz, J; Xie, E; Wulschner, F; Inomata, K; Yamamoto, T; Nakamura, Y; Di Candia, R; Las Heras, U; Sanz, M; Solano, E; Menzel, E P; Deppe, F; Marx, A; Gross, R

    2016-07-01

    Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power.

  9. Facial nerve paralysis in children.

    PubMed

    Ciorba, Andrea; Corazzi, Virginia; Conz, Veronica; Bianchini, Chiara; Aimoni, Claudia

    2015-12-16

    Facial nerve palsy is a condition with several implications, particularly when occurring in childhood. It represents a serious clinical problem as it causes significant concerns in doctors because of its etiology, its treatment options and its outcome, as well as in little patients and their parents, because of functional and aesthetic outcomes. There are several described causes of facial nerve paralysis in children, as it can be congenital (due to delivery traumas and genetic or malformative diseases) or acquired (due to infective, inflammatory, neoplastic, traumatic or iatrogenic causes). Nonetheless, in approximately 40%-75% of the cases, the cause of unilateral facial paralysis still remains idiopathic. A careful diagnostic workout and differential diagnosis are particularly recommended in case of pediatric facial nerve palsy, in order to establish the most appropriate treatment, as the therapeutic approach differs in relation to the etiology. PMID:26677445

  10. Facial nerve paralysis in children

    PubMed Central

    Ciorba, Andrea; Corazzi, Virginia; Conz, Veronica; Bianchini, Chiara; Aimoni, Claudia

    2015-01-01

    Facial nerve palsy is a condition with several implications, particularly when occurring in childhood. It represents a serious clinical problem as it causes significant concerns in doctors because of its etiology, its treatment options and its outcome, as well as in little patients and their parents, because of functional and aesthetic outcomes. There are several described causes of facial nerve paralysis in children, as it can be congenital (due to delivery traumas and genetic or malformative diseases) or acquired (due to infective, inflammatory, neoplastic, traumatic or iatrogenic causes). Nonetheless, in approximately 40%-75% of the cases, the cause of unilateral facial paralysis still remains idiopathic. A careful diagnostic workout and differential diagnosis are particularly recommended in case of pediatric facial nerve palsy, in order to establish the most appropriate treatment, as the therapeutic approach differs in relation to the etiology. PMID:26677445

  11. Facial nerve paralysis in children.

    PubMed

    Ciorba, Andrea; Corazzi, Virginia; Conz, Veronica; Bianchini, Chiara; Aimoni, Claudia

    2015-12-16

    Facial nerve palsy is a condition with several implications, particularly when occurring in childhood. It represents a serious clinical problem as it causes significant concerns in doctors because of its etiology, its treatment options and its outcome, as well as in little patients and their parents, because of functional and aesthetic outcomes. There are several described causes of facial nerve paralysis in children, as it can be congenital (due to delivery traumas and genetic or malformative diseases) or acquired (due to infective, inflammatory, neoplastic, traumatic or iatrogenic causes). Nonetheless, in approximately 40%-75% of the cases, the cause of unilateral facial paralysis still remains idiopathic. A careful diagnostic workout and differential diagnosis are particularly recommended in case of pediatric facial nerve palsy, in order to establish the most appropriate treatment, as the therapeutic approach differs in relation to the etiology.

  12. Embryonic anastomosis between hypoglossal nerves.

    PubMed

    Rodríguez-Vázquez, J F; Mérida-Velasco, J R; Verdugo-López, S; Sanz-Casado, J V; Jiménez-Collado, J

    2009-12-01

    This article presents two cases of anastomosis of hypoglossal nerves in the suprahyoid region in human embryos of CR length 10.75 and 17.5 mm. This variation was studied in two human specimens at this stage of development and compared with the normal arrangement of the hypoglossal nerves in embryos at the same stage. The anastomotic branches were of similar caliber to the main trunks. In both cases the anastomosis was located dorsal to the origin of the geniohyoid muscles and caudal to the genioglossus muscles, lying transversally over the cranial face of the body of the hyoid bone anlage. The anastomosis formed a suprahyoid nerve chiasm on the midline in the embryo of 10.75 mm CR length.

  13. The Movement of a Nerve in a Magnetic Field: Application to MRI Lorentz Effect Imaging

    PubMed Central

    Roth, Bradley J.; Luterek, Adam; Puwal, Steffan

    2014-01-01

    Direct detection of neural activity with MRI would be a breakthrough innovation in brain imaging. A Lorentz force method has been proposed to image nerve activity using MRI; a force between the action currents and the static MRI magnetic field causes the nerve to move. In the presence of a magnetic field gradient, this will cause the spins to precess at a different frequency, affecting the MRI signal. Previous mathematical modeling suggests that this effect is too small to explain the experimental data, but that model was limited because the action currents were assumed to be independent of position along the nerve, and because the magnetic field was assumed to be perpendicular to the nerve. In this paper, we calculate the nerve displacement analytically without these two assumptions. Using realistic parameter values, the nerve motion is less than 5 nm, which induced a phase shift in the MRI signal of less than 0.02°. Therefore, our results suggest that Lorentz force imaging is beyond the capabilities of current technology. PMID:24728667

  14. Jozef Zwislocki: Impact on models of coding in the auditory nerve

    NASA Astrophysics Data System (ADS)

    Sachs, Murray B.

    2003-04-01

    The auditory nerve has long been considered a window on the biophysical mechanisms of cochlear transduction and the most carefully characterized aspect of the responses of single auditory-nerve fibers has been the tuning curve. Perhaps the most intensively studied question in auditory theory is: What is the relationship between the shapes of these tuning curves and basilar membrane displacements? The basilar membrane measurements of Georg von Bekesy stimulated a generation of basilar-membrane modelers, none more notable than Joe Zwislocki, who was awarded the first von Bekesy Medal by the Acoustical Society in 1985. The impact of Zwislocki's basilar membrane models on our understanding of auditory nerve tuning will be reviewed. The properties of auditory-nerve discharge patterns are also shaped by the filtering properties of the hair cell/synapse complex. The major contributions of Joe and his students to our understanding of this filtering through their elegant experimental and modeling studies of adaptation in the auditory nerve will be presented. Throughout his career, Joe Zwislocki has maintained an active interest in loudness summation and his work in relating the input/output characteristics of auditory-nerve fibers to loudness will be highlighted.

  15. Presynaptic inhibition of soleus Ia afferents does not vary with center of pressure displacements during upright standing.

    PubMed

    Johannsson, J; Duchateau, J; Baudry, S

    2015-07-01

    The present work was designed to investigate the presynaptic modulation of soleus Ia afferents with the position and the direction of the displacement of the center of pressure (CoP) during unperturbed upright standing and exaggerated CoP displacements in young adults. Hoffmann (H) reflex was evoked in the soleus by stimulating the tibial nerve at the knee level. Modulation of Ia presynaptic inhibition was assessed by conditioning the H reflex with fibular nerve (D1 inhibition) and femoral nerve (heteronymous facilitation) stimulation. Leg muscle activity was assessed by electromyography (EMG). The results indicate that in unperturbed standing and exaggerated CoP displacements, the H-reflex amplitude was greater during forward than backward CoP direction (p<0.05). However, the amplitude of the conditioned H reflex (expressed relative to unconditioned H reflex) did not vary with CoP displacement, regardless of the experimental condition. The soleus EMG was greater during forward than backward CoP direction and during anterior than posterior position in both experimental conditions (p<0.05). The modulation of the unconditioned H reflex with CoP direction was positively associated with the corresponding changes in soleus EMG (r(2)>0.34). The tibialis anterior EMG did not change during unperturbed standing, but was greater for backward than forward CoP direction during exaggerated CoP displacements. In this experimental condition, soleus EMG was negatively associated with tibialis anterior EMG (r(2)=0.81). These results indicate that Ia presynaptic inhibition is not modulated with CoP direction and position, but rather suggest that CoP displacements induced changes in excitability of the soleus motor neuron pool. PMID:25869621

  16. Polybenzoxazole via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1993-01-01

    Polybenzoxazoles (PBO) are heterocyclic macromolecules which were first synthesized in a two-step process by the initial formation of aromatic diacid chlorides with bis(o-aminophenol)s through solution condensation of aromatic diacid chlorides with bis(o-aminophenol)s followed by thermal cyclodehydration. Since then several methods were utilized in their synthesis. The most common synthetic method for PBO involves a polycondensation of bis(o-aminophenol)s with aromatic diacid diphenyl esters. Another preparative route involves the solution polycondensation of the hydrochloride salts of bis(o-amino phenol)s with aromatic diacids in polyphosphoric acid. Another synthetic method involves the initial formation of poly(o-hydroxy amide)s from silylated bis(o-aminophenol)s with aromatic diacid chlorides followed by thermal cyclodehydration to PBO. A recent preparative route involves the reaction of aromatic bisphenols with bis(fluorophenyl) benzoxazoles by the displacement reaction to form PBO. The novelty of the present invention is that high molecular weight PBO of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  17. International Federation of Societies for Surgery of the Hand Committee report: the role of nerve transfers in the treatment of neonatal brachial plexus palsy.

    PubMed

    Tse, Raymond; Kozin, Scott H; Malessy, Martijn J; Clarke, Howard M

    2015-06-01

    Nerve transfers have gained popularity in the treatment of adult brachial plexus palsy; however, their role in the treatment of neonatal brachial plexus palsy (NBPP) remains unclear. Brachial plexus palsies in infants differ greatly from those in adults in the patterns of injury, potential for recovery, and influences of growth and development. This International Federation of Societies for Surgery of the Hand committee report on NBPP is based upon review of the current literature. We found no direct comparisons of nerve grafting to nerve transfer for primary reconstruction of NBPP. Although the results contained in individual reports that use each strategy for treatment of Erb palsy are similar, comparison of nerve transfer to nerve grafting is limited by inconsistencies in outcomes reported, by multiple confounding factors, and by small numbers of patients. Although the role of nerve transfers for primary reconstruction remains to be defined, nerve transfers have been found to be effective and useful in specific clinical circumstances including late presentation, isolated deficits, failed primary reconstruction, and multiple nerve root avulsions. In the case of NBPP more severe than Erb palsy, nerve transfers alone are inadequate to address all of the deficits and should only be considered as adjuncts if maximal re-innervation is to be achieved. Surgeons who commit to care of infants with NBPP need to avoid an over-reliance on nerve transfers and should also have the capability and inclination for brachial plexus exploration and nerve graft reconstruction. PMID:25936735

  18. Blockade of transient receptor potential cation channel subfamily V member 1 promotes regeneration after sciatic nerve injury

    PubMed Central

    Ren, Fei; Zhang, Hong; Qi, Chao; Gao, Mei-ling; Wang, Hong; Li, Xia-qing

    2015-01-01

    The transient receptor potential cation channel subfamily V member 1 (TRPV1) provides the sensation of pain (nociception). However, it remains unknown whether TRPV1 is activated after peripheral nerve injury, or whether activation of TRPV1 affects neural regeneration. In the present study, we established rat models of unilateral sciatic nerve crush injury, with or without pretreatment with AMG517 (300 mg/kg), a TRPV1 antagonist, injected subcutaneously into the ipsilateral paw 60 minutes before injury. At 1 and 2 weeks after injury, we performed immunofluorescence staining of the sciatic nerve at the center of injury, at 0.3 cm proximal and distal to the injury site, and in the dorsal root ganglia. Our results showed that Wallerian degeneration occurred distal to the injury site, and neurite outgrowth and Schwann cell regeneration occurred proximal to the injury. The number of regenerating myelinated and unmyelinated nerve clusters was greater in the AMG517-pretreated rats than in the vehicle-treated group, most notably 2 weeks after injury. TRPV1 expression in the injured sciatic nerve and ipsilateral dorsal root ganglia was markedly greater than on the contralateral side. Pretreatment with AMG517 blocked this effect. These data indicate that TRPV1 is activated or overexpressed after sciatic nerve crush injury, and that blockade of TRPV1 may accelerate regeneration of the injured sciatic nerve. PMID:26487864

  19. Topography and landmarks for the nerve supply to the levator ani and its relevance to pelvic floor pathologies.

    PubMed

    Loukas, Marios; Joseph, Shamfa; Etienne, Denzil; Linganna, Sanjay; Hallner, Barry; Tubbs, R Shane

    2016-05-01

    The aim of this study was to explore the anatomical variations of the nerve to the levator ani (LA) and to relate these findings to LA dysfunction. One hundred fixed human female cadavers were dissected using transabdominal, gluteal, and perineal approaches, resulting in two hundred dissections of the sacral plexus. The pudendal nerve and the sacral nerve roots were traced from their origin at the sacral foramina to their termination. All nerves contributing to the innervation of the LA were considered to be the nerve to the LA. Based on the spinal nerve components, the nerve to the LA was classified into the following categories: 50% (n = 100) originated from S4 and S5 (type I); 19% (n = 38) originated from S5 (type II); 16% (n = 32) originated from S4 (type III); 11% (n = 22) originated from S3 and S4 (type IV); 4% (n = 8) originated from S3, S4, and S5 (type V). Two patterns of nerve termination were observed. In 42% of specimens, the nerve to the LA penetrated the coccygeus muscle and assumed an external position along the inferior surface of the LA muscle. In the remaining 58% of specimens, the nerve crossed the superior surface of the coccygeus muscle and continued along the superior surface of the iliococcygeus muscle. Damage to the nerve to LA has been associated with various pathologies. In order to minimize injuries during surgical procedures, a thorough understanding of the course and variations of the nerve to the LA is extremely important.

  20. Rehabilitation of peripheral nerve injuries.

    PubMed

    Robinson, Michael D; Shannon, Steven

    2002-02-01

    Traumatic injuries to peripheral nerves pose complex challenges to both military and civilian physicians. Treatment of nerve injuries must consider all aspects of the inherent disability. Pain control is of paramount importance. Little will be accomplished until pain is brought down to tolerable levels. Rehabilitation needs to be instituted as first-line treatment. Focus must be first placed on protection of the affected area from complications stemming from disuse and immobility and then on enhancement of strength, flexibility, sensory discrimination, and dexterity. Early intervention sets the stage for optimal physiologic and functional recovery. PMID:11878078

  1. Nerve lesioning with direct current

    NASA Astrophysics Data System (ADS)

    Ravid, E. Natalie; Shi Gan, Liu; Todd, Kathryn; Prochazka, Arthur

    2011-02-01

    Spastic hypertonus (muscle over-activity due to exaggerated stretch reflexes) often develops in people with stroke, cerebral palsy, multiple sclerosis and spinal cord injury. Lesioning of nerves, e.g. with phenol or botulinum toxin is widely performed to reduce spastic hypertonus. We have explored the use of direct electrical current (DC) to lesion peripheral nerves. In a series of animal experiments, DC reduced muscle force by controlled amounts and the reduction could last several months. We conclude that in some cases controlled DC lesioning may provide an effective alternative to the less controllable molecular treatments available today.

  2. Peripheral nerve disease in pregnancy.

    PubMed

    Klein, Autumn

    2013-06-01

    Neuropathies during pregnancy and the postpartum period are common and are usually due to compression around pregnancy and childbirth. The most common peripheral neuropathies are Bell's palsy, carpal tunnel syndrome (CTS), and lower extremity neuropathies. Although most neuropathies are usually reversible, associated disabilities or morbidities can limit functioning and require therapy. Nerve conduction study tests and imaging should only be considered if symptoms are unusual or prolonged. Some neuropathies may be associated with preeclampsia or an inherent underlying neuropathy that increases the risk of nerve injury. All neuropathies in pregnancy should be followed as some may be persistent and require follow-up. PMID:23563878

  3. Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.

    PubMed

    Jung, J; Uesugi, N; Jeong, N Y; Park, B S; Konishi, H; Kiyama, H

    2016-01-28

    In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain.

  4. Sympathetic sprouting near sensory neurons after nerve injury occurs preferentially on spontaneously active cells and is reduced by early nerve block

    PubMed Central

    Xie, Wenrui; Strong, Judith Ann; Li, Huiqing; Zhang, Jun-Ming

    2006-01-01

    Some chronic pain conditions are maintained or enhanced by sympathetic activity. In animal models of pathological pain, abnormal sprouting of sympathetic fibers around large- and medium-size sensory neurons is observed in dorsal root ganglia (DRG). Large and medium size cells are also more likely to be spontaneously active, suggesting that sprouting may be related to neuron activity. We previously showed that sprouting could be reduced by systemic or locally applied lidocaine. In the complete sciatic nerve transection model in rats, spontaneous activity initially originates in the injury site; later, the DRG become the major source of spontaneous activity. In this study, spontaneous activity reaching the DRG soma was reduced by early nerve blockade (local perfusion of the transected nerve with TTX for the first 7 days after injury). This significantly reduced sympathetic sprouting. Conversely, increasing spontaneous activity by local nerve perfusion with K+ channel blockers increased sprouting. The hyperexcitability and spontaneous activity of DRG neurons observed in this model were also significantly reduced by early nerve blockade. These effects of early nerve blockade on sprouting, excitability, and spontaneous activity were all observed 4 to 5 weeks after the end of early nerve blockade, indicating that the early period of spontaneous activity in the injured nerve is critical for establishing the more long-lasting pathologies observed in the DRG. Individual spontaneously active neurons, labeled with fluorescent dye, were 5–6 times more likely than quiescent cells to be co-localized with sympathetic fibers, suggesting a highly localized correlation of activity and sprouting. PMID:17065247

  5. Nonrecurrent Laryngeal Nerve in the Era of Intraoperative Nerve Monitoring

    PubMed Central

    Gurleyik, Gunay

    2016-01-01

    Nonrecurrent laryngeal nerve (non-RLN) is an anatomical variation increasing the risk of vocal cord palsy. Prediction and early identification of non-RLN may minimize such a risk of injury. This study assessed the effect of intraoperative neuromonitoring (IONM) on the detection of non-RLN. A total of 462 (236 right) nerves in 272 patients were identified and totally exposed, and all intraoperative steps of IONM were sequentially applied on the vagus nerve (VN) and RLN. Right predissection VN stimulation at a distal point did not create a sound signal in three cases (3/236; 1.27%). Proximal dissection of the right VN under IONM guidance established a proximal point, creating a positive signal. The separation point of non-RLN from VN was discovered in all three patients. Non-RLNs were exposed from separation to laryngeal entry. Positive IONM signals were obtained after resection of thyroid lobes, and postoperative period was uneventful in patients with non-RLN. Absence of distal VN signal is a precise predictor of the non-RLN. IONM-guided proximal dissection of the right VN leads to identification of the non-RLN. The prediction of non-RLN by the absence of the VN signal at an early stage of surgery may prevent or minimize the risk of nerve injury.

  6. Effects of Fault Displacement on Emplacement Drifts

    SciTech Connect

    F. Duan

    2000-04-25

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10{sup -5} adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M&O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure.

  7. Displaced Homemakers: Vo-Tech Workshop Guide.

    ERIC Educational Resources Information Center

    Peltier, Wanda Jo

    Written for displaced homemaker programs in vocational-technical schools, this curriculum contains material designed so that instructors can prepare student manuals appropriate to almost any educational support situation for displaced homemakers. An overview provides information on special needs groups, curriculum use, and resources and sample…

  8. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Engine displacement. 205.153 Section 205.153 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a)...

  9. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Engine displacement. 205.153 Section 205.153 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a)...

  10. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Engine displacement. 205.153 Section 205.153 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a)...

  11. Video Games, Adolescents, and the Displacement Effect

    ERIC Educational Resources Information Center

    Fisher, Carla Christine

    2012-01-01

    The displacement effect (the idea that time spent in one activity displaces time spent in other activities) was examined within the lens of adolescents' video game use and their time spent reading, doing homework, in physically active sports and activities, in creative play, and with parents and friends. Data were drawn from the Panel Study…

  12. 20 CFR 211.8 - Displacement allowance.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Displacement allowance. 211.8 Section 211.8 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT CREDITABLE RAILROAD COMPENSATION § 211.8 Displacement allowance. An allowance paid to an employee because he has...

  13. 20 CFR 211.8 - Displacement allowance.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Displacement allowance. 211.8 Section 211.8 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT CREDITABLE RAILROAD COMPENSATION § 211.8 Displacement allowance. An allowance paid to an employee because he has...

  14. 20 CFR 211.8 - Displacement allowance.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Displacement allowance. 211.8 Section 211.8 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT CREDITABLE RAILROAD COMPENSATION § 211.8 Displacement allowance. An allowance paid to an employee because he has...

  15. 20 CFR 211.8 - Displacement allowance.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Displacement allowance. 211.8 Section 211.8 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT CREDITABLE RAILROAD COMPENSATION § 211.8 Displacement allowance. An allowance paid to an employee because he has...

  16. 20 CFR 211.8 - Displacement allowance.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Displacement allowance. 211.8 Section 211.8 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT CREDITABLE RAILROAD COMPENSATION § 211.8 Displacement allowance. An allowance paid to an employee because he has...

  17. Axon-schwann cell interaction in the squid nerve fibre

    PubMed Central

    Villegas, Jorge

    1972-01-01

    The electrical properties of Schwann cells and the effects of neuronal impulses on their membrane potential have been studied in the giant nerve fibre of the squid. 1. The behaviour of the Schwann cell membrane to current injection into the cell was ohmic. No impulse-like responses were observed with displacements of 35 mV in the membrane potential. The resistance of the Schwann cell membrane was found to be approximately 103 Ω cm2. 2. A long-lasting hyperpolarization is observed in the Schwann cells following the conduction of impulse trains by the axon. Whereas the propagation of a single impulse had little effect, prolonged stimulation of the fibre at 250 impulses/sec was followed by a hyperpolarization of the Schwann cell that gradually declined over a period of several minutes. 3. The prolonged effects of nerve impulse trains on the Schwann cell were similar to those produced by depolarizing current pulses applied to the axon by the voltage-clamp technique. Thus, a series of depolarizing pulses in the axon was followed by a long-lasting hyperpolarization of the Schwann cells. In contrast, the application of a series of hyperpolarizing 100 mV pulses at a frequency of 1/sec had no apparent effects. 4. Changes in the external potassium concentration did not reproduce the long-lasting effects of nerve excitation. 5. The hyperpolarizing effects of impulse trains were abolished by the incubation of the nerve fibre in a sea-water solution containing trypsin. 6. These findings are discussed in relation to the possible mechanisms that might be responsible for the long-lasting hyperpolarizations of the Schwann cells. PMID:5074387

  18. Proximal Sciatic Nerve Intraneural Ganglion Cyst

    PubMed Central

    Swartz, Karin R.; Wilson, Dianne; Boland, Michael; Fee, Dominic B.

    2009-01-01

    Intraneural ganglion cysts are nonneoplastic, mucinous cysts within the epineurium of peripheral nerves which usually involve the peroneal nerve at the knee. A 37-year-old female presented with progressive left buttock and posterior thigh pain. Magnetic resonance imaging revealed a sciatic nerve mass at the sacral notch which was subsequently revealed to be an intraneural ganglion cyst. An intraneural ganglion cyst confined to the proximal sciatic nerve has only been reported once prior to 2009. PMID:20069041

  19. Patterned substrates and methods for nerve regeneration

    DOEpatents

    Mallapragada, Surya K.; Heath, Carole; Shanks, Howard; Miller, Cheryl A.; Jeftinija, Srdija

    2004-01-13

    Micropatterned substrates and methods for fabrication of artificial nerve regeneration conduits and methods for regenerating nerves are provided. Guidance compounds or cells are seeded in grooves formed on the patterned substrate. The substrates may also be provided with electrodes to provide electrical guidance cues to the regenerating nerve. The micropatterned substrates give physical, chemical, cellular and/or electrical guidance cues to promote nerve regeneration at the cellular level.

  20. Using a 2D displacement sensor to derive 3D displacement information

    NASA Technical Reports Server (NTRS)

    Soares, Schubert F. (Inventor)

    2002-01-01

    A 2D displacement sensor is used to measure displacement in three dimensions. For example, the sensor can be used in conjunction with a pulse-modulated or frequency-modulated laser beam to measure displacement caused by deformation of an antenna on which the sensor is mounted.

  1. Effect of Artificial Nerve Conduit Vascularization on Peripheral Nerve in a Necrotic Bed

    PubMed Central

    Iijima, Yuki; Murayama, Akira; Takeshita, Katsushi

    2016-01-01

    Background: Several types of artificial nerve conduit have been used for bridging peripheral nerve gaps as an alternative to autologous nerves. However, their efficacy in repairing nerve injuries accompanied by surrounding tissue damage remains unclear. We fabricated a novel nerve conduit vascularized by superficial inferior epigastric (SIE) vessels and evaluated whether it could promote axonal regeneration in a necrotic bed. Methods: A 15-mm nerve conduit was implanted beneath the SIE vessels in the groin of a rat to supply it with blood vessels 2 weeks before nerve reconstruction. We removed a 13-mm segment of the sciatic nerve and then pressed a heated iron against the dorsal thigh muscle to produce a burn. The defects were immediately repaired with an autograft (n = 10), nerve conduit graft (n = 8), or vascularized nerve conduit graft (n = 8). Recovery of motor function was examined for 18 weeks after surgery. The regenerated nerves were electrophysiologically and histologically evaluated. Results: The vascularity of the nerve conduit implanted beneath the SIE vessels was confirmed histologically 2 weeks after implantation. Between 14 and 18 weeks after surgery, motor function of the vascularized conduit group was significantly better than that of the nonvascularized conduit group. Electrophysiological and histological evaluations revealed that although the improvement did not reach the level of reinnervation achieved by an autograft, the vascularized nerve conduit improved axonal regeneration more than did the conduit alone. Conclusion: Vascularization of artificial nerve conduits accelerated peripheral nerve regeneration, but further research is required to improve the quality of nerve regeneration. PMID:27257595

  2. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering

    PubMed Central

    Zilic, Leyla; Garner, Philippa E; Yu, Tong; Roman, Sabiniano; Haycock, John W; Wilshaw, Stacy-Paul

    2015-01-01

    Current nerve tissue engineering applications are adopting xenogeneic nerve tissue as potential nerve grafts to help aid nerve regeneration. However, there is little literature that describes the exact location, anatomy and physiology of these nerves to highlight their potential as a donor graft. The aim of this study was to identify and characterise the structural and extracellular matrix (ECM) components of porcine peripheral nerves in the hind leg. Methods included the dissection of porcine nerves, localisation, characterisation and quantification of the ECM components and identification of nerve cells. Results showed a noticeable variance between porcine and rat nerve (a commonly studied species) in terms of fascicle number. The study also revealed that when porcine peripheral nerves branch, a decrease in fascicle number and size was evident. Porcine ECM and nerve fascicles were found to be predominately comprised of collagen together with glycosaminoglycans, laminin and fibronectin. Immunolabelling for nerve growth factor receptor p75 also revealed the localisation of Schwann cells around and inside the fascicles. In conclusion, it is shown that porcine peripheral nerves possess a microstructure similar to that found in rat, and is not dissimilar to human. This finding could extend to the suggestion that due to the similarities in anatomy to human nerve, porcine nerves may have utility as a nerve graft providing guidance and support to regenerating axons. PMID:26200940

  3. Simulations of threshold displacement in beryllium

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew L.; Fossati, Paul C. M.; Grimes, Robin W.

    2016-07-01

    Atomic scale molecular dynamics simulations of radiation damage have been performed on beryllium. Direct threshold displacement simulations along a geodesic projection of directions were used to investigate the directional dependence with a high spatial resolution. It was found that the directionally averaged probability of displacement increases from 0 at 35 eV, with the energy at which there is a 50% chance of a displacement occurring is 70 eV and asymptotically approaching 1 for higher energies. This is, however, strongly directionally dependent with a 50% probability of displacement varying from 35 to 120 eV, with low energy directions corresponding to the nearest neighbour directions. A new kinetic energy dependent expression for the average maximum displacement of an atom as a function of energy is derived which closely matches the simulated data.

  4. Overview of Optic Nerve Disorders

    MedlinePlus

    ... pathways to the brain results in loss of vision. At a structure in the brain called the optic chiasm, each optic nerve splits, ... both eyes, and the left side of the brain receives information from the right visual field of both eyes. ... occurs. Resources ...

  5. Design, fabrication and evaluation of a conforming circumpolar peripheral nerve cuff electrode for acute experimental use.

    PubMed

    Foldes, Emily L; Ackermann, D Michael; Bhadra, Niloy; Kilgore, Kevin L; Bhadra, Narendra

    2011-03-15

    Nerve cuff electrodes are a principle tool of basic and applied electro-neurophysiology studies and are championed for their ability to achieve good nerve recruitment with low thresholds. We describe the design and method of fabrication for a novel circumpolar peripheral nerve electrode for acute experimental use. This cylindrical cuff-style electrode provides approximately 270° of radial electrode contact with a nerve for each of an arbitrary number of contacts, has a profile that allows for simple placement and removal in an acute nerve preparation, and is designed for adjustment of the cylindrical diameter to ensure a close fit on the nerve. For each electrode, the electrical contacts were cut from 25 μm platinum foil as an array so as to maintain their positions relative to each other within the cuff. Lead wires were welded to each intended contact. The structure was then molded in silicone elastomer, after which the individual contacts were electrically isolated. The final electrode was curved into a cylindrical shape with an inner diameter corresponding to that of the intended target nerve. The positions of these contacts were well maintained during the molding and shaping process and failure rates during fabrication due to contact displacements were very low. Established electrochemical measurements were made on one electrode to confirm expected behavior for a platinum electrode and to measure the electrode impedance to applied voltages at different frequencies. These electrodes have been successfully used for nerve stimulation, recording, and conduction block in a number of different acute animal experiments by several investigators.

  6. Pulsed radiofrequency of lumbar dorsal root ganglion for chronic postamputation phantom pain.

    PubMed

    Imani, Farnad; Gharaei, Helen; Rezvani, Mehran

    2012-01-01

    Chronic pain following lower-limb amputation is now a well-known neuropathic, chronic-pain syndrome that usually presents as a combination of phantom and stump pain. Controlling these types of neuropathic pain is always complicated and challenging. If pharmacotherapy does not control the patient's pain, interventional procedures have to be taken. The aim of this study was to evaluate the efficacy of using pulsed radiofrequency (PRF) on the dorsal root ganglia at the L4 and L5 nerve roots to improve phantom pain. Two patients with phantom pain were selected for the study. After a positive response to segmental nerve blockade at the L4 and L5 nerve roots, PRF was performed on the L4 and L5 dorsal root ganglia. Global clinical improvement was good in one patient, with a 40% decrease in pain on the visual analogue scale (VAS) in 6 months, and moderate in the second patient, with a 30% decrease in pain scores in 4 months. PRF of the dorsal root ganglia at the L4 and L5 nerve roots may be an effective therapeutic option for patients with refractory phantom pain.

  7. Amyloplast Distribution Directs a Root Gravitropic Reaction

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth

    with regard to the participation of calcium ions and cytoskeletal elements in these processes is therefore substantial but still circumstantial and requires new experimental data. Using a new model - weak combined magnetic fields (CMFs), which elicit a variety of responses in plants, growth rate and fresh weight, seed germination, Ca2+ concentration, membrane permeability, with a frequency resonance to cyclotron frequency of calcium ions, we firstly showed that a root positive gravitropic reaction changes on a negative one. In this case, the paradoxical displacement of amylopasts-statoliths to the upper longitudinal cell wall of statocytes occurred in the direction opposite to a gravitational vector. Displacement of amyloplasts, which contain the abundance of free Ca2+ in the stroma, was accompanied with Ca2+ redistribution in the same direction in the cytosol and increasing around amyloplasts in comparison with the state magnetic field. In the elongation zone, calcium ions accumulated in the upper site of a gravistimulated root unlike a positive gravitropic reaction, and a root is bending in the same direction in which amyloplasts are displacing. It seems that a root gravitropic reaction, if it began, occurs by an usual physiological way resulting in root bending with an opposite sign. It is of a special interest that a root is bending to the same direction with displacing of amyloplasts: in positive gravitropism - downwards, in negative gravitropism - upwards. Peculiarities of calcium ion redistribution in statocytes under gravistimulation in such combined magnetic field are a new additional evidence of a Ca2+ ion significant role in gravitropism. Thus, our data support the starch-statolith hypothesis but also pose the question as to which forces displace amyloplasts against the gravity vector? We hope that these data will stimulate new research to better understand the mechanisms of plant graviperception and graviresponse. Gravistimulation of a root in the CMF with

  8. Amyloplast Distribution Directs a Root Gravitropic Reaction

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth

    with regard to the participation of calcium ions and cytoskeletal elements in these processes is therefore substantial but still circumstantial and requires new experimental data. Using a new model - weak combined magnetic fields (CMFs), which elicit a variety of responses in plants, growth rate and fresh weight, seed germination, Ca2+ concentration, membrane permeability, with a frequency resonance to cyclotron frequency of calcium ions, we firstly showed that a root positive gravitropic reaction changes on a negative one. In this case, the paradoxical displacement of amylopasts-statoliths to the upper longitudinal cell wall of statocytes occurred in the direction opposite to a gravitational vector. Displacement of amyloplasts, which contain the abundance of free Ca2+ in the stroma, was accompanied with Ca2+ redistribution in the same direction in the cytosol and increasing around amyloplasts in comparison with the state magnetic field. In the elongation zone, calcium ions accumulated in the upper site of a gravistimulated root unlike a positive gravitropic reaction, and a root is bending in the same direction in which amyloplasts are displacing. It seems that a root gravitropic reaction, if it began, occurs by an usual physiological way resulting in root bending with an opposite sign. It is of a special interest that a root is bending to the same direction with displacing of amyloplasts: in positive gravitropism - downwards, in negative gravitropism - upwards. Peculiarities of calcium ion redistribution in statocytes under gravistimulation in such combined magnetic field are a new additional evidence of a Ca2+ ion significant role in gravitropism. Thus, our data support the starch-statolith hypothesis but also pose the question as to which forces displace amyloplasts against the gravity vector? We hope that these data will stimulate new research to better understand the mechanisms of plant graviperception and graviresponse. Gravistimulation of a root in the CMF with

  9. Cryoanalgesia for painful peripheral nerve lesions.

    PubMed

    Wang, J K

    1985-06-01

    Twelve patients with chronically painful peripheral nerve lesions were treated with cryoanalgesia. The pain was relieved in 6 patients for 1-12 months. Although the pain eventually recurred, the patients resumed normal activities during remission. It is necessary to improve the techniques of nerve localization and to determine the proper mode of nerve freezing. PMID:2995903

  10. Altered peripheral nerve function resulting from haemodialysis.

    PubMed

    Stanley, E; Brown, J C; Pryor, J S

    1977-01-01

    The amplitudes of muscle and nerve action potentials evoked median nerve stimulation were recorded just before and immediately after haemodialysis. These revealed a growht of action potential amplitude during dialysis. It is suggested that some component of the defective peripheral nerve function that inevitably accompanies uraemia is temporarily improved during dialysis. PMID:845605

  11. Trigeminal nerve: Anatomic correlation with MR imaging

    SciTech Connect

    Daniels, D.L.; Pech, P.; Pojunas, K.W.; Kilgore, D.P.; Williams, A.L.; Haughton, V.M.

    1986-06-01

    Through correlation with cryomicrotic sections, the appearance of the trigeminal nerve and its branches on magnetic resonance images is described in healthy individuals and in patients with tumors involving this nerve. Coronal images are best for defining the different parts of the nerve and for making a side-to-side comparison. Sagittal images are useful to demonstrate tumors involving the Gasserian ganglion.

  12. 21 CFR 882.5275 - Nerve cuff.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nerve cuff. 882.5275 Section 882.5275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5275 Nerve cuff. (a) Identification. A nerve...

  13. Ephaptic coupling of myelinated nerve fibers

    NASA Astrophysics Data System (ADS)

    Binczak, S.; Eilbeck, J. C.; Scott, A. C.

    2001-01-01

    Numerical predictions of a simple myelinated nerve fiber model are compared with theoretical results in the continuum and discrete limits, clarifying the nature of the conduction process on an isolated nerve axon. Since myelinated nerve fibers are often arranged in bundles, this model is used to study ephaptic (nonsynaptic) interactions between impulses on parallel fibers, which may play a functional role in neural processing.

  14. Reinforcement of Tree Root and Non-frame Method in Slope Stabilization

    NASA Astrophysics Data System (ADS)

    Naoto, I.; Quang, N. Minh

    2009-04-01

    A root fiber can nail a slipping soil mass into the bedrock and thus can increase slope stability. The reinforcement of root fibers is considered as the resultant of tension and shear reinforces occurred in the cross section of root at slip surface. The shear force and bending moment of a deformed root directly prevent against the displacement of unstable soil mass while the tension force increase the friction force between unstable soil and bed rock. Longer displacement of slope causes larger deformation and thus causes larger reinforcement of tree root. In other side, larger root reinforcement results in more slope stability. The reinforcement of tree root and displacement of slipping soil mass depending on each other is the reinforcement mechanism of tree root in a landslide. The mechanism of tree root reinforcement is considered in developing a new soil nail method named Non-frame. By conducting a number of experiments of soil nail stabilizing slope, the alteration process of root reinforcement was performed in various conditions of rainfall and earthquake.

  15. Effect of pulsed infrared lasers on neural conduction and axoplasmic transport in sensory nerves

    NASA Astrophysics Data System (ADS)

    Wesselmann, Ursula; Rymer, William Z.; Lin, Shien-Fong

    1990-06-01

    Over the past ten years there has been an increasing interest in the use of lasers for neurosurgical and neurological procedures. Novel recent applications range from neurosurgical procedures such as dorsal root entry zone lesions made with argon and carbon dioxide microsurgical lasers to pain relief by low power laser irradiation of the appropriate painful nerve or affected region1 '2 However, despite the widespread clinical applications of laser light, very little is known about the photobiological interactions between laser light and nervous tissue. The present studies were designed to evaluate the effects of pulsed Nd:YAG laser light on neural impulse conduction and axoplasmic transport in sensory nerves in rats and cats. Our data indicate that Q-switched Nd:YAG laser irradiation can induce a preferential impairment of (1) the synaptic effects of small afferent fibers on dorsal horn cells in the spinal cord and of (2) small slow conducting sensory nerve fibers in dorsal roots and peripheral nerves. These results imply that laser light might have selective effects on impulse conduction in slow conducting sensory nerve fibers. In agreement with our elecirophysiological observations recent histological data from our laboratory show, that axonal transport of the enzyme horseradish peroxidase is selectively impaired in small sensory nerve fibers. In summary these data indicate, that Q-switched Nd:YAG laser irradiation can selectively impair neural conduction and axoplasmic transport in small sensory nerve fibers as compared to fast conducting fibers. A selective influence of laser irradiation on slow conducting fibers could have important clinical applications, especially for the treatment of chronic pain.

  16. Detection of peripheral nerve pathology

    PubMed Central

    Seelig, Michael J.; Baker, Jonathan C.; Mackinnon, Susan E.; Pestronk, Alan

    2013-01-01

    Objective: To compare accuracy of ultrasound and MRI for detecting focal peripheral nerve pathology, excluding idiopathic carpal or cubital tunnel syndromes. Methods: We performed a retrospective review of patients referred for neuromuscular ultrasound to identify patients who had ultrasound and MRI of the same limb for suspected brachial plexopathy or mononeuropathies, excluding carpal/cubital tunnel syndromes. Ultrasound and MRI results were compared to diagnoses determined by surgical or, if not performed, clinical/electrodiagnostic evaluation. Results: We identified 53 patients who had both ultrasound and MRI of whom 46 (87%) had nerve pathology diagnosed by surgical (n = 39) or clinical/electrodiagnostic (n = 14) evaluation. Ultrasound detected the diagnosed nerve pathology (true positive) more often than MRI (43/46 vs 31/46, p < 0.001). Nerve pathology was correctly excluded (true negative) with equal frequency by MRI and ultrasound (both 6/7). In 25% (13/53), ultrasound was accurate (true positive or true negative) when MRI was not. These pathologies were typically (10/13) long (>2 cm) and only occasionally (2/13) outside the MRI field of view. MRI missed multifocal pathology identified with ultrasound in 6 of 7 patients, often (5/7) because pathology was outside the MRI field of view. Conclusions: Imaging frequently detects peripheral nerve pathology and contributes to the differential diagnosis in patients with mononeuropathies and brachial plexopathies. Ultrasound is more sensitive than MRI (93% vs 67%), has equivalent specificity (86%), and better identifies multifocal lesions than MRI. In sonographically accessible regions ultrasound is the preferred initial imaging modality for anatomic evaluation of suspected peripheral nervous system lesions. PMID:23553474

  17. Histone deacetylase inhibitors relieve morphine resistance in neuropathic pain after peripheral nerve injury.

    PubMed

    Uchida, Hitoshi; Matsushita, Yosuke; Araki, Kohei; Mukae, Takehiro; Ueda, Hiroshi

    2015-08-01

    Neuropathic pain is often insensitive to morphine. Our previous study has demonstrated that neuron-restrictive silencer factor represses mu opioid receptor (MOP) gene expression in the dorsal root ganglion (DRG) via histone hypoacetylation-mediated mechanisms after peripheral nerve injury, thereby causing loss of peripheral morphine analgesia. Here, we showed that histone deacetylase (HDAC) inhibitors, such as trichostatin A and valproic acid, restored peripheral and systemic morphine analgesia in neuropathic pain. Also, these agents blocked nerve injury-induced MOP down-regulation in the DRG. These results suggest that HDAC inhibitors could serve as adjuvant analgesics to morphine for the management of neuropathic pain.

  18. An implant for chronic selective stimulation of nerves.

    PubMed

    Bugbee, M; Donaldson, N N; Lickel, A; Rijkhoff, N J; Taylor, J

    2001-01-01

    An implantable stimulator system has been developed for nerve stimulation. The system is capable of stimulating selectively, either by fibre position, fibre size or by sending action potentials in one direction only, based on the use of nerve cuffs. The stimulator produces either quasi-trapezoidal current pulses, to allow anodal blocking, or conventional rectangular-shaped current pulses, of amplitude 20 microA to 5 mA (in 20 microA steps) with duration of 16 micros to 1 ms (in 8 micros steps). For safety, both active and passive charge balancing is used. The amplitude of the active charge-balancing phase can be varied between 1/7 and 1/47 of the pulse amplitude. During manufacture, each implant is customised so as to drive either 6 quasi-tripolar (dipolar), 4 tripolar or 2 pentapolar cuffs. Possible applications of the device are: improved defaecation and bladder voiding after spinal cord injury, by stimulation of the sacral motor roots; neuromodulation to reduce hyperreflexia without concomitant muscle contractions; in stroke patients, to enable balanced inversion-eversion while dorsiflexing the ankle by stimulating the peroneal nerve. It may also be used in chronic animal experiments.This paper describes the implant system, its hardware and communication protocol, and shows results from in vitro tests of the device and the first acute anodal-blocking experiments in pigs. PMID:11344005

  19. Allotransplanted DRG neurons or Schwann cells affect functional recovery in a rodent model of sciatic nerve injury

    PubMed Central

    Liu, Weimin; Markman, John D.; Gelbard, Harris A.; Huang, Jason H.

    2015-01-01

    Objective In this study, the functional recoveries of Sprague-Dawley rats following repair of a complete sciatic nerve transection using allotransplanted dorsal root ganglion (DRG) neurons or Schwann cells were examined using a number of outcome measures. Methods Four groups were compared: (1) repair with a nerve guide conduit seeded with allotransplanted Schwann cells harvested from Wistar rats, (2) repair with a nerve guide conduit seeded with DRG neurons, (3) repair with solely a nerve guide conduit, and (4) sham-surgery animals where the sciatic nerve was left intact. The results corroborated our previous reported histology findings and measures of immunogenicity. Results The Wistar-DRG-treated group achieved the best recovery, significantly outperforming both the Wistar-Schwann group and the nerve guide conduit group in the Von Frey assay of touch response (P < 0.05). Additionally, Wistar-DRG and Wistar-Schwann seeded repairs showed lower frequency and severity in an autotomy measure of the self-mutilation of the injured leg because of neuralgia. Conclusion These results suggest that in complete peripheral nerve transections, surgical repair using nerve guide conduits with allotransplanted DRG and Schwann cells may improve recovery, especially DRG neurons, which elicit less of an immune response. PMID:24836462

  20. Dilation of the oropharynx via selective stimulation of the hypoglossal nerve

    NASA Astrophysics Data System (ADS)

    Huang, Jingtao; Sahin, Mesut; Durand, Dominique M.

    2005-12-01

    The functional effects of selective hypoglossal nerve (HG) stimulation with a multi-contact peripheral nerve electrode were assessed using images of the upper airways and the tongue in anesthetized beagles. A biphasic pulse train of 50 Hz frequency and 2 s duration was applied through each one of the tripolar contact sets of the nerve electrode while the pharyngeal images were acquired into a computer. The stimulation current was limited to 20% above the activation threshold for maximum selectivity. The images showed that various contact sets could generate several different activation patterns of the tongue muscles resulting in medial and/or lateral dilation and closing of the airways at the tongue root. Some of these patterns translated into an increase in the oropharyngeal size while others did not have any effect. The pharyngeal sizes were not statistically different during stimulation either between the two different positions of the head (30° and 60°), or when the lateral contacts were compared with the medial ones. The contacts that had the least effect generated an average of 53 ± 15% pharyngeal dilation relative to the best contacts, indicating that the results are marginally sensitive to the contact position around the HG nerve trunk. These results suggest that selective HG nerve stimulation can be a useful technique to produce multiple tongue activation patterns that can dilate the pharynx. This may in turn increase the size of the patient population who can benefit from HG nerve stimulation as a treatment method for obstructive sleep apnea.

  1. Dilation of the oropharynx via selective stimulation of the hypoglossal nerve.

    PubMed

    Huang, Jingtao; Sahin, Mesut; Durand, Dominique M

    2005-12-01

    The functional effects of selective hypoglossal nerve (HG) stimulation with a multi-contact peripheral nerve electrode were assessed using images of the upper airways and the tongue in anesthetized beagles. A biphasic pulse train of 50 Hz frequency and 2 s duration was applied through each one of the tripolar contact sets of the nerve electrode while the pharyngeal images were acquired into a computer. The stimulation current was limited to 20% above the activation threshold for maximum selectivity. The images showed that various contact sets could generate several different activation patterns of the tongue muscles resulting in medial and/or lateral dilation and closing of the airways at the tongue root. Some of these patterns translated into an increase in the oropharyngeal size while others did not have any effect. The pharyngeal sizes were not statistically different during stimulation either between the two different positions of the head (30 degrees and 60 degrees), or when the lateral contacts were compared with the medial ones. The contacts that had the least effect generated an average of 53 +/- 15% pharyngeal dilation relative to the best contacts, indicating that the results are marginally sensitive to the contact position around the HG nerve trunk. These results suggest that selective HG nerve stimulation can be a useful technique to produce multiple tongue activation patterns that can dilate the pharynx. This may in turn increase the size of the patient population who can benefit from HG nerve stimulation as a treatment method for obstructive sleep apnea. PMID:16317230

  2. Application of implantable wireless biomicrosystem for monitoring nerve impedance of rat after sciatic nerve injury.

    PubMed

    Li, Yu-Ting; Peng, Chih-Wei; Chen, Lung-Tai; Lin, Wen-Shan; Chu, Chun-Hsun; Chen, Jia-Jin Jason

    2013-01-01

    Electrical stimulation is usually applied percutaneously for facilitating peripheral nerve regeneration. However, few studies have conducted long-term monitoring of the condition of nerve regeneration. This study implements an implantable biomicrosystem for inducing pulse current for aiding nerve repair and monitoring the time-course changes of nerve impedance for assessing nerve regeneration in sciatic nerve injury rat model. For long-term implantation, a transcutaneous magnetic coupling technique is adopted for power and data transmission. For in vivo study, the implanted module was placed in the rat's abdomen and the cuff electrode was wrapped around an 8-mm sciatic nerve gap of the rat for nerve impedance measurement for 42 days. One group of animals received monophasic constant current via the cuff electrode and a second group had no stimulation between days 8-21. The nerve impedance increased to above 150% of the initial value in the nerve regeneration groups with and without stimulation whereas the group with no nerve regeneration increased to only 113% at day 42. The impedance increase in nerve regeneration groups can be observed before evident functional recovery. Also, the nerve regeneration group that received electrical stimulation had relatively higher myelinated fiber density than that of no stimulation group, 20686 versus 11417 fiber/mm (2). The developed implantable biomicrosystem is proven to be a useful experimental tool for long-term stimulation in aiding nerve fiber growth as well as impedance assessment for understanding the time-course changes of nerve regeneration. PMID:23060343

  3. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  4. Using Square Roots

    ERIC Educational Resources Information Center

    Wilson, William Wynne

    1976-01-01

    This article describes techniques which enable the user of a comparatively simple calculator to perform calculations of cube roots, nth roots, trigonometric, and inverse trigonometric functions, logarithms, and exponentials. (DT)

  5. Morphological studies of the vestibular nerve

    NASA Technical Reports Server (NTRS)

    Bergstroem, B.

    1973-01-01

    The anatomy of the intratemporal part of the vestibular nerve in man, and the possible age related degenerative changes in the nerve were studied. The form and structure of the vestibular ganglion was studied with the light microscope. A numerical analysis of the vestibular nerve, and caliber spectra of the myelinated fibers in the vestibular nerve branches were studied in individuals of varying ages. It was found that the peripheral endings of the vestibular nerve form a complicated pattern inside the vestibular sensory epithelia. A detailed description of the sensory cells and their surface organelles is included.

  6. Inferior alveolar and lingual nerve imaging.

    PubMed

    Miloro, Michael; Kolokythas, Antonia

    2011-03-01

    At present, there are no objective testing modalities available for evaluation of iatrogenic injury to the terminal branches of the trigeminal nerve, making such clinical diagnosis and management complicated for the oral and maxillofacial surgeon. Several imaging modalities can assist in the preoperative risk assessment of the trigeminal nerve as related to commonly performed procedures in the vicinity of the nerve, mostly third molar surgery. This article provides a review of all available imaging modalities and their clinical application relative to preoperative injury risk assessment of the inferior alveolar nerve and lingual nerve, and postinjury and postsurgical repair recovery status.

  7. Miniarthrotomy assisted percutaneous screw fixation for displaced medial malleolus fractures – A novel technique

    PubMed Central

    Saini, Pramod; Aggrawal, Abhinav; Meena, Sanjay; Trikha, Vivek; Mittal, Samarth

    2014-01-01

    Aim To describe here a technique of miniarthrotomy assisted percutaneous screw insertion for displaced Herscovici type B and C medial malleolar fractures. Method Incision was made centred over the superomedial angle of the ankle mortise, about half a cm medial to tibialis anterior. Arthrotomy was done and reduction obtained. Percuntaneously, two 4 mm cancellous cannulated screws were inserted through medial malleolus. Results and conclusion This approach allows direct visualization of reduction, removal of entrapped soft tissue and preservation of saphenous vein and nerve. PMID:25983507

  8. Discrete square root smoothing.

    NASA Technical Reports Server (NTRS)

    Kaminski, P. G.; Bryson, A. E., Jr.

    1972-01-01

    The basic techniques applied in the square root least squares and square root filtering solutions are applied to the smoothing problem. Both conventional and square root solutions are obtained by computing the filtered solutions, then modifying the results to include the effect of all measurements. A comparison of computation requirements indicates that the square root information smoother (SRIS) is more efficient than conventional solutions in a large class of fixed interval smoothing problems.

  9. Variable displacement alpha-type Stirling engine

    NASA Astrophysics Data System (ADS)

    Homutescu, V. M.; Bălănescu, D. T.; Panaite, C. E.; Atanasiu, M. V.

    2016-08-01

    The basic design and construction of an alpha-type Stirling engine with on load variable displacement is presented. The variable displacement is obtained through a planar quadrilateral linkage with one on load movable ground link. The physico-mathematical model used for analyzing the variable displacement alpha-type Stirling engine behavior is an isothermal model that takes into account the real movement of the pistons. Performances and power adjustment capabilities of such alpha-type Stirling engine are calculated and analyzed. An exemplification through the use of the numerical simulation was performed in this regard.

  10. Designing ideal conduits for peripheral nerve repair

    PubMed Central

    de Ruiter, Godard C. W.; Malessy, Martijn J. A.; Yaszemski, Michael J.; Windebank, Anthony J.; Spinner, Robert J.

    2010-01-01

    Nerve tubes, guides, or conduits are a promising alternative for autologous nerve graft repair. The first biodegradable empty single lumen or hollow nerve tubes are currently available for clinical use and are being used mostly in the repair of small-diameter nerves with nerve defects of < 3 cm. These nerve tubes are made of different biomaterials using various fabrication techniques. As a result these tubes also differ in physical properties. In addition, several modifications to the common hollow nerve tube (for example, the addition of Schwann cells, growth factors, and internal frameworks) are being investigated that may increase the gap that can be bridged. This combination of chemical, physical, and biological factors has made the design of a nerve conduit into a complex process that demands close collaboration of bioengineers, neuroscientists, and peripheral nerve surgeons. In this article the authors discuss the different steps that are involved in the process of the design of an ideal nerve conduit for peripheral nerve repair. PMID:19435445

  11. Parotid lymphangioma associated with facial nerve paralysis.

    PubMed

    Imaizumi, Mitsuyoshi; Tani, Akiko; Ogawa, Hiroshi; Omori, Koichi

    2014-10-01

    Parotid lymphangioma is a relatively rare disease that is usually detected in infancy or early childhood, and which has typical features. Clinical reports of facial nerve paralysis caused by lymphangioma, however, are very rare. Usually, facial nerve paralysis in a child suggests malignancy. Here we report a very rare case of parotid lymphangioma associated with facial nerve paralysis. A 7-year-old boy was admitted to hospital with a rapidly enlarging mass in the left parotid region. Left peripheral-type facial nerve paralysis was also noted. Computed tomography and magnetic resonance imaging also revealed multiple cystic lesions. Open biopsy was undertaken in order to investigate the cause of the facial nerve paralysis. The histopathological findings of the excised tumor were consistent with lymphangioma. Prednisone (40 mg/day) was given in a tapering dose schedule. Facial nerve paralysis was completely cured 1 month after treatment. There has been no recurrent facial nerve paralysis for eight years.

  12. Corky root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  13. WHY ROOTING FAILS.

    SciTech Connect

    CREUTZ,M.

    2007-07-30

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four 'tastes.' The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  14. PDT - PARTICLE DISPLACEMENT TRACKING SOFTWARE

    NASA Technical Reports Server (NTRS)

    Wernet, M. P.

    1994-01-01

    Particle Imaging Velocimetry (PIV) is a quantitative velocity measurement technique for measuring instantaneous planar cross sections of a flow field. The technique offers very high precision (1%) directionally resolved velocity vector estimates, but its use has been limited by high equipment costs and complexity of operation. Particle Displacement Tracking (PDT) is an all-electronic PIV data acquisition and reduction procedure which is simple, fast, and easily implemented. The procedure uses a low power, continuous wave laser and a Charged Coupled Device (CCD) camera to electronically record the particle images. A frame grabber board in a PC is used for data acquisition and reduction processing. PDT eliminates the need for photographic processing, system costs are moderately low, and reduced data are available within seconds of acquisition. The technique results in velocity estimate accuracies on the order of 5%. The software is fully menu-driven from the acquisition to the reduction and analysis of the data. Options are available to acquire a single image or 5- or 25-field series of images separated in time by multiples of 1/60 second. The user may process each image, specifying its boundaries to remove unwanted glare from the periphery and adjusting its background level to clearly resolve the particle images. Data reduction routines determine the particle image centroids and create time history files. PDT then identifies the velocity vectors which describe the particle movement in the flow field. Graphical data analysis routines are included which allow the user to graph the time history files and display the velocity vector maps, interpolated velocity vector grids, iso-velocity vector contours, and flow streamlines. The PDT data processing software is written in FORTRAN 77 and the data acquisition routine is written in C-Language for 80386-based IBM PC compatibles running MS-DOS v3.0 or higher. Machine requirements include 4 MB RAM (3 MB Extended), a single or

  15. System identification of mechanomyograms detected with an acceleration sensor and a laser displacement meter.

    PubMed

    Uchiyama, Takanori; Shinohara, Keita

    2011-01-01

    The purpose of this study is to investigate the transfer functions of mechanomyograms (MMGs) detected with an acceleration sensor and a laser displacement meter. The MMGs evoked by electrical stimulation to the peroneal nerve were recorded on the skin of the tibial anterior muscle. The displacement MMG (DMMG) and the acceleration MMG (AMMG) systems were identified using a singular value decomposition method. The appropriate order of the AMMG system was six and that of the DMMG system was four. The undamped natural frequencies of the systems were compared to resonance frequencies of human soft tissue. Some of the undamped natural frequencies estimated from the AMMG systems agreed with the resonance frequencies in the literature but others were lower than the resonance frequencies. The undamped natural frequencies estimated from the DMMG systems were lower than the resonance frequencies.

  16. Rooting Gene Trees without Outgroups: EP Rooting

    PubMed Central

    Sinsheimer, Janet S.; Little, Roderick J. A.; Lake, James A.

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167–181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301–316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60–76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489–493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763–766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–260). PMID:22593551

  17. An ecohydrological framework for grass displacement by woody plants in savannas

    NASA Astrophysics Data System (ADS)

    Yu, Kailiang; D'Odorico, Paolo

    2014-03-01

    During the past several decades, woody plants have been encroaching into grasslands around the world. This transition in plant dominance is often explained as a state shift in bistable ecosystem dynamics induced by fire-vegetation feedbacks. These feedbacks occur when woody plants are able to displace grasses because of their better access to soil water and light. On the other hand, grasses can displace woody plants because of their ability to increase fire frequency and of the higher susceptibility of woody plants to fire-induced mortality. In this study, we present an ecohydrological framework to investigate the displacement of grasses by woody plants. Considering the effect of lateral root spread and of soil water and light limitations, we found that woody plant encroachment can substantially suppress grass production even without the presence of grazers. Bistable dynamics emerge as a result of the grass-fire feedback for a wide range of rainfall conditions, fire susceptibility, and woody plant growth rates.

  18. Pleiotrophin and peripheral nerve injury.

    PubMed

    Jin, Li; Jianghai, Chen; Juan, Liu; Hao, Kang

    2009-10-01

    The proto-oncogene pleiotrophin, discovered in 1989, was considered as a multifunctional growth factor, which played an important role in tumor occurrence, development, and central nervous system. The latest research showed that pleiotrophin signal pathway probably participated in neural repair after peripheral nerve injury, especially in the following critical points, such as the protection of spinal cord neuron, the promotion of the speed of neuron axon regeneration, the guidance of neuron axon regeneration, skeleton muscle reinnervation, and so on. It potentially plays a key role in the guidance of neural axon regeneration in peripheral nervous system and muscle reinnervation. With the deepening of related researches, pleiotrophin gene would become a controllable target for improving the repairing effect of peripheral nerve injury and reconstruction of the neuromuscular junction.

  19. Complement components of nerve regeneration conditioned fluid influence the microenvironment of nerve regeneration

    PubMed Central

    Li, Guang-shuai; Li, Qing-feng; Dong, Ming-min; Zan, Tao; Ding, Shuang; Liu, Lin-bo

    2016-01-01

    Nerve regeneration conditioned fluid is secreted by nerve stumps inside a nerve regeneration chamber. A better understanding of the proteinogram of nerve regeneration conditioned fluid can provide evidence for studying the role of the microenvironment in peripheral nerve regeneration. In this study, we used cylindrical silicone tubes as the nerve regeneration chamber model for the repair of injured rat sciatic nerve. Isobaric tags for relative and absolute quantitation proteomics technology and western blot analysis confirmed that there were more than 10 complement components (complement factor I, C1q-A, C1q-B, C2, C3, C4, C5, C7, C8β and complement factor D) in the nerve regeneration conditioned fluid and each varied at different time points. These findings suggest that all these complement components have a functional role in nerve regeneration. PMID:27212935

  20. Release of axonally transported material from an in vitro amphibian sciatic nerve preparation

    SciTech Connect

    Snyder, R.E.

    1988-04-01

    The rapid axonal transport of a pulse of (35S)methionine-labelled material was used to study the release of transported material from amphibian nerve maintained in vitro. Following creation of a moving pulse of activity in a dorsal root ganglion-sciatic nerve preparation, the ganglion was removed and the nerve placed in a three-compartment tray, the section of nerve in the middle compartment containing no truncated branches (unbranched section). All three compartments were filled with a saline solution that in some studies contained nonradioactive methionine (1.0 mmol/L). Analysis of studies in which nonradioactive methionine was absent revealed that labelled material appeared in the bathing solution of the end compartments that contained truncated branches, but not in the solution of the middle (unbranched) compartment. The quantity of label released in the branched compartments was approximately 6% of that remaining in the corresponding section of nerve following an 18-20 h incubation period. However, when nonradioactive methionine was present, all compartments showed an additional activity in the bathing solution of approximately 10% of that remaining in the nerve. In another study in which a position-sensitive detector of ionizing radiation was used to monitor progress of the pulse, it was found that activity did not enter the bathing solution of a compartment prior to the pulse of activity. It is concluded that in the absence of methionine from the bathing solution, axonally transported material is released only from regions of nerve that contain severed axons; however, the presence of methionine allows transported material to be released from nerve containing intact axons. Ultrafiltration studies and thin-layer chromatography revealed the majority of material released to be of low-molecular weight (less than 30,000 daltons) and not free (35S)methionine.

  1. A flexible sensor measuring displacement and bending

    NASA Astrophysics Data System (ADS)

    Nishijima, Takashi; Yamamoto, Akio; Higuchi, Toshiro

    2009-04-01

    This paper proposes a new sensor that is capable of measuring both linear displacement and bending. The sensor is designed to be used with an electrostatic film motor that features mechanical flexibility, but can also be used as an independent sensor. The sensor employs three-phase electrodes both in sliding and stationary parts and estimates displacement and bending from the change of the capacitance between the electrodes. The paper describes an equivalent capacitance-network model for the sensor. Based on the model, sensing principles for both displacement and bending are presented and analyzed. The analyses are experimentally verified using a prototype sensor. The experimental results show that the prototype sensor could measure both displacement and bending with little interference between them.

  2. Giant adrenal cyst displacing the right kidney.

    PubMed

    Chodisetti, Subbarao; Boddepalli, Yogesh; Kota, Malakondareddy

    2016-01-01

    Adrenal cysts are rare and should be considered in the differential diagnosis of retroperitoneal cysts. We present a case of a huge adrenal cyst displacing the right kidney anteriorly toward the left side in a young female.

  3. Alcohol neurolysis of digital nerves

    PubMed Central

    Wright, Garrett K.; Burnett, Christopher J.

    2016-01-01

    Alcohol neurolysis is a well-established treatment in chronic pain management, often used in cases of intractable cancer-related pain that is refractory to other management therapies. We describe a 76-year-old woman with chronic toe neuritis who failed multiple treatments, including oral and topical analgesics, nerve blocks, and radiofrequency ablations. Alcohol neurolysis was performed via digit block of the toe resulting in 100% pain relief. PMID:27365891

  4. Exogenous nerve growth factor protects the hypoglossal nerve against crush injury

    PubMed Central

    Fan, Li-yuan; Wang, Zhong-chao; Wang, Pin; Lan, Yu-yan; Tu, Ling

    2015-01-01

    Studies have shown that sensory nerve damage can activate the p38 mitogen-activated protein kinase (MAPK) pathway, but whether the same type of nerve injury after exercise activates the p38MAPK pathway remains unclear. Several studies have demonstrated that nerve growth factor may play a role in the repair process after peripheral nerve injury, but there has been little research focusing on the hypoglossal nerve injury and repair. In this study, we designed and established rat models of hypoglossal nerve crush injury and gave intraperitoneal injections of exogenous nerve growth factor to rats for 14 days. p38MAPK activity in the damaged neurons was increased following hypoglossal nerve crush injury; exogenous nerve growth factor inhibited this increase in acitivity and increased the survival rate of motor neurons within the hypoglossal nucleus. Under transmission electron microscopy, we found that the injection of nerve growth factor contributed to the restoration of the morphology of hypoglossal nerve after crush injury. Our experimental findings indicate that exogenous nerve growth factor can protect damaged neurons and promote hypoglossal nerve regeneration following hypoglossal nerve crush injury. PMID:26889186

  5. The longitudinal epineural incision and complete nerve transection method for modeling sciatic nerve injury

    PubMed Central

    Cheng, Xing-long; Wang, Pei; Sun, Bo; Liu, Shi-bo; Gao, Yun-feng; He, Xin-ze; Yu, Chang-yu

    2015-01-01

    Injury severity, operative technique and nerve regeneration are important factors to consider when constructing a model of peripheral nerve injury. Here, we present a novel peripheral nerve injury model and compare it with the complete sciatic nerve transection method. In the experimental group, under a microscope, a 3-mm longitudinal incision was made in the epineurium of the sciatic nerve to reveal the nerve fibers, which were then transected. The small, longitudinal incision in the epineurium was then sutured closed, requiring no stump anastomosis. In the control group, the sciatic nerve was completely transected, and the epineurium was repaired by anastomosis. At 2 and 4 weeks after surgery, Wallerian degeneration was observed in both groups. In the experimental group, at 8 and 12 weeks after surgery, distinct medullary nerve fibers and axons were observed in the injured sciatic nerve. Regular, dense myelin sheaths were visible, as well as some scarring. By 12 weeks, the myelin sheaths were normal and intact, and a tight lamellar structure was observed. Functionally, limb movement and nerve conduction recovered in the injured region between 4 and 12 weeks. The present results demonstrate that longitudinal epineural incision with nerve transection can stably replicate a model of Sunderland grade IV peripheral nerve injury. Compared with the complete sciatic nerve transection model, our method reduced the difficulties of micromanipulation and surgery time, and resulted in good stump restoration, nerve regeneration, and functional recovery. PMID:26692866

  6. Effect of oblique nerve grafting on peripheral nerve regeneration in rats.

    PubMed

    Kotulska, Katarzyna; Marcol, Wiesław; Larysz-Brysz, Magdalena; Tendera, Zofia; Malinowska-Kołodziej, Izabela; Slusarczyk, Wojciech; Jedrzejowska-Szypułka, Halina; Lewin-Kowalik, Joanna

    2006-01-01

    Current methods of peripheral nerve repair are to rejoin cut nerve stumps directly or to bridge large gaps with autologous nerve grafts. In both cases the surface of nerve stump endings is typically cut perpendicularly to the long axis of the nerve. The outcome of such operations, however, is still not satisfactory. In this study, we examine the effect of oblique nerve cutting and grafting on morphological as well as functional features of regeneration. In adult rats, sciatic nerve was cut and rejoined either directly or using an autologous graft, at 90 degrees or 30 degrees angle. Functional regeneration was assessed by walking track analysis during 12-week follow-up. Afterwards muscle weight was measured and histological studies were performed. The latter included nerve fibers and Schwann cells counting, as well as visualization of scar formation and epineural fibrosis. Nerves cut obliquely and rejoined showed better functional recovery than perpendicularly transected. Similar effect was observed after oblique grafting when compared to perpendicular one. Numbers of nerve fibers growing into the distal stump of the nerve as well as the number of Schwann cells were significantly higher in obliquely than in perpendicularly operated nerves. Moreover, growing axons were arranged more regularly following oblique treatment. These data indicate that joining or grafting the nerve stumps at acute angle is a more profitable method of nerve repair than the standard procedure performed at right angle. PMID:17066410

  7. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair.

    PubMed

    Pateman, Christopher J; Harding, Adam J; Glen, Adam; Taylor, Caroline S; Christmas, Claire R; Robinson, Peter P; Rimmer, Steve; Boissonade, Fiona M; Claeyssens, Frederik; Haycock, John W

    2015-05-01

    The peripheral nervous system has a limited innate capacity for self-repair following injury, and surgical intervention is often required. For injuries greater than a few millimeters autografting is standard practice although it is associated with donor site morbidity and is limited in its availability. Because of this, nerve guidance conduits (NGCs) can be viewed as an advantageous alternative, but currently have limited efficacy for short and large injury gaps in comparison to autograft. Current commercially available NGC designs rely on existing regulatory approved materials and traditional production methods, limiting improvement of their design. The aim of this study was to establish a novel method for NGC manufacture using a custom built laser-based microstereolithography (μSL) setup that incorporated a 405 nm laser source to produce 3D constructs with ∼ 50 μm resolution from a photocurable poly(ethylene glycol) resin. These were evaluated by SEM, in vitro neuronal, Schwann and dorsal root ganglion culture and in vivo using a thy-1-YFP-H mouse common fibular nerve injury model. NGCs with dimensions of 1 mm internal diameter × 5 mm length with a wall thickness of 250 μm were fabricated and capable of supporting re-innervation across a 3 mm injury gap after 21 days, with results close to that of an autograft control. The study provides a technology platform for the rapid microfabrication of biocompatible materials, a novel method for in vivo evaluation, and a benchmark for future development in more advanced NGC designs, biodegradable and larger device sizes, and longer-term implantation studies. PMID:25725557

  8. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair.

    PubMed

    Pateman, Christopher J; Harding, Adam J; Glen, Adam; Taylor, Caroline S; Christmas, Claire R; Robinson, Peter P; Rimmer, Steve; Boissonade, Fiona M; Claeyssens, Frederik; Haycock, John W

    2015-05-01

    The peripheral nervous system has a limited innate capacity for self-repair following injury, and surgical intervention is often required. For injuries greater than a few millimeters autografting is standard practice although it is associated with donor site morbidity and is limited in its availability. Because of this, nerve guidance conduits (NGCs) can be viewed as an advantageous alternative, but currently have limited efficacy for short and large injury gaps in comparison to autograft. Current commercially available NGC designs rely on existing regulatory approved materials and traditional production methods, limiting improvement of their design. The aim of this study was to establish a novel method for NGC manufacture using a custom built laser-based microstereolithography (μSL) setup that incorporated a 405 nm laser source to produce 3D constructs with ∼ 50 μm resolution from a photocurable poly(ethylene glycol) resin. These were evaluated by SEM, in vitro neuronal, Schwann and dorsal root ganglion culture and in vivo using a thy-1-YFP-H mouse common fibular nerve injury model. NGCs with dimensions of 1 mm internal diameter × 5 mm length with a wall thickness of 250 μm were fabricated and capable of supporting re-innervation across a 3 mm injury gap after 21 days, with results close to that of an autograft control. The study provides a technology platform for the rapid microfabrication of biocompatible materials, a novel method for in vivo evaluation, and a benchmark for future development in more advanced NGC designs, biodegradable and larger device sizes, and longer-term implantation studies.

  9. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  10. Motor nerve conduction velocity (MCV) and lead content in sciatic nerve of lead-exposed rats

    SciTech Connect

    Maehara, N.; Uchino, E.; Terayama, K.; Ohno, H.; Yamamura, K.

    1986-07-01

    There have been many pathological and electrophysiological studies of peripheral nerves in inorganic lead intoxication. Peripheral nerve conduction velocity (NCV) has been used as an objective measure of the effects of lead on the peripheral nerve function and has been examined with blood lead content. There have been few reports on the changes in NCV related to lead content in the peripheral nerve tissue under lead poisoning. In the present study, the authors have examined motor nerve conduction velocity (MCV) of the tail by a non-invasive method and lead content of the peripheral nerve in lead-exposed rats. Furthermore, they have attempted to assess the relationship between these two parameters.

  11. Mechanisms of nerve injury in leprosy.

    PubMed

    Scollard, David M; Truman, Richard W; Ebenezer, Gigi J

    2015-01-01

    All patients with leprosy have some degree of nerve involvement. Perineural inflammation is the histopathologic hallmark of leprosy, and this localization may reflect a vascular route of entry of Mycobacterium leprae into nerves. Once inside nerves, M. leprae are ingested by Schwann cells, with a wide array of consequences. Axonal atrophy may occur early in this process; ultimately, affected nerves undergo segmental demyelination. Knowledge of the mechanisms of nerve injury in leprosy has been greatly limited by the minimal opportunities to study affected nerves in man. The nine-banded armadillo provides the only animal model of the pathogenesis of M. leprae infection. New tools available for this model enable the study and correlation of events occurring in epidermal nerve fibers, dermal nerves, and nerve trunks, including neurophysiologic parameters, bacterial load, and changes in gene transcription in both neural and inflammatory cells. The armadillo model is likely to enhance understanding of the mechanisms of nerve injury in leprosy and offers a means of testing proposed interventions. PMID:25432810

  12. Inferior alveolar nerve block: Alternative technique

    PubMed Central

    Thangavelu, K.; Kannan, R.; Kumar, N. Senthil

    2012-01-01

    Background: Inferior alveolar nerve block (IANB) is a technique of dental anesthesia, used to produce anesthesia of the mandibular teeth, gingivae of the mandible and lower lip. The conventional IANB is the most commonly used the nerve block technique for achieving local anesthesia for mandibular surgical procedures. In certain cases, however, this nerve block fails, even when performed by the most experienced clinician. Therefore, it would be advantageous to find an alternative simple technique. Aim and Objective: The objective of this study is to find an alternative inferior alveolar nerve block that has a higher success rate than other routine techniques. To this purpose, a simple painless inferior alveolar nerve block was designed to anesthetize the inferior alveolar nerve. Materials and Methods: This study was conducted in Oral surgery department of Vinayaka Mission's dental college Salem from May 2009 to May 2011. Five hundred patients between the age of 20 years and 65 years who required extraction of teeth in mandible were included in the study. Out of 500 patients 270 were males and 230 were females. The effectiveness of the IANB was evaluated by using a sharp dental explorer in the regions innervated by the inferior alveolar, lingual, and buccal nerves after 3, 5, and 7 min, respectively. Conclusion: This study concludes that inferior alveolar nerve block is an appropriate alternative nerve block to anesthetize inferior alveolar nerve due to its several advantages. PMID:25885503

  13. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  14. Implant Injury Case Series and Review of the Literature Part 1: Inferior Alveolar Nerve Injury.

    PubMed

    Du Toit, Jonathan; Gluckman, Howard; Gamil, Rami; Renton, Tara

    2015-08-01

    Injury to adjacent structures is an unfortunate and avoidable outcome of oral implant placement surgery. Paramount among these is perforation into paranasal sinus; into neighboring tooth root; through cortical plate; and into vessels, canals, and, most importantly, nerves. In most cases, injudicious oral implant placement can be attributed to poor treatment planning. We present the cases of several patients referred for postsurgical radiology that illustrate injury to the inferior alveolar canal by implant impingement, penetration, and even complete obliteration of the nerve and canal in the absence of proper treatment planning and imaging modalities. The authors stress the importance of thorough implant case preparation and planning, which may include the use of cone beam computerized tomography in order to minimize nerve injury. PMID:24945089

  15. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    NASA Technical Reports Server (NTRS)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  16. Morphology and Nanomechanics of Sensory Neurons Growth Cones following Peripheral Nerve Injury

    PubMed Central

    Szabo, Vivien; Végh, Attila-Gergely; Lucas, Olivier; Cloitre, Thierry; Scamps, Frédérique; Gergely, Csilla

    2013-01-01

    A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins. PMID:23418549

  17. Deep rooting in winter wheat: rooting nodes of deep roots in two cultivars with deep and shallow root systems.

    PubMed

    Araki, H; Iijima, M

    2001-09-01

    Deep rooting of wheat has been suggested that it influences the tolerance to various environmental stresses. In this study, the nodes from which the deepest penetrated roots had emerged were examined in winter wheat. The wheat was grown in long tubes with or without mechanical stress and in large root boxes. The length and growth angle of each axile root were examined to analyze the difference in the vertical distribution of the roots between the two wheat cultivars, one with a deep and one with a shallow root system. In Shiroganekomugi, a Japanese winter wheat cultivar with a shallow root system, the rooting depths of the seminal and nodal roots decreased as the rooting nodes advanced acropetally. Six out of nine deepest roots were seminal root in the non-mechanical stress conditions. In Mutsubenkei, a Japanese winter wheat cultivar with a deep root system, grown in root boxes, not only the seminal roots but also the coleoptilar and the first nodal roots penetrated to a depth of more than 1.3 m in the root box, and became the deepest roots. In both cultivars, the seminal roots became the deepest roots under the mechanical stress conditions. There were no clear tendencies in the root growth angles among the rooting nodes in the wheat root system. This indicates that the length of the axile roots can explain the differences in the rooting depths among axile roots in a wheat root system. On the other hand, the axile roots of Mutsubenkei elongated significantly more vertically than those of Shiroganekomugi. This suggests that not only seminal but also nodal roots exhibit strong positive gravitropism and penetrate deeply in a cultivar with a deep root system. In wheat cultivars, it is likely that the extent of its Root Depth Index results partly from the gravitropic responses of both seminal and nodal roots.

  18. The border between the central and the peripheral nervous system in the cat cochlear nerve: a light and scanning electron microscopical study.

    PubMed

    Osen, Kirsten K; Furness, David N; Hackney, Carole M

    2011-07-01

    The transition between the central (CNS) and peripheral nervous system (PNS) in cranial and spinal nerve roots, referred to here as the CNS-PNS border, is of relevance to nerve root disorders and factors that affect peripheral-central regeneration. Here, this border is described in the cat cochlear nerve using light microscopical sections, and scanning electron microscopy of the CNS-PNS interfaces exposed by fracture of the nerve either prior to or following critical point drying. The CNS-PNS border represents an abrupt change in type of myelin, supporting elements, and vascularization. Because central myelin is formed by oligodendrocytes and peripheral myelin by Schwann cells, the myelinated fibers are as a rule equipped with a node of Ranvier at the border passage. The border is shallower and smoother in cat cochlear nerve than expected from other nerves, and the borderline nodes are largely in register. The loose endoneurial connective tissue of the PNS compartment is closed at the border by a compact glial membrane, the mantle zone, of the CNS compartment. The mantle zone is penetrated by the nerve fibers, but is otherwise composed of astrocytes and their interwoven processes like the external limiting membrane of the brain surface with which it is continuous. The distal surface of the mantle zone is covered by a fenestrated basal lamina. Only occasional vessels traverse the border. From an anatomical point of view, the border might be expected to be a weak point along the cochlear nerve and thus vulnerable to trauma. In mature animals, the CNS-PNS border presents a barrier to regrowth of regenerating nerve fibers and to invasion of the CNS by Schwann cells. An understanding of this region in the cochlear nerve is therefore relevant to head injuries that lead to hearing loss, to surgery on acoustic Schwannomas, and to the possibility of cochlear nerve regeneration.

  19. Lithium Enhances Axonal Regeneration in Peripheral Nerve by Inhibiting Glycogen Synthase Kinase 3β Activation

    PubMed Central

    Su, Huanxing; Yuan, Qiuju; Qin, Dajiang; Yang, Xiaoying; So, Kwok-Fai; Wu, Wutian

    2014-01-01

    Brachial plexus injury often involves traumatic root avulsion resulting in permanent paralysis of the innervated muscles. The lack of sufficient regeneration from spinal motoneurons to the peripheral nerve (PN) is considered to be one of the major causes of the unsatisfactory outcome of various surgical interventions for repair of the devastating injury. The present study was undertaken to investigate potential inhibitory signals which influence axonal regeneration after root avulsion injury. The results of the study showed that root avulsion triggered GSK-3β activation in the injured motoneurons and remaining axons in the ventral funiculus. Systemic application of a clinical dose of lithium suppressed activated GSK-3β in the lesioned spinal cord to the normal level and induced extensive axonal regeneration into replanted ventral roots. Our study suggests that GSK-3β activity is involved in negative regulation for axonal elongation and regeneration and lithium, the specific GSK-3β inhibitor, enhances motoneuron regeneration from CNS to PNS. PMID:24967390

  20. Inferior alveolar nerve paresthesia after overfilling of endodontic sealer into the mandibular canal.

    PubMed

    González-Martín, Maribel; Torres-Lagares, Daniel; Gutiérrez-Pérez, José Luis; Segura-Egea, Juan José

    2010-08-01

    The present study describes a case of endodontic sealer (AH Plus) penetration within and along the mandibular canal from the periapical zone of a lower second molar after endodontic treatment. The clinical manifestations comprised anesthesia of the left side of the lower lip, paresthesia and anesthesia of the gums in the third quadrant, and paresthesia and anesthesia of the left mental nerve, appearing immediately after endodontic treatment. The paresthesia and anesthesia of the lip and gums were seen to decrease, but the mental nerve paresthesia and anesthesia persisted after 3.5 years. This case illustrates the need to expend great care with all endodontic techniques when performing nonsurgical root canal therapy, especially when the root apices are in close proximity to vital anatomic structures such as the inferior alveolar canal. PMID:20647109

  1. Assesing tree-root & soil interaction using pull-out test apparatus

    NASA Astrophysics Data System (ADS)

    Wibowo, J.; Corcoran, M. K.; Kala, R.; Leavell, D.

    2011-12-01

    Knowing in situ root strength provides a better understanding of the responses of tree root systems against external loads. Root pullout devices are used to record these strengths and can be expressed in two ways: pullout force, which is a direct output from the load cell (measured in pounds) or pullout stress, which is the pullout force divided by root cross section area (measured in pounds per square in.). Pullout tests show not only the possible tensile strength of a tree root, but also the interaction between the tree root and the surrounding geological materials. After discussion with engineers from the University of Nottingham-Trent, the U.S. Army Engineer Research and Development Center (ERDC) constructed a root pullout apparatus with some modifications. These modifications included using a T-System configuration at the base of an aluminum frame instead of a diagonal rod and varying the size of the clamp placed around the tested root. The T-System is placed in front of the root perpendicular to the root path. In the ERDC pullout device, the root was pulled directly without a lever system. A string pot was used to measure displacement when the root was pulled. The device is capable of pulling tree roots with a diameter of up to 2.5 in. and a maximum load of 5000 lbs. Using this device, ERDC conducted field operations in Portland, Oregon; Burlington, Washington; and Albuquerque, New Mexico, on Oregon ash, alder, maple, and cedar trees. In general, pullout tests were conducted approximately 60 deg around the tree selected for the tests. The location of a test depended on the availability of a root near the ground surface. A backhoe was used to remove soil around the tree to locate roots. Before the root was secured in a clamp, root diameter was measured and recorded, and the root was photographed. The tree species, dip angle and dip direction of the root, root location with respect to the tree, tree location, dates, weather, and soil type were also recorded

  2. NT-3 modulates NPY expression in primary sensory neurons following peripheral nerve injury

    PubMed Central

    STERNE, G. D.; BROWN, R. A.; GREEN, C. J.; TERENGHI, G.

    1998-01-01

    Peripheral nerve transection induces significant changes in neuropeptide expression and content in injured primary sensory neurons, possibly due to loss of target derived neurotrophic support. This study shows that neurotrophin-3 (NT-3) delivery to the injured nerve influences neuropeptide Y (NPY) expression within dorsal root ganglia (DRG) neurons. NT-3 was delivered by grafting impregnated fibronectin (500 ng/ml; NT group) in the axotomised sciatic nerve. Animals grafted with plain fibronectin mats (FN) or nerve grafts (NG) were used as controls. L4 and L5 DRG from operated and contralateral sides were harvested between 5 and 240 d. Using immunohistochemistry and computerised image analysis the percentage, diameter and optical density of neurons expressing calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP) and NPY were quantified. Sciatic nerve axotomy resulted in significant reduction in expression of CGRP and SP, and significant upregulation of VIP and NPY (P<0.05 for ipsilateral vs contralateral DRG). By d 30, exogenous NT-3 and nerve graft attenuated the upregulation of NPY (P<0.05 for NT and NG vs FN). However, NT-3 administration did not influence the expression of CGRP, SP or VIP. The mean cell diameter of NPY immunoreactive neurons was significantly smaller in the NT-3 group (P<0.05 for NT vs FN and NG) suggesting a differential influence of NT-3 on larger neurons. The optical densities of NPY immunoreactive neurons of equal size were the same in each group at any time point, indicating that the neurons responding to NT-3 downregulate NPY expression to levels not detectable by immunohistochemistry. These results demonstrate that targeted administration of NT-3 regulates the phenotype of a NPY-immunoreactive neuronal subpopulation in the dorsal root ganglia, a further evidence of the trophic role of neurotrophins on primary sensory neurons. PMID:9827642

  3. Nanofibrous nerve conduits for repair of 30-mm-long sciatic nerve defects

    PubMed Central

    Biazar, Esmaeil; Keshel, Saeed Heidari; Pouya, Majid; Rad, Hadi; Nava, Melody Omrani; Azarbakhsh, Mohammad; Hooshmand, Shirin

    2013-01-01

    It has been confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit can promote peripheral nerve regeneration in rats. However, its efficiency in repair of over 30-mm-long sciatic nerve defects needs to be assessed. In this study, we used a nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit to bridge a 30-mm-long gap in the rat sciatic nerve. At 4 months after nerve conduit implantation, regenerated nerves were cally observed and histologically assessed. In the nanofibrous graft, the rat sciatic nerve trunk had been reconstructed by restoration of nerve continuity and formation of myelinated nerve fiber. There were Schwann cells and glial cells in the regenerated nerves. Masson's trichrome staining showed that there were no pathological changes in the size and structure of gastrocnemius muscle cells on the operated side of rats. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit is suitable for repair of long-segment sciatic nerve defects. PMID:25206536

  4. Tensile forces and failure characteristics of individual and bundles of roots embedded in soil - experiments and modeling

    NASA Astrophysics Data System (ADS)

    Schwarz, Massimiliano; Cohen, Dedis; Or, Dani

    2010-05-01

    The quantification of soil root reinforcement is relevant for many aspects of hillslope stability and forest management. The abundance and distribution of roots in upper soil layers determines slope stability and is considered a mitigating factor reducing shallow landslide hazard. Motivated by advances in modeling approaches that account for soil-root mechanical interactions at single root and bundle of roots of different geometries (the root bundle model - RBM), we set up a series of root pull out experiments in the laboratory and in the field to study the mechanical behavior of pulled roots. We focused on the role of displacement and root failure mechanisms in determining global tensile strength and failure dynamics in a root bundle. Strain controlled pull out tests of up to 13 roots in parallel each with its own force measurements provided insights into the detailed soil-root and bundle interactions . The results enabled systematic evaluation of factors such as root tortuosity and branching patterns for the prediction of single root pull out behavior, and demonstrated the importance of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Analyses of root-soil interface friction shows that force-displacement behavior varies for different combinations of soil types and water content. The maximal pull out interfacial friction ranges between 1 for wet sand (under 2 kPa confining pressure) and 17 kPa for dry sand (under 4.5 kPa confining pressure). These experiments were instrumental for calibration of the RBM which was later validated with six field experiments on natural root bundles of spruce (Picea abies L.). The tests demonstrated the progressive nature of failure of a bundle of roots under strain controlled conditions (such as formation of tension crack on a vegetated hillslope), and provide important insights regarding stress-strain behavior of natural root reinforcement.

  5. Coronectomy of the mandibular third molar: Respect for the inferior alveolar nerve.

    PubMed

    Kouwenberg, A J; Stroy, L P P; Rijt, E D Vree-V D; Mensink, G; Gooris, P J J

    2016-05-01

    The aim of this study was to evaluate the outcomes of coronectomy as an alternative surgical procedure to complete removal of the impacted mandibular third molar in patients with a suspected close relationship between the tooth root(s) and the mandibular canal. A total of 151 patients underwent coronectomy and were followed up with clinical examinations and panoramic radiographs for a minimum of 6 months after surgery. None of the patients exhibited inferior alveolar nerve injury. Eruption of the retained root(s) was more frequent in younger patients (18-35 years). Thirty-six patients (23.8%) exhibited insufficient growth of new bone in the alveolar defect, and 11.3% required a second surgical procedure to remove the root remnant(s). Our results indicate that coronectomy can be a reliable alternative to complete removal of the impacted mandibular third molar in patients exhibiting an increased risk of damage to the inferior alveolar nerve on panoramic radiographs. PMID:26976696

  6. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  7. Microsurgical anatomy of the trochlear nerve.

    PubMed

    Joo, Wonil; Rhoton, Albert L

    2015-10-01

    The trochlear nerve is the cranial nerve with the longest intracranial course, but also the thinnest. It is the only nerve that arises from the dorsal surface of the brainstem and decussates in the superior medullary velum. After leaving the dorsal surface of the brainstem, it courses anterolaterally around the lateral surface of the brainstem and then passes anteriorly just beneath the free edge of the tentorium. It passes forward to enter the cavernous sinus, traverses the superior orbital fissure and terminates in the superior oblique muscle in the orbit. Because of its small diameter and its long course, the trochlear nerve can easily be injured during surgical procedures. Therefore, precise knowledge of its surgical anatomy and its neurovascular relationships is essential for approaching and removing complex lesions of the orbit and the middle and posterior fossae safely. This review describes the microsurgical anatomy of the trochlear nerve and is illustrated with pictures involving the nerve and its surrounding connective and neurovascular structures.

  8. Imaging the Facial Nerve: A Contemporary Review

    PubMed Central

    Gupta, Sachin; Mends, Francine; Hagiwara, Mari; Fatterpekar, Girish; Roehm, Pamela C.

    2013-01-01

    Imaging plays a critical role in the evaluation of a number of facial nerve disorders. The facial nerve has a complex anatomical course; thus, a thorough understanding of the course of the facial nerve is essential to localize the sites of pathology. Facial nerve dysfunction can occur from a variety of causes, which can often be identified on imaging. Computed tomography and magnetic resonance imaging are helpful for identifying bony facial canal and soft tissue abnormalities, respectively. Ultrasound of the facial nerve has been used to predict functional outcomes in patients with Bell's palsy. More recently, diffusion tensor tractography has appeared as a new modality which allows three-dimensional display of facial nerve fibers. PMID:23766904

  9. Cardiovascular effects of afferent renal nerve stimulation.

    PubMed

    Stella, A; Weaver, L; Golin, R; Genovesi, S; Zanchetti, A

    1987-01-01

    Electrical stimulation of afferent renal nerves elicits an increase in arterial pressure and heart rate. The hypertensive response is presumably due to the widespread activation of the sympathetic nervous system leading to peripheral vasoconstriction. Interestingly, the kidney does not appear involved in this reflex excitatory response to afferent renal nerve stimulation since changes in vascular conductances and excretory functions are equal in both the innervated and denervated kidney, and secondary to changes in renal perfusion pressure. In addition, no changes in renin release from either kidneys are observed during afferent renal nerve stimulation. It is likely that the electrical stimulation of afferent renal nerves activates other reflexes exerting an inhibitory influence on efferent renal nerve activity. Indeed, neural renorenal reflexes which tonically inhibit renal functions have clearly been demonstrated. Furthermore, preferential inhibition of efferent renal nerve activity by cardiopulmonary and sinoaortic receptors has recently been shown during activation of other visceral afferents.

  10. Nerve growth factor-like activity detected in equine peripheral blood after running exercise.

    PubMed

    Matsuda, H; Koyama, H; Oikawa, M; Yoshihara, T; Kaneko, M

    1991-08-01

    Addition of sera, collected from Thoroughbred horses after sprint exercise, induced significant neurite outgrowth from chick embryo dorsal root ganglia after a 24-hour culture. The nerve growth factor (NGF)-like activity was detected in sera collected immediately, or 1 hour or more, after the exercise. These findings suggest a possible role of serum NGF-like activity under stress conditions (running exercise) of horses.

  11. [Obturator nerve block in transurethral surgery].

    PubMed

    Rubial Alvarez, M; Molins Gauna, N; Rubio Pascual, P; Martín Bermejo, P; Pamplona Casamayor, M

    1989-01-01

    The obturator nerve passes in close proximity to the bladder as it courses through the pelvis. During transurethral operations, resection may result in stimulation of the obturator nerve, causing violent adductor contraction. Bladder perforation and incomplete tumor resection are the most important complications. All techniques proposed since transurethral surgery began, until nowadays are reviewed: neuromuscular blockade, electric circuit modifications, transparietal endoscopic blockade, periprostatic and subvesical infiltration, obturator nerve blockade and the "3 in 1 block" described by Winnie. Practical advices are proposed finally.

  12. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  13. Quantification of the vocal folds’ dynamic displacements

    NASA Astrophysics Data System (ADS)

    del Socorro Hernández-Montes, María; Muñoz, Silvino; De La Torre, Manuel; Flores, Mauricio; Pérez, Carlos; Mendoza-Santoyo, Fernando

    2016-05-01

    Fast dynamic data acquisition techniques are required to investigate the motional behavior of the vocal folds (VFs) when they are subjected to a steady air-flow through the trachea. High-speed digital holographic interferometry (DHI) is a non-invasive full-field-of-view technique that has proved its usefulness to study rapid and non-repetitive object movements. Hence it is an ideal technique used here to measure VF displacements and vibration patterns at 2000 fps. Analyses from a set of 200 displacement images showed that VFs’ vibration cycles are established along their width (y) and length (x). Furthermore, the maximum deformation for the right and left VFs’ area may be quantified from these images, which in itself represents an important result in the characterization of this structure. At a controlled air pressure, VF displacements fall within the range ~100-1740 nm, with a calculated precision and accuracy that yields a variation coefficient of 1.91%. High-speed acquisition of full-field images of VFs and their displacement quantification are on their own significant data in the study of their functional and physiological behavior since voice quality and production depend on how they vibrate, i.e. their displacement amplitude and frequency. Additionally, the use of high speed DHI avoids prolonged examinations and represents a significant scientific and technological alternative contribution in advancing the knowledge and working mechanisms of these tissues.

  14. Conflict induced internal displacement in Nepal.

    PubMed

    Singh, Sonal; Sharma, Sharan Prakash; Mills, Edward; Poudel, Krishna C; Jimba, Masamine

    2007-01-01

    Nepal has witnessed a humanitarian crisis since the Maoist conflict began ten years ago. The plight of internally displaced persons (IDPs) in Nepal has received little international attention despite being rated one of the worst displacement scenarios in the world. An estimated 200,000 people have been displaced as a result of the conflict, with the far-western districts of Nepal being the worst affected. Internal displacement has stretched the carrying capacity of several cities with adverse physical and mental health consequences for the displaced. Vulnerable women and children have been the worst affected. The government has adopted a discriminatory approach and failed to fulfil its obligations towards IDPs. Non-governmental organisations and international agencies have provided inadequate services to IDPs in their programmes. Tackling the issues of IDPs requires co-operation between government and development agencies: acknowledging the burden of the problem of IDPs, adequate registration and needs assessment, along with health and nutritional surveys, and development of short-term emergency relief packages and long-term programmes for their assistance. PMID:17542185

  15. Ultra-Sensitive Magnetoresistive Displacement Sensing Device

    NASA Technical Reports Server (NTRS)

    Olivas, John D. (Inventor); Lairson, Bruce M. (Inventor); Ramesham, Rajeshuni (Inventor)

    2003-01-01

    An ultrasensitive displacement sensing device for use in accelerometers, pressure gauges, temperature transducers, and the like, comprises a sputter deposited, multilayer, magnetoresistive field sensor with a variable electrical resistance based on an imposed magnetic field. The device detects displacement by sensing changes in the local magnetic field about the magnetoresistive field sensor caused by the displacement of a hard magnetic film on a movable microstructure. The microstructure, which may be a cantilever, membrane, bridge, or other microelement, moves under the influence of an acceleration a known displacement predicted by the configuration and materials selected, and the resulting change in the electrical resistance of the MR sensor can be used to calculate the displacement. Using a micromachining approach, very thin silicon and silicon nitride membranes are fabricated in one preferred embodiment by means of anisotropic etching of silicon wafers. Other approaches include reactive ion etching of silicon on insulator (SOI), or Low Pressure Chemical Vapor Deposition of silicon nitride films over silicon substrates. The device is found to be improved with the use of giant magnetoresistive elements to detect changes in the local magnetic field.

  16. Fingering phenomena during grain-grain displacement

    NASA Astrophysics Data System (ADS)

    Mello, Nathália M. P.; Paiva, Humberto A.; Combe, G.; Atman, A. P. F.

    2016-05-01

    Spontaneous formation of fingered patterns during the displacement of dense granular assemblies was experimentally reported few years ago, in a radial Hele-Shaw cell. Here, by means of discrete element simulations, we have recovered the experimental findings and extended the original study to explore the control parameters space. In particular, using assemblies of grains with different geometries (monodisperse, bidisperse, or polydisperse), we measured the macroscopic stress tensor in the samples in order to confirm some conjectures proposed in analogy with Saffman-Taylor viscous fingering phenomena for immiscible fluids. Considering an axial setup which allows to control the discharge of grains and to follow the trajectory and the pressure gradient along the displacing interface, we have applied the Darcy law for laminar flow in fluids in order to measure an "effective viscosity" for each assembly combination, in an attempt to mimic variation of the viscosity ratio between the injected/displaced fluids in the Saffman-Taylor experiment. The results corroborate the analogy with the viscous fluids displacement, with the bidisperse assembly corresponding to the less viscous geometry. But, differently to fluid case, granular fingers only develop for a specific combination of displaced/injected geometries, and we have demonstrated that it is always related with the formation of a force chain network along the finger direction.

  17. Tissue engineered constructs for peripheral nerve surgery

    PubMed Central

    Johnson, P. J.; Wood, M. D.; Moore, A. M.; Mackinnon, S. E.

    2013-01-01

    Summary Background Tissue engineering has been defined as “an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ”. Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump. Methods A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal. Results Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons. Conclusions The field of tissue engineering should consider its challenge to not only meet the autograft “gold standard” but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft. PMID:24385980

  18. Peripheral nerve injuries in the athlete.

    PubMed

    Feinberg, J H; Nadler, S F; Krivickas, L S

    1997-12-01

    Peripheral nerves are susceptible to injury in the athlete because of the excessive physiological demands that are made on both the neurological structures and the soft tissues that protect them. The common mechanisms of injury are compression, traction, ischaemia and laceration. Seddon's original classification system for nerve injuries based on neurophysiological changes is the most widely used. Grade 1 nerve injury is a neuropraxic condition, grade 2 is axonal degeneration and grade 3 is nerve transection. Peripheral nerve injuries are more common in the upper extremities than the lower extremities, tend to be sport specific, and often have a biomechanical component. While the more acute and catastrophic neurological injuries are usually obvious, many remain subclinical and are not recognised before neurological damage is permanent. Early detection allows initiation of a proper rehabilitation programme and modification of biomechanics before the nerve injury becomes irreversible. Recognition of nerve injuries requires an understanding of peripheral neuroanatomy, knowledge of common sites of nerve injury and an awareness of the types of peripheral nerve injuries that are common and unique to each sport. The electrodiagnostic exam, usually referred to as the 'EMG', consists of nerve conduction studies and the needle electrode examination. It is used to determine the site and degree of neurological injury and to predict outcome. It should be performed by a neurologist or physiatrist (physician specialising in physical medicine and rehabilitation), trained and skilled in this procedure. Timing is essential if the study is to provide maximal information. Findings such as decreased recruitment after injury and conduction block at the site of injury may be apparent immediately after injury but other findings such as abnormal spontaneous activity may take several weeks to develop. The electrodiagnostic test assists with both diagnosis of the injury and in predicting

  19. Raman microspectroscopy for visualization of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Harada, Yoshinori; Koizumi, Noriaki; Takamatsu, Tetsuro

    2013-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery is essential for improving quality of life of patients. To preserve peripheral nerves, detection of ne peripheral nerves that cannot be identi ed by human eye or under white light imaging is necessary. In this study, we sought to provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues against adjacent tissues that employs spontaneous Raman microspectroscopy. A line-illumination confocal Raman microscope was used for the experiment. A laser operating at the wavelength of 532 nm was used as an excitation laser light. We obtained Raman spectra of peripheral nerve, brous connective tissue, skeletal muscle, blood vessel, and adipose tissue of Wistar rats, and extracted speci c spectral features of peripheral nerves and adjacent tissues. By applying multivariate image analysis, peripheral nerves were clearly detected against adjacent tissues without any preprocessing neither xation nor staining. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.

  20. Ulnar nerve entrapment syndrome in baseball players.

    PubMed

    Del Pizzo, W; Jobe, F W; Norwood, L

    1977-01-01

    Ulnar nerve entrapment at the elbow has been described in the literature. This paper deals with 19 skeletally mature baseball players with ulnar nerve entrapment who underwent surgery for correction of the problem. The surgery consisted of anterior transfer of the nerve and placement deep to the flexor muscles. Six players quit baseball because of continuing elbow problems, nine returned to playing, and four were lost to follow-up. Ulnar nerve entrapment is thought to represent one syndrome in a spectrum of diseases involving the medial side of the elbow in baseball players. The lesion is amenable to surgery.

  1. Nerve Transfers to Restore Shoulder Function.

    PubMed

    Leechavengvongs, Somsak; Malungpaishorpe, Kanchai; Uerpairojkit, Chairoj; Ng, Chye Yew; Witoonchart, Kiat

    2016-05-01

    The restoration of shoulder function after brachial plexus injury represents a significant challenge facing the peripheral nerve surgeons. This is owing to a combination of the complex biomechanics of the shoulder girdle, the multitude of muscles and nerves that could be potentially injured, and a limited number of donor options. In general, nerve transfer is favored over tendon transfer, because the biomechanics of the musculotendinous units are not altered. This article summarizes the surgical techniques and clinical results of nerve transfers for restoration of shoulder function. PMID:27094888

  2. Interventional nerve visualization via the intrinsic anisotropic optical properties of the nerves

    NASA Astrophysics Data System (ADS)

    Chin, Kenneth W.; Meijerink, Andries; Chin, Patrick T. K.

    2015-07-01

    We present an optical concept to visualize nerves during surgical interventions. The concept relies on the anisotropic optical properties of the nerves which allows for specific switching of the optical reflection by the nervous tissue. Using a low magnification polarized imaging system we are able to visualize the on and off switching of the optical reflection of the nervous tissue, enabling a non-invasive nerve specific real-time nerve visualization during surgery.

  3. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb.

    PubMed

    Kowalska, Berta; Sudoł-Szopińska, Iwona

    2012-06-01

    The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal peripheral nerves of the lower extremity: the iliohypogastric and ilioinguinal nerves, the lateral cutaneous nerve of the thigh, the pudendal, sciatic, tibial, sural, medial plantar, lateral plantar, common peroneal, deep peroneal and superficial peroneal nerves. It includes diagrams showing the proper positioning of the sonographic probe, plus USG images of the successively discussed nerves and their surrounding structures. The ultrasonographic appearance of the peripheral nerves in the lower limb is identical to the nerves in the upper limb. However, when imaging the lower extremity, convex probes are more often utilized, to capture deeply-seated nerves. The examination technique, similarly to that used in visualizing the nerves of upper extremity, consists of locating the nerve at a characteristic anatomic reference point and tracking it using the "elevator technique". All 3 parts of the article series should serve as an introduction to a discussion of peripheral nerve pathologies, which will be presented in subsequent issues of the "Journal of Ultrasonography".

  4. Anti-dorsal root ganglion neuron antibody in a case of dorsal root ganglionitis associated with Sjögren's syndrome.

    PubMed

    Satake, M; Yoshimura, T; Iwaki, T; Yamada, T; Kobayashi, T

    1995-10-01

    We report the case of a 59-year-old woman with primary Sjögren's syndrome who developed hypesthesia, hypalgesia, and neurogenic arthropathy in her lower limbs. Neurological examination and electrophysiological studies indicated involvement of the dorsal root ganglia. The immunohistochemistry of sections of rat dorsal root ganglion (DRG) showed that the IgG in the serum and cerebrospinal fluid (CSF) from the patient bound to the neuronal perikarya of small DRG neurons but not to the cerebellum or peripheral nerves. These results, consistent with particular impairment of pain and touch senses, suggest that dorsal root ganglionitis in primary Sjögren's syndrome is mediated by humoral autoimmunity.

  5. Peroneal Nerve Palsy After Cryotherapy.

    PubMed

    Collins, K; Storey, M; Peterson, K

    1986-05-01

    In brief: Cryotherapy, a common treatment method for sports injuries, could result in peroneal nerve palsy. In this case a 26-year-old basketball coach who sustained a hamstring strain applied ice circumferentially around his knee on two occasions for one hour each. He subsequently suffered a severe peroneal neuropathy with weakness of the ankle, ankle evertors, and toe dorsiflexors. Electromyographic studies showed axonotmesis three months after the injury. Four months after the injury the patient was still recovering. This case demonstrates the importance of using cryotherapy cautiously. PMID:27442936

  6. Low Median Nerve Transfers (Opponensplasty).

    PubMed

    Chadderdon, Robert Christopher; Gaston, R Glenn

    2016-08-01

    Opposition is the placement of the thumb opposite the fingers into a position from which it can work. This motion requires thumb palmar abduction, flexion, and pronation, which are provided by the abductor pollicis brevis, flexor pollicis brevis (FPB), and opponens pollicis. In the setting of a median nerve palsy, this function is typically lost, although anatomic variations and the dual innervation of the FPB may prevent complete loss at times. There are multiple well described and accepted tendon transfers to restore opposition, none of which have been proven to be superior to the others. PMID:27387078

  7. Peroneal Nerve Palsy After Cryotherapy.

    PubMed

    Collins, K; Storey, M; Peterson, K

    1986-05-01

    In brief: Cryotherapy, a common treatment method for sports injuries, could result in peroneal nerve palsy. In this case a 26-year-old basketball coach who sustained a hamstring strain applied ice circumferentially around his knee on two occasions for one hour each. He subsequently suffered a severe peroneal neuropathy with weakness of the ankle, ankle evertors, and toe dorsiflexors. Electromyographic studies showed axonotmesis three months after the injury. Four months after the injury the patient was still recovering. This case demonstrates the importance of using cryotherapy cautiously.

  8. The Cranial Nerve Skywalk: A 3D Tutorial of Cranial Nerves in a Virtual Platform

    ERIC Educational Resources Information Center

    Richardson-Hatcher, April; Hazzard, Matthew; Ramirez-Yanez, German

    2014-01-01

    Visualization of the complex courses of the cranial nerves by students in the health-related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways…

  9. One-stage human acellular nerve allograft reconstruction for digital nerve defects

    PubMed Central

    Li, Xue-yuan; Hu, Hao-liang; Fei, Jian-rong; Wang, Xin; Wang, Tian-bing; Zhang, Pei-xun; Chen, Hong

    2015-01-01

    Human acellular nerve allografts have a wide range of donor origin and can effectively avoid nerve injury in the donor area. Very little is known about one-stage reconstruction of digital nerve defects. The present study observed the feasibility and effectiveness of human acellular nerve allograft in the reconstruction of < 5-cm digital nerve defects within 6 hours after injury. A total of 15 cases of nerve injury, combined with nerve defects in 18 digits from the Department of Emergency were enrolled in this study. After debridement, digital nerves were reconstructed using human acellular nerve allografts. The patients were followed up for 6–24 months after reconstruction. Mackinnon-Dellon static two-point discrimination results showed excellent and good rates of 89%. Semmes-Weinstein monofilament test demonstrated that light touch was normal, with an obvious improvement rate of 78%. These findings confirmed that human acellular nerve allograft for one-stage reconstruction of digital nerve defect after hand injury is feasible, which provides a novel trend for peripheral nerve reconstruction. PMID:25788927

  10. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    EPA Science Inventory

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  11. Changes in nerve function and nerve fibre structure induced by acute, graded compression.

    PubMed Central

    Rydevik, B; Nordborg, C

    1980-01-01

    Rabbit tibial nerves were subjected to direct, acute graded compression by means of an inflatable compression chamber. The acute and long term effects of 50, 200 and 400 mmHg applied for two hours on nerve function and nerve fibre structure were investigated. A pressure of 50 mmHg applied for two hours induced only minimal or no acute deterioration of maximal conduction velocity and nerve fibre structure. Conduction velocity was gradually reduced during compression at 200-400 mmHg pressure for two hours and in those cases the recovery of nerve conduction after pressure release was incomplete. Ultrastructural analysis revealed pronounced, early nerve fibre damage in these nerves. Three weeks after compression, nerves compressed at 50 mmHg for two hours had normal afferent and motor conduction velocity, although there were morphological signs of slight nerve fibre damage. Nerves compressed at 200 mmHg for two hours exhibited reduction of conduction velocity only at the level of compression, in contrast to the nerves compressed at 400 mmHg for two hours in which conduction velocity was reduced both at the level of compression and distal to the compressed segment. Morphologically, the nerves compressed at 200-400 mmHg for two hours showed varying degrees of demyelination and axonal degeneration three weeks after compression. Images PMID:7217952

  12. Displacement Cascade Damage Production in Metals

    SciTech Connect

    Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai

    2015-01-01

    Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.

  13. Amorphization of silicon carbide by carbon displacement

    NASA Astrophysics Data System (ADS)

    Devanathan, R.; Gao, F.; Weber, W. J.

    2004-05-01

    We have used molecular dynamics simulations to examine the possibility of amorphizing silicon carbide (SiC) by exclusively displacing C atoms. At a defect generation corresponding to 0.2 displacements per atom, the enthalpy surpasses the level of melt-quenched SiC, the density decreases by about 15%, and the radial distribution function shows a lack of long-range order. Prior to amorphization, the surviving defects are mainly C Frenkel pairs (67%), but Si Frenkel pairs (18%) and antisite defects (15%) are also present. The results indicate that SiC can be amorphized by C sublattice displacements. Chemical short-range disorder, arising mainly from Frenkel pair production, plays a significant role in the amorphization.

  14. Forced displacement and women's security in Colombia.

    PubMed

    Meertens, Donny

    2010-04-01

    In the protracted Colombian conflict, assistance to internally displaced persons has developed in the context of contradictory political processes. The Colombian government's launching of a transitional justice process in the midst of armed conflict has generated a complex situation displaying both conflict and post-conflict characteristics. The progressive Constitutional Court rulings on internal displacement, in particular the gender-sensitive Auto 092, constitute an attempt to bring together humanitarian interventions and transitional justice measures in a rights-based framework. However, the national government is reluctant to adopt them fully and local realities still hamper their integrated implementation. Displaced women, therefore, remain in an especially vulnerable position. This paper argues that gender-sensitive humanitarian interventions must take into account all of these complexities of scale and political process in order to make legal frameworks more effective at the local level. In these contexts, interventions should pay particular attention to strategies that contribute to transforming pre-existing gender regimes. PMID:20132270

  15. Forced displacement and women's security in Colombia.

    PubMed

    Meertens, Donny

    2010-04-01

    In the protracted Colombian conflict, assistance to internally displaced persons has developed in the context of contradictory political processes. The Colombian government's launching of a transitional justice process in the midst of armed conflict has generated a complex situation displaying both conflict and post-conflict characteristics. The progressive Constitutional Court rulings on internal displacement, in particular the gender-sensitive Auto 092, constitute an attempt to bring together humanitarian interventions and transitional justice measures in a rights-based framework. However, the national government is reluctant to adopt them fully and local realities still hamper their integrated implementation. Displaced women, therefore, remain in an especially vulnerable position. This paper argues that gender-sensitive humanitarian interventions must take into account all of these complexities of scale and political process in order to make legal frameworks more effective at the local level. In these contexts, interventions should pay particular attention to strategies that contribute to transforming pre-existing gender regimes.

  16. Neural network based forward prediction of bladder pressure using pudendal nerve electrical activity.

    PubMed

    Geramipour, A; Makki, S; Erfanian, A

    2015-01-01

    Individuals with spinal cord injury or neurological disorders have problems in urinary bladder storage and in voiding function. In these people, the detrusor of bladder contracts at low volume and this causes incontinence. The goal of bladder control is to increase the bladder capacity by electrical stimulation of relative nerves such as pelvic nerves, sacral nerve roots or pudendal nerves. For this purpose, the bladder pressure has to be monitored continuously. In this paper, we propose a method for real-time estimating the bladder pressure using artificial neural network. The method is based upon measurements of electroneurogram (ENG) signal of pudendal nerve. This approach yields synthetic bladder pressure estimates during bladder contraction. The experiments were conducted on three rats. The results show that neural predictor can provide accurate estimation and prediction of bladder pressure with good generalization ability. The average error of 1-second and 5-second ahead prediction of bladder pressure are 9.62% and 10.54%, respectively. PMID:26737354

  17. Dynamic expression of transcription factor Brn3b during mouse cranial nerve development.

    PubMed

    Sajgo, Szilard; Ali, Seid; Popescu, Octavian; Badea, Tudor Constantin

    2016-04-01

    During development, transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors but rather emerge through the intersection of their expression domains. Brn3a, Brn3b, and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of retinal ganglion cells (RGC), spiral and vestibular ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the dorsal root ganglia. The present study investigates the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII, and VIII and visceromotor nuclei of nerves VII, IX, and X as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3b(KO) RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However, loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor.

  18. Gait phase detection from sciatic nerve recordings in functional electrical stimulation systems for foot drop correction.

    PubMed

    Chu, Jun-Uk; Song, Kang-Il; Han, Sungmin; Lee, Soo Hyun; Kang, Ji Yoon; Hwang, Dosik; Suh, Jun-Kyo Francis; Choi, Kuiwon; Youn, Inchan

    2013-05-01

    Cutaneous afferent activities recorded by a nerve cuff electrode have been used to detect the stance phase in a functional electrical stimulation system for foot drop correction. However, the implantation procedure was difficult, as the cuff electrode had to be located on the distal branches of a multi-fascicular nerve to exclude muscle afferent and efferent activities. This paper proposes a new gait phase detection scheme that can be applied to a proximal nerve root that includes cutaneous afferent fibers as well as muscle afferent and efferent fibers. To test the feasibility of this scheme, electroneurogram (ENG) signals were measured from the rat sciatic nerve during treadmill walking at several speeds, and the signal properties of the sciatic nerve were analyzed for a comparison with kinematic data from the ankle joint. On the basis of these experiments, a wavelet packet transform was tested to define a feature vector from the sciatic ENG signals according to the gait phases. We also propose a Gaussian mixture model (GMM) classifier and investigate whether it could be used successfully to discriminate feature vectors into the stance and swing phases. In spite of no significant differences in the rectified bin-integrated values between the stance and swing phases, the sciatic ENG signals could be reliably classified using the proposed wavelet packet transform and GMM classification methods.

  19. Interest of Electrostimulation of Peripheral Motor Nerves during Percutaneous Thermal Ablation

    SciTech Connect

    Tsoumakidou, Georgia Garnon, Julien Ramamurthy, Nitin Buy, Xavier Gangi, Afshin

    2013-12-15

    Purpose: We present our experience of utilizing peripheral nerve electrostimulation as a complementary monitoring technique during percutaneous thermal ablation procedures; and we highlight its utility and feasibility in the prevention of iatrogenic neurologic thermal injury. Methods: Peripheral motor nerve electrostimulation was performed in 12 patients undergoing percutaneous image-guided thermal ablations of spinal/pelvic lesions in close proximity to the spinal cord and nerve roots. Electrostimulation was used in addition to existing insulation (active warming/cooling with hydrodissection, passive insulation with CO{sub 2} insufflation) and temperature monitoring (thermocouples) techniques. Impending neurologic deficit was defined as a visual reduction of muscle response or need for a stronger electric current to evoke muscle contraction, compared with baseline. Results: Significant reduction of the muscle response to electrostimulation was observed in three patients during the ablation, necessitating temporary interruption, followed by injection of warm/cool saline. This resulted in complete recovery of the muscle response in two cases, while for the third patient the response did not improve and the procedure was terminated. No patient experienced postoperative motor deficit. Conclusion: Peripheral motor nerve electrostimulation is a simple, easily accessible technique allowing early detection of impending neurologic injury during percutaneous image-guided thermal ablation. It complements existing monitoring techniques and provides a functional assessment along the whole length of the nerve.

  20. Expression and regulation of redoxins at nociceptive signaling sites after sciatic nerve injury in mice

    PubMed Central

    Valek, Lucie; Kanngießer, Maike; Tegeder, Irmgard

    2015-01-01

    Injury of the sciatic nerve results in regulations of pro- and anti-oxidative enzymes at sites of nociceptive signaling including the injured nerve, dorsal root ganglia (DRGs), dorsal horn of the spinal cord, thalamus and somatosensory cortex (Valek et al., 2015) [1]. The present DiB paper shows immunohistochemistry of redoxins including peroxiredoxins (Prdx1–6), glutaredoxins (Glrx1, 2, 3, 5), thioredoxins (Txn1, 2) and thioredoxin reductases (Txnrd1, 2) in the DRGs, spinal cord and sciatic nerve and thalamus in naïve mice and 7 days after Spared sciatic Nerve Injury (SNI) in control mice (Hif1α-flfl) and in mice with a specific deletion of hypoxia inducible factor 1 alpha (SNS-HIF1α−/−) in DRG neurons. The sciatic nerves were immunostained for the respective redoxins and counterstained with hematoxylin. The redoxin immunoreactivity was quantified with ImageJ. For the DRGs and spinal cord the data show the quantitative assessment of the intensity of redoxin immunoreactivity transformed to rainbow pseudocolors. In addition, some redoxin examples of the ipsi and contralateral dorsal and ventral horns of the lumbar spinal cord and some redoxin examples of the thalamus are presented. PMID:26693520