Sample records for nerve transection model

  1. Neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) against peripheral nerve transection-induced apoptosis.

    PubMed

    Kian, Kosar; Khalatbary, Ali Reza; Ahmadvand, Hassan; Karimpour Malekshah, Abbasali; Shams, Zahra

    2018-01-02

    Recent studies revealed the neuroprotective effects of epigallocatechin-3-gallate (EGCG) on a variety of neural injury models. The purpose of this study was to determine the neuroprotective effects of EGCG following sciatic nerve transection (SNT). Rats were randomly divided into four groups each as follows: Sham-operated group, SNT group, and Pre-EGCG (50-mg/kg, i.p., 30 minutes before nerve transection and followed for 3 days) and Post-EGCG (50-mg/kg, i.p., 1 hour after nerve transection and followed for 3 days) groups. Spinal cord segments of the sciatic nerve and related dorsal root ganglions were removed four weeks after nerve transection for the assessment of malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activities, immunohistochemistry of caspase-3, cyclooxygenase-2 (COX-2), S100beta (S100B), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). MDA levels were significantly decreased, and SOD and CAT activities were significantly increased in EGCG-treated rats after nerve transection. Attenuated caspase-3 and COX-2 expression, and TUNEL reaction could be significantly detected in the EGCG-treated rats after nerve transection. Also, EGCG significantly increased S100B expression. We propose that EGCG may be effective in the protection of neuronal cells against retrograde apoptosis and may enhance neuronal survival time following nerve transection.

  2. Evidence for a systemic regulation of neurotrophin synthesis in response to peripheral nerve injury.

    PubMed

    Shakhbazau, Antos; Martinez, Jose A; Xu, Qing-Gui; Kawasoe, Jean; van Minnen, Jan; Midha, Rajiv

    2012-08-01

    Up-regulation of neurotrophin synthesis is an important mechanism of peripheral nerve regeneration after injury. Neurotrophin expression is regulated by a complex series of events including cell interactions and multiple molecular stimuli. We have studied neurotrophin synthesis at 2 weeks time-point in a transvertebral model of unilateral or bilateral transection of sciatic nerve in rats. We have found that unilateral sciatic nerve transection results in the elevation of nerve growth factor (NGF) and NT-3, but not glial cell-line derived neurotrophic factor or brain-derived neural factor, in the uninjured nerve on the contralateral side, commonly considered as a control. Bilateral transection further increased NGF but not other neurotrophins in the nerve segment distal to the transection site, as compared to the unilateral injury. To further investigate the distinct role of NGF in regeneration and its potential for peripheral nerve repair, we transduced isogeneic Schwann cells with NGF-encoding lentivirus and transplanted the over-expressing cells into the distal segment of a transected nerve. Axonal regeneration was studied at 2 weeks time-point using pan-neuronal marker NF-200 and found to directly correlate with NGF levels in the regenerating nerve. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  3. Long-term functional recovery after facial nerve transection and repair in the rat.

    PubMed

    Banks, Caroline A; Knox, Christopher; Hunter, Daniel A; Mackinnon, Susan E; Hohman, Marc H; Hadlock, Tessa A

    2015-03-01

    The rodent model is commonly used to study facial nerve injury. Because of the exceptional regenerative capacity of the rodent facial nerve, it is essential to consider the timing when studying facial nerve regeneration and functional recovery. Short-term functional recovery data following transection and repair of the facial nerve has been documented by our laboratory. However, because of the limitations of the head fixation device, there is a lack of long-term data following facial nerve injury. The objective of this study was to elucidate the long-term time course and functional deficit following facial nerve transection and repair in a rodent model. Adult rats were divided into group 1 (controls) and group 2 (experimental). Group 1 animals underwent head fixation, followed by a facial nerve injury, and functional testing was performed from day 7 to day 70. Group 2 animals underwent facial nerve injury, followed by delayed head fixation, and then underwent functional testing from months 6 to 8. There was no statistical difference between the average whisking amplitudes in group 1 and group 2 animals. Functional whisking recovery 6 months after facial nerve injury is comparable to recovery within 1 to 4 months of transection and repair, thus the ideal window for evaluating facial nerve recovery falls within the 4 months after injury. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Early changes in muscle atrophy and muscle fiber type conversion after spinal cord transection and peripheral nerve transection in rats.

    PubMed

    Higashino, Kosaku; Matsuura, Tetsuya; Suganuma, Katsuyoshi; Yukata, Kiminori; Nishisho, Toshihiko; Yasui, Natsuo

    2013-05-20

    Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus muscle.

  5. Brief electrical stimulation after facial nerve transection and neurorrhaphy: a randomized prospective animal study.

    PubMed

    Mendez, Adrian; Seikaly, Hadi; Biron, Vincent L; Zhu, Lin Fu; Côté, David W J

    2016-02-01

    Recent studies have examined the effects of brief electrical stimulation (BES) on nerve regeneration, with some suggesting that BES accelerates facial nerve recovery. However, the facial nerve outcome measurement in these studies has not been precise or accurate. The objective of this study is to assess the effect of BES on accelerating facial nerve functional recovery from a transection injury in the rat model. A prospective randomized animal study using a rat model was performed. Two groups of 9 rats underwent facial nerve surgery. Both group 1 and 2 underwent facial nerve transection and repair at the main trunk of the nerve, with group 2 additionally receiving BES on post-operative day 0 for 1 h using an implantable stimulation device. Primary outcome was measured using a laser curtain model, which measured amplitude of whisking at 2, 4, and 6 weeks post-operatively. At week 2, the average amplitude observed for group 1 was 4.4°. Showing a statistically significant improvement over group 1, the group 2 mean was 14.0° at 2 weeks post-operatively (p = 0.0004). At week 4, group 1 showed improvement having an average of 9.7°, while group 2 remained relatively unchanged with an average of 12.8°. Group 1 had an average amplitude of 13.63° at 6-weeks from surgery. Group 2 had a similar increase in amplitude with an average of 15.8°. There was no statistically significant difference between the two groups at 4 and 6 weeks after facial nerve surgery. This is the first study to use an implantable stimulator for serial BES following neurorrhaphy in a validated animal model. Results suggest performing BES after facial nerve transection and neurorrhaphy at the main trunk of the facial nerve is associated with accelerated whisker movement in a rat model compared with a control group.

  6. Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model.

    PubMed

    Hsu, Shan-Hui; Chan, Shan-Ho; Chiang, Chih-Ming; Chen, Clayton Chi-Chang; Jiang, Ching-Fen

    2011-05-01

    The performance of an asymmetric conduit made of microporous polylactic acid (PLA) in promoting the long-term peripheral nerve regeneration across a 20-mm-long sciatic nerve gap was evaluated by a rabbit sciatic nerve transection model. Magnetic resonance imaging (MRI) was employed to monitor the nerve regeneration process. The extents of nerve regeneration and conduit degradation were quantified by image analysis. Functional and histological analyses were followed to assess nerve reinnervation. MR images showed that the transected nerve was connected at about 4 months. The diameter of the regenerated nerve continued to increase while the conduit was gradually degraded. The conduit was completely degraded in 18 months. The degradation kinetics in vivo was estimated based on MR images. The functional recovery after 18 months was ∼82% based on electrophysiology. The extension range of the operated limb was slowly recuperated to ∼81% at 18 months. Histology showed that nerve bundles were self-assembled after 16-18 months, but the morphologies were still different from those of normal sciatic nerve. This was the first work on the long-term evaluation of peripheral nerve regeneration in a rabbit model, and the first to report the use of MRI to obtain the real-time images of regenerated nerve in a biomaterial conduit as well as to define the degradation rate of the conduit in vivo. The platform established in this study serves to evaluate the regeneration of larger-diameter (>3-mm) nerve across a long-gap bridged by a conduit. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    PubMed

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  8. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury

    PubMed Central

    Boyer, Richard B.; Kelm, Nathaniel D.; Riley, D. Colton; Sexton, Kevin W.; Pollins, Alonda C.; Shack, R. Bruce; Dortch, Richard D.; Nanney, Lillian B.; Does, Mark D.; Thayer, Wesley P.

    2015-01-01

    Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries. PMID:26323827

  9. Use of paper for treatment of a peripheral nerve trauma in the rat.

    PubMed

    Kauppila, T; Jyväsjärvi, E; Murtomäki, S; Mansikka, H; Pertovaara, A; Virtanen, I; Liesi, P

    1997-09-29

    Reinnervation of the muscles and skin in the rat hindpaw was studied after transection and attempted repair of the sciatic nerve. Reconnecting the transected nerve with lens cleaning paper was at least as effective in rejoining the transected nerves as traditional microsurgical neurorraphy. Paper induced a slightly bigger fibrous scar around the site of transection than neurorraphy, but this scar did not cause impairment of functional recovery or excessive signs of neuropathic pain. We conclude that a paper graft can be used in restorative surgery of severed peripheral nerves.

  10. Overlapping Mechanisms of Peripheral Nerve Regeneration and Angiogenesis Following Sciatic Nerve Transection

    PubMed Central

    Wang, Hongkui; Zhu, Hui; Guo, Qi; Qian, Tianmei; Zhang, Ping; Li, Shiying; Xue, Chengbin; Gu, Xiaosong

    2017-01-01

    Peripheral nervous system owns the ability of self-regeneration, mainly in its regenerative microenvironment including vascular network reconstruction. More recently, more attentions have been given to the close relationship between tissue regeneration and angiogenesis. To explore the overlap of molecular mechanisms and key regulation molecules between peripheral nerve regeneration and angiogenesis post peripheral nerve injury, integrative and bioinformatic analysis was carried out for microarray data of proximal stumps after sciatic nerve transection in SD rats. Nerve regeneration and angiogenesis were activated at 1 day immediately after sciatic nerve transection simultaneously. The more obvious changes of transcription regulators and canonical pathways suggested a phase transition between 1 and 4 days of both nerve regeneration and angiogenesis after sciatic nerve transection. Furthermore, 16 differentially expressed genes participated in significant biological processes of both nerve regeneration and angiogenesis, a few of which were validated by qPCR and immunofluorescent staining. It was demonstrated that STAT3, EPHB3, and Cdc42 co-expressed in Schwann cells and vascular endothelial cells to play a key role in regulation of nerve regeneration and angiogenesis simultaneously response to sciatic nerve transection. We provide a framework for understanding biological processes and precise molecular correlations between peripheral nerve regeneration and angiogenesis after peripheral nerve transection. Our work serves as an experimental basis and a valuable resource to further understand molecular mechanisms that define nerve injury-induced micro-environmental variation for achieving desired peripheral nerve regeneration. PMID:29085283

  11. Overlapping Mechanisms of Peripheral Nerve Regeneration and Angiogenesis Following Sciatic Nerve Transection.

    PubMed

    Wang, Hongkui; Zhu, Hui; Guo, Qi; Qian, Tianmei; Zhang, Ping; Li, Shiying; Xue, Chengbin; Gu, Xiaosong

    2017-01-01

    Peripheral nervous system owns the ability of self-regeneration, mainly in its regenerative microenvironment including vascular network reconstruction. More recently, more attentions have been given to the close relationship between tissue regeneration and angiogenesis. To explore the overlap of molecular mechanisms and key regulation molecules between peripheral nerve regeneration and angiogenesis post peripheral nerve injury, integrative and bioinformatic analysis was carried out for microarray data of proximal stumps after sciatic nerve transection in SD rats. Nerve regeneration and angiogenesis were activated at 1 day immediately after sciatic nerve transection simultaneously. The more obvious changes of transcription regulators and canonical pathways suggested a phase transition between 1 and 4 days of both nerve regeneration and angiogenesis after sciatic nerve transection. Furthermore, 16 differentially expressed genes participated in significant biological processes of both nerve regeneration and angiogenesis, a few of which were validated by qPCR and immunofluorescent staining. It was demonstrated that STAT3, EPHB3, and Cdc42 co-expressed in Schwann cells and vascular endothelial cells to play a key role in regulation of nerve regeneration and angiogenesis simultaneously response to sciatic nerve transection. We provide a framework for understanding biological processes and precise molecular correlations between peripheral nerve regeneration and angiogenesis after peripheral nerve transection. Our work serves as an experimental basis and a valuable resource to further understand molecular mechanisms that define nerve injury-induced micro-environmental variation for achieving desired peripheral nerve regeneration.

  12. Changes in the structural properties of peripheral nerves after transection.

    PubMed

    Toby, E B; Meyer, B M; Schwappach, J; Alvine, G

    1996-11-01

    Changes in peripheral nerve structural properties after transection were measured weekly for 5 weeks in the distal stump of the sciatic nerve in 50 Sprague-Dawley rats. Each week after transection, the distal stump of the transected nerve showed increased stiffness when compared to intact nerves. Linear elastic stiffness reached a maximum at weeks 1 and 2 after transection, when the transected nerves were 15% stiffer than the contralateral control sides. Toughness was also increased and reached a maximum at week 4 with a 50% difference between values for experimental and control sides. Overall failure load was between 21% and 27% greater, peaking at week 3. An increase in stiffness of the distal stump would result in increased tension at the suture line, as the nerve gap is overcome when performing a delayed neurorraphy. These data suggest, with respect to structural properties, that an end-to-end repair should be carried out at the time of injury; after only 1 week, significant stiffness in the distal segment of the nerve developed, which should result in an increase in tension at the repair site.

  13. Facial Nerve Repair: Fibrin Adhesive Coaptation versus Epineurial Suture Repair in a Rodent Model

    PubMed Central

    Knox, Christopher J.; Hohman, Marc H.; Kleiss, Ingrid J.; Weinberg, Julie S.; Heaton, James T.; Hadlock, Tessa A.

    2013-01-01

    Objectives/Hypothesis Repair of the transected facial nerve has traditionally been accomplished with microsurgical neurorrhaphy; however, fibrin adhesive coaptation (FAC) of peripheral nerves has become increasingly popular over the past decade. We compared functional recovery following suture neurorrhaphy to FAC in a rodent facial nerve model. Study Design Prospective, randomized animal study. Methods Sixteen rats underwent transection and repair of the facial nerve proximal to the pes anserinus. Eight animals underwent epineurial suture (ES) neurorrhaphy, and eight underwent repair with fibrin adhesive (FA). Surgical times were documented for all procedures. Whisking function was analyzed on a weekly basis for both groups across 15 weeks of recovery. Results Rats experienced whisking recovery consistent in time course and degree with prior studies of rodent facial nerve transection and repair. There were no significant differences in whisking amplitude, velocity, or acceleration between suture and FA groups. However, the neurorrhaphy time with FA was 70% shorter than for ES (P < 0.05). Conclusion Although we found no difference in whisking recovery between suture and FA repair of the main trunk of the rat facial nerve, the significantly shorter operative time for FA repair makes this technique an attractive option. The relative advantages of both techniques are discussed. PMID:23188676

  14. Facial nerve repair: fibrin adhesive coaptation versus epineurial suture repair in a rodent model.

    PubMed

    Knox, Christopher J; Hohman, Marc H; Kleiss, Ingrid J; Weinberg, Julie S; Heaton, James T; Hadlock, Tessa A

    2013-07-01

    Repair of the transected facial nerve has traditionally been accomplished with microsurgical neurorrhaphy; however, fibrin adhesive coaptation (FAC) of peripheral nerves has become increasingly popular over the past decade. We compared functional recovery following suture neurorrhaphy to FAC in a rodent facial nerve model. Prospective, randomized animal study. Sixteen rats underwent transection and repair of the facial nerve proximal to the pes anserinus. Eight animals underwent epineurial suture (ES) neurorrhaphy, and eight underwent repair with fibrin adhesive (FA). Surgical times were documented for all procedures. Whisking function was analyzed on a weekly basis for both groups across 15 weeks of recovery. Rats experienced whisking recovery consistent in time course and degree with prior studies of rodent facial nerve transection and repair. There were no significant differences in whisking amplitude, velocity, or acceleration between suture and FA groups. However, the neurorrhaphy time with FA was 70% shorter than for ES (P < 0.05). Although we found no difference in whisking recovery between suture and FA repair of the main trunk of the rat facial nerve, the significantly shorter operative time for FA repair makes this technique an attractive option. The relative advantages of both techniques are discussed. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  15. A 3D-engineered porous conduit for peripheral nerve repair

    PubMed Central

    Tao, Jie; Hu, Yu; Wang, Shujuan; Zhang, Jiumeng; Liu, Xuan; Gou, Zhiyuan; Cheng, Hao; Liu, Qianqi; Zhang, Qianqian; You, Shenglan; Gou, Maling

    2017-01-01

    End-to-end neurorrhaphy is the most commonly used method for treating peripheral nerve injury. However, only 50% of patients can regain useful function after treating with neurorrhaphy. Here, we constructed a 3D-engineered porous conduit to promote the function recovery of the transected peripheral nerve after neurorrhaphy. The conduit that consisted of a gelatin cryogel was prepared by molding with 3D-printed moulds. Due to its porous structure and excellent mechanical properties, this conduit could be collapsed by the mechanical force and resumed its original shape after absorption of normal saline. This shape-memory property allowed a simply surgery process for installing the conduits. Moreover, the biodegradable conduit could prevent the infiltration of fibroblasts and reduce the risk of scar tissue, which could provide an advantageous environment for nerve regeneration. The efficiency of the conduits in assisting peripheral nerve regeneration after neurorrhaphy was evaluated in a rat sciatic nerve transected model. Results indicated that conduits significantly benefitted the recovery of the transected peripheral nerve after end-to-end neurorrhaphy on the static sciatic index (SSI), electrophysiological results and the re-innervation of the gastrocnemius muscle. This work demonstrates a biodegradable nerve conduit that has potentially clinical application in promoting the neurorrhaphy. PMID:28401914

  16. Local Xenotransplantation of Bone Marrow Derived Mast Cells (BMMCs) Improves Functional Recovery of Transected Sciatic Nerve in Cat: A Novel Approach in Cell Therapy.

    PubMed

    Mohammadi, Rahim; Anousheh, Dana; Alaei, Mohammad-Hazhir; Nikpasand, Amin; Rostami, Hawdam; Shahrooz, Rasoul

    2018-04-01

    To determine the effects of bone marrow derived mast cells (BMMCs) on functional recovery of transected sciatic nerve in animal model of cat. A 20-mm sciatic nerve defect was bridged using a silicone nerve guide filled with BMMCs in BMMC group. In Sham-surgery group (SHAM), the sciatic nerve was only exposed and manipulated. In control group (SILOCONE) the gap was repaired with a silicone nerve guide and both ends were sealed using sterile Vaseline to avoid leakage and the nerve guide was filled with 100 μL of phosphate-buffered saline alone. In cell treated group ([SILOCONE/BMMC) the nerve guide was filled with 100 μL BMMCs (2× 106 cells/100 μL). The regenerated nerve fibers were studied, biomechanically, histologically and immunohiscochemically 6 months later. Biomechanical studies confirmed faster recovery of regenerated axons in BMMCs transplanted animals compared to control group ( p <0.05). Morphometric indices of the regenerated fibers showed that the number and diameter of the myelinated fibers were significantly higher in BMMCs transplanted animals than in control group ( p <0.05). In immunohistochemistry, location of reactions to S-100 in BMMCs transplanted animals was clearly more positive than that in control group. BMMCs xenotransplantation could be considered as a readily accessible source of cells that could improve recovery of transected sciatic nerve.

  17. Orofacial neuropathic pain reduces spontaneous burrowing behavior in rats.

    PubMed

    Deseure, K; Hans, G

    2018-07-01

    It was recently reported that spontaneous burrowing behavior is decreased after tibial nerve transection, spinal nerve transection and partial sciatic nerve ligation. It was proposed that spontaneous burrowing could be used as a measure of the impact of neuropathic pain after peripheral nerve injury. It has remained unclear whether the reduction in burrowing behavior is caused directly by pain or hypersensitivity in the affected limbs, making it more difficult to perform burrowing, or by a pain induced decrease in the general wellbeing, thus reducing the motivation to burrow. We studied burrowing behavior after infraorbital nerve injury, a model of orofacial neuropathic pain that does not affect the limbs. Burrowing behavior was significantly reduced after infraorbital nerve injury. Isolated face grooming and responsiveness to mechanical von Frey stimulation of the infraorbital nerve territory were significantly increased after infraorbital nerve injury, indicative, respectively, of spontaneous pain and mechanical allodynia. It is concluded that spontaneous burrowing may provide a measure of the global impact of pain on the animal's wellbeing after peripheral nerve injury and incorporation of this behavioral assay in preclinical drug testing may improve the predictive validity of currently used pain models. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Postoperative occipital neuralgia with and without C2 nerve root transection during atlantoaxial screw fixation: a post-hoc comparative outcome study of prospectively collected data.

    PubMed

    Yeom, Jin S; Buchowski, Jacob M; Kim, Ho-Joong; Chang, Bong-Soon; Lee, Choon-Ki; Riew, K Daniel

    2013-07-01

    Although routine transection of the C2 nerve root during atlantoaxial segmental screw fixation has been recommended by some surgeons, it remains controversial and to our knowledge no comparative studies have been performed to determine whether transection or preservation of the C2 nerve root affects patient-derived sensory outcomes. The purpose of this study is to specifically analyze patient-derived sensory outcomes over time in patients with intentional C2 nerve root transection during atlantoaxial segmental screw fixation compared with those without transection. This is a post-hoc comparative analysis of prospectively collected patient-derived outcome data. The sample consists of 24 consecutive patients who underwent intentional bilateral transection of the C2 nerve root during posterior atlantoaxial segmental screw fixation (transection group) and subsequent 41 consecutive patients without transection (preservation group). A visual analog scale (VAS) score was used for occipital neuralgia as the primary outcome measure and VAS score for neck pain, neck disability index score and Japanese Orthopedic Association score for cervical myelopathy and recovery rate, with bone union rate as the secondary outcome measure. Patient-derived outcomes including change in VAS score for occipital neuralgia over time were statistically compared between the two groups. This study was not supported by any financial sources and there is no topic-specific conflict of interest related to the authors of this study. Seven (29%) of the 24 patients in the transection group experienced increased neuralgic pain at 1 month after surgery either because of newly developed occipital neuralgia or aggravation of preexisting occipital neuralgia. Four of the seven patients required almost daily medication even at the final follow-up (44 and 80 months). On the other hand, only four (10%) of 41 patients in the preservation group had increased neuralgic pain at 1 month after surgery, and at ≥ 1 year, no patients had increased neuralgic pain. The difference in the prevalence of increased neuralgic pain between the two groups was statistically significant at all time points (3, 6, 12, and 24 months postoperatively) except at 1 month postoperatively. The intensity of neuralgic pain, which preoperatively had not been significantly different between the two groups, was significantly higher in the transection group at the final follow-up. C2 nerve root transection is not a benign procedure and, in our experience, more than a quarter of the patients experience increased neuralgic pain following C2 nerve root transection. Because the prevalence and intensity of postoperative neuralgia was significantly higher with C2 nerve root transection than with its preservation, we recommend against routine C2 nerve root transection when performing atlantoaxial segmental screw fixation. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Reinnervation of Urethral and Anal Sphincters With Femoral Motor Nerve to Pudendal Nerve Transfer

    PubMed Central

    Ruggieri, Michael R.; Braverman, Alan S.; Bernal, Raymond M.; Lamarre, Neil S.; Brown, Justin M.; Barbe, Mary F.

    2012-01-01

    Aims Lower motor neuron damage to sacral roots or nerves can result in incontinence and a flaccid urinary bladder. We showed bladder reinnervation after transfer of coccygeal to sacral ventral roots, and genitofemoral nerves (L1, 2 origin) to pelvic nerves. This study assesses the feasibility of urethral and anal sphincter reinnervation using transfer of motor branches of the femoral nerve (L2–4 origin) to pudendal nerves (S1, 2 origin) that innervate the urethral and anal sphincters in a canine model. Methods Sacral ventral roots were selected by their ability to stimulate bladder, urethral sphincter, and anal sphincter contraction and transected. Bilaterally, branches of the femoral nerve, specifically, nervus saphenous pars muscularis [Evans HE. Miller’s anatomy of the dog. Philadelphia: W.B. Saunders; 1993], were transferred and end-to-end anastomosed to transected pudendal nerve branches in the perineum, then enclosed in unipolar nerve cuff electrodes with leads to implanted RF micro-stimulators. Results Nerve stimulation induced increased anal and urethral sphincter pressures in five of six transferred nerves. Retrograde neurotracing from the bladder, urethral sphincter, and anal sphincter using fluorogold, fast blue, and fluororuby, demonstrated urethral and anal sphincter labeled neurons in L2–4 cord segments (but not S1–3) in nerve transfer canines, consistent with rein-nervation by the transferred femoral nerve motor branches. Controls had labeled neurons only in S1–3 segments. Postmortem DiI and DiO labeling confirmed axonal regrowth across the nerve repair site. Conclusions These results show spinal cord reinnervation of urethral and anal sphincter targets after sacral ventral root transection and femoral nerve transfer (NT) to the denervated pudendal nerve. These surgical procedures may allow patients to regain continence. PMID:21953679

  20. N-Acetylcysteine Prevents Retrograde Motor Neuron Death after Neonatal Peripheral Nerve Injury.

    PubMed

    Catapano, Joseph; Zhang, Jennifer; Scholl, David; Chiang, Cameron; Gordon, Tessa; Borschel, Gregory H

    2017-05-01

    Neuronal death may be an overlooked and unaddressed component of disability following neonatal nerve injuries, such as obstetric brachial plexus injury. N-acetylcysteine and acetyl-L-carnitine improve survival of neurons after adult nerve injury, but it is unknown whether they improve survival after neonatal injury, when neurons are most susceptible to retrograde neuronal death. The authors' objective was to examine whether N-acetylcysteine or acetyl-L-carnitine treatment improves survival of neonatal motor or sensory neurons in a rat model of neonatal nerve injury. Rat pups received either a sciatic nerve crush or transection injury at postnatal day 3 and were then randomized to receive either intraperitoneal vehicle (5% dextrose), N-acetylcysteine (750 mg/kg), or acetyl-L-carnitine (300 mg/kg) once or twice daily. Four weeks after injury, surviving neurons were retrograde-labeled with 4% Fluoro-Gold. The lumbar spinal cord and L4/L5 dorsal root ganglia were then harvested and sectioned to count surviving motor and sensory neurons. Transection and crush injuries resulted in significant motor and sensory neuron loss, with transection injury resulting in significantly less neuron survival. High-dose N-acetylcysteine (750 mg/kg twice daily) significantly increased motor neuron survival after neonatal sciatic nerve crush and transection injury. Neither N-acetylcysteine nor acetyl-L-carnitine treatment improved sensory neuron survival. Proximal neonatal nerve injuries, such as obstetric brachial plexus injury, produce significant retrograde neuronal death after injury. High-dose N-acetylcysteine significantly increases motor neuron survival, which may improve functional outcomes after obstetrical brachial plexus injury.

  1. Swimming behaviour and calcium incorporation into inner ear otoliths of fish after vestibular nerve transection

    NASA Astrophysics Data System (ADS)

    Edelmann, E.; Anken, R. H.; Rahmann, H.

    2004-01-01

    Previous investigations on neonate swordtail fish (Xiphophorus helleri) revealed that otolithic calcium incorporation (visualized using the calcium tracer alizarin complexone) and thus otolith growth had ceased after nerve transection, supporting a hypothesis according to which the gravity-dependent otolith growth is regulated neuronally. Subsequent investigations on larval cichlid fish (Oreochromis mossambicus) yielded contrasting results, repeatedly depending on the particular batch of cichlids investigated. Like most neonate swordtails, Type I cichlids revealed a stop of calcium incorporation after unilateral vestibular nerve transection. Their behaviour after transection was normal, and the otolithic calcium incorporation in controls of the same batch was symmetric. In Type II cichlids, however, vestibular nerve transection had no effect on otolithic calcium incorporation. They behaved kinetotically after transection (this kind of kinetosis was qualitatively similar to the swimming behaviour exhibited by larval cichlids during microgravity in the course of parabolic aircraft flights). The otolithic calcium incorporation in control animals was asymmetric. These results show that the effects of vestibular nerve transection as well as the efficacy of the mechanism, which regulates otolith growth/otolithic calcium incorporation, are - depending on the particular batch of animals - genetically predispositioned. In conclusion, the regulation of otolithic calcium incorporation is guided neuronally, in part via the vestibular nerve and, in part, via a further pathway, which remains to be addressed in the course of future investigations.

  2. Nerve transection repair using laser-activated chitosan in a rat model.

    PubMed

    Bhatt, Neel K; Khan, Taleef R; Mejias, Christopher; Paniello, Randal C

    2017-08-01

    Cranial nerve transection during head and neck surgery is conventionally repaired with microsuture. Previous studies have demonstrated recovery with laser nerve welding (LNW), a novel alternative to microsuture. LNW has been reported to have poorer tensile strength, however. Laser-activated chitosan, an adhesive biopolymer, may promote nerve recovery while enhancing the tensile strength of the repair. Using a rat posterior tibial nerve injury model, we compared four different methods of nerve repair in this pilot study. Animal study. Animals underwent unilateral posterior tibial nerve transection. The injury was repaired by potassium titanyl phosphate (KTP) laser alone (n = 20), KTP + chitosan (n = 12), microsuture + chitosan (n = 12), and chitosan alone (n = 14). Weekly walking tracks were conducted to measure functional recovery (FR). Tensile strength (TS) was measured at 6 weeks. At 6 weeks, KTP laser alone had the best recovery (FR = 93.4% ± 8.3%). Microsuture + chitosan, KTP + chitosan, and chitosan alone all showed good FR (87.4% ± 13.5%, 84.6% ± 13.0%, and 84.1% ± 10.0%, respectively). One-way analysis of variance was performed (F(3,56) = 2.6, P = .061). A TS threshold of 3.8 N was selected as a control mean recovery. Three groups-KTP alone, KTP + chitosan, and microsuture + chitosan-were found to meet threshold 60% (95% confidence interval [CI]: 23.1%-88.3%), 75% (95% CI: 46.8%-91.1%), and 100% (95% CI: 75.8%-100.0%), respectively. In the posterior tibial nerve model, all repair methods promoted nerve recovery. Laser-activated chitosan as a biopolymer anchor provided good TS and appears to be a novel alternative to microsuture. This repair method may have surgical utility following cranial nerve injury during head and neck surgery. NA Laryngoscope, 127:E253-E257, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat.

    PubMed

    Martin, Keith R G; Levkovitch-Verbin, Hana; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Quigley, Harry A

    2002-07-01

    High levels of glutamate can be toxic to retinal ganglion cells. Effective buffering of extracellular glutamate by retinal glutamate transporters is therefore important. This study was conducted to investigate whether glutamate transporter changes occur with two models of optic nerve injury in the rat. Glaucoma was induced in one eye of 35 adult Wistar rats by translimbal diode laser treatment to the trabecular meshwork. Twenty-five more rats underwent unilateral optic nerve transection. Two glutamate transporters, GLAST (EAAT-1) and GLT-1 (EAAT-2), were studied by immunohistochemistry and quantitative Western blot analysis. Treated and control eyes were compared 3 days and 1, 4, and 6 weeks after injury. Optic nerve damage was assessed semiquantitatively in epoxy-embedded optic nerve cross sections. Trabecular laser treatment resulted in moderate intraocular pressure (IOP) elevation in all animals. After 1 to 6 weeks of experimental glaucoma, all treated eyes had significant optic nerve damage. Glutamate transporter changes were not detected by immunohistochemistry. Western blot analysis demonstrated significantly reduced GLT-1 in glaucomatous eyes compared with control eyes at 3 days (29.3% +/- 6.7%, P = 0.01), 1 week (55.5% +/- 13.6%, P = 0.02), 4 weeks (27.2% +/- 10.1%, P = 0.05), and 6 weeks (38.1% +/- 7.9%, P = 0.01; mean reduction +/- SEM, paired t-tests, n = 5 animals per group, four duplicate Western blot analyses per eye). The magnitude of the reduction in GLT-1 correlated significantly with mean IOP in the glaucomatous eye (r(2) = 0.31, P = 0.01, linear regression). GLAST was significantly reduced (33.8% +/- 8.1%, mean +/- SEM) after 4 weeks of elevated IOP (P = 0.01, paired t-test, n = 5 animals per group). In contrast to glaucoma, optic nerve transection resulted in an increase in GLT-1 compared with the control eye (P = 0.01, paired t-test, n = 15 animals). There was no significant change in GLAST after transection. GLT-1 and GLAST were significantly reduced in an experimental rat glaucoma model, a response that was not found after optic nerve transection. Reductions in GLT-1 and GLAST may increase the potential for glutamate-induced injury to RGC in glaucoma.

  4. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration.

    PubMed

    Yu, Qing; Zhang, She-Hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-Dong

    2017-10-01

    End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.

  5. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration

    PubMed Central

    Yu, Qing; Zhang, She-hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-dong

    2017-01-01

    End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy. PMID:29171436

  6. Swimming Behavior and Calcium Incorporation into inner Ear Otoliths of Fish after vestibular Nerve Transection

    NASA Astrophysics Data System (ADS)

    Edelmann, E.; Anken, R.; Rahmann, H.

    Previous investigations on neonate swordtail fish (Xiphophorus helleri) revealed that otolithic calcium incorporation (visualized using the calcium-tracer alizarin- complexone) and thus otolith growth had ceased after nerve transection, supporting a hypothesis according to which the gravity-dependent otolith growth is regulated neuronally. Subsequent investigations on larval cichlid fish (Oreochromis mossambicus) yielded contrasting results, repeatedly depending on the particular batch of cichlids investigated: Like neonate swordtails, type I cichlids revealed a stop of calcium incorporation after unilateral vestibular nerve transection. Their behaviour after transection was normal and the otolithic calcium incorporation in controls of the same batch was symmetrical. In type II cichlids, however, vestibular nerve transection had no effect on otolithic calcium incorporation. They behaved kinetotically after transection (this kind of kinetosis was qualitatively similar to the swimming behaviour exhibited by larval cichlids during microgravity in the course of parabolic aircraft flights). The otolithic calcium incorporation in control animals was asymmetrical. These results stongly suggest that the effects of vestibular nerve transection as well as the efficacy of the mechanism, which regulates otolith growth/otolithic calcium incorporation, are - depending on the particular batch of animals - genetically predispositioned. Thus, it is assumed that the mechanisms regulating otolith growth and equlibibrium differ in the two types of cichlid fish. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  7. Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats.

    PubMed

    Tanahashi, Masayuki; Karicheti, Venkateswarlu; Thor, Karl B; Marson, Lesley

    2012-10-01

    The urethrogenital reflex (UGR) is used as a surrogate model of the autonomic and somatic nerve and muscle activity that accompanies ejaculation. The UGR is evoked by distension of the urethra and activation of penile afferents. The current study compares two methods of elevating urethral intraluminal pressure in spinalized, anesthetized male Sprague-Dawley rats (n = 60). The first method, penile extension UGR, involves extracting the penis from the foreskin, so that urethral pressure rises due to a natural anatomical flexure in the penis. The second method, penile clamping UGR, involves penile extension UGR with the addition of clamping of the glans penis. Groups of animals were prepared that either received no additional treatment, surgical shams, or received bilateral nerve cuts (4 nerve cut groups): either the pudendal sensory nerve branch (SbPN), the pelvic nerves, the hypogastric nerves, or all three nerves. Penile clamping UGR was characterized by multiple bursts, monitored by electromyography (EMG) of the bulbospongiosus muscle (BSM) accompanied by elevations in urethral pressure. The penile clamping UGR activity declined across multiple trials and eventually resulted in only a single BSM burst, indicating desensitization. In contrast, the penile extension UGR, without penile clamping, evoked only a single BSM EMG burst that showed no desensitization. Thus, the UGR is composed of two BSM patterns: an initial single burst, termed urethrobulbospongiosus (UBS) reflex and a subsequent multiple bursting pattern (termed ejaculation-like response, ELR) that was only induced with penile clamping urethral occlusion. Transection of the SbPN eliminated the ELR in the penile clamping model, but the single UBS reflex remained in both the clamping and extension models. Pelvic nerve (PelN) transection increased the threshold for inducing BSM activation with both methods of occlusion but actually unmasked an ELR in the penile extension method. Hypogastric nerve (HgN) cuts did not significantly alter any parameter. Transection of all three nerves eliminated BSM activation completely. In conclusion, penile clamping occlusion recruits penile and urethral primary afferent fibers that are necessary for an ELR. Urethral distension without significant penile afferent activation recruits urethral primary afferent fibers carried in either the pelvic or pudendal nerve that are necessary for the single-burst UBS reflex.

  8. Pilot study of intraoperative ultrasound-guided instrument placement in nerve transection surgery for peripheral nerve pain syndromes.

    PubMed

    Henning, P Troy; Wilson, Thomas J; Willsey, Matthew; John, Jessin K; Popadich, Miriana; Yang, Lynda J S

    2017-03-01

    Surgical transection of sensory nerves in the treatment of intractable neuropathic pain is a commonly performed procedure. At times these cases can be particularly challenging when encountering obese patients, when targeting deeper nerves or those with a variable branching pattern, or in the case of repeat operations. In this case series, the authors describe their experience with ultrasound-guided surgical instrument placement during transection of a saphenous nerve in the region of prior vascular surgery in 1 patient and in the lateral femoral cutaneous nerve in 2 obese patients. The authors also describe this novel technique and provide pilot data that suggests ultrasound-assisted surgery may allow for complex cases to be completed in an expedited fashion through smaller incisions.

  9. Measurement of amino acid levels in the vitreous humor of rats after chronic intraocular pressure elevation or optic nerve transection.

    PubMed

    Levkovitch-Verbin, Hana; Martin, Keith R G; Quigley, Harry A; Baumrind, Lisa A; Pease, Mary Ellen; Valenta, Danielle

    2002-10-01

    To investigate whether the levels of free amino acids and protein in the vitreous of rat eyes are altered with chronic intraocular pressure (IOP) elevation or after optic nerve transection. The concentrations of 20 amino acids in the vitreous humor were measured by high-performance liquid chromatography in both eyes of 41 rats with unilateral IOP elevation induced by translimbal photocoagulation. Eyes were studied 1 day and 1, 2, 4, and 9 weeks after initial IOP elevation. The same amino acids were measured in 41 rats 1 day and 2, 4, and 9 weeks after unilateral transection of the orbital optic nerve. The intravitreal protein level was assayed in additional 22 rats with IOP elevation and 12 rats after nerve transection. Two masked observers evaluated the amount of optic nerve damage with a semiquantitative, light-microscopic technique. In rats with experimental glaucoma, amino acid concentrations were unchanged 1 day after treatment. At 1 week, 4 of 20 amino acids (aspartate, proline, alanine, and lysine) were higher than in control eyes ( < or = 0.01), but this difference was nonsignificant after Bonferroni correction for multiple simultaneous amino acid comparisons (none achieved < 0.0025). No amino acid was significantly different from control in the nerve transection groups (all > 0.05). Vitreous protein level was significantly higher in glaucomatous eyes than their paired controls at 1 day ( < 0.0001) and 1 week ( < 0.002). One day and 1 week after optic nerve transection, vitreal proteins were significantly elevated compared with control eyes from untreated animals ( < 0.0020 and < 0.0022, respectively), though not compared with their fellow eyes ( = 0.25 and 0.10). Chronic experimental glaucoma and transection of the optic nerve increase the amount of protein in the rat vitreous above control levels. In the vitreous of rats with experimental glaucoma, a number of free amino acids were transiently elevated to a modest degree, but no significant difference in vitreous glutamate concentration was detected ( > 0.01).

  10. Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration

    PubMed Central

    Ma, Marek; Ferguson, Toby A.; Schoch, Kathleen M.; Li, Jian; Qian, Yaping; Shofer, Frances S.; Saatman, Kathryn E.; Neumar, Robert W.

    2013-01-01

    In both the central nervous system (CNS) and peripheral nervous system (PNS), transected axons undergo Wallerian degeneration. Even though Augustus Waller first described this process after transection of axons in 1850, the molecular mechanisms may be shared, at least in part, by many human diseases. Early pathology includes failure of synaptic transmission, target denervation, and granular disintegration of the axonal cytoskeleton (GDC). The Ca2+-dependent proteases calpains have been implicated in GDC but causality has not been established. To test the hypothesis that calpains play a causal role in axonal and synaptic degeneration in vivo, we studied transgenic mice that express human calpastatin (hCAST), the endogenous calpain inhibitor, in optic and sciatic nerve axons. Five days after optic nerve transection and 48 hours after sciatic nerve transection, robust neurofilament proteolysis observed in wild-type controls was reduced in hCAST transgenic mice. Protection of the axonal cytoskeleton in sciatic nerves of hCAST mice was nearly complete 48 hours post-transection. In addition, hCAST expression preserved the morphological integrity of neuromuscular junctions. However, compound muscle action potential amplitudes after nerve transection were similar in wild-type and hCAST mice. These results, in total, provide direct evidence that calpains are responsible for the morphological degeneration of the axon and synapse during Wallerian degeneration. PMID:23542511

  11. Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.

    PubMed

    Guagliardo, Nick A; Hill, David L

    2007-09-10

    Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (<1 mm) of the tongue. By 5 days after nerve transection taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used. (c) 2007 Wiley-Liss, Inc.

  12. Effect of cochlear nerve electrocautery on the adult cochlear nucleus.

    PubMed

    Iseli, Claire E; Merwin, William H; Klatt-Cromwell, Cristine; Hutson, Kendall A; Ewend, Matthew G; Adunka, Oliver F; Fitzpatrick, Douglas C; Buchman, Craig A

    2015-04-01

    Electrocauterization and subsequent transection of the cochlear nerve induce greater injury to the cochlear nucleus than sharp transection alone. Some studies show that neurofibromatosis Type 2 (NF2) patients fit with auditory brainstem implants (ABIs) fail to achieve speech perception abilities similar to ABI recipients without NF2. Reasons for these differences remain speculative. One hypothesis posits poorer performance to surgically induced trauma to the cochlear nucleus from electrocautery. Sustained electrosurgical depolarization of the cochlear nerve may cause excitotoxic-induced postsynaptic nuclear injury. Equally plausible is that cautery in the vicinity of the cochlear nucleus induces necrosis. The cochlear nerve was transected in anesthetized adult gerbils sharply with or without bipolar electrocautery at varying intensities. Gerbils were perfused at 1, 3, 5, and 7 days postoperatively; their brainstem and cochleas were embedded in paraffin and sectioned at 10 μm. Alternate sections were stained with flourescent markers for neuronal injury or Nissl substance. In additional experiments, anterograde tracers were applied directly to a sectioned eighth nerve to verify that fluorescent-labeled profiles seen were terminating auditory nerve fibers. Cochlear nerve injury was observed from 72 hours postoperatively and was identical across cases regardless of surgical technique. Postsynaptic cochlear nucleus injury was not seen after distal transection of the nerve. By contrast, proximal transection was associated with trauma to the cochlear nucleus. Distal application of bipolar electrocautery seems safe for the cochlear nucleus. Application near the root entry zone must be used cautiously because this may compromise nuclear viability needed to support ABI stimulation.

  13. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.

    PubMed

    Xie, Hongjian; Yang, Wen; Chen, Jianghai; Zhang, Jinxiang; Lu, Xiaochen; Zhao, Xiaobo; Huang, Kun; Li, Huili; Chang, Panpan; Wang, Zheng; Wang, Lin

    2015-10-28

    Peripheral nerve gap defects lead to significant loss of sensory or motor function. Tissue engineering has become an important alternative to nerve repair. Sericin, a major component of silk, is a natural protein whose value in tissue engineering has just begun to be explored. Here, the first time use of sericin in vivo is reported as a long-term implant for peripheral nerve regeneration. A sericin nerve guidance conduit is designed and fabricated. This conduit is highly porous with mechanical strength matching peripheral nerve tissue. It supports Schwann cell proliferation and is capable of up-regulating the transcription of glial cell derived neurotrophic factor and nerve growth factor in Schwann cells. The sericin conduit wrapped with a silicone conduit (sericin/silicone double conduits) is used for bridging repair of a 5 mm gap in a rat sciatic nerve transection model. The sericin/silicone double conduits achieve functional recovery comparable to that of autologous nerve grafting as evidenced by drastically improved nerve function and morphology. Importantly, this improvement is mainly attributed to the sericin conduit as the silicone conduit alone only produces marginal functional recovery. This sericin/silicone-double-conduit strategy offers an efficient and valuable alternative to autologous nerve grafting for repairing damaged peripheral nerve. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improvement of functional recovery of transected peripheral nerve by means of chitosan grafts filled with vitamin E, pyrroloquinoline quinone and their combination.

    PubMed

    Azizi, Asghar; Azizi, Saeed; Heshmatian, Behnam; Amini, Keyvan

    2014-01-01

    Effects of vitamin E and pyrroloquinoline quinone on peripheral nerve regeneration were studied using a rat sciatic nerve transection model. Ninety male healthy White Wistar rats were divided into three experimental groups (n = 15), randomly: Sham-operation (SHAM), transected control (TC), chitosan conduit (Chit) and three treatment groups (Vit E, PQQ and PQQ + Vit E). In SHAM group after anesthesia, left sciatic nerve was exposed through a gluteal muscle incision and after homeostasis muscle was sutured. In Chit group left sciatic nerve was exposed the same way and transected proximal to tibio-peroneal bifurcation leaving a 10-mm gap. Proximal and distal stumps were each inserted into a chitosan tube. In treatment groups the tube was implanted the same way and filled with Vit E, PQQ and PQQ + Vit E. Each group was subdivided into three subgroups of six animals each and were studied 4, 8, 12 weeks after surgery. Functional and electrophysiological studies, and gastrocnemius muscle mass measurement confirmed faster and better recovery of regenerated axons in Vit E + PQQ combination compared to Vit E or PQQ solely (P < 0.05). Morphometric indices of regenerated fibers showed number and diameter of the myelinated fibers in PQQ + Vit E was significantly higher than in other treatment groups. In immunohistochemistry, location of reactions to S-100 in PQQ + Vit E was clearly more positive than in other treatment groups. Response to PQQ + Vit E treatment demonstrates that it influences and improves functional recovery of peripheral nerve regeneration. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  15. The time course of taste bud regeneration after glossopharyngeal or greater superficial petrosal nerve transection in rats.

    PubMed

    St John, Steven J; Garcea, Mircea; Spector, Alan C

    2003-01-01

    We previously have published data detailing the time course of taste bud regeneration in the anterior tongue following transection of the chorda tympani (CT) nerve in the rat. This study extends the prior work by determining the time course of taste bud regeneration in the vallate papilla, soft palate and nasoincisor ducts (NID) following transection of either the glossopharyngeal (GL) or greater superficial petrosal (GSP) nerve. Following GL transection in rats (n = 6 per time point), taste buds reappeared in the vallate papilla between 15 and 28 days after surgery, and returned to 80.3% of control levels (n = 12) of taste buds by 70 days postsurgery. The first appearance and the final percentage of the normal complement of regenerated vallate taste buds after GL transection resembled that seen previously in the anterior tongue after CT transection. However, in the latter case, regenerated taste buds reached asymptotic levels by 42 days after surgery, whereas within the time frame of the present study, a clear asymptotic return of vallate taste buds was not observed. In contrast to the posterior (and anterior) tongue, only 25% of the normal complement of palatal taste buds regenerated by 112 days and 224 days after GSP transection (n = 9). The difference in regenerative capacity might relate to the surgical approach used to transect the GSP. These experiments provide useful parametric data for investigators studying the functional consequences of gustatory nerve transection and regeneration.

  16. Histomorphometric and Ultrastructural Evaluation of Long-Term Alpha Lipoic Acid and Vitamin B12 Use After Experimental Sciatic Nerve Injury in Rats.

    PubMed

    Arikan, Murat; Togral, Guray; Hasturk, Askin Esen; Horasanli, Bahriye; Helvacioglu, Fatma; Dagdeviren, Atilla; Tekindal, Mustafa Agah; Parpucu, Murat

    2016-01-01

    To analyze the therapeutic effects of long-term alpha lipoic acid (A-LA) and vitamin B12 use via histomorphometric methods and electron microscopy in the transected sciatic nerves of rats. Forty rats were randomized into five groups (n=8/group). In group I, 1 cm segment of sciatic nerve was resected without any other intervention. In group II (sham), following right sciatic nerve transection, primary epineurial anastomosis was performed by placing the edges of the nerve end-to-end. In group III (saline), after right sciatic nerve transection, the ends of the nerves were brought together and closed after application of intraperitoneal physiologic saline. In group IV, 2 mg/kg of alpha lipoic acid and in group V, 2 mg/kg of vitamin B12 was administered intraperitoneally before surgical intervention. Histomorphometric and electron microscopic analyses revealed that vitamin B12 did not prevent structural changes, abnormal myelination and g-ratio deviations regarding the functional aspects of the sciatic nerve. Alpha lipoic acid was more effective in restructuring the histomorphometric and structural aspects of the nerve with more myelinated fibers with optimal values (0.55-0.68) than vitamin B12 groups, in which the number of myelinated nerve fibers significantly decreased at optimal intervals (0.55-0.68). A-LA administration following peripheral nerve transection injury is more effective in promoting nerve healing regarding the structural aspects of the sciatic nerve compared to vitamin B12 and also myelination of nerve fibers by increasing g-values.

  17. Allotransplanted DRG neurons or Schwann cells affect functional recovery in a rodent model of sciatic nerve injury.

    PubMed

    Dayawansa, Samantha; Wang, Ernest W; Liu, Weimin; Markman, John D; Gelbard, Harris A; Huang, Jason H

    2014-11-01

    In this study, the functional recoveries of Sprague-Dawley rats following repair of a complete sciatic nerve transection using allotransplanted dorsal root ganglion (DRG) neurons or Schwann cells were examined using a number of outcome measures. Four groups were compared: (1) repair with a nerve guide conduit seeded with allotransplanted Schwann cells harvested from Wistar rats, (2) repair with a nerve guide conduit seeded with DRG neurons, (3) repair with solely a nerve guide conduit, and (4) sham-surgery animals where the sciatic nerve was left intact. The results corroborated our previous reported histology findings and measures of immunogenicity. The Wistar-DRG-treated group achieved the best recovery, significantly outperforming both the Wistar-Schwann group and the nerve guide conduit group in the Von Frey assay of touch response (P < 0.05). Additionally, Wistar-DRG and Wistar-Schwann seeded repairs showed lower frequency and severity in an autotomy measure of the self-mutilation of the injured leg because of neuralgia. These results suggest that in complete peripheral nerve transections, surgical repair using nerve guide conduits with allotransplanted DRG and Schwann cells may improve recovery, especially DRG neurons, which elicit less of an immune response.

  18. Sonographic assessment of volar digital nerve injury in the context of penetrating trauma.

    PubMed

    Umans, Hilary; Kessler, James; de la Lama, Mauricio; Magge, Keshav; Liebling, Ralph; Negron, Judith

    2010-05-01

    The purpose of this article was to report our experience using ultrasound to assess digital nerve integrity after penetrating hand trauma with sensory deficit. Ultrasound was performed in the long axis on 22 digital nerves in 11 patients using a 12-14-MHz linear array hockey stick transducer. Of 22 volar digital nerves evaluated by sonography, six were transected. All imaging findings were confirmed surgically. High-frequency ultrasound permits accurate imaging of intact and transected volar digital nerves.

  19. Involvement of hypoglossal and recurrent laryngeal nerves on swallowing pressure.

    PubMed

    Tsujimura, Takanori; Suzuki, Taku; Yoshihara, Midori; Sakai, Shogo; Koshi, Naomi; Ashiga, Hirokazu; Shiraishi, Naru; Tsuji, Kojun; Magara, Jin; Inoue, Makoto

    2018-05-01

    Swallowing pressure generation is important to ensure safe transport of an ingested bolus without aspiration or leaving residue in the pharynx. To clarify the mechanism, we measured swallowing pressure at the oropharynx (OP), upper esophageal sphincter (UES), and cervical esophagus (CE) using a specially designed manometric catheter in anesthetized rats. A swallow, evoked by punctate mechanical stimulation to the larynx, was identified by recording activation of the suprahyoid and thyrohyoid muscles using electromyography (EMG). Areas under the curve of the swallowing pressure at the OP, UES, and CE from two trials indicated high intrasubject reproducibility. Effects of transecting the hypoglossal nerve (12N) and recurrent laryngeal nerve (RLN) on swallowing were investigated. Following bilateral hypoglossal nerve transection (Bi-12Nx), OP pressure was significantly decreased, and time intervals between peaks of thyrohyoid EMG bursts and OP pressure were significantly shorter. Decreased OP pressure and shortened times between peaks of thyrohyoid EMG bursts and OP pressure following Bi-12Nx were significantly increased and longer, respectively, after covering the hard and soft palates with acrylic material. UES pressure was significantly decreased after bilateral RLN transection compared with that before transection. These results suggest that the 12N and RLN play crucial roles in OP and UES pressure during swallowing, respectively. We speculate that covering the palates with a palatal augmentation prosthesis may reverse the reduced swallowing pressure in patients with 12N or tongue damage by the changes of the sensory information and of the contact between the tongue and a palates. NEW & NOTEWORTHY Hypoglossal nerve transection reduced swallowing pressure at the oropharynx. Covering the hard and soft palates with acrylic material may reverse the reduced swallowing function caused by hypoglossal nerve damage. Recurrent laryngeal nerve transection reduced upper esophageal sphincter negative pressure during swallowing.

  20. Rat Whisker Movement after Facial Nerve Lesion: Evidence for Autonomic Contraction of Skeletal Muscle

    PubMed Central

    Heaton, James T.; Sheu, Shu-Hsien; Hohman, Marc H.; Knox, Christopher J.; Weinberg, Julie S.; Kleiss, Ingrid J.; Hadlock, Tessa A.

    2014-01-01

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10 weeks, and during intraoperative stimulation of the ION and facial nerves at ≥18 weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (P<0.05), but individual rats overlapped in whisking amplitude across both groups. In the resected rats, non-facial-nerve mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (P<0.05) increased by snout cooling. Moreover, fibrillation-related whisker movements decreased in all rats during the initial recovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation of skeletal muscle after motor nerve lesion, which not only has implications for interpreting facial nerve reinnervation results, but also calls into question whether autonomic-mediated innervation of striated muscle occurs naturally in other forms of neuropathy. PMID:24480367

  1. Rat whisker movement after facial nerve lesion: evidence for autonomic contraction of skeletal muscle.

    PubMed

    Heaton, James T; Sheu, Shu Hsien; Hohman, Marc H; Knox, Christopher J; Weinberg, Julie S; Kleiss, Ingrid J; Hadlock, Tessa A

    2014-04-18

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10weeks, and during intraoperative stimulation of the ION and facial nerves at ⩾18weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (P<0.05), but individual rats overlapped in whisking amplitude across both groups. In the resected rats, non-facial-nerve-mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (P<0.05) increased by snout cooling. Moreover, fibrillation-related whisker movements decreased in all rats during the initial recovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation of skeletal muscle after motor nerve lesion, which not only has implications for interpreting facial nerve reinnervation results, but also calls into question whether autonomic-mediated innervation of striated muscle occurs naturally in other forms of neuropathy. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Selectivity in the Reinnervation of the Lateral Gastrocnemius Muscle after Nerve Repair with Ethyl Cyanoacrylate in the Rat

    PubMed Central

    Landegren, Thomas; Risling, Mårten; Hammarberg, Henrik; Persson, Jonas K. E.

    2011-01-01

    There is a need for complementary surgical techniques that enable rapid and reliable primary repair of transected nerves. Previous studies after peripheral nerve transection and repair with synthetic adhesives have demonstrated regeneration to an extent comparable to that of conventional techniques. The aim of this study was to compare two different repair techniques on the selectivity of muscle reinnervation after repair and completed regeneration. We used the cholera toxin B technique of retrograde axonal tracing to evaluate the morphology, the number, and the three-dimensional location of α-motoneurons innervating the lateral gastrocnemius muscle and compared the results after repair with either ethyl cyanoacrylate (ECA) or epineural sutures of the transected parent sciatic nerve. In addition, we recorded the wet weight of the muscle. Six months after transection and repair of the sciatic nerve, the redistribution of the motoneuron pool was markedly disorganized, the motoneurons had apparently increased in number, and they were scattered throughout a larger volume of the spinal cord gray matter with a decrease in the synaptic coverage compared to controls. A reduction in muscle weight was observed as well. No difference in morphometric variables or muscle weight between the two repair methods could be detected. We conclude that the selectivity of motor reinnervation following sciatic nerve transection and subsequent repair with ECA is comparable to that following conventional micro suturing. PMID:21577248

  3. Effects of pelvic, pudendal, or hypogastric nerve cuts on Fos induction in the rat brain following vaginocervical stimulation.

    PubMed

    Pfaus, James G; Manitt, Colleen; Coopersmith, Carol B

    2006-12-30

    In the female rat, genitosensory input is conveyed to the central nervous system predominantly through the pelvic, pudendal, and hypogastric nerves. The present study examined the relative contribution of those three nerves in the expression of Fos immunoreactivity within brain regions previously shown to be activated by vaginocervical stimulation (VCS). Bilateral transection of those nerves, or sham neurectomy, was conducted in separate groups of ovariectomized, sexually-experienced females. After recovery, females were primed with estrogen and progesterone and given either 50 manual VCSs with a lubricated glass rod over the course of 1 h. VCS increased the number of neurons expressing Fos immunoreactivity in the medial preoptic area, lateral septum, bed nucleus of the stria terminalis, ventromedial hypothalamus, and medial amygdala of sham neurectomized females. Transection of the pelvic nerve reduced Fos immunoreactivity in the medial preoptic area, bed nucleus of the stria terminalis, ventromedial hypothalamus, and medial amygdala, whereas transection of the pudendal nerve had no effect. In contrast, transection of the hypogastric nerve increased Fos immunoreactivity in the medial preoptic area and lateral septum, whereas transaction of the pelvic nerve increased Fos immunoreactivity in the lateral septum, following VCS. All females given VCS, except those with pelvic neurectomy, displayed a characteristic immobility during each application. These data confirm that the pelvic nerve is largely responsible for the neural and behavioral effects of VCS, and support a separate function for the hypogastric nerve.

  4. Aberrant gastrocnemius muscle innervation by tibial nerve afferents after implantation of chitosan tubes impregnated with progesterone favored locomotion recovery in rats with transected sciatic nerve.

    PubMed

    Sarabia-Estrada, Rachel; Bañuelos-Pineda, Jacinto; Osuna Carrasco, Laura P; Jiménez-Vallejo, Salvador; Jiménez-Estrada, Ismael; Rivas-Celis, Efrain; Dueñas-Jiménez, Judith M; Dueñas-Jiménez, Sergio H

    2015-07-01

    Transection of peripheral nerves produces loss of sensory and/or motor function. After complete nerve cutting, the distal and proximal segment ends retract, but if both ends are bridged with unaltered chitosan, progesterone-impregnated chitosan, or silicone tubes, an axonal repair process begins. Progesterone promotes nerve repair and has neuroprotective effects thwarting regulation of neuron survival, inflammation, and edema. It also modulates aberrant axonal sprouting and demyelination. The authors compared the efficacy of nerve recovery after implantation of progesterone-loaded chitosan, unaltered chitosan, or silicone tubes after sciatic nerve transection in rats. After surgical removal of a 5-mm segment of the proximal sciatic nerve, rats were implanted with progesterone-loaded chitosan, unaltered chitosan, or silicone tubes in the transected nerve for evaluating progesterone and chitosan effects on sciatic nerve repair and ipsilateral hindlimb kinematic function, as well as on gastrocnemius electro-myographic responses. In some experiments, tube implantation was performed 90 minutes after nerve transection. At 90 days after sciatic nerve transection and tube implantation, rats with progesterone-loaded chitosan tubes showed knee angular displacement recovery and better outcomes for step length, velocity of locomotion, and normal hindlimb raising above the ground. In contrast, rats with chitosan-only tubes showed reduced normal raising and pendulum-like hindlimb movements. Aberrant fibers coming from the tibial nerve innervated the gastrocnemius muscle, producing electromyographic responses. Electrical responses in the gastrocnemius muscle produced by sciatic nerve stimulation occurred only when the distal nerve segment was stimulated; they were absent when the proximal or intratubular segment was stimulated. A clear sciatic nerve morphology with some myelinated fiber fascicles appeared in the tube section in rats with progesterone-impregnated chitosan tubes. Some gastrocnemius efferent fibers were partially repaired 90 days after nerve resection. The better outcome in knee angle displacement may be partially attributable to the aberrant neuromuscular synaptic effects, since nerve conduction in the gastrocnemius muscle could be blocked in the progesterone-impregnated chitosan tubes. In addition, in the region of the gap produced by the nerve resection, the number of axons and amount of myelination were reduced in the sciatic nerve implanted with chitosan, progesterone-loaded chitosan, and silicone tubes. At 180 days after sciatic nerve sectioning, the knee kinematic function recovered to a level observed in control rats of a similar age. In rats with progesterone-loaded chitosan tubes, stimulation of the proximal and intratubular sciatic nerve segments produced an electromyographic response. The axon morphology of the proximal and intratubular segments of the sciatic nerve resembled that of the contralateral nontransected nerve. Progesterone-impregnated chitosan tubes produced aberrant innervation of the gastrocnemius muscle, which allowed partial recovery of gait locomotion and could be adequate for reinnervating synergistic denervated muscles while a parent innervation is reestablished. Hindlimb kinematic parameters differed between younger (those at 90 days) and older (those at 180 days) rats.

  5. Impaired peripheral nerve regeneration in type-2 diabetic mouse model.

    PubMed

    Pham, Vuong M; Tu, Nguyen Huu; Katano, Tayo; Matsumura, Shinji; Saito, Akira; Yamada, Akihiro; Furue, Hidemasa; Ito, Seiji

    2018-01-01

    Peripheral neuropathy is one of the most common and serious complications of type-2 diabetes. Diabetic neuropathy is characterized by a distal symmetrical sensorimotor polyneuropathy, and its incidence increases in patients 40 years of age or older. In spite of extensive research over decades, there are few effective treatments for diabetic neuropathy besides glucose control and improved lifestyle. The earliest changes in diabetic neuropathy occur in sensory nerve fibers, with initial degeneration and regeneration resulting in pain. To seek its effective treatment, here we prepared a type-2 diabetic mouse model by giving mice 2 injections of streptozotocin and nicotinamide and examining the ability for nerve regeneration by using a sciatic nerve transection-regeneration model previously established by us. Seventeen weeks after the last injection, the mice exhibited symptoms of type-2 diabetes, that is, impaired glucose tolerance, decreased insulin level, mechanical hyperalgesia, and impaired sensory nerve fibers in the plantar skin. These mice showed delayed functional recovery and nerve regeneration by 2 weeks compared with young healthy mice and by 1 week compared with age-matched non-diabetic mice after axotomy. Furthermore, type-2 diabetic mice displayed increased expression of PTEN in their DRG neurons. Administration of a PTEN inhibitor at the cutting site of the nerve for 4 weeks promoted the axonal transport and functional recovery remarkably. This study demonstrates that peripheral nerve regeneration was impaired in type-2 diabetic model and that its combination with sciatic nerve transection is suitable for the study of the pathogenesis and treatment of early diabetic neuropathy. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Peripheral nerve reconstruction with epsilon-caprolactone conduits seeded with vasoactive intestinal peptide gene-transfected mesenchymal stem cells in a rat model

    NASA Astrophysics Data System (ADS)

    Hernández-Cortés, P.; Toledo-Romero, M. A.; Delgado, M.; Sánchez-González, C. E.; Martin, F.; Galindo-Moreno, P.; O'Valle, F.

    2014-08-01

    Objective. Attempts have been made to improve nerve conduits in peripheral nerve reconstruction. We investigated the potential therapeutic effect of a vasoactive intestinal peptide (VIP), a neuropeptide with neuroprotective, trophic and developmental regulatory actions, in peripheral nerve regeneration in a severe model of nerve injury that was repaired with nerve conduits. Approach. The sciatic nerve of each male Wistar rat was transected unilaterally at 10 mm and then repaired with Dl-lactic-ɛ-caprolactone conduits. The rats were treated locally with saline, with the VIP, with adipose-derived mesenchymal stem cells (ASCs) or with ASCs that were transduced with the VIP-expressing lentivirus. The rats with the transected nerve, with no repairs, were used as untreated controls. At 12 weeks post-surgery, we assessed their limb function by measuring the ankle stance angle and the percentage of their muscle mass reduction, and we evaluated the histopathology, immunohistochemistry and morphometry of the myelinated fibers. Main results. The rats that received a single injection of VIP-expressing ASCs showed a significant functional recovery in the ankle stance angle (p = 0.049) and a higher number of myelinated fibers in the middle and distal segments of the operated nerve versus the other groups (p = 0.046). Significance. These results suggest that utilization of a cellular substrate, plus a VIP source, is a promising method for enhancing nerve regeneration using Dl-lactic-ɛ-caprolactone conduits and that this method represents a potential useful clinical approach to repairing peripheral nerve damage.

  7. Promoting peripheral nerve regeneration with biodegradable poly (DL-lactic acid) films

    PubMed Central

    Li, Ruijun; Chen, Lei; Fu, Jinling; Liu, Zhigang; Wang, Shuang; Pan, Yuehai

    2015-01-01

    Regeneration and repair of peripheral nerve injury has always been a major problem in the clinic. The conventional technique based on suturing the nerve ends to each other coupled with the implantation of nerve conduits outside is associated with postoperative adhesions and scar problems. Recently, a novel biodegradable poly (DL-lactic acid) (PDLLA) film has been introduced. This novel anti-adhesion film has a porous structure with better mechanical properties, better flexibility, and more controllable degradation as compared to traditional non-porous nerve conduits. However, little is known about the effects of such PDLLA films on regeneration and repair of peripheral nerve injury in vivo. In this study, we evaluated the effects of PDLLA films implantation after sciatic nerve transection and anastomosis on subsequent sciatic nerve regeneration in vivo, using a rat sciatic nerve injury model. Sciatic nerve transection surgery coupled with direct suturing only, suturing and wrapping with traditional nerve conduits, or suturing and wrapping with PDLLA films was performed on adult Wistar rats. The additional wrapping with PDLLA films inhibited the nerve adhesion after 12 weeks recovery from surgery. It also increased the compound muscle action potentials and tibialis and gastrocnemius muscle wet weight ratio following 8 weeks recovery from surgery. Regenerated nerve fibers were relatively straight and the aligned structure was complete in rats with implantations of PDLLA films. The results suggested that PDLLA films can improve the nutritional status in the muscles innervated by the damaged nerves and promote nerve regeneration in vivo. PMID:26339372

  8. Effect of Platelet-Rich Fibrin on Peripheral Nerve Regeneration.

    PubMed

    Şenses, Fatma; Önder, Mustafa E; Koçyiğit, Ismail D; Kul, Oğuz; Aydin, Gülümser; Inal, Elem; Atil, Fethi; Tekin, Umut

    2016-10-01

    This study aimed to evaluate the effect of platelet-rich fibrin (PRF) on peripheral nerve regeneration on the sciatic nerve of rats by using functional, histopathologic, and electrophysiologic analyses. Thirty female Wistar rats were divided randomly into 3 experimental groups. In group 1 (G1), which was the control group, the sciatic nerve was transected and sutured (n = 10). In group 2 (G2), the sciatic nerve was transected, sutured, and then covered with PRF as a membrane (n = 10). In group 3 (G3), the sciatic nerve was transected, sutured by leaving a 5-mm gap, and then covered by PRF as a nerve guide (n = 10). Functional, histopathologic, and electrophysiologic analyses were performed. The total histopathologic semiquantitative score was significantly higher in G1 compared to G2 and G3 (P < 0.05). Myelin thickness and capillaries were significantly lower in G3 compared to G1 (P < 0.05). There was no statistically significant difference between the groups with regard to the functional and electrophysiologic results. The study results suggest that PRF decreases functional recovery in sciatic nerve injury. Further studies are required to determine the efficacy of PRF on peripheral nerve regeneration.

  9. Robotic phrenic nerve harvest: a feasibility study in a pig model.

    PubMed

    Porto de Melo, P; Miyamoto, H; Serradori, T; Ruggiero Mantovani, G; Selber, J; Facca, S; Xu, W-D; Santelmo, N; Liverneaux, P

    2014-10-01

    The aim of this study was to report on the feasibility of robotic phrenic nerve harvest in a pig model. A surgical robot (Da Vinci S™ system, Intuitive Surgical(®), Sunnyvale, CA) was installed with three ports on the pig's left chest. The phrenic nerve was transected distally where it enters the diaphragm. The phrenic nerve harvest was successfully performed in 45 minutes without major complications. The advantages of robotic microsurgery for phrenic nerve harvest are the motion scaling up to 5 times, elimination of physiological tremor, and free movement of joint-equipped robotic arms. Robot-assisted neurolysis may be clinically useful for harvesting the phrenic nerve for brachial plexus reconstruction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Effect of Chorda Tympani Nerve Transection on Salt Taste Perception in Mice

    PubMed Central

    Ishiwatari, Yutaka; Theodorides, Maria L.; Bachmanov, Alexander A.

    2011-01-01

    Effects of gustatory nerve transection on salt taste have been studied extensively in rats and hamsters but have not been well explored in the mouse. We examined the effects of chorda tympani (CT) nerve transection on NaCl taste preferences and thresholds in outbred CD-1 mice using a high-throughput phenotyping method developed in our laboratory. To measure taste thresholds, mice were conditioned by oral self-administration of LiCl or NaCl and then presented with NaCl concentration series in 2-bottle preference tests. LiCl-conditioned and control NaCl-exposed mice were given bilateral transections of the CT nerve (LiCl-CTX, NaCl-CTX) or were left intact as controls (LiCl-CNT, NaCl-CNT). After recovery from surgery, mice received a concentration series of NaCl (0–300 mM) in 48-h 2-bottle tests. CT transection increased NaCl taste thresholds in LiCl-conditioned mice and eliminated avoidance of concentrated NaCl in control NaCl-exposed mice. This demonstrates that in mice, the CT nerve is important for detection and recognition of NaCl taste and is necessary for the normal avoidance of high concentrations of NaCl. The results of this experiment also show that the method of high-throughput phenotyping of salt taste thresholds is suitable for detecting changes in the taste periphery in mouse genetic studies. PMID:21743094

  11. End-to-side nerve neurorrhaphy: critical appraisal of experimental and clinical data.

    PubMed

    Fernandez, E; Lauretti, L; Tufo, T; D'Ercole, M; Ciampini, A; Doglietto, F

    2007-01-01

    End-to-side neurorrhaphy (ESN) or terminolateral neurorraphy consists of connecting the distal stump of a transected nerve, named the recipient nerve, to the side of an intact adjacent nerve, named the donor nerve, "in which only an epineurial window is performed". This procedure was reintroduced in 1994 by Viterbo, who presented a report on an experimental study in rats. Several experimental and clinical studies followed this report with various and sometimes conflicting results. In this paper we present a review of the pertinent literature. Our personal experience using a sort of end-to-side nerve anastomosis, in which the donor nerve is partially transected, is also presented and compared with ESN as defined above. When the proximal nerve stump of a transected nerve is not available, ESN, which is claimed to permit anatomic and functional preservation of the donor nerve, seems an attractive technique, though yet not proven to be effective. Deliberate axotomy of the donor nerve yields results that are proportional to the entity of axotomy, but such technique, though resembling ESN, is an end-to-end neurorrhaphy. Neither experimental or clinical evidence support liberalizing the clinical use of ESN, a procedure with only an epineurial window in the donor nerve and without deliberate axotomy. Much more experimental investigation needs to be done to explain the ability of normal, intact nerves to sprout laterally. Such procedure appears justified only in an investigational setting.

  12. Laryngeal and tracheal afferent nerve stimulation evokes swallowing in anaesthetized guinea pigs

    PubMed Central

    Tsujimura, Takanori; Udemgba, Chioma; Inoue, Makoto; Canning, Brendan J

    2013-01-01

    We describe swallowing reflexes evoked by laryngeal and tracheal vagal afferent nerve stimulation in anaesthetized guinea pigs. The swallowing reflexes evoked by laryngeal citric acid challenges were abolished by recurrent laryngeal nerve (RLN) transection and mimicked by electrical stimulation of the central cut ends of an RLN. By contrast, the number of swallows evoked by upper airway/pharyngeal distensions was not significantly reduced by RLN transection but they were virtually abolished by superior laryngeal nerve transection. Laryngeal citric acid-evoked swallowing was mimicked by laryngeal capsaicin challenges, implicating transient receptor potential vanilloid 1 (TRPV1)-expressing laryngeal afferent nerves arising from the jugular ganglia. The swallowing evoked by citric acid and capsaicin and evoked by electrical stimulation of either the tracheal or the laryngeal mucosa occurred at stimulation intensities that were typically subthreshold for evoking cough in these animals. Swallowing evoked by airway afferent nerve stimulation also desensitized at a much slower rate than cough. We speculate that swallowing is an essential component of airway protection from aspiration associated with laryngeal and tracheal afferent nerve activation. PMID:23858010

  13. The fate of neurotization techniques on reinnervation after denervation of the gastrocnemius muscle: an experimental study.

    PubMed

    Askar, I; Sabuncuoglu, B T; Yormuk, E; Saray, A

    2001-07-01

    In nerve injuries, if it is not possible to reinnervate muscle by using neurorrhaphy and nerve grafting technique, reinnervation should be provided by the use of neuroization-directly implanting motor nerve into muscle. A comparative study of three techniques of neurotization is presented in rabbits. In this experimental study, a total of 40 white New Zealand rabbits were used and divided into four groups, each including 10 rabbits. In the first group (control--Group 1), only surgical exposure of the gastrocnemius muscle, main muscle nerve (tibial nerve), and peroneal nerve was done, without any injury to the nerves. In the second group (direct neurotization group--Group 2), the tibial nerve was transected, and the peroneal nerve, which had already been divided into fascicles, was implanted into the lateral head of the gastrocnemius muscle aneural zone. In the third group (dual neurotization group--Group 3), the tibial nerve which had been transected and re-anastomosed, and the peroneal nerve were implanted into the lateral head of the gastrocnemius muscle. In the last experimental group (hyperneurotization group--Group 4), fascicles of the peroneal nerve were implanted into the lateral head of the gastrocnemius, preserving the tibial nerve. Six months later, changes in the histologic pattern and the functional recovery of the gastrocnemius muscle were investigated. It was found that functional recovery was achieved in all neurotization groups. Groups with the tibial nerve transected had less muscular weights than those of groups with the tibial nerve intact. EMG recordings showed that polyphasic and late potentials were frequently seen in groups with the tibial nerve transected. Degeneration and regeneration of myofibrils was observed in such groups as well. New motor end-plates, including vesicles, were formed in a scattered manner in all neurotization groups. As a result, the authors conclude that direct and dual neurotization techniques are useful in peripheral nerve injuries, if it is not possible to reinnervate muscle by using neurorraphy and nerve grafting, and that there is no suggested superiority among these techniques.

  14. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    PubMed Central

    Chen, Yan; Guo, Wenjie; Li, Wenjuan; Cheng, Meng; Hu, Ying; Xu, Wenming

    2016-01-01

    Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation. PMID:27872858

  15. Nandrolone slows hindlimb bone loss in a rat model of bone loss due to denervation.

    PubMed

    Cardozo, Christopher P; Qin, Weiping; Peng, Yuanzhen; Liu, Xuan; Wu, Yong; Pan, Jiangping; Bauman, William A; Zaidi, Mone; Sun, Li

    2010-03-01

    Nandrolone is an anabolic steroid that has been demonstrated to reduce the loss of bone and muscle from hindlimb unweighting and to slow muscle atrophy after nerve transection. To determine whether nandrolone has the ability to protect bone against loss due to disuse after denervation, male rats underwent sciatic nerve transaction, followed 28 days later by treatment with nandrolone or vehicle for 28 days. Bone mineral density (BMD) was determined 28 days later or 56 days after nerve transection. Denervation led to reductions in BMD of 7% and 12% for femur and tibia, respectively. Nandrolone preserved 80% and 60% of BMD in femur and tibia, respectively, demonstrating that nandrolone administration significantly reduced loss of BMD from denervation. This study offers a potential novel pharmacological strategy for use of nandrolone to reduce bone loss in severe disuse- and denervation-related bone loss, such as that which occurs after spinal cord injury.

  16. Functional regeneration of the transected recurrent laryngeal nerve using a collagen scaffold loaded with laminin and laminin-binding BDNF and GDNF

    PubMed Central

    Wang, Baoxin; Yuan, Junjie; Chen, Xinwei; Xu, Jiafeng; Li, Yu; Dong, Pin

    2016-01-01

    Recurrent laryngeal nerve (RLN) injury remains a challenge due to the lack of effective treatments. In this study, we established a new drug delivery system consisting of a tube of Heal-All Oral Cavity Repair Membrane loaded with laminin and neurotrophic factors and tested its ability to promote functional recovery following RLN injury. We created recombinant fusion proteins consisting of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) fused to laminin-binding domains (LBDs) in order to prevent neurotrophin diffusion. LBD-BDNF, LBD-GDNF, and laminin were injected into a collagen tube that was fitted to the ends of the transected RLN in rats. Functional recovery was assessed 4, 8, and 12 weeks after injury. Although vocal fold movement was not restored until 12 weeks after injury, animals treated with the collagen tube loaded with laminin, LBD-BDNF and LBD-GDNF showed improved recovery in vocalisation, arytenoid cartilage angles, compound muscle action potentials and regenerated fibre area compared to animals treated by autologous nerve grafting (p < 0.05). These results demonstrate the drug delivery system induced nerve regeneration following RLN transection that was superior to that induced by autologus nerve grafting. It may have potential applications in nerve regeneration of RLN transection injury. PMID:27558932

  17. Daily Electrical Muscle Stimulation Enhances Functional Recovery Following Nerve Transection and Repair in Rats.

    PubMed

    Willand, Michael P; Chiang, Cameron D; Zhang, Jennifer J; Kemp, Stephen W P; Borschel, Gregory H; Gordon, Tessa

    2015-08-01

    Incomplete recovery following surgical reconstruction of damaged peripheral nerves is common. Electrical muscle stimulation (EMS) to improve functional outcomes has not been effective in previous studies. To evaluate the efficacy of a new, clinically translatable EMS paradigm over a 3-month period following nerve transection and immediate repair. Rats were divided into 6 groups based on treatment (EMS or no treatment) and duration (1, 2, or 3 months). A tibial nerve transection injury was immediately repaired with 2 epineurial sutures. The right gastrocnemius muscle in all rats was implanted with intramuscular electrodes. In the EMS group, the muscle was electrically stimulated with 600 contractions per day, 5 days a week. Terminal measurements were made after 1, 2, or 3 months. Rats in the 3-month group were assessed weekly using skilled and overground locomotion tests. Neuromuscular junction reinnervation patterns were also examined. Muscles that received daily EMS had significantly greater numbers of reinnervated motor units with smaller average motor unit sizes. The majority of muscle endplates were reinnervated by a single axon arising from a nerve trunk with significantly fewer numbers of terminal sprouts in the EMS group, the numbers being small. Muscle mass and force were unchanged but EMS improved behavioral outcomes. Our results demonstrated that EMS using a moderate stimulation paradigm immediately following nerve transection and repair enhances electrophysiological and behavioral recovery. © The Author(s) 2014.

  18. Right-sided vagus nerve stimulation inhibits induced spinal cord seizures.

    PubMed

    Tubbs, R Shane; Salter, E George; Killingsworth, Cheryl; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry

    2007-01-01

    We have previously shown that left-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. To test our hypothesis that right-sided vagus nerve stimulation will also abort seizure activity, we have initiated seizures in the spinal cord and then performed right-sided vagus nerve stimulation in an animal model. Four pigs were anesthetized and placed in the lateral position and a small laminectomy performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was next applied to the dorsal surface of the exposed cord. With the exception of the control animal, once seizure activity was discernible via motor convulsion or increased electrical activity, the right vagus nerve previously isolated in the neck was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation performed. Right-sided vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all animals. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation in causing cessation of seizure activity in all study animals. As with left-sided vagus nerve stimulation, right-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. Additionally, the effects of right-sided vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. These data may aid in the development of alternative mechanisms for electrical stimulation for patients with medically intractable seizures and add to our knowledge regarding the mechanism for seizure cessation following peripheral nerve stimulation.

  19. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage.

    PubMed

    He, Yifan; Zhu, Jihong; Huang, Fang; Qin, Liu; Fan, Wenguo; He, Hongwen

    2014-11-15

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that tooth extraction should be avoided in these populations.

  20. Preservation of Facial Nerve Function Repaired by Using Fibrin Glue-Coated Collagen Fleece for a Totally Transected Facial Nerve during Vestibular Schwannoma Surgery

    PubMed Central

    Choi, Kyung-Sik; Kim, Min-Su; Jang, Sung-Ho

    2014-01-01

    Recently, the increasing rates of facial nerve preservation after vestibular schwannoma (VS) surgery have been achieved. However, the management of a partially or completely damaged facial nerve remains an important issue. The authors report a patient who was had a good recovery after a facial nerve reconstruction using fibrin glue-coated collagen fleece for a totally transected facial nerve during VS surgery. And, we verifed the anatomical preservation and functional outcome of the facial nerve with postoperative diffusion tensor (DT) imaging facial nerve tractography, electroneurography (ENoG) and House-Brackmann (HB) grade. DT imaging tractography at the 3rd postoperative day revealed preservation of facial nerve. And facial nerve degeneration ratio was 94.1% at 7th postoperative day ENoG. At postoperative 3 months and 1 year follow-up examination with DT imaging facial nerve tractography and ENoG, good results for facial nerve function were observed. PMID:25024825

  1. A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates.

    PubMed

    Archibald, S J; Krarup, C; Shefner, J; Li, S T; Madison, R D

    1991-04-22

    When a peripheral nerve is severed and left untreated, the most likely result is the formation of an endbulb neuroma; this tangled mass of disorganized nerve fibers blocks functional recovery following nerve injury. Although there are several different approaches for promoting nerve repair, which have been greatly refined over recent years, the clinical results of peripheral nerve repair remain very disappointing. In this paper we compare the results of a collagen nerve guide conduit to the more standard clinical procedure of nerve autografting to promote repair of transected peripheral nerves in rats and nonhuman primates. In rats, we tested recovery from sciatic nerve transection and repair by 1) direct microsurgical suture, 2) 4 mm autograft, or 3) entubulation repair with collagen-based nerve guide conduits. Evoked muscle action potentials (MAP) were recorded from the gastrocnemius muscle at 4 and 12 weeks following sciatic nerve transection. At 4 weeks the repair group of direct suture demonstrated a significantly greater MAP, compared to the other surgical repair groups. However, at 12 weeks all four surgical repair groups displayed similar levels of recovery of the motor response. In six adult male Macaca fascicularis monkeys the median nerve was transected 2 cm above the wrist and repaired by either a 4 mm nerve autograft or a collagen-based nerve guide conduit leaving a 4 mm gap between nerve ends. Serial studies of motor and sensory fibers were performed by recording the evoked MAP from the abductor pollicis brevis muscle (APB) and the sensory action potential (SAP) evoked by stimulation of digital nerves (digit II), respectively, up to 760 days following surgery. Evoked muscle responses returned to normal baseline levels in all cases. Statistical analysis of the motor responses, as judged by the slope of the recovery curves, indicated a significantly more rapid rate of recovery for the nerve guide repair group. The final level of recovery of the MAP amplitudes was not significantly different between the groups. In contrast, the SAP amplitude only recovered to the low normal range and there were no statistically significant differences between the two groups in terms of sensory recovery rates. The rodent and primate studies suggest that in terms of recovery of physiological responses from target muscle and sensory nerves, entubulation repair of peripheral nerves with a collagen-based nerve guide conduit over a short nerve gap (4 mm) is as effective as a standard nerve autograft.(ABSTRACT TRUNCATED AT 400 WORDS)

  2. Saccular and utricular inputs to sternocleidomastoid motoneurons of decerebrate cats.

    PubMed

    Kushiro, K; Zakir, M; Ogawa, Y; Sato, H; Uchino, Y

    1999-06-01

    Connections from the otolithic organs to sternocleidomastoid (SCM) motoneurons were studied in 20 decerebrate cats. The electrical stimulation was selective for the saccular or the utricular nerves. Postsynaptic potentials were recorded from antidromically identified SCM motoneurons; these muscles participate mainly in neck rotation and flexion. Partial transections of the brainstem at the level of the obex were performed to identify the possible pathway from the otolithic organs to the SCM motoneurons. Saccular or utricular nerve stimulation mainly evoked inhibitory postsynaptic potentials (IPSPs) in the ipsilateral SCM motoneurons. Some of the sacculus-induced IPSPs were preceded by small-amplitude excitatory PSPs (EPSPs). The latencies of the PSPs ranged from 1.8 to 3.1 ms after saccular nerve stimulation and from 1.7 to 2.8 ms after utricular nerve stimulation, indicating that most of the ipsilateral connections were disynaptic. In the contralateral SCM motoneurons, saccular nerve stimulation had no or faint effects, whereas utricular nerve stimulation evoked EPSPs in about two-thirds of neurons, and no visible PSPs in about one-third of neurons. The latencies of the EPSPs ranged from 1.5 to 2.0 ms, indicating the disynaptic connection. Thus, the results suggest a difference between the two otolithic innervating patterns of SCM motoneurons. After transection of the medial vestibulospinal tract (MVST), saccular nerve stimulation did not evoke IPSPs at all in ipsilateral SCM motoneurons, but some (11/40) neurons showed small-amplitude EPSPs. Most (24/33) of the utricular-activated IPSPs disappeared after transection, whereas the other 9 neurons still indicated IPSPs. In the contralateral SCM motoneurons, no utricular-activated EPSPs were recorded after transection. These MVST transection results suggest that most of the otolith-SCM pathways are located in the MVST at the obex level. However, the results also suggest the possibility that other otolith-SCM pathways exist at the obex level.

  3. Transected sciatic nerve repair by diode laser protein soldering.

    PubMed

    Fekrazad, Reza; Mortezai, Omid; Pedram, MirSepehr; Kalhori, Katayoun Am; Joharchi, Khojasteh; Mansoori, Korosh; Ebrahimi, Roja; Mashhadiabbas, Fatemeh

    2017-08-01

    Despite advances in microsurgical techniques, repair of peripheral nerve injuries (PNI) is still a major challenge in regenerative medicine. The standard treatment for PNI includes suturing and anasthomosis of the transected nerve. The objective of this study was to compare neurorraphy (nerve repair) using standard suturingto diode laser protein soldering on the functional recovery of transected sciatic nerves. Thirty adult male Fischer-344 Wistar rats were randomly assigned to 3 groups: 1. The control group, no repair, 2. the standard of care suture group, and 3. The laser/protein solder group. For all three groups, the sciatic nerve was transected and the repair was done immediately. For the suture repair group, 10.0 prolene suture was used and for the laser/protein solder group a diode laser (500mW output power) in combination with bovine serum albumen and indocyanine green dye was used. Behavioral assessment by sciatic functional index was done on all rats biweekly. At 12weeks post-surgery, EMG recordings were done on all the rats and the rats were euthanized for histological evaluation of the sciatic nerves. The one-way ANOVA test was used for statistical analysis. The average time required to perform the surgery was significantly shorter for the laser-assisted nerve repair group compared to the suture group. The EMG evaluation revealed no difference between the two groups. Based on the sciatic function index the laser group was significantly better than the suture group after 12weeks (p<0.05). Histopathologic evaluation indicated that the epineurium recovery was better in the laser group (p<0.05). There was no difference in the inflammation between the suture and laser groups. Based on this evidence, laser/protein nerve soldering is a more efficient and efficacious method for repair of nerve injury compared to neurorraphy using standard suturing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Lycium Barbarum (Wolfberry) Reduces Secondary Degeneration and Oxidative Stress, and Inhibits JNK Pathway in Retina after Partial Optic Nerve Transection

    PubMed Central

    Li, Hongying; Liang, Yuxiang; Chiu, Kin; Yuan, Qiuju; Lin, Bin; Chang, Raymond Chuen-Chung; So, Kwok-Fai

    2013-01-01

    Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP) are neuroprotective for retinal ganglion cells (RGCs) in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT) model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT) model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK) pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1). This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina. PMID:23894366

  5. Attenuation of TRPV1 by AMG-517 after nerve injury promotes peripheral axonal regeneration in rats.

    PubMed

    Bai, Juan; Liu, Fu; Wu, Li-Fei; Wang, Ya-Fang; Li, Xia-Qing

    2018-01-01

    Aims The main objective was to investigate the effects of the transient receptor potential cation channel subfamily V member 1 (TRPV1) on nerve regeneration following sciatic transection injury by functional blockage of TRPV1 using AMG-517, a specific blocker of TRPV1. Methods AMG-517 was injected into the area surrounding ipsilateral lumbar dorsal root ganglia 30 min after unilateral sciatic nerve transection. The number of sciatic axons and the expression of growth-associated protein-43 (GAP-43) and glial fibrillary acidic protein was examined using semithin sections, Western blot, and immunofluorescence analyses. Results Blockage of TRPV1 with AMG-517 markedly promoted axonal regeneration, especially at two weeks after sciatic injury; the number of axons was similar to the uninjured control group. After sciatic nerve transection, expression of glial fibrillary acidic protein was decreased and GAP-43 was increased at the proximal stump. However, the expression of both glial fibrillary acidic protein and GAP-43 increased significantly in AMG-517-treated groups. Conclusions TRPV1 may be an important therapeutic target to promote peripheral nerve regeneration after injury.

  6. Organization, development, and effects of infraorbital nerve transection on galanin binding sites in the trigeminal brainstem complex.

    PubMed

    Bodie, D; Bennett-Clarke, C A; Davis, K; Postelwaite, J P; Chiaia, N L; Rhoades, R W

    1997-01-01

    Previous experiments from this laboratory have indicated that transection of the infraorbital nerve (ION, the trigeminal [V] branch that supplies the mystacial vibrissae follicles) at birth and in adulthood has markedly different effects on galanin immunoreactivity in the V brainstem complex. Adult nerve transection increases galanin immunoreactivity in the superficial layers of V subnucleus caudalis (SpC) only, while neonatal nerve transection results in increased galanin expression in vibrissae-related primary afferents throughout the V brainstem complex. The present study describes the distribution of binding sites for this peptide in the mature and developing V ganglion and brainstem complex and determines the effects of neonatal and adult ION damage and the associated changes in galanin levels upon their distribution and density. Galanin binding sites are densely distributed in all V brainstem subnuclei and are particularly dense in V subnucleus interpolaris and the superficial layers of SpC. They are present at birth (P-0) and their distribution is similar to that in adult animals. Transection of the ION in adulthood and examination of brainstem 7 days later indicated marked reductions in the density of galanin binding sites in the V brainstem complex. With the exception of the superficial laminae of SpC, the same reduction in density remained apparent in rats that survived > 45 days after nerve cuts. Transection of the ION on P-0 resulted in no change in the density of galanin binding sites in the brainstem after either 7 or > 60 days survival. These results indicate that densely distributed galanin binding sites are present in the V brainstem complex of both neonatal and adult rats, that they are located in regions not innervated by galanin-positive axons, and that their density is not significantly influenced by large lesion-induced changes in the primary afferent content of their natural ligand.

  7. Sciatic Nerve Stimulation and its Effects on Upper Airway Resistance in the Anesthetized Rabbit Model Relevant to Sleep Apnea.

    PubMed

    Schiefer, Matthew; Gamble, Jenniffer; Strohl, Kingman Perkins

    2018-06-07

    Obstructive sleep apnea (OSA) is a disorder characterized by collapse of the velopharynx and/or oropharynx during sleep when drive to the upper airway is reduced. Here, we explore an indirect approach for activation of upper airway muscles which might affect airway dynamics- unilateral electrical stimulation of the afferent fibers of the sciatic nerve- in an anesthetized rabbit model. A nerve cuff electrode was placed around the sciatic and hypoglossal nerves to deliver stimulus while air flow, air pressure, and alae nasi electromyogram (EMG) were monitored both prior to and after sciatic transection. Sciatic nerve stimulation increased respiratory effort, rate, and alae nasi EMG, which persisted for seconds after stimulation; however, upper airway resistance was unchanged. Hypoglossal stimulation reduced resistance without altering drive. While sciatic nerve stimulation is not ideal for treating obstructive sleep apnea, it remains a target for altering respiratory drive.

  8. Bilateral Traumatic Globe Luxation with Optic Nerve Transection

    PubMed Central

    Tok, Levent; Tok, Ozlem Yalcin; Argun, Tugba Cakmak; Yilmaz, Omer; Gunes, Alime; Unlu, Elif Nisa; Sezer, Sezgin; Ibisoglu, Seda; Argun, Mehmet

    2014-01-01

    Purpose The purpose of this study was to document clinical findings and management of a patient with bilateral globe luxation and optic nerve transection. Materials and Methods A 25-year-old female patient was admitted to the emergency department with bilateral traumatic globe luxation following a motor vehicle accident. Results Visual acuity testing showed no light perception. The right pupil was dilated and bilaterally did not react to light. The globes were bilaterally intact. A computed tomography scan revealed Le Fort type II fractures, bilateral optic nerve transection and disruption of all extraocular muscles. The globes of the patient were bilaterally reduced into the orbit. However, the patient developed phthisis bulbi in the right eye at month 3. Conclusion Globe luxation presents a dramatic clinical picture, and may lead to the development of severe complications due to the concomitance of complete optic nerve dissection and multiple traumas. Even if the luxated globe is repositioned into the orbit, there is still an increased risk of the development of phthisis due to ischemia. PMID:25606034

  9. Neurotrophin expression and laryngeal muscle pathophysiology following recurrent laryngeal nerve transection

    PubMed Central

    WANG, BAOXIN; YUAN, JUNJIE; XU, JIAFENG; XIE, JIN; WANG, GUOLIANG; DONG, PIN

    2016-01-01

    Laryngeal palsy often occurs as a result of recurrent laryngeal or vagal nerve injury during oncological surgery of the head and neck, affecting quality of life and increasing economic burden. Reinnervation following recurrent laryngeal nerve (RLN) injury is difficult despite development of techniques, such as neural anastomosis, nerve grafting and creation of a laryngeal muscle pedicle. In the present study, due to the limited availability of human nerve tissue for research, a rat model was used to investigate neurotrophin expression and laryngeal muscle pathophysiology in RLN injury. Twenty-five male Sprague-Dawley rats underwent right RLN transection with the excision of a 5-mm segment. Vocal fold movements, vocalization, histology and immunostaining were evaluated at different time-points (3, 6, 10 and 16 weeks). Although vocalization was restored, movement of the vocal fold failed to return to normal levels following RLN injury. The expression of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor differed in the thyroarytenoid (TA) and posterior cricoarytenoid muscles. The number of axons did not increase to baseline levels over time. Furthermore, normal muscle function was unlikely with spontaneous reinnervation. During regeneration following RLN injury, differences in the expression levels of neurotrophic factors may have resulted in preferential reinnervation of the TA muscles. Data from the present study indicated that neurotrophic factors may be applied for restoring the function of the laryngeal nerve following recurrent injury. PMID:26677138

  10. Neurotrophin expression and laryngeal muscle pathophysiology following recurrent laryngeal nerve transection.

    PubMed

    Wang, Baoxin; Yuan, Junjie; Xu, Jiafeng; Xie, Jin; Wang, Guoliang; Dong, Pin

    2016-02-01

    Laryngeal palsy often occurs as a result of recurrent laryngeal or vagal nerve injury during oncological surgery of the head and neck, affecting quality of life and increasing economic burden. Reinnervation following recurrent laryngeal nerve (RLN) injury is difficult despite development of techniques, such as neural anastomosis, nerve grafting and creation of a laryngeal muscle pedicle. In the present study, due to the limited availability of human nerve tissue for research, a rat model was used to investigate neurotrophin expression and laryngeal muscle pathophysiology in RLN injury. Twenty-five male Sprague-Dawley rats underwent right RLN transection with the excision of a 5-mm segment. Vocal fold movements, vocalization, histology and immunostaining were evaluated at different time-points (3, 6, 10 and 16 weeks). Although vocalization was restored, movement of the vocal fold failed to return to normal levels following RLN injury. The expression of brain‑derived neurotrophic factor and glial cell line-derived neurotrophic factor differed in the thyroarytenoid (TA) and posterior cricoarytenoid muscles. The number of axons did not increase to baseline levels over time. Furthermore, normal muscle function was unlikely with spontaneous reinnervation. During regeneration following RLN injury, differences in the expression levels of neurotrophic factors may have resulted in preferential reinnervation of the TA muscles. Data from the present study indicated that neurotrophic factors may be applied for restoring the function of the laryngeal nerve following recurrent injury.

  11. Respiratory reflexes in response to nasal administration of halothane to anesthetized, spontaneously breathing dogs.

    PubMed

    Mutoh, T; Kanamaru, A; Tsubone, H; Nishimura, R; Sasaki, N

    2000-03-01

    To characterize and determine the sensory innervation of respiratory reflexes elicited by nasal administration of halothane to dogs. 10 healthy Beagles. Dogs underwent permanent tracheostomy and, 2 to 3 weeks later, were anesthetized with thiopental and alpha-chloralose administered IV. The nasal passages were functionally isolated so that halothane could be administered to the nasal passages while dogs were breathing 100% O2 via the tracheostomy. Respiratory reflexes in response to administration of halothane at concentrations of 1.25, 1.75, and 2.5 times the minimum alveolar concentration (MAC), and 5% (administered in 100% O2 at a flow rate of 5 L/min) were recorded. Reflexes in response to administration of 5% halothane were also recorded following transection of the infraorbital nerve, transection of the caudal nasal nerve, and nasal administration of lidocaine. Nasal administration of halothane induced an inhibition of breathing characterized by a dose-dependent increase in expiratory time and a resultant decrease in expired volume per unit time. Effects were noticeable immediately after the onset of halothane administration and lasted until its cessation. Reflex responses to halothane administration were attenuated by transection of the caudal nasal nerve and by nasal administration of lidocaine, but transection of the infraorbital nerve had no effect. Nasal administration of halothane at concentrations generally used for mask induction of anesthesia induces reflex inhibition of breathing. Afferent fibers in the caudal nasal nerve appear to play an important role in the reflex inhibition of breathing induced by halothane administration.

  12. Primary nerve grafting: A study of revascularization.

    PubMed

    Chalfoun, Charbel; Scholz, Thomas; Cole, Matthew D; Steward, Earl; Vanderkam, Victoria; Evans, Gregory R D

    2003-01-01

    It was the purpose of this study to evaluate the revascularization of primary nerve repair and grafts using orthogonal polarization spectral (OPS) (Cytometrix, Inc.) imaging, a novel method for real-time evaluation of microcirculatory blood flow. Twenty male Sprague Dawley rats (250 g) were anesthetized with vaporized halothane and surgically prepared for common peroneal nerve resection. Group I animals (n = 10) underwent primary neurorraphy following transection, utilizing a microsurgical technique with 10-0 nylon suture. Group II (n = 10) animals had a 7-mm segment of nerve excised, reversed, and subsequently replaced as a nerve graft under similar techniques. All animals were evaluated using the OPS imaging system on three portions (proximal, transection site/graft, and distal) of the nerve following repair or grafting. Reevaluation of 5 animals randomly selected from each group using the OPS imaging system was again performed on days 14 and 28 following microsurgical repair/grafting. Values were determined by percent change in vascularity of the common peroneal nerve at 0 hr following surgery. Real-time evaluation of blood flow was utilized as an additional objective criterion. Percent vascularity in group I and II animals increased from baseline in all segments at day 14. By day 28, vascularity in nerves of group I rats decreased in all segments to values below baseline, with the exception of the transection site, which remained at a higher value than obtained directly after surgical repair. In group II animals, vascularity remained above baseline in all segments except the distal segment, which returned to vascularity levels similar to those at 0 hr. Further, occlusion of the vessels demonstrated in the graft and distal segments following initial transection appeared to be corrected. This study suggests that revascularization may occur via bidirectional inosculation with favored proximal vascular growth advancement. The use of real-time imaging offers a unique evaluation of tissues through emerging technologies. Copyright 2003 Wiley-Liss, Inc.

  13. Nonexpanded Adipose Stromal Vascular Fraction Local Therapy on Peripheral Nerve Regeneration Using Allografts.

    PubMed

    Mohammadi, Rahim; Mehrtash, Moein; Mehrtash, Moeid; Sajjadi, Seyedeh-Sepideh

    2016-06-01

    Adipose tissue possesses a population of multi-potent stem cells which can be differentiated to a Schwann cell phenotype and may be of benefit for treatment of peripheral nerve injuries. Effects of local therapy of nonexpanded adipose stromal vascular fraction (SVF) on peripheral nerve regeneration was studied using allografts in a rat sciatic nerve model. Thirty male white Wistar rats were divided into three experimental groups (n = 10), randomly: Sham-operated group (SHAM), allograft group (ALLO), SVF-treated group (ALLO/SVF). In SHAM group left sciatic nerve was exposed through a gluteal muscle incision and after homeostasis muscle was sutured. In the ALLO group the left sciatic nerve was exposed through a gluteal muscle incision and transected proximal to the tibio-peroneal bifurcation where a 10 mm segment was excised. The same procedure was performed in the ALLO/SVF group. The harvested nerves of the rats of ALLO group were served as allograft for ALLO/SVF group and vice versa. The SHAM and ALLO groups received 100 μL phosphate buffered saline and the ALLO/SVF group received 100 μL SVF (2.25 ± 0.45 × 10(7) cells) locally where the grafting was performed. Behavioral, functional, biomechanical, and gastrocnemius muscle mass showed earlier regeneration of axons in ALLO/SVF than in ALLO group (p < .05). Histomorphometic and immunohistochemical studies also showed earlier regeneration of axons in ALLO/SVF than in ALLO group (p < .05). Administration of nonexpanded SVF could accelerate functional recovery after nerve allografting in sciatic nerve. It may have clinical implications for the surgical management of patients after nerve transection.

  14. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats.

    PubMed

    Cui, Lin; Jiang, Jun; Wei, Ling; Zhou, Xin; Fraser, Jamie L; Snider, B Joy; Yu, Shan Ping

    2008-05-01

    Extensive research has focused on transplantation of pluripotent stem cells for the treatment of central nervous system disorders, the therapeutic potential of stem cell therapy for injured peripheral nerves is largely unknown. We used a rat sciatic nerve transection model to test the ability of implanted embryonic stem (ES) cell-derived neural progenitor cells (ES-NPCs) in promoting repair of a severely injured peripheral nerve. Mouse ES cells were neurally induced in vitro; enhanced expression and/or secretion of growth factors were detected in differentiating ES cells. One hour after removal of a 1-cm segment of the left sciatic nerve, ES-NPCs were implanted into the gap between the nerve stumps with the surrounding epineurium as a natural conduit. The transplantation resulted in substantial axonal regrowth and nerve repair, which were not seen in culture medium controls. One to 3 months after axotomy, co-immunostaining with the mouse neural cell membrane specific antibody M2/M6 and the Schwann cell marker S100 suggested that transplanted ES-NPCs had survived and differentiated into myelinating cells. Regenerated axons were myelinated and showed a uniform connection between proximal and distal stumps. Nerve stumps had near normal diameter with longitudinally oriented, densely packed Schwann cell-like phenotype. Fluoro-Gold retrogradely labeled neurons were found in the spinal cord (T12-13) and DRG (L4-L6), suggesting reconnection of axons across the transection. Electrophysiological recordings showed functional activity recovered across the injury gap. These data suggest that transplanted neurally induced ES cells differentiate into myelin-forming cells and provide a potential therapy for severely injured peripheral nerves.

  15. Effects of selective lingual gustatory deafferentation on suprathreshold taste intensity discrimination of NaCl in rats.

    PubMed

    Colbert, Connie L; Garcea, Mircea; Spector, Alan C

    2004-12-01

    In rats, chorda tympani nerve transection (CTX) greatly increases the detection threshold of sodium chloride (NaCl) and severely disrupts salt discriminability. Here it is shown that CTX has surprisingly little effect, if any, on suprathreshold intensity discrimination. Glossopharyngeal nerve transection (GLX), which has no reported effect on salt sensibility, also did not affect performance. Rats were tested in a 2-response, operant taste intensity discrimination task. Difference thresholds for CTX rats were only slightly higher (-0.15 log/10 unit) than those for GLX and sham-transected rats, when 0.05 M served as the standard, and did not significantly differ when 0.1 M NaCl was the standard. Although the perceived intensity of NaCl might be reduced by CTX, input from remaining taste nerves sufficiently maintains the relative discriminability of suprathreshold NaCl concentrations.

  16. A novel rat model of brachial plexus injury with nerve root stumps.

    PubMed

    Fang, Jintao; Yang, Jiantao; Yang, Yi; Li, Liang; Qin, Bengang; He, Wenting; Yan, Liwei; Chen, Gang; Tu, Zhehui; Liu, Xiaolin; Gu, Liqiang

    2018-02-01

    The C5-C6 nerve roots are usually spared from avulsion after brachial plexus injury (BPI) and thus can be used as donors for nerve grafting. To date, there are no appropriate animal models to evaluate spared nerve root stumps. Hence, the aim of this study was to establish and evaluate a rat model with spared nerve root stumps in BPI. In rupture group, the proximal parts of C5-T1 nerve roots were held with the surrounding muscles and the distal parts were pulled by a sudden force after the brachial plexus was fully exposed, and the results were compared with those of sham group. To validate the model, the lengths of C5-T1 spared nerve root stumps were measured and the histologies of the shortest one and the corresponding spinal cord were evaluated. C5 nerve root stump was found to be the shortest. Histology findings demonstrated that the nerve fibers became more irregular and the continuity decreased; numbers and diameters of myelinated axons and thickness of myelin sheaths significantly decreased over time. The survival of motoneurons was reduced, and the death of motoneurons may be related to the apoptotic process. Our model could successfully create BPI model with nerve root stumps by traction, which could simulate injury mechanisms. While other models involve root avulsion or rupturing by distal nerve transection. This model would be suitable for evaluating nerve root stumps and testing new therapeutic strategies for neuroprotection through nerve root stumps in the future. Copyright © 2017. Published by Elsevier B.V.

  17. Cupping in the Monkey Optic Nerve Transection Model Consists of Prelaminar Tissue Thinning in the Absence of Posterior Laminar Deformation

    PubMed Central

    Ing, Eliesa; Ivers, Kevin M.; Yang, Hongli; Gardiner, Stuart K.; Reynaud, Juan; Cull, Grant; Wang, Lin; Burgoyne, Claude F.

    2016-01-01

    Purpose To use optical coherence tomography (OCT) to test the hypothesis that optic nerve head (ONH) “cupping” in the monkey optic nerve transection (ONT) model does not include posterior laminar deformation. Methods Five monkeys (aged 5.5–7.8 years) underwent ONH and retinal nerve fiber layer (RNFL) OCT imaging five times at baseline and biweekly following unilateral ONT until euthanization at ∼40% RNFL loss. Retinal nerve fiber layer thickness (RNFLT) and minimum rim width (MRW) were calculated from each pre- and post-ONT imaging session. The anterior lamina cribrosa surface (ALCS) was delineated within baseline and pre-euthanasia data sets. Significant ONT versus control eye pre-euthanasia change in prelaminar tissue thickness (PLTT), MRW, RNFLT, and ALCS depth (ALCSD) was determined using a linear mixed-effects model. Eye-specific change in each parameter exceeded the 95% confidence interval constructed from baseline measurements. Results Animals were euthanized 49 to 51 days post ONT. Overall ONT eye change from baseline was significant for MRW (−26.2%, P = 0.0011), RNFLT (−43.8%, P < 0.0001), PLTT (−23.8%, P = 0.0013), and ALCSD (−20.8%, P = 0.033). All five ONT eyes demonstrated significant eye-specific decreases in MRW (−23.7% to −31.8%) and RNFLT (−39.6% to −49.7%). Four ONT eyes showed significant PLTT thinning (−23.0% to −28.2%). The ALCS was anteriorly displaced in three of the ONT eyes (−25.7% to −39.2%). No ONT eye demonstrated posterior laminar displacement. Conclusions Seven weeks following surgical ONT in the monkey eye, ONH cupping involves prelaminar and rim tissue thinning without posterior deformation of the lamina cribrosa. PMID:27168368

  18. Polyethylene glycol restores axonal conduction after corpus callosum transection.

    PubMed

    Bamba, Ravinder; Riley, D Colton; Boyer, Richard B; Pollins, Alonda C; Shack, R Bruce; Thayer, Wesley P

    2017-05-01

    Polyethylene glycol (PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA) were used to measure mean firing rate (MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups ( P < 0.01, P < 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  19. Polyethylene glycol restores axonal conduction after corpus callosum transection

    PubMed Central

    Bamba, Ravinder; Riley, D. Colton; Boyer, Richard B.; Pollins, Alonda C.; Shack, R. Bruce; Thayer, Wesley P.

    2017-01-01

    Polyethylene glycol (PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA) were used to measure mean firing rate (MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups (P < 0.01, P < 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion. PMID:28616031

  20. Iatrogenic facial nerve injuries during chronic otitis media surgery: a multicentre retrospective study.

    PubMed

    Linder, T; Mulazimoglu, S; El Hadi, T; Darrouzet, V; Ayache, D; Somers, T; Schmerber, S; Vincent, C; Mondain, M; Lescanne, E; Bonnard, D

    2017-06-01

    To give an insight into why, when and where iatrogenic facial nerve (FN) injuries may occur and to explain how to deal with them in an emergency setting. Multicentre retrospective study in eight tertiary referral hospitals over 17 years. Twenty patients with partial or total FN injury during surgery for chronic otitis media (COM) were revised. Indication and type of surgery, experience of the surgeon, intra- and postoperative findings, value of CT scanning, patient management and final FN outcome were recorded. In 12 cases, the nerve was completely transected, but the surgeon was unaware in 11 cases. A minority of cases occurred in academic teaching hospitals. Tympanic segment, second genu and proximal mastoid segments were the sites involved during injury. The FN was not deliberately identified in 18 patients at the time of injury, and nerve monitoring was only applied in one patient. Before revision surgery, CT scanning correctly identified the lesion site in 11 of 12 cases and depicted additional lesions such as damage to the lateral semicircular canal. A greater auricular nerve graft was interposed in 10 cases of total transection and in one partially lesioned nerve: seven of them resulted in an HB III functional outcome. In two of the transected nerves, rerouting and direct end-to-end anastomosis was applied. A simple FN decompression was used in four cases of superficially traumatised nerves. We suggest checklists for preoperative, intraoperative and postoperative management to prevent and treat iatrogenic FN injury during COM surgery. © 2016 John Wiley & Sons Ltd.

  1. In patients with a tumour invading the phrenic nerve does prophylactic diaphragm plication improve postoperative lung function?

    PubMed

    Beattie, Gwyn W; Dunn, William G; Asif, Mohammed

    2016-09-01

    A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was 'In patients with tumours involving the phrenic nerve, does prophylactic diaphragm plication improve lung function following tumour resection?' Using the reported search, 258 papers were found of which 6 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Three case reports and one case series represent 37 patients in the literature along with two relevant animal studies. Patients treated with prophylactic plication at the time of injury or sacrifice of the phrenic nerve had reduced radiological evidence of diaphragm paralysis, lower reported shortness of breath and reduced requirement for ventilatory support. In patients with prophylactic diaphragm plication and a concurrent pulmonary resection, the predicted postoperative lung function correlated closely with the postoperative measured FEV1, FVC and gas transfer. The postoperative measured FEV1 was reported as 86-98%, the FVC 82-89% and gas transfer 97% of the predicted values. Two animal models investigate the mechanics of respiration, spirometry and gas exchange following diaphragmatic plication. A randomized control study in four dogs measured a 50% reduction in tidal volume and respiratory rate, a 40% decrease in arterial PO2 and a 43% increase in arterial CO2 when the phrenic nerve was crushed in animals with a pneumonectomy but without prophylactic diaphragm plication. A further randomized control animal study with 28 dogs found that plicating the diaphragm after unilateral phrenic nerve transection resulted in a significant increase in tidal volume and lung compliance and a significant decrease in respiratory frequency and the work of breathing. Prophylactic diaphragm plication may preserve lung function, reduce the risk of ventilator dependence and improve the mechanics of breathing in patients with phrenic nerve transection. If transection of the phrenic nerve occurs, and it is recognized intraoperatively, prophylactic diaphragm plication should be considered. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  2. Selective recurrent laryngeal nerve stimulation using a penetrating electrode array in the feline model.

    PubMed

    Haidar, Yarah M; Sahyouni, Ronald; Moshtaghi, Omid; Wang, Beverly Y; Djalilian, Hamid R; Middlebrooks, John C; Verma, Sunil P; Lin, Harrison W

    2017-10-31

    Laryngeal muscles (LMs) are controlled by the recurrent laryngeal nerve (RLN), injury of which can result in vocal fold (VF) paralysis (VFP). We aimed to introduce a bioelectric approach to selective stimulation of LMs and graded muscle contraction responses. Acute experiments in cats. The study included six anesthetized cats. In four cats, a multichannel penetrating microelectrode array (MEA) was placed into an uninjured RLN. For RLN injury experiments, one cat received a standardized hemostat-crush injury, and one cat received a transection-reapproximation injury 4 months prior to testing. In each experiment, three LMs (thyroarytenoid, posterior cricoarytenoid, and cricothyroid muscles) were monitored with an electromyographic (EMG) nerve integrity monitoring system. Electrical current pulses were delivered to each stimulating channel individually. Elicited EMG voltage outputs were recorded for each muscle. Direct videolaryngoscopy was performed for visualization of VF movement. Stimulation through individual channels led to selective activation of restricted nerve populations, resulting in selective contraction of individual LMs. Increasing current levels resulted in rising EMG voltage responses. Typically, activation of individual muscles was successfully achieved via single placement of the MEA by selection of appropriate stimulation channels. VF abduction was predominantly observed on videolaryngoscopy. Nerve histology confirmed injury in cases of RLN crush and transection experiments. We demonstrated the ability of a penetrating MEA to selectively stimulate restricted fiber populations within the feline RLN and selectively elicit contractions of discrete LMs in both acute and injury-model experiments, suggesting a potential role for intraneural MEA implantation in VFP management. NA Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Evaluation of cartilage degeneration in a rat model of rotator cuff tear arthropathy

    PubMed Central

    Kramer, Erik J.; Bodendorfer, Blake M.; Laron, Dominique; Wong, Jason; Kim, Hubert T.; Liu, Xuhui; Feeley, Brian T.

    2013-01-01

    Introduction Rotator cuff tears are the most common injury seen by shoulder surgeons. Many late stage rotator cuff tear patients develop glenohumeral osteoarthritis as a result of torn cuff tendons, termed cuff tear arthropathy. However, the mechanisms of cuff tear arthropathy have not been fully established. It has been hypothesized that a combination of synovial and mechanical factors contribute equally to the development of cuff tear arthropathy. The goal of this study was to assess the utility of this model in investigating cuff-tear arthropathy. Methods We utilized a rat model which accurately reflects rotator cuff muscle degradation after massive rotator cuff tears through either infraspinatus and supraspinatus tenotomy or suprascapular nerve transection. Using a Modified-Mankin Scoring System (MMS), we found significant glenohumeral cartilage damage following both rotator cuff tenotomy and suprascapular nerve transection after only 12 weeks. Results Cartilage degeneration was similar between groups, and was present on both the humeral head and the glenoid. Denervation of the supraspinatus and infraspinatus muscles without opening the joint capsule caused cartilage degeneration similar to that found in the tendon transection group. Conclusions These results suggest that altered mechanical loading after rotator cuff tears is the primary factor in cartilage degeneration after rotator cuff tears. Clinically, understanding the process of cartilage degeneration after rotator cuff injury will help guide treatment decisions in the setting of rotator cuff tears. Level of evidence Basic Science Study, Animal Model PMID:23664745

  4. An animal model for the neuromodulation of neurogenic bladder dysfunction.

    PubMed

    Zvara, P; Sahi, S; Hassouna, M M

    1998-08-01

    To develop an animal model to examine the pathophysiology by which S3 sacral root electrostimulation alters the micturition reflex in patients with bladder hyper-reflexia. Chronic sacral nerve root electrostimulation was applied to spinally transected rats; 21 animals were divided into four groups. The spinal cord was completely transected at the T10-11 level and stainless-steel electrodes implanted into the sacral foramen in 17 animals; these animals were subsequently divided into two groups (1 and 2). Six rats in group 1 underwent sacral root elctrostimulation for 2 h/day and five in group 2 for 6 h/day, for 21 days. The sham group (group 3, six rats) received no stimulation and four rats were used as healthy controls (group 4). Voiding frequency was recorded and each animal was evaluated cystometrically at the end of the stimulation period. The results were compared with the sham and control groups. Spinal cord transection resulted in bladder areflexia and complete urinary retention; 7-9 days after the injury, the bladder recovered its activity. Twenty-one days after transection all animals had evidence of uninhibited bladder contractions. The mean (SD) hourly frequency of urination was 0.66 (0.18) in healthy controls, 0.83 (0.21) in group 1, 0.87 (0.34) in group 2 and 1.1 (0.31) in group 3. There was a significant decrease in eh cystometric signs of bladder hyper-reflexia in groups 1 and 2 when compared with group 3. This work reports and initial study showing that chronic electrostimulation of sacral nerve roots can reduce the signs of bladder hyper-reflexia in the spinally injured rat. To our knowledge, this is the first report describing the rat as an animal model to determine the effects of chronic electrostimulation on the micturition reflex.

  5. Is it necessary to use the entire root as a donor when transferring contralateral C7 nerve to repair median nerve?

    PubMed

    Gao, Kai-Ming; Lao, Jie; Guan, Wen-Jie; Hu, Jing-Jing

    2018-01-01

    If a partial contralateral C 7 nerve is transferred to a recipient injured nerve, results are not satisfactory. However, if an entire contralateral C 7 nerve is used to repair two nerves, both recipient nerves show good recovery. These findings seem contradictory, as the above two methods use the same donor nerve, only the cutting method of the contralateral C 7 nerve is different. To verify whether this can actually result in different repair effects, we divided rats with right total brachial plexus injury into three groups. In the entire root group, the entire contralateral C 7 root was transected and transferred to the median nerve of the affected limb. In the posterior division group, only the posterior division of the contralateral C 7 root was transected and transferred to the median nerve. In the entire root + posterior division group, the entire contralateral C 7 root was transected but only the posterior division was transferred to the median nerve. After neurectomy, the median nerve was repaired on the affected side in the three groups. At 8, 12, and 16 weeks postoperatively, electrophysiological examination showed that maximum amplitude, latency, muscle tetanic contraction force, and muscle fiber cross-sectional area of the flexor digitorum superficialis muscle were significantly better in the entire root and entire root + posterior division groups than in the posterior division group. No significant difference was found between the entire root and entire root + posterior division groups. Counts of myelinated axons in the median nerve were greater in the entire root group than in the entire root + posterior division group, which were greater than the posterior division group. We conclude that for the same recipient nerve, harvesting of the entire contralateral C 7 root achieved significantly better recovery than partial harvesting, even if only part of the entire root was used for transfer. This result indicates that the entire root should be used as a donor when transferring contralateral C 7 nerve.

  6. Is it necessary to use the entire root as a donor when transferring contralateral C7 nerve to repair median nerve?

    PubMed Central

    Gao, Kai-ming; Lao, Jie; Guan, Wen-jie; Hu, Jing-jing

    2018-01-01

    If a partial contralateral C7 nerve is transferred to a recipient injured nerve, results are not satisfactory. However, if an entire contralateral C7 nerve is used to repair two nerves, both recipient nerves show good recovery. These findings seem contradictory, as the above two methods use the same donor nerve, only the cutting method of the contralateral C7 nerve is different. To verify whether this can actually result in different repair effects, we divided rats with right total brachial plexus injury into three groups. In the entire root group, the entire contralateral C7 root was transected and transferred to the median nerve of the affected limb. In the posterior division group, only the posterior division of the contralateral C7 root was transected and transferred to the median nerve. In the entire root + posterior division group, the entire contralateral C7 root was transected but only the posterior division was transferred to the median nerve. After neurectomy, the median nerve was repaired on the affected side in the three groups. At 8, 12, and 16 weeks postoperatively, electrophysiological examination showed that maximum amplitude, latency, muscle tetanic contraction force, and muscle fiber cross-sectional area of the flexor digitorum superficialis muscle were significantly better in the entire root and entire root + posterior division groups than in the posterior division group. No significant difference was found between the entire root and entire root + posterior division groups. Counts of myelinated axons in the median nerve were greater in the entire root group than in the entire root + posterior division group, which were greater than the posterior division group. We conclude that for the same recipient nerve, harvesting of the entire contralateral C7 root achieved significantly better recovery than partial harvesting, even if only part of the entire root was used for transfer. This result indicates that the entire root should be used as a donor when transferring contralateral C7 nerve. PMID:29451212

  7. The role of the superior laryngeal nerve in esophageal reflexes

    PubMed Central

    Medda, B. K.; Jadcherla, S.; Shaker, R.

    2012-01-01

    The aim of this study was to determine the role of the superior laryngeal nerve (SLN) in the following esophageal reflexes: esophago-upper esophageal sphincter (UES) contractile reflex (EUCR), esophago-lower esophageal sphincter (LES) relaxation reflex (ELIR), secondary peristalsis, pharyngeal swallowing, and belch. Cats (N = 43) were decerebrated and instrumented to record EMG of the cricopharyngeus, thyrohyoideus, geniohyoideus, and cricothyroideus; esophageal pressure; and motility of LES. Reflexes were activated by stimulation of the esophagus via slow balloon or rapid air distension at 1 to 16 cm distal to the UES. Slow balloon distension consistently activated EUCR and ELIR from all areas of the esophagus, but the distal esophagus was more sensitive than the proximal esophagus. Transection of SLN or proximal recurrent laryngeal nerves (RLN) blocked EUCR and ELIR generated from the cervical esophagus. Distal RLN transection blocked EUCR from the distal cervical esophagus. Slow distension of all areas of the esophagus except the most proximal few centimeters activated secondary peristalsis, and SLN transection had no effect on secondary peristalsis. Slow distension of all areas of the esophagus inconsistently activated pharyngeal swallows, and SLN transection blocked generation of pharyngeal swallows from all levels of the esophagus. Slow distension of the esophagus inconsistently activated belching, but rapid air distension consistently activated belching from all areas of the esophagus. SLN transection did not block initiation of belch but blocked one aspect of belch, i.e., inhibition of cricopharyngeus EMG. Vagotomy blocked all aspects of belch generated from all areas of esophagus and blocked all responses of all reflexes not blocked by SLN or RLN transection. In conclusion, the SLN mediates all aspects of the pharyngeal swallow, no portion of the secondary peristalsis, and the EUCR and ELIR generated from the proximal esophagus. Considering that SLN is not a motor nerve for any of these reflexes, the role of the SLN in control of these reflexes is sensory in nature only. PMID:22403790

  8. Repair of facial nerve defects with decellularized artery allografts containing autologous adipose-derived stem cells in a rat model.

    PubMed

    Sun, Fei; Zhou, Ke; Mi, Wen-Juan; Qiu, Jian-Hua

    2011-07-20

    The purpose of this study was to investigate the effects of a decellularized artery allograft containing autologous adipose-derived stem cells (ADSCs) on an 8-mm facial nerve branch lesion in a rat model. At 8 weeks postoperatively, functional evaluation of unilateral vibrissae movements, morphological analysis of regenerated nerve segments and retrograde labeling of facial motoneurons were all analyzed. Better regenerative outcomes associated with functional improvement, great axonal growth, and improved target reinnervation were achieved in the artery-ADSCs group (2), whereas the cut nerves sutured with artery conduits alone (group 1) achieved inferior restoration. Furthermore, transected nerves repaired with nerve autografts (group 3) resulted in significant recovery of whisking, maturation of myelinated fibers and increased number of labeled facial neurons, and the latter two parameters were significantly different from those of group 2. Collectively, though our combined use of a decellularized artery allograft with autologous ADSCs achieved regenerative outcomes inferior to a nerve autograft, it certainly showed a beneficial effect on promoting nerve regeneration and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Peptide therapy with pentadecapeptide BPC 157 in traumatic nerve injury.

    PubMed

    Gjurasin, Miroslav; Miklic, Pavle; Zupancic, Bozidar; Perovic, Darko; Zarkovic, Kamelija; Brcic, Luka; Kolenc, Danijela; Radic, Bozo; Seiwerth, Sven; Sikiric, Predrag

    2010-02-25

    We focused on the healing of rat transected sciatic nerve and improvement made by stable gastric pentadecapeptide BPC 157 (10 microg, 10ng/kg) applied shortly after injury (i) intraperitoneally/intragastrically/locally, at the site of anastomosis, or after (ii) non-anastomozed nerve tubing (7 mm nerve segment resected) directly into the tube. Improvement was shown clinically (autotomy), microscopically/morphometrically and functionally (EMG, one or two months post-injury, walking recovery (sciatic functional index (SFI)) at weekly intervals). BPC 157-rats exhibited faster axonal regeneration: histomorphometrically (improved presentation of neural fascicles, homogeneous regeneration pattern, increased density and size of regenerative fibers, existence of epineural and perineural regeneration, uniform target orientation of regenerative fibers, and higher proportion of neural vs. connective tissue, all fascicles in each nerve showed increased diameter of myelinated fibers, thickness of myelin sheet, number of myelinated fibers per area and myelinated fibers as a percentage of the nerve transected area and the increased blood vessels presentation), electrophysiologically (increased motor action potentials), functionally (improved SFI), the autotomy absent. Thus, BPC 157 markedly improved rat sciatic nerve healing. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Effects of treadmill training on functional recovery following peripheral nerve injury in rats

    PubMed Central

    Boeltz, Tiffany; Ireland, Meredith; Mathis, Kristin; Nicolini, Jennifer; Poplavski, Karen; Rose, Samuel J.; Wilson, Erin

    2013-01-01

    Exercise, in the form of moderate daily treadmill training following nerve transection and repair leads to enhanced axon regeneration, but its effect on functional recovery is less well known. Female rats were exercised by walking continuously, at a slow speed (10 m/min), for 1 h/day on a level treadmill, beginning 3 days after unilateral transection and surgical repair of the sciatic nerve, and conducted 5 days/wk for 2 wk. In Trained rats, both direct muscle responses to tibial nerve stimulation and H reflexes in soleus reappeared earlier and increased in amplitude more rapidly over time than in Untrained rats. The efficacy of the restored H reflex was greater in Trained rats than in Untrained controls. The reinnervated tibialis anterior and soleus were coactivated during treadmill locomotion in Untrained rats. In Trained animals, the pattern of activation of soleus, but not tibialis anterior, was not significantly different from that found in Intact rats. The overall length of the hindlimb during level and up- and downslope locomotion was conserved after nerve injury in both groups. This conservation was achieved by changes in limb orientation. Limb length was conserved effectively in all rats during downslope walking but only in Trained rats during level and upslope walking. Moderate daily exercise applied immediately after sciatic nerve transection is sufficient to promote axon regeneration, to restore muscle reflexes, and to improve the ability of rats to cope with different biomechanical demands of slope walking. PMID:23468390

  11. Delivery of adipose-derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration.

    PubMed

    Allbright, Kassandra O; Bliley, Jacqueline M; Havis, Emmanuelle; Kim, Deok-Yeol; Dibernardo, Gabriella A; Grybowski, Damian; Waldner, Matthias; James, Isaac B; Sivak, Wesley N; Rubin, J Peter; Marra, Kacey G

    2018-02-06

    Peripheral nerve damage is associated with high long-term morbidity. Because of beneficial secretome, immunomodulatory effects, and ease of clinical translation, transplantation with adipose-derived stem cells (ASC) represents a promising therapeutic modality. Effect of ASC delivery in poloxamer hydrogel was assessed in a rat sciatic nerve model of critical-sized (1.5 cm) peripheral nerve injury. Nerve/muscle unit regeneration was assessed via immunostaining explanted nerve, quantitative polymerase chain reaction (qPCR), and histological analysis of reinnervating gastrocnemius muscle. On the basis of viability data, 10% poloxamer hydrogel was selected for in vivo study. Six weeks after transection and repair, the group treated with poloxamer delivered ASCs demonstrated longest axonal regrowth. The qPCR results indicated that the inclusion of ASCs appeared to result in expression of factors that aid in reinnervating muscle tissue. Delivery of ASCs in poloxamer addresses multiple facets of the complexity of nerve/muscle unit regeneration, representing a promising avenue for further study. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  12. Nerve regeneration in nerve grafts conditioned by vibration exposure.

    PubMed

    Bergman, S; Widerberg, A; Danielsen, N; Lundborg, G; Dahlin, L B

    1995-01-01

    Regeneration distances were studied in nerves from vibration-exposed limbs. One hind limb of anaesthetized rats was attached to a vibration exciter and exposed to vibration (80 Hz/32 m/s2) for 5 h/day for 2 or 5 days. Seven days after the latest vibration period a 10-mm long nerve graft was taken from the vibrated sciatic nerve and sutured into a corresponding defect in the con-tralateral sciatic nerve and vice versa, thereby creating two different models within the same animal: (i) regeneration from a freshly transected unvibrated nerve into a vibrated graft and (ii) regeneration from a vibrated nerve into a fresh nerve graft (vibrated recipient side). Four, 6 or 8 days postoperatively (p.o.) the distances achieved by the regenerating axons were determined using the pinch reflex test. Two days of vibration did not influence the regeneration, but 5 days of vibration reduced the initial delay period and a slight reduction of regeneration rate was observed. After 5 days of vibration an increased regeneration distance was observed in both models at day 4 p.o. and at day 6 p.o. in vibrated grafts. This study demonstrates that vibration can condition peripheral nerves and this may be caused by local changes in the peripheral nerve trunk and in the neuron itself.

  13. Valproic Acid Promotes Survival of Facial Motor Neurons in Adult Rats After Facial Nerve Transection: a Pilot Study.

    PubMed

    Zhang, Lili; Fan, Zhaomin; Han, Yuechen; Xu, Lei; Liu, Wenwen; Bai, Xiaohui; Zhou, Meijuan; Li, Jianfeng; Wang, Haibo

    2018-04-01

    Valproic acid (VPA), a medication primarily used to treat epilepsy and bipolar disorder, has been applied to the repair of central and peripheral nervous system injury. The present study investigated the effect of VPA on functional recovery, survival of facial motor neurons (FMNs), and expression of proteins in rats after facial nerve trunk transection by functional measurement, Nissl staining, TUNEL, immunofluorescence, and Western blot. Following facial nerve injury, all rats in group VPA showed a better functional recovery, which was significant at the given time, compared with group NS. The Nissl staining results demonstrated that the number of FMNs survival in group VPA was higher than that in group normal saline (NS). TUNEL staining showed that axonal injury of facial nerve could lead to neuronal apoptosis of FMNs. But treatment of VPA significantly reduced cell apoptosis by decreasing the expression of Bax protein and increased neuronal survival by upregulating the level of brain-derived neurotrophic factor (BDNF) and growth associated protein-43 (GAP-43) expression in injured FMNs compared with group NS. Overall, our findings suggest that VPA may advance functional recovery, reduce lesion-induced apoptosis, and promote neuron survival after facial nerve transection in rats. This study provides an experimental evidence for better understanding the mechanism of injury and repair of peripheral facial paralysis.

  14. CDP-choline modulates matrix metalloproteinases in rat sciatic injury.

    PubMed

    Gundogdu, Elif Basaran; Bekar, Ahmet; Turkyilmaz, Mesut; Gumus, Abdullah; Kafa, Ilker Mustafa; Cansev, Mehmet

    2016-02-01

    CDP-choline (cytidine-5'-diphosphocholine) improves functional recovery, promotes nerve regeneration, and decreases perineural scarring in rat peripheral nerve injury. The aim of the present study was to investigate the mechanism of action of CDP-choline with regard to matrix metalloproteinase (MMP) activity in the rat-transected sciatic nerve injury model. Male Wistar rats were randomized into Sham, Saline, and CDP-choline groups. Rats in Sham group received Sham surgery, whereas rats in Saline and CDP-choline groups underwent right sciatic nerve transection followed by immediate primary saturation and injected intraperitoneally with 0.9% NaCl (1 mL/kg) and CDP-choline (600 μg/kg), respectively. Sciatic nerve samples were obtained 1, 3, and 7 d after the surgery and analyzed for levels and activities of MMP-2 and MMP-9, levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) and TIMP-3, and axonal regeneration. CDP-choline treatment decreased the levels and activities of MMP-2 and MMP-9, whereas increasing levels of TIMP-1 and TIMP-3 significantly on the third and seventh day after injury compared to Saline group. In addition, CDP-choline administration resulted in new axon formation and formation and advancement of myelination on newly formed islets (compartments) of axonal regrowth. Our data show, for the first time, that CDP-choline modulates MMP activity and promotes the expression of TIMPs to stimulate axonal regeneration. These data help to explain one mechanism by which CDP-choline provides neuroprotection in peripheral nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Force recovery and axonal regeneration of the sternomastoid muscle reinnervated with the end-to-end nerve anastomosis

    PubMed Central

    Sobotka, Stanislaw; Mu, Liancai

    2012-01-01

    Background End-to-end nerve anastomosis (EEA) is a commonly used nerve repair technique. However, this method generally results in poor functional recovery. This study was designed to determine the correlation of functional recovery to the extent of axonal reinnervation after EEA procedure in a rat model. Materials and Methods Seven adult rats were subjected to the immediate reinnervation of an experimentally paralyzed sternomastoid (SM) muscle. The SM nerve was transected and immediately repaired with EEA. The SM muscle at the opposite side, without nerve transection, served as a control. Three months after EEA nerve repair, the muscle force of the SM muscle was measured and the regenerated axons in the muscle were detected using neurofilament immunohistochemistry. Results Three months after surgery, the reinnervated SM muscle produced limited anatomical and functional recovery (calculated as the percentage of the control). Specifically, the wet weight of the operated SM muscle (a measure of muscle mass recovery) was 78.0% of the control. The maximal tetanic force (a measure of muscle functional recovery) was 56.7% of the control. The area fraction of the neurofilament stained intramuscular axons (a measure of axonal regeneration and muscle reinnervation) was measured to be only 13.4% of the control. A positive correlation was revealed between the extent of muscle reinnervation and maximal muscle force. Conclusions The EEA reinnervated SM muscle in the rat yielded unsatisfactory muscle force recovery as a result of mild to moderate nerve regeneration. Further work is needed to improve the surgical procedure, enhance axonal regeneration, and/or develop novel treatment strategies for better functional recovery. PMID:23207170

  16. Force recovery and axonal regeneration of the sternomastoid muscle reinnervated with the end-to-end nerve anastomosis.

    PubMed

    Sobotka, Stanislaw; Mu, Liancai

    2013-06-15

    End-to-end nerve anastomosis (EEA) is a commonly used nerve repair technique. However, this method generally results in poor functional recovery. This study was designed to determine the correlation of functional recovery to the extent of axonal reinnervation after EEA procedure in a rat model. Seven adult rats were subjected to the immediate reinnervation of an experimentally paralyzed sternomastoid (SM) muscle. The SM nerve was transected and immediately repaired with EEA. The SM muscle at the opposite side, without nerve transection, served as a control. Three months after EEA nerve repair, the muscle force of the SM muscle was measured and the regenerated axons in the muscle were detected using neurofilament immunohistochemistry. Three months after surgery, the reinnervated SM muscle produced limited anatomical and functional recovery (calculated as the percentage of the control). Specifically, the wet weight of the operated SM muscle (a measure of muscle mass recovery) was 78.0% of the control. The maximal tetanic force (a measure of muscle functional recovery) was 56.7% of the control. The area fraction of the neurofilament stained intramuscular axons (a measure of axonal regeneration and muscle reinnervation) was measured to be only 13.4% of the control. A positive correlation was revealed between the extent of muscle reinnervation and maximal muscle force. The EEA reinnervated SM muscle in the rat yielded unsatisfactory muscle force recovery as a result of mild to moderate nerve regeneration. Further work is needed to improve the surgical procedure, enhance axonal regeneration, and/or develop novel treatment strategies for better functional recovery. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Delayed repair of the peripheral nerve: a novel model in the rat sciatic nerve.

    PubMed

    Wu, Peng; Spinner, Robert J; Gu, Yudong; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2013-03-30

    Peripheral nerve reconstruction is seldom done in the acute phase of nerve injury due to concomitant injuries and the uncertainty of the extent of nerve damage. A proper model that mimics true clinical scenarios is critical but lacking. The aim of this study is to develop a standardized, delayed sciatic nerve repair model in rats and validate the feasibility of direct secondary neurrorraphy after various delay intervals. Immediately or 1, 4, 6, 8 and 12 weeks after sciatic nerve transection, nerve repair was carried out. A successful tension-free direct neurorraphy (TFDN) was defined when the gap was shorter than 4.0 mm and the stumps could be reapproximated with 10-0 stitches without detachment. Compound muscle action potential (CMAP) was recorded postoperatively. Gaps between the two nerve stumps ranged from 0 to 9 mm, the average being 1.36, 2.85, 3.43, 3.83 and 6.4 mm in rats with 1, 4, 6, 8 and 12 week delay, respectively. The rate of successful TFDN was 78% overall. CMAP values of 1 and 4 week delay groups were not different from the immediate repair group, whereas CMAP amplitudes of 6, 8 and 12 week delay groups were significantly lower. A novel, standardized delayed nerve repair model is established. For this model to be sensitive, the interval between nerve injury and secondary repair should be at least over 4 weeks. Thereafter the longer the delay, the more challenging the model is for nerve regeneration. The choice of delay intervals can be tailored to meet specific requirements in future studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Consequences of Neurite Transection In Vitro

    PubMed Central

    Cengiz, Nurettin; Erdoğan, Ender; Him, Aydın; Oğuz, Elif Kaval

    2012-01-01

    Abstract In order to quantify degenerative and regenerative changes and analyze the contribution of multiple factors to the outcome after neurite transection, we cultured adult mouse dorsal root ganglion neurons, and with a precise laser beam, we transected the nerve fibers they extended. Cell preparations were continuously visualized for 24 h with time-lapse microscopy. More distal cuts caused a more elongated field of degeneration, while thicker neurites degenerated faster than thinner ones. Transected neurites degenerated more if the uncut neurites of the same neuron simultaneously degenerated. If any of these uncut processes regenerated, the transected neurites underwent less degeneration. Regeneration of neurites was limited to distal cuts. Unipolar neurons had shorter regeneration than multipolar ones. Branching slowed the regenerative process, while simultaneous degeneration of uncut neurites increased it. Proximal lesions, small neuronal size, and extensive and rapid neurite degeneration were predictive of death of an injured neuron, which typically displayed necrotic rather than apoptotic form. In conclusion, this in vitro model proved useful in unmasking many new aspects and correlates of mechanically-induced neurite injury. PMID:20121423

  19. Early in vivo changes in calcium ions, oxidative stress markers, and ion channel immunoreactivity following partial injury to the optic nerve.

    PubMed

    Wells, Jonathan; Kilburn, Matthew R; Shaw, Jeremy A; Bartlett, Carole A; Harvey, Alan R; Dunlop, Sarah A; Fitzgerald, Melinda

    2012-03-01

    CNS injury is often localized but can be followed by more widespread secondary degenerative events that usually result in greater functional loss. Using a partial transection model in rat optic nerve (ON). we recently demonstrated in vivo increases in the oxidative stress-associated enzyme MnSOD 5 min after injury. However, mechanisms by which early oxidative stress spreads remain unclear. In the present study, we assessed ion distributions, additional oxidative stress indicators, and ion channel immunoreactivity in ON in the first 24 hr after partial transection. Using nanoscale secondary ion mass spectroscopy (NanoSIMS), we demonstrate changes in the distribution pattern of Ca ions following partial ON transection. Regions of elevated Ca ions in normal ON in vivo rapidly decrease following partial ON transection, but there is an increasingly punctate distribution at 5 min and 24 hr after injury. We also show rapid decreases in catalase activity and later increases in immunoreactivity of the advanced glycation end product carboxymethyl lysine in astrocytes. Increased oxidative stress in astrocytes is accompanied by significantly increased immunoreactivity of the AMPA receptor subunit GluR1 and aquaporin 4 (AQP4). Taken together, the results indicate that Ca ion changes and oxidative stress are early events following partial ON injury that are associated with changes in GluR1 AMPA receptor subunits and altered ionic balance resulting from increased AQP4. Copyright © 2011 Wiley Periodicals, Inc.

  20. Anxiolytic efficacy of repeated oral capsaicin in rats with partial aberration of oral sensory relay to brain.

    PubMed

    Choi, Young-Jun; Kim, Jin Young; Jin, Wei-Peng; Kim, Yoon-Tae; Lee, Jong-Ho; Jahng, Jeong Won

    2015-07-01

    This study was conducted to examine if taste over load with oral capsaicin improves the adverse behavioural effects induced by partial aberration of oral sensory relays to brain with bilateral transections of the lingual and chorda tympani nerves. Male Sprague-Dawley rats received daily 1 ml of 0.02% capsaicin or water drop by drop into the oral cavity following the bilateral transections of the lingual and chorda tympani nerves. Rats were subjected to ambulatory activity, elevated plus maze and forced swim tests after 11th, 14th and 17th daily administration of capsaicin or water, respectively. The basal and stress-induced plasma corticosterone levels were examined after the end of behavioural tests. Ambulatory counts, distance travelled, centre zone activities and rearing were increased, and rostral grooming decreased, during the activity test in capsaicin treated rats. Behavioural scores of capsaicin rats during elevated plus maze test did not differ from control rats. Immobility during the swim test was decreased in capsaicin rats with near significance (P = 0.0547). Repeated oral capsaicin increased both the basal level and stress-induced elevation of plasma corticosterone in rats with bilateral transections of the lingual and chorda tympani nerves. It is concluded that repeated oral administration of capsaicin reduces anxiety-like behaviours in rats that received bilateral transections of the lingual and chorda tympani nerves, and that the increased corticosterone response, possibly modulating the hippocampal neural plasticity, may be implicated in the anxiolytic efficacy of oral capsaicin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Recurrent laryngeal nerve regeneration through a silicone tube produces reinnervation without vocal fold mobility in rats.

    PubMed

    Kumai, Yoshihiko; Aoyama, Takashi; Nishimoto, Kohei; Sanuki, Tetsuji; Minoda, Ryosei; Yumoto, Eiji

    2013-01-01

    We established an animal model of recurrent laryngeal nerve reinnervation with persistent vocal fold immobility following recurrent laryngeal nerve injury. In 36 rats, the left recurrent laryngeal nerve was transected and the stumps were abutted in a silicone tube with a 1-mm interspace, facilitating regeneration. The mobility of the vocal folds was examined endoscopically 5, 10, and 15 weeks later. Electromyography of the thyroarytenoid muscle was performed. Reinnervation was assessed by means of a quantitative immunohistologic evaluation with anti-neurofilament antibody in the nerve both proximal and distal to the silicone tube. The atrophy of the thyroarytenoid muscle was assessed histologically. We observed that all animals had a fixed left vocal fold throughout the study. The average neurofilament expression in the nerve both distal and proximal to the silicone tube, the muscle area, and the amplitude of the compound muscle action potential recorded from the thyroarytenoid muscle on the treated side increased significantly (p < 0.05) over time, demonstrating regeneration through the silicone tube. Recurrent laryngeal nerve regeneration through a silicone tube produced reinnervation without vocal fold mobility in rats. The efficacy of new laryngeal reinnervation treatments can be assessed with this model.

  2. [Sural nerve removal using a nerve stripper].

    PubMed

    Assmus, H

    1983-03-01

    In 19 patients the sural nerve was removed for nerve grafting by a specially designed nerve stripper. This technique provides a safe and time-saving removal of the nerve in length up to 34 cm (depending on the length of the stripper used). From a single short incision at the level of the lateral malleolus the nerve is stripped proximally tearing some small branches of the distal nerve. The relatively blunt tip avoids inadvertent transection of the nerve at a lower level or dissection of the nerve at a point where branching occurs. Finally the nerve is cut by the divided cylinder at the tip of the stripper.

  3. Transformation of synaptic vesicle phenotype in the intramedullary axonal arbors of cat spinal motoneurons following peripheral nerve injury.

    PubMed

    Havton, L A; Kellerth, J O

    2001-08-01

    Permanent transection of a peripheral motor nerve induces a gradual elimination of whole axon collateral systems in the axotomized spinal motoneurons. There is also an initial concurrent decrease in the amount of recurrent inhibition exerted by these arbors in the spinal cord for up to 6 weeks after the injury, whereas the same reflex action returns to normal by the 12-week postoperative state. The aim of the present investigation was to study the fine structure of the intramedullary axonal arbors of axotomized alpha-motoneurons in the adult cat spinal cord following a permanent peripheral motor nerve lesion. For this purpose, single axotomized alpha-motoneurons were labeled intracellularly with horseradish peroxidase at 12 weeks after permanent transection of their peripheral motor nerve. The intramedullary portions of their motor axon and axon collateral arbors were first reconstructed at the light microscopic level and subsequently studied ultrastructurally. This study shows that the synaptic contacts made by the intramedullary axon collateral arbors of axotomized motoneurons have undergone a change in synaptic vesicle ultrastructure from spherical and clear vesicles to spherical and dense-cored vesicles at 12 weeks after the transection of their peripheral axons. We suggest that the present transformation in synaptic vesicle fine structure may also correspond to a change in the contents of these boutons. This may, in turn, be responsible for the strengthening and recovery of the recurrent inhibitory reflex action exerted by the axotomized spinal motoneurons following a prolonged permanent motor nerve injury.

  4. Nerves and Tissue Repair.

    DTIC Science & Technology

    1994-07-01

    axolotl limbs are transected the concentration of transferrin in the distal limb tissue declines rapidly and limb regeneration stops. These results...transferrin binding and expression of the transferrin gene in cells of axolotl peripheral nerve indicate that both uptake and synthesis of this factor occur

  5. The Impact of Motor Axon Misdirection and Attrition on Behavioral Deficit Following Experimental Nerve Injuries

    PubMed Central

    Alant, Jacob Daniel de Villiers; Senjaya, Ferry; Ivanovic, Aleksandra; Forden, Joanne; Shakhbazau, Antos; Midha, Rajiv

    2013-01-01

    Peripheral nerve transection and neuroma-in-continuity injuries are associated with permanent functional deficits, often despite successful end-organ reinnervation. Axonal misdirection with non-specific reinnervation, frustrated regeneration and axonal attrition are believed to be among the anatomical substrates that underlie the poor functional recovery associated with these devastating injuries. Yet, functional deficits associated with axonal misdirection in experimental neuroma-in-continuity injuries have not yet been studied. We hypothesized that experimental neuroma-in-continuity injuries would result in motor axon misdirection and attrition with proportional persistent functional deficits. The femoral nerve misdirection model was exploited to assess major motor pathway misdirection and axonal attrition over a spectrum of experimental nerve injuries, with neuroma-in-continuity injuries simulated by the combination of compression and traction forces in 42 male rats. Sciatic nerve injuries were employed in an additional 42 rats, to evaluate the contribution of axonal misdirection to locomotor deficits by a ladder rung task up to 12 weeks. Retrograde motor neuron labeling techniques were utilized to determine the degree of axonal misdirection and attrition. Characteristic histological neuroma-in-continuity features were demonstrated in the neuroma-in-continuity groups and poor functional recovery was seen despite successful nerve regeneration and muscle reinnervation. Good positive and negative correlations were observed respectively between axonal misdirection (p<.0001, r2=.67), motor neuron counts (attrition) (p<.0001, r2=.69) and final functional deficits. We demonstrate prominent motor axon misdirection and attrition in neuroma-in-continuity and transection injuries of mixed motor nerves that contribute to the long-term functional deficits. Although widely accepted in theory, to our knowledge, this is the first experimental evidence to convincingly demonstrate these correlations with data inclusive of the neuroma-in-continuity spectrum. This work emphasizes the need to focus on strategies that promote both robust and accurate nerve regeneration to optimize functional recovery. It also demonstrates that clinically relevant neuroma-in-continuity injuries can now also be subjected to experimental investigation. PMID:24282624

  6. Swimming Training Reduces Neuroma Pain by Regulating Neurotrophins

    PubMed Central

    TIAN, JINGE; YU, TINGTING; XU, YONGMING; PU, SHAOFENG; LV, YINGYING; ZHANG, XIN; DU, DONGPING

    2018-01-01

    ABSTRACT Introduction Neuroma formation after peripheral nerve transection leads to severe neuropathic pain in amputees. Previous studies suggested that physical exercise could bring beneficial effect on alleviating neuropathic pain. However, the effect of exercise on neuroma pain still remained unclear. In addition, long-term exercise can affect the expression of neurotrophins (NT), such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which play key roles in nociceptor sensitization and nerve sprouting after nerve injury. Here, we investigated whether long-term swimming exercise could relieve neuroma pain by modulating NT expression. Methods We used a tibial neuroma transposition (TNT) rat model to mimic neuroma pain. After TNT surgery, rats performed swimming exercise for 5 wk. Neuroma pain and tactile sensitivities were detected using von Frey filaments. Immunofluorescence was applied to analyze neuroma formation. NGF and BDNF expressions in peripheral neuroma, dorsal root ganglion, and the spinal cord were measured using enzyme-linked immunosorbent assay and Western blotting. Results TNT led to neuroma formation, induced neuroma pain, and mechanical allodynia in hind paw. Five-week swimming exercise inhibited neuroma formation and relieved mechanical allodynia in the hind paw and neuroma pain in the lateral ankle. The analgesic effect lasted for at least 1 wk, even when the exercise ceased. TNT elevated the expressions of BDNF and NGF in peripheral neuroma, dorsal root ganglion, and the spinal cord to different extents. Swimming also decreased the elevation of NT expression. Conclusions Swimming exercise not only inhibits neuroma formation induced by nerve transection but also relieves pain behavior. These effects might be associated with the modulation of NT. PMID:28846565

  7. Swimming Training Reduces Neuroma Pain by Regulating Neurotrophins.

    PubMed

    Tian, Jinge; Yu, Tingting; Xu, Yongming; Pu, Shaofeng; Lv, Yingying; Zhang, Xin; DU, Dongping

    2018-01-01

    Neuroma formation after peripheral nerve transection leads to severe neuropathic pain in amputees. Previous studies suggested that physical exercise could bring beneficial effect on alleviating neuropathic pain. However, the effect of exercise on neuroma pain still remained unclear. In addition, long-term exercise can affect the expression of neurotrophins (NT), such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which play key roles in nociceptor sensitization and nerve sprouting after nerve injury. Here, we investigated whether long-term swimming exercise could relieve neuroma pain by modulating NT expression. We used a tibial neuroma transposition (TNT) rat model to mimic neuroma pain. After TNT surgery, rats performed swimming exercise for 5 wk. Neuroma pain and tactile sensitivities were detected using von Frey filaments. Immunofluorescence was applied to analyze neuroma formation. NGF and BDNF expressions in peripheral neuroma, dorsal root ganglion, and the spinal cord were measured using enzyme-linked immunosorbent assay and Western blotting. TNT led to neuroma formation, induced neuroma pain, and mechanical allodynia in hind paw. Five-week swimming exercise inhibited neuroma formation and relieved mechanical allodynia in the hind paw and neuroma pain in the lateral ankle. The analgesic effect lasted for at least 1 wk, even when the exercise ceased. TNT elevated the expressions of BDNF and NGF in peripheral neuroma, dorsal root ganglion, and the spinal cord to different extents. Swimming also decreased the elevation of NT expression. Swimming exercise not only inhibits neuroma formation induced by nerve transection but also relieves pain behavior. These effects might be associated with the modulation of NT.

  8. Rewiring the gustatory system: specificity between nerve and taste bud field is critical for normal salt discrimination.

    PubMed

    Spector, Alan C; Blonde, Ginger; Garcea, Mircea; Jiang, Enshe

    2010-01-15

    Forty years have passed since it was demonstrated that a cross-regenerated gustatory nerve in the rat tongue adopts the stimulus-response properties of the taste receptor field it cross-reinnervates. Nevertheless, the functional consequences of channeling peripheral taste signals through inappropriate central circuits remain relatively unexplored. Here we tested whether histologically confirmed cross-regeneration of the chorda tympani nerve (CT) into the posterior tongue in the absence of the glossopharyngeal nerve (GL) (CT-PostTongue) or cross-regeneration of the GL into the anterior tongue in the absence of the CT (GL-AntTongue) would maintain presurgically trained performance in an operant NaCl vs. KCl taste discrimination task in rats. Before surgery all groups were averaging over 90% accuracy. Oral amiloride treatment dropped performance to virtually chance levels. During the first week after surgery, sham-operated rats, GL-transected rats, and rats with regenerated CTs displayed highly competent discrimination performance. In contrast, CT-transected rats were severely impaired (59% accuracy). Both the CT-PostTongue and the GL-AntTongue groups were impaired to a similar degree as CT-transected rats. These initially impaired groups improved their performance over the weeks of postsurgical testing, suggesting that the rats were capable of relearning the task with discriminable signals in the remaining taste nerves. This relearned performance was dependent on input from amiloride-sensitive receptors likely in the palate. Overall, these results suggest that normal competence in a salt discrimination task is dependent on the taste receptor field origin of the input as well as the specific nerve transmitting the signals to its associated circuits in the brain. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Neuroprotection trek--the next generation: neuromodulation II. Applications--epilepsy, nerve regeneration, neurotrophins

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.

  10. Neuroprotection trek--the next generation: neuromodulation II. Applications--epilepsy, nerve regeneration, neurotrophins.

    PubMed

    Andrews, Russell J

    2003-05-01

    Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.

  11. Compound Motor Action Potential Quantifies Recurrent Laryngeal Nerve Innervation in a Canine Model.

    PubMed

    Bhatt, Neel K; Park, Andrea M; Al-Lozi, Muhammad; Paniello, Randal C

    2016-07-01

    The compound motor action potential (CMAP) is the summated action potential from multiple muscle fibers activated by a single nerve impulse. The utility of laryngeal muscle CMAP for quantifying innervation following recurrent laryngeal nerve (RLN) injury was investigated. In a series of 21 canine hemi-laryngeal preparations, RLNs were exposed and a stimulating electrode placed. Maximum CMAP amplitudes and area under the curve from the thyroarytenoid (TA) muscles were obtained at baseline and at 6 months following injury to the RLN. Injury mechanisms included crush, stretch, cautery, and complete transection with microsuture repair. Prior to injury, baseline CMAP amplitudes and area under the curve were 15.81 mV and 15.49mVms, respectively. Six months following injury, CMAP amplitude and area under curve were 105.1% and 102.1% of baseline for stretch, 98.7% and 112.7% for crush, 93.3% and 114.3% for cautery. The CMAP amplitude and area under the curve in the transection/repair group had a 54.3% and 69.4% recovery, respectively, which were significantly different than baseline (P < .01, P < .05). These values were correlated with vocal fold motion. The CMAP is a measure of vocal fold innervation. The technique could be further developed for clinical and experimental applications. © The Author(s) 2016.

  12. In vivo predegeneration of peripheral nerves: an effective technique to obtain activated Schwann cells for nerve conduits.

    PubMed

    Keilhoff, G; Fansa, H; Schneider, W; Wolf, G

    1999-07-01

    In vivo predegeneration of peripheral nerves is presented as a convenient and effective method to obtain activated Schwann cells and an enhanced cell yield following in vitro cultivation. The experiments conducted in rats were aimed at clinical use in gaining Schwann cell suspensions for filling artificial conduits in order to bridge peripheral nerve gaps. The rat sciatic nerve used as a model was transected distally to the spinal ganglia. Predegeneration in vivo was allowed to take place for 1, 2, 3 and 4 days and up to 1, 2 and 3 weeks. The nerve was then resected and prepared for cell cultivation. Schwann cells cultivated from the contralateral untreated nerve served as control. Immunostaining for S100, nerve growth factor receptor and the adhesion molecules N-cadherin and L1 was used to characterize the general state of the cultures. Viability was assessed by fluorescein fluorescence staining, and the proliferation index was determined by bromodeoxyuridine-DNA incorporation. The Schwann cells from predegenerated nerves revealed an increased proliferation rate compared to the control, whereas fibroblast contamination was decreased. Best results were obtained 1 week after predegeneration.

  13. Functional collagen conduits combined with human mesenchymal stem cells promote regeneration after sciatic nerve transection in dogs.

    PubMed

    Cui, Yi; Yao, Yao; Zhao, Yannan; Xiao, Zhifeng; Cao, Zongfu; Han, Sufang; Li, Xing; Huan, Yong; Pan, Juli; Dai, Jianwu

    2018-05-01

    Numerous studies have focused on the development of novel and innovative approaches for the treatment of peripheral nerve injury using artificial nerve guide conduits. In this study, we attempted to bridge 3.5-cm defects of the sciatic nerve with a longitudinally oriented collagen conduit (LOCC) loaded with human umbilical cord mesenchymal stem cells (hUC-MSCs). The LOCC contains a bundle of longitudinally aligned collagenous fibres enclosed in a hollow collagen tube. Our previous studies showed that an LOCC combined with neurotrophic factors enhances peripheral nerve regeneration. However, it remained unknown whether an LOCC seeded with hUC-MSCs could also promote regeneration. In this study, using various histological and electrophysiological analyses, we found that an LOCC provides mechanical support to newly growing nerves and functions as a structural scaffold for cells, thereby stimulating sciatic nerve regeneration. The LOCC and hUC-MSCs synergistically promoted regeneration and improved the functional recovery in a dog model of sciatic nerve injury. Therefore, the combined use of an LOCC and hUC-MSCs might have therapeutic potential for the treatment of peripheral nerve injury. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Salidroside promotes peripheral nerve regeneration based on tissue engineering strategy using Schwann cells and PLGA: in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Lv, Peizhen; Zhu, Yongjia; Wu, Huayu; Zhang, Kun; Xu, Fuben; Zheng, Li; Zhao, Jinmin

    2017-01-01

    Salidriside (SDS), a phenylpropanoid glycoside derived from Rhodiola rosea L, has been shown to be neuroprotective in many studies, which may be promising in nerve recovery. In this study, the neuroprotective effects of SDS on engineered nerve constructed by Schwann cells (SCs) and Poly (lactic-co-glycolic acid) (PLGA) were studied in vitro. We further investigated the effect of combinational therapy of SDS and PLGA/SCs based tissue engineering on peripheral nerve regeneration based on the rat model of nerve injury by sciatic transection. The results showed that SDS dramatically enhanced the proliferation and function of SCs. The underlying mechanism may be that SDS affects SCs growth through the modulation of neurotrophic factors (BDNF, GDNF and CNTF). 12 weeks after implantation with a 12 mm gap of sciatic nerve injury, SDS-PLGA/SCs achieved satisfying outcomes of nerve regeneration, as evidenced by morphological and functional improvements upon therapy by SDS, PLGA/SCs or direct suture group assessed by sciatic function index, nerve conduction assay, HE staining and immunohistochemical analysis. Our results demonstrated the significant role of introducing SDS into neural tissue engineering to promote nerve regeneration.

  15. Total Human Eye Allotransplantation: Developing Surgical Protocols for Donor and Recipient Procedures

    PubMed Central

    Davidson, Edward H.; Wang, Eric W.; Yu, Jenny Y.; Fernandez-Miranda, Juan C.; Wang, Dawn J.; Richards, Nikisha; Miller, Maxine; Schuman, Joel S.; Washington, Kia M.

    2017-01-01

    Background Vascularized composite allotransplantation of the eye is an appealing, novel method for reconstruction of the nonfunctioning eye. The authors’ group has established the first orthotopic model for eye transplantation in the rat. With advancements in immunomodulation strategies together with new therapies in neuroregeneration, parallel development of human surgical protocols is vital for ensuring momentum toward eye transplantation in actual patients. Methods Cadaveric donor tissue harvest (n = 8) was performed with orbital exenteration, combined open craniotomy, and endonasal approach to ligate the ophthalmic artery with a cuff of paraclival internal carotid artery, for transection of the optic nerve at the optic chiasm and transection of cranial nerves III to VI and the superior ophthalmic vein at the cavernous sinus. Candidate recipient vessels (superficial temporal/internal maxillary/facial artery and superficial temporal/facial vein) were exposed. Vein grafts were required for all anastomoses. Donor tissue was secured in recipient orbits followed by sequential venous and arterial anastomoses and nerve coaptation. Pedicle lengths and calibers were measured. All steps were timed, photographed, video recorded, and critically analyzed after each operative session. Results The technical feasibility of cadaveric donor procurement and transplantation to cadaveric recipient was established. Mean measurements included optic nerve length (39 mm) and caliber (5 mm), donor artery length (33 mm) and caliber (3 mm), and superior ophthalmic vein length (15 mm) and caliber (0.5 mm). Recipient superficial temporal, internal maxillary artery, and facial artery calibers were 0.8, 2, and 2 mm, respectively; and superior temporal and facial vein calibers were 0.8 and 2.5 mm, respectively. Conclusion This surgical protocol serves as a benchmark for optimization of technique, large-animal model development, and ultimately potentiating the possibility of vision restoration transplantation surgery. PMID:27879599

  16. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    NASA Technical Reports Server (NTRS)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  17. Immediate versus delayed primary nerve repair in the rabbit sciatic nerve

    PubMed Central

    Piskin, Ahmet; Altunkaynak, Berrin Zühal; Çιtlak, Atilla; Sezgin, Hicabi; Yazιcι, Ozgür; Kaplan, Süleyman

    2013-01-01

    It is well known that peripheral nerve injury should be treated immediately in the clinic, but in some instances, repair can be delayed. This study investigated the effects of immediate versus delayed (3 days after injury) neurorrhaphy on repair of transected sciatic nerve in New Zealand rabbits using stereological, histomorphological and biomechanical methods. At 8 weeks after immediate and delayed neurorrhaphy, axon number and area in the sciatic nerve, myelin sheath and epineurium thickness, Schwann cell morphology, and the mechanical property of nerve fibers did not differ obviously. These results indicate that delayed neurorrhaphy do not produce any deleterious effect on sciatic nerve repair. PMID:25206663

  18. A novel conduit-based coaptation device for primary nerve repair.

    PubMed

    Bamba, Ravinder; Riley, D Colton; Kelm, Nathaniel D; Cardwell, Nancy; Pollins, Alonda C; Afshari, Ashkan; Nguyen, Lyly; Dortch, Richard D; Thayer, Wesley P

    2018-06-01

    Conduit-based nerve repairs are commonly used for small nerve gaps, whereas primary repair may be performed if there is no tension on nerve endings. We hypothesize that a conduit-based nerve coaptation device will improve nerve repair outcomes by avoiding sutures at the nerve repair site and utilizing the advantages of a conduit-based repair. The left sciatic nerves of female Sprague-Dawley rats were transected and repaired using a novel conduit-based device. The conduit-based device group was compared to a control group of rats that underwent a standard end-to-end microsurgical repair of the sciatic nerve. Animals underwent behavioral assessments at weekly intervals post-operatively using the sciatic functional index (SFI) test. Animals were sacrificed at four weeks to obtain motor axon counts from immunohistochemistry. A sub-group of animals were sacrificed immediately post repair to obtain MRI images. SFI scores were superior in rats which received conduit-based repairs compared to the control group. Motor axon counts distal to the injury in the device group at four weeks were statistically superior to the control group. MRI tractography was used to demonstrate repair of two nerves using the novel conduit device. A conduit-based nerve coaptation device avoids sutures at the nerve repair site and leads to improved outcomes in a rat model. Conduit-based nerve repair devices have the potential to standardize nerve repairs while improving outcomes.

  19. Ursolic acid induces neural regeneration after sciatic nerve injury

    PubMed Central

    Liu, Biao; Liu, Yan; Yang, Guang; Xu, Zemin; Chen, Jiajun

    2013-01-01

    In this study, we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve. BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tube-rosity. The successfully generated model mice were treated with 10, 5, or 2.5 mg/kg ursolic acid via intraperitoneal injection. Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradually increased at 1–4 weeks after sciatic nerve injury, and significantly decreased at 8 weeks. As such, ursolic acid has the capacity to significantly increase S100 protein expression levels. Real-time quantitative PCR showed that S100 mRNA expression in the L4–6 segments on the injury side was increased after ursolic acid treatment. In addition, the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid. Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid. 10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid. Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice following sciatic nerve injury. PMID:25206561

  20. Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation

    DTIC Science & Technology

    2012-08-01

    early rejection of the grafts, there was no significant functional recovery noted on electromyography or Catwalk gait analysis. However, in vitro...Figure 10: Light Microscopic Image (100X, stained with Toluidine Blue): Nerve Cross Section 5-8 mm distal to anastomosis site. Representative... images from (A) Systemic MSC therapy, (B) Local MSC therapy and (c) No treatment Control Figure 11: Sciatic Nerve Transection and Repair (6

  1. Immunohistologic analysis of spontaneous recurrent laryngeal nerve reinnervation in a rat model.

    PubMed

    Rosko, Andrew J; Kupfer, Robbi A; Oh, Sang S; Haring, Catherine T; Feldman, Eva L; Hogikyan, Norman D

    2018-03-01

    After recurrent laryngeal nerve injury (RLN), spontaneous reinnervation of the larynx occurs with input from multiple sources. The purpose of this study was to determine the timing and efficiency of reinnervation across a resected RLN segment in a rat model of RLN injury. Animal study. Twelve male 60-day-old Sprague Dawley rats underwent resection of a 5-mm segment of the right RLN. Rats were sacrificed at 1, 2, 4, and 12 weeks after nerve injury to harvest the larynx and trachea for immunohistologic analysis. The distal RLN segment was stained with neurofilament, and axons were counted and compared to the nonoperated side. Thyroarytenoid (TA) muscles were stained with alpha-bungarotoxin, synaptophysin, and neurofilament to identify intact neuromuscular junctions (NMJ). The number of intact NMJs from the denervated side was compared to the nonoperated side. Nerve fibers regenerated across the resected RLN gap into the distal recurrent laryngeal nerve to innervate the TA muscle. The number of nerve fibers in the distal nerve segment increased over time and reached the normal number by 12 weeks postdenervation. Axons formed intact neuromuscular junctions in the TA, with 48.8% ± 16.7% of the normal number of intact NMJs at 4 weeks and 88.3% ± 30.1% of the normal number by 12 weeks. Following resection of an RLN segment in a rat model, nerve fibers spontaneously regenerate through the distal segment of the transected nerve and form intact NMJs in order to reinnervate the TA muscle. NA. Laryngoscope, 128:E117-E122, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  2. The rostral medulla of bullfrog tadpoles contains critical lung rhythmogenic and chemosensitive regions across metamorphosis.

    PubMed

    Reed, Mitchell D; Iceman, Kimberly E; Harris, Michael B; Taylor, Barbara E

    2018-06-08

    The development of amphibian breathing provides insight into vertebrate respiratory control mechanisms. Neural oscillators in the rostral and caudal medulla drive ventilation in amphibians, and previous reports describe ventilatory oscillators and CO 2 sensitive regions arise during different stages of amphibian metamorphosis. However, inconsistent findings have been enigmatic, and make comparisons to potential mammalian counterparts challenging. In the current study we assessed amphibian central CO 2 responsiveness and respiratory rhythm generation during two different developmental stages. Whole-nerve recordings of respiratory burst activity in cranial and spinal nerves were made from intact or transected brainstems isolated from tadpoles during early or late stages of metamorphosis. Brainstems were transected at the level of the trigeminal nerve, removing rostral structures including the nucleus isthmi, midbrain, and locus coeruleus, or transected at the level of the glossopharyngeal nerve, removing the putative buccal oscillator and caudal medulla. Removal of caudal structures stimulated the frequency of lung ventilatory bursts and revealed a hypercapnic response in normally unresponsive preparations derived from early stage tadpoles. In preparations derived from late stage tadpoles, removal of rostral or caudal structures reduced lung burst frequency, while CO 2 responsiveness was retained. Our results illustrate that structures within the rostral medulla are capable of sensing CO 2 throughout metamorphic development. Similarly, the region controlling lung ventilation appears to be contained in the rostral medulla throughout metamorphosis. This work offers insight into the consistency of rhythmic respiratory and chemosensitive capacities during metamorphosis. Copyright © 2018. Published by Elsevier Inc.

  3. Immunoreactive Changes in the Hypoglossal Nucleus after Nerve Injury

    DTIC Science & Technology

    1991-07-25

    m ^ •••.•(.•>a> j T ’ — ’ . - v - ; - . • . • " _ • , . - • ’ ^ v , > ’ --•̂ T f£is:j-i&. .i.’a^i:-:5 Figure 7 30...nerve injury. A. nerve crush B. nerve transection C. nerve resection 38 ’.. i" : ^ M ^’^’- B •Jysf:^.-^^ ^ . - . ><^^ ^^-:3??jFj\\T^ Figure 10...R) 330X. 40 0^ m •s ’^ " ^ ’ Figure 11 41 both sides of the nucleus. At 20 dpo, the CGRP-IR increase in neuronal cell bodies and

  4. A Longitudinal Mapping Study on Cortical Plasticity of Peripheral Nerve Injury Treated by Direct Anastomosis and Electroacupuncture in Rats.

    PubMed

    Wu, Jia-Jia; Lu, Ye-Chen; Hua, Xu-Yun; Ma, Shu-Jie; Xu, Jian-Guang

    2018-06-01

    We used functional magnetic resonance imaging to provide a longitudinal description of cortical plasticity caused by electroacupuncture (EA) of sciatic nerve transection and direct anastomosis in rats. Sixteen rats in a sciatic nerve transection and direct anastomosis model were randomly divided into intervention and control groups. EA intervention in the position of ST-36, GB-30 was conducted continuously for 4 months in the intervention group. Functional magnetic resonance imaging and gait assessment were performed every month after intervention. The somatosensory area was more activated in the first 2 months and then deactivated in the rest 2 months when EA was applied. The pain-related areas had the same activation pattern as the somatosensory area. The limbic/paralimbic areas fluctuated more during the EA intervention, which was not constantly activated or deactivated as previous studies reported. We attributed such changes in somatosensory and pain-related areas to the gradual reduction of sensory afferentation. The alterations in limbic/paralimbic system might be associated with the confrontation between the upregulating effect of paresthesia or pain and the downregulating effect of EA intervention through the autonomic nerve system. The gait analysis showed significantly higher maximum contact mean intensity in the intervention group. The alterations in the brain brought about by the long-term therapeutic effect of EA could be described as a synchronized activation pattern in the somatosensory and pain-related areas and a fluctuating pattern in the limbic/paralimbic system. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Endoplasmic Reticulum Stress as a Mediator of Neurotoxin-Induced Dopamine Neuron Death

    DTIC Science & Technology

    2006-07-01

    reversible reduction in choline acetyl- transferase concentration in rat hypoglossal nucleus after hypoglossal nerve transection. Nature 275, 324–325...cally, analogs were evaluated for their ability to enhance choline acetyltransferase (ChAT) activity in embryonic rat spinal cord and basal forebrain...of ibotenate, CEP1347 protected basal forebrain cholinergic neurons.102 In a model of apoptosis induced in auditory hair cells by noise trauma, CEP1347

  6. G-CSF prevents caspase 3 activation in Schwann cells after sciatic nerve transection, but does not improve nerve regeneration.

    PubMed

    Frost, Hanna K; Kodama, Akira; Ekström, Per; Dahlin, Lars B

    2016-10-15

    Exogenous granulocyte-colony stimulating factor (G-CSF) has emerged as a drug candidate for improving the outcome after peripheral nerve injuries. We raised the question if exogenous G-CSF can improve nerve regeneration following a clinically relevant model - nerve transection and repair - in healthy and diabetic rats. In short-term experiments, distance of axonal regeneration and extent of injury-induced Schwann cell death was quantified by staining for neurofilaments and cleaved caspase 3, respectively, seven days after repair. There was no difference in axonal outgrowth between G-CSF-treated and non-treated rats, regardless if healthy Wistar or diabetic Goto-Kakizaki (GK) rats were examined. However, G-CSF treatment caused a significant 13% decrease of cleaved caspase 3-positive Schwann cells at the lesion site in healthy rats, but only a trend in diabetic rats. In the distal nerve segments of healthy rats a similar trend was observed. In long-term experiments of healthy rats, regeneration outcome was evaluated at 90days after repair by presence of neurofilaments, wet weight of gastrocnemius muscle, and perception of touch (von Frey monofilament testing weekly). The presence of neurofilaments distal to the suture line was similar in G-CSF-treated and non-treated rats. The weight ratio of ipsi-over contralateral gastrocnemius muscles, and perception of touch at any time point, were likewise not affected by G-CSF treatment. In addition, the inflammatory response in short- and long-term experiments was studied by analyzing ED1 stainable macrophages in healthy rats, but in neither case was any attenuation seen at the injury site or distal to it. G-CSF can prevent caspase 3 activation in Schwann cells in the short-term, but does not detectably affect the inflammatory response, nor improve early or late axonal outgrowth or functional recovery. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.

    PubMed

    You, Si-Wei; Chen, Bing-Yao; Liu, Hui-Ling; Lang, Bing; Xia, Jie-Lai; Jiao, Xi-Ying; Ju, Gong

    2003-01-01

    A major issue in analysis of experimental results after spinal cord injury is spontaneous functional recovery induced by remaining nerve fibers. The authors investigated the relationship between the degree of locomotor recovery and the percentage and location of the fibers that spared spinal cord transection. The spinal cords of 12 adult rats were transected at T9 with a razor blade, which often resulted in sparing of nerve fibers in the ventral spinal cord. The incompletely-transected animals were used to study the degree of spontaneous recovery of hindlimb locomotion, evaluated with the BBB rating scale, in correlation to the extent and location of the remaining fibers. Incomplete transection was found in the ventral spinal cord in 42% of the animals. The degree of locomotor recovery was highly correlated with the percentage of the remaining fibers in the ventral and ventrolateral funiculi. In one of the rats, 4.82% of remaining fibers in unilateral ventrolateral funiculus were able to sustain a certain recovery of locomotion. Less than 5% of remaining ventrolateral white matter is sufficient for an unequivocal motor recovery after incomplete spinal cord injury. Therefore, for studies with spinal cord transection, the completeness of sectioning should be carefully checked before any conclusion can be reached. The fact that the degree of locomotor recovery is correlated with the percentage of remaining fibers in the ventrolateral spinal cord, exclusive of most of the descending motor tracts, may imply an essential role of propriospinal connections in the initiation of spontaneous locomotor recovery.

  8. Passive immunization of fetal rats with antiserum to luteinizing hormone-releasing hormone (LHRH) or transection of the central roots of the nervus terminalis does not affect rat pups' preference for home nest.

    PubMed

    Schwanzel-Fukuda, M; Pfaff, D W

    1987-01-01

    Luteinizing hormone-releasing hormone (LHRH) is found immunocytochemically in cell bodies and fibers of the nervus terminalis, a cranial nerve which courses from the nasal septum through the cribriform plate of the ethmoid bone (medial to the olfactory and vomeronasal nerves) and enters the forebrain, caudal to the olfactory bulbs. Immunoreactive LHRH is first detected in the nervus terminalis of the fetal rat at 15 days of gestation, preceding its detection by immunocytochemistry in any other area of the brain, including the median eminence, and preceding detection of immunoreactive luteinizing hormone (LH) in the anterior pituitary. During development of the rat fetus, the nervus terminalis is the principal source of LHRH in the nervous system from days 15 through 19 of a 21 day gestation period. We tested the notion that the LHRH system of the nervus terminalis is important for olfactory performance by examining the effects of administration of antisera to LHRH during fetal development (versus saline controls), or medial olfactory peduncle transections, in the neonatal rat, which would sever the central projections of the nervus terminalis (versus lateral peduncle transection, complete transection of the olfactory peduncles and the central nervus terminalis or controls) on preferences of rat pups for home nest. The hypothesis that LHRH is important for this chemosensory response was not confirmed. Neither antisera to LHRH nor medical olfactory peduncle transection disrupted preference for home shavings. Only complete olfactory peduncle transection had a significant effect compared to unoperated and sham-operated controls.

  9. Antinociceptive and antiallodynic effects of Momordica charantia L. in tibial and sural nerve transection-induced neuropathic pain in rats.

    PubMed

    Jain, Vivek; Pareek, Ashutosh; Paliwal, Nishant; Ratan, Yashumati; Jaggi, Amteshwar Singh; Singh, Nirmal

    2014-02-01

    This study was designed to investigate the ameliorative potential of Momordica charantia L. (MC) in tibial and sural nerve transection (TST)-induced neuropathic pain in rats. TST was performed by sectioning tibial and sural nerve portions (2 mm) of the sciatic nerve, and leaving the common peroneal nerve intact. Acetone drop, pin-prick, hot plate, paint-brush, and walking track tests were performed to assess cold allodynia, mechanical and heat hyperalgesia, and dynamic mechanical allodynia and tibial functional index, respectively. The levels of tumour necrosis factor (TNF)-alpha and thio-barbituric acid reactive substances (TBARS) were measured in the sciatic nerve as an index of inflammation and oxidative stress. MC (all doses, orally, once daily) was administered to the rats for 24 consecutive days. TST led to significant development of cold allodynia, mechanical and heat hyperalgesia, dynamic mechanical allodynia, and functional deficit in walking along with rise in the levels of TBARS and TNF-alpha. Administration of MC (200, 400, and 800 mg/kg) significantly attenuated TST-induced behavioural and biochemical changes. Furthermore, pretreatment of BADGE (120 mg/kg, intraperitoneally) abolished the protective effect of MC in TST-induced neuropathic pain. Collectively, it is speculated that PPAR-gamma agonistic activity, anti-inflammatory, and antioxidative potential is critical for antinociceptive effect of MC in neuropathic pain.

  10. Gellan Gum-based luminal fillers for peripheral nerve regeneration: an in vivo study in the rat sciatic nerve repair model.

    PubMed

    Carvalho, C R; Wrobel, S; Meyer, C; Brandenberger, C; Cengiz, I F; López-Cebral, R; Silva-Correia, J; Ronchi, G; Reis, R L; Grothe, C; Oliveira, J M; Haastert-Talini, K

    2018-05-01

    Peripheral nerve injuries (PNI) resulting in a gap to be bridged between the transected nerve ends are commonly reconstructed with autologous nerve tissue, but there is a need for valuable alternatives. This experimental work considers the innovative use of the biomaterial Gellan Gum (GG) as a luminal filler for nerve guidance channels made from chitosan with a 5% degree of acetylation. The engineered constructs should remodel the structural support given to regenerating axons by the so-called bands of Büngner. Four different GG formulations were produced by combining varying amounts of High-Acyl GG (HA-GG) and Methacrylated GG (MA-GG). The effective porosity of the freeze-dried networks was analysed by SEM and micro-CT 3D reconstructions, while the degradation and swelling abilities were characterized in vitro for up to 30 days. The metabolic activity and viability of immortalized Schwann cells seeded onto the freeze-dried networks were also evaluated. Finally, the developed hydrogel formulations were freeze-dried within the chitosan nerve guides and implanted in a 10 mm rat sciatic nerve defect. Functional and histomorphological analyses after 3, 6, and 12 weeks in vivo revealed that although it did not result in improved nerve regeneration, the NGC25:75 formulations could provide a basis for further development of GG scaffolds as luminal fillers for hollow nerve guidance channels.

  11. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats.

    PubMed

    Sun, Fei; Zhou, Ke; Mi, Wen-juan; Qiu, Jian-hua

    2011-11-01

    Natural biological conduits containing seed cells have been widely used as an alternative strategy for nerve gap reconstruction to replace traditional nerve autograft techniques. The purpose of this study was to investigate the effects of a decellularized allogeneic artery conduit containing autologous transdifferentiated adipose-derived stem cells (dADSCs) on an 8-mm facial nerve branch lesion in a rat model. After 8 weeks, functional evaluation of vibrissae movements and electrophysiological assessment, retrograde labeling of facial motoneurons and morphological analysis of regenerated nerves were performed to assess nerve regeneration. The transected nerves reconstructed with dADSC-seeded artery conduits achieved satisfying regenerative outcomes associated with morphological and functional improvements which approached those achieved with Schwann cell (SC)-seeded artery conduits, and superior to those achieved with artery conduits alone or ADSC-seeded artery conduits, but inferior to those achieved with nerve autografts. Besides, numerous transplanted PKH26-labeled dADSCs maintained their acquired SC-phenotype and myelin sheath-forming capacity inside decellularized artery conduits and were involved in the process of axonal regeneration and remyelination. Collectively, our combined use of decellularized allogeneic artery conduits with autologous dADSCs certainly showed beneficial effects on nerve regeneration and functional restoration, and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Chronic recording of regenerating VIIIth nerve axons with a sieve electrode

    NASA Technical Reports Server (NTRS)

    Mensinger, A. F.; Anderson, D. J.; Buchko, C. J.; Johnson, M. A.; Martin, D. C.; Tresco, P. A.; Silver, R. B.; Highstein, S. M.

    2000-01-01

    A micromachined silicon substrate sieve electrode was implanted within transected toadfish (Opsanus tau) otolith nerves. High fidelity, single unit neural activity was recorded from seven alert and unrestrained fish 30 to 60 days after implantation. Fibrous coatings of genetically engineered bioactive protein polymers and nerve guide tubes increased the number of axons regenerating through the electrode pores when compared with controls. Sieve electrodes have potential as permanent interfaces to the nervous system and to bridge missing connections between severed or damaged nerves and muscles. Recorded impulses might also be amplified and used to control prosthetic devices.

  13. A System for Delivering Mechanical Stimulation and Robot-Assisted Therapy to the Rat Whisker Pad during Facial Nerve Regeneration

    PubMed Central

    Heaton, James T.; Knox, Christopher; Malo, Juan; Kobler, James B.; Hadlock, Tessa A.

    2013-01-01

    Functional recovery is typically poor after facial nerve transection and surgical repair. In rats, whisking amplitude remains greatly diminished after facial nerve regeneration, but can recover more completely if the whiskers are periodically mechanically stimulated during recovery. Here we present a robotic “whisk assist” system for mechanically driving whisker movement after facial nerve injury. Movement patterns were either pre-programmed to reflect natural amplitudes and frequencies, or movements of the contralateral (healthy) side of the face were detected and used to control real-time mirror-like motion on the denervated side. In a pilot study, twenty rats were divided into nine groups and administered one of eight different whisk assist driving patterns (or control) for 5–20 minutes, five days per week, across eight weeks of recovery after unilateral facial nerve cut and suture repair. All rats tolerated the mechanical stimulation well. Seven of the eight treatment groups recovered average whisking amplitudes that exceeded controls, although small group sizes precluded statistical confirmation of group differences. The potential to substantially improve facial nerve recovery through mechanical stimulation has important clinical implications, and we have developed a system to control the pattern and dose of stimulation in the rat facial nerve model. PMID:23475376

  14. Calpain-2 Regulates TNF-α Expression Associated with Neuropathic Pain Following Motor Nerve Injury.

    PubMed

    Chen, Shao-Xia; Liao, Guang-Jie; Yao, Pei-Wen; Wang, Shao-Kun; Li, Yong-Yong; Zeng, Wei-An; Liu, Xian-Guo; Zang, Ying

    2018-04-15

    Both calpain-2 (CALP2) and tumor necrosis factor-α (TNF-α) contribute to persistent bilateral hypersensitivity in animals subjected to L5 ventral root transection (L5-VRT), a model of selective motor fiber injury without sensory nerve damage. However, specific upstream mechanisms regulating TNF-α overexpression and possible relationships linking CALP2 and TNF-α have not yet been investigated in this model. We examined changes in CALP2 and TNF-α protein levels and alterations in bilateral mechanical threshold within 24 h following L5-VRT model injury. We observed robust elevation of CALP2 and TNF-α in bilateral dorsal root ganglias (DRGs) and bilateral spinal cord neurons. CALP2 and TNF-α protein induction by L5-VRT were significantly inhibited by pretreatment using the calpain inhibitor MDL28170. Administration of CALP2 to rats without nerve injury further supported a role of CALP2 in the regulation of TNF-α expression. Although clinical trials of calpain inhibition therapy for alleviation of neuropathic pain induced by motor nerve injury have not yet shown success, our observations linking CALP2 and TNF-α provide a framework of a systems' approach based perspective for treating neuropathic pain. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Novel technique for repair of severed peripheral nerves in rats using polyurea crosslinked silica aerogel scaffold.

    PubMed

    Sabri, Firouzeh; Gerth, David; Tamula, George-Rudolph M; Phung, Thien-Chuong N; Lynch, Kyle J; Boughter, John D

    2014-10-01

    To design, synthesize, and test in vivo an aerogel-based top-open peripheral nerve scaffold to simultaneously support and guide multiple completely severed peripheral nerves in a rat model. Also, to explore options for immobilizing severed nerves on the aerogel material without the use of sutures resulting in reduced surgical time. A novel material and approach was developed for the reattachment of severed peripheral nerves. Nerve confinement and alignment in this case relies on the surface properties of a lightweight, highly porous, polyurea crosslinked silica aerogel scaffold. The distal and proximal ends of completely transected nerve terminals were positioned inside prefabricated "top-open" corrugated channels that cradled approximately two thirds of the circumference of the nerve trunk and connectivity of the severed nerves was evaluated using sciatic function index (SFI) technique for five months post-surgery on 10 female Sprague-Dawley rats then compared with the gold standard for peripheral nerve repair. The interaction of nerves with the surface of the scaffold was investigated also. Multichannel aerogel-based nerve support scaffold showed similar SFI recovery trend as the case suture repair technique. Usage of an adhesion-promoting coating reduced the friction between the nerve and the scaffold leading to slippage and lack of attachment between nerve and surface. The aerogel scaffold used in this study did not collapse under pressure during the incubation period and allowed for a rapid and non-invasive peripheral nerve repair approach without the demands of microsurgery on both time and surgical expertise. This technique may allow for simultaneous repair and reconnection of multiple severed nerves particularly relevant to nerve branching sites.

  16. Transplantation of Embryonic Spinal Cord Derived Cells Helps to Prevent Muscle Atrophy after Peripheral Nerve Injury

    PubMed Central

    Ruven, Carolin; Li, Wen; Li, Heng; Wong, Wai-Man; Wu, Wutian

    2017-01-01

    Injuries to peripheral nerves are frequent in serious traumas and spinal cord injuries. In addition to surgical approaches, other interventions, such as cell transplantation, should be considered to keep the muscles in good condition until the axons regenerate. In this study, E14.5 rat embryonic spinal cord fetal cells and cultured neural progenitor cells from different spinal cord segments were injected into transected musculocutaneous nerve of 200–300 g female Sprague Dawley (SD) rats, and atrophy in biceps brachii was assessed. Both kinds of cells were able to survive, extend their axons towards the muscle and form neuromuscular junctions that were functional in electromyographic studies. As a result, muscle endplates were preserved and atrophy was reduced. Furthermore, we observed that the fetal cells had a better effect in reducing the muscle atrophy compared to the pure neural progenitor cells, whereas lumbar cells were more beneficial compared to thoracic and cervical cells. In addition, fetal lumbar cells were used to supplement six weeks delayed surgical repair after the nerve transection. Cell transplantation helped to preserve the muscle endplates, which in turn lead to earlier functional recovery seen in behavioral test and electromyography. In conclusion, we were able to show that embryonic spinal cord derived cells, especially the lumbar fetal cells, are beneficial in the treatment of peripheral nerve injuries due to their ability to prevent the muscle atrophy. PMID:28264437

  17. Evidence that spinal segmental nitric oxide mediates tachyphylaxis to peripheral local anesthetic nerve block.

    PubMed

    Wang, C; Sholas, M G; Berde, C B; DiCanzio, J; Zurakowski, D; Wilder, R T

    2001-09-01

    Tachyphylaxis to sciatic nerve blockade in rats correlates with hyperalgesia. Spinal inhibition of nitric oxide synthase with N(G)nitro-L-arginine methyl ester (L-NAME) has been shown to prevent hyperalgesia. Given systemically, L-NAME also prevents tachyphylaxis. The action of L-NAME in preventing tachyphylaxis therefore may be mediated at spinal sites. We compared systemic versus intrathecal potency of L-NAME in modulating tachyphylaxis to sciatic nerve block. Rats were prepared with intrathecal catheters. Three sequential sciatic nerve blocks were placed. Duration of block of thermal nocifensive, proprioceptive and motor responses was recorded. We compared spinal versus systemic dose-response to L-NAME, and examined effects of intrathecal arginine on tachyphylaxis. An additional group of rats underwent testing after T10 spinal cord transection. In these rats duration of sciatic nerve block was assessed by determining the heat-induced flexion withdrawal reflex. L-NAME was 25-fold more potent in preventing tachyphylaxis given intrathecally than intraperitoneally. Intrathecal arginine augmented tachyphylaxis. Spinalized rats exhibited tachyphylaxis to sciatic block. The increased potency of intrathecal versus systemic L-NAME suggests a spinal site of action in inhibiting tachyphylaxis. Descending pathways are not necessary for the development of tachyphylaxis since it occurs even after T10 spinal cord transection. Thus tachyphylaxis, like hyperalgesia, is mediated at least in part by a spinal site of action.

  18. [Changes in facial nerve function, morphology and neurotrophic factor III expression following three types of facial nerve injury].

    PubMed

    Zhang, Lili; Wang, Haibo; Fan, Zhaomin; Han, Yuechen; Xu, Lei; Zhang, Haiyan

    2011-01-01

    To study the changes in facial nerve function, morphology and neurotrophic factor III (NT-3) expression following three types of facial nerve injury. Changes in facial nerve function (in terms of blink reflex (BF), vibrissae movement (VM) and position of nasal tip) were assessed in 45 rats in response to three types of facial nerve injury: partial section of the extratemporal segment (group one), partial section of the facial canal segment (group two) and complete transection of the facial canal segment lesion (group three). All facial nerves specimen were then cut into two parts at the site of the lesion after being taken from the lesion site on 1st, 7th, 21st post-surgery-days (PSD). Changes of morphology and NT-3 expression were evaluated using the improved trichrome stain and immunohistochemistry techniques ,respectively. Changes in facial nerve function: In group 1, all animals had no blink reflex (BF) and weak vibrissae movement (VM) at the 1st PSD; The blink reflex in 80% of the rats recovered partly and the vibrissae movement in 40% of the rats returned to normal at the 7th PSD; The facial nerve function in 600 of the rats was almost normal at the 21st PSD. In group 2, all left facial nerve paralyzed at the 1st PSD; The blink reflex partly recovered in 40% of the rats and the vibrissae movement was weak in 80% of the rats at the 7th PSD; 8000 of the rats'BF were almost normal and 40% of the rats' VM completely recovered at the 21st PSD. In group 3, The recovery couldn't happen at anytime. Changes in morphology: In group 1, the size of nerve fiber differed in facial canal segment and some of myelin sheath and axons degenerated at the 7th PSD; The fibres' degeneration turned into regeneration at the 21st PSD; In group 2, the morphologic changes in this group were familiar with the group 1 while the degenerated fibers were more and dispersed in transection at the 7th PSD; Regeneration of nerve fibers happened at the 21st PSD. In group 3, most of the fibers crumbled at the 7th PSD and no regeneration was seen at the 21st PSD. Changes in NT-3: Positive staining of NT-3 was largely observed in axons at the 7th PSD, although little NT-3 was seen in the normal fibers. Facial palsy of the rats in group 2 was more extensive than that in group 1 and their function partly recovers at the 21st PSD. The fibres' degeneration occurs not only dispersed throughout the injury site but also occurred throught the length of the nerve. NT-3 immunoreactivity increased in activated fibers after partial transection.

  19. Large-area irradiated low-level laser effect in a biodegradable nerve guide conduit on neural regeneration of peripheral nerve injury in rats.

    PubMed

    Shen, Chiung-Chyi; Yang, Yi-Chin; Liu, Bai-Shuan

    2011-08-01

    This study used a biodegradable composite containing genipin-cross-linked gelatin annexed with β-tricalcium phosphate ceramic particles (genipin-gelatin-tricalcium phosphate, GGT), developed in a previous study, as a nerve guide conduit. The aim of this study was to analyse the influence of a large-area irradiated aluminium-gallium-indium phosphide (AlGaInP) diode laser (660 nm) on the neural regeneration of the transected sciatic nerve after bridging the GGT nerve guide conduit in rats. The animals were divided into two groups: group 1 comprised sham-irradiated controls and group 2 rats underwent low-level laser (LLL) therapy. A compact multi-cluster laser system with 20 AlGaInP laser diodes (output power, 50mW) was applied transcutaneously to the injured peripheral nerve immediately after closing the wound, which was repeated daily for 5 min for 21 consecutive days. Eight weeks after implantation, walking track analysis showed a significantly higher sciatic function index (SFI) score (P<0.05) and better toe spreading development in the laser-treated group than in the sham-irradiated control group. For electrophysiological measurement, both the mean peak amplitude and nerve conduction velocity of compound muscle action potentials (CMAPs) were higher in the laser-treated group than in the sham-irradiated group. The two groups were found to be significantly different during the experimental period (P<0.005). Histomorphometric assessments revealed that the qualitative observation and quantitative analysis of the regenerated nerve tissue in the laser-treated group were superior to those of the sham-irradiated group. Thus, the motor functional, electrophysiologic and histomorphometric assessments demonstrate that LLL therapy can accelerate neural repair of the corresponding transected peripheral nerve after bridging the GGT nerve guide conduit in rats. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Alleviating Autonomic Dysreflexia after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    nerve into a T3 transection site diminishes autonomic dysreflexia were continued. We began implantation of radiotelelmeters into the descending aorta via the femoral artery. We are also currently analyzing the data.

  1. Value of a novel PGA-collagen tube on recurrent laryngeal nerve regeneration in a rat model.

    PubMed

    Suzuki, Hiroshi; Araki, Koji; Matsui, Toshiyasu; Tomifuji, Masayuki; Yamashita, Taku; Kobayashi, Yasushi; Shiotani, Akihiro

    2016-07-01

    Nerbridge (Toyobo Co., Ltd., Osaka, Japan) is a novel polyglycolic acid (PGA) tube that is filled with collagen fibers and that facilitates nerve fiber expansion and blood vessel growth. It is biocompatible and commercially available, with governmental approval for practical use in Japan. We hypothesized that the PGA-collagen tube would promote regeneration of the recurrent laryngeal nerve (RLN). This hypothesis was examined in a rat axotomy model of the RLN. Prospective animal study. The axotomy model was established by transection of the left RLN in adult Sprague-Dawley rats. The cut ends of the nerve were bridged using Nerbridge (Toyobo Co., Ltd.) with a 1-mm gap (tube-treatment group) or direct sutures (sutured-control group). Left vocal fold mobility, nerve conduction velocity, morphology, and histology were assessed after 15 weeks. Fifteen weeks after treatment, nerve fiber connections were observed macroscopically in both groups, and more clear myelinated fibers and better prevention of laryngeal muscle atrophy were observed in the tube-treatment group compared with the sutured-control group. However, vocal fold movement recovery was not observed in either group, and the conduction velocity of the RLN did not differ between the two groups. Better nerve regeneration was observed in the tube-treatment group. The combination therapy with molecular or gene therapy might be an effective strategy to improve vocal fold movement. The PGA-collagen tube has the potential to promote regeneration of the RLN and to be a scaffold for drug administration in these combination therapies. N/A. Laryngoscope, 126:E233-E239, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Facial Nerve Trauma: Evaluation and Considerations in Management

    PubMed Central

    Gordin, Eli; Lee, Thomas S.; Ducic, Yadranko; Arnaoutakis, Demetri

    2014-01-01

    The management of facial paralysis continues to evolve. Understanding the facial nerve anatomy and the different methods of evaluating the degree of facial nerve injury are crucial for successful management. When the facial nerve is transected, direct coaptation leads to the best outcome, followed by interpositional nerve grafting. In cases where motor end plates are still intact but a primary repair or graft is not feasible, a nerve transfer should be employed. When complete muscle atrophy has occurred, regional muscle transfer or free flap reconstruction is an option. When dynamic reanimation cannot be undertaken, static procedures offer some benefit. Adjunctive tools such as botulinum toxin injection and biofeedback can be helpful. Several new treatment modalities lie on the horizon which hold potential to alter the current treatment algorithm. PMID:25709748

  3. Substance P receptor binding sites are expressed by glia in vivo after neuronal injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantyh, P.W.; Johnson, D.J.; Boehmer, C.G.

    1989-07-01

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, the authors examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve andmore » tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system.« less

  4. Concentration and state dependent reductions in corn oil intakes after glossopharyngeal nerve transections in rats.

    PubMed

    Foo, H; Norgren, R

    2014-04-10

    Previous studies indicate a role for the glossopharyngeal nerve (GL) in the detection of dietary fats. The present experiments examined the effects of bilateral glossopharyngeal nerve transections (GLx) on the intake of low (4.8%), moderate (16%), and full-fat (100%) corn oil in non-deprived, food-deprived, and water-deprived rats. The rats had access to oils, 0.3 M sucrose, and water in a gustometer that measured number of licks and latency to the first lick during brief access trials. The behavioral measures were used as indices of the amount consumed and the motivation to ingest, respectively. After baseline intakes had stabilized, the rats received GLx or sham transections (Sham) and were then re-tested. Pre and post-surgery responses were compared to determine the impact of GLx on intake and the motivation to ingest. In non-deprived rats, GLx reduced the intake of 4.8% and 16% oils and decreased the motivation to ingest these oils. In food-deprived rats, GLx prevented increases in the ingestion of 4.8% and 16% oils and in the motivation to ingest these oils. In water-deprived rats, GLx reduced the intake of 100% oil and produced a general decrease in the motivation to consume low, moderate, and full-fat emulsions. These results indicate that GL is partially involved in corn oil intake and suggest an interactive effect of oil concentration with homeostatic state. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Linear ordered collagen scaffolds loaded with collagen-binding basic fibroblast growth factor facilitate recovery of sciatic nerve injury in rats.

    PubMed

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin; Dai, Jianwu; Xu, Ruxiang

    2014-04-01

    Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration.

  6. The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model.

    PubMed

    Yurie, Hirofumi; Ikeguchi, Ryosuke; Aoyama, Tomoki; Kaizawa, Yukitoshi; Tajino, Junichi; Ito, Akira; Ohta, Souichi; Oda, Hiroki; Takeuchi, Hisataka; Akieda, Shizuka; Tsuji, Manami; Nakayama, Koichi; Matsuda, Shuichi

    2017-01-01

    Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit. We developed six scaffold-free conduits from human normal dermal fibroblasts using a Bio 3D Printer. Twelve adult male rats with immune deficiency underwent mid-thigh-level transection of the right sciatic nerve. The resulting 5-mm nerve gap was bridged using 8-mm Bio 3D conduits (Bio 3D group, n = 6) and silicone tube (silicone group, n = 6). Several assessments were conducted to examine nerve regeneration eight weeks post-surgery. Kinematic analysis revealed that the toe angle to the metatarsal bone at the final segment of the swing phase was significantly higher in the Bio 3D group than the silicone group (-35.78 ± 10.68 versus -62.48 ± 6.15, respectively; p < 0.01). Electrophysiological studies revealed significantly higher compound muscle action potential in the Bio 3D group than the silicone group (53.60 ± 26.36% versus 2.93 ± 1.84%; p < 0.01). Histological and morphological studies revealed neural cell expression in all regions of the regenerated nerves and the presence of many well-myelinated axons in the Bio 3D group. The wet muscle weight of the tibialis anterior muscle was significantly higher in the Bio 3D group than the silicone group (0.544 ± 0.063 versus 0.396 ± 0.031, respectively; p < 0.01). We confirmed that scaffold-free Bio 3D conduits composed entirely of fibroblast cells promote nerve regeneration in a rat sciatic nerve model.

  7. The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model

    PubMed Central

    Yurie, Hirofumi; Ikeguchi, Ryosuke; Aoyama, Tomoki; Kaizawa, Yukitoshi; Tajino, Junichi; Ito, Akira; Ohta, Souichi; Oda, Hiroki; Takeuchi, Hisataka; Akieda, Shizuka; Tsuji, Manami; Nakayama, Koichi; Matsuda, Shuichi

    2017-01-01

    Background Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit. Methods We developed six scaffold-free conduits from human normal dermal fibroblasts using a Bio 3D Printer. Twelve adult male rats with immune deficiency underwent mid-thigh-level transection of the right sciatic nerve. The resulting 5-mm nerve gap was bridged using 8-mm Bio 3D conduits (Bio 3D group, n = 6) and silicone tube (silicone group, n = 6). Several assessments were conducted to examine nerve regeneration eight weeks post-surgery. Results Kinematic analysis revealed that the toe angle to the metatarsal bone at the final segment of the swing phase was significantly higher in the Bio 3D group than the silicone group (-35.78 ± 10.68 versus -62.48 ± 6.15, respectively; p < 0.01). Electrophysiological studies revealed significantly higher compound muscle action potential in the Bio 3D group than the silicone group (53.60 ± 26.36% versus 2.93 ± 1.84%; p < 0.01). Histological and morphological studies revealed neural cell expression in all regions of the regenerated nerves and the presence of many well-myelinated axons in the Bio 3D group. The wet muscle weight of the tibialis anterior muscle was significantly higher in the Bio 3D group than the silicone group (0.544 ± 0.063 versus 0.396 ± 0.031, respectively; p < 0.01). Conclusions We confirmed that scaffold-free Bio 3D conduits composed entirely of fibroblast cells promote nerve regeneration in a rat sciatic nerve model. PMID:28192527

  8. Peripheral nerve regeneration with conduits: use of vein tubes

    PubMed Central

    Sabongi, Rodrigo Guerra; Fernandes, Marcela; dos Santos, João Baptista Gomes

    2015-01-01

    Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit. PMID:26170802

  9. Peripheral nerve regeneration with conduits: use of vein tubes.

    PubMed

    Sabongi, Rodrigo Guerra; Fernandes, Marcela; Dos Santos, João Baptista Gomes

    2015-04-01

    Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit.

  10. Development of regenerative peripheral nerve interfaces for motor control of neuroprosthetic devices

    NASA Astrophysics Data System (ADS)

    Kemp, Stephen W. P.; Urbanchek, Melanie G.; Irwin, Zachary T.; Chestek, Cynthia A.; Cederna, Paul S.

    2017-05-01

    Traumatic peripheral nerve injuries suffered during amputation commonly results in debilitating neuropathic pain in the affected limb. Modern prosthetic technologies allow for intuitive, simultaneous control of multiple degrees of freedom. However, these state-of-the-art devices require separate, independent control signals for each degree of freedom, which is currently not possible. As a result, amputees reject up to 75% of myoelectric devices preferring instead to use body-powered artificial limbs which offer subtle sensory feedback. Without meaningful and intuitive sensory feedback, even the most advanced myoelectric prostheses remain insensate, burdensome, and are associated with enormous cognitive demand and mental fatigue. The ideal prosthetic device is one which is capable of providing intuitive somatosensory feedback essential for interaction with the environment. Critical to the design of such a bioprosthetic device is the development of a reliable biologic interface between human and machine. This ideal patient-prosthetic interface allows for transmission of both afferent somatosensory information and efferent motor signals for a closed-loop feedback system of neural control. Our lab has developed the Regenerative Peripheral Nerve Interface (RPNI) as a biologic nerve interface designed for stable integration of a prosthetic device with transected peripheral nerves in a residual limb. The RPNI is constructed by surgically implanting the distal end of a transected peripheral nerve into an autogenous muscle graft. Animal experiments in our lab have shown recording of motor signals from RPNI's implanted into both rodents and monkeys. Here, we achieve high amplitude EMG signals with a high signal to noise (SNR) ratio.

  11. Restoration of motor function after operative reconstruction of the acutely transected spinal cord in the canine model.

    PubMed

    Liu, Zehan; Ren, Shuai; Fu, Kuang; Wu, Qiong; Wu, Jun; Hou, Liting; Pan, Hong; Sun, Linlin; Zhang, Jian; Wang, Bingjian; Miao, Qing; Sun, Guiyin; Bonicalzi, Vincenzo; Canavero, Sergio; Ren, Xiaoping

    2018-05-01

    Cephalosomatic anastomosis or what has been called a "head transplantation" requires full reconnection of the respective transected ends of the spinal cords. The GEMINI spinal cord fusion protocol has been developed for this reason. Here, we report the first randomized, controlled study of the GEMINI protocol in large animals. We conducted a randomized, controlled study of a complete transection of the spinal cord at the level of T10 in dogs at Harbin Medical University, Harbin, China. These dogs were followed for up to 8 weeks postoperatively by assessments of recovery of motor function, somato-sensory evoked potentials, and diffusion tensor imaging using magnetic resonance imaging. A total of 12 dogs were subjected to operative exposure of the dorsal aspect of the spinal cord after laminectomy and longitudinal durotomy followed by a very sharp, controlled, full-thickness, complete transection of the spinal cord at T10. The fusogen, polyethylene glycol, was applied topically to the site of the spinal cord transection in 7 of 12 dogs; 0.9% NaCl saline was applied to the site of transection in the remaining 5 control dogs. Dogs were selected randomly to receive polyethylene glycol or saline. All polyethylene glycol-treated dogs reacquired a substantial amount of motor function versus none in controls over these first 2 months as assessed on the 20-point (0-19), canine, Basso-Beattie-Bresnahan rating scale (P<.006). Somatosensory evoked potentials confirmed restoration of electrical conduction cranially across the site of spinal cord transection which improved over time. Diffusion tensor imaging, a magnetic resonance permutation that assesses the integrity of nerve fibers and cells, showed restitution of the transected spinal cord with polyethylene glycol treatment (at-injury level difference: P<.02). A sharply and fully transected spinal cord at the level of T10 can be reconstructed with restoration of many aspects of electrical continuity in large animals following the GEMINI spinal cord fusion protocol, with objective evidence of motor recovery and of electrical continuity across the site of transection, opening the way to the first cephalosomatic anastomosis. (Surgery 2017;160:XXX-XXX.). Copyright © 2017. Published by Elsevier Inc.

  12. Combination of edaravone and neural stem cell transplantation repairs injured spinal cord in rats.

    PubMed

    Song, Y Y; Peng, C G; Ye, X B

    2015-12-29

    This study sought to observe the effect of the combination of edaravone and neural stem cell (NSC) transplantation on the repair of complete spinal cord transection in rats. Eighty adult female Sprague-Dawley (SD) rats were used to establish the injury model of complete spinal cord transection at T9. Animals were divided randomly into four groups (N = 20 each): control, edaravone, transplantation, and edaravone + transplantation. The recovery of spinal function was evaluated with the Basso, Beattie, Bresnahan (BBB) rating scale on days 1, 3, and 7 each week after the surgery. After 8 weeks, the BBB scores of the control, edaravone, transplantation, and combination groups were 4.21 ± 0.11, 8.46 ± 0.1, 8.54 ± 0.13, and 11.21 ± 0.14, respectively. At 8 weeks after surgery, the spinal cord was collected; the survival and transportation of transplanted cells were observed with PKH-26 labeling, and the regeneration and distribution of spinal nerve fibers with fluorescent-gold (FG) retrograde tracing. Five rats died due to the injury. PKH-26-labeled NSCs had migrated into the spinal cord. A few intact nerve fibers and pyramidal neurons passed the injured area in the transplantation and combination groups. The numbers of PKH-26-labeled cells and FG-labeled nerve fibers were in the order: combination group > edaravone group and transplantation group > control group (P < 0.05 for each). Thus, edaravone can enhance the survival and differentiation of NSCs in injured areas; edaravone with NSC transplantation can improve the effectiveness of spinal cord injury repair in rats.

  13. Lateral femoral cutaneous nerve transposition: Renaissance of an old concept in the light of new anatomy.

    PubMed

    Hanna, Amgad S

    2017-04-01

    Meralgia paresthetica causes pain in the anterolateral thigh. Most surgical procedures involve nerve transection or decompression. We conducted a cadaveric study to determine the feasibility of lateral femoral cutaneous nerve (LFCN) transposition. In three cadavers, the LFCN was exposed in the thigh and retroperitoneum. The two layers of the LFCN canal superficial and deep to the nerve were opened. The nerve was then mobilized medially away from the ASIS, by cutting the septum medial to sartorius. It was possible to mobilize the nerve for 2 cm medial to the ASIS. The nerve acquired a much straighter course with less tension. A new technique of LFCN transposition is presented here as an anatomical feasibility study. The surgical technique is based on the new understanding of the LFCN canal. Clin. Anat. 30:409-412, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Regenerative peripheral nerve interface viability and signal transduction with an implanted electrode.

    PubMed

    Kung, Theodore A; Langhals, Nicholas B; Martin, David C; Johnson, Philip J; Cederna, Paul S; Urbanchek, Melanie G

    2014-06-01

    The regenerative peripheral nerve interface is an internal interface for signal transduction with external electronics of prosthetic limbs; it consists of an electrode and a unit of free muscle that is neurotized by a transected residual peripheral nerve. Adding a conductive polymer coating on electrodes improves electrode conductivity. This study examines regenerative peripheral nerve interface tissue viability and signal fidelity in the presence of an implanted electrode coated or uncoated with a conductive polymer. In a rat model, the extensor digitorum longus muscle was moved as a nonvascularized free tissue transfer and neurotized by the divided peroneal nerve. Either a stainless steel pad electrode (n = 8) or a pad electrode coated with poly(3,4-ethylenedioxythiophene) conductive polymer (PEDOT) (n = 8) was implanted on the muscle transfer and secured with an encircling acellular extracellular matrix. The contralateral muscle served as the control. The free muscle transfers were successfully revascularized and over time reinnervated as evidenced by serial insertional needle electromyography. Compound muscle action potentials were successfully transduced through the regenerative peripheral nerve interface. The conductive polymer coating on the implanted electrode resulted in increased recorded signal amplitude that was observed throughout the course of the study. Histologic examination confirmed axonal sprouting, elongation, and synaptogenesis within regenerative peripheral nerve interface regardless of electrode type. The regenerative peripheral nerve interface remains viable over seven months in the presence of an implanted electrode. Electrodes with and without conductive polymer reliably transduced signals from the regenerative peripheral nerve interface. Electrodes with a conductive polymer coating resulted in recording more of the regenerative peripheral nerve interface signal.

  15. Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.

    PubMed

    Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu

    2015-11-15

    Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.

  16. Testing the hypothesis of neurodegeneracy in respiratory network function with a priori transected arterially perfused brain stem preparation of rat

    PubMed Central

    Jones, Sarah E.

    2016-01-01

    Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation. PMID:26888109

  17. Testing the hypothesis of neurodegeneracy in respiratory network function with a priori transected arterially perfused brain stem preparation of rat.

    PubMed

    Jones, Sarah E; Dutschmann, Mathias

    2016-05-01

    Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation. Copyright © 2016 the American Physiological Society.

  18. Recurrent laryngeal nerve recovery patterns assessed by serial electromyography.

    PubMed

    Paniello, Randal C; Park, Andrea M; Bhatt, Neel K; Al-Lozi, Muhammad

    2016-03-01

    Following acute injury to the recurrent laryngeal nerve (RLN), laryngeal electromyography (LEMG) is increasingly being used to determine prognosis for recovery. The LEMG findings change during the recovery process, but the timing of these changes is not well described. In this canine study, LEMGs were obtained serially following model RLN injuries. Animal Study. Thirty-six canine RLNs underwent crush (n = 6), complete transection with reanastomosis (n = 6), half-transection half-crush (n = 5), cautery (n = 5), stretch (n = 5), inferior crush (n = 4), or inferior transection with reanastomosis (n = 5) injuries. Injuries were performed 5 cm from cricoid or were 5 cm further inferior. Under light sedation, LEMG of thyroarytenoid muscles was performed monthly for 6 months following injury. At 6 months, spontaneous and induced vocal fold motion was assessed. Except for the stretch injury, the remaining groups showed very similar recovery patterns. Fibrillation potentials (FPs) and/or positive sharp waves (PSWs; signs of bad prognosis) were seen in all cases at 1 month and lasted on average for 2.26 months (range = 1-4 months). Motor unit potentials of at least 2+ (scale = 0-4+; signs of good prognosis) were seen beginning at 3.61 months (range = 2-6 months). The stretch injury was less severe, with 3 of 5 showing no FPs/PSWs at 1 month; all recovered full mobility. Ten of the 36 thyroarytenoid muscles (27.8%) had 1 electromyograph showing both bad prognosis and good prognosis signs simultaneously at 2 to 4 months postinjury. LEMG can be used to predict RNL recovery, but timing is important and LEMG results earlier than 3 months may overestimate a negative prognosis. NA Laryngoscope, 126:651-656, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles.

    PubMed

    Gregor, Robert J; Maas, Huub; Bulgakova, Margarita A; Oliver, Alanna; English, Arthur W; Prilutsky, Boris I

    2018-03-01

    Locomotion outcomes after peripheral nerve injury and repair in cats have been described in the literature for the period immediately following the injury (muscle denervation period) and then again for an ensuing period of long-term recovery (at 3 mo and longer) resulting in muscle self-reinnervation. Little is known about the changes in muscle activity and walking mechanics during midrecovery, i.e., the early reinnervation period that takes place between 5 and 10 wk of recovery. Here, we investigated hindlimb mechanics and electromyogram (EMG) activity of ankle extensors in six cats during level and slope walking before and every 2 wk thereafter in a 14-wk period of recovery after the soleus (SO) and lateral gastrocnemius (LG) muscle nerves in one hindlimb were surgically transected and repaired. We found that the continued increase in SO and LG EMG magnitudes and corresponding changes in hindlimb mechanics coincided with the formation of neuromuscular synapses revealed in muscle biopsies. Throughout the recovery period, EMG magnitude of SO and LG during the stance phase and the duration of the stance-related activity were load dependent, similar to those in the intact synergistic medial gastrocnemius and plantaris. These results and the fact that EMG activity of ankle extensors and locomotor mechanics during level and upslope walking recovered 14 wk after nerve transection and repair suggest that loss of the stretch reflex in self-reinnervated muscles may be compensated by the recovered force-dependent feedback in self-reinnervated muscles, by increased central drive, and by increased gain in intermuscular motion-dependent pathways from intact ankle extensors. NEW & NOTEWORTHY This study provides new evidence that the timeline for functional recovery of gait after peripheral nerve injury and repair is consistent with the time required for neuromuscular junctions to form and muscles to reach preoperative tensions. Our findings suggest that a permanent loss of autogenic stretch reflex in self-reinnervated muscles may be compensated by recovered intermuscular force-dependent and oligosynaptic length-dependent feedback and central drive to regain adequate locomotor output capabilities during level and upslope walking.

  20. The consequences of gustatory deafferentation on body mass and feeding patterns in the rat

    PubMed Central

    Colbert, Connie L.; Garcea, Mircea; Smith, James C.; Spector, Alan C.

    2012-01-01

    The contribution of orosensory signals, especially taste, on body mass, and feeding and drinking patterns in the rat was examined. Gustatory deafferentation was produced by bilateral transection of the chorda tympani, glossopharyngeal, and greater superficial petrosal nerves. Total calories consumed from sweetened-milk diet and oil-chow mash by the nerve-transected rats significantly decreased relative to sham-operated controls, mostly attributable to decreases in bout number, but not size. Nevertheless, caloric intake steadily increased over the postsurgical observation period, but body mass remained below both presurgical baseline and control levels and did not significantly increase over this time. After the sweetened-milk diet/oil-chow mash phase, rats received a series of sucrose preference tests. Interestingly, the nerve-transected rats preferred sucrose, and intake did not differ from controls, likely due to the stimulus sharing some nontaste chemosensory properties with the sweetened-milk diet. The neurotomized rats initiated a greater number of sucrose-licking bouts that were smaller in size and slower in licking rate, compared with control rats, and, unlike in control rats, the latter two bout parameters did not vary across concentration. Thus, in the absence of gustatory neural input, body mass is more stable compared with the progressive trajectory of weight gain seen in intact rats, and caloric intake initially decreases but recovers. The consequences of gustatory neurotomy on processes that determine meal initiation (bout number) and meal termination (bout size) are not fixed and appear to be influenced by presurgical experience with food stimuli coupled with its nongustatory chemosensory properties. PMID:22785426

  1. Mirror-image pain after nerve reconstruction in rats is related to enhanced density of epidermal peptidergic nerve fibers.

    PubMed

    Kambiz, S; Brakkee, E M; Duraku, L S; Hovius, S E R; Ruigrok, T J H; Walbeehm, E T

    2015-05-01

    Mirror-image pain is a phenomenon in which unprovoked pain is detected on the uninjured contralateral side after unilateral nerve injury. Although it has been implicated that enhanced production of nerve growth factor (NGF) in the contralateral dorsal root ganglion is important in the development of mirror-image pain, it is not known if this is related to enhanced expression of nociceptive fibers in the contralateral skin. Mechanical and thermal sensitivity in the contralateral hind paw was measured at four different time points (5, 10, 20 and 30weeks) after transection and immediate end-to-end reconstruction of the sciatic nerve in rats. These findings were compared to the density of epidermal (peptidergic and non-peptidergic) nerve fibers on the contralateral hind paw. Mechanical hypersensitivity of the contralateral hind paw was observed at 10weeks PO, a time point in which both subgroups of epidermal nerve fibers reached control values. Thermal hypersensitivity was observed with simultaneous increase in the density of epidermal peptidergic nerve fibers of the contralateral hind paw at 20weeks PO. Both thermal sensitivity and the density of epidermal nerve fibers returned to control values 30weeks PO. We conclude that changes in skin innervation and sensitivity are present on the uninjured corresponding side in a transient pain model. Therefore, the contralateral side cannot serve as control. Moreover, the current study confirms the involvement of the peripheral nervous system in the development of mirror-image pain. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Novel experimental surgical strategy to prevent traumatic neuroma formation by combining a 3D-printed Y-tube with an autograft.

    PubMed

    Bolleboom, Anne; de Ruiter, Godard C W; Coert, J Henk; Tuk, Bastiaan; Holstege, Jan C; van Neck, Johan W

    2018-02-09

    OBJECTIVE Traumatic neuromas may develop after nerve injury at the proximal nerve stump, which can lead to neuropathic pain. These neuromas are often resistant to therapy, and excision of the neuroma frequently leads to recurrence. In this study, the authors present a novel surgical strategy to prevent neuroma formation based on the principle of centro-central anastomosis (CCA), but rather than directly connecting the nerve ends to an autograft, they created a loop using a 3D-printed polyethylene Y-shaped conduit with an autograft in the distal outlets. METHODS The 3D-printed Y-tube with autograft was investigated in a model of rat sciatic nerve transection in which the Y-tube was placed on the proximal sciatic nerve stump and a peroneal graft was placed between the distal outlets of the Y-tube to form a closed loop. This model was compared with a CCA model, in which a loop was created between the proximal tibial and peroneal nerves with a peroneal autograft. Additional control groups consisted of the closed Y-tube and the extended-arm Y-tube. Results were analyzed at 12 weeks of survival using nerve morphometry for the occurrence of neuroma formation and axonal regeneration in plastic semi-thin sections. RESULTS Among the different surgical groups, the Y-tube with interposed autograft was the only model that did not result in neuroma formation at 12 weeks of survival. In addition, a 13% reduction in the number of myelinated axons regenerating through the interposed autograft was observed in the Y-tube with autograft model. In the CCA model, the authors also observed a decrease of 17% in the number of myelinated axons, but neuroma formation was present in this model. The closed Y-tube resulted in minimal nerve regeneration inside the tube together with extensive neuroma formation before the entrance of the tube. The extended-arm Y-tube model clearly showed that the majority of the regenerating axons merged into the Y-tube arm, which was connected to the autograft, leaving the extended plastic arm almost empty. CONCLUSIONS This pilot study shows that our novel 3D-printed Y-tube model with interposed autograft prevents neuroma formation, making this a promising surgical tool for the management of traumatic neuromas.

  3. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.

    PubMed

    Hausner, T; Schmidhammer, R; Zandieh, S; Hopf, R; Schultz, A; Gogolewski, S; Hertz, H; Redl, H

    2007-01-01

    In severe nerve lesion, nerve defects and in brachial plexus reconstruction, autologous nerve grafting is the golden standard. Although, nerve grafting technique is the best available approach a major disadvantages exists: there is a limited source of autologous nerve grafts. This study presents data on the use of tubular scaffolds with uniaxial pore orientation from experimental biodegradable polyurethanes coated with fibrin sealant to regenerate a 8 mm resected segment of rat sciatic nerve. Tubular scaffolds: prepared by extrusion of the polymer solution in DMF into water coagulation bath. The polymer used for the preparation of tubular scaffolds was a biodegradable polyurethane based on hexamethylene diisocyanate, poly(epsilon-caprolactone) and dianhydro-D-sorbitol. EXPERIMENTAL MODEL: Eighteen Sprague Dawley rats underwent mid-thigh sciatic nerve transection and were randomly assigned to two experimental groups with immediate repair: (1) tubular scaffold, (2) 180 degrees rotated sciatic nerve segment (control). Serial functional measurements (toe spread test, placing tests) were performed weekly from 3rd to 12th week after nerve repair. On week 12, electrophysiological assessment was performed. Sciatic nerve and scaffold/nerve grafts were harvested for histomorphometric analysis. Collagenic connective tissue, Schwann cells and axons were evaluated in the proximal nerve stump, the scaffold/nerve graft and the distal nerve stump. The implants have uniaxially-oriented pore structure with a pore size in the range of 2 micorm (the pore wall) and 75 x 700 microm (elongated pores in the implant lumen). The skin of the tubular implants was nonporous. Animals which underwent repair with tubular scaffolds of biodegradable polyurethanes coated with diluted fibrin sealant had no significant functional differences compared with the nerve graft group. Control group resulted in a trend-wise better electrophysiological recovery but did not show statistically significant differences. There was a higher level of collagenic connective tissue within the scaffold and within the distal nerve stump. Schwann cells migrated into the polyurethane scaffold. There was no statistical difference to the nerve graft group although Schwann cell counts were lower especially within the middle of the polyurethane scaffold. Axon counts showed a trend-wise decrease within the scaffold. These results suggest that biodegradable polyurethane tubular scaffolds coated with diluted fibrin sealant support peripheral nerve regeneration in a standard gap model in the rat up to 3 months. Three months after surgery no sign of degradation could be seen.

  4. miRNA Expression Change in Dorsal Root Ganglia After Peripheral Nerve Injury.

    PubMed

    Chang, Hsueh-Ling; Wang, Hung-Chen; Chunag, Yi-Ta; Chou, Chao-Wen; Lin, I-Ling; Lai, Chung-Sheng; Chang, Lin-Li; Cheng, Kuang-I

    2017-02-01

    The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague-Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7. A miRNA microarray analysis was used to detect the miRNA expression profiles in injured L5 DRG from SNL, DRT, and VRT on POD 7. Validation of miRNA expression was performed by qPCR and in situ hybridization. Rats receiving SNL displayed significantly higher mechanical hypersensitivity, but those receiving DRT developed higher thermal hypersensitivity. The number of miRNAs that were significantly upregulated in L5 DRG was 49 (7.2%), 25 (3.7%), and 146 (21.5%) following SNL, DRT, and VRT, respectively. On the other hand, 35 (5.1%) miRNAs were significantly downregulated in the SNL group, 21 (3.1%) miRNAs in the DRT group, and 41 (6.0%) miRNAs in the VRT group. Of the four miRNAs that were mutually aberrant in all three models, two were significantly upregulated (twofold), miR-21 and miR-31, and two were significantly downregulated, miR-668 and miR-672. Using in situ hybridization, miRNA-21, miRNA-31, miRNA-668, and miRNA-672 were found to localize to neurons in the DRG. Collectively, the mutual abnormal miRNA expression of miR-21, miR-31, miR-668, and miR-677 implied that these miRNAs may be therapeutic targets for alleviating multiple forms of neuropathic pain.

  5. Mechanisms of reflex bladder activation by pudendal afferents

    PubMed Central

    Woock, John P.; Yoo, Paul B.

    2011-01-01

    Activation of pudendal afferents can evoke bladder contraction or relaxation dependent on the frequency of stimulation, but the mechanisms of reflex bladder excitation evoked by pudendal afferent stimulation are unknown. The objective of this study was to determine the contributions of sympathetic and parasympathetic mechanisms to bladder contractions evoked by stimulation of the dorsal nerve of the penis (DNP) in α-chloralose anesthetized adult male cats. Bladder contractions were evoked by DNP stimulation only above a bladder volume threshold equal to 73 ± 12% of the distension-evoked reflex contraction volume threshold. Bilateral hypogastric nerve transection (to eliminate sympathetic innervation of the bladder) or administration of propranolol (a β-adrenergic antagonist) decreased the stimulation-evoked and distension-evoked volume thresholds by −25% to −39%. Neither hypogastric nerve transection nor propranolol affected contraction magnitude, and robust bladder contractions were still evoked by stimulation at volume thresholds below the distension-evoked volume threshold. As well, inhibition of distention-evoked reflex bladder contractions by 10 Hz stimulation of the DNP was preserved following bilateral hypogastric nerve transection. Administration of phentolamine (an α-adrenergic antagonist) increased stimulation-evoked and distension-evoked volume thresholds by 18%, but again, robust contractions were still evoked by stimulation at volumes below the distension-evoked threshold. These results indicate that sympathetic mechanisms contribute to establishing the volume dependence of reflex contractions but are not critical to the excitatory pudendal to bladder reflex. A strong correlation between the magnitude of stimulation-evoked bladder contractions and bladder volume supports that convergence of pelvic afferents and pudendal afferents is responsible for bladder excitation evoked by pudendal afferents. Further, abolition of stimulation-evoked bladder contractions following administration of hexamethonium bromide confirmed that contractions were generated by pelvic efferent activation via the pelvic ganglion. These findings indicate that pudendal afferent stimulation evokes bladder contractions through convergence with pelvic afferents to increase pelvic efferent activity. PMID:21068196

  6. Regeneration of the eighth cranial nerve in the bullfrog, Rana catesbeiana.

    PubMed

    Newman, A; Honrubia, V

    1992-01-01

    The present study was done in order to document the ability of the eighth cranial nerve of the bullfrog (Rana catesbeiana) to regenerate, the anatomic characteristics of the regenerated fibers, and the specificity of projections from individual endorgan branches of the nerve. The eighth cranial nerve was sharply transected between the ganglion cells and the brain stem in 40 healthy bullfrogs and allowed to regenerate. Anatomic studies were performed in these animals a minimum of 3 months postoperatively. Horseradish peroxidase was used to label the whole vestibular nerve or its individual endorgan branches. Labeled regenerated fibers could be identified crossing the site of the nerve section and projecting centrally to the vestibular nuclei in a pattern similar to that of normal frogs. Labeling of individual branches showed that regenerated fibers innervated the same specific areas found in normal frogs. Unlike normal animals, both thick and thin fibers projected to the medial nucleus.

  7. Paclitaxel inhibits post-traumatic recurrent laryngeal nerve regeneration into the posterior cricoarytenoid muscle in a canine model.

    PubMed

    Park, Andrea M; Bhatt, Neel K; Paniello, Randal C

    2017-03-01

    To investigate the efficacy of paclitaxel, a potent microtubule inhibitor with a more favorable therapeutic index as compared with vincristine, in preventing post-traumatic nerve regeneration of the recurrent laryngeal nerve into the posterior cricoarytenoid muscle in a canine laryngeal model. Experimental animal study. Forty-nine canine hemilaryngeal specimens were divided into five experimental groups. Under general anesthesia, a tracheostomy, recurrent laryngeal nerve (RLN) transection and repair, and laryngeal adductory pressures (LAP) were measured pre-RLN injury. The approach to the posterior cricoarytenoid (PCA) muscle for neurotoxin injection was transoral or open transcervical, at 0 or 3 months. At 6 months, postinjury LAPs were measured and the animals were sacrificed at 6 months to allow for laryngeal harvesting and analysis. Paclitaxel demonstrated increased mean laryngeal adductory pressures (70.6%) as compared with saline control (55.5%). The effect of paclitaxel was the same as observed with vincristine at 0 months and with a delayed injection at 3 months. There was no difference between transoral or open injection groups. PCA muscle injection with paclitaxel resulted in improved strength of laryngeal adduction. This effect was similar to that of vincristine at both 0 and 3 months following nerve injury. A single intramuscular injection of paclitaxel was well tolerated. Additional human studies are needed to determine the degree of clinical benefit of this intervention. NA Laryngoscope, 127:651-655, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Gait cycle analysis: parameters sensitive for functional evaluation of peripheral nerve recovery in rat hind limbs.

    PubMed

    Rui, Jing; Runge, M Brett; Spinner, Robert J; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2014-10-01

    Video-assisted gait kinetics analysis has been a sensitive method to assess rat sciatic nerve function after injury and repair. However, in conduit repair of sciatic nerve defects, previously reported kinematic measurements failed to be a sensitive indicator because of the inferior recovery and inevitable joint contracture. This study aimed to explore the role of physiotherapy in mitigating joint contracture and to seek motion analysis indices that can sensitively reflect motor function. Data were collected from 26 rats that underwent sciatic nerve transection and conduit repair. Regular postoperative physiotherapy was applied. Parameters regarding step length, phase duration, and ankle angle were acquired and analyzed from video recording of gait kinetics preoperatively and at regular postoperative intervals. Stride length ratio (step length of uninjured foot/step length of injured foot), percent swing of the normal paw (percentage of the total stride duration when the uninjured paw is in the air), propulsion angle (toe-off angle subtracted by midstance angle), and clearance angle (ankle angle change from toe off to midswing) decreased postoperatively comparing with baseline values. The gradual recovery of these measurements had a strong correlation with the post-nerve repair time course. Ankle joint contracture persisted despite rigorous physiotherapy. Parameters acquired from a 2-dimensional motion analysis system, that is, stride length ratio, percent swing of the normal paw, propulsion angle, and clearance angle, could sensitively reflect nerve function impairment and recovery in the rat sciatic nerve conduit repair model despite the existence of joint contractures.

  9. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit.

    PubMed

    Hawkins, Sara J; Weiss, Lukas; Offner, Thomas; Dittrich, Katarina; Hassenklöver, Thomas; Manzini, Ivan

    2017-01-01

    Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks.

  10. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit

    PubMed Central

    Hawkins, Sara J.; Weiss, Lukas; Offner, Thomas; Dittrich, Katarina; Hassenklöver, Thomas; Manzini, Ivan

    2017-01-01

    Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks. PMID:29234276

  11. Compressive Neuropathy of the Ulnar Nerve: A Perspective on History and Current Controversies.

    PubMed

    Eberlin, Kyle R; Marjoua, Youssra; Jupiter, Jesse B

    2017-06-01

    The untoward effects resulting from compression of the ulnar nerve have been recognized for almost 2 centuries. Initial treatment of cubital tunnel syndrome focused on complete transection of the nerve at the level of the elbow, resulting in initial alleviation of pain but significant functional morbidity. A number of subsequent techniques have been described including in situ decompression, subcutaneous transposition, submuscular transposition, and most recently, endoscopic release. This manuscript focuses on the historical aspects of each of these treatments and our current understanding of their efficacy. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  12. Axonal regeneration through acellular muscle grafts

    PubMed Central

    HALL, SUSAN

    1997-01-01

    The management of peripheral nerve injury remains a major clinical problem. Progress in this field will almost certainly depend upon manipulating the pathophysiological processes which are triggered by traumatic injuries. One of the most important determinants of functional outcome after the reconstruction of a transected peripheral nerve is the length of the gap between proximal and distal nerve stumps. Long defects (> 2 cm) must be bridged by a suitable conduit in order to support axonal regrowth. This review examines the cellular and acellular elements which facilitate axonal regrowth and the use of acellular muscle grafts in the repair of injuries in the peripheral nervous system. PMID:9034882

  13. Nerve stepping stone has minimal impact in aiding regeneration across long acellular nerve allografts.

    PubMed

    Yan, Ying; Hunter, Daniel A; Schellhardt, Lauren; Ee, Xueping; Snyder-Warwick, Alison K; Moore, Amy M; Mackinnon, Susan E; Wood, Matthew D

    2018-02-01

    Acellular nerve allografts (ANAs) yield less consistent favorable outcomes compared with autografts for long gap reconstructions. We evaluated whether a hybrid ANA can improve 6-cm gap reconstruction. Rat sciatic nerve was transected and repaired with either 6-cm hybrid or control ANAs. Hybrid ANAs were generated using a 1-cm cellular isograft between 2.5-cm ANAs, whereas control ANAs had no isograft. Outcomes were assessed by graft gene and marker expression (n = 4; at 4 weeks) and motor recovery and nerve histology (n = 10; at 20 weeks). Hybrid ANAs modified graft gene and marker expression and promoted modest axon regeneration across the 6-cm defect compared with control ANA (P < 0.05), but yielded no muscle recovery. Control ANAs had no appreciable axon regeneration across the 6-cm defect. A hybrid ANA confers minimal motor recovery benefits for regeneration across long gaps. Clinically, the authors will continue to reconstruct long nerve gaps with autografts. Muscle Nerve 57: 260-267, 2018. © 2017 Wiley Periodicals, Inc.

  14. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lei; Liu, Yi; Zhao, Hua

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediatedmore » transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a promising strategy for peripheral nerve repair.« less

  15. A surgical technique for hip disarticulation.

    PubMed

    Sugarbaker, P H; Chretien, P B

    1981-09-01

    Hip disarticulation is usually elected for malignant bony and soft tissue tumors below the lesser trochanter of the femur. The operation is performed with the patient in a posterolateral position; in the first phase of the procedure the surgeon stands anterior to the patient. After incision of the skin and division of the femoral vessels and nerve, muscles of the anterior thigh are transected off the pelvic bone from lateral to medial starting with the sartorius and finishing with the adductor magnus. Muscles are divided at their origin except for the iliopsoas and obturator externus which are divided at their insertion on the lesser trochanter of the femur. The quadratus femoris muscle is identified and preserved, then the flexor muscles are transected at their site of origin from the ischial tuberosity. During the next phase the surgeon is posterior to the patient, and the pelvis is rotated from the posterolateral to the anterolateral position. After completion of the skin incision, the gluteal fascia, tensor fascia lata, and the gluteus maximus muscles are divided and dissected free of their posterior attachments to expose the muscles inserting by way of a common tendon onto the greater trochanter. These muscles are then transected at their insertion on the bone. The posterior aspect of the joint capsule is then exposed and transected. Finally, the sciatic nerve is divided and allowed to retract beneath the piriformis muscle. To close the wound the preserved muscles are approximated over the joint capsule and the gluteal fascia secured to the inguinal ligament over suction drains. The skin is closed with interrupted sutures.

  16. Contribution of capsaicin-sensitive primary afferents to mechanical hyperalgesia induced by ventral root transection in rats: the possible role of BDNF.

    PubMed

    Li, Wei; Wang, Jian-Xiu; Zhou, Zhong-He; Lu, Yao; Li, Xiao-Qiu; Liu, Bao-Jun; Chen, Hui-Sheng

    2016-01-01

    A recent study showed that brain-derived neurotrophic factor (BDNF) may play a role in the development of the neuropathic pain resulting from injury to motor efferent fibres, such as that in the ventral root transection (VRT) model. Capsaicin stimulation of afferent fibres was also shown to result in the release of BDNF into the spinal cord. Here, the effects of ablation of capsaicin-sensitive primary afferents (CSPAs) by local application of capsaicin on the sciatic nerve on VRT-induced mechanical hyperalgesia were observed. The paw withdrawal mechanical threshold (PWMT) was measured before and then 1 and 3 days and 1, 2, 3, 4 and 6 weeks after VRT. The results showed that local application of capsaicin significantly inhibited the decrease in the PWMT induced by VRT, suggesting the inhibitory effect of locally delivered capsaicin. Furthermore, intrathecal administration of exogenous BDNF not only produced mechanical hyperalgesia but also significantly blocked the inhibitory effect of capsaicin. Taken together, the results of this study suggest that CSPA fibres may contribute to mechanical hyperalgesia in the VRT model.

  17. Spread of thermal energy and heat sinks: implications for nerve-sparing robotic prostatectomy.

    PubMed

    Khan, Farhan; Rodriguez, Esequiel; Finley, David S; Skarecky, Douglas W; Ahlering, Thomas E

    2007-10-01

    During nerve-sparing robot-assisted laparoscopic prostatectomy, nerve injury caused by thermal energy is a concern. Using a porcine model, we studied thermal spread and queried whether vessels such as the prostatic pedicle may act as a heat sink, reducing the spread of thermal energy. Monopolar (MP) and bipolar (BP) cautery was applied laparoscopically on the anterior abdominal wall surface of six pigs with the da Vinci robot. Using fiberoptic thermometry (Luxtron Inc. Santa Clara, CA), temperatures were recorded with and without the interposed inferior epigastric vessels to evaluate the heat sink effect. Interposition of the inferior epigastric vessels definitively demonstrated a heat sink phenomenon: at 7 mm from the MP/BP energy source, temperatures rose 10.7 degrees C to 13.8 degrees C without interposed vessels versus only 1.9 degrees C to 2.5 degrees C when vessels were interposed (P < 0.001). The heat sink phenomenon suggests that the prostatic vascular pedicle should be protective of the neurovascular bundle during transection of the bladder neck during laparoscopic prostatectomy.

  18. Postoperative occipital neuralgia in posterior upper cervical spine surgery: a systematic review.

    PubMed

    Guan, Qing; Xing, Fei; Long, Ye; Xiang, Zhou

    2017-11-07

    Postoperative occipital neuralgia (PON) after upper cervical spine surgery can cause significant morbidity and may be overlooked. The causes, presentation, diagnosis, management, prognosis, and prevention of PON were reviewed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. English-language studies and case reports published from inception to 2017 were retrieved. Data on surgical procedures, incidence, cause of PON, management, outcomes, and preventive technique were extracted. Sixteen articles, including 591 patients, were selected; 93% of the patients with PON underwent C1 lateral mass screw (C1LMS) fixation, with additional 7% who underwent occipitocervical fusion without C1 fixation. PON had an incidence that ranged from 1 to 35% and was transient in 34%, but persistent in 66%. Five articles explained the possible causes. The primary presentation was constant or paroxysmal burning pain located mainly in the occipital and upper neck area and partially extending to the vertical, retroauricular, retromandibular, and forehead zone. Treatment included medications, nerve block, revision surgery, and nerve stimulation. Two prospective studies compared the effect of C2 nerve root transection on PON. PON in upper cervical spine surgery is a debilitating complication and was most commonly encountered by patients undergoing C1LMS fixation. The etiology of PON is partially clear, and the pain could be persistent and hard to cure. Reducing the incidence of PON can be realized by improving technique. More high-quality prospective studies are needed to define the effect of C2 nerve root transection on PON.

  19. High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog

    NASA Astrophysics Data System (ADS)

    Yoo, Paul B.; Lubock, Nathan B.; Hincapie, Juan G.; Ruble, Stephen B.; Hamann, Jason J.; Grill, Warren M.

    2013-04-01

    Objective. Not fully understanding the type of axons activated during vagus nerve stimulation (VNS) is one of several factors that limit the clinical efficacy of VNS therapies. The main goal of this study was to characterize the electrical recruitment of both myelinated and unmyelinated fibers within the cervical vagus nerve. Approach. In anesthetized dogs, recording nerve cuff electrodes were implanted on the vagus nerve following surgical excision of the epineurium. Both the vagal electroneurogram (ENG) and laryngeal muscle activity were recorded in response to stimulation of the right vagus nerve. Main results. Desheathing the nerve significantly increased the signal-to-noise ratio of the ENG by 1.2 to 9.9 dB, depending on the nerve fiber type. Repeated VNS following nerve transection or neuromuscular block (1) enabled the characterization of A-fibers, two sub-types of B-fibers, and unmyelinated C-fibers, (2) confirmed the absence of stimulation-evoked reflex compound nerve action potentials in both the ipsilateral and contralateral vagus nerves, and (3) provided evidence of stimulus spillover into muscle tissue surrounding the stimulating electrode. Significance. Given the anatomical similarities between the canine and human vagus nerves, the results of this study provide a template for better understanding the nerve fiber recruitment patterns associated with VNS therapies.

  20. Effect of in situ delivery of acetyl-L-carnitine on peripheral nerve regeneration and functional recovery in transected sciatic nerve in rat.

    PubMed

    Farahpour, Mohammad Reza; Ghayour, Sina Jangkhahe

    2014-12-01

    The repair of peripheral nerve injuries is still one of the most challenging tasks and concerns in neurosurgery, plastic and orthopedic surgery. Effect of acetyl-L-carnitine (ALC) loaded chitosan conduit as an in situ delivery system of ALC in bridging the defects was studied using a rat sciatic nerve regeneration model. A 10-mm sciatic nerve defect was bridged using a chitosan conduit (CHIT/ALC) filled with 10 μL ALC (100 ng/mL). In control group (CHIT), the conduit was filled with the same volume of the phosphate buffered solution. The regenerated fibers were studied 4, 8, 12 and 16 weeks after surgery. The functional and electrophysiological studies confirmed faster recovery of the regenerated axons in ALC treated than control group (P < 0.05). The mean ratios of gastrocnemius muscles weight were measured. There was statistically significant difference between the muscle weight ratios of CHIT/ALC and CHIT groups (P<0.05). Morphometric indices of regenerated fibers showed number and diameter of the myelinated fibers in CHIT/ALC were significantly higher than in control group. In immuohistochemistry, the location of reactions to S-100 in CHIT/ALC was clearly more positive than CHIT group. ALC when loaded in a chitosan conduit resulted in improvement of functional recovery and quantitative morphometric indices of sciatic nerve. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Facial neuroma masquerading as acoustic neuroma.

    PubMed

    Sayegh, Eli T; Kaur, Gurvinder; Ivan, Michael E; Bloch, Orin; Cheung, Steven W; Parsa, Andrew T

    2014-10-01

    Facial nerve neuromas are rare benign tumors that may be initially misdiagnosed as acoustic neuromas when situated near the auditory apparatus. We describe a patient with a large cystic tumor with associated trigeminal, facial, audiovestibular, and brainstem dysfunction, which was suspicious for acoustic neuroma on preoperative neuroimaging. Intraoperative investigation revealed a facial nerve neuroma located in the cerebellopontine angle and internal acoustic canal. Gross total resection of the tumor via retrosigmoid craniotomy was curative. Transection of the facial nerve necessitated facial reanimation 4 months later via hypoglossal-facial cross-anastomosis. Clinicians should recognize the natural history, diagnostic approach, and management of this unusual and mimetic lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effect of long-term electroacupuncture stimulation on recovery of sensorimotor function after peripheral nerve anastomosis.

    PubMed

    Zhang, Mingxing; Zhang, Ye; Bian, Yuhong; Fu, Hui; Xu, Ying; Guo, Yi

    2018-06-01

    Recently, application of electroacupuncture (EA) to stimulate nerve regeneration has become a mainstream treatment in clinical rehabilitation and related basic research, but the efficacy of long-term stimulation has not been confirmed. To evaluate the influence of long term EA on peripheral nerve injury (PNI) from multiple angles. Twenty-four rats were divided into three groups: control, PNI and PNI+EA. In the latter two groups, PNI was modelled by transection followed by re-anastomosis of thesciatic nerve. In the PNI+EA group only,EA was delivered using a discontinuous wave with frequency 5 Hz, pulse width 2 ms, and intensity approximately 2 mA, until the affected limb was observed to twitch slightly. The treatment was given for 15 min each time, six times a week (continuously for 6 days followed by a 1-day break) for a total of 8 weeks. The effects of EA on anastomotic sciatic nerve regeneration were evaluated using the sciatic function index (SFI), mechanical withdrawal thresholds, thermo-nociceptive thresholds, conduction velocity of the sciatic nerve and bilateral gastrocnemius wet weight. From weeks 2 to 4 after modelling, the SFI recovery rate in the PNI+EA group was faster than that in the PNI group. In week 4, the SFI of the PNI+EA group was significantly higher than that of the PNI group (p<0.05). However, a significant effect of EA was no longer evident from weeks 5 to 8. There was no effect of acupuncture on anti-amyotrophy and conduction velocity of the sciatic nerve at 8 weeks after modelling. EA did not shorten the paw withdrawal threshold time, but appeared to alleviate thermo-nociceptive sensitivity. Long term repeated stimulation of the same site with EA does not appear to be conducive to the functional recovery of an injured sciatic nerve in rats. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. A comprehensive review with potential significance during skull base and neck operations, Part II: glossopharyngeal, vagus, accessory, and hypoglossal nerves and cervical spinal nerves 1-4.

    PubMed

    Shoja, Mohammadali M; Oyesiku, Nelson M; Shokouhi, Ghaffar; Griessenauer, Christoph J; Chern, Joshua J; Rizk, Elias B; Loukas, Marios; Miller, Joseph H; Tubbs, R Shane

    2014-01-01

    Knowledge of the possible neural interconnections found between the lower cranial and upper cervical nerves may prove useful to surgeons who operate on the skull base and upper neck regions in order to avoid inadvertent traction or transection. We review the literature regarding the anatomy, function, and clinical implications of the complex neural networks formed by interconnections between the lower cranial and upper cervical nerves. A review of germane anatomic and clinical literature was performed. The review is organized into two parts. Part I discusses the anastomoses between the trigeminal, facial, and vestibulocochlear nerves or their branches and other nerve trunks or branches in the vicinity. Part II deals with the anastomoses between the glossopharyngeal, vagus, accessory and hypoglossal nerves and their branches or between these nerves and the first four cervical spinal nerves; the contribution of the autonomic nervous system to these neural plexuses is also briefly reviewed. Part II is presented in this article. Extensive and variable neural anastomoses exist between the lower cranial nerves and between the upper cervical nerves in such a way that these nerves with their extra-axial communications can be collectively considered a plexus. Copyright © 2013 Wiley Periodicals, Inc.

  4. Morphological study on the pressure ulcer-like dermal lesions formed in the rat heel skin after transection of the sciatic nerves.

    PubMed

    Haba, Daijiro; Minami, Chie; Miyagawa, Miki; Arakawa, Takamitsu; Miki, Akinori

    2017-01-01

    Due to transection of bilateral sciatic nerves, pressure ulcer-like dermal lesion occurred in the hairy skin covering of the heel skin in almost all rats. In the present study, chronological changes of the rat heel skin after the transection were morphologically and immunohistochemically examined. In the heel skin, redness and swelling began by 3days after the operation, and open wound formed by 17days. At the redness and swelling stage, edema extensively occurred in the dermis. At the thickening stage, the epidermis at the pressed site became transiently thicker, and at the whitening stage, rapidly thinner. At these stages, the epidermis in the skin surrounding the pressed site became gradually thicker. At the yellow scar stage, the skin was covered only by necrotic tissues and horny layer. These layers were scratched during walking and turning, and the yellow scar stage became the open wound stage. Inflammatory reaction began at the thickening stage, and at the yellow scar and open wound stages, necrosis, infiltration of inflammatory cells and dilation of small blood vessels were observed. These morphological features are quite similar to those in the human pressure ulcer. These findings suggest that these dermal injuries could compare the human pressure ulcer for medical treatment and depressurization in future study. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Hemipelvectomy for trauma: case report.

    PubMed Central

    Smith, R. J.

    1991-01-01

    This report documents a patient with an open pelvic fracture with gross contamination and partial avulsion of soft tissues with transection of femoral artery and vein, femoral nerve, and a stretch injury to the sciatic nerve. Initially, an attempt was made to treat with above-knee amputation, but due to massive soft tissue loss, this was not feasible. A left hemipelvectomy was done with closure of the wound. The patient required 14 units of blood. He was discharged and is now ambulatory with a prosthesis. Images Figure 1 Figure 2 Figure 6 PMID:2038088

  6. Activation of anorexigenic pro-opiomelanocortin neurones during refeeding is independent of vagal and brainstem inputs.

    PubMed

    Fekete, C; Zséli, G; Singru, P S; Kádár, A; Wittmann, G; Füzesi, T; El-Bermani, W; Lechan, R M

    2012-11-01

    After fasting, satiety is observed within 2 h after reintroducing food, accompanied by activation of anorexigenic, pro-opiomelanocortin (POMC)-synthesising neurones in the arcuate nucleus (ARC), indicative of the critical role that α-melanocyte-stimulating hormone has in the regulation of meal size during refeeding. To determine whether refeeding-induced activation of POMC neurones in the arcuate is dependent upon the vagus nerve and/or ascending brainstem pathways, bilateral subdiaphragmatic vagotomy or transection of the afferent brainstem input to one side of the ARC was performed. One day after vagotomy or 2 weeks after brain surgery, animals were fasted and then refed for 2 h. Sections containing the ARC from vagotomised animals or animals with effective transection were immunostained for c-Fos and POMC to detect refeeding-induced activation of POMC neurones. Quantitative analyses of double-labelled preparations demonstrated that sham-operated and vagotomised animals markedly increased the number of c-Fos-immunoreactive (-IR) POMC neurones with refeeding. Furthermore, transection of the ascending brainstem pathway had no effect on diminishing c-Fos-immunoreactivity in POMC neurones on either side of the ARC, although it did diminish activation in a separate, subpopulation of neurones in the dorsomedial posterior ARC (dmpARC) on the transected side. We conclude that inputs mediated via the vagus nerve and/or arising from the brainstem do not have a primary role in refeeding-induced activation of POMC neurones in the ARC, and propose that these neurones may be activated solely by direct effects of circulating hormones/metabolites during refeeding. Activation of the dmpARC by refeeding indicates a previously unrecognised role for these neurones in appetite regulation in the rat. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.

  7. [Expression and significance of p75NTR in dorsal root ganglia in different injury models].

    PubMed

    Li, Fang; Cai, Yan; Zhang, Jian-Yi

    2008-12-01

    To determine the expression and significance of p75NTR in the neuron and glia of dorsal root ganglia (DRG) in different injury models. The models of sciatic nerve injury, spinal cord injury, and combined injury (sciatic nerve injury one week prior to spinal cord injury) were established. The rats were randomly divided into a normal group,a sciatic nerve injury group,a spinal cord injury group, and a combined injury group. The sensory neurons in the DRG were labeled by fast blue (FB) injected in the dorsal column of spinal cord 0.5mm rostral to the transection site. The expression of p75NTR in the neurons and glia of the DRG was examined with immunofluorescence histochemistry after different kinds of injury and its expression in the FB positive neurons was further observed with immunofluorescence histochemistry combined with FB retrograde labeling. The expression of p75NTR was increased in the glia, but was downregulated in sensory neurons in the sciatic nerve injury group compared with the normal group. p75NTR immunoreactive products were downregulated in the glia in the spinal cord injury group compared with the sciatic nerve injury group or the combined injury group. In the combined lesion animals, the expression of p75NTR was similar to that of the sciatic nerve injury group. Its expression in the sensory neurons of DRG was downregulated,but was upregulated in the glia. The majority of sensory neurons labeled by FB in the combined injury group were p75NTR-negative, but surrounded by p75NTR-positive glia. p75NTR immunoreactive products in the glia and neurons of DRG have significant discrepancy after injury. The glial p75NTR in the DRG may play a role in the enhanced regeneration of acsending tract in the injured spinal cord after combined injury.

  8. Mechanical hypersensitivity, sympathetic sprouting, and glial activation are attenuated by local injection of corticosteroid near the lumbar ganglion in a rat model of neuropathic pain.

    PubMed

    Li, Jing-Yi; Xie, Wenrui; Strong, Judith A; Guo, Qu-Lian; Zhang, Jun-Ming

    2011-01-01

    Inflammatory responses in the lumbar dorsal root ganglion (DRG) play a key role in pathologic pain states. Systemic administration of a common anti-inflammatory corticosteroid, triamcinolone acetonide (TA), reduces sympathetic sprouting, mechanical pain behavior, spontaneous bursting activity, and cytokine and nerve growth factor production in the DRG. We hypothesized that systemic TA effects are primarily due to local effects on the DRG. Male Sprague-Dawley rats were divided into 4 groups: SNL (tight ligation and transection of spinal nerves) and normal with and without a single dose of TA injectable suspension slowly injected onto the surface of DRG and surrounding region at the time of SNL or sham surgery. Mechanical threshold was tested on postoperative days 1, 3, 5, and 7. Immunohistochemical staining examined tyrosine hydroxylase and glial fibrillary acidic protein in DRG and CD11B antibody (OX-42) in spinal cord. Local TA treatment attenuated mechanical sensitivity, reduced sympathetic sprouting in the DRG, and decreased satellite glia activation in the DRG and microglia activation in the spinal cord after SNL. A single injection of corticosteroid in the vicinity of the axotomized DRG can mimic many effects of systemic TA, mitigating behavioral and cellular abnormalities induced by spinal nerve ligation. This provides a further rationale for the use of localized steroid injections clinically and provides further support for the idea that localized inflammation at the level of the DRG is an important component of the spinal nerve ligation model, commonly classified as neuropathic pain model.

  9. Mass Casualty Response of a Modern Deployed Head and Neck Surgical Team

    DTIC Science & Technology

    2010-07-01

    tures (maxilla, mandible, frontal sinus), and miscellaneous injuries such as a parotid duct injury. Based on review of the operative log, 6 patients...trained to consider subtle head and neck injuries such as facial nerve or parotid duct transection. The flexibility to operate alongside other trauma

  10. Nerve damage related to implant dentistry: incidence, diagnosis, and management.

    PubMed

    Greenstein, Gary; Carpentieri, Joseph R; Cavallaro, John

    2015-10-01

    Proper patient selection and treatment planning with respect to dental implant placement can preclude nerve injuries. Nevertheless, procedures associated with implant insertion can inadvertently result in damage to branches of the trigeminal nerve. Nerve damage may be transient or permanent; this finding will depend on the cause and extent of the injury. Nerve wounding may result in anesthesia, paresthesia, or dysesthesia. The type of therapy to ameliorate the condition will be dictated by clinical and radiographic assessments. Treatment may include monitoring altered sensations to see if they subside, pharmacotherapy, implant removal, reverse-torquing an implant to decompress a nerve, combinations of the previous therapies, and/or referral to a microsurgeon for nerve repair. Patients manifesting altered sensations due to various injuries require different therapies. Transection of a nerve dictates immediate referral to a microsurgeon for evaluation. If a nerve is compressed by an implant or adjacent bone, the implant should be reverse-torqued away from the nerve or removed. When an implant is not close to a nerve, but the patient is symptomatic, the patient can be monitored and treated pharmacologically as long as symptoms improve or the implant can be removed. There are diverse opinions in the literature concerning how long an injured patient should be monitored before being referred to a microsurgeon.

  11. Photocrosslinkable Gelatin/Tropoelastin Hydrogel Adhesives for Peripheral Nerve Repair.

    PubMed

    Soucy, Jonathan R; Shirzaei Sani, Ehsan; Portillo Lara, Roberto; Diaz, David; Dias, Felipe; Weiss, Anthony S; Koppes, Abigail N; Koppes, Ryan A; Annabi, Nasim

    2018-05-09

    Suturing peripheral nerve transections is the predominant therapeutic strategy for nerve repair. However, the use of sutures leads to scar tissue formation, hinders nerve regeneration, and prevents functional recovery. Fibrin-based adhesives have been widely used for nerve reconstruction, but their limited adhesive and mechanical strength and inability to promote nerve regeneration hamper their utility as a stand-alone intervention. To overcome these challenges, we engineered composite hydrogels that are neurosupportive and possess strong tissue adhesion. These composites were synthesized by photocrosslinking two naturally derived polymers, gelatin-methacryloyl (GelMA) and methacryloyl-substituted tropoelastin (MeTro). The engineered materials exhibited tunable mechanical properties by varying the GelMA/MeTro ratio. In addition, GelMA/MeTro hydrogels exhibited 15-fold higher adhesive strength to nerve tissue ex vivo compared to fibrin control. Furthermore, the composites were shown to support Schwann cell (SC) viability and proliferation, as well as neurite extension and glial cell participation in vitro, which are essential cellular components for nerve regeneration. Finally, subcutaneously implanted GelMA/MeTro hydrogels exhibited slower degradation in vivo compared with pure GelMA, indicating its potential to support the growth of slowly regenerating nerves. Thus, GelMA/MeTro composites may be used as clinically relevant biomaterials to regenerate nerves and reduce the need for microsurgical suturing during nerve reconstruction.

  12. Anastomoses between lower cranial and upper cervical nerves: a comprehensive review with potential significance during skull base and neck operations, part I: trigeminal, facial, and vestibulocochlear nerves.

    PubMed

    Shoja, Mohammadali M; Oyesiku, Nelson M; Griessenauer, Christoph J; Radcliff, Virginia; Loukas, Marios; Chern, Joshua J; Benninger, Brion; Rozzelle, Curtis J; Shokouhi, Ghaffar; Tubbs, R Shane

    2014-01-01

    Descriptions of the anatomy of the neural communications among the cranial nerves and their branches is lacking in the literature. Knowledge of the possible neural interconnections found among these nerves may prove useful to surgeons who operate in these regions to avoid inadvertent traction or transection. We review the literature regarding the anatomy, function, and clinical implications of the complex neural networks formed by interconnections among the lower cranial and upper cervical nerves. A review of germane anatomic and clinical literature was performed. The review is organized in two parts. Part I concerns the anastomoses between the trigeminal, facial, and vestibulocochlear nerves or their branches with any other nerve trunk or branch in the vicinity. Part II concerns the anastomoses among the glossopharyngeal, vagus, accessory and hypoglossal nerves and their branches or among these nerves and the first four cervical spinal nerves; the contribution of the autonomic nervous system to these neural plexuses is also briefly reviewed. Part I is presented in this article. An extensive anastomotic network exists among the lower cranial nerves. Knowledge of such neural intercommunications is important in diagnosing and treating patients with pathology of the skull base. Copyright © 2013 Wiley Periodicals, Inc.

  13. Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury.

    PubMed

    Brosius Lutz, Amanda; Chung, Won-Suk; Sloan, Steven A; Carson, Glenn A; Zhou, Lu; Lovelett, Emilie; Posada, Sean; Zuchero, J Bradley; Barres, Ben A

    2017-09-19

    Ineffective myelin debris clearance is a major factor contributing to the poor regenerative ability of the central nervous system. In stark contrast, rapid clearance of myelin debris from the injured peripheral nervous system (PNS) is one of the keys to this system's remarkable regenerative capacity, but the molecular mechanisms driving PNS myelin clearance are incompletely understood. We set out to discover new pathways of PNS myelin clearance to identify novel strategies for activating myelin clearance in the injured central nervous system, where myelin debris is not cleared efficiently. Here we show that Schwann cells, the myelinating glia of the PNS, collaborate with hematogenous macrophages to clear myelin debris using TAM (Tyro3, Axl, Mer) receptor-mediated phagocytosis as well as autophagy. In a mouse model of PNS nerve crush injury, Schwann cells up-regulate TAM phagocytic receptors Axl and Mertk following PNS injury, and Schwann cells lacking both of these phagocytic receptors exhibit significantly impaired myelin phagocytosis both in vitro and in vivo. Autophagy-deficient Schwann cells also display reductions in myelin clearance after mouse nerve crush injury, as has been recently shown following nerve transection. These findings add a mechanism, Axl/Mertk-mediated myelin clearance, to the repertoire of cellular machinery used to clear myelin in the injured PNS. Given recent evidence that astrocytes express Axl and Mertk and have previously unrecognized phagocytic potential, this pathway may be a promising avenue for activating myelin clearance after CNS injury.

  14. Transcription of G-protein coupled receptors in corporal smooth muscle is regulated by sialorphin (an endogenous neutral endopeptidase inhibitor)

    PubMed Central

    Tong, Yuehong; Tiplitsky, Scott I.; Tar, Moses; Melman, Arnold; Davies, Kelvin P.

    2009-01-01

    Purpose Several reports have suggested the rat Vcsa1 gene is down-regulated in models of erectile dysfunction (ED). Vcsa’s protein product, sialorphin, is an endogenous neutral endopeptidase (NEP), and its down-regulation could result in prolonged activation of G-protein activated signaling pathways by their peptide agonists. We investigated if down- regulation of Vcsa1 could result in adaptive change in the expression of G-protein coupled receptors (GPCR). Materials and Methods Gene expression in cultured rat corporal smooth muscle cells (CSM) following treatment with siRNA directed against Vcsa1 or the NEP gene was analyzed using microarray and quantitative RT-PCR. In rats Vcsa1 is one of the most down-regulated genes following bilateral transection of the cavernosal nerves. Using that animal model, we also investigated whether the down-regulation of Vcsa1 is accompanied by similar changes in gene expression observed in the CSM cells where Vcsa1 was knocked-down in vitro. Results Microarray analysis and quantitative RT-PCR demonstrated that CSM cells treated in vitro with siRNA against Vcsa1 resulted in up-regulation of GPCR as a functional group. In contrast, treatment of CSM cells that lowered NEP activity resulted in decreases in GPCR expression. These results suggest that the peptide product of Vcsa1, sialorphin, can effect GPCR expression by acting on NEP. In animals with bilaterally transected cavernous nerves the reduced expression of Vcsa1 is accompanied by increased GPCR expression in cavernosal tissue. Conclusions These experiments suggest that the mechanism by which Vcsa1 modulates erectile function is partly mediated through changes in GPCR expression. PMID:18554633

  15. Transcription of G-protein coupled receptors in corporeal smooth muscle is regulated by the endogenous neutral endopeptidase inhibitor sialorphin.

    PubMed

    Tong, Yuehong; Tiplitsky, Scott I; Tar, Moses; Melman, Arnold; Davies, Kelvin P

    2008-08-01

    Several reports suggest that the rat Vcsa1 gene is down-regulated in models of erectile dysfunction. The Vcsa protein product sialorphin is an endogenous neutral endopeptidase inhibitor and its down-regulation could result in prolonged activation of G-protein activated signaling pathways by their peptide agonists. We investigated whether Vcsa1 down-regulation could result in an adaptive change in GPCR (G-protein coupled receptor) expression. Gene expression in cultured rat corporeal smooth muscle cells following treatment with siRNA directed against Vcsa1 or the neutral endopeptidase gene was analyzed using microarray and quantitative reverse transcriptase-polymerase chain reaction. In rats Vcsa1 is one of the most down-regulated genes following bilateral transection of the cavernous nerves. In that animal model we also investigated whether Vcsa1 down-regulation was accompanied by similar changes in gene expression in corporeal smooth muscle cells in which Vcsa1 was knocked down in vitro. Microarray analysis and quantitative reverse transcriptase-polymerase chain reaction demonstrated that corporeal smooth muscle cells treated in vitro with siRNA against Vcsa1 resulted in GPCR up-regulation as a functional group. In contrast, treatment of corporeal smooth muscle cells that lowered neutral endopeptidase activity resulted in decreased GPCR expression. These results suggest that the peptide product of Vcsa1, sialorphin, can effect GPCR expression by acting on neutral endopeptidase. In animals with bilaterally transected cavernous nerves the decreased Vcsa1 expression is accompanied by increased GPCR expression in cavernous tissue. These experiments suggest that the mechanism by which Vcsa1 modulates erectile function is partly mediated through changes in GPCR expression.

  16. Compensatory hypertrophy of the teres minor muscle after large rotator cuff tear model in adult male rat.

    PubMed

    Ichinose, Tsuyoshi; Yamamoto, Atsushi; Kobayashi, Tsutomu; Shitara, Hitoshi; Shimoyama, Daisuke; Iizuka, Haku; Koibuchi, Noriyuki; Takagishi, Kenji

    2016-02-01

    Rotator cuff tear (RCT) is a common musculoskeletal disorder in the elderly. The large RCT is often irreparable due to the retraction and degeneration of the rotator cuff muscle. The integrity of the teres minor (TM) muscle is thought to affect postoperative functional recovery in some surgical treatments. Hypertrophy of the TM is found in some patients with large RCTs; however, the process underlying this hypertrophy is still unclear. The objective of this study was to determine if compensatory hypertrophy of the TM muscle occurs in a large RCT rat model. Twelve Wistar rats underwent transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons in the left shoulder. The rats were euthanized 4 weeks after the surgery, and the cuff muscles were collected and weighed. The cross-sectional area and the involvement of Akt/mammalian target of rapamycin (mTOR) signaling were examined in the remaining TM muscle. The weight and cross-sectional area of the TM muscle was higher in the operated-on side than in the control side. The phosphorylated Akt/Akt protein ratio was not significantly different between these sides. The phosphorylated-mTOR/mTOR protein ratio was significantly higher on the operated-on side. Transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons activates mTOR signaling in the TM muscle, which results in muscle hypertrophy. The Akt-signaling pathway may not be involved in this process. Nevertheless, activation of mTOR signaling in the TM muscle after RCT may be an effective therapeutic target of a large RCT. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Role of peripheral reflexes in the initiation of the esophageal phase of swallowing

    PubMed Central

    Medda, Bidyut K.; Babaei, Arash; Shaker, Reza

    2014-01-01

    The aim of this study was to determine the role of peripheral reflexes in initiation of the esophageal phase of swallowing. In 10 decerebrate cats, we recorded electromyographic responses from the pharynx, larynx, and esophagus and manometric data from the esophagus. Water (1–5 ml) was injected into the nasopharynx to stimulate swallowing, and the timing of the pharyngeal and esophageal phases of swallowing was quantified. The effects of transection or stimulation of nerves innervating the esophagus on swallowing and esophageal motility were tested. We found that the percent occurrence of the esophageal phase was significantly related to the bolus size. While the time delays between the pharyngeal and esophageal phases of swallowing were not related to the bolus size, they were significantly more variable than the time delays between activation of muscles within the pharyngeal phase. Transection of the sensory innervation of the proximal cervical esophagus blocked or significantly inhibited activation of the esophageal phase in the proximal cervical esophagus. Peripheral electrical stimulation of the pharyngoesophageal nerve activated the proximal cervical esophagus, peripheral electrical stimulation of the vagus nerve activated the distal cervical esophagus, and peripheral electrical stimulation the superior laryngeal nerve (SLN) had no effect on the esophagus. Centripetal electrical stimulation of the SLN activated the cervical component of the esophageal phase of swallowing before initiation of the pharyngeal phase. Therefore, we concluded that initiation of the esophageal phase of swallowing depends on feedback from peripheral reflexes acting through the SLN, rather than a central program. PMID:24557762

  18. Trophic specificity of the gustatory fibers upon taste bud regeneration.

    PubMed

    State, F A; Hamed, M S; El-Hashash, M K; Gaber, O M

    1982-01-01

    24 adult dogs were classified into six groups; in 2 animals of each group the lingual nerve was transected distal to the point of entry of the chorda tympani and its proximal end was sutured to the distal end of the glossopharyngeal nerve. In the other 2 animals transtympanic chorda tympani neurectomy was performed before suturing the lingual and glossopharyngeal nerves. Invasion of the papillae by regenerating fibers from the 8th postoperative week onwards was followed by reappearance of taste buds only in lingual glossopharyngeal anastomosis with intact chorda tympani. The difference in number of taste buds, size and number of constituent cells between the two operative procedures was statistically significant from the 8th week onwards. The significance of these findings was discussed.

  19. Radial nerve palsy

    PubMed Central

    Bumbasirevic, Marko; Palibrk, Tomislav; Lesic, Aleksandar; Atkinson, Henry DE

    2016-01-01

    As a result of its proximity to the humeral shaft, as well as its long and tortuous course, the radial nerve is the most frequently injured major nerve in the upper limb, with its close proximity to the bone making it vulnerable when fractures occur. Injury is most frequently sustained during humeral fracture and gunshot injuries, but iatrogenic injuries are not unusual following surgical treatment of various other pathologies. Treatment is usually non-operative, but surgery is sometimes necessary, using a variety of often imaginative procedures. Because radial nerve injuries are the least debilitating of the upper limb nerve injuries, results are usually satisfactory. Conservative treatment certainly has a role, and one of the most important aspects of this treatment is to maintain a full passive range of motion in all the affected joints. Surgical treatment is indicated in cases when nerve transection is obvious, as in open injuries or when there is no clinical improvement after a period of conservative treatment. Different techniques are used including direct suture or nerve grafting, vascularised nerve grafts, direct nerve transfer, tendon transfer, functional muscle transfer or the promising, newer treatment of biological therapy. Cite this article: Bumbasirevic M, Palibrk T, Lesic A, Atkinson HDE. Radial nerve palsy. EFORT Open Rev 2016;1:286-294. DOI: 10.1302/2058-5241.1.000028. PMID:28461960

  20. Activation of somatosensory afferents elicit changes in vaginal blood flow and the urethrogenital reflex via autonomic efferents.

    PubMed

    Cai, R S; Alexander, M Sipski; Marson, L

    2008-09-01

    We examined the effects of pudendal sensory nerve stimulation and urethral distention on vaginal blood flow and the urethrogenital reflex, and the relationship between somatic and autonomic pathways regulating sexual responses. Distention of the urethra and stimulation of the pudendal sensory nerve were used to evoke changes in vaginal blood flow (laser Doppler perfusion monitoring) and pudendal motor nerve activity in anesthetized, spinally transected female rats. Bilateral cuts of either the pelvic or hypogastric nerve or both autonomic nerves were made, and blood flow and pudendal nerve responses were reexamined. Stimulation of the pudendal sensory nerve or urethral distention elicited consistent increases in vaginal blood flow and rhythmic firing of the pudendal motor nerve. Bilateral cuts of the pelvic plus hypogastric nerves significantly reduced vaginal blood flow responses without altering pudendal motor nerve responses. Pelvic nerve cuts also significantly reduced vaginal blood flow responses. In contrast, hypogastric nerve cuts did not significantly change vaginal blood flow. Bilateral cuts of the pudendal sensory nerve blocked pudendal motor nerve responses but stimulation of the central end evoked vaginal blood flow and pudendal motor nerve responses. Stimulation of the sensory branch of the pudendal nerve elicits vasodilatation of the vagina. The likely mechanism is via activation of spinal pathways that in turn activate pelvic nerve efferents to produced changes in vaginal blood flow. Climatic-like responses (firing of the pudendal motor nerve) occur in response to stimulation of the pudendal sensory nerve and do not require intact pelvic or hypogastric nerves.

  1. Glial-derived neurotrophic factor is essential for blood-nerve barrier functional recovery in an experimental murine model of traumatic peripheral neuropathy.

    PubMed

    Dong, Chaoling; Helton, E Scott; Zhou, Ping; Ouyang, Xuan; d'Anglemont de Tassigny, Xavier; Pascual, Alberto; López-Barneo, José; Ubogu, Eroboghene E

    2018-06-18

    There is emerging evidence that glial-derived neurotrophic factor (GDNF) is a potent inducer of restrictive barrier function in tight junction-forming microvascular endothelium and epithelium, including the human blood-nerve barrier (BNB) in vitro. We sought to determine the role of GDNF in restoring BNB function in vivo by evaluating sciatic nerve horseradish peroxidase (HRP) permeability in tamoxifen-inducible GDNF conditional knockout (CKO) adult mice following non-transecting crush injury via electron microscopy, with appropriate wildtype (WT) and heterozygous (HET) littermate controls. A total of 24 age-, genotype- and sex-matched mice >12 weeks of age were injected with 30 mg/kg HRP via tail vein injection 7 or 14 days following unilateral sciatic nerve crush, and both sciatic nerves were harvested 30 minutes later for morphometric assessment by light and electron microscopy. The number and percentage of HRP-permeable endoneurial microvessels were ascertained to determine the effect of GDNF in restoring barrier function in vivo. Following sciatic nerve crush, there was significant upregulation in GDNF protein expression in WT and HET mice that was abrogated in CKO mice. GDNF significantly restored sciatic nerve BNB HRP impermeability to near normal levels by day 7, with complete restoration seen by day 14 in WT and HET mice. A significant recovery lag was observed in CKO mice. This effect was independent on VE-Cadherin or claudin-5 expression on endoneurial microvessels. These results imply an important role of GDNF in restoring restrictive BNB function in vivo, suggesting a potential strategy to re-establish the restrictive endoneurial microenvironment following traumatic peripheral neuropathies.

  2. Nerve Growth Factor Inhibits Sympathetic Neurons' Response to an Injury Cytokine

    NASA Astrophysics Data System (ADS)

    Shadiack, Annette M.; Vaccariello, Stacey A.; Sun, Yi; Zigmond, Richard E.

    1998-06-01

    Axonal damage to adult peripheral neurons causes changes in neuronal gene expression. For example, axotomized sympathetic, sensory, and motor neurons begin to express galanin mRNA and protein, and recent evidence suggests that galanin plays a role in peripheral nerve regeneration. Previous studies in sympathetic and sensory neurons have established that galanin expression is triggered by two consequences of nerve transection: the induction of leukemia inhibitory factor (LIF) and the reduction in the availability of the target-derived factor, nerve growth factor. It is shown in the present study that no stimulation of galanin expression occurs following direct application of LIF to intact neurons in the superior cervical sympathetic ganglion. Injection of animals with an antiserum to nerve growth factor concomitant with the application of LIF, on the other hand, does stimulate galanin expression. The data suggest that the response of neurons to an injury factor, LIF, is affected by whether the neurons still receive trophic signals from their targets.

  3. Histochemical discrimination of fibers in regenerating rat infraorbital nerve

    NASA Technical Reports Server (NTRS)

    Wilke, R. A.; Riley, D. A.; Sanger, J. R.

    1992-01-01

    In rat dorsal root ganglia, histochemical staining of carbonic anhydrase (CA) and cholinesterase (CE) yields a reciprocal pattern of activity: Sensory processes are CA positive and CE negative, whereas motor processes are CA negative and CE positive. In rat infraorbital nerve (a sensory peripheral nerve), we saw extensive CA staining of nearly 100% of the myelinated axons. Although CE reactivity in myelinated axons was extremely rare, we did observe CE staining of unmyelinated autonomic fibers. Four weeks after transection of infraorbital nerves, CA-stained longitudinal sections of the proximal stump demonstrated 3 distinct morphological zones. A fraction of the viable axons retained CA activity to within 2 mm of the distal extent of the stump, and the stain is capable of resolving growth sprouts being regenerated from these fibers. Staining of unmyelinated autonomic fibers in serial sections shows that CE activity was not retained as far distally as is the CA sensory staining.

  4. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  5. Safety assessment of the use of ultrasonic energy in the proximity of the recurrent laryngeal nerve in a porcine model.

    PubMed

    Chávez, Karla V; Barajas, Elpidio M; Soroa, Francisco; Gamboa-Dominguez, Armando; Ordóñez, Samuel; Pantoja, Juan P; Sierra, Mauricio; Velázquez-Fernández, David; Herrera, Miguel F

    2018-01-01

    Advanced bipolar and ultrasonic energy have demonstrated reduction of operating time and blood loss in thyroidectomy. However, these devices generate heat and thermal dispersion that may damage adjacent structures such as the recurrent laryngeal nerve (RLN). This study was designed to evaluate the safety profile of the Harmonic Focus+ ® (HF+) device through the evaluation of thermal injury to the RLN using different algorithms of distance and time with state of the art technology. 25 Vietnamese pigs underwent activation of HF+ in the proximity of their RLN. They were divided into 4 groups according to activation distance (3 mm, 2 mm, 1 mm and on the RLN). Time of activation, time between tones of the ultrasonic generator, changes in the electromyographic signal using continuous nerve neuromonitoring, vocal fold mobility assessed by direct laryngoscopy and histological thermal damaged were evaluated. None of the pigs had loss of signal in the electromyography during the procedure; only one pig had isolated transient decrease in amplitude and one increase in latency. One pig had transient vocal fold paresis in the group with activation on the nerve. Evaluation of the nerves by histology and immunohistochemistry did not show significant changes attributed to thermal injury. The use of ultrasonic energy close to the RLN is safe, provided that activation time does not exceed the necessary time to safely transect the tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Endogenous acetylcholine increases alveolar epithelial fluid transport via activation of alveolar epithelial Na,K-ATPase in mice.

    PubMed

    Li, Xia; Yan, Xi Xin; Li, Hong Lin; Li, Rong Qin

    2015-10-01

    The contribution of endogenous acetylcholine to alveolar fluid clearance (AFC) and related molecular mechanisms were explored. AFC was measured in Balb/c mice after vagotomy and vagus nerve stimulation. Effects of acetylcholine chloride on AFC in Kunming mice and Na,K-ATPase function in A549 alveolar epithelial cells also were determined. AFC significantly decreased in mice with left cervical vagus nerve transection compared with controls (48.69 ± 2.57 vs. 66.88 ± 2.64, P ≤ 0.01), which was reversed by stimulation of the peripheral (60.81 ± 1.96, P ≤ 0.01). Compared with control, acetylcholine chloride dose-dependently increased AFC and elevated Na,K-ATPase activity, and these increases were blocked or reversed by atropine. These effects were accompanied by recruitment of Na,K-ATPase α1 to the cell membrane. Thus, vagus nerves participate in alveolar epithelial fluid transport by releasing endogenous acetylcholine in the infusion-induced pulmonary edema mouse model. Effects of endogenous acetylcholine on AFC are likely mediated by Na,K-ATPase function through activation of muscarinic acetylcholine receptors on alveolar epithelia. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Gao, Mingyong; Lu, Paul; Lynam, Dan; Bednark, Bridget; Campana, W. Marie; Sakamoto, Jeff; Tuszynski, Mark

    2016-12-01

    Objective. We combined implantation of multi-channel templated agarose scaffolds with growth factor gene delivery to examine whether this combinatorial treatment can enhance peripheral axonal regeneration through long sciatic nerve gaps. Approach. 15 mm long scaffolds were templated into highly organized, strictly linear channels, mimicking the linear organization of natural nerves into fascicles of related function. Scaffolds were filled with syngeneic bone marrow stromal cells (MSCs) secreting the growth factor brain derived neurotrophic factor (BDNF), and lentiviral vectors expressing BDNF were injected into the sciatic nerve segment distal to the scaffold implantation site. Main results. Twelve weeks after injury, scaffolds supported highly linear regeneration of host axons across the 15 mm lesion gap. The incorporation of BDNF-secreting cells into scaffolds significantly increased axonal regeneration, and additional injection of viral vectors expressing BDNF into the distal segment of the transected nerve significantly enhanced axonal regeneration beyond the lesion. Significance. Combinatorial treatment with multichannel bioengineered scaffolds and distal growth factor delivery significantly improves peripheral nerve repair, rivaling the gold standard of autografts.

  8. Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis

    PubMed Central

    Reddy, Chandan G; Miller, John W; Abode-Iyamah, Kingsley O; Safayi, Sina; Wilson, Saul; Dalm, Brian D; Fredericks, Douglas C; Gillies, George T; Howard, Matthew A; Brennan, Timothy J

    2018-01-01

    Background It is becoming increasingly important to understand the mechanisms of spinal cord stimulation (SCS) in alleviating neuropathic pain as novel stimulation paradigms arise. Purpose Additionally, the small anatomic scale of current SCS animal models is a barrier to more translational research. Methods Using chronic constriction injury (CCI) of the common peroneal nerve (CPN) in sheep (ovine), we have created a chronic model of neuropathic pain that avoids motor deficits present in prior large animal models. This large animal model has allowed us to implant clinical grade SCS hardware, which enables both acute and chronic testing using von Frey filament thresholds and gait analysis. Furthermore, the larger anatomic scale of the sheep allows for simultaneous single-unit recordings from the dorsal horn and SCS with minimal electrical artifact. Results Detectable tactile hypersensitivity occurred 21 days after nerve injury, with preliminary indications that chronic SCS may reverse it in the painful limb. Gait analysis revealed no hoof drop in the CCI model. Single neurons were identified and discriminated in the dorsal horn, and their activity was modulated via SCS. Unlike previous large animal models that employed a complete transection of the nerve, no motor deficit was observed in the sheep with CCI. Conclusion To our knowledge, this is the first reported large animal model of chronic neuropathic pain which facilitates the study of both acute and chronic SCS using complementary behavioral and electrophysiologic measures. As demonstrated by our successful establishment of these techniques, an ovine model of neuropathic pain is suitable for testing the mechanisms of SCS. PMID:29942150

  9. Optimal parameters of transcorneal electrical stimulation (TES) to be neuroprotective of axotomized RGCs in adult rats.

    PubMed

    Morimoto, Takeshi; Miyoshi, Tomomitsu; Sawai, Hajime; Fujikado, Takashi

    2010-02-01

    We previously showed that transcorneal electrical stimulation (TES) promoted the survival of axotomized retinal ganglion cells (RGCs) of rats. However the relationship between the parameters of TES and the neuroprotective effect of TES on axotomized RGCs was unclear. In the present study, we determined whether the neuroprotective effect of TES is affected by the parameters of TES. Adult male Wistar rats received TES just after transection of the left optic nerve (ON). The pulse duration, current intensity, frequency, waveform, and numbers of sessions of the TES were changed systematically. The alterations of the retina were examined histologically seven days or fourteen days after the ON transection. The optimal neuroprotective parameters were pulse duration of 1 and 2 ms/phase (P < 0.001, each), current intensity of 100 and 200 muA (P < 0.05, each), and stimulation frequency of 1, 5, and 20 Hz (P < 0.001, respectively). More than 30 min of TES was necessary to have a neuroprotective effect (P < 0.001). Symmetric pulses without an inter-pulse interval were most effective (P < 0.001). Repeated TES was more neuroprotective than a single TES at 14 days after ON transection (P < 0.001). Our results indicate that there is a range of optimal neuroprotective parameters of TES for axotomized RGCs of rats. These values will provide a guideline for the use of TES in patients with different retinal and optic nerve diseases. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Full spinal cord regeneration after total transection is not possible due to entropy change.

    PubMed

    Zielinski, P; Sokal, P

    2016-09-01

    Transected spinal cord regeneration is a main challenge of regenerative medicine. The mainstream of research is focused on the promotion of spinal axons growth, which is strongly inhibited in mammals. Assuming that the inhibition of the axonal growth may be ever overcome, the complexity of neural reconnections may be the second serious stand to overcome. Peripheral nerve axons regeneration seem to form a random pattern of their targets reconnections. The hypothesis is that due to the laws of entropy or irreversible information loss the full spinal cord restoration after the transection is not possible. The hypothesis is discussed based on several assumptions. Simplifying the dissertation spinal cord is represented by 2millions of pyramidal axons. After the transection each of these axons has to make a growth and reconnect with exactly matching targets below the transection, in the same number. Axons are guided by neurotrophic factors and afterwards reconnected with neuroplasticity mechanisms. Assuming random reconnections, there are 2,000,000! permutations [Formula: see text] , therefore the chance of ideally random but correct reconnection of pyramidal axons with adequate targets is 1/2,000,000!. Apart from pyramidal axons, there are other axons, like extrapyramidal, sensory and associative. Empirical data and analysis of neurotrophic factors and organogenesis mechanisms may seem to slightly contradict the hypothesis, but strictly adhering to the second law of thermodynamics and entropy laws the full restoration of the transected cord may never be possible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. L-Dopa effect on frequency-dependent depression of the H-reflex in adult rats with complete spinal cord transection.

    PubMed

    Liu, Hao; Skinner, Robert D; Arfaj, Ahmad; Yates, Charlotte; Reese, Nancy B; Williams, Keith; Garcia-Rill, Edgar

    2010-10-30

    This study investigated whether l-dopa (DOPA), locomotor-like passive exercise (Ex) using a motorized bicycle exercise trainer (MBET), or their combination in adult rats with complete spinal cord transection (Tx) preserves and restores low frequency-dependent depression (FDD) of the H-reflex. Adult Sprague-Dawley rats (n=56) transected at T8-9 had one of five treatments beginning 7 days after transection: Tx (transection only), Tx+Ex, Tx+DOPA, Tx+Ex+DOPA, and control (Ctl, no treatment) groups. After 30 days of treatment, FDD of the H-reflex was tested. Stimulation of the tibial nerve at 0.2, 1, 5, and 10Hz evoked an H-reflex that was recorded from plantar muscles of the hind paw. No significant differences were found at the stimulation rate of 1Hz. However, at 5Hz, FDD of the H-reflex in the Tx+Ex, Tx+DOPA and Ctl groups was significantly different from the Tx group (p<0.01). At 10Hz, all of the treatment groups were significantly different from the Tx group (p<0.01). No significant difference was identified between the Ctl and any of the treatment groups. These results suggest that DOPA significantly preserved and restored FDD after transection as effectively as exercise alone or exercise in combination with DOPA. Thus, there was no additive benefit when DOPA was combined with exercise. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Comparison of nerve trimming with the Er:YAG laser and steel knife

    NASA Astrophysics Data System (ADS)

    Josephson, G. D.; Bass, Lawrence S.; Kasabian, A. K.

    1995-05-01

    Best outcome in nerve repair requires precise alignment and minimization of scar at the repair interface. Surgeons attempt to create the sharpest cut surface at the nerve edge prior to approximation. Pulsed laser modalities are being investigated in several medical applications which require precise atraumatic cutting. We compared nerve trimming with the Er:YAG laser (1375 J/cm2) to conventional steel knife trimming prior to neurorrhaphy. Sprague- Dawley rats were anesthetized with ketamine and xylazine. Under operating microscope magnification the sciatic nerve was dissected and transected using one of the test techniques. In the laser group, the pulses were directed axially across the nerve using a stage which fixed laser fiber/nerve distance and orientation. Specimens were sent for scanning electron microscopy (SEM) at time zero. Epineurial repairs were performed with 10 - 0 nylon simple interrupted sutures. At intervals to 90 days, specimens were harvested and sectioned longitudinally and axially for histologic examination. Time zero SEM revealed clean cuts in both groups but individual axons were clearly visible in all laser specimens. Small pits were also visible on the cut surface of laser treated nerves. No significant differences in nerve morphology were seen during healing. Further studies to quantify axon counts, and functional outcome will be needed to assess this technique of nerve trimming. Delivery system improvements will also be required, to make the technique clinically practical.

  13. Combined open and laparoscopic approach to chronic pain following open inguinal hernia repair.

    PubMed

    Rosen, M J; Novitsky, Y W; Cobb, W S; Kercher, K W; Heniford, B Todd

    2006-03-01

    Chronic groin pain is the most common long-term complication after open inguinal hernia repair. Traditional surgical management of the associated neuralgia consists of injection therapy followed by groin exploration, mesh removal, and nerve transection. The resultant hernia defect may be difficult to repair from an anterior approach. We evaluate the outcomes of a combined laparoscopic and open approach for the treatment of chronic groin pain following open inguinal herniorrhaphy. All patients who underwent groin exploration for chronic neuralgia after a prior open inguinal hernia repair were prospectively analyzed. Patient demographics, type of prior hernia repair, and prior nonoperative therapies were recorded. The operation consisted of a standard three trocar laparoscopic transabdominal preperitoneal hernia repair, followed by groin exploration, mesh removal, and nerve transection. Outcome measures included recurrent groin pain, numbness, hernia recurrence, and complications. Twelve patients (11 male and 1 female) with a mean age of 41 years (range 29-51) underwent combined laparoscopic and open treatment for chronic groin pain. Ten patients complained of unilateral neuralgia, one patient had bilateral complaints, and one patient complained of orchalgia. All patients failed at least two attempted percutaneous nerve blocks. Prior repairs included Lichtenstein (n=9), McVay (n=1), plug and patch (n=1), and Shouldice (n=1). There were no intraoperative complications or wound infections. With a minimum of 6 weeks follow up, all patients were significantly improved. One patient complained of intermittent minor discomfort that required no further therapy. Two patients had persistent numbness in the ilioinguinal nerve distribution but remained satisfied with the procedure. A combined laparoscopic and open approach for postherniorrhaphy groin pain results in good to excellent patient satisfaction with no perioperative morbidity. It may be the preferred technique for the definitive management of chronic neuralgia after prior open hernia repair.

  14. Evidence-based outcomes following inferior alveolar and lingual nerve injury and repair: a systematic review.

    PubMed

    Kushnerev, E; Yates, J M

    2015-10-01

    The inferior alveolar nerve (IAN) and lingual (LN) are susceptible to iatrogenic surgical damage. Systematically review recent clinical evidence regarding IAN/LN repair methods and to develop updated guidelines for managing injury. Recent publications on IAN/LN microsurgical repair from Medline, Embase and Cochrane Library databases were screened by title/abstract. Main texts were appraised for exclusion criteria: no treatment performed or results provided, poor/lacking procedural description, cohort <3 patients. Of 366 retrieved papers, 27 were suitable for final analysis. Treatment type for injured IANs/LNs depended on injury type, injury timing, neurosensory disturbances and intra-operative findings. Best functional nerve recovery occurred after direct apposition and suturing if nerve ending gaps were <10 mm; larger gaps required nerve grafting (sural/greater auricular nerve). Timing of microneurosurgical repair after injury remains debated. Most authors recommend surgery when neurosensory deficit shows no improvement 90 days post-diagnosis. Nerve transection diagnosed intra-operatively should be repaired in situ; minor nerve injury repair can be delayed. No consensus exists regarding optimal methods and timing for IAN/LN repair. We suggest a schematic guideline for treating IAN/LN injury, based on the most current evidence. We acknowledge that additional RCTs are required to provide definitive confirmation of optimal treatment approaches. © 2015 John Wiley & Sons Ltd.

  15. A Novel Internal Fixator Device for Peripheral Nerve Regeneration

    PubMed Central

    Chuang, Ting-Hsien; Wilson, Robin E.; Love, James M.; Fisher, John P.

    2013-01-01

    Recovery from peripheral nerve damage, especially for a transected nerve, is rarely complete, resulting in impaired motor function, sensory loss, and chronic pain with inappropriate autonomic responses that seriously impair quality of life. In consequence, strategies for enhancing peripheral nerve repair are of high clinical importance. Tension is a key determinant of neuronal growth and function. In vitro and in vivo experiments have shown that moderate levels of imposed tension (strain) can encourage axonal outgrowth; however, few strategies of peripheral nerve repair emphasize the mechanical environment of the injured nerve. Toward the development of more effective nerve regeneration strategies, we demonstrate the design, fabrication, and implementation of a novel, modular nerve-lengthening device, which allows the imposition of moderate tensile loads in parallel with existing scaffold-based tissue engineering strategies for nerve repair. This concept would enable nerve regeneration in two superposed regimes of nerve extension—traditional extension through axonal outgrowth into a scaffold and extension in intact regions of the proximal nerve, such as that occurring during growth or limb-lengthening. Self-sizing silicone nerve cuffs were fabricated to grip nerve stumps without slippage, and nerves were deformed by actuating a telescoping internal fixator. Poly(lactic co-glycolic) acid (PLGA) constructs mounted on the telescoping rods were apposed to the nerve stumps to guide axonal outgrowth. Neuronal cells were exposed to PLGA using direct contact and extract methods, and they exhibited no signs of cytotoxic effects in terms of cell morphology and viability. We confirmed the feasibility of implanting and actuating our device within a sciatic nerve gap and observed axonal outgrowth following device implantation. The successful fabrication and implementation of our device provides a novel method for examining mechanical influences on nerve regeneration. PMID:23102114

  16. Comparison of dorsal root ganglion gene expression in rat models of traumatic and HIV-associated neuropathic pain

    PubMed Central

    Maratou, Klio; Wallace, Victoria C.J.; Hasnie, Fauzia S.; Okuse, Kenji; Hosseini, Ramine; Jina, Nipurna; Blackbeard, Julie; Pheby, Timothy; Orengo, Christine; Dickenson, Anthony H.; McMahon, Stephen B.; Rice, Andrew S.C.

    2009-01-01

    To elucidate the mechanisms underlying peripheral neuropathic pain in the context of HIV infection and antiretroviral therapy, we measured gene expression in dorsal root ganglia (DRG) of rats subjected to systemic treatment with the anti-retroviral agent, ddC (Zalcitabine) and concomitant delivery of HIV-gp120 to the rat sciatic nerve. L4 and L5 DRGs were collected at day 14 (time of peak behavioural change) and changes in gene expression were measured using Affymetrix whole genome rat arrays. Conventional analysis of this data set and Gene Set Enrichment Analysis (GSEA) was performed to discover biological processes altered in this model. Transcripts associated with G protein coupled receptor signalling and cell adhesion were enriched in the treated animals, while ribosomal proteins and proteasome pathways were associated with gene down-regulation. To identify genes that are directly relevant to neuropathic mechanical hypersensitivity, as opposed to epiphenomena associated with other aspects of the response to a sciatic nerve lesion, we compared the gp120 + ddC-evoked gene expression with that observed in a model of traumatic neuropathic pain (L5 spinal nerve transection), where hypersensitivity to a static mechanical stimulus is also observed. We identified 39 genes/expressed sequence tags that are differentially expressed in the same direction in both models. Most of these have not previously been implicated in mechanical hypersensitivity and may represent novel targets for therapeutic intervention. As an external control, the RNA expression of three genes was examined by RT-PCR, while the protein levels of two were studied using western blot analysis. PMID:18606552

  17. Pyroglutamic acid promotes survival of retinal ganglion cells after optic nerve injury.

    PubMed

    Oono, Shinichirou; Kurimoto, Takuji; Nakazawa, Toru; Miyoshi, Tomomitsu; Okamoto, Norio; Kashimoto, Ryosuke; Tagami, Yuichi; Ito, Yoshimasa; Mimura, Osamu

    2009-07-01

    To determine whether pyroglutamic acid (PGA) enhances the survival of retinal ganglion cells (RGCs) after optic nerve (ON) transection in vivo and RGCs in culture. The RGCs of rats were retrogradely labeled by Fluorogold (FG)-soaked sponges placed on both superior colliculi. Seven days later, the ON was transected, and PGA was immediately injected into the vitreous. Seven or fourteen days later, the number of FG-labeled RGCs was counted on flat-mounted retinas to obtain the mean densities of FG-labeled RGCs. To determine whether the survival effect of PGA was related to excitatory amino acid transporter (EAAT), L-trans-pyrrolidine-2,4 dicarboxylate (PDC), a nonselective glutamate transport inhibitor, was injected into vitreous with the PGA. In primary retinal cultures, RGCs were identified as cells that were immunopositive to beta III tubulin three days after beginning the culture with and without PDC. The mean density of FG-labeled RGCs was reduced from 2249 +/- 210 to 920 +/- 202 cells/mm(2) (p < 0.001) on day 7 after the ON transection. The mean density RGCs was significantly higher at 1213 +/- 159 cells/mm(2) after 0.5% PGA injection immediately after the ON transaction than eyes injected with the vehicle at 1007 +/- 122 cells/mm(2) (p = 0.035). One percent PGA was the most effective concentration for survival-promoting effects on RGCs, and the mean density of the RGCs was 1464 +/- 102/mm(2) (p < 0.001). Fourteen days after 1% PGA, the mean density of FG-labeled RGCs was significantly higher than that with vehicle (204 +/- 23/mm(2) versus 145 +/- 17 cells/mm(2); p < 0.01). Simultaneous application of 1% PGA and PDC blocked the survival effects of PGA on day 7 after ON transection. The presence of PGA increased the number of beta III tubulin-positive cells. PGA promotes the survival of axotomized RGCs in adult mammalian retinas possibly mediated by the EAATs.

  18. Time Course of Substance P Expression in Dorsal Root Ganglia Following Complete Spinal Nerve Transection

    PubMed Central

    Weissner, Wendy; Winterson, Barbara J.; Stuart-Tilley, Alan; Devor, Marshall; Bove, Geoffrey M.

    2008-01-01

    Recent evidence suggests that substance P (SP) is upregulated in primary sensory neurons following axotomy, and that this change occurs in larger neurons that do not usually produce SP. If so, this upregulation may allow normally neighboring, uninjured, and non-nociceptive dorsal root ganglion (DRG) neurons to become effective in activating pain pathways. Using immunohistochemistry, we performed a unilateral L5 spinal nerve transection upon male Wistar rats, and measured SP expression in ipsilateral L4 and L5 DRGs and contralateral L5 DRGs, at 1 to 14 days postoperatively (dpo), and in control and sham operated rats. In normal and sham operated DRGs, SP was detectable almost exclusively in small neurons (≤ 800 μm2). Following surgery, the mean size of SP-positive neurons from the axotomized L5 ganglia was greater at 2, 4, 7 and 14 dpo. Among large neurons (> 800 μm2) from the axotomized L5, the percentage of SP-positive neurons increased at 2, 4, 7, and 14 dpo. Among small neurons from the axotomized L5, the percentage of SP-positive neurons was increased at 1 and 3 dpo, but was decreased at 7 and 14 dpo. Thus, SP expression is affected by axonal damage, and the time course of the expression is different between large and small DRG neurons. These data support a role of SP-producing, large DRG neurons in persistent sensory changes due to nerve injury. PMID:16680762

  19. Song decrystallization in adult zebra finches does not require the song nucleus NIf.

    PubMed

    Roy, Arani; Mooney, Richard

    2009-08-01

    In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., crystallized) song to slowly degrade, presumably because of the resulting distortion in auditory feedback. How and where distorted feedback interacts with song motor networks to induce this process of song decrystallization remains unknown. The song premotor nucleus HVC is a potential site where auditory feedback signals could interact with song motor commands. Although the forebrain nucleus interface of the nidopallium (NIf) appears to be the primary auditory input to HVC, NIf lesions made in adult zebra finches do not trigger song decrystallization. One possibility is that NIf lesions do not interfere with song maintenance, but do compromise the adult zebra finch's ability to express renewed vocal plasticity in response to feedback perturbations. To test this idea, we bilaterally lesioned NIf and then transected the vocal nerve in adult male zebra finches. We found that bilateral NIf lesions did not prevent nerve section-induced song decrystallization. To test the extent to which the NIf lesions disrupted auditory processing in the song system, we made in vivo extracellular recordings in HVC and a downstream anterior forebrain pathway (AFP) in NIf-lesioned birds. We found strong and selective auditory responses to the playback of the birds' own song persisted in HVC and the AFP following NIf lesions. These findings suggest that auditory inputs to the song system other than NIf, such as the caudal mesopallium, could act as a source of auditory feedback signals to the song motor network.

  20. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration.

    PubMed

    Sun, Yuqiao; Li, Wen; Wu, Xiaoli; Zhang, Na; Zhang, Yongnu; Ouyang, Songying; Song, Xiyong; Fang, Xinyu; Seeram, Ramakrishna; Xue, Wei; He, Liumin; Wu, Wutian

    2016-01-27

    Self-assembling peptide (SAP) RADA16-I (Ac-(RADA)4-CONH2) has been suffering from a main drawback associated with low pH, which damages cells and host tissues upon direct exposure. In this study, we presented a strategy to prepare nanofiber hydrogels from two designer SAPs at neutral pH. RADA16-I was appended with functional motifs containing cell adhesion peptide RGD and neurite outgrowth peptide IKVAV. The two SAPs were specially designed to have opposite net charges at neutral pH, the combination of which created a nanofiber hydrogel (-IKVAV/-RGD) characterized by significantly higher G' than G″ in a viscoelasticity examination. Circular dichroism, Fourier transform infrared spectroscopy, and Raman measurements were performed to investigate the secondary structure of the designer SAPs, indicating that both the hydrophobic/hydrophilic properties and electrostatic interactions of the functional motifs play an important role in the self-assembling behavior of the designer SAPs. The neural progenitor cells (NPCs)/stem cells (NSCs) fully embedded in the 3D-IKVAV/-RGD nanofiber hydrogel survived, whereas those embedded within the RADA 16-I hydrogel hardly survived. Moreover, the -IKVAV/-RGD nanofiber hydrogel supported NPC/NSC neuron and astrocyte differentiation in a 3D environment without adding extra growth factors. Studies of three nerve injury models, including sciatic nerve defect, intracerebral hemorrhage, and spinal cord transection, indicated that the designer -IKVAV/-RGD nanofiber hydrogel provided a more permissive environment for nerve regeneration than the RADA 16-I hydrogel. Therefore, we reported a new mechanism that might be beneficial for the synthesis of SAPs for in vitro 3D cell culture and nerve regeneration.

  1. Laryngeal reinnervation for bilateral vocal fold paralysis.

    PubMed

    Marina, Mat B; Marie, Jean-Paul; Birchall, Martin A

    2011-12-01

    Laryngeal reinnervation for bilateral vocal fold paralysis (BVFP) patients is a promising technique to achieve good airway, although preserving a good quality of voice. On the other hand, the procedure is not simple. This review explores the recent literature on surgical technique and factors that may contribute to the success. Research and literature in this area are limited due to variability and complexity of the nerve supply. The posterior cricoarytenoid (PCA) muscle also receives nerve supply from the interarytenoid branch. Transection of this nerve at the point between interarytenoid and PCA branch may prevent aberrant reinnervation of adductor nerve axons to the PCA muscle. A varying degree of regeneration of injured recurrent laryngeal nerves (RLN) in humans of more than 6 months confirms subclinical reinnervation, which may prevent denervation-induced atrophy. Several promising surgical techniques have been developed for bilateral selective reinnervation for BVFP patients. This involves reinnervation of the abductor and adductor laryngeal muscles. The surgical technique aims at reinnervating the PCA muscle to trigger abduction during the respiratory cycle and preservation of good voice by strengthening the adductor muscles as well as prevention of laryngeal synkinesis.

  2. The effects of picric acid (2,4,6-trinitrophenol) and a bite-deterrent chemical (denatonium benzoate) on autotomy in rats after peripheral nerve lesion.

    PubMed

    Firouzi, Matin Sadat; Firouzi, Masoumeh; Nabian, Mohammad Hossein; Zanjani, Leila Oryadi; Zadegan, Shayan Abdollah; Kamrani, Reza Shahryar; Rahimi-Movaghar, Vafa

    2015-04-01

    Denervation of the hind limb is a technique used to study peripheral nerve regeneration. Autotomy or autophagia is an undesirable response to denervation in such studies. Application of a commercially available lotion used to deter nail biting in humans reduced autotomy in rats after denervation but did not completely prevent it. In this study, this authors evaluated the application of picric acid to prevent autotomy in rats in peripheral nerve experiments. They carried out sciatic nerve transection in 41 adult female Wistar rats and then applied either bite-deterrent lotion (n = 26) or saturated picric acid solution (n = 15) topically to the affected hind limb immediately after surgery and every day for 1 month. Autotomy scores were lower for rats treated with picric acid than for rats treated with bite-deterrent lotion 1 week and 2 weeks after surgery but were not different between the two groups 4 weeks after surgery. The authors conclude that application of picric acid could be used as an alternative strategy to prevent autotomy in peripheral nerve studies.

  3. Neuronal BDNF Signaling Is Necessary for the Effects of Treadmill Exercise on Synaptic Stripping of Axotomized Motoneurons

    PubMed Central

    Krakowiak, Joey; Liu, Caiyue; Papudesu, Chandana; Ward, P. Jillian; Wilhelm, Jennifer C.; English, Arthur W.

    2015-01-01

    The withdrawal of synaptic inputs from the somata and proximal dendrites of spinal motoneurons following peripheral nerve injury could contribute to poor functional recovery. Decreased availability of neurotrophins to afferent terminals on axotomized motoneurons has been implicated as one cause of the withdrawal. No reduction in contacts made by synaptic inputs immunoreactive to the vesicular glutamate transporter 1 and glutamic acid decarboxylase 67 is noted on axotomized motoneurons if modest treadmill exercise, which stimulates the production of neurotrophins by spinal motoneurons, is applied after nerve injury. In conditional, neuron-specific brain-derived neurotrophic factor (BDNF) knockout mice, a reduction in synaptic contacts onto motoneurons was noted in intact animals which was similar in magnitude to that observed after nerve transection in wild-type controls. No further reduction in coverage was found if nerves were cut in knockout mice. Two weeks of moderate daily treadmill exercise following nerve injury in these BDNF knockout mice did not affect synaptic inputs onto motoneurons. Treadmill exercise has a profound effect on synaptic inputs to motoneurons after peripheral nerve injury which requires BDNF production by those postsynaptic cells. PMID:25918648

  4. Podisus distinctus (Heteroptera: Pentatomidae) females are lighter feeding on Tenebrio molitor (Coleoptera: Tenebrionidae) pupae subjected to ventral nerve cord transection

    USDA-ARS?s Scientific Manuscript database

    The movement observed in the Tenebrio molitor L., 1758 (Coleoptera: Tenebrionidae) pupae can be a type of defense strategy. This makes it significant to study the development and reproduction of the predatory stinkbugs Asopinae with the immobilized pupae of this prey. The aim was to evaluate the per...

  5. Muscle Degeneration Associated With Rotator Cuff Tendon Release and/or Denervation in Sheep.

    PubMed

    Gerber, Christian; Meyer, Dominik C; Flück, Martin; Valdivieso, Paola; von Rechenberg, Brigitte; Benn, Mario C; Wieser, Karl

    2017-03-01

    The effect of an additional neurological injury (suprascapular nerve traction injury) to a chronically retracted rotator cuff muscle is incompletely understood and warrants clarification. To investigate the microscopic and macroscopic muscle degeneration patterns caused by tendon release and/or muscle denervation in a sheep rotator cuff model. Controlled laboratory study. Infraspinatus muscle biopsy specimens (for histological analysis) were obtained from 18 Swiss alpine sheep before and 16 weeks after release of the infraspinatus tendon (tenotomy [T] group; n = 6), transection of the suprascapular nerve (neurectomy [N] group; n = 6), or tendon release plus nerve transection (tenotomy + neurectomy [T&N] group; n = 6). Magnetic resonance imaging (MRI) and computed tomography (CT) were used to assess retraction (CT), muscle density (CT), volume (MRI T2), and fat fraction (MRI Dixon). Stiffness of the infraspinatus was measured with a spring scale. At 16 weeks postoperatively, the mean infraspinatus muscle volume had decreased significantly more after neurectomy (to 47% ± 7% of the original volume; P = .001) and tenotomy plus neurectomy (48% ± 13%; P = .005) than after tenotomy alone (78% ± 11%). Conversely, the mean amount of intramuscular fat (CT/MRI Dixon) was not significantly different in the 3 groups (T group: 50% ± 9%; N group: 40% ± 11%; T&N group: 46% ± 10%) after 16 weeks. The mean myotendinous retraction (CT) was not significantly different in the T and T&N groups (5.8 ± 1.0 cm and 6.4 ± 0.4 cm, respectively; P = .26). Stiffness was, however, most increased after additional neurectomy. In contrast to muscle changes after tendon release, denervation of the muscle led to a decrease in the pennation angle of lengthened muscle fibers, with a reduced mean cross-sectional area of pooled muscle fibers, a slow- to fast-type transformation, and an increase in the area percentage of hybrid fibers, leading to overall significantly greater atrophy of the corresponding muscle. Although it is unclear which experimental group (T or T&N) most accurately reflects the clinical scenario in a given case, these findings provide baseline information for clinical differentiation between muscle changes caused by denervation or rotator cuff tendon lesions. The findings of this study help to understand how and to which extent a neurological lesion of the supplying suprascapular nerve could influence the pattern of anatomic-physiological muscular changes after rotator cuff tendon tears.

  6. Local Anesthetic-Induced Neurotoxicity

    PubMed Central

    Verlinde, Mark; Hollmann, Markus W.; Stevens, Markus F.; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-01-01

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor. PMID:26959012

  7. Local Anesthetic-Induced Neurotoxicity.

    PubMed

    Verlinde, Mark; Hollmann, Markus W; Stevens, Markus F; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-03-04

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor.

  8. Optogenetic probing of nerve and muscle function after facial nerve lesion in the mouse whisker system

    NASA Astrophysics Data System (ADS)

    Bandi, Akhil; Vajtay, Thomas J.; Upadhyay, Aman; Yiantsos, S. Olga; Lee, Christian R.; Margolis, David J.

    2018-02-01

    Optogenetic modulation of neural circuits has opened new avenues into neuroscience research, allowing the control of cellular activity of genetically specified cell types. Optogenetics is still underdeveloped in the peripheral nervous system, yet there are many applications related to sensorimotor function, pain and nerve injury that would be of great benefit. We recently established a method for non-invasive, transdermal optogenetic stimulation of the facial muscles that control whisker movements in mice (Park et al., 2016, eLife, e14140)1. Here we present results comparing the effects of optogenetic stimulation of whisker movements in mice that express channelrhodopsin-2 (ChR2) selectively in either the facial motor nerve (ChAT-ChR2 mice) or muscle (Emx1-ChR2 or ACTA1-ChR2 mice). We tracked changes in nerve and muscle function before and up to 14 days after nerve transection. Optogenetic 460 nm transdermal stimulation of the distal cut nerve showed that nerve degeneration progresses rapidly over 24 hours. In contrast, the whisker movements evoked by optogenetic muscle stimulation were up-regulated after denervation, including increased maximum protraction amplitude, increased sensitivity to low-intensity stimuli, and more sustained muscle contractions (reduced adaptation). Our results indicate that peripheral optogenetic stimulation is a promising technique for probing the timecourse of functional changes of both nerve and muscle, and holds potential for restoring movement after paralysis induced by nerve damage or motoneuron degeneration.

  9. Assessment of vascularization and myelination following peripheral nerve repair using angiographic and polarization sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nam, Ahhyun S.; Chico-Calero, Isabel; Easow, Jeena M.; Villiger, Martin; Welt, Jonathan; Winograd, Jonathan M.; Randolph, Mark A.; Redmond, Robert W.; Vakoc, Benjamin J.

    2017-02-01

    A severe traumatic injury to a peripheral nerve often requires surgical graft repair. However, functional recovery after these surgical repairs is often unsatisfactory. To improve interventional procedures, it is important to understand the regeneration of the nerve grafts. The rodent sciatic nerve is commonly used to investigate these parameters. However, the ability to longitudinally assess the reinnervation of injured nerves are limited, and to our knowledge, no methods currently exist to investigate the timing of the revascularization in functional recovery. In this work, we describe the development and use of angiographic and polarization-sensitive (PS) optical coherence tomography (OCT) to visualize the vascularization, demyelination and remyelination of peripheral nerve healing after crush and transection injuries, and across a variety of graft repair methods. A microscope was customized to provide 3.6 cm fields of view along the nerve axis with a capability to track the nerve height to maintain the nerve within the focal plane. Motion artifact rejection was implemented in the angiography algorithm to reduce degradation by bulk respiratory motion in the hindlimb site. Vectorial birefringence imaging methods were developed to significantly enhance the accuracy of myelination measurements and to discriminate birefringent contributions from the myelin and epineurium. These results demonstrate that the OCT platform has the potential to reveal new insights in preclinical studies and may ultimately provide a means for clinical intra-surgical assessment of peripheral nerve function.

  10. Electrophysiological Assessment of a Peptide Amphiphile Nanofiber Nerve Graft for Facial Nerve Repair.

    PubMed

    Greene, Jacqueline J; McClendon, Mark T; Stephanopoulos, Nicholas; Álvarez, Zaida; Stupp, Samuel I; Richter, Claus-Peter

    2018-04-27

    Facial nerve injury can cause severe long-term physical and psychological morbidity. There are limited repair options for an acutely transected facial nerve not amenable to primary neurorrhaphy. We hypothesize that a peptide amphiphile nanofiber neurograft may provide the nanostructure necessary to guide organized neural regeneration. Five experimental groups were compared, animals with 1) an intact nerve, 2) following resection of a nerve segment, and following resection and immediate repair with either a 3) autograft (using the resected nerve segment), 4) neurograft, or 5) empty conduit. The buccal branch of the rat facial nerve was directly stimulated with charge balanced biphasic electrical current pulses at different current amplitudes while nerve compound action potentials (nCAPs) and electromygraphic (EMG) responses were recorded. After 8 weeks, the proximal buccal branch was surgically re-exposed and electrically evoked nCAPs were recorded for groups 1-5. As expected, the intact nerves required significantly lower current amplitudes to evoke an nCAP than those repaired with the neurograft and autograft nerves. For other electrophysiologic parameters such as latency and maximum nCAP, there was no significant difference between the intact, autograft and neurograft groups. The resected group had variable responses to electrical stimulation, and the empty tube group was electrically silent. Immunohistochemical analysis and TEM confirmed myelinated neural regeneration. This study demonstrates that the neuroregenerative capability of peptide amphiphile nanofiber neurografts is similar to the current clinical gold standard method of repair and holds potential as an off-the-shelf solution for facial reanimation and potentially peripheral nerve repair. This article is protected by copyright. All rights reserved.

  11. Compensatory plasticity restores locomotion after chronic removal of descending projections.

    PubMed

    Harley, Cynthia M; Reilly, Melissa G; Stewart, Christopher; Schlegel, Chantel; Morley, Emma; Puhl, Joshua G; Nagel, Christian; Crisp, Kevin M; Mesce, Karen A

    2015-06-01

    Homeostatic plasticity is an important attribute of neurons and their networks, enabling functional recovery after perturbation. Furthermore, the directed nature of this plasticity may hold a key to the restoration of locomotion after spinal cord injury. Here we studied the recovery of crawling in the leech Hirudo verbana after descending cephalic fibers were surgically separated from crawl central pattern generators shown previously to be regulated by dopamine. We observed that immediately after nerve cord transection leeches were unable to crawl, but remarkably, after a day to weeks, animals began to show elements of crawling and intersegmental coordination. Over a similar time course, excessive swimming due to the loss of descending inhibition returned to control levels. Additionally, removal of the brain did not prevent crawl recovery, indicating that connectivity of severed descending neurons was not essential. After crawl recovery, a subset of animals received a second transection immediately below the anterior-most ganglion remaining. Similar to their initial transection, a loss of crawling with subsequent recovery was observed. These data, in recovered individuals, support the idea that compensatory plasticity directly below the site of injury is essential for the initiation and coordination of crawling. We maintain that the leech provides a valuable model to understand the neural mechanisms underlying locomotor recovery after injury because of its experimental accessibility, segmental organization, and dependence on higher-order control involved in the initiation, modulation, and coordination of locomotor behavior. Copyright © 2015 the American Physiological Society.

  12. Improved adductor function after canine recurrent laryngeal nerve injury and repair using muscle progenitor cells.

    PubMed

    Paniello, Randal C; Brookes, Sarah; Bhatt, Neel K; Bijangi-Vishehsaraei, Khadijeh; Zhang, Hongji; Halum, Stacey

    2017-12-08

    Muscle progenitor cells (MPCs) can be isolated from muscle samples and grown to a critical mass in culture. They have been shown to survive and integrate when implanted into rat laryngeal muscles. In this study, the ability of MPC implants to enhance adductor function of reinnervated thyroarytenoid muscles was tested in a canine model. Animal study. Sternocleidomastoid muscle samples were harvested from three canines. Muscle progenitor cells were isolated and cultured to 10 7 cells over 4 to 5 weeks, then implanted into right thyroarytenoid muscles after ipsilateral recurrent laryngeal nerve transection and repair. The left sides underwent the same nerve injury, but no cells were implanted. Laryngeal adductor force was measured pretreatment and again 6 months later, and the muscles were harvested for histology. Muscle progenitor cells were successfully cultured from all dogs. Laryngeal adductor force measurements averaged 60% of their baseline pretreatment values in nonimplanted controls, 98% after implantation with MPCs, and 128% after implantation with motor endplate-enhanced MPCs. Histology confirmed that the implanted MPCs survived, became integrated into thyroarytenoid muscle fibers, and were in close contact with nerve endings, suggesting functional innervation. Muscle progenitor cells were shown to significantly enhance adductor function in this pilot canine study. Patient-specific MPC implantation could potentially be used to improve laryngeal function in patients with vocal fold paresis/paralysis, atrophy, and other conditions. Further experiments are planned. NA. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  13. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo

    PubMed Central

    Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki

    2017-01-01

    Abstract Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC‐specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin‐forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207–1216 PMID:28186702

  14. Cholecalciferol (Vitamin D3) Improves Myelination and Recovery after Nerve Injury

    PubMed Central

    Chabas, Jean-Francois; Stephan, Delphine; Marqueste, Tanguy; Garcia, Stephane; Lavaut, Marie-Noelle; Nguyen, Catherine; Legre, Regis; Khrestchatisky, Michel

    2013-01-01

    Previously, we demonstrated i) that ergocalciferol (vitamin D2) increases axon diameter and potentiates nerve regeneration in a rat model of transected peripheral nerve and ii) that cholecalciferol (vitamin D3) improves breathing and hyper-reflexia in a rat model of paraplegia. However, before bringing this molecule to the clinic, it was of prime importance i) to assess which form – ergocalciferol versus cholecalciferol – and which dose were the most efficient and ii) to identify the molecular pathways activated by this pleiotropic molecule. The rat left peroneal nerve was cut out on a length of 10 mm and autografted in an inverted position. Animals were treated with either cholecalciferol or ergocalciferol, at the dose of 100 or 500 IU/kg/day, or excipient (Vehicle), and compared to unlesioned rats (Control). Functional recovery of hindlimb was measured weekly, during 12 weeks, using the peroneal functional index. Ventilatory, motor and sensitive responses of the regenerated axons were recorded and histological analysis was performed. In parallel, to identify the genes regulated by vitamin D in dorsal root ganglia and/or Schwann cells, we performed an in vitro transcriptome study. We observed that cholecalciferol is more efficient than ergocalciferol and, when delivered at a high dose (500 IU/kg/day), cholecalciferol induces a significant locomotor and electrophysiological recovery. We also demonstrated that cholecalciferol increases i) the number of preserved or newly formed axons in the proximal end, ii) the mean axon diameter in the distal end, and iii) neurite myelination in both distal and proximal ends. Finally, we found a modified expression of several genes involved in axogenesis and myelination, after 24 hours of vitamin supplementation. Our study is the first to demonstrate that vitamin D acts on myelination via the activation of several myelin-associated genes. It paves the way for future randomised controlled clinical trials for peripheral nerve or spinal cord repair. PMID:23741446

  15. Differential Effects of 670 and 830 nm Red near Infrared Irradiation Therapy: A Comparative Study of Optic Nerve Injury, Retinal Degeneration, Traumatic Brain and Spinal Cord Injury

    PubMed Central

    Giacci, Marcus K.; Wheeler, Lachlan; Lovett, Sarah; Dishington, Emma; Majda, Bernadette; Bartlett, Carole A.; Thornton, Emma; Harford-Wright, Elizabeth; Leonard, Anna; Vink, Robert; Harvey, Alan R.; Provis, Jan; Dunlop, Sarah A.; Fitzgerald, Melinda

    2014-01-01

    Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P≤0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P≤0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P≤0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R/NIR-IT individually for different CNS injury types. PMID:25105800

  16. Involvement of μ-opioid receptors in antinociceptive action of botulinum toxin type A.

    PubMed

    Drinovac, V; Bach-Rojecky, L; Matak, I; Lacković, Z

    2013-07-01

    Botulinum toxin A (BTX-A) is approved for treatment of chronic migraine and has been investigated in various other painful conditions. Recent evidence demonstrated retrograde axonal transport and suggested the involvement of CNS in antinociceptive effect of BTX-A. However, the mechanism of BTX-A central antinociceptive action is unknown. In this study we investigated the potential role of opioid receptors in BTX-A's antinociceptive activity. In formalin-induced inflammatory pain we assessed the effect of opioid antagonists on antinociceptive activity of BTX-A. Naltrexone was injected subcutaneously (0.02-2 mg/kg) or intrathecally (0.07 μg/10 μl-350 μg/10 μl), while selective μ-antagonist naloxonazine was administered intraperitoneally (5 mg/kg) prior to nociceptive testing. The influence of naltrexone (2 mg/kg s.c.) on BTX-A antinociceptive activity was examined additionally in an experimental neuropathy induced by partial sciatic nerve transection. To investigate the effects of naltrexone and BTX-A on neuronal activation in spinal cord, c-Fos expression was immunohistochemically examined in a model of formalin-induced pain. Antinociceptive effects of BTX-A in formalin and sciatic nerve transection-induced pain were prevented by non-selective opioid antagonist naltrexone. Similarly, BTX-A-induced pain reduction was abolished by low dose of intrathecal naltrexone and by selective μ-antagonist naloxonazine. BTX-A-induced decrease in dorsal horn c-Fos expression was prevented by naltrexone. Prevention of BTX-A effects on pain and c-Fos expression by opioid antagonists suggest that the central antinociceptive action of BTX-A might be associated with the activity of endogenous opioid system (involving μ-opioid receptor). These results provide first insights into the mechanism of BTX-A's central antinociceptive activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra.

    PubMed

    Cannon, Tracy W; Lee, Ji Youl; Somogyi, George; Pruchnic, Ryan; Smith, Christopher P; Huard, Johnny; Chancellor, Michael B

    2003-11-01

    To study the physiologic outcome of allogenic transplant of muscle-derived progenitor cells (MDPCs) in the denervated female rat urethra. MDPCs were isolated from muscle biopsies of normal 6-week-old Sprague-Dawley rats and purified using the preplate technique. Sciatic nerve-transected rats were used as a model of stress urinary incontinence. The experimental group was divided into three subgroups: control, denervated plus 20 microL saline injection, and denervated plus allogenic MDPCs (1 to 1.5 x 10(6) cells) injection. Two weeks after injection, urethral muscle strips were prepared and underwent electrical field stimulation. The pharmacologic effects of d-tubocurare, phentolamine, and tetrodotoxin on the urethral strips were assessed by contractions induced by electrical field stimulation. The urethral tissues also underwent immunohistochemical staining for fast myosin heavy chain and CD4-activated lymphocytes. Urethral denervation resulted in a significant decrease of the maximal fast-twitch muscle contraction amplitude to only 8.77% of the normal urethra and partial impairment of smooth muscle contractility. Injection of MDPCs into the denervated sphincter significantly improved the fast-twitch muscle contraction amplitude to 87.02% of normal animals. Immunohistochemistry revealed a large amount of new skeletal muscle fiber formation at the injection site of the urethra with minimal inflammation. CD4 staining showed minimal lymphocyte infiltration around the MDPC injection sites. Urethral denervation resulted in near-total abolishment of the skeletal muscle and partial impairment of smooth muscle contractility. Allogenic MDPCs survived 2 weeks in sciatic nerve-transected urethra with minimal inflammation. This is the first report of the restoration of deficient urethral sphincter function through muscle-derived progenitor cell tissue engineering. MDPC-mediated cellular urethral myoplasty warrants additional investigation as a new method to treat stress urinary incontinence.

  18. Contralateral peripheral neurotization for a hemiplegic hindlimb after central neurological injury.

    PubMed

    Zheng, Mou-Xiong; Hua, Xu-Yun; Jiang, Su; Qiu, Yan-Qun; Shen, Yun-Dong; Xu, Wen-Dong

    2018-01-01

    OBJECTIVE Contralateral peripheral neurotization surgery has been successfully applied to rescue motor function of the hemiplegic upper extremity in patients with central neurological injury (CNI). It may contribute to strengthened neural pathways between the contralesional cortex and paretic limbs. However, the effect of this surgery in the lower extremities remains unknown. In the present study the authors explored the effectiveness and safety of contralateral peripheral neurotization in treating a hemiplegic lower extremity following CNI in adult rats. METHODS Controlled cortical impact (CCI) was performed on the hindlimb motor cortex of 36 adult Sprague-Dawley rats to create severe unilateral traumatic brain injury models. These CCI rats were randomly divided into 3 groups. At 1 month post-CCI, the experimental group (Group 1, 12 rats) underwent contralateral L-6 to L-6 transfer, 1 control group (Group 2, 12 rats) underwent bilateral L-6 nerve transection, and another control group (Group 3, 12 rats) underwent an L-6 laminectomy without injuring the L-6 nerves. Bilateral L-6 nerve transection rats without CCI (Group 4, 12 rats) and naïve rats (Group 5, 12 rats) were used as 2 additional control groups. Beam and ladder rung walking tests and CatWalk gait analysis were performed in each rat at baseline and at 0.5, 1, 2, 4, 6, 8, and 10 months to detect the skilled walking functions and gait parameters of both hindlimbs. Histological and electromyography studies were used at the final followup to verify establishment of the traumatic brain injury model and regeneration of the L6-L6 neural pathway. RESULTS In behavioral tests, comparable motor injury in the paretic hindlimbs was observed after CCI in Groups 1-3. Group 1 started to show significantly lower slip and error rates in the beam and ladder rung walking tests than Groups 2 and 3 at 6 months post-CCI (p < 0.05). In the CatWalk analysis, Group 1 also showed a higher mean intensity and swing speed after 8 months post-CCI and a longer stride length after 6 months post-CCI than Groups 2 and 3 (p < 0.05). Transection of L-6 resulted in transient skilled walking impairment in the intact hindlimbs in Groups 1 and 2 (compared with Group 3) and in the bilateral hindlimbs in Group 4 (compared with Group 5). All recovered to baseline level within 2 months. Histological study of the rat brains verified comparable injured volumes among Groups 1-3 at final examinations, and electromyography and toluidine blue staining indicated successful regeneration of the L6-L6 neural pathways in Group 1. CONCLUSIONS Contralateral L-6 neurotization could be a promising and safe surgical approach for improving motor recovery of the hemiplegic hindlimb after unilateral CNI in adult rats. Further investigations are needed before extrapolating the present conclusions to humans.

  19. Effectiveness of fibrin adhesive in facial nerve anastomosis in dogs compared with standard microsuturing technique.

    PubMed

    Attar, Bijan Movahedian; Zalzali, Haidar; Razavi, Mohammad; Ghoreishian, Mehdi; Rezaei, Majid

    2012-10-01

    Epineural suturing is the most common technique used for peripheral nerve anastomosis. In addition to the foreign body reaction to the suture material, the surgical duration and difficulty of suturing in confined anatomic locations are major problems. We evaluated the effectiveness of fibrin glue as an acceptable alternative for nerve anastomosis in dogs. Eight adult female dogs weighing 18 to 24 kg were used in the present study. The facial nerve was transected bilaterally. On the right side, the facial nerve was subjected to epineural suturing; and on the left side, the nerve was anastomosed using fibrin adhesive. After 16 weeks, the nerve conduction velocity and proportion of the nerve fibers that crossed the anastomosis site were evaluated and compared for the epineural suture (right side) and fibrin glue (left side). The data were analyzed using the paired t test and univariate analysis of variance. The mean postoperative nerve conduction velocity was 29.87 ± 7.65 m/s and 26.75 ± 3.97 m/s on the right and left side, respectively. No statistically significant difference was found in the postoperative nerve conduction velocity between the 2 techniques (P = .444). The proportion of nerve fibers that crossed the anastomotic site was 71.25% ± 7.59% and 72.25% ± 8.31% on the right and left side, respectively. The histologic evaluation showed no statistically significant difference in the proportion of the nerve fibers that crossed the anastomotic site between the 2 techniques (P = .598). The results suggest that the efficacies of epineural suturing and fibrin gluing in peripheral nerve anastomosis are similar. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. ENHANCING ADULT NERVE REGENERATION THROUGH THE KNOCKDOWN OF RETINOBLASTOMA PROTEIN

    PubMed Central

    Christie, Kimberly J.; Krishnan, Anand; Martinez, Jose A.; Purdy, Kaylynn; Singh, Bhagat; Eaton, Shane; Zochodne, Douglas

    2016-01-01

    Tumour suppressor pathways may offer novel targets capable of altering the plasticity of post-mitotic adult neurons. Here we describe a role for retinoblastoma (Rb) protein, widely expressed in adult sensory neurons and their axons, during regeneration. In adult sensory neurons, Rb siRNA knockdown or Rb1 deletion in vitro enhances neurite outgrowth and branching. Plasticity is achieved in part through upregulation of neuronal PPARγ; its antagonism inhibits Rb siRNA plasticity whereas a PPARγ agonist increases growth. In an in vivo regenerative paradigm following complete peripheral nerve trunk transection, direct delivery of Rb siRNA prompts increased outgrowth of axons from proximal stumps and entrains Schwann cells to accompany them for greater distances. Similarly Rb siRNA delivery following a nerve crush improves behavioural indices of motor and sensory recovery in mice. The overall findings indicate that inhibition of tumour suppressor molecules has a role to play in promoting adult neuron regeneration. PMID:24752312

  1. Song Decrystallization in Adult Zebra Finches Does Not Require the Song Nucleus NIf

    PubMed Central

    Roy, Arani; Mooney, Richard

    2009-01-01

    In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., crystallized) song to slowly degrade, presumably because of the resulting distortion in auditory feedback. How and where distorted feedback interacts with song motor networks to induce this process of song decrystallization remains unknown. The song premotor nucleus HVC is a potential site where auditory feedback signals could interact with song motor commands. Although the forebrain nucleus interface of the nidopallium (NIf) appears to be the primary auditory input to HVC, NIf lesions made in adult zebra finches do not trigger song decrystallization. One possibility is that NIf lesions do not interfere with song maintenance, but do compromise the adult zebra finch's ability to express renewed vocal plasticity in response to feedback perturbations. To test this idea, we bilaterally lesioned NIf and then transected the vocal nerve in adult male zebra finches. We found that bilateral NIf lesions did not prevent nerve section–induced song decrystallization. To test the extent to which the NIf lesions disrupted auditory processing in the song system, we made in vivo extracellular recordings in HVC and a downstream anterior forebrain pathway (AFP) in NIf-lesioned birds. We found strong and selective auditory responses to the playback of the birds' own song persisted in HVC and the AFP following NIf lesions. These findings suggest that auditory inputs to the song system other than NIf, such as the caudal mesopallium, could act as a source of auditory feedback signals to the song motor network. PMID:19515953

  2. Substance P immunoreactivity in the lumbar spinal cord of the turtle Trachemys dorbigni following peripheral nerve injury.

    PubMed

    Partata, W A; Krepsky, A M R; Xavier, L L; Marques, M; Achaval, M

    2003-04-01

    Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anterior funiculi. After axotomy, substance P immunoreactive fibers were reduced slightly on the side of the lesion, which was located in long fibers that invaded synaptic field III and in the varicosities of the lateral and anterior funiculus. The changes were observed at 7 days after axonal injury and persisted at 15, 30, 60 and 90 days after the lesion. These findings show that turtles should be considered as a model to study the role of substance P in peripheral axonal injury, since the distribution and temporal changes of substance P were similar to those found in mammals.

  3. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    PubMed

    Ward, Patricia J; Jones, Laura N; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C; English, Arthur W

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.

  4. Retinal genes are differentially expressed in areas of primary versus secondary degeneration following partial optic nerve injury

    PubMed Central

    Chiha, Wissam; LeVaillant, Chrisna J.; Bartlett, Carole A.; Hewitt, Alex W.; Melton, Phillip E.; Fitzgerald, Melinda

    2018-01-01

    Background Partial transection (PT) of the optic nerve is an established experimental model of secondary degeneration in the central nervous system. After a dorsal transection, retinal ganglion cells (RGCs) with axons in ventral optic nerve are intact but vulnerable to secondary degeneration, whereas RGCs in dorsal retina with dorsal axons are affected by primary and secondary injuries. Using microarray, we quantified gene expression changes in dorsal and ventral retina at 1 and 7 days post PT, to characterize pathogenic pathways linked to primary and secondary degeneration. Results In comparison to uninjured retina Cryba1, Cryba2 and Crygs, were significantly downregulated in injured dorsal retina at days 1 and 7. While Ecel1, Timp1, Mt2A and CD74, which are associated with reducing excitotoxicity, oxidative stress and inflammation, were significantly upregulated. Genes associated with oxygen binding pathways, immune responses, cytokine receptor activity and apoptosis were enriched in dorsal retina at day 1 after PT. Oxygen binding and apoptosis remained enriched at day 7, as were pathways involved in extracellular matrix modification. Fewer changes were observed in ventral retina at day 1 after PT, most associated with the regulation of protein homodimerization activity. By day 7, apoptosis, matrix organization and signal transduction pathways were enriched. Discriminant analysis was also performed for specific functional gene groups to compare expression intensities at each time point. Altered expression of selected genes (ATF3, GFAP, Ecel1, TIMP1, Tp53) and proteins (GFAP, ECEL1 and ATF3) were semi-quantitatively assessed by qRT-PCR and immunohistochemistry respectively. Conclusion There was an acute and complex primary injury response in dorsal retina indicative of a dynamic interaction between neuroprotective and neurodegenerative events; ventral retina vulnerable to secondary degeneration showed a delayed injury response. Both primary and secondary injury resulted in the upregulation of numerous genes linked to RGC death, but differences in the nature of these changes strongly suggest that death occurred via different molecular mechanisms. PMID:29425209

  5. Comparative Evaluation of Chitosan Nerve Guides with Regular or Increased Bendability for Acute and Delayed Peripheral Nerve Repair: A Comprehensive Comparison with Autologous Nerve Grafts and Muscle-in-Vein Grafts.

    PubMed

    Stößel, Maria; Wildhagen, Vivien M; Helmecke, Olaf; Metzen, Jennifer; Pfund, Charlotte B; Freier, Thomas; Haastert-Talini, Kirsten

    2018-05-08

    Reconstruction of joint-crossing digital nerves requires the application of nerve guides with a much higher flexibility than used for peripheral nerve repair along larger bones. Nevertheless, collapse-resistance should be preserved to avoid secondary damage to the regrowing nerve tissue. In recent years, we presented chitosan nerve guides (CNGs) to be highly supportive for the regeneration of critical gap length peripheral nerve defects in the rat. Now, we evidently increased the bendability of regular CNGs (regCNGs) by developing a wavy wall structure, that is, corrugated CNGs (corrCNGs). In a comprehensive in vivo study, we compared both types of CNGs with clinical gold standard autologous nerve grafts (ANGs) and muscle-in-vein grafts (MVGs) that have recently been highlighted in the literature as a suitable alternative to ANGs. We reconstructed rat sciatic nerves over a critical gap length of 15 mm either immediately upon transection or after a delay period of 45 days. Electrodiagnostic measurements were applied to monitor functional motor recovery at 60, 90, 120, and 150 (only delayed repair) days postreconstruction. Upon explanation, tube properties were analyzed. Furthermore, distal nerve ends were evaluated using histomorphometry, while connective tissue specimens were subjected to immunohistological stainings. After 120 days (acute repair) or 150 days (delayed repair), respectively, compression-stability of regCNGs was slightly increased while it remained stable in corrCNGs. In both substudies, regCNGs and corrCNGs supported functional recovery of distal plantar muscles in a similar way and to a greater extent when compared with MVGs, while ANGs demonstrated the best support of regeneration. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  6. Modified skin incision for avoiding the lesser occipital nerve and occipital artery during retrosigmoid craniotomy: potential applications for enhancing operative working distance and angles while minimizing the risk of postoperative neuralgias and intraoperative hemorrhage.

    PubMed

    Tubbs, R Shane; Fries, Fabian N; Kulwin, Charles; Mortazavi, Martin M; Loukas, Marios; Cohen-Gadol, Aaron A

    2016-10-01

    Chronic postoperative neuralgias and headache following retrosigmoid craniotomy can be uncomfortable for the patient. We aimed to better elucidate the regional nerve anatomy in an effort to minimize this postoperative complication. Ten adult cadaveric heads (20 sides) were dissected to observe the relationship between the lesser occipital nerve and a traditional linear versus modified U incision during retrosigmoid craniotomy. Additionally, the relationship between these incisions and the occipital artery were observed. The lesser occipital nerve was found to have two types of course. Type I nerves (60%) remained close to the posterior border of the sternocleidomastoid muscle and some crossed anteriorly over the sternocleidomastoid muscle near the mastoid process. Type II nerves (40%) left the posterior border of the sternocleidomastoid muscle and swung medially (up to 4.5cm posterior to the posterior border of the sternocleidomastoid muscle) as they ascended over the occiput. The lesser occipital nerve was near a midpoint of a line between the external occipital protuberance and mastoid process in all specimens with the type II nerve configuration. Based on our findings, the inverted U incision would be less likely to injure the type II nerves but would necessarily cross over type I nerves, especially more cranially on the nerve at the apex of the incision. As the more traditional linear incision would most likely transect the type I nerves and more so near their trunk, the U incision may be the overall better choice in avoiding neural and occipital artery injury during retrosigmoid approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Role of Netrin-1 Signaling in Nerve Regeneration

    PubMed Central

    Dun, Xin-Peng; Parkinson, David B.

    2017-01-01

    Netrin-1 was the first axon guidance molecule to be discovered in vertebrates and has a strong chemotropic function for axonal guidance, cell migration, morphogenesis and angiogenesis. It is a secreted axon guidance cue that can trigger attraction by binding to its canonical receptors Deleted in Colorectal Cancer (DCC) and Neogenin or repulsion through binding the DCC/Uncoordinated (Unc5) A–D receptor complex. The crystal structures of Netrin-1/receptor complexes have recently been revealed. These studies have provided a structure based explanation of Netrin-1 bi-functionality. Netrin-1 and its receptor are continuously expressed in the adult nervous system and are differentially regulated after nerve injury. In the adult spinal cord and optic nerve, Netrin-1 has been considered as an inhibitor that contributes to axon regeneration failure after injury. In the peripheral nervous system, Netrin-1 receptors are expressed in Schwann cells, the cell bodies of sensory neurons and the axons of both motor and sensory neurons. Netrin-1 is expressed in Schwann cells and its expression is up-regulated after peripheral nerve transection injury. Recent studies indicated that Netrin-1 plays a positive role in promoting peripheral nerve regeneration, Schwann cell proliferation and migration. Targeting of the Netrin-1 signaling pathway could develop novel therapeutic strategies to promote peripheral nerve regeneration and functional recovery. PMID:28245592

  8. [Peripheral facial nerve lesion induced long-term dendritic retraction in pyramidal cortico-facial neurons].

    PubMed

    Urrego, Diana; Múnera, Alejandro; Troncoso, Julieta

    2011-01-01

    Little evidence is available concerning the morphological modifications of motor cortex neurons associated with peripheral nerve injuries, and the consequences of those injuries on post lesion functional recovery. Dendritic branching of cortico-facial neurons was characterized with respect to the effects of irreversible facial nerve injury. Twenty-four adult male rats were distributed into four groups: sham (no lesion surgery), and dendritic assessment at 1, 3 and 5 weeks post surgery. Eighteen lesion animals underwent surgical transection of the mandibular and buccal branches of the facial nerve. Dendritic branching was examined by contralateral primary motor cortex slices stained with the Golgi-Cox technique. Layer V pyramidal (cortico-facial) neurons from sham and injured animals were reconstructed and their dendritic branching was compared using Sholl analysis. Animals with facial nerve lesions displayed persistent vibrissal paralysis throughout the five week observation period. Compared with control animal neurons, cortico-facial pyramidal neurons of surgically injured animals displayed shrinkage of their dendritic branches at statistically significant levels. This shrinkage persisted for at least five weeks after facial nerve injury. Irreversible facial motoneuron axonal damage induced persistent dendritic arborization shrinkage in contralateral cortico-facial neurons. This morphological reorganization may be the physiological basis of functional sequelae observed in peripheral facial palsy patients.

  9. A Physicochemically Optimized and Neuroconductive Biphasic Nerve Guidance Conduit for Peripheral Nerve Repair.

    PubMed

    Ryan, Alan J; Lackington, William A; Hibbitts, Alan J; Matheson, Austyn; Alekseeva, Tijna; Stejskalova, Anna; Roche, Phoebe; O'Brien, Fergal J

    2017-12-01

    Clinically available hollow nerve guidance conduits (NGCs) have had limited success in treating large peripheral nerve injuries. This study aims to develop a biphasic NGC combining a physicochemically optimized collagen outer conduit to bridge the transected nerve, and a neuroconductive hyaluronic acid-based luminal filler to support regeneration. The outer conduit is mechanically optimized by manipulating crosslinking and collagen density, allowing the engineering of a high wall permeability to mitigate the risk of neuroma formation, while also maintaining physiologically relevant stiffness and enzymatic degradation tuned to coincide with regeneration rates. Freeze-drying is used to seamlessly integrate the luminal filler into the conduit, creating a longitudinally aligned pore microarchitecture. The luminal stiffness is modulated to support Schwann cells, with laminin incorporation further enhancing bioactivity by improving cell attachment and metabolic activity. Additionally, this biphasic NGC is shown to support neurogenesis and gliogenesis of neural progenitor cells and axonal outgrowth from dorsal root ganglia. These findings highlight the paradigm that a successful NGC requires the concerted optimization of both a mechanical support phase capable of bridging a nerve defect and a neuroconductive phase with an architecture capable of supporting both Schwann cells and neurons in order to achieve functional regenerative outcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Injury to the Lumbar Plexus and its Branches After Lateral Fusion Procedures: A Cadaver Study.

    PubMed

    Grunert, Peter; Drazin, Doniel; Iwanaga, Joe; Schmidt, Cameron; Alonso, Fernando; Moisi, Marc; Chapman, Jens R; Oskouian, Rod J; Tubbs, Richard Shane

    2017-09-01

    Neurologic deficits from lumbar plexus nerve injuries commonly occur in patients undergoing lateral approaches. However, it is not yet clear what types of injury occur, where anatomically they are located, or what mechanism causes them. We aimed to study 1) the topographic anatomy of lumbar plexus nerves and their injuries in human cadavers after lateral transpsoas approaches to the lumbar spine, 2) the structural morphology of those injuries, and 3) the topographic anatomy of the lumbar plexus throughout the mediolateral approach corridor. Fifteen adult fresh frozen cadaveric torsos (26 sides) underwent lateral approaches (L1-L5) by experienced lateral spine surgeons. The cadavers were subsequently opened and the entire plexus dissected and examined for nerve injuries. The topographic anatomy of the lumbar plexus and its branches, their injuries, and the morphology of these injuries were documented. Fifteen injuries were found with complete or partial nerve transections (Sunderland IV and V). Injuries were found throughout the mediolateral approach corridor. At L1/2, the iliohypogastric, ilioinguinal, and subcostal nerves were injured within the psoas major muscle, the retroperitoneal space, or the outer abdominal muscles and subcutaneous tissues. Genitofemoral nerve injuries were found in the retroperitoneal space. Nerve root injuries occurred within the retroperitoneal space and psoas muscle. Femoral nerve injuries were found only within the psoas major muscle. No obturator nerve injuries occurred. Lateral approaches can lead to structural nerve damage. Knowledge of the complex plexus anatomy, specifically its mediolateral course, is critical to avoid approach-related injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effect of noxious electrical stimulation of the peroneal nerve on stretch reflex activity of the hamstring muscle in rats: possible implications of neuronal mechanisms in the development of tight hamstrings in lumbar disc herniation.

    PubMed

    Hirayama, Jiro; Yamagata, Masatsune; Takahashi, Kazuhisa; Moriya, Hideshige

    2005-05-01

    The effect of noxious electrical stimulation of the peroneal nerve on the stretch reflex electromyogram activity of the hamstring muscle (semitendinous) was studied. To verify the following hypothetical mechanisms underlying tight hamstrings in lumbar disc herniation: stretch reflex muscle activity of hamstrings is increased by painful inputs from an injured spinal nerve root and the increased stretch reflex muscle activity is maintained by central sensitization. It is reported that stretch reflex activity of the trunk muscles is induced by noxious stimulation of the sciatic nerve and maintained by central sensitization. In spinalized rats (transected spinal cord), the peroneal nerve was stimulated electrically as a conditioning stimulus. Stretch reflex electromyogram activity of the semitendinous muscle was recorded before and after the conditioning stimulus. Even after electrical stimulation was terminated, an increased stretch reflex activity of the hamstring muscle was observed. It is likely that a central sensitization mechanism at the spinal cord level was involved in the increased reflex activity. Central sensitization may play a part in the neuronal mechanisms of tight hamstrings in lumbar disc herniation.

  12. In Vitro Evaluation of Cell-Seeded Chitosan Films for Peripheral Nerve Tissue Engineering

    PubMed Central

    Wrobel, Sandra; Serra, Sofia Cristina; Ribeiro-Samy, Silvina; Sousa, Nuno; Heimann, Claudia; Barwig, Christina; Grothe, Claudia; Haastert-Talini, Kirsten

    2014-01-01

    Natural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)—immortalized, neonatal, and adult—as well as rat bone-marrow-derived mesenchymal stromal cells (BMSCs) were analyzed with regard to their cell metabolic activity, proliferation profiles, and cell morphology after different time points of mono- and cocultures on the chitosan films. Overall the results demonstrate a good cytocompatibility of the chitosan substrate. Both cell types were viable on the biomaterial and showed different metabolic activities and proliferation behavior, indicating cell-type-specific cell–biomaterial interaction. Moreover, the cell types also displayed their typical morphology. In cocultures adult SCs used the BMSCs as a feeder layer and no negative interactions between both cell types were detected. Further, the chitosan films allow neurite outgrowth from dissociated sensory neurons, which is additionally supported on film preseeded with SC-BMSC cocultures. The presented chitosan films therefore demonstrate high potential for their use in tissue-engineered nerve grafts. PMID:24606318

  13. Effects of age and insulin-like growth factor-1 on rat neurotrophin receptor expression after nerve injury.

    PubMed

    Luo, T David; Alton, Timothy B; Apel, Peter J; Cai, Jiaozhong; Barnwell, Jonathan C; Sonntag, William E; Smith, Thomas L; Li, Zhongyu

    2016-10-01

    Neurotrophin receptors, such as p75(NTR) , direct neuronal response to injury. Insulin-like growth factor-1 receptor (IGF-1R) mediates the increase in p75(NTR) during aging. The aim of this study was to examine the effect of aging and insulin-like growth factor-1 (IGF-1) treatment on recovery after peripheral nerve injury. Young and aged rats underwent tibial nerve transection with either local saline or IGF-1 treatment. Neurotrophin receptor mRNA and protein expression were quantified. Aged rats expressed elevated baseline IGF-1R (34% higher, P = 0.01) and p75(NTR) (68% higher, P < 0.01) compared with young rats. Post-injury, aged animals expressed significantly higher p75(NTR) levels (68.5% above baseline at 4 weeks). IGF-1 treatment suppressed p75(NTR) gene expression at 4 weeks (17.2% above baseline, P = 0.002) post-injury. Local IGF-1 treatment reverses age-related declines in recovery after peripheral nerve injuries by suppressing p75(NTR) upregulation and pro-apoptotic complexes. IGF-1 may be considered a viable adjuvant therapy to current treatment modalities. Muscle Nerve 54: 769-775, 2016. © 2016 Wiley Periodicals, Inc.

  14. Concise Review: Tissue-Engineered Skin and Nerve Regeneration in Burn Treatment

    PubMed Central

    Blais, Mathieu; Parenteau-Bareil, Rémi; Cadau, Sébastien

    2013-01-01

    Burns not only destroy the barrier function of the skin but also alter the perceptions of pain, temperature, and touch. Different strategies have been developed over the years to cover deep and extensive burns with the ultimate goal of regenerating the barrier function of the epidermis while recovering an acceptable aesthetic aspect. However, patients often complain about a loss of skin sensation and even cutaneous chronic pain. Cutaneous nerve regeneration can occur from the nerve endings of the wound bed, but it is often compromised by scar formation or anarchic wound healing. Restoration of pain, temperature, and touch perceptions should now be a major challenge to solve in order to improve patients' quality of life. In addition, the cutaneous nerve network has been recently highlighted to play an important role in epidermal homeostasis and may be essential at least in the early phase of wound healing through the induction of neurogenic inflammation. Although the nerve regeneration process was studied largely in the context of nerve transections, very few studies have been aimed at developing strategies to improve it in the context of cutaneous wound healing. In this concise review, we provide a description of the characteristics of and current treatments for extensive burns, including tissue-engineered skin approaches to improve cutaneous nerve regeneration, and describe prospective uses for autologous skin-derived adult stem cells to enhance recovery of the skin's sense of touch. PMID:23734060

  15. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode.

    PubMed

    MacEwan, Matthew R; Zellmer, Erik R; Wheeler, Jesse J; Burton, Harold; Moran, Daniel W

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm 2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation.

  16. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode

    PubMed Central

    MacEwan, Matthew R.; Zellmer, Erik R.; Wheeler, Jesse J.; Burton, Harold; Moran, Daniel W.

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation. PMID:28008303

  17. Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine.

    PubMed

    Steensrud, Tor; Li, Jing; Dai, Xiaojing; Manlhiot, Cedric; Kharbanda, Rajesh K; Tropak, Michael; Redington, Andrew

    2010-11-01

    We have previously shown that remote ischemic preconditioning (rIPC) by transient limb ischemia leads to the release of a circulating factor(s) that induces potent myocardial protection. Intra-arterial injection of adenosine into a limb also leads to cardioprotection, but the mechanism of its signal transduction is poorly understood. Eleven groups of rabbits received saline control or rIPC or adenosine administration with additional pretreatment with the nitric oxide (NO) synthase blocker N(G)-nitro-l-arginine methyl ester, the NO donor S-nitroso-N-acetylpenicillamine, its non-NO-donating derivative N-acetylpenicillamine, or femoral nerve section. Blood was then drawn from each animal, and the dialysate of the plasma was used to perfuse a naïve heart from an untreated donor. Infarct size was measured after 30 min of global ischemia and 120 min reperfusion. When compared with that of the control, mean infarct size was significantly smaller in groups treated with rIPC alone (P < 0.01) and intra-arterial adenosine (P < 0.01). Pretreatment with N(G)-nitro-l-arginine methyl ester or N-acetylpenicillamine did not affect the level of protection induced by rIPC (P = not significant, compared with rIPC alone) or intra-arterial adenosine (P = not significant, compared with intra-arterial adenosine alone), but prior femoral nerve transection or pretreatment with S-nitroso-N-acetylpenicillamine abolished the cardioprotective effect of intra-arterial adenosine and rIPC. Intra-arterial adenosine, like rIPC, releases a blood-borne cardioprotective factor(s) that is dependent on an intact femoral nerve and is inhibited by pretreatment with a NO donor. These results may be important when designing or assessing the results of clinical trials of adenosine or rIPC cardioprotection, where NO donors are used as part of therapy.

  18. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface

    NASA Astrophysics Data System (ADS)

    Gore, Russell K.; Choi, Yoonsu; Bellamkonda, Ravi; English, Arthur

    2015-02-01

    Objective. Neural interface technologies could provide controlling connections between the nervous system and external technologies, such as limb prosthetics. The recording of efferent, motor potentials is a critical requirement for a peripheral neural interface, as these signals represent the user-generated neural output intended to drive external devices. Our objective was to evaluate structural and functional neural regeneration through a microchannel neural interface and to characterize potentials recorded from electrodes placed within the microchannels in awake and behaving animals. Approach. Female rats were implanted with muscle EMG electrodes and, following unilateral sciatic nerve transection, the cut nerve was repaired either across a microchannel neural interface or with end-to-end surgical repair. During a 13 week recovery period, direct muscle responses to nerve stimulation proximal to the transection were monitored weekly. In two rats repaired with the neural interface, four wire electrodes were embedded in the microchannels and recordings were obtained within microchannels during proximal stimulation experiments and treadmill locomotion. Main results. In these proof-of-principle experiments, we found that axons from cut nerves were capable of functional reinnervation of distal muscle targets, whether regenerating through a microchannel device or after direct end-to-end repair. Discrete stimulation-evoked and volitional potentials were recorded within interface microchannels in a small group of awake and behaving animals and their firing patterns correlated directly with intramuscular recordings during locomotion. Of 38 potentials extracted, 19 were identified as motor axons reinnervating tibialis anterior or soleus muscles using spike triggered averaging. Significance. These results are evidence for motor axon regeneration through microchannels and are the first report of in vivo recordings from regenerated motor axons within microchannels in a small group of awake and behaving animals. These unique findings provide preliminary evidence that efferent, volitional motor potentials can be recorded from the microchannel-based peripheral neural interface; a critical requirement for any neural interface intended to facilitate direct neural control of external technologies.

  19. WITHDRAWN: H-reflex up-conditioning after sciatic nerve transection and regeneration may increase VGLUT-1 terminals and GluR2/3 immunoreactivity in spinal motoneurons.

    PubMed

    Sun, Chenyou; Wang, Yu; Chen, Xiang Yang

    2011-12-17

    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy. Copyright © 2011. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Unilateral optic nerve transection alters light response of suprachiasmatic nucleus and intergeniculate leaflet

    NASA Technical Reports Server (NTRS)

    Tang, I-Hsiung; Murakami, Dean M.; Fuller, Charles A.

    2002-01-01

    The suprachiasmatic nucleus (SCN), the circadian pacemaker, receives photic input directly from the retina to synchronize the pacemaker to the environment. Additionally, the intergeniculate leaflet (IGL), which innervates the SCN, is known to modulate the retinal photic input to the SCN. To further understand the role of the IGL in mediating the photic input to the SCN, this study examined the effects of unilateral optic nerve transection (UONx) on the photic response of the SCN and IGL in adult and neonatal hamsters. UONx led to an overall reduction in light-induced c-Fos expression in the SCN and IGL. The c-Fos expression was greater in the SCN ipsilateral to the remaining eye, despite a symmetrically bilateral retinohypothalamic tract projection as revealed by intraocular injection of horseradish peroxidase. In contrast, UONx led to a greater c-Fos expression in the contralateral IGL. The contralateral IGL of UONx animals also revealed more neuropeptide Y-immunoreactive neurons, while the ipsilateral SCN of these animals exhibited a denser neuropeptide Y terminal field. The neonates with UONx showed a similar pattern with a slight compensation of the photic-induced c-Fos in the SCN. This study suggests that the IGL may have an ipsilateral inhibitory effect in mediating retinal photic input to the SCN.

  1. Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats

    PubMed Central

    Zhang, Yu-Ting; Jin, Hui; Wang, Jun-Hua; Wen, Lan-Yu; Yang, Yang; Ruan, Jing-Wen; Zhang, Shu-Xin; Ling, Eng-Ang

    2017-01-01

    Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy. PMID:28744378

  2. New Method of Injured Nerve Repair.

    PubMed

    Korsak, Alina; Likhodiievskyi, Volodymyr; Sokurenko, Liudmyla; Chaikovsky, Yuri

    2018-07-01

     Innovative surgical techniques form the basis of therapeutic approaches to address the negative consequences of nerve damage. This study evaluated the effectiveness of nerve trunk regeneration after the use of an electrosurgical instrument by looking at the patterns of morphological changes in the injured nerve and the structural elements of the segment motor center.  The study was performed on male Wistar rats divided into four groups: group 1, control; group 2, rats with simulated sciatic nerve injury with epineural sutures; 3, rats subjected to an experimental surgical procedure using high-frequency electric welding technology; and 4, rats with simulated sciatic nerve injury without posttransection repair. To study changes in the peripheral stump of the transected nerves and L5 segments of the spinal cord, we used histologic, immunohistochemical, and morphometric methods.  At week 12 after the surgery, there were more S-100+ Schwann cells, increased expression of neurofilaments (NFs), and glial fibrillary acidic protein in the peripheral stump in group 3 than in groups 2 and 4, which indicates enhanced neurotization and myelination. Group 3 animals demonstrated reduced expression of S-100 and NFs in the motor center of the spinal cord compared with group 2 that suggests less pronounced reactive changes caused by electric welding technology.  The study showed a novel surgical method using an electrosurgical instrument in a welding mode to stimulate regeneration of the injured nerve and to cause less prominent reactive changes in its segment motor center. Georg Thieme Verlag KG Stuttgart · New York.

  3. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo.

    PubMed

    Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki; Mazda, Osam

    2017-04-01

    Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC-specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin-forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207-1216. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  4. Comparison of Direct Side-to-End and End-to-End Hypoglossal-Facial Anastomosis for Facial Nerve Repair.

    PubMed

    Samii, Madjid; Alimohamadi, Maysam; Khouzani, Reza Karimi; Rashid, Masoud Rafizadeh; Gerganov, Venelin

    2015-08-01

    The hypoglossal facial anastomosis (HFA) is the gold standard for facial reanimation in patients with severe facial nerve palsy. The major drawbacks of the classic HFA technique are lingual morbidities due to hypoglossal nerve transection. The side-to-end HFA is a modification of the classic technique with fewer tongue-related morbidities. In this study we compared the outcome of the classic end-to-end and the direct side-to-end HFA surgeries performed at our center in regards to the facial reanimation success rate and tongue-related morbidities. Twenty-six successive cases of HFA were enrolled. In 9 of them end-to-end anastomoses were performed, and 17 had direct side-to-end anastomoses. The House-Brackmann (HB) and Pitty and Tator (PT) scales were used to document surgical outcome. The hemiglossal atrophy, swallowing, and hypoglossal nerve function were assessed at follow-up. The original pathology was vestibular schwannoma in 15, meningioma in 4, brain stem glioma in 4, and other pathologies in 3. The mean interval between facial palsy and HFA was 18 months (range: 0-60). The median follow-up period was 20 months. The PT grade at follow-up was worse in patients with a longer interval from facial palsy and HFA (P value: 0.041). The lesion type was the only other factor that affected PT grade (the best results in vestibular schwannoma and the worst in the other pathologies group, P value: 0.038). The recovery period for facial tonicity was longer in patients with radiation therapy before HFA (13.5 vs. 8.5 months) and those with a longer than 2-year interval from facial palsy to HFA (13.5 vs. 8.5 months). Although no significant difference between the side-to-end and the end-to-end groups was seen in terms of facial nerve functional recovery, patients from the side-to-end group had a significantly lower rate of lingual morbidities (tongue hemiatrophy: 100% vs. 5.8%, swallowing difficulty: 55% vs. 11.7%, speech disorder 33% vs. 0%). With the side-to-end HFA technique the functional restoration outcome is at least as good as that following the classic end-to-end HFA, but the complications related to the complete hypoglossal nerve transection can be avoided. Best results are achieved if this procedure is performed within the first 2 years after facial nerve injury. Patients with facial palsy of longer duration also have the chance for good functional restoration after HFA. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. OPTIC NERVE INFILTRATION BY RETINOBLASTOMA: Predictive Clinical Features and Outcome.

    PubMed

    Kaliki, Swathi; Tahiliani, Prerana; Mishra, Dilip K; Srinivasan, Visweswaran; Ali, Mohammed Hasnat; Reddy, Vijay Anand P

    2016-06-01

    To identify the clinical features predictive of any optic nerve infiltration and postlaminar optic nerve infiltration by retinoblastoma on histopathology and to report the outcome (metastasis and death) in these patients. Retrospective study. Of the 403 patients who underwent primary enucleation for retinoblastoma, 196 patients had optic nerve tumor infiltration (Group 1) and 207 patients had no evidence of optic nerve tumor infiltration (Group 2). Group 1 included patients with prelaminar (n = 47; 24%), laminar (n = 74; 38%), and postlaminar tumor infiltration with or without involving optic nerve transection (n = 74; 38%). Comparing Group 1 and Group 2, the patients in Group 1 had prolonged duration of symptoms (>6 months) (16% vs. 8%; P = 0.02) and were associated with no vision at presentation (23% vs. 10%; P = 0.01), higher rates of secondary glaucoma (42% vs. 12%; P < 0.0001), iris neovascularization (39% vs. 23%; P < 0.001), and larger tumors (mean tumor thickness, 12.8 mm vs. 12 mm; P = 0.0001). There was a higher prevalence of metastasis in Group 1 than in Group 2 (4% vs. 0%; P = 0.006). On multivariate analysis, clinical features predictive of any optic nerve tumor infiltration secondary glaucoma (hazard ratio = 5.38; P < 0.001) and those predictive of postlaminar optic nerve tumor infiltration included iris neovascularization (hazard ratio = 2.66; P = 0.001) and secondary glaucoma (hazard ratio = 3.13; P < 0.001). In this study, clinical features predictive of any optic nerve tumor infiltration included secondary glaucoma and those predictive of postlaminar optic nerve tumor infiltration included iris neovascularization and secondary glaucoma. Despite adjuvant treatment in those with postlaminar optic nerve tumor infiltration, metastasis occurred in 8% of patients.

  6. Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues

    PubMed Central

    Aurrekoetxea, Maitane; Garcia-Gallastegui, Patricia; Irastorza, Igor; Luzuriaga, Jon; Uribe-Etxebarria, Verónica; Unda, Fernando; Ibarretxe, Gaskon

    2015-01-01

    Dental pulp stem cells, or DPSC, are neural crest-derived cells with an outstanding capacity to differentiate along multiple cell lineages of interest for cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of DPSC can be achieved using simple in vitro protocols, making these cells a very attractive and promising tool for the future treatment of dental and periodontal diseases. Among craniomaxillofacial organs, the tooth and salivary gland are two such cases in which complete regeneration by tissue engineering using DPSC appears to be possible, as research over the last decade has made substantial progress in experimental models of partial or total regeneration of both organs, by cell recombination technology. Moreover, DPSC seem to be a particularly good choice for the regeneration of nerve tissues, including injured or transected cranial nerves. In this context, the oral cavity appears to be an excellent testing ground for new regenerative therapies using DPSC. However, many issues and challenges need yet to be addressed before these cells can be employed in clinical therapy. In this review, we point out some important aspects on the biology of DPSC with regard to their use for the reconstruction of different craniomaxillofacial tissues and organs, with special emphasis on cranial bones, nerves, teeth, and salivary glands. We suggest new ideas and strategies to fully exploit the capacities of DPSC for bioengineering of the aforementioned tissues. PMID:26528190

  7. High-Frequency Electrical Modulation of the Superior Ovarian Nerve as a Treatment of Polycystic Ovary Syndrome in the Rat.

    PubMed

    Pikov, Victor; Sridhar, Arun; Lara, Hernan E

    2018-01-01

    The polycystic ovary syndrome (PCOS) is the most prevalent ovarian pathology in women, with excessive sympathetic activity in the superior ovarian nerve (SON) playing an important role in inducing the PCOS symptoms in the rats and humans. Our previous studies have shown that surgical transection of the SON can reverse the disease progression, prompting us to explore the effect of the kilohertz frequency alternating current (KHFAC) modulation as a method of reversible non-surgical suppression of the nerve activity in the rodent model of PCOS. 56 animals were randomly allocated to three groups: the Control group ( n = 18), the PCOS group ( n = 15), and the PCOS + KHFAC group ( n = 23). The physiological, anatomical, and biochemical parameters of ovarian function were evaluated during the progression of the experimentally-induced PCOS and during long-term KHFAC modulation applied for 2-3 weeks. The KHFAC modulation has been able to reverse the pathological changes in assessed PCOS parameters, namely the irregular or absent estrous cycling, formation of ovarian cysts, reduction in the number of corpora lutea, and ovarian norepinephrine concentration. The fertility capacity was similar in the PCOS and the PCOS + KHFAC groups, indicating the safety of KHFAC modulation approach. In summary, these results suggest that the KHFAC modulation approach of suppressing the SON activity could become a useful treatment modality for PCOS and potentially other pathological ovarian conditions.

  8. Limits to the capacity of transplants of olfactory glia to promote axonal regrowth in the CNS.

    PubMed

    Gudiño-Cabrera, G; Pastor, A M; de la Cruz, R R; Delgado-García, J M; Nieto-Sampedro, M

    2000-02-28

    Olfactory bulb ensheathing cell (OBEC) transplants promoted axonal regeneration in the spinal cord dorsal root entry zone and in the corticospinal tract. However, OBECs failed to promote abducens internuclear neuron axon regeneration when transplanted at the site of nerve fibre transection. In experiments performed in both cats and rats, OBECs survived for up to 2 months, lining themselves up along the portion of the regrowing axons proximal to the interneuron cell body. However, OBECs migrated preferentially towards abducens somata, in the direction opposite to the oculomotor nucleus target. OBECs seem to promote nerve fibre regeneration only where preferred direction of glial migration coincides with the direction of axonal growth towards its target.

  9. Poly(D,L-Lactide-Co-Glycolide) Tubes With Multifilament Chitosan Yarn or Chitosan Sponge Core in Nerve Regeneration.

    PubMed

    Wlaszczuk, Adam; Marcol, Wiesław; Kucharska, Magdalena; Wawro, Dariusz; Palen, Piotr; Lewin-Kowalik, Joanna

    2016-11-01

    The influence of different kinds of nerve guidance conduits on regeneration of totally transected rat sciatic nerves through a 7-mm gap was examined. Five different types of conduits made of chitosan and poly(D,L-lactide-co-glycolide) (PLGA) were constructed and tested in vivo. We divided 50 animals into equal groups of 10, with a different type of conduit implanted in each group: chitosan sponge core with an average molecular mass of polymer (Mv) of 287 kDa with 7 channels in a PLGA sleeve, chitosan sponge core with an Mv of 423 kDa with 7 channels in a PLGA sleeve, chitosan sponge core (Mv, 423 kDa) with 13 channels in a PLGA sleeve, chitosan multifilament yarn in a PLGA sleeve, and a PLGA sleeve only. Seven weeks after the operation, we examined the distance covered by regenerating nerve fibers, growing of nerves into the conduit's core, and intensity and type of inflammatory reaction in the conduit, as well as autotomy behavior (reflecting neuropathic pain intensity) in the animals. Two types of conduits were allowing nerve outgrowth through the gap with minor autotomy and minor inflammatory reactions. These were the conduits with chitosan multifilament yarn in a PLGA sleeve and the conduits with 13-channel microcrystalline chitosan sponge in a PLGA sleeve. The type of chitosan used to build the nerve guidance conduit influences the intensity and character of inflammatory reaction present during nerve regeneration, which in turn affects the distance crossed by regenerating nerve fibers, growing of the nerve fibers into the conduit's core, and the intensity of autotomy in the animals. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Selective reinnervation: a comparison of recovery following microsuture and conduit nerve repair.

    PubMed

    Evans, P J; Bain, J R; Mackinnon, S E; Makino, A P; Hunter, D A

    1991-09-20

    Selective reinnervation was studied by comparing the regeneration across a conventional neurorraphy versus a conduit nerve repair. Lewis rats underwent right sciatic nerve transection followed by one of four different nerve repairs (n = 8/group). In groups I and II a conventional neurorraphy was performed and in groups III and IV the proximal and distal stumps were coapted by use of a silicone conduit with an interstump gap of 5 mm. The proximal and distal stumps in groups I and III were aligned anatomically correct and the proximal stump was rotated 180 degrees in groups II and IV (i.e. proximal peroneal nerve opposite the distal tibial nerve and the proximal tibial nerve opposite the distal peroneal nerve). By 14 weeks, there was an equivalent, but incomplete return in sciatic function index (SFI) in groups I, III, and IV as measured by walking track analysis. However, the SFI became unmeasurable by 6 weeks in all group II animals. At 14 weeks, the percent innervation of the tibialis anterior and medial gastronemius muscles by the peroneal and tibial nerves respectively was estimated by selective compound muscle action potential amplitude recordings. When fascicular alignment was reversed, there was greater tibial (P = 0.02) and lesser peroneal (P = 0.005) innervation of the gastrocnemius muscle in the conduit (group IV) versus the neurorraphy (group II) group. This suggests that the gastrocnemius muscle may be selectively reinnervated by the tibial nerve. However, there was no evidence of selective reinnervation of the tibialis anterior muscle. Despite these differences, the functional recovery in both conduit repair groups (III and IV) was equivalent to a correctly aligned microsuture repair (group I) and superior to that in the incorrectly aligned microsuture repair (group II).

  11. Neuroprotection and reduction of glial reaction by cannabidiol treatment after sciatic nerve transection in neonatal rats.

    PubMed

    Perez, Matheus; Benitez, Suzana U; Cartarozzi, Luciana P; Del Bel, Elaine; Guimarães, Francisco S; Oliveira, Alexandre L R

    2013-11-01

    In neonatal rats, the transection of a peripheral nerve leads to an intense retrograde degeneration of both motor and sensory neurons. Most of the axotomy-induced neuronal loss is a result of apoptotic processes. The clinical use of neurotrophic factors is difficult due to side effects and elevated costs, but other molecules might be effective and more easily obtained. Among them, some are derived from Cannabis sativa. Cannabidiol (CBD) is the major non-psychotropic component found on the surface of such plant leaves. The present study aimed to investigate the neuroprotective potential of CBD. Thus, 2-day-old Wistar rats were divided into the following experimental groups: sciatic nerve axotomy + CBD treatment (CBD group), axotomy + vehicle treatment (phosphate buffer group) and a control group (no-treatment group). The results were analysed by Nissl staining, immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling at 5 days post-lesion. Neuronal counting revealed both motor and sensory neuron rescue following treatment with CBD (15 and 30 mg/kg). Immunohistochemical analysis (obtained by synaptophysin staining) revealed 30% greater synaptic preservation within the spinal cord in the CBD-treated group. CBD administration decreased the astroglial and microglial reaction by 30 and 27%, respectively, as seen by glial fibrillary acidic protein and ionised calcium binding adaptor molecule 1 immunolabeling quantification. In line with such results, the terminal deoxynucleotidyl transferase dUTP nick end labeling reaction revealed a reduction of apoptotic cells, mostly located in the spinal cord intermediate zone, where interneurons promote sensory-motor integration. The present results show that CBD possesses neuroprotective characteristics that may, in turn, be promising for future clinical use. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain

    PubMed Central

    Kim, Donghoon; You, Byunghyun; Jo, Eun-Kyeong; Han, Sang-Kyou; Simon, Melvin I.; Lee, Sung Joong

    2010-01-01

    Increasing evidence supports the notion that spinal cord microglia activation plays a causal role in the development of neuropathic pain after peripheral nerve injury; yet the mechanisms for microglia activation remain elusive. Here, we provide evidence that NADPH oxidase 2 (Nox2)-derived ROS production plays a critical role in nerve injury-induced spinal cord microglia activation and subsequent pain hypersensitivity. Nox2 expression was induced in dorsal horn microglia immediately after L5 spinal nerve transection (SNT). Studies using Nox2-deficient mice show that Nox2 is required for SNT-induced ROS generation, microglia activation, and proinflammatory cytokine expression in the spinal cord. SNT-induced mechanical allodynia and thermal hyperalgesia were similarly attenuated in Nox2-deficient mice. In addition, reducing microglial ROS level via intrathecal sulforaphane administration attenuated mechanical allodynia and thermal hyperalgesia in SNT-injured mice. Sulforaphane also inhibited SNT-induced proinflammatory gene expression in microglia, and studies using primary microglia indicate that ROS generation is required for proinflammatory gene expression in microglia. These studies delineate a pathway involving nerve damage leading to microglial Nox2-generated ROS, resulting in the expression of proinflammatory cytokines that are involved in the initiation of neuropathic pain. PMID:20679217

  13. Non-invasive peripheral nerve stimulation via focused ultrasound in vivo

    NASA Astrophysics Data System (ADS)

    Downs, Matthew E.; Lee, Stephen A.; Yang, Georgiana; Kim, Seaok; Wang, Qi; Konofagou, Elisa E.

    2018-02-01

    Focused ultrasound (FUS) has been employed on a wide range of clinical applications to safely and non-invasively achieve desired effects that have previously required invasive and lengthy procedures with conventional methods. Conventional electrical neuromodulation therapies that are applied to the peripheral nervous system (PNS) are invasive and/or non-specific. Recently, focused ultrasound has demonstrated the ability to modulate the central nervous system and ex vivo peripheral neurons. Here, for the first time, noninvasive stimulation of the sciatic nerve eliciting a physiological response in vivo is demonstrated with FUS. FUS was applied on the sciatic nerve in mice with simultaneous electromyography (EMG) on the tibialis anterior muscle. EMG signals were detected during or directly after ultrasound stimulation along with observable muscle contraction of the hind limb. Transecting the sciatic nerve downstream of FUS stimulation eliminated EMG activity during FUS stimulation. Peak-to-peak EMG response amplitudes and latency were found to be comparable to conventional electrical stimulation methods. Histology along with behavioral and thermal testing did not indicate damage to the nerve or surrounding regions. The findings presented herein demonstrate that FUS can serve as a targeted, safe and non-invasive alternative to conventional peripheral nervous system stimulation to treat peripheral neuropathic diseases in the clinic.

  14. Focal release of neurotrophic factors by biodegradable microspheres enhance motor and sensory axonal regeneration in vitro and in vivo.

    PubMed

    Santos, Daniel; Giudetti, Guido; Micera, Silvestro; Navarro, Xavier; Del Valle, Jaume

    2016-04-01

    Neurotrophic factors (NTFs) promote nerve regeneration and neuronal survival after peripheral nerve injury. However, drawbacks related with administration and bioactivity during long periods limit their therapeutic application. In this study, PLGA microspheres (MPs) were used to locally release different NTFs and evaluate whether they accelerate axonal regeneration in comparison with free NTFs or controls. ELISA, SEM, UV/visible light microscopy, organotypic cultures of DRG explants and spinal cord slices were used to characterize MP properties and the bioactivity of the released NTFs. Results of organotypic cultures showed that encapsulated NTFs maintain longer bioactivity and enhance neurite regeneration of both sensory and motor neurons compared with free NTFs. For in vivo assays, the rat sciatic nerve was transected and repaired with a silicone tube filled with collagen gel or collagen mixed with PBS encapsulated MPs (control groups) and with free or encapsulated NGF, BDNF, GDNF or FGF-2. After 20 days, a retrotracer was applied to the regenerated nerve to quantify motor and sensory axonal regeneration. NTF encapsulation in MPs improved regeneration of both motor and sensory axons, as evidenced by increased numbers of retrolabeled neurons. Hence, our results show that slow release of NTFs with PLGA MP enhance nerve regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electrically stimulated signals from a long-term Regenerative Peripheral Nerve Interface.

    PubMed

    Langhals, Nicholas B; Woo, Shoshana L; Moon, Jana D; Larson, John V; Leach, Michelle K; Cederna, Paul S; Urbanchek, Melanie G

    2014-01-01

    Despite modern technological advances, the most widely available prostheses provide little functional recovery beyond basic grasping. Although sophisticated upper extremity prostheses are available, optimal prosthetic interfaces which give patients high-fidelity control of these artificial limbs are limited. We have developed a novel Regenerative Peripheral Nerve Interface (RPNI), which consists of a unit of free muscle that has been neurotized by a transected peripheral nerve. In conjunction with a biocompatible electrode on the muscle surface, the RPNI facilitates signal transduction from a residual peripheral nerve to a neuroprosthetic limb. The purpose of this study was to explore signal quality and reliability in an RPNI following an extended period of implantation. Following a 14-month maturation period, electromyographic signal generation was evaluated via electrical stimulation of the innervating nerve. The long-term RPNI was viable and healthy, as demonstrated by evoked compound muscle action potentials as well as histological tissue analysis. Signals exceeding 4 mV were successfully acquired and amplitudes were consistent across multiple repetitions of applied stimuli. There were no evident signs of muscle denervation, significant scar tissue, or muscle necrosis. This study provides further evidence that after a maturation period exceeding 1 year, reliable and consistent signals can still be acquired from an RPNI.

  16. Nerve Fiber Flux Analysis Using Wide-Field Swept-Source Optical Coherence Tomography.

    PubMed

    Tan, Ou; Liu, Liang; Liu, Li; Huang, David

    2018-02-01

    To devise a method to quantify nerve fibers over their arcuate courses over an extended peripapillary area using optical coherence tomography (OCT). Participants were imaged with 8 × 8-mm volumetric OCT scans centered at the optic disc. A new quantity, nerve fiber flux (NFF), represents the cross-sectional area transected perpendicular to the nerve fibers. The peripapillary area was divided into 64 tracks with equal flux. An iterative algorithm traced the trajectory of the tracks assuming that the relative distribution of the NFF was conserved with compensation for fiber connections to ganglion cells on the macular side. Average trajectory was averaged from normal eyes and use to calculate the NFF maps for glaucomatous eyes. The NFF maps were divided into eight sectors that correspond to visual field regions. There were 24 healthy and 10 glaucomatous eyes enrolled. The algorithm converged on similar patterns of NFL tracks for all healthy eyes. In glaucomatous eyes, NFF correlated with visual field sensitivity in the arcuate sectors (Spearman ρ = 0.53-0.62). Focal nerve fiber loss in glaucomatous eyes appeared as uniform tracks of NFF defects that followed the expected arcuate fiber trajectory. Using an algorithm based on the conservation of flux, we derived nerve fiber trajectories in the peripapillary area. The NFF map is useful for the visualization of focal defects and quantification of sector nerve fiber loss from wide-area volumetric OCT scans. NFF provides a cumulative measure of volumetric loss along nerve fiber tracks and could improve the detection of focal glaucoma damage.

  17. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery

    PubMed Central

    Hirata, Maki; Nakajima, Nobuyuki; Saito, Kosuke; Hashimoto, Hiroyuki; Soeda, Shuichi; Uchiyama, Yoshiyasu; Watanabe, Masahiko

    2016-01-01

    Losses in vital functions of the somatic motor and sensory nervous system are induced by severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions, whereas the prognosis is not always favorable. Here, we use human skeletal muscle-derived stem cells (Sk-SCs) to reconstitute the function after long nerve-gap injury. Muscles samples were obtained from the amputated legs from 9 patients following unforeseen accidents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as CD34+/45- (Sk-34) and CD34-/45-/29+ (Sk-DN/29+) cells. Cells were separately cultured/expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice sciatic nerve long-gap model (7-mm) bridging an acellular conduit. After 8–12 weeks, active cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferential differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation of the myelin sheath and perineurium/endoneurium surrounding regenerated axons, resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and endothelial cells) were also observed. A significant tetanic tension recovery (over 90%) of downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of the gap) was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon) and functional (80% vs. 60% in tetanus) recovery than control were observed. Noteworthy, significant increase in the formation of vascular networks in the conduit during the early stage (first 2 weeks) of recovery was observed in both groups with the expression of key factors (mRNA and protein levels), suggesting the paracrine effects to angiogenesis. These results suggested that the human Sk-SCs may be a practical source for autologous stem cell therapy following severe peripheral nerve injury. PMID:27846318

  18. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery.

    PubMed

    Tamaki, Tetsuro; Hirata, Maki; Nakajima, Nobuyuki; Saito, Kosuke; Hashimoto, Hiroyuki; Soeda, Shuichi; Uchiyama, Yoshiyasu; Watanabe, Masahiko

    2016-01-01

    Losses in vital functions of the somatic motor and sensory nervous system are induced by severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions, whereas the prognosis is not always favorable. Here, we use human skeletal muscle-derived stem cells (Sk-SCs) to reconstitute the function after long nerve-gap injury. Muscles samples were obtained from the amputated legs from 9 patients following unforeseen accidents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as CD34+/45- (Sk-34) and CD34-/45-/29+ (Sk-DN/29+) cells. Cells were separately cultured/expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice sciatic nerve long-gap model (7-mm) bridging an acellular conduit. After 8-12 weeks, active cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferential differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation of the myelin sheath and perineurium/endoneurium surrounding regenerated axons, resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and endothelial cells) were also observed. A significant tetanic tension recovery (over 90%) of downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of the gap) was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon) and functional (80% vs. 60% in tetanus) recovery than control were observed. Noteworthy, significant increase in the formation of vascular networks in the conduit during the early stage (first 2 weeks) of recovery was observed in both groups with the expression of key factors (mRNA and protein levels), suggesting the paracrine effects to angiogenesis. These results suggested that the human Sk-SCs may be a practical source for autologous stem cell therapy following severe peripheral nerve injury.

  19. Quantitative anatomical and behavioral analyses of regeneration and collateral sprouting following spinal cord transection in the nurse shark (ginglymostoma cirratum).

    PubMed

    Gelderd, J B

    1979-01-01

    The spinal cord was transected at the mid-thoracic level in 32 nurse sharks. Four animals per group were sacrificed at intervals of 10, 20, 30, 40, 60 and 90 days postoperative. Two groups of fish underwent a subsequent spinla1 cord retransection at the same site at 90 days and were sacrificed 10 and 20 days later. Three sections of spinal cord were removed from each shark for histological analysis. Behaviorally, timed trials for swimming speed and a strength test for axial musculature contraction caudal to the lesion site were performed at 5 day postoperative intervals. Histological analysis showed little regeneration (9-13 percent) of two descending tracts 90 days following the lesion and no return of rostrally controlled movements caudal to the lesion. However, synaptic readjustment did occur caudal to the lesion. This phenomenon was attributed to local segmental sprouting of adjacent, intact nerve fibers. A close correlation was shown between this synaptic readjustment and the strength of uncontrollable undulatory movements seen caudal to the lesion site following spinal cord transection. The relationship of regeneration and collateral sprouting to quantitative behavioral changes is discussed.

  20. Vocal fold paralysis: improved adductor recovery by vincristine blockade of posterior cricoarytenoid.

    PubMed

    Paniello, Randal C

    2015-03-01

    A new treatment for acute unilateral vocal-fold paralysis (UVFP) was proposed in which a drug is injected into the posterior cricoarytenoid muscle (PCA) shortly after nerve injury, before the degree of natural recovery is known, to prevent antagonistic synkinetic reinnervation. This concept was tested in a series of canine experiments using vincristine as the blocking agent. Animal experiments. Laryngeal adductor function was measured at baseline and at 6 months following experimental recurrent laryngeal nerve (RLN) injuries, including complete transection, crush injury, and cautery. In the treatment animals, the PCA was injected with vincristine at the time of RLN injury. Adductor function in the vincristine-treated hemilarynges was significantly improved compared with injury-matched noninjected controls (total n = 43). Transection/repair controls recovered 56.1% of original adductor strength; vincristine-treated hemilarynges recovered to 73.1% (P = 0.002). Cautery injuries also improved with vincristine block (60.7% vs. 88.7%; P = 0.031). Crush injuries recovered well even without vincristine (104.8% vs. 111.2%; P = 0.35). These findings support a new paradigm of early, preemptive blockade of the antagonist muscle (PCA) to improve ultimate net adductor strength, which could potentially improve functional recovery in many UVFP patients and avoid the need for medialization procedures. Possible clinical aspects of this new approach are discussed. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.

    PubMed

    Bennett, D J; Sanelli, L; Cooke, C L; Harvey, P J; Gorassini, M A

    2004-05-01

    Following chronic sacral spinal cord transection in rats the affected tail muscles exhibit marked spasticity, with characteristic long-lasting tail spasms evoked by mild stimulation. The purpose of the present paper was to characterize the long-lasting reflex seen in tail muscles in response to electrical stimulation of the tail nerves in the awake spastic rat, including its development with time and relation to spasticity. Before and after sacral spinal transection, surface electrodes were placed on the tail for electrical stimulation of the caudal nerve trunk (mixed nerve) and for recording EMG from segmental tail muscles. In normal and acute spinal rats caudal nerve trunk stimulation evoked little or no EMG reflex. By 2 wk after injury, the same stimulation evoked long-lasting reflexes that were 1) very low threshold, 2) evoked from rest without prior EMG activity, 3) of polysynaptic latency with >6 ms central delay, 4) about 2 s long, and 5) enhanced by repeated stimulation (windup). These reflexes produced powerful whole tail contractions (spasms) and developed gradually over the weeks after the injury (< or =52 wk tested), in close parallel to the development of spasticity. Pure low-threshold cutaneous stimulation, from electrical stimulation of the tip of the tail, also evoked long-lasting spastic reflexes, not seen in acute spinal or normal rats. In acute spinal rats a strong C-fiber stimulation of the tip of the tail (20 x T) could evoke a weak EMG response lasting about 1 s. Interestingly, when this C-fiber stimulation was used as a conditioning stimulation to depolarize the motoneuron pool in acute spinal rats, a subsequent low-threshold stimulation of the caudal nerve trunk evoked a 300-500 ms long reflex, similar to the onset of the long-lasting reflex in chronic spinal rats. A similar conditioned reflex was not seen in normal rats. Thus there is an unusually long low-threshold polysynaptic input to the motoneurons (pEPSP) that is normally inhibited by descending control. This pEPSP is released from inhibition immediately after injury but does not produce a long-lasting reflex because of a lack of motoneuron excitability. With chronic injury the motoneuron excitability is increased markedly, and the pEPSP then triggers sustained motoneuron discharges associated with long-lasting reflexes and muscle spasms.

  2. Transection versus preservation of the neurovascular bundle of the lesser omentum in primary Roux-en-Y gastric bypass surgery.

    PubMed

    van Wezenbeek, Martin R; van Oudheusden, Thijs R; Smulders, J Frans; Nienhuijs, Simon W; Luyer, Misha D

    2016-02-01

    A gastric pouch in Roux-en-Y gastric bypass (RYGB) surgery can be created after transection of the perigastric neurovascular bundle or by preserving these structures. Some surgeons choose to transect the neurovascular bundle (NBT), containing branches of the vagus nerve, because this might be related to additional weight loss, whereas others advocate preservation (NBP) to reduce postoperative complications. This study assessed the effect of both techniques after primary RYGB. All patients undergoing primary RYGB in a large bariatric center in the Netherlands between January 2010 and December 2013 were included. Patient demographic characteristics, operative details, postoperative complications and weight loss after 1 year were retrospectively analyzed. A total of 773 consecutive patients were included (85.5% female). NBT was performed in 407 patients (52.7%), whereas NBP was performed in 366 patients. There were no missing data and 81.2% of patients completed the 1-year follow-up. Postoperative complications were found in 66 patients (8.5%). A total of 49 patients (6.3%) either had an anastomotic leakage, postoperative bleeding, or intraabdominal abscess (NBT 8.8% versus NBP 3.6%, P = .003). Percentage total weight loss (NBT 34.5%±6.9% versus NBP 33.4%±6.9%; P = .011) differed to a lesser extent between groups, although this was significant. Neurovascular bundle transection was identified as independent factor among others for occurrence of leakage, bleeding, and abscess development (OR 2.886; 95% CI [1.466-5.683]; P = .002). Transection of the neurovascular bundle in RYGB is associated with more complications. Furthermore, weight loss is not relevantly increased. Further research is necessitated to substantiate these findings. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  3. Investigation of the Expression of Myogenic Transcription Factors, microRNAs and Muscle-Specific E3 Ubiquitin Ligases in the Medial Gastrocnemius and Soleus Muscles following Peripheral Nerve Injury

    PubMed Central

    Wiberg, Rebecca; Jonsson, Samuel; Novikova, Liudmila N.; Kingham, Paul J.

    2015-01-01

    Despite surgical innovation, the sensory and motor outcome after a peripheral nerve injury remains incomplete. One contributing factor to the poor outcome is prolonged denervation of the target organ, leading to apoptosis of both mature myofibres and satellite cells with subsequent replacement of the muscle tissue with fibrotic scar and adipose tissue. In this study, we investigated the expression of myogenic transcription factors, muscle specific microRNAs and muscle-specific E3 ubiquitin ligases at several time points following denervation in two different muscles, the gastrocnemius (containing predominantly fast type fibres) and soleus (slow type) muscles, since these molecules may influence the degree of atrophy following denervation. Both muscles exhibited significant atrophy (compared with the contra-lateral sides) at 7 days following either a nerve transection or crush injury. In the crush model, the soleus muscle showed significantly increased muscle weights at days 14 and 28 which was not the case for the gastrocnemius muscle which continued to atrophy. There was a significantly more pronounced up-regulation of MyoD expression in the denervated soleus muscle compared with the gastrocnemius muscle. Conversely, myogenin was more markedly elevated in the gastrocnemius versus soleus muscles. The muscles also showed significantly contrasting transcriptional regulation of the microRNAs miR-1 and miR-206. MuRF1 and Atrogin-1 showed the highest levels of expression in the denervated gastrocnemius muscle. This study provides further insights regarding the intracellular regulatory molecules that generate and maintain distinct patterns of gene expression in different fibre types following peripheral nerve injury. PMID:26691660

  4. Neuropathy-induced spinal GAP-43 expression is not a main player in the onset of mechanical pain hypersensitivity.

    PubMed

    Jaken, Robby J; van Gorp, Sebastiaan; Joosten, Elbert A; Losen, Mario; Martínez-Martínez, Pilar; De Baets, Marc; Marcus, Marco A; Deumens, Ronald

    2011-12-01

    Structural plasticity within the spinal nociceptive network may be fundamental to the chronic nature of neuropathic pain. In the present study, the spatiotemporal expression of growth-associated protein-43 (GAP-43), a protein which has been traditionally implicated in nerve fiber growth and sprouting, was investigated in relation to mechanical pain hypersensitivity. An L5 spinal nerve transection model was validated by the presence of mechanical pain hypersensitivity and an increase in the early neuronal activation marker cFos within the superficial spinal dorsal horn upon innocuous hindpaw stimulation. Spinal GAP-43 was found to be upregulated in the superficial L5 dorsal horn from 5 up to 10 days after injury. GAP-43 was co-localized with calcitonin-gene related peptide (CGRP), but not vesicular glutamate transporter-1 (VGLUT-1), IB4, or protein kinase-γ (PKC-γ), suggesting the regulation of GAP-43 in peptidergic nociceptive afferents. These GAP-43/CGRP fibers may be indicative of sprouting peptidergic fibers. Fiber sprouting largely depends on growth factors, which are typically associated with neuro-inflammatory processes. The putative role of neuropathy-induced GAP-43 expression in the development of mechanical pain hypersensitivity was investigated using the immune modulator propentofylline. Propentofylline treatment strongly attenuated the development of mechanical pain hypersensitivity and glial responses to nerve injury as measured by microglial and astroglial markers, but did not affect neuropathy-induced levels of spinal GAP-43 or GAP-43 regulation in CGRP fibers. We conclude that nerve injury induces structural plasticity in fibers expressing CGRP, which is regarded as a main player in central sensitization. Our data do not, however, support a major role of these structural changes in the onset of mechanical pain hypersensitivity.

  5. Acetaminophen and non-steroidal anti-inflammatory drugs interact with morphine and tramadol analgesia for the treatment of neuropathic pain in rats.

    PubMed

    Shinozaki, Tomonari; Yamada, Toshihiko; Nonaka, Takahiro; Yamamoto, Tatsuo

    2015-06-01

    Although non-steroidal anti-inflammatory drugs and acetaminophen have no proven efficacy against neuropathic pain, they are frequently prescribed for neuropathic pain patients. We examined whether the combination of opioids (tramadol and morphine) with indomethacin or acetaminophen produce favorable effects on neuropathic pain and compared the efficacy for neuropathic pain with that for inflammatory pain. The carrageenan model was used as the inflammatory pain model while the tibial neuroma transposition (TNT) model was used as the neuropathic pain model. The tibial nerve is transected in the TNT model, with the tibial nerve stump then transpositioned to the lateral aspect of the hindlimb. Neuropathic pain (mechanical allodynia and neuroma pain) is observed after TNT injury. Drugs were administered orally. In the carrageenan model, all drugs produced anti-allodynic effects and all drug combinations, but not tramadol + indomethacin combination, produced synergistic anti-allodynic effects. In the TNT model, tramadol and morphine, but not acetaminophen and indomethacin, produced anti-neuropathic pain effects. In the combination, with the exception of morphine + acetaminophen combination, both acetaminophen and indomethacin reduced the 50% effective dose (ED50) of tramadol and morphine as compared with the ED50s for the single drug study in the TNT model. The ED50s of tramadol and morphine in the carrageenan combination test were not statistically significantly different from the ED50s in the TNT model combination study. The combination of opioids with indomethacin or acetaminophen produced a synergistic analgesic effect both in inflammatory and neuropathic pain with some exceptions. The efficacy of these combinations for neuropathic pain was not different from that for inflammatory pain.

  6. Denervation affects regenerative responses in MRL/MpJ and repair in C57BL/6 ear wounds

    PubMed Central

    Buckley, Gemma; Wong, Jason; Metcalfe, Anthony D; Ferguson, Mark W J

    2012-01-01

    The MRL/MpJ mouse displays the rare ability amongst mammals to heal injured ear tissue without scarring. Numerous studies have shown that the formation of a blastema-like structure leads to subsequent tissue regeneration in this model, indicating many parallels with amphibian limb regeneration and mammalian embryogenesis. We have recently shown that the MRL/MpJ mouse also possesses an enhanced capacity for peripheral nerve regeneration within the ear wound. Indeed, nerves are vital for the initial phase of blastema formation in the amphibian limb. In this study we investigated the capacity for wound regeneration in a denervated ear. The left ears of MRL/MpJ mice and C57BL/6 (a control strain known to have a poorer regenerative capacity) were surgically denervated at the base via an incision and nerve transection, immediately followed by a 2-mm ear punch wound. Immunohistochemical analysis showed a lack of neurofilament expression in the denervated ear wound. Histology revealed that denervation prevented blastema formation and chrondrogenesis, and also severely hindered normal healing, with disrupted re-epithelialisation, increasing wound size and progressive necrosis towards the ear tip. Denervation of the ear obliterated the regenerative capacity of the MRL/MpJ mouse, and also had a severe negative effect on the ear wound repair mechanisms of the C57BL/6 strain. These data suggest that innervation may be important not only for regeneration but also for normal wound repair processes. PMID:22066944

  7. Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair.

    PubMed

    Mozafari, Roghayeh; Kyrylenko, Sergiy; Castro, Mateus Vidigal; Ferreira, Rui Seabra; Barraviera, Benedito; Oliveira, Alexandre Leite Rodrigues

    2018-01-01

    Peripheral nerve injury is a worldwide clinical problem, and the preferred surgical method for treating it is the end-to-end neurorrhaphy. When it is not possible due to a large nerve gap, autologous nerve grafting is used. However, these surgical techniques result in nerve regeneration at highly variable degrees. It is thus very important to seek complementary techniques to improve motor and sensory recovery. One promising approach could be cell therapy. Transplantation therapy with human embryonic stem cells (hESCs) is appealing because these cells are pluripotent and can differentiate into specialized cell types and have self-renewal ability. Therefore, the main objective of this study was to find conditions under which functional recovery is improved after sciatic nerve neurorrhaphy. We assumed that hESC, either alone or in combination with heterologous fibrin sealant scaffold, could be used to support regeneration in a mouse model of sciatic nerve injury and repair via autografting with end-to-end neurorrhaphy. Five millimeters of the sciatic nerve of C57BL/6 J mice were transected off and rotated 180 degrees to simulate an injury, and then stumps were sutured. Next, we applied heterologous fibrin sealant and/or human embryonic stem cells genetically altered to overexpress fibroblast growth factor 2 (FGF2) at the site of the injury. The study was designed to include six experimental groups comprising neurorrhaphy (N), neurorrhaphy + heterologous fibrin sealant (N + F), neurorrhaphy + heterologous fibrin sealant + doxycycline (N + F + D), neurorrhaphy + heterologous fibrin sealant + wild-type hESC (N + F + W), neurorrhaphy + heterologous fibrin sealant + hESC off (N + F + T), and neurorrhaphy + heterologous fibrin sealant + hESC on via doxycycline (N + F + D + T). We evaluated the recovery rate using Catwalk and von Frey functional recovery tests, as well as immunohistochemistry analysis. The experiments indicated that sensory function improved when transgenic hESCs were used. The regeneration of sensory fibers indeed led to increased reflexes, upon stimulation of the paw ipsilateral to the lesion, as seen by von-Frey evaluation, which was supported by immunohistochemistry. Overall, the present data demonstrated that transgenic embryonic stem cells, engineered to overexpress FGF-2 in an inducible fashion, could be employed to support regeneration aiming at the recovery of both motor and sensory functions.

  8. GFAP immunoreactivity within the rat nucleus ambiguus after laryngeal nerve injury

    PubMed Central

    Berdugo-Vega, G; Arias-Gil, G; Rodriguez-Niedenführ, M; Davies, D C; Vázquez, T; Pascual-Font, A

    2014-01-01

    Changes that occur in astroglial populations of the nucleus ambiguus after recurrent (RLN) or superior (SLN) laryngeal nerve injury have hitherto not been fully characterised. In the present study, rat RLN and SLN were lesioned. After 3, 7, 14, 28 or 56 days of survival, the nucleus ambiguus was investigated by means of glial fibrillary acidic protein (GFAP) immunofluorescence or a combination of GFAP immunofluorescence and the application of retrograde tracers. GFAP immunoreactivity was significantly increased 3 days after RLN resection and it remained significantly elevated until after 28 days post injury (dpi). By 56 dpi it had returned to basal levels. In contrast, following RLN transection with repair, GFAP immunoreactivity was significantly elevated at 7 dpi and remained significantly elevated until 14 dpi. It had returned to basal levels by 28 dpi. Topographical analysis of the distribution of GFAP immunoreactivity revealed that after RLN injury, GFAP immunoreactivity was increased beyond the area of the nucleus ambiguus within which RLN motor neuron somata were located. GFAP immunoreactivity was also observed in the vicinity of neuronal somata that project into the uninjured SLN. Similarly, lesion of the SLN resulted in increased GFAP immunoreactivity around the neuronal somata projecting into it and also in the vicinity of the motor neuron somata projecting into the RLN. The increase in GFAP immunoreactivity outside of the region containing the motor neurons projecting into the injured nerve, may reflect the onset of a regenerative process attempting to compensate for impairment of one of the laryngeal nerves and may occur because of the dual innervation of the posterior cricoarytenoid muscle. This dual innervation of a very specialised muscle could provide a useful model system for studying the molecular mechanisms underlying axonal regeneration process and the results of the current study could provide the basis for studies into functional regeneration following laryngeal nerve injury, with subsequent application to humans. PMID:25181319

  9. Visual evoked potentials in the horse.

    PubMed

    Ström, L; Ekesten, B

    2016-06-21

    Electrical potentials generated in the central nervous system in response to brief visual stimuli, flash visual evoked potentials (FVEPs), can be recorded non-invasively over the occipital cortex. FVEPs are used clinically in human medicine and also experimentally in a number of animal species, but the method has not yet been evaluated in the horse. The method would potentially allow the ophthalmologist and equine clinician to evaluate visual impairment caused by disorders affecting post-retinal visual pathways. The aim was to establish a method for recording of FVEPs in horses in a clinical setting and to evaluate the waveform morphology in the normal horse. Ten horses were sedated with a continuous detomidine infusion. Responses were recorded from electrodes placed on the scalp. Several positions were evaluated to determine suitable electrode placement. Flash electroretinograms (FERGs) were recorded simultaneously. To evaluate potential contamination of the FVEP from retinal potentials, a retrobulbar nerve block was performed in two horses and transection of the optic nerve was performed in one horse as a terminal procedure. A series of positive (P) and negative (N) peaks in response to light stimuli was recorded in all horses. Reproducible wavelets with mean times-to-peaks of 26 (N1), 55 (P2), 141 (N2) and 216 ms (P4) were seen in all horses in all recordings. Reproducible results were obtained when the active electrode was placed in the midline rostral to the nuchal crest. Recording at lateral positions gave more variable results, possibly due to ear muscle artifacts. Averaging ≥100 responses reduced the impact of noise and artifacts. FVEPs were reproducible in the same horse during the same recording session and between sessions, but were more variable between horses. Retrobulbar nerve block caused a transient loss of the VEP whereas transection of the optic nerve caused an irreversible loss. We describe the waveform of the equine FVEP and our results show that it is possible to record FVEPs in sedated horses in a clinical setting. The potentials recorded were shown to be of post-retinal origin. Further studies are needed to provide normative data and assess potential clinical use.

  10. Comparison of a new single-donor human fibrin adhesive with suture for posterior tibial nerve repair in rat: biomechanical resistance and functional analysis.

    PubMed

    Erfanian, Reza; Firouzi, Masoumeh; Nabian, Mohammad Hossein; Darvishzadeh, Masoud; Zanjani, Leila Oryadi; Zadegan, Shayan Abdollah; Kamrani, Reza Shahryar

    2014-01-01

    The use of fibrin adhesives has a broad background in nerve repair. Currently the suboptimal physical properties of single- donor fibrin adhesives have restricted their usage. The present experiment studies the performance and physical characteristics of a modified fibrin glue prepared from single-donor human plasma in the repair of posterior tibial nerve of rat. Forty Wistar rats were divided into 5 groups; in the control group, tibial nerve was completely transected and no treatment was done, while in the four experimental groups the nerve stumps were reconnected by one suture, three sutures, one suture with fibrin glue and fibrin glue alone respectively. During 8 weeks of follow-up, Tibial Function Index was measured weekly and adhesive strength, inflammation and scar formation were assessed at the end of the study. Nerve stumps dehiscence rate and adhesive strength were similar in all experimental groups and significantly differed from control group (P<0.05). By the end of the eighth follow-up week, functional recovery of one and three sutures groups were significantly higher than groups in which fibrin glue was used for repair (P<0.05). The amount of inflammation and scar tissue formation was similar among all groups. The study results show that the prepared single-donor fibrin adhesive has acceptable mechanical properties which could provide required adhesiveness and hold nerve stumps in the long term; yet, we acknowledge that more studies are needed to improve functional outcome of single donor fibrin adhesive repair.

  11. Misdirection of Regenerating Axons and Functional Recovery Following Sciatic Nerve Injury in Rats

    PubMed Central

    Hamilton, Shirley K.; Hinkle, Marcus L.; Nicolini, Jennifer; Rambo, Lindsay N.; Rexwinkle, April M.; Rose, Sam J.; Sabatier, Manning J.; Backus, Deborah; English, Arthur W.

    2013-01-01

    Poor functional recovery found after peripheral nerve injury has been attributed to the misdirection of regenerating axons to reinnervate functionally inappropriate muscles. We applied brief electrical stimulation (ES) to the common fibular (CF) but not the tibial (Tib) nerve just prior to transection and repair of the entire rat sciatic nerve, to attempt to influence the misdirection of its regenerating axons. The specificity with which regenerating axons reinnervated appropriate targets was evaluated physiologically using compound muscle action potentials (M responses) evoked from stimulation of the two nerve branches above the injury site. Functional recovery was assayed using the timing of electromyography (EMG) activity recorded from the tibialis anterior (TA) and soleus (Sol) muscles during treadmill locomotion and kinematic analysis of hindlimb locomotor movements. Selective ES of the CF nerve resulted in restored M-responses at earlier times than in unstimulated controls in both TA and Sol muscles. Stimulated CF axons reinnervated inappropriate targets to a greater extent than unstimulated Tib axons. During locomotion, functional antagonist muscles, TA and Sol, were coactivated both in stimulated rats and in unstimulated but injured rats. Hindlimb kinematics in stimulated rats were comparable to untreated rats, but significantly different from intact controls. Selective ES promotes enhanced axon regeneration but does so with decreased fidelity of muscle reinnervation. Functional recovery is neither improved nor degraded, suggesting that compensatory changes in the outputs of the spinal circuits driving locomotion may occur irrespective of the extent of misdirection of regenerating axons in the periphery. PMID:21120925

  12. Peripheral facial nerve lesions induce changes in the firing properties of primary motor cortex layer 5 pyramidal cells.

    PubMed

    Múnera, A; Cuestas, D M; Troncoso, J

    2012-10-25

    Facial nerve lesions elicit long-lasting changes in vibrissal primary motor cortex (M1) muscular representation in rodents. Reorganization of cortical representation has been attributed to potentiation of preexisting horizontal connections coming from neighboring muscle representation. However, changes in layer 5 pyramidal neuron activity induced by facial nerve lesion have not yet been explored. To do so, the effect of irreversible facial nerve injury on electrophysiological properties of layer 5 pyramidal neurons was characterized. Twenty-four adult male Wistar rats were randomly subjected to two experimental treatments: either surgical transection of mandibular and buccal branches of the facial nerve (n=18) or sham surgery (n=6). Unitary and population activity of vibrissal M1 layer 5 pyramidal neurons recorded in vivo under general anesthesia was compared between sham-operated and facial nerve-injured animals. Injured animals were allowed either one (n=6), three (n=6), or five (n=6) weeks recovery before recording in order to characterize the evolution of changes in electrophysiological activity. As compared to control, facial nerve-injured animals displayed the following sustained and significant changes in spontaneous activity: increased basal firing frequency, decreased spike-associated local field oscillation amplitude, and decreased spontaneous theta burst firing frequency. Significant changes in evoked-activity with whisker pad stimulation included: increased short latency population spike amplitude, decreased long latency population oscillations amplitude and frequency, and decreased peak frequency during evoked single-unit burst firing. Taken together, such changes demonstrate that peripheral facial nerve lesions induce robust and sustained changes of layer 5 pyramidal neurons in vibrissal motor cortex. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Modeling the functional repair of nervous tissue in spinal cord injury

    NASA Astrophysics Data System (ADS)

    Mantila, Sara M.; Camp, Jon J.; Krych, Aaron J.; Robb, Richard A.

    2004-05-01

    Functional repair of traumatic spinal cord injury (SCI) is one of the most challenging goals in modern medicine. The annual incidence of SCI in the United States is approximately 11,000 new cases. The prevalence of people in the U.S. currently living with SCI is approximately 200,000. Exploring and understanding nerve regeneration in the central nervous system (CNS) is a critical first step in attempting to reverse the devastating consequences of SCI. At Mayo Clinic, a preliminary study of implants in the transected rat spinal cord model demonstrates potential for promoting axon regeneration. In collaborative research between neuroscientists and bioengineers, this procedure holds promise for solving two critical aspects of axon repair-providing a resorbable structural scaffold to direct focused axon repair, and delivery of relevant signaling molecules necessary to facilitate regeneration. In our preliminary study, regeneration in the rat's spinal cord was modeled in three dimensions utilizing an image processing software system developed in the Biomedical Imaging Resource at Mayo Clinic. Advanced methods for image registration, segmentation, and rendering were used. The raw images were collected at three different magnifications. After image processing the individual channels in the scaffold, axon bundles, and macrophages could be identified. Several axon bundles could be visualized and traced through the entire volume, suggesting axonal growth throughout the length of the scaffold. Such information could potentially allow researchers and physicians to better understand and improve the nerve regeneration process for individuals with SCI.

  14. Treadmill Training Enhances Axon Regeneration In Injured Mouse Peripheral Nerves Without Increased Loss of Topographic Specificity

    PubMed Central

    English, Arthur W.; Cucoranu, Delia; Mulligan, Amanda; Sabatier, Manning

    2009-01-01

    We investigated the extent of misdirection of regenerating axons when that regeneration was enhanced using treadmill training. Retrograde fluorescent tracers were applied to the cut proximal stumps of the tibial and common fibular nerves two or four weeks after transection and surgical repair of the mouse sciatic nerve. The spatial locations of retrogradely labeled motoneurons were studied in untreated control mice and in mice receiving two weeks of treadmill training, either according to a continuous protocol (10 m/min, one hour/day, five day/week) or an interval protocol (20 m/min for two minutes, followed by a five minute rest, repeated 4 times, five days/week). More retrogradely labeled motoneurons were found in both treadmill trained groups. The magnitude of this increase was as great as or greater than that found after using other enhancement strategies. In both treadmill trained groups, the proportions of motoneurons labeled from tracer applied to the common fibular nerve that were found in spinal cord locations reserved for tibial motoneurons in intact mice was no greater than in untreated control mice and significantly less than found after electrical stimulation or chondroitinase treatment. Treadmill training in the first two weeks following peripheral nerve injury produces a marked enhancement of motor axon regeneration without increasing the propensity of those axons to choose pathways leading to functionally inappropriate targets. PMID:19731339

  15. Upper and lower extremity nerve injuries in pediatric missile wounds: a selective approach to management.

    PubMed

    Stoebner, Andrew A; Sachanandani, Neil S; Borschel, Gregory H

    2011-06-01

    Nerve injuries from missile and gunshot wounds often produce significant disability, and their management is controversial. The role of the surgeon in cases of missile wounds with neurologic deficits is not well defined. Enhancing the trauma team's ability to recognize treatable nerve injuries will lead to improved outcomes. Further, raising awareness of the time-sensitive nature of these injuries will also improve results in these cases. We reviewed a consecutive series of 17 pediatric patients with peripheral nerve injuries caused by missile and gunshot wounds in a tertiary care children's hospital. We examined the indications for surgery, presence of associated injuries, mechanisms of injury, demographic characteristics and clinical outcomes. Urban victims were significantly more likely to have been intentionally assaulted than rural or suburban victims and they were also less likely to have completed follow-up care. High-energy weapons were more likely to require surgery compared with low-energy weapons. Patients presenting with tendon injuries were more likely to have a high-grade nerve injury requiring surgery. Patients presenting with tendon lacerations or high-energy mechanisms were significantly more likely to require surgery. Early exploration should be undertaken in cases where transection is likely to have occurred. Early decompression of common entrapment sites distal to repairs or injuries should be performed. Because follow-up is poor in this population, treatment should be prompt and thorough.

  16. Strategies for providing upper extremity amputees with tactile and hand position feedback--moving closer to the bionic arm.

    PubMed

    Riso, R R

    1999-01-01

    A continuing challenge for prostheses developers is to replace the sensory function of the hand. This includes tactile sensitivity such as finger contact, grip force, object slippage, surface texture and temperature, as well as proprioceptive sense. One approach is sensory substitution whereby an intact sensory system such as vision, hearing or cutaneous sensation elsewhere on the body is used as an input channel for information related to the prosthesis. A second technique involves using electrical stimulation to deliver sensor derived information directly to the peripheral afferent nerves within the residual limb. Stimulation of the relevant afferent nerves can ultimately come closest to restoring the original sensory perceptions of the hand, and to this end, researchers have already demonstrated some degree of functionality of the transected sensory nerves in studies with amputee subjects. This paper provides an overview of different types of nerve interface components and the advantages and disadvantages of employing each of them in sensory feedback systems. Issues of sensory perception, neurophysiology and anatomy relevant to hand sensation and function are discussed with respect to the selection of the different types of nerve interfaces. The goal of this paper is to outline what can be accomplished for implementing sensation into artificial arms in the near term by applying what is present or presently attainable technology.

  17. Evidence of nonvagal neural stimulation of canine gastric acid secretion.

    PubMed

    Tansy, M F; Probst, S J; Martin, J S

    1975-06-01

    In this study, we confirmed our original findings that central vagus stimulation is significantly associated with a subsequent increase in gastric mucus secretion. Central vagus stimulation following phenoxybenzamine hydrochloride administration was associated significantly with protracted elevations in secretory volume and titratable acid. We were unable to conclude that phenoxybenzamine itself in several pharmacologic dosages was associated with an increase in titratable acid. The acid secretory responses could be abolished by transection of the splanchnic nerves. Electrical stimulation of the peripheral part of the splanchnic nerve following administration of phenoxybenzamine was also associated with significant increases in secretory volume and titrable acidity. These secretory responses were not blocked by atropine but were diminished by burimamide. It is concluded that, in the dog, a largely heretofore unsuspected second neural pathway exists which is capable of influencing gastric acid secretion.

  18. Regeneration of long-distance peripheral nerve defects after delayed reconstruction in healthy and diabetic rats is supported by immunomodulatory chitosan nerve guides.

    PubMed

    Stenberg, Lena; Stößel, Maria; Ronchi, Giulia; Geuna, Stefano; Yin, Yaobin; Mommert, Susanne; Mårtensson, Lisa; Metzen, Jennifer; Grothe, Claudia; Dahlin, Lars B; Haastert-Talini, Kirsten

    2017-07-18

    Delayed reconstruction of transection or laceration injuries of peripheral nerves is inflicted by a reduced regeneration capacity. Diabetic conditions, more frequently encountered in clinical practice, are known to further impair regeneration in peripheral nerves. Chitosan nerve guides (CNGs) have recently been introduced as a new generation of medical devices for immediate peripheral nerve reconstruction. Here, CNGs were used for 45 days delayed reconstruction of critical length 15 mm rat sciatic nerve defects in either healthy Wistar rats or diabetic Goto-Kakizaki rats; the latter resembling type 2 diabetes. In short and long-term investigations, we comprehensively analyzed the performance of one-chambered hollow CNGs (hCNGs) and two-chambered CNGs (CFeCNGs) in which a chitosan film has been longitudinally introduced. Additionally, we investigated in vitro the immunomodulatory effect provided by the chitosan film. Both types of nerve guides, i.e. hCNGs and CFeCNGs, enabled moderate morphological and functional nerve regeneration after reconstruction that was delayed for 45 days. These positive findings were detectable in generally healthy as well as in diabetic Goto-Kakizaki rats (for the latter only in short-term studies). The regenerative outcome did not reach the degree as recently demonstrated after immediate reconstruction using hCNGs and CFeCNGs. CFeCNG-treatment, however, enabled tissue regrowth in all animals (hCNGs: only in 80% of animals). CFeCNGs did further support with an increased vascularization of the regenerated tissue and an enhanced regrowth of motor axons. One mechanism by which the CFeCNGs potentially support successful regeneration is an immunomodulatory effect induced by the chitosan film itself. Our in vitro results suggest that the pro-regenerative effect of chitosan is related to the differentiation of chitosan-adherent monocytes into pro-healing M2 macrophages. No considerable differences appear for the delayed nerve regeneration process related to healthy and diabetic conditions. Currently available chitosan nerve grafts do not support delayed nerve regeneration to the same extent as they do after immediate nerve reconstruction. The immunomodulatory characteristics of the biomaterial may, however, be crucial for their regeneration supportive effects.

  19. Chondroitinase C Selectively Degrades Chondroitin Sulfate Glycosaminoglycans that Inhibit Axonal Growth within the Endoneurium of Peripheral Nerve.

    PubMed

    Graham, James B; Muir, David

    2016-01-01

    The success of peripheral nerve regeneration is highly dependent on the regrowth of axons within the endoneurial basal lamina tubes that promote target-oriented pathfinding and appropriate reinnervation. Restoration of nerve continuity at this structural level after nerve transection injury by direct repair and nerve grafting remains a major surgical challenge. Recently, biological approaches that alter the balance of growth inhibitors and promoters in nerve have shown promise to improve appropriate axonal regeneration and recovery of peripheral nerve function. Chondroitin sulfate proteoglycans (CSPGs) are known inhibitors of axonal growth. This growth inhibition is mainly associated with a CSPG's glycosaminoglycan chains. Enzymatic degradation of these chains with chondroitinase eliminates this inhibitory activity and, when applied in vivo, can improve the outcome of nerve repair. To date, these encouraging findings were obtained with chondroitinase ABC (a pan-specific chondroitinase). The aim of this study was to examine the distribution of CSPG subtypes in rodent, rabbit, and human peripheral nerve and to test more selective biological enzymatic approaches to improve appropriate axonal growth within the endoneurium and minimize aberrant growth. Here we provide evidence that the endoneurium, but not the surrounding epineurium, is rich in CSPGs that have glycosaminoglycan chains readily degraded by chondroitinase C. Biochemical studies indicate that chondroitinase C has degradation specificity for 6-sulfated glycosaminoglycans found in peripheral nerve. We found that chondroitinase C degrades and inactivates inhibitory CSPGs within the endoneurium but not so much in the surrounding nerve compartments. Cryoculture bioassays (neurons grown on tissue sections) show that chondroitinase C selectively and significantly enhanced neuritic growth associated with the endoneurial basal laminae without changing growth-inhibiting properties of the surrounding epineurium. Interestingly, chondroitinase ABC treatment increased greatly the growth-promoting properties of the epineurial tissue whereas chondroitinase C had little effect. Our evidence indicates that chondroitinase C effectively degrades and inactivates inhibitory CSPGs present in the endoneurial Schwann cell basal lamina and does so more specifically than chondroitinase ABC. These findings are discussed in the context of improving nerve repair and regeneration and the growth-promoting properties of processed nerve allografts.

  20. Evaluation of radio-tracking and strip transect methods for determining foraging ranges of Black-Legged Kittiwakes

    USGS Publications Warehouse

    Ostrand, William D.; Drew, G.S.; Suryan, R.M.; McDonald, L.L.

    1998-01-01

    We compared strip transect and radio-tracking methods of determining foraging range of Black-legged Kittiwakes (Rissa tridactyla). The mean distance birds were observed from their colony determined by radio-tracking was significantly greater than the mean value calculated from strip transects. We determined that this difference was due to two sources of bias: (1) as distance from the colony increased, the area of available habitat also increased resulting in decreasing bird densities (bird spreading). Consequently, the probability of detecting birds during transect surveys also would decrease as distance from the colony increased, and (2) the maximum distance birds were observed from the colony during radio-tracking exceeded the extent of the strip transect survey. We compared the observed number of birds seen on the strip transect survey to the predictions of a model of the decreasing probability of detection due to bird spreading. Strip transect data were significantly different from modeled data; however, the field data were consistently equal to or below the model predictions, indicating a general conformity to the concept of declining detection at increasing distance. We conclude that radio-tracking data gave a more representative indication of foraging distances than did strip transect sampling. Previous studies of seabirds that have used strip transect sampling without accounting for bird spreading or the effects of study-area limitations probably underestimated foraging range.

  1. Peripheral nerve injuries, pain, and neuroplasticity.

    PubMed

    Osborne, Natalie R; Anastakis, Dimitri J; Davis, Karen D

    Peripheral nerve injuries (PNIs) cause both structural and functional brain changes that may be associated with significant sensorimotor abnormalities and pain. The aim of this narrative review is to provide hand therapists an overview of PNI-induced neuroplasticity and to explain how the brain changes following PNI, repair, and during rehabilitation. Toward this goal, we review key aspects of neuroplasticity and neuroimaging and discuss sensory testing techniques used to study neuroplasticity in PNI patients. We describe the specific brain changes that occur during the repair and recovery process of both traumatic (eg, transection) and nontraumatic (eg, compression) nerve injuries. We also explain how these changes contribute to common symptoms including hypoesthesia, hyperalgesia, cold sensitivity, and chronic neurogenic pain. In addition, we describe how maladaptive neuroplasticity as well as psychological and personality characteristics impacts treatment outcome. Greater understanding of the brain's contribution to symptoms in recovering PNI patients could help guide rehabilitation strategies and inform the development of novel techniques to counteract these maladaptive brain changes and ultimately improve outcomes. Copyright © 2018 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  2. Efficacy and safety of acute injection laryngoplasty for vocal cord paralysis following thoracic surgery.

    PubMed

    Graboyes, Evan M; Bradley, Joseph P; Meyers, Bryan F; Nussenbaum, Brian

    2011-11-01

    The primary objective of this study was to evaluate the effectiveness and safety of injection laryngoplasty using a temporary injectable agent in the acute setting for patients with unilateral vocal cord paralysis following thoracic surgical procedures. Retrospective consecutive case series in an academic institution. Inclusion criteria included patients acutely treated with injection laryngoplasty from January 1, 2006, to March 31, 2010, for a unilateral vocal cord paralysis that occurred after a thoracic surgical procedure (N = 20). All patients were injected with Radiesse Voice Gel using microlaryngoscopy technique. The mean time to vocal cord injection from the time of thoracic surgery was 4.5 days. There was one operative-related complication of intraoperative bile reflux that caused a pneumonitis. Ninety percent of patients were recommended for strict nothing by mouth prior to injection. Of these, 94% were allowed an oral diet following injection, and 67% tolerated a regular diet. None of the patients required subsequent procedures for aspiration or dysphagia, and 25% required further intervention after discharge for persistent dysphonia. Patients with a known nerve transection had a higher rate of dysphonia requiring further surgical procedures than those who did not have a known nerve transection. Acute treatment of thoracic surgery-related unilateral vocal cord paralysis with injection laryngoplasty appears safe and effective at preventing postoperative aspiration pneumonia and improves swallowing function to allow resumption of an oral diet. A single injection is often the only required treatment. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  3. Pharmacologically inhibiting kinesin-5 activity with monastrol promotes axonal regeneration following spinal cord injury

    PubMed Central

    Xu, Chen; Klaw, Michelle C.; Lemay, Michel A.; Baas, Peter W.; Tom, Veronica J.

    2014-01-01

    While it is well established that the axons of adult neurons have a lower capacity for regrowth, some regeneration of certain CNS populations after spinal cord injury (SCI) is possible if their axons are provided with a permissive substrate, such as an injured peripheral nerve. While some axons readily regenerate into a peripheral nerve graft (PNG), these axons almost always stall at the distal interface and fail to re-innervate spinal cord tissue. Treatment of the glial scar at the distal graft interface with chondroitinase ABC (ChABC) can improve regeneration, but most regenerated axons need further stimulation to extend beyond the interface. Previous studies demonstrate that pharmacologically inhibiting kinesin-5, a motor protein best known for its essential role in mitosis but also expressed in neurons, with the pharmacological agent monastrol increases axon growth on inhibitory substrates in vitro. We sought to determine if monastrol treatment after a SCI improves functional axon regeneration. Animals received complete thoracic level 7 (T7) transections and PNGs and were treated intrathecally with ChABC and either monastrol or DMSO vehicle. We found that combining ChABC with monastrol significantly enhanced axon regeneration. However, there were no further improvements in function or enhanced c-Fos induction upon stimulation of spinal cord rostral to the transection. This indicates that monastrol improves ChABC-mediated axon regeneration but that further treatments are needed to enhance the integration of these regrown axons. PMID:25447935

  4. Respiration in vitro: I. Spontaneous activity.

    PubMed

    Hamada, O; Garcia-Rill, E; Skinner, R D

    1992-01-01

    The present report describes respiratory-like activity recorded from intercostal muscles in the neonatal rat in vitro brain stem-spinal cord, rib-attached preparation. In this preparation from 1- to 4-day-old rats, spontaneous rhythmic and synchronized upward movements of the rib cage coincided with the recorded muscle activity. Spontaneous respiratory-like activity showed a frequency in the range of 0.05-0.2 Hz, with single-, double-, and mixed-burst patterns. Spontaneous activity declined over time, but increased in frequency as temperature increased. Multilevel recordings showed a cephalocaudal order of bursting of intercostal muscles. Brain stem transections at the prepontine level did not affect spontaneous frequency, whereas premedullary transections resulted in an increase in spontaneous respiratory frequency. High spinal transections eliminated spontaneous respiratory-like activity. These results suggest that there is a well-organized pontomedullary pattern generator for respiratory-like activity in this preparation, which can be modulated by temperature. The characteristics of these electromyographic (EMG) recordings allow comparison with previous in vitro studies of respiratory-like activity using nerve activity and in vivo studies using EMG activity. These results provide basic information on the spontaneous activity of this preparation as a prelude to the study of the effects of electrical stimulation of the spinal cord to induce respiratory-like activity, as described in the companion article.

  5. Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system.

    PubMed

    Morimoto, Takeshi; Miyoshi, Tomomitsu; Matsuda, Satoshi; Tano, Yasuo; Fujikado, Takashi; Fukuda, Yutaka

    2005-06-01

    To investigate the effect of transcorneal electrical stimulation (TES) on the survival of axotomized RGCs and the mechanism underlying the TES-induced neuroprotection in vivo. Adult male Wistar rats received TES after optic nerve (ON) transection. Seven days after the ON transection, the density of the surviving RGCs was determined, to evaluate the neuroprotective effect of TES. The levels of the mRNA and protein of insulin-like growth factor (IGF)-1 in the retina after TES were determined by RT-PCR and Northern and Western blot analyses. The localization of IGF-1 protein in the retina was examined by immunohistochemistry. TES after ON transection increased the survival of axotomized RGCs in vivo, and the degree of rescue depended on the strength of the electric charge. RT-PCR and Northern and Western blot analyses revealed a gradual upregulation of intrinsic IGF-1 in the retina after TES. Immunohistochemical analysis showed that IGF-1 immunoreactivity was localized initially in the endfeet of Muller cells and then diffused into the inner retina. TES can rescue the axotomized RGCs by increasing the level of IGF-1 production by Muller cells. These findings provide a new therapeutic approach to prevent or delay the degeneration of retinal neurons without the administration of exogenous neurotrophic factors.

  6. Infrared neural stimulation of human spinal nerve roots in vivo.

    PubMed

    Cayce, Jonathan M; Wells, Jonathon D; Malphrus, Jonathan D; Kao, Chris; Thomsen, Sharon; Tulipan, Noel B; Konrad, Peter E; Jansen, E Duco; Mahadevan-Jansen, Anita

    2015-01-01

    Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients ([Formula: see text]) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and [Formula: see text]. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at [Formula: see text] and a [Formula: see text] safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans.

  7. Axonal Regeneration after Sciatic Nerve Lesion Is Delayed but Complete in GFAP- and Vimentin-Deficient Mice

    PubMed Central

    Berg, Alexander; Zelano, Johan; Pekna, Marcela; Wilhelmsson, Ulrika; Pekny, Milos; Cullheim, Staffan

    2013-01-01

    Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics. PMID:24223940

  8. Effects of nicergoline on the cardiovascular system of dogs and rats.

    PubMed

    Huchet, A M; Mouillé, P; Chelly, J; Lucet, B; Doursout, M F; Lechat, P; Schmitt, H

    1981-01-01

    In pentobarbitalized closed-chest dogs, nicergoline (10--100 microgram/kg, i.v.) reduced blood pressure, heart rate, and splanchnic nerve activity. Intracisternal administration of nicergoline (3 microgram/kg) only reduced splanchnic nerve activity. In open-chest dogs, nicergoline reduced blood pressure, cardiac output, and total peripheral resistance but did not change heart rate. In pithed rats treated with a beta-adrenoceptor-blocking agent, nicergoline reduced the pressor responses to noradrenaline and adrenaline. Nicergoline slightly attenuated the pressor responses of dogs to noradrenaline and tyramine and, in addition, reversed the hypertension induced by adrenaline and dimethylphenylpiperazinium. Nicergoline (100 microgram/kg) increased the tachycardia induced in dogs by stimulation of the right cardiovascular nerve and prevented the inhibitory effect of clonidine on this response. However, nicergoline only partially antagonized the effect of clonidine once it was fully established. Nicergoline did not antagonize the hypotensive and bradycardic effects of clonidine when they were established. Nicergoline did not affect the vagally mediated bradycardia evoked by carotid nerve stimulation in beta-adrenoceptor-blocked dogs. The compound did not change blood pressure in Cl spinal cord transected dogs. In conclusion, nicergoline appears to decrease blood pressure by blocking alpha-adrenoceptors and, at least at some doses, by a central inhibition of the sympathetic tone. Nicergoline appears to be a preferential alpha 1-adrenoceptor-blocking agent.

  9. A Rodent Model of Dynamic Facial Reanimation Using Functional Electrical Stimulation

    PubMed Central

    Attiah, Mark A.; de Vries, Julius; Richardson, Andrew G.; Lucas, Timothy H.

    2017-01-01

    Facial paralysis can be a devastating condition, causing disfiguring facial droop, slurred speech, eye dryness, scarring and blindness. This study investigated the utility of closed-loop functional electric stimulation (FES) for reanimating paralyzed facial muscles in a quantitative rodent model. The right buccal and marginal mandibular branches of the rat facial nerve were transected for selective, unilateral paralysis of whisker muscles. Microwire electrodes were implanted bilaterally into the facial musculature for FES and electromyographic (EMG) recording. With the rats awake and head-fixed, whisker trajectories were tracked bilaterally with optical micrometers. First, the relationship between EMG and volitional whisker movement was quantified on the intact side of the face. Second, the effect of FES on whisker trajectories was quantified on the paralyzed side. Third, closed-loop experiments were performed in which the EMG signal on the intact side triggered FES on the paralyzed side to restore symmetric whisking. The results demonstrate a novel in vivo platform for developing control strategies for neuromuscular facial prostheses. PMID:28424583

  10. Outcome following phrenic nerve transfer to musculocutaneous nerve in patients with traumatic brachial palsy: a qualitative systematic review.

    PubMed

    de Mendonça Cardoso, Marcio; Gepp, Ricardo; Correa, José Fernando Guedes

    2016-09-01

    The phrenic nerve can be transferred to the musculocutaneous nerve in patients with traumatic brachial plexus palsy in order to recover biceps strength, but the results are controversial. There is also a concern about pulmonary function after phrenic nerve transection. In this paper, we performed a qualitative systematic review, evaluating outcomes after this procedure. A systematic review of published studies was undertaken in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement. Data were extracted from the selected papers and related to: publication, study design, outcome (biceps strength in accordance with BMRC and pulmonary function) and population. Study quality was assessed using the "strengthening the reporting of observational studies in epidemiology" (STROBE) standard or the CONSORT checklist, depending on the study design. Seven studies were selected for this systematic review after applying inclusion and exclusion criteria. One hundred twenty-four patients completed follow-up, and most of them were graded M3 or M4 (70.1 %) for biceps strength at the final evaluation. Pulmonary function was analyzed in five studies. It was not possible to perform a statistical comparison between studies because the authors used different parameters for evaluation. Most of the patients exhibited a decrease in pulmonary function tests immediately after surgery, with recovery in the following months. Study quality was determined using STROBE in six articles, and the global score varied from 8 to 21. Phrenic nerve transfer to the musculocutaneous nerve can recover biceps strength ≥M3 (BMRC) in most patients with traumatic brachial plexus injury. Early postoperative findings revealed that the development of pulmonary symptoms is rare, but it cannot be concluded that the procedure is safe because there is no study evaluating pulmonary function in old age.

  11. Timing in the Absence of Supraspinal Input I: Variable, but not Fixed, Spaced Stimulation of the Sciatic Nerve Undermines Spinally-Mediated Instrumental Learning

    PubMed Central

    Baumbauer, Kyle M.; Hoy, Kevin C.; Huie, John R.; Hughes, Abbey J.; Woller, Sarah A.; Puga, Denise A.; Setlow, Barry; Grau, James W.

    2008-01-01

    Rats with complete spinal transections are capable of acquiring a simple instrumentally trained response. If rats receive shock to one hindlimb when the limb is extended (controllable shock), the spinal cord will learn to hold the leg in a flexed position that minimizes shock exposure. If shock is delivered irrespective of leg position, subjects do not exhibit an increase in flexion duration and subsequently fail to learn when tested with controllable shock (learning deficit). Just 6 min of variable intermittent shock produces a learning deficit that lasts 24 hrs. Evidence suggests that the neural mechanisms underlying the learning deficit may be related to those involved in other instances of spinal plasticity (e.g., wind-up, long-term potentiation). The present paper begins to explore these relations by demonstrating that direct stimulation of the sciatic nerve also impairs instrumental learning. Six minutes of electrical stimulation (mono- or biphasic direct current [DC]) of the sciatic nerve in spinally transected rats produced a voltage-dependent learning deficit that persisted for 24 hr (Experiments 1–2) and was dependent on C-fiber activation (Experiment 7). Exposure to continuous stimulation did not produce a deficit, but intermittent burst or single pulse (as short as 0.1 ms) stimulation (delivered at a frequency of 0.5 Hz) did, irrespective of the pattern (fixed or variable) of stimulus delivery (Experiments 3–6, 8). When the duration of stimulation was extended from 6 to 30 min, a surprising result emerged; shocks applied in a random (variable) fashion impaired subsequent learning whereas shocks given in a regular pattern (fixed spacing) did not (Experiments 9–10). The results imply that spinal neurons are sensitive to temporal relations and that stimulation at regular intervals can have a restorative effect. PMID:18674601

  12. Neurological Complications in Thyroid Surgery: A Surgical Point of View on Laryngeal Nerves

    PubMed Central

    Varaldo, Emanuela; Ansaldo, Gian Luca; Mascherini, Matteo; Cafiero, Ferdinando; Minuto, Michele N.

    2014-01-01

    The cervical branches of the vagus nerve that are pertinent to endocrine surgery are the superior and the inferior laryngeal nerves: their anatomical course in the neck places them at risk during thyroid surgery. The external branch of the superior laryngeal nerve (EB) is at risk during thyroid surgery because of its close anatomical relationship with the superior thyroid vessels and the superior thyroid pole region. The rate of EB injury (which leads to the paralysis of the cricothyroid muscle) varies from 0 to 58%. The identification of the EB during surgery helps avoiding both an accidental transection and an excessive stretching. When the nerve is not identified, the ligation of superior thyroid artery branches close to the thyroid gland is suggested, as well as the abstention from an indiscriminate use of energy-based devices that might damage it. The inferior laryngeal nerve (RLN) runs in the tracheoesophageal groove toward the larynx, close to the posterior aspect of the thyroid. It is the main motor nerve of the intrinsic laryngeal muscles, and also provides sensory innervation to the larynx. Its injury finally causes the paralysis of the omolateral vocal cord and various sensory alterations: the symptoms range from mild to severe hoarseness, to acute airway obstruction, and swallowing impairment. Permanent lesions of the RNL occur from 0.3 to 7% of cases, according to different factors. The surgeon must be aware of the possible anatomical variations of the nerve, which should be actively searched for and identified. Visual control and gentle dissection of RLN are imperative. The use of intraoperative nerve monitoring has been safely applied but, at the moment, its impact in the incidence of RLN injuries has not been clarified. In conclusion, despite a thorough surgical technique and the use of intraoperative neuromonitoring, the incidence of neurological complications after thyroid surgery cannot be suppressed, but should be maintained in a low range. PMID:25076936

  13. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    NASA Astrophysics Data System (ADS)

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate hydrogel. This indicates return of some feeling to the limb via the fully-configured conduit. Immunohistochemical analysis of the implanted conduits removed from the rats after the four-week implantation period confirmed the presence of myelinated axons within the conduit and distal to the site of implantation, further supporting that the conduit promoted nerve repair over this period of time. This study describes the design considerations and fabrication of a novel multicomponent, multimodal bio-engineered synthetic conduit for peripheral nerve repair.

  14. Effect of nerve injury on the number of dorsal root ganglion neurons and autotomy behavior in adult Bax-deficient mice.

    PubMed

    Lyu, Chuang; Lyu, Gong-Wei; Martinez, Aurora; Shi, Tie-Jun Sten

    2017-01-01

    The proapoptotic molecule BAX, plays an important role in mitochondrial apoptotic pathway. Dorsal root ganglion (DRG) neurons depend on neurotrophic factors for survival at early developmental stages. Withdrawal of neurotrophic factors will induce apoptosis in DRG neurons, but this type of cell death can be delayed or prevented in neonatal Bax knockout (KO) mice. In adult animals, evidence also shows that DRG neurons are less dependent upon neurotrophic factors for survival. However, little is known about the effect of Bax deletion on the survival of normal and denervated DRG neurons in adult mice. A unilateral sciatic nerve transection was performed in adult Bax KO mice and wild-type (WT) littermates. Stereological method was employed to quantify the number of lumbar-5 DRG neurons 1 month post-surgery. Nerve injury-induced autotomy behavior was also examined on days 1, 3, and 7 post-surgery. There were significantly more neurons in contralateral DRGs of KO mice as compared with WT mice. The number of neurons was reduced in ipsilateral DRGs in both KO and WT mice. No changes in size distributions of DRG neuron profiles were detected before or after nerve injury. Injury-induced autotomy behavior developed much earlier and was more serious in KO mice. Although postnatal death or loss of DRG neurons is partially prevented by Bax deletion, this effect cannot interfere with long-term nerve injury-induced neuronal loss. The exaggerated self-amputation behavior observed in the mutant mice indicates that Bax deficiency may enhance the development of spontaneous pain following nerve injury.

  15. Chronic recording of hand prosthesis control signals via a regenerative peripheral nerve interface in a rhesus macaque

    NASA Astrophysics Data System (ADS)

    Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Tat, D. M.; Bullard, A. J.; Woo, S. L.; Sando, I. C.; Urbanchek, M. G.; Cederna, P. S.; Chestek, C. A.

    2016-08-01

    Objective. Loss of even part of the upper limb is a devastating injury. In order to fully restore natural function when lacking sufficient residual musculature, it is necessary to record directly from peripheral nerves. However, current approaches must make trade-offs between signal quality and longevity which limit their clinical potential. To address this issue, we have developed the regenerative peripheral nerve interface (RPNI) and tested its use in non-human primates. Approach. The RPNI consists of a small, autologous partial muscle graft reinnervated by a transected peripheral nerve branch. After reinnervation, the graft acts as a bioamplifier for descending motor commands in the nerve, enabling long-term recording of high signal-to-noise ratio (SNR), functionally-specific electromyographic (EMG) signals. We implanted nine RPNIs on separate branches of the median and radial nerves in two rhesus macaques who were trained to perform cued finger movements. Main results. No adverse events were noted in either monkey, and we recorded normal EMG with high SNR (>8) from the RPNIs for up to 20 months post-implantation. Using RPNI signals recorded during the behavioral task, we were able to classify each monkey’s finger movements as flexion, extension, or rest with >96% accuracy. RPNI signals also enabled functional prosthetic control, allowing the monkeys to perform the same behavioral task equally well with either physical finger movements or RPNI-based movement classifications. Significance. The RPNI signal strength, stability, and longevity demonstrated here represents a promising method for controlling advanced prosthetic limbs and fully restoring natural movement.

  16. Chronic recording of hand prosthesis control signals via a regenerative peripheral nerve interface in a rhesus macaque.

    PubMed

    Irwin, Z T; Schroeder, K E; Vu, P P; Tat, D M; Bullard, A J; Woo, S L; Sando, I C; Urbanchek, M G; Cederna, P S; Chestek, C A

    2016-08-01

    Loss of even part of the upper limb is a devastating injury. In order to fully restore natural function when lacking sufficient residual musculature, it is necessary to record directly from peripheral nerves. However, current approaches must make trade-offs between signal quality and longevity which limit their clinical potential. To address this issue, we have developed the regenerative peripheral nerve interface (RPNI) and tested its use in non-human primates. The RPNI consists of a small, autologous partial muscle graft reinnervated by a transected peripheral nerve branch. After reinnervation, the graft acts as a bioamplifier for descending motor commands in the nerve, enabling long-term recording of high signal-to-noise ratio (SNR), functionally-specific electromyographic (EMG) signals. We implanted nine RPNIs on separate branches of the median and radial nerves in two rhesus macaques who were trained to perform cued finger movements. No adverse events were noted in either monkey, and we recorded normal EMG with high SNR (>8) from the RPNIs for up to 20 months post-implantation. Using RPNI signals recorded during the behavioral task, we were able to classify each monkey's finger movements as flexion, extension, or rest with >96% accuracy. RPNI signals also enabled functional prosthetic control, allowing the monkeys to perform the same behavioral task equally well with either physical finger movements or RPNI-based movement classifications. The RPNI signal strength, stability, and longevity demonstrated here represents a promising method for controlling advanced prosthetic limbs and fully restoring natural movement.

  17. Motor unit and muscle fiber type grouping after peripheral nerve injury in the rat.

    PubMed

    Gordon, Tessa; de Zepetnek, Joanne E Totosy

    2016-11-01

    Muscle unit (MU) fibers innervated by one motoneuron and corresponding muscle fiber types are normally distributed in a mosaic. We asked whether, 4-8months after common peroneal nerve transection and random surgical alignment of nerve stumps in rat tibialis anterior muscles 1) reinnervated MU muscle and muscle fiber type clumping is invariant and 2) slow and fast motoneurons regenerate their nerve fibers within original endoneurial pathways. MU contractile forces were recorded in vivo, the MUs classified into types according to their contractile speed and fatigability, and one MU subjected to alternate exhaustive stimulation-recovery cycles to deplete glycogen for histochemical MU fiber recognition and enumeration, and muscle fiber typing. MU muscle fibers occupied defined territories whose size increased with MU force and muscle fiber numbers in normal and reinnervated muscles. The reinnervated MU muscle fiber territories were significantly smaller, the fibers clumped within 1-3 groups in 90% of the MUs, and each fiber lying adjacent to another significantly more frequently. Most reinnervated slow muscle fibers were normally located in the deep muscle compartment but substantial numbers were located abnormally in the superficial compartment. Our findings that well reinnervated muscle fibers clump in small muscles contrast with our earlier findings of clumping in large muscles only when reinnervated MU numbers were significantly reduced. We conclude that fiber type clumping is predictive of muscle reinnervation in small but not large muscles. In the latter muscles, clumping is more indicative of sprouting after partial nerve injuries than of muscle reinnervation after complete nerve injuries. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A parametric generalization of the Hayne estimator for line transect sampling

    USGS Publications Warehouse

    Burnham, Kenneth P.

    1979-01-01

    The Hayne model for line transect sampling is generalized by using an elliptical (rather than circular) flushing model for animal detection. By assuming the ration of major and minor axes lengths is constant for all animals, a model results which allows estimation of population density based directly upon sighting distances and sighting angles. The derived estimator of animal density is a generalization of the Hayne estimator for line transect sampling.

  19. Effects of antidromic stimulation of the ventral root on glucose utilization in the ventral horn of the spinal cord in the rat.

    PubMed Central

    Kadekaro, M; Vance, W H; Terrell, M L; Gary, H; Eisenberg, H M; Sokoloff, L

    1987-01-01

    Electrical stimulation of the proximal stump of the transected sciatic nerve increased glucose utilization in the ventral horn of the spinal cord, with the greater increase in Rexed's lamina IX. Antidromic stimulation of the ventral root, however, did not change glucose utilization in the ventral horn. These results suggest that the axon terminals and not the cell bodies are the sites of enhanced metabolic activity during increased electrical activity in these elements. Images PMID:3474665

  20. Long-term effect of sphincteric fatigue during bladder neurostimulation.

    PubMed

    Li, J S; Hassouna, M; Sawan, M; Duval, F; Elhilali, M M

    1995-01-01

    Commercially available stimulators lack several features, including multiple channel capability and flexible stimulation parameters. These factors limit clinical application. A new computerized electrical stimulator system was developed by our team and evaluated for its efficacy in bladder evacuation in an animal model after spinal cord transection. The system can generate a wide range of stimulation characteristics and has the feature of being a programmable multichannel pacemaker. It has enabled us to induce a reversible fatigue to the external sphincter that results in proper bladder emptying on stimulation. Using this new bladder pacemaker, 8 dogs were studied. We applied the concept of fatiguing of the external sphincter via the pudendal nerve to avoid rhizotomy. We determined the optimal stimulation parameters that can reliably empty the dog's bladder for the duration of the experiment, which lasted for 8 months. The new computerized electrical stimulation system achieved the objective of reducing bladder outlet resistance without the need for sacral rhizotomy.

  1. Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function.

    PubMed

    Williams, D L

    2017-02-01

    Transection or damage to the mammalian optic nerve generally results in loss of retinal ganglion cells by apoptosis. This cell death is seen less in fish or amphibians where retinal ganglion cell survival and axon regeneration leads to recovery of sight. Reptiles lie somewhere in the middle of this spectrum of nerve regeneration, and different species have been reported to have a significant variation in their retinal ganglion cell regenerative capacity. The ornate dragon lizard Ctenophoris ornatus exhibits a profound capacity for regeneration, whereas the Tenerife wall lizard Gallotia galloti has a more variable response to optic nerve damage. Some individuals regain visual activity such as the pupillomotor responses, whereas in others axons fail to regenerate sufficiently. Even in Ctenophoris, although the retinal ganglion cell axons regenerate adequately enough to synapse in the tectum, they do not make long-term topographic connections allowing recovery of complex visually motivated behaviour. The question then centres on where these intraspecies differences originate. Is it variation in the innate ability of retinal ganglion cells from different species to regenerate with functional validity? Or is it variances between different species in the substrate within which the nerves regenerate, the extracellular environment of the damaged nerve or the supporting cells surrounding the regenerating axons? Investigations of retinal ganglion cell regeneration between different species of lower vertebrates in vivo may shed light on these questions. Or perhaps more interesting are in vitro studies comparing axon regeneration of retinal ganglion cells from various species placed on differing substrates.

  2. A log-linear model approach to estimation of population size using the line-transect sampling method

    USGS Publications Warehouse

    Anderson, D.R.; Burnham, K.P.; Crain, B.R.

    1978-01-01

    The technique of estimating wildlife population size and density using the belt or line-transect sampling method has been used in many past projects, such as the estimation of density of waterfowl nestling sites in marshes, and is being used currently in such areas as the assessment of Pacific porpoise stocks in regions of tuna fishing activity. A mathematical framework for line-transect methodology has only emerged in the last 5 yr. In the present article, we extend this mathematical framework to a line-transect estimator based upon a log-linear model approach.

  3. Neuroma prevention by end-to-side neurorraphy: an experimental study in rats.

    PubMed

    Aszmann, Oskar C; Korak, Klaus J; Rab, Matthias; Grünbeck, Matthias; Lassmann, Hans; Frey, Manfred

    2003-11-01

    The successful treatment of painful neuromas remains a difficult goal to attain. In this report we explore the feasibility of neuroma prevention by insertion of the proximal end of a nerve through an end-to-side neurorraphy into an adjacent mixed nerve to provide a pathway and target for axons deprived of their end organ. Experiments were performed on a total of twenty 250-g Sprague-Dawley rats. Two groups of 10 animals were prepared. Group A served as an anatomic control. In group B the right saphenous nerve was transected and implanted end-to-side through an epineurial window into the tibial nerve distal to the trifurcation of the sciatic nerve. After 12 weeks the corresponding sensory neurons were identified by retrograde labeling techniques and histomorphometric analysis of the proximal and distal tibial nerve segments, and regular histology of the end-to-side site were performed. The results of the retrograde labeling of the corresponding sensory neuron pool of the saphenus nerve showed extensive labelling of the L1 to L3 spinal ganglions after intracutaneous tracer application of the planta pedis. The morphology of the end-to-side coaptation site and histomorphologic analysis prove that sensory neurons penetrate the perineurial sheath and axons regenerate along the tibial Schwann cell tubes toward their targets. Axons of a severed peripheral nerve that are provided with a pathway and target through an end-to-side coaptation will either be pruned or establish some type of end-organ contact so that a neuroma can be prevented. Whether these axons will lead to disturbing sensations such as paresthesia or dysesthesia in the newly found environment or remain silent codwellers, this experiment cannot answer. Long-term results of future clinical work will have to decide whether the prevention of the neuroma through end-to-side coaptation will be an appropriate therapy for this difficult problem.

  4. Reinnervating the penis in spina bifida patients in the United States: ilioinguinal-to-dorsal-penile neurorrhaphy in two cases.

    PubMed

    Jacobs, Micah A; Avellino, Anthony M; Shurtleff, David; Lendvay, Thomas S

    2013-10-01

    Penile sensation is absent in some patients with myelomeningocele owing to the dysfunction of the pudendal nerve. Here, we describe the introduction of penile sensation via ilioinguinal-to-dorsal-penile neurorrhaphy in two patients with penile anesthesia due to neural tube defects. To establish penile sensation via ilioinguinal-to-dorsal-penile-nerve neurorrhaphy. A 20-year-old and a 35-year-old male with L5/S1 myelomeningocele were both highly functioning and ambulatory, with intact ilioinguinal nerve distribution sensation but anesthesia of the penis and glans. They were sexually active and able to ejaculate antegrade. Both had high International Index of Erectile Function scores for confidence to achieve erection sufficient for intercourse. An incision was made from anterior superior iliac crest to the glans penis to expose the inguinal canal and ilioinguinal nerve. The ilioinguinal and dorsal penile nerve were transected and anastomosed. The anastomotic site was then wrapped in a hemostatic agent and a drain was left in place. For penile rehabilitation, both patients were instructed to stimulate the penis while looking at the genitalia to encourage redistribution of perceived sensation. Presence of erogenous penile sensation was tested by neurologic examination and patient feedback, and patients completed sexual health questionnaires. Both patients reported paresthesias of the groin with penile stimulation 1 month after surgery. Both patients are now 24 months postoperative and have erogenous sensation on the ipsilateral glans and shaft during intercourse. Neither patient has difficulty achieving or maintaining erections. We present two patients with dorsal penile reinnervation via the ilioinguinal nerve. Although nerve reinnervation has been used in urological procedures, this is the first description of an attempt to resupply penile sensation via the dorsal penile nerve in the United States with a minimum of 18 months follow-up. Early follow-up suggests successful neuronal remapping and regained sensation of the penis. © 2013 International Society for Sexual Medicine.

  5. The new heterologous fibrin sealant in combination with low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve.

    PubMed

    Buchaim, Daniela Vieira; Rodrigues, Antonio de Castro; Buchaim, Rogerio Leone; Barraviera, Benedito; Junior, Rui Seabra Ferreira; Junior, Geraldo Marco Rosa; Bueno, Cleuber Rodrigo de Souza; Roque, Domingos Donizeti; Dias, Daniel Ventura; Dare, Leticia Rossi; Andreo, Jesus Carlos

    2016-07-01

    This study aimed to evaluate the effects of low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve with two surgical techniques: end-to-end epineural suture and coaptation with heterologous fibrin sealant. Forty-two male Wistar rats were randomly divided into five groups: control group (CG) in which the buccal branch of the facial nerve was collected without injury; (2) experimental group with suture (EGS) and experimental group with fibrin (EGF): The buccal branch of the facial nerve was transected on both sides of the face. End-to-end suture was performed on the right side and fibrin sealant on the left side; (3) Experimental group with suture and laser (EGSL) and experimental group with fibrin and laser (EGFL). All animals underwent the same surgical procedures in the EGS and EGF groups, in combination with the application of LLLT (wavelength of 830 nm, 30 mW optical power output of potency, and energy density of 6 J/cm(2)). The animals of the five groups were euthanized at 5 weeks post-surgery and 10 weeks post-surgery. Axonal sprouting was observed in the distal stump of the facial nerve in all experimental groups. The observed morphology was similar to the fibers of the control group, with a predominance of myelinated fibers. In the final period of the experiment, the EGSL presented the closest results to the CG, in all variables measured, except in the axon area. Both surgical techniques analyzed were effective in the treatment of peripheral nerve injuries, where the use of fibrin sealant allowed the manipulation of the nerve stumps without trauma. LLLT exhibited satisfactory results on facial nerve regeneration, being therefore a useful technique to stimulate axonal regeneration process.

  6. Recovery of function, peripheral sensitization and sensory neurone activation by novel pathways following axonal injury in Aplysia californica.

    PubMed

    Dulin, M F; Steffensen, I; Morris, C E; Walters, E T

    1995-10-01

    Recovery of behavioural and sensory function was examined following unilateral pedal nerve crush in Aplysia californica. Nerve crush that transected all axons connecting the tail to the central nervous system (CNS) eliminated the ipsilateral tail-evoked siphon reflex, whose sensory input travels in the crushed tail nerve (p9). The first reliable signs of recovery of this reflex were observed within 1 week, and most animals displayed tail-evoked siphon responses within 2 weeks. Wide-dynamic-range mechanosensory neurons with somata in the ventrocaudal (VC) cluster of the ipsilateral pleural ganglion exhibited a few receptive fields (RFs) on the tail 3 weeks after unilateral pedal nerve crush, indicating that the RFs had either regenerated or been reconnected to the central somata. These RFs were smaller and sensitized compared with corresponding RFs on the contralateral, uncrushed side. Centrally conducted axon responses of VC sensory neurones to electrical stimulation distal to the nerve crush site did not reappear until at least 10 days after the crush. Because the crush site was much closer to the CNS than to the tail, the failure of axon responses to be restored earlier than the behavioural responses indicates that early stages of reflex recovery are not due to regeneration of VC sensory neurone axons into the tail. Following nerve crush, VC sensory neurones often could be activated by stimulating central connectives or peripheral nerves that do not normally contain the sensory neurone's axons. These results suggest that recovery of behavioral function after nerve injury involves complex mechanisms, including regenerative growth of axotomized VC sensory neurones, sensitization of regenerating RFs and sprouting of VC sensory neurone fibres within the CNS. Furthermore, the rapidity of behavioural recovery indicates that its initial phases are mediated by additional mechanisms, perhaps centripetal regeneration of unidentified sensory neurones having peripheral somata, or transient reconnection of proximal and distal stumps of axotomized VC cells.

  7. Novel Neurostimulation of Autonomic Pelvic Nerves Overcomes Bladder-Sphincter Dyssynergia

    PubMed Central

    Peh, Wendy Yen Xian; Mogan, Roshini; Thow, Xin Yuan; Chua, Soo Min; Rusly, Astrid; Thakor, Nitish V.; Yen, Shih-Cheng

    2018-01-01

    The disruption of coordination between smooth muscle contraction in the bladder and the relaxation of the external urethral sphincter (EUS) striated muscle is a common issue in dysfunctional bladders. It is a significant challenge to overcome for neuromodulation approaches to restore bladder control. Bladder-sphincter dyssynergia leads to undesirably high bladder pressures, and poor voiding outcomes, which can pose life-threatening secondary complications. Mixed pelvic nerves are potential peripheral targets for stimulation to treat dysfunctional bladders, but typical electrical stimulation of pelvic nerves activates both the parasympathetic efferent pathway to excite the bladder, as well as the sensory afferent pathway that causes unwanted sphincter contractions. Thus, a novel pelvic nerve stimulation paradigm is required. In anesthetized female rats, we combined a low frequency (10 Hz) stimulation to evoke bladder contraction, and a more proximal 20 kHz stimulation of the pelvic nerve to block afferent activation, in order to produce micturition with reduced bladder-sphincter dyssynergia. Increasing the phase width of low frequency stimulation from 150 to 300 μs alone was able to improve voiding outcome significantly. However, low frequency stimulation of pelvic nerves alone evoked short latency (19.9–20.5 ms) dyssynergic EUS responses, which were abolished with a non-reversible proximal central pelvic nerve cut. We demonstrated that a proximal 20 kHz stimulation of pelvic nerves generated brief onset effects at lower current amplitudes, and was able to either partially or fully block the short latency EUS responses depending on the ratio of the blocking to stimulation current. Our results indicate that ratios >10 increased the efficacy of blocking EUS contractions. Importantly, we also demonstrated for the first time that this combined low and high frequency stimulation approach produced graded control of the bladder, while reversibly blocking afferent signals that elicited dyssynergic EUS contractions, thus improving voiding by 40.5 ± 12.3%. Our findings support advancing pelvic nerves as a suitable neuromodulation target for treating bladder dysfunction, and demonstrate the feasibility of an alternative method to non-reversible nerve transection and sub-optimal intermittent stimulation methods to reduce dyssynergia. PMID:29618971

  8. Waveform Similarity Analysis: A Simple Template Comparing Approach for Detecting and Quantifying Noisy Evoked Compound Action Potentials.

    PubMed

    Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira

    2015-01-01

    Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies.

  9. Hypoglossal-facial anastomosis (HFA) over a 10 mm gap bridged by a Y-tube-conduit enhances neurite regrowth and reduces collateral axonal branching at the lesion site.

    PubMed

    Ozsoy, Umut; Demirel, Bahadir Murat; Hizay, Arzu; Ozsoy, Ozlem; Ankerne, Janina; Angelova, Srebrina; Sarikcioglu, Levent; Ucar, Yasar; Angelov, Doychin N

    2011-01-01

    The outcome of severe peripheral nerve injuries requiring surgical repair (transection and suture) is usually poor. Recent work suggests that direct suture of nerves increases collagen production and provides unfavourable conditions for a proper axonal regrowth. We tested whether entubulation of the hypoglossal nerve into a Y-tube conduit connecting it with the zygomatic and buccal facial nerve branches would improve axonal pathfinding at the lesion site, quality of muscle reinnervation and recovery of vibrissal whisking. For hypoglossal-facial anastomosis (HFA) over a Y-tube (HFA-Y-tube) the proximal stump of the hypoglossal nerve was entubulated and sutured into the long arm of a Y-tube (isogeneic abdominal aorta with its bifurcation). The zygomatic and buccal facial branches were entubulated and sutured to the short arms of the Y-tube. Restoration of vibrissal motor performance, degree of collateral axonal branching at the lesion site and quality of neuro-muscular junction (NMJ) reinnervation were compared to animals receiving HFA-Coaptation (no entubulation) after 4 months. HFA-Y-tube reduced collateral axonal branching. However it failed to reduce the proportion of polyinnervated NMJ and did not improve functional outcome when compared to HFA-Coaptation. Elimination of compression by tightly opposed nerve fragments improved axonal pathfinding. However, biometric analysis of vibrissae movements did not show positive effects suggesting that polyneuronal reinnervation - rather than collateral branching - may be the critical limiting factor. Since polyinnervation of muscle fibers is activity-dependent and can be manipulated, the present findings raise hopes that clinically feasible and effective therapies after HFA could be soon designed and tested.

  10. Waveform Similarity Analysis: A Simple Template Comparing Approach for Detecting and Quantifying Noisy Evoked Compound Action Potentials

    PubMed Central

    Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira

    2015-01-01

    Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies. PMID:26325291

  11. Mechanisms underlying recurrent inhibition in the sacral parasympathetic outflow to the urinary bladder.

    PubMed Central

    de Groat, W C

    1976-01-01

    1. In cats with the sacral dorsal roots cut on one side electrical stimulation (15-40 c/s) of the central end of the transected ipsilateral pelvic nerve depressed spontaneous bladder contractions. The depression was abolished by transecting the ipsilateral sacral ventral roots. 2. Electrical stimulation of acutely or chronically transected ('deafferented') sacral ventral roots depressed spontaneous bladder contractions and the firing of sacral parasympathetic preganglionic neurones innervating the bladder. The depression of neuronal firing occurred ipsilateral and contralateral to the point of stimulation, but only occurred with stimulation of sacral roots containing preganglionic axons and only with stimulation of sacral roots containing preganglionic axons and only at intensities of stimulation (0-7-4V) above the threshold for activation of these axons. 3. The inhibitory responses were not abolished by strychnine administered by micro-electrophoresis to preganglionic neurones, but were blocked by the intravenous administration of strychnine. 4. The firing of preganglionic neurones elicited by micro-electrophoretic administration of an excitant amino acid (DL-homocysteic acid) was not depressed by stimulation of the ventral roots. 5. It is concluded that the inhibition of the sacral outflow to the bladder by stimulation of sacral ventral roots is related to antidromic activation of vesical preganglionic axons. Collaterals of these axons must excite inhibitory interneurones which in turn depress transmission at a site on the micturition reflex pathway prior to the preganglionic neurones. PMID:950603

  12. In vitro proliferation of axotomized rat facial nucleus-derived activated microglia in an autocrine fashion.

    PubMed

    Nakajima, Kazuyuki; Graeber, Manuel B; Sonoda, Maya; Tohyama, Yoko; Kohsaka, Shinichi; Kurihara, Tadashi

    2006-08-01

    Transection of rat adult facial nerve leads to an increase in the number of activated microglia in the facial nucleus (FN), with a peak in proliferation 3 days after transection. To investigate the characteristics of these activated microglia, we isolated the cells with high purity from axotomized FN (axFN) 3 days after transection according to the previously reported procedure for explant culture. The isolated microglia exhibited immunocytochemical properties similar to those in vivo, and their numbers increased approximately five- to sevenfold over a period of 10 days without the addition of any mitogens, suggesting that self-reproduction was occurring. Actually, the microglia actively incorporated bromodeoxyuridine (BrdU) and strongly expressed an S-phase-specific protein marker, proliferating cell nuclear antigen (PCNA). To examine the mechanism underlying this proliferation, the expression of the mitogens and specific receptors of the microglia were analyzed in conditioned medium (CM) and cells. Macrophage-colony stimulating factor (M-CSF) and granulocyte macrophage-CSF (GM-CSF) were detected in the CM as well as in the cells. Their specific receptor proteins, c-Fms and GMCSFRalpha, were also detected in the cell homogenate. These proliferating microglia were not found to produce deleterious factors for neurons. In summary, the microglia isolated from the axFN were found to be proliferative in an autocrine fashion and to have some cellular properties in common with those observed in vivo.

  13. Switching control of sympathetic activity from forebrain to hindbrain in chronic dehydration

    PubMed Central

    Colombari, Débora S A; Colombari, Eduardo; Freiria-Oliveira, Andre H; Antunes, Vagner R; Yao, Song T; Hindmarch, Charles; Ferguson, Alastair V; Fry, Mark; Murphy, David; Paton, Julian F R

    2011-01-01

    Abstract We investigated the mechanisms responsible for increased blood pressure and sympathetic nerve activity (SNA) caused by 2–3 days dehydration (DH) both in vivo and in situ preparations. In euhydrated (EH) rats, systemic application of the AT1 receptor antagonist Losartan and subsequent pre-collicular transection (to remove the hypothalamus) significantly reduced thoracic (t)SNA. In contrast, in DH rats, Losartan, followed by pre-collicular and pontine transections, failed to reduce tSNA, whereas transection at the medulla–spinal cord junction massively reduced tSNA. In DH but not EH rats, selective inhibition of the commissural nucleus tractus solitarii (cNTS) significantly reduced tSNA. Comparable data were obtained in both in situ and in vivo (anaesthetized/conscious) rats and suggest that following chronic dehydration, the control of tSNA transfers from supra-brainstem structures (e.g. hypothalamus) to the medulla oblongata, particularly the cNTS. As microarray analysis revealed up-regulation of AP1 transcription factor JunD in the dehydrated cNTS, we tested the hypothesis that AP1 transcription factor activity is responsible for dehydration-induced functional plasticity. When AP1 activity was blocked in the cNTS using a viral vector expressing a dominant negative FosB, cNTS inactivation was ineffective. However, tSNA was decreased after pre-collicular transection, a response similar to that seen in EH rats. Thus, the dehydration-induced switch in control of tSNA from hypothalamus to cNTS seems to be mediated via activation of AP1 transcription factors in the cNTS. If AP1 activity is blocked in the cNTS during dehydration, sympathetic activity control reverts back to forebrain regions. This unique reciprocating neural structure-switching plasticity between brain centres emphasizes the multiple mechanisms available for the adaptive response to dehydration. PMID:21708906

  14. Neuroprotective action of bacterial melanin in rats after corticospinal tract lesions.

    PubMed

    Petrosyan, Tigran R; Gevorkyan, Olga V; Meliksetyan, Irina B; Hovsepyan, Anna S; Manvelyan, Levon R

    2012-04-01

    Experiments were performed on 48 albino rats. Part of the experimental animals were initially trained to a balancing instrumental conditioned reflex (ICR). Unilateral bulbar pyramidotomy performed in all rats caused contralateral hemiparesis. On the next day following the operation 24 rats were injected intramuscularly with bacterial melanin solution. 12 of these rats were initially trained to ICR. Recovery periods of ICR and paralyzed hindlimb movements were registered for melanin injected rats (n=24) and for operated rats, not treated with melanin (n=24). In rats injected with bacterial melanin the posttraumatic recovery is shorter than in animals not treated with melanin. The fastest and complete recovery was registered in rats initially trained to ICR and injected after the operation with bacterial melanin. Electrophysiological experiments were performed in transected animals treated with melanin, transected animals without melanin treatment and intact animals. Spiking activity of motoneurons was registered in lumbar motoneurons of rats in response to high frequency stimulation above the corticospinal tract transection. Spiking activity was very similar in motoneurons of melanin injected and intact or non operated animals. In animals, not dosed with bacterial melanin after the operation, areactivity or no change in firing rate was registered in response to stimulus. Stimulation of the corticospinal tract of melanin injected rats produced potentiation of the motoneuronal firing rate and is an evidence of regeneration in corticospinal tract. Similarity in spiking activity of intact and melanin injected rats shows the recovery of conductance in pyramidal tract. Morphohistochemical examination was carried out to confirm the results of behavioral and electrophysiological experiments. Medulla slices were prepared to trace the regeneration of nerve fibers. Examination of transection area revealed that bacterial melanin increases vascularization, dilates the capillaries in nervous tissue and stimulates the process of sprouting. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Infrared neural stimulation of human spinal nerve roots in vivo

    PubMed Central

    Cayce, Jonathan M.; Wells, Jonathon D.; Malphrus, Jonathan D.; Kao, Chris; Thomsen, Sharon; Tulipan, Noel B.; Konrad, Peter E.; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2015-01-01

    Abstract. Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients (n=7) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and 1.23  J/cm2. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at 1.09  J/cm2 and a 2∶1 safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans. PMID:26157986

  16. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration

    NASA Astrophysics Data System (ADS)

    Rutkowski, Gregory E.; Miller, Cheryl A.; Jeftinija, Srdija; Mallapragada, Surya K.

    2004-09-01

    This paper describes a novel biodegradable conduit that provides a combination of physical, chemical and biological cues at the cellular level to facilitate peripheral nerve regeneration. The conduit consists of a porous poly(D,L-lactic acid) (PDLLA) tubular support structure with a micropatterned inner lumen. Schwann cells were pre-seeded into the lumen to provide additional trophic support. Conduits with micropatterned inner lumens pre-seeded with Schwann cells (MS) were fabricated and compared with three types of conduits used as controls: M (conduits with micropatterned inner lumens without pre-seeded Schwann cells), NS (conduits without micropatterned inner lumens pre-seeded with Schwann cells) and N (conduits without micropatterned inner lumens, without pre-seeded Schwann cells). The conduits were implanted in rats with 1 cm sciatic nerve transections and the regeneration and functional recovery were compared in the four different cases. The number or size of regenerated axons did not vary significantly among the different conduits. The time of recovery, and the sciatic function index, however, were significantly enhanced using the MS conduits, based on qualitative observations as well as quantitative measurements using walking track analysis. This demonstrates that biodegradable micropatterned conduits pre-seeded with Schwann cells that provide a combination of physical, chemical and biological guidance cues for regenerating axons at the cellular level offer a better alternative for repairing sciatic nerve transactions than conventional biodegradable conduits.

  17. Influence of Netrin-1 on reinnervation of laryngeal muscles following recurrent laryngeal nerve injury.

    PubMed

    Hernandez-Morato, Ignacio; Koss, Shira; Sharma, Sansar; Pitman, Michael J

    2017-07-13

    Following recurrent laryngeal nerve (RLN) injury, recovery results in poor functional restitution of the paralyzed vocal fold. Netrin-1 has been found to be upregulated in the rat posterior cricoarytenoid muscle (PCA) during nerve regeneration. We evaluated the effect of ectopic Netrin-1 in the PCA during RLN reinnervation. The right RLN was transected and Netrin-1 was injected into the PCA (2.5, 5, 10, 15, 20μg/ml). At 7 days post injury fluorescent retrograde tracer was injected into the PCA and Thyroarytenoid (TA) muscles. At 9 days tissues were harvested. Immunostaining showed reinnervation patterns in the laryngeal muscles and labelled motoneurons in the nucleus ambiguus. Lower concentrations of Netrin-1 (2.5 and 5μg/ml) showed no significant changes in laryngeal muscles reinnervation. Higher concentrations of Netrin-1 significantly reduced motor end plate innervation. The most effective dose was 10μg/ml showing reduced number of innervated motor endplates in the PCA. The somatotopic organization of the nucleus ambiguus was altered in all concentrations of Netrin-1 injection. These findings indicate that injection of Netrin-1 into the PCA changes the reinnervation pattern of the RLN. Copyright © 2017. Published by Elsevier B.V.

  18. Use of a Y-tube conduit after facial nerve injury reduces collateral axonal branching at the lesion site but neither reduces polyinnervation of motor endplates nor improves functional recovery.

    PubMed

    Hizay, Arzu; Ozsoy, Umut; Demirel, Bahadir Murat; Ozsoy, Ozlem; Angelova, Srebrina K; Ankerne, Janina; Sarikcioglu, Sureyya Bilmen; Dunlop, Sarah A; Angelov, Doychin N; Sarikcioglu, Levent

    2012-06-01

    Despite increased understanding of peripheral nerve regeneration, functional recovery after surgical repair remains disappointing. A major contributing factor is the extensive collateral branching at the lesion site, which leads to inaccurate axonal navigation and aberrant reinnervation of targets. To determine whether the Y tube reconstruction improved axonal regrowth and whether this was associated with improved function. We used a Y-tube conduit with the aim of improving navigation of regenerating axons after facial nerve transection in rats. Retrograde labeling from the zygomatic and buccal branches showed a halving in the number of double-labeled facial motor neurons (15% vs 8%; P < .05) after Y tube reconstruction compared with facial-facial anastomosis coaptation. However, in both surgical groups, the proportion of polyinnervated motor endplates was similar (≈ 30%; P > .05), and video-based motion analysis of whisking revealed similarly poor function. Although Y-tube reconstruction decreases axonal branching at the lesion site and improves axonal navigation compared with facial-facial anastomosis coaptation, it fails to promote monoinnervation of motor endplates and confers no functional benefit.

  19. Evaluation of Meniscal Mechanics and Proteoglycan Content in a Modified Anterior Cruciate Ligament Transection Model

    PubMed Central

    Fischenich, Kristine M.; Coatney, Garrett A.; Haverkamp, John H.; Button, Keith D.; DeCamp, Charlie; Haut, Roger C.; Haut Donahue, Tammy L.

    2014-01-01

    Post-traumatic osteoarthritis (PTOA) develops as a result of traumatic loading that causes tears of the soft tissues in the knee. A modified transection model, where the anterior cruciate ligament (ACL) and both menisci were transected, was used on skeletally mature Flemish Giant rabbits. Gross morphological assessments, elastic moduli, and glycosaminoglycan (GAG) coverage of the menisci were determined to quantify the amount of tissue damage 12 weeks post injury. This study is one of the first to monitor meniscal changes after inducing combined meniscal and ACL transections. A decrease in elastic moduli as well as a decrease in GAG coverage was seen. PMID:24749144

  20. Blockade of anoctamin-1 in injured and uninjured nerves reduces neuropathic pain.

    PubMed

    García, Guadalupe; Martínez-Rojas, Vladimir A; Oviedo, Norma; Murbartián, Janet

    2018-06-02

    The aim of this study was to determine the participation of anoctamin-1 in 2 models of neuropathic pain in rats (L5/L6 spinal nerve ligation [SNL] and L5 spinal nerve transection [SNT]). SNL and SNT diminished withdrawal threshold in rats. Moreover, SNL up-regulated anoctamin-1 protein expression in injured L5 and uninjured L4 DRG whereas that it enhanced activating transcription factor 3 (ATF-3) and caspase-3 expression only in injured L5 DRG. In marked contrast, SNT enhanced ATF-3 and caspase-3, but not anoctamin-1, expression in injured L5 DRG but it did not modify anoctamin-1, ATF-3 nor caspase-3 expression in uninjured L4 DRG. Accordingly, repeated (3 times) intrathecal injection of the anoctamin-1 blocker T16A inh-A01 (0.1-1 µg) or MONNA (1-10 µg) partially reverted SNL-induced mechanical allodynia in a dose-dependent manner. In contrast, anoctamin-1 blockers only produced a modest effect in SNT-induced mechanical allodynia. Interestingly, intrathecal injection of T16A inh-A01 (1 µg) or MONNA (10 µg) prevented SNL-induced up-regulation of anoctamin-1, ATF-3 and caspase-3 in injured L5 DRG. Repeated intrathecal injection of T16A inh-A01 or MONNA also reduced SNT-induced up-regulation of ATF-3 in injured L5 DRG. In contrast, T16A inh-A01 and MONNA did not affect SNT-induced up-regulation of caspase-3 expression in L5 DRG. Likewise, gabapentin (100 µg) diminished SNL-induced up-regulation of anoctamin-1, ATF-3 and caspase-3 expression in injured L5 DRG. These data suggest that spinal anoctamin-1 in injured and uninjured DRG participates in the maintenance of neuropathic pain in rats. Our data also indicate that expression of anoctamin-1 in DRG is differentially regulated depending on the neuropathic pain model. Copyright © 2018. Published by Elsevier B.V.

  1. Knocking-out matrix metalloproteinase-13 exacerbates rotator cuff muscle fatty infiltration.

    PubMed

    Liu, Xuhui; Ravishankar, Bharat; Ning, Anne; Liu, Mengyao; Kim, Hubert T; Feeley, Brian T

    2017-01-01

    Rotator cuff (RC) tears are common tendon injuries. Clinically, both muscle atrophy and fatty infiltration have generally been attributed to poor functional outcomes. Matrix metalloproteinase-13 plays a crucial role in extracellular matrix remodeling in many physiological and pathological processes. Nevertheless, its role in rotator cuff muscle atrophy and fatty infiltration remains unknown. The purpose of this study is to define the functional role of MMP-13 in rotator cuff muscle atrophy and fatty infiltration using a mouse RC tears model. Unilateral complete supraspinatus and infraspinatus tendon transection and suprascapular nerve transection was performed on nine of MMP-13 (-/-) knockout and nine of MMP-13 (+/+) wildtype mice at 3 months old. Mice were sacrificed 6 weeks after surgery. Supraspinatus (SS) and infraspinatus (IS) muscles were harvested for histology and gene expression analysis with RT-PCR. Six weeks after RC surgery, no significant difference in muscle atrophy and fibrosis between MMP-13 knockout and wild type mice was observed. However, there was a significant increase in the amount of fatty infiltration in MMP-13 knockout mice compared to the wild types. Muscles from MMP-13 knockout mice have significantly higher expression of fatty infiltration related genes. Results from this study suggest that MMP-13 plays a crucial role in rotator cuff muscle fatty degeneration. This novel finding suggests a new molecular mechanism that governs RC muscle FI and MMP-13 may serve as a target for therapeutics to treat muscle FI after RC tears.

  2. Gene Therapy for Neuropathic Pain by Silencing of TNF-α Expression with Lentiviral Vectors Targeting the Dorsal Root Ganglion in Mice

    PubMed Central

    Ogawa, Nobuhiro; Kawai, Hiromichi; Terashima, Tomoya; Kojima, Hideto; Oka, Kazuhiro; Chan, Lawrence; Maegawa, Hiroshi

    2014-01-01

    Neuropathic pain can be a debilitating condition. Many types of drugs that have been used to treat neuropathic pain have only limited efficacy. Recent studies indicate that pro-inflammatory mediators including tumor necrosis factor α (TNF-α) are involved in the pathogenesis of neuropathic pain. In the present study, we engineered a gene therapy strategy to relieve neuropathic pain by silencing TNF-α expression in the dorsal root ganglion (DRG) using lentiviral vectors expressing TNF short hairpin RNA1-4 (LV-TNF-shRNA1-4) in mice. First, based on its efficacy in silencing TNF-α in vitro, we selected shRNA3 to construct LV-TNF-shRNA3 for in vivo study. We used L5 spinal nerve transection (SNT) mice as a neuropathic pain model. These animals were found to display up-regulated mRNA expression of activating transcription factor 3 (ATF3) and neuropeptide Y (NPY), injury markers, and interleukin (IL)-6, an inflammatory cytokine in the ipsilateral L5 DRG. Injection of LV-TNF-shRNA3 onto the proximal transected site suppressed significantly the mRNA levels of ATF3, NPY and IL-6, reduced mechanical allodynia and neuronal cell death of DRG neurons. These results suggest that lentiviral-mediated silencing of TNF-α in DRG relieves neuropathic pain and reduces neuronal cell death, and may constitute a novel therapeutic option for neuropathic pain. PMID:24642694

  3. Non-invasive stimulation of the vibrissal pad improves recovery of whisking function after simultaneous lesion of the facial and infraorbital nerves in rats.

    PubMed

    Bendella, H; Pavlov, S P; Grosheva, M; Irintchev, A; Angelova, S K; Merkel, D; Sinis, N; Kaidoglou, K; Skouras, E; Dunlop, S A; Angelov, Doychin N

    2011-07-01

    We have recently shown that manual stimulation of target muscles promotes functional recovery after transection and surgical repair to pure motor nerves (facial: whisking and blink reflex; hypoglossal: tongue position). However, following facial nerve repair, manual stimulation is detrimental if sensory afferent input is eliminated by, e.g., infraorbital nerve extirpation. To further understand the interplay between sensory input and motor recovery, we performed simultaneous cut-and-suture lesions on both the facial and the infraorbital nerves and examined whether stimulation of the sensory afferents from the vibrissae by a forced use would improve motor recovery. The efficacy of 3 treatment paradigms was assessed: removal of the contralateral vibrissae to ensure a maximal use of the ipsilateral ones (vibrissal stimulation; Group 2), manual stimulation of the ipsilateral vibrissal muscles (Group 3), and vibrissal stimulation followed by manual stimulation (Group 4). Data were compared to controls which underwent surgery but did not receive any treatment (Group 1). Four months after surgery, all three treatments significantly improved the amplitude of vibrissal whisking to 30° versus 11° in the controls of Group 1. The three treatments also reduced the degree of polyneuronal innervation of target muscle fibers to 37% versus 58% in Group 1. These findings indicate that forced vibrissal use and manual stimulation, either alone or sequentially, reduce target muscle polyinnervation and improve recovery of whisking function when both the sensory and the motor components of the trigemino-facial system regenerate.

  4. Pneumocephalus Following Thoracic Surgery with Posterior Chest Wall Resection.

    PubMed

    Müller, Ina; Tönnies, Mario; Pfannschmidt, Joachim; Kaiser, Dirk

    2015-12-01

    Pneumocephalus can be seen after head injury with fracture of the skull-base or in cerebral neoplasm, infection, or after intracranial or spinal surgery. We report on a 69-year-old male patient with pneumocephalus after right-sided lobectomy and en bloc resection of the chest wall for non-small-cell lung cancer. Postoperatively, the patient showed a reduced vigilance level with no response to pain stimuli and anisocoria. The CCT scan revealed an extensive pneumocephalus; following which, the patient underwent neurosurgery with laminectomy and ligature of the transected nerve roots. After operation the patient returned to his baseline mental status.

  5. Comparison of trophic factors' expression between paralyzed and recovering muscles after facial nerve injury. A quantitative analysis in time course.

    PubMed

    Grosheva, Maria; Nohroudi, Klaus; Schwarz, Alisa; Rink, Svenja; Bendella, Habib; Sarikcioglu, Levent; Klimaschewski, Lars; Gordon, Tessa; Angelov, Doychin N

    2016-05-01

    After peripheral nerve injury, recovery of motor performance negatively correlates with the poly-innervation of neuromuscular junctions (NMJ) due to excessive sprouting of the terminal Schwann cells. Denervated muscles produce short-range diffusible sprouting stimuli, of which some are neurotrophic factors. Based on recent data that vibrissal whisking is restored perfectly during facial nerve regeneration in blind rats from the Sprague Dawley (SD)/RCS strain, we compared the expression of brain derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF2), insulin growth factors 1 and 2 (IGF1, IGF2) and nerve growth factor (NGF) between SD/RCS and SD-rats with normal vision but poor recovery of whisking function after facial nerve injury. To establish which trophic factors might be responsible for proper NMJ-reinnervation, the transected facial nerve was surgically repaired (facial-facial anastomosis, FFA) for subsequent analysis of mRNA and proteins expressed in the levator labii superioris muscle. A complicated time course of expression included (1) a late rise in BDNF protein that followed earlier elevated gene expression, (2) an early increase in FGF2 and IGF2 protein after 2 days with sustained gene expression, (3) reduced IGF1 protein at 28 days coincident with decline of raised mRNA levels to baseline, and (4) reduced NGF protein between 2 and 14 days with maintained gene expression found in blind rats but not the rats with normal vision. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of lesion-associated neurotrophic factors and cytokines in denervated muscles. The increase of FGF-2 protein and concomittant decrease of NGF (with no significant changes in BDNF or IGF levels) during the first week following FFA in SD/RCS blind rats possibly prevents the distal branching of regenerating axons resulting in reduced poly-innervation of motor endplates. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. State-space modeling of population sizes and trends in Nihoa Finch and Millerbird

    USGS Publications Warehouse

    Gorresen, P. Marcos; Brinck, Kevin W.; Camp, Richard J.; Farmer, Chris; Plentovich, Sheldon M.; Banko, Paul C.

    2016-01-01

    Both of the 2 passerines endemic to Nihoa Island, Hawai‘i, USA—the Nihoa Millerbird (Acrocephalus familiaris kingi) and Nihoa Finch (Telespiza ultima)—are listed as endangered by federal and state agencies. Their abundances have been estimated by irregularly implemented fixed-width strip-transect sampling from 1967 to 2012, from which area-based extrapolation of the raw counts produced highly variable abundance estimates for both species. To evaluate an alternative survey method and improve abundance estimates, we conducted variable-distance point-transect sampling between 2010 and 2014. We compared our results to those obtained from strip-transect samples. In addition, we applied state-space models to derive improved estimates of population size and trends from the legacy time series of strip-transect counts. Both species were fairly evenly distributed across Nihoa and occurred in all or nearly all available habitat. Population trends for Nihoa Millerbird were inconclusive because of high within-year variance. Trends for Nihoa Finch were positive, particularly since the early 1990s. Distance-based analysis of point-transect counts produced mean estimates of abundance similar to those from strip-transects but was generally more precise. However, both survey methods produced biologically unrealistic variability between years. State-space modeling of the long-term time series of abundances obtained from strip-transect counts effectively reduced uncertainty in both within- and between-year estimates of population size, and allowed short-term changes in abundance trajectories to be smoothed into a long-term trend.

  7. A field experiment and numerical modeling of a tracer at a gravel beach in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Guo, Qiaona; Li, Hailong; Boufadel, Michel C.; Liu, Jin

    2014-12-01

    Oil from the 1989 Exxon Valdez oil spill persists in many gravel beaches in Prince William Sound (Alaska, USA), despite great remedial efforts. A tracer study using lithium at a gravel beach on Knight Island, Prince William Sound, during the summer of 2008 is reported. The tracer injection and transport along a transect were simulated using the two-dimensional numerical model MARUN. Model results successfully reproduced the tracer concentrations observed at wells along the transect. A sensitivity analysis revealed that the estimated parameters are well determined. The simulated spatial distribution of tracer indicated that nutrients applied along the transect for bioremediation purposes would be washed to the sea very quickly (within a semi-diurnal tidal cycle) by virtue of the combination of the two-layered beach structure, the tidal fluctuation and the freshwater flow from inland. Thus, pore-water samples in the transect were found to be clean due to factors other than bioremediation. This may explain why the oil did not persist within the transect.

  8. Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer.

    PubMed

    Ramachandran, Anup; Schuettler, Martin; Lago, Natalia; Doerge, Thomas; Koch, Klaus Peter; Navarro, Xavier; Hoffmann, Klaus-Peter; Stieglitz, Thomas

    2006-06-01

    This paper reports on the design, in vitro and in vivo investigation of a flexible, lightweight, polyimide based implantable sieve electrode with a hybrid assembly of multiplexers and polymer encapsulation. The integration of multiplexers enables us to connect a large number of electrodes on the sieve using few input connections. The implant assembly of the sieve electrode with the electronic circuitry was verified by impedance measurement. The 27 platinum electrodes of the sieve were coated with platinum black to reduce the electrode impedance. The impedance magnitude of the electrode sites on the sieve (geometric surface area 2,200 microm(2)) was |Z(f=1kHz)| = 5.7 kOmega. The sieve electrodes, encased in silicone, have been implanted in the transected sciatic nerve of rats. Initial experiments showed that axons regenerated through the holes of the sieve and reinnervated distal target organs. Nerve signals were recorded in preliminary tests after 3-7 months post-implantation.

  9. Mechanisms of inhibitory action of TRK-130 (Naltalimide), a μ-opioid receptor partial agonist, on the micturition reflex.

    PubMed

    Fujimura, Morihiro; Izumimoto, Naoki; Kanie, Sayoko; Kobayashi, Ryosuke; Yoshikawa, Satoru; Momen, Shinobu; Hirakata, Mikito; Komagata, Toshikazu; Okanishi, Satoshi; Iwata, Masashi; Hashimoto, Tadatoshi; Doi, Takayuki; Yoshimura, Naoki; Kawai, Koji

    2017-04-01

    To clarify the mechanism of inhibitory action of TRK-130 (Naltalimide), a unique µ-opioid receptor partial agonist, on the micturition reflex. The effect of TRK-130 on isovolumetric rhythmic bladder contractions (RBCs) was examined in guinea pigs, the effect of which was clarified by co-treatment with naloxone or in spinal cord transection. The effect of TRK-130 on urodynamic parameters was also observed in guinea pigs. In addition, the effect of TRK-130 on bladder contraction induced by peripheral stimulation of the pelvic nerve was investigated in rats. TRK-130 (0.001-0.01 mg/kg, iv) dose-dependently inhibited RBCs, which was dose-dependently antagonized by naloxone; however, the antagonism susceptibility was different from morphine (1 mg/kg, iv). The minimum effective dose (0.003 mg/kg) of TRK-130 remained similar in spinal cord-transected animals. TRK-130 (0.0025 mg/kg, iv) increased bladder capacity without changing the voiding efficiency, maximum flow rate, and intravesical pressure at the maximum flow rate, whereas oxybutynin (1 mg/kg, iv) increased the bladder capacity but affected the other parameters. TRK-130 (0.005 mg/kg, iv) did not produce significant changes on the bladder contractions induced by peripheral stimulation of the pelvic nerve, while oxybutynin (1 mg/kg, iv) significantly suppressed the bladder contractions. These results suggest that TRK-130 enhances the bladder storage function by modulating the afferent limb of the micturition reflex through µ-opioid receptors in the spinal cord. TRK-130 could be a more effective and safer therapeutic agent with a different fashion from antimuscarinics and conventional opioids for overactive bladder.

  10. Freezing to the predator odor 2,4,5 dihydro 2,5 trimethylthiazoline (TMT) is disrupted by olfactory bulb removal but not trigeminal deafferentation.

    PubMed

    Ayers, Luke W; Asok, Arun; Heyward, Frankie D; Rosen, Jeffrey B

    2013-09-15

    2,4,5 dihydro 2,5 trimethylthiazoline (TMT) is a synthesized component of red fox anal secretions that reliably elicits defensive behaviors in rats and mice. TMT differs from other predator odors because it is a single molecule, it can be synthesized in large quantities, and the dose for exposure is highly controllable in an experimental setting. TMT has become a popular tool for studying the brain mechanisms that mediate innate fear behavior to olfactory stimuli. However, this view of TMT as a biologically relevant olfactory stimulus has been challenged by suggestions that the odor elicits fear behavior due to its irritating properties, presumably working through a nociceptive mechanism. To address this criticism our lab measured freezing behavior in rats during exposures to 2 odors (TMT and butyric acid) and H2O (no odor control) following either surgical transection of the trigeminal nerves or ablation of the olfactory bulbs. Our findings (Experiment 1) indicate that freezing behavior to TMT requires an intact olfactory system, as indicated by the loss of freezing following olfactory bulb removal. Experiment 2 revealed that rats with trigeminal nerve transection freeze normally to TMT, suggesting the olfactory system mediates this behavior to TMT. A replication of Experiment 1 that included contextual fear conditioning revealed that the decreased freezing behavior was not due to an inability of olfactory bulb ablated rats to freeze (Experiment 3). Taken together, these findings support TMT's role as an ecologically relevant predator odor useful in experiments of unconditioned fear that is mediated via olfaction and not nociception. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Inhibition of PDGFR signaling prevents muscular fatty infiltration after rotator cuff tear in mice.

    PubMed

    Shirasawa, Hideyuki; Matsumura, Noboru; Shimoda, Masayuki; Oki, Satoshi; Yoda, Masaki; Tohmonda, Takahide; Kanai, Yae; Matsumoto, Morio; Nakamura, Masaya; Horiuchi, Keisuke

    2017-01-31

    Fatty infiltration in muscle is often observed in patients with sizable rotator cuff tear (RCT) and is thought to be an irreversible event that significantly compromises muscle plasticity and contraction strength. These changes in the mechanical properties of the affected muscle render surgical repair of RCT highly formidable. Therefore, it is important to learn more about the pathology of fatty infiltration to prevent this undesired condition. In the present study, we aimed to generate a mouse model that can reliably recapitulate some of the important characteristics of muscular fatty infiltration after RCT in humans. We found that fatty infiltration can be efficiently induced by a combination of the following procedures: denervation of the suprascapular nerve, transection of the rotator cuff tendon, and resection of the humeral head. Using this model, we found that platelet-derived growth factor receptor-α (PDGFRα)-positive mesenchymal stem cells are induced after this intervention and that inhibition of PDGFR signaling by imatinib treatment can significantly suppress fatty infiltration. Taken together, the present study presents a reliable fatty infiltration mouse model and suggests a key role for PDGFRα-positive mesenchymal stem cells in the process of fatty infiltration after RCT in humans.

  12. Inhibition of PDGFR signaling prevents muscular fatty infiltration after rotator cuff tear in mice

    PubMed Central

    Shirasawa, Hideyuki; Matsumura, Noboru; Shimoda, Masayuki; Oki, Satoshi; Yoda, Masaki; Tohmonda, Takahide; Kanai, Yae; Matsumoto, Morio; Nakamura, Masaya; Horiuchi, Keisuke

    2017-01-01

    Fatty infiltration in muscle is often observed in patients with sizable rotator cuff tear (RCT) and is thought to be an irreversible event that significantly compromises muscle plasticity and contraction strength. These changes in the mechanical properties of the affected muscle render surgical repair of RCT highly formidable. Therefore, it is important to learn more about the pathology of fatty infiltration to prevent this undesired condition. In the present study, we aimed to generate a mouse model that can reliably recapitulate some of the important characteristics of muscular fatty infiltration after RCT in humans. We found that fatty infiltration can be efficiently induced by a combination of the following procedures: denervation of the suprascapular nerve, transection of the rotator cuff tendon, and resection of the humeral head. Using this model, we found that platelet-derived growth factor receptor-α (PDGFRα)-positive mesenchymal stem cells are induced after this intervention and that inhibition of PDGFR signaling by imatinib treatment can significantly suppress fatty infiltration. Taken together, the present study presents a reliable fatty infiltration mouse model and suggests a key role for PDGFRα-positive mesenchymal stem cells in the process of fatty infiltration after RCT in humans. PMID:28139720

  13. Simulation of Anterior Cruciate Ligament Deficiency in a Musculoskeletal Model with Anatomical Knees

    PubMed Central

    Guess, Trent M; Stylianou, Antonis

    2012-01-01

    Abnormal knee kinematics and meniscus injury resulting from anterior cruciate ligament (ACL) deficiency are often implicated in joint degeneration even though changes in tibio-femoral contact location after injury are small, typically only a few millimeters. Ligament reconstruction surgery does not significantly reduce the incidence of early onset osteoarthritis. Increased knowledge of knee contact mechanics would increase our understanding of the effects of ACL injury and help guide ACL reconstruction methods. Presented here is a cadaver specific computational knee model combined with a body-level musculoskeletal model from a subject of similar height and weight as the cadaver donor. The knee model was developed in the multi-body framework and includes representation of the menisci. Experimental body-level measurements provided input to the musculoskeletal model. The location of tibio-menisco-femoral contact as well as contact pressures were compared for models with an intact ACL, partial ACL transection (posterolateral bundle transection), and full ACL transection during a muscle driven forward dynamics simulation of a dual limb squat. During the squat, small changes in femur motion relative to the tibia for both partial and full ACL transection push the lateral meniscus in the posterior direction at extension. The central-anterior region of the lateral meniscus then becomes “wedged” between the tibia and femur during knee flexion. This “wedging” effect does not occur for the intact knee. Peak contact pressure and contact locations are similar for the partial tear and complete ACL transection during the deep flexion portion of the squat, particularly on the lateral side. The tibio-femoral contact location on the tibia plateau shifts slightly to the posterior and lateral direction with ACL transection. PMID:22470411

  14. Intracorporeal reconstruction after laparoscopic pylorus-preserving gastrectomy for middle-third early gastric cancer: a hybrid technique using linear stapler and manual suturing.

    PubMed

    Koeda, Keisuke; Chiba, Takehiro; Noda, Hironobu; Nishinari, Yutaka; Segawa, Takenori; Akiyama, Yuji; Iwaya, Takeshi; Nishizuka, Satoshi; Nitta, Hiroyuki; Otsuka, Koki; Sasaki, Akira

    2016-05-01

    Laparoscopy-assisted pylorus-preserving gastrectomy has been increasingly reported as a treatment for early gastric cancer located in the middle third of the stomach because of its low invasiveness and preservation of pyloric function. Advantages of a totally laparoscopic approach to distal gastrectomy, including small wound size, minimal invasiveness, and safe anastomosis, have been recently reported. Here, we introduce a new procedure for intracorporeal gastro-gastrostomy combined with totally laparoscopic pylorus-preserving gastrectomy (TLPPG). The stomach is transected after sufficient lymphadenectomy with preservation of infrapyloric vessels and vagal nerves. The proximal stomach is first transected near the Demel line, and the distal side is transected 4 to 5 cm from the pyloric ring. To create end-to-end gastro-gastrostomy, the posterior wall of the anastomosis is stapled with a linear stapler and the anterior wall is made by manual suturing intracorporeally. We retrospectively assessed the postoperative surgical outcomes via medical records. The primary endpoint in the present study is safety. Sixteen patients underwent TLPPG with intracorporeal reconstruction. All procedures were successfully performed without any intraoperative complications. The mean operative time was 275 min, with mean blood loss of 21 g. With the exception of one patient who had gastric stasis, 15 patients were discharged uneventfully between postoperative days 8 and 11. Our novel hybrid technique for totally intracorporeal end-to-end anastomosis was performed safely without mini-laparotomy. This technique requires prospective validation.

  15. Microarray Analysis Gene Expression Profiles in Laryngeal Muscle After Recurrent Laryngeal Nerve Injury.

    PubMed

    Bijangi-Vishehsaraei, Khadijeh; Blum, Kevin; Zhang, Hongji; Safa, Ahmad R; Halum, Stacey L

    2016-03-01

    The pathophysiology of recurrent laryngeal nerve (RLN) transection injury is rare in that it is characteristically followed by a high degree of spontaneous reinnervation, with reinnervation of the laryngeal adductor complex (AC) preceding that of the abducting posterior cricoarytenoid (PCA) muscle. Here, we aim to elucidate the differentially expressed myogenic factors following RLN injury that may be at least partially responsible for the spontaneous reinnervation. F344 male rats underwent RLN injury (n = 12) or sham surgery (n = 12). One week after RLN injury, larynges were harvested following euthanasia. The mRNA was extracted from PCA and AC muscles bilaterally, and microarray analysis was performed using a full rat genome array. Microarray analysis of denervated AC and PCA muscles demonstrated dramatic differences in gene expression profiles, with 205 individual probes that were differentially expressed between the denervated AC and PCA muscles and only 14 genes with similar expression patterns. The differential expression patterns of the AC and PCA suggest different mechanisms of reinnervation. The PCA showed the gene patterns of Wallerian degeneration, while the AC expressed the gene patterns of reinnervation by adjacent axonal sprouting. This finding may reveal important therapeutic targets applicable to RLN and other peripheral nerve injuries. © The Author(s) 2015.

  16. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons

    PubMed Central

    Titus-Mitchell, Haley E.; Bullinger, Katie L.; Kraszpulski, Michal; Nardelli, Paul; Cope, Timothy C.

    2011-01-01

    Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75–95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons. PMID:21832035

  17. Schema-based learning of adaptable and flexible prey- catching in anurans II. Learning after lesioning.

    PubMed

    Corbacho, Fernando; Nishikawa, Kiisa C; Weerasuriya, Ananda; Liaw, Jim-Shih; Arbib, Michael A

    2005-12-01

    The previous companion paper describes the initial (seed) schema architecture that gives rise to the observed prey-catching behavior. In this second paper in the series we describe the fundamental adaptive processes required during learning after lesioning. Following bilateral transections of the hypoglossal nerve, anurans lunge toward mealworms with no accompanying tongue or jaw movement. Nevertheless anurans with permanent hypoglossal transections eventually learn to catch their prey by first learning to open their mouth again and then lunging their body further and increasing their head angle. In this paper we present a new learning framework, called schema-based learning (SBL). SBL emphasizes the importance of the current existent structure (schemas), that defines a functioning system, for the incremental and autonomous construction of ever more complex structure to achieve ever more complex levels of functioning. We may rephrase this statement into the language of Schema Theory (Arbib 1992, for a comprehensive review) as the learning of new schemas based on the stock of current schemas. SBL emphasizes a fundamental principle of organization called coherence maximization, that deals with the maximization of congruence between the results of an interaction (external or internal) and the expectations generated for that interaction. A central hypothesis consists of the existence of a hierarchy of predictive internal models (predictive schemas) all over the control center-brain-of the agent. Hence, we will include predictive models in the perceptual, sensorimotor, and motor components of the autonomous agent architecture. We will then show that predictive models are fundamental for structural learning. In particular we will show how a system can learn a new structural component (augment the overall network topology) after being lesioned in order to recover (or even improve) its original functionality. Learning after lesioning is a special case of structural learning but clearly shows that solutions cannot be known/hardwired a priori since it cannot be known, in advance, which substructure is going to break down.

  18. Seismic structure from multi-channel seismic reflection and wide-angle data of Transect 0E in the Southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Paramo, P.; Holbrook, W.; Brown, H.; Lizarralde, D.; Fletcher, J.; Umhoefer, P.; Kent, G.; Harding, A.; Gonzalez, A.; Axen, G.

    2005-12-01

    We present a velocity model from wide-angle data along with coincident prestack depth migration sections from seismic reflection data collected in the southern Gulf of California. Transect 0E runs NE to SW from the hills of Sierra Madre in mainland Mexico near Mazatlan to approximately 115 km into Gulf of California waters. Wide-angle data were recorded by 9 ocean bottom seismometers, deployed by the R/V New Horizon and 10 Reftek seismometers located along onshore extension of the transect. The average spacing for the OBS and Refteks is ~12 km and shots were fired from the R/V Maurice Ewing at 150 m intervals. Transect 0E crosses what it is believed to be extended continental crust and lies in the initial direction of extension characteristic of the proto-gulf. Preliminary results from the velocity model show upper crustal velocities of 6.1-6.3 km/s and lower crustal velocities of 6.7-7.0 km/s along the entire transect. Seismic velocities and crustal thicknesses observed along transect 0E are characteristic of non-volcanic margins.

  19. Functional and Anatomical Outcomes of Facial Nerve Injury With Application of Polyethylene Glycol in a Rat Model.

    PubMed

    Brown, Brandon L; Asante, Tony; Welch, Haley R; Sandelski, Morgan M; Drejet, Sarah M; Shah, Kishan; Runge, Elizabeth M; Shipchandler, Taha Z; Jones, Kathryn J; Walker, Chandler L

    2018-05-17

    Functional and anatomical outcomes after surgical repair of facial nerve injury may be improved with the addition of polyethylene glycol (PEG) to direct suture neurorrhaphy. The application of PEG has shown promise in treating spinal nerve injuries, but its efficacy has not been evaluated in treatment of cranial nerve injuries. To determine whether PEG in addition to neurorrhaphy can improve functional outcomes and synkinesis after facial nerve injury. In this animal experiment, 36 rats underwent right facial nerve transection and neurorrhaphy with addition of PEG. Weekly behavioral scoring was done for 10 rats for 6 weeks and 14 rats for 16 weeks after the operations. In the 16-week study, the buccal branches were labeled and tissue analysis was performed. In the 6-week study, the mandibular and buccal branches were labeled and tissue analysis was performed. Histologic analysis was performed for 10 rats in a 1-week study to assess the association of PEG with axonal continuity and Wallerian degeneration. Six rats served as the uninjured control group. Data were collected from February 8, 2016, through July 10, 2017. Polyethylene glycol applied to the facial nerve after neurorrhaphy. Functional recovery was assessed weekly for the 16- and 6-week studies, as well as motoneuron survival, amount of regrowth, specificity of regrowth, and aberrant branching. Short-term effects of PEG were assessed in the 1-week study. Among the 40 male rats included in the study, PEG addition to neurorrhaphy showed no functional benefit in eye blink reflex (mean [SEM], 3.57 [0.88] weeks; 95% CI, -2.8 to 1.9 weeks; P = .70) or whisking function (mean [SEM], 4.00 [0.72] weeks; 95% CI, -3.6 to 2.4 weeks; P = .69) compared with suturing alone at 16 weeks. Motoneuron survival was not changed by PEG in the 16-week (mean, 132.1 motoneurons per tissue section; 95% CI, -21.0 to 8.4; P = .13) or 6-week (mean, 131.1 motoneurons per tissue section; 95% CI, -11.0 to 10.0; P = .06) studies. Compared with controls, neither surgical group showed differences in buccal branch regrowth at 16 (36.9 motoneurons per tissue section; 95% CI, -14.5 to 22.0; P = .28) or 6 (36.7 motoneurons per tissue section; 95% CI, -7.8 to 18.5; P = .48) weeks or in the mandibular branch at 6 weeks (25.2 motoneurons per tissue section; 95% CI, -14.5 to 15.5; P = .99). Addition of PEG had no advantage in regrowth specificity compared with suturing alone at 16 weeks (15.3% buccal branch motoneurons with misguided projections; 95% CI, -7.2% to 11.0%; P = .84). After 6 weeks, the number of motoneurons with misguided projections to the mandibular branch showed no advantage of PEG treatment compared with suturing alone (12.1% buccal branch motoneurons with misguided projections; 95% CI, -8.2% to 9.2%; P = .98). In the 1-week study, improved axonal continuity and muscular innervation were not observed in PEG-treated rats. Although PEG has shown efficacy in treating other nervous system injuries, PEG in addition to neurorraphy was not beneficial in a rat model of facial nerve injury. The addition of PEG to suturing may not be warranted in the surgical repair of facial nerve injury. NA.

  20. Use of the transect method in satellite survey missions with application to the infrared astronomical satellite /IRAS/

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.; Lundy, S. A.; Ling, H. Y.; Stroberg, M. W.

    1980-01-01

    The coverage of the celestial sphere or the surface of the earth with a narrow-field instrument onboard a satellite can be described by a set of swaths on the sphere. A transect is a curve on this sphere constructed to sample the coverage. At each point on the transect the number of times that the field-of-view of the instrument has passed over the point is recorded. This information is conveniently displayed as an integer-valued histogram over the length of the transect. The effectiveness of the transect method for a particular observing plan and the best placement of the transects depends upon the structure of the set of observations. Survey missions are usually characterized by a somewhat parallel alignment of the instrument swaths. Using autocorrelation and cross-correlation functions among the histograms the structure of a survey has been analyzed into two components, and each is illustrated by a simple mathematical model. The complex, all-sky survey to be performed by the Infrared Astronomical Satellite (IRAS) is synthesized in some detail utilizing the objectives and constraints of that mission. It is seen that this survey possesses the components predicted by the simple models and this information is useful in characterizing the properties of the IRAS survey and the placement of the transects as a function of celestial latitude and certain structural properties of the coverage.

  1. Knocking-out matrix metalloproteinase-13 exacerbates rotator cuff muscle fatty infiltration

    PubMed Central

    Liu, Xuhui; Ravishankar, Bharat; Ning, Anne; Liu, Mengyao; Kim, Hubert T.; Feeley, Brian T.

    2017-01-01

    Summary Introduction Rotator cuff (RC) tears are common tendon injuries. Clinically, both muscle atrophy and fatty infiltration have generally been attributed to poor functional outcomes. Matrix metalloproteinase-13 plays a crucial role in extracellular matrix remodeling in many physiological and pathological processes. Nevertheless, its role in rotator cuff muscle atrophy and fatty infiltration remains unknown. The purpose of this study is to define the functional role of MMP-13 in rotator cuff muscle atrophy and fatty infiltration using a mouse RC tears model. Materials and methods Unilateral complete supraspinatus and infraspinatus tendon transection and suprascapular nerve transection was performed on nine of MMP-13 (−/−) knockout and nine of MMP-13 (+/+) wildtype mice at 3 months old. Mice were sacrificed 6 weeks after surgery. Supraspinatus (SS) and infraspinatus (IS) muscles were harvested for histology and gene expression analysis with RT-PCR. Results Six weeks after RC surgery, no significant difference in muscle atrophy and fibrosis between MMP-13 knockout and wild type mice was observed. However, there was a significant increase in the amount of fatty infiltration in MMP-13 knockout mice compared to the wild types. Muscles from MMP-13 knockout mice have significantly higher expression of fatty infiltration related genes. Discussion Results from this study suggest that MMP-13 plays a crucial role in rotator cuff muscle fatty degeneration. This novel finding suggests a new molecular mechanism that governs RC muscle FI and MMP-13 may serve as a target for therapeutics to treat muscle FI after RC tears. PMID:29264329

  2. A geostatistical approach for quantification of contaminant mass discharge uncertainty using multilevel sampler measurements

    NASA Astrophysics Data System (ADS)

    Li, K. Betty; Goovaerts, Pierre; Abriola, Linda M.

    2007-06-01

    Contaminant mass discharge across a control plane downstream of a dense nonaqueous phase liquid (DNAPL) source zone has great potential to serve as a metric for the assessment of the effectiveness of source zone treatment technologies and for the development of risk-based source-plume remediation strategies. However, too often the uncertainty of mass discharge estimated in the field is not accounted for in the analysis. In this paper, a geostatistical approach is proposed to estimate mass discharge and to quantify its associated uncertainty using multilevel transect measurements of contaminant concentration (C) and hydraulic conductivity (K). The approach adapts the p-field simulation algorithm to propagate and upscale the uncertainty of mass discharge from the local uncertainty models of C and K. Application of this methodology to numerically simulated transects shows that, with a regular sampling pattern, geostatistics can provide an accurate model of uncertainty for the transects that are associated with low levels of source mass removal (i.e., transects that have a large percentage of contaminated area). For high levels of mass removal (i.e., transects with a few hot spots and large areas of near-zero concentration), a total sampling area equivalent to 6˜7% of the transect is required to achieve accurate uncertainty modeling. A comparison of the results for different measurement supports indicates that samples taken with longer screen lengths may lead to less accurate models of mass discharge uncertainty. The quantification of mass discharge uncertainty, in the form of a probability distribution, will facilitate risk assessment associated with various remediation strategies.

  3. Effects of the dimeric PSD-95 inhibitor UCCB01-144 on functional recovery after fimbria-fornix transection in rats.

    PubMed

    Sommer, Jens Bak; Bach, Anders; Malá, Hana; Strømgaard, Kristian; Mogensen, Jesper; Pickering, Darryl S

    2017-10-01

    Pharmacological inhibition of PSD-95 is a promising therapeutic strategy in the treatment of stroke, and positive effects of monomeric and dimeric PSD-95 inhibitors have been reported in numerous studies. However, whether therapeutic effects will generalize to other types of acute brain injury such as traumatic brain injury (TBI), which has pathophysiological mechanisms in common with stroke, is currently uncertain. We have previously found a lack of neuroprotective effects of dimeric PSD-95 inhibitors in the controlled cortical impact model of TBI in rats. However, as no single animal model is currently able to mimic the complex and heterogeneous pathophysiology of TBI, it is necessary to assess treatment effects across a range of models. In this preliminary study we investigated the neuroprotective abilities of the dimeric PSD-95 inhibitor UCCB01-144 after fimbria-fornix (FF) transection in rats. UCCB01-144 or saline was injected into the lateral tail vein of rats immediately after sham surgery or FF-transection, and effects on spatial delayed alternation in a T-maze were assessed over a 28-day period. Task acquisition was significantly impaired in FF-transected animals, but there were no significant effects of UCCB01-144 on spatial delayed alternation after FF-transection or sham surgery, although decelerated learning curves were seen after treatment with UCCB01-144 in FF-transected animals. The results of the present study are consistent with previous research showing a lack of neuroprotective effects of PSD-95 inhibition in experimental models of TBI. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films

    PubMed Central

    Li, Rui-Yun; Liu, Zhi-Gang; Liu, Huan-Qiu; Chen, Lei; Liu, Jian-Feng; Pan, Yue-Hai

    2015-01-01

    Regeneration and functional recovery of nerves after peripheral nerve injury is the key to peripheral nerve repair. One of the putative therapeutic strategies is to use anti-adhesion polymer films, made of polymeric biomaterials. Recently, a novel biodegradable poly (DL-lactic acid) (PDLLA) film has been prepared using a method of phase transformation with biodegradable polylactic acid polymer as the substrate. This novel, anti-adhesion film has a porous structure, which provides better mechanical properties, better flexibility, more complete diffusion through the polymer of tissue biologic factors like growth factors, and more controllable degradation compared to traditional non-porous films. Little is known, however, about the in vitro and in vivo biocompatibility and cytotoxicity of this type of PDLLA film. Therefore, our aim was to evaluate the biocompatibility and cytotoxicity of this novel PDLLA film using various experimental methods, including a skin irritation test, MTT analysis, and the mouse bone marrow cell micronucleus test, as well as hematology or clinical chemistry measurements in rats after receiving sciatic nerve transection and anastomosis with wrapping of the anastomosis with DLLA films. We demonstrated that exposure to PDLLA film extracts did not generate apparent erythema or edema in rabbit skin and had no effect on the proliferation of Vero cells. Additionally, treatment with PDLLA film extracts did not alter the incidence of micronucleated polychromatic erythrocytes as compared with saline Treated group. Furthermore, implantation of PDLLA film did not alter liver or renal function as measured by serum levels of ALT, AST, TP, A/G, Cr, and BUN, and pathologic examinations showed that implantation of PDLLA film did not cause pathologic changes to the rat liver, kidney, pancreas, or spleen. Taken together, these results suggest that PDLLA films have excellent biocompatibility and no obvious toxicity in vivo, and may be used to prevent nerve adhesion, thereby promoting nerve regeneration. PMID:26396667

  5. Circumferential graben and the structural evolution of Alba Mons, Mars

    NASA Astrophysics Data System (ADS)

    Öhman, Teemu; McGovern, Patrick J.

    2014-05-01

    Alba Mons is a unique, very extensive but shallow volcanotectonic construct in northern Tharsis, Mars. Numerous models have been presented to explain the formation of Alba Mons and its most characteristic feature, a wristwatch-like pattern of radial and circumferential graben. We used a wide selection of topographic datasets to characterize the fault throw variation on nine topographic transects across the circumferential graben in order to provide observational constraints for the different formation models, and to gain further insight into the evolution of Alba Mons. In most of the transects, summed throws from outwards-facing (away from the center of the volcano) faults are larger than from the inwards-facing (towards the center) ones. Only the very gently sloping western transects show the opposite, emphasizing the east-west-asymmetry of Alba Mons. 10-40% of the observed topographic relief of Alba Mons along the nine transects can be accounted for by this throw difference between the inwards- and outwards-facing faults. These results are consistent with predictions of models suggesting an uplift mechanism to explain the formation of the circumferential graben, but not with models invoking central subsidence. Horizontal extensional strain along the transects varies between 0.5% and 2%, consistent with strain predictions of the late-stage sill complex inflation model of McGovern et al. (McGovern, P.J., Solomon, S.C., Head J.W. III, Smith, D.E., Zuber M.T., Neumann, G.A. [2001]. J. Geophys. Res. 106(E10), 23769-23809).

  6. Clinical predictors of high risk histopathology in retinoblastoma.

    PubMed

    Kashyap, Seema; Meel, Rachna; Pushker, Neelam; Sen, Seema; Bakhshi, Sameer; Sreenivas, Vishnubhatla; Sethi, Sumita; Chawla, Bhavna; Ghose, Supriyo

    2012-03-01

    Previous studies show that clinical features at presentation, in retinoblastoma patients, like glaucoma and neovascularization of iris are associated with a higher incidence of high risk histopathology findings (HRF) in enucleated eyes. Herein, we analyze association between clinical features at time of enucleation and occurrence of HRF including invasion of anterior chamber, iris, ciliary body, choroid (massive), sclera, extrascleral tissue, optic nerve beyond lamina cribrosa, and optic nerve cut end, in a large series of eyes enucleated for retinoblastoma. We retrospectively studied demographic, clinical, and histopathology findings in all retinoblastoma patients who underwent primary enucleation at our center, over a 5 years duration. Statistical analysis was done to find any association between clinical features at presentation and the presence of HRF. Three hundred twenty-six eyes were studied. Median age of presentation was 2 years. Glaucoma was the most common clinical finding at presentation apart from leucocoria. Out of 326 enucleated eyes, 28 (8.6%) had extrascleral and/or optic nerve transection invasion. Among remaining 298 eyes, with completely resected tumor, 115 (38.6%) had massive choroidal invasion, 54 (17%) had retrolaminar optic nerve invasion, and 24 (7%), 29 (9%), and 23(7%) had anterior chamber, iris, and ciliary body invasion, respectively. Age more than 2 years, lag period more than 3 months, hyphema, pseudohypopyon, staphyloma, and orbital cellulitis were associated with occurrence of three or more HRF on univariate analysis. Clinical variables including older age, longer lag period, hyphema, pseudohypopyon, staphyloma, and orbital cellulitis were strongly associated with occurrence of HRF in this study. Copyright © 2011 Wiley Periodicals, Inc.

  7. A longitudinal study of pain, personality, and brain plasticity following peripheral nerve injury.

    PubMed

    Goswami, Ruma; Anastakis, Dimitri J; Katz, Joel; Davis, Karen D

    2016-03-01

    We do not know precisely why pain develops and becomes chronic after peripheral nerve injury (PNI), but it is likely due to biological and psychological factors. Here, we tested the hypotheses that (1) high Pain Catastrophizing Scale (PCS) scores at the time of injury and repair are associated with pain and cold sensitivity after 1-year recovery and (2) insula gray matter changes reflect the course of injury and improvements over time. Ten patients with complete median and/or ulnar nerve transections and surgical repair were tested ∼3 weeks after surgical nerve repair (time 1) and ∼1 year later for 6 of the 10 patients (time 2). Patients and 10 age-/sex-matched healthy controls completed questionnaires that assessed pain (patients) and personality and underwent quantitative sensory testing and 3T MRI to assess cortical thickness. In patients, pain intensity and neuropathic pain correlated with pain catastrophizing. Time 1 pain catastrophizing trended toward predicting cold pain thresholds at time 2, and at time 1 cortical thickness of the right insula was reduced. At time 2, chronic pain was related to the time 1 pain-PCS relationship and cold sensitivity, pain catastrophizing correlated with cold pain threshold, and insula thickness reversed to control levels. This study highlights the interplay between personality, sensory function, and pain in patients following PNI and repair. The PCS-pain association suggests that a focus on affective or negative components of pain could render patients vulnerable to chronic pain. Cold sensitivity and structural insula changes may reflect altered thermosensory or sensorimotor awareness representations.

  8. Upslope treadmill exercise enhances motor axon regeneration but not functional recovery following peripheral nerve injury

    PubMed Central

    Cannoy, Jill; Crowley, Sam; Jarratt, Allen; Werts, Kelly LeFevere; Osborne, Krista; Park, Sohee

    2016-01-01

    Following peripheral nerve injury, moderate daily exercise conducted on a level treadmill results in enhanced axon regeneration and modest improvements in functional recovery. If the exercise is conducted on an upwardly inclined treadmill, even more motor axons regenerate successfully and reinnervate muscle targets. Whether this increased motor axon regeneration also results in greater improvement in functional recovery from sciatic nerve injury was studied. Axon regeneration and muscle reinnervation were studied in Lewis rats over an 11 wk postinjury period using stimulus evoked electromyographic (EMG) responses in the soleus muscle of awake animals. Motor axon regeneration and muscle reinnervation were enhanced in slope-trained rats. Direct muscle (M) responses reappeared faster in slope-trained animals than in other groups and ultimately were larger than untreated animals. The amplitude of monosynaptic H reflexes recorded from slope-trained rats remained significantly smaller than all other groups of animals for the duration of the study. The restoration of the amplitude and pattern of locomotor EMG activity in soleus and tibialis anterior and of hindblimb kinematics was studied during treadmill walking on different slopes. Slope-trained rats did not recover the ability to modulate the intensity of locomotor EMG activity with slope. Patterned EMG activity in flexor and extensor muscles was not noted in slope-trained rats. Neither hindblimb length nor limb orientation during level, upslope, or downslope walking was restored in slope-trained rats. Slope training enhanced motor axon regeneration but did not improve functional recovery following sciatic nerve transection and repair. PMID:27466130

  9. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat

    PubMed Central

    Kao, T; Shumsky, JS; Murray, M; Moxon, KA

    2009-01-01

    Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/day, 5days/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI, but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI. PMID:19515923

  10. Circumvallate papilla of dog following suture of the hypoglossal and glossopharyngeal nerves.

    PubMed

    State, F A

    1977-01-01

    20 adult dogs were classified into five groups; in two animals of each group hypoglossa-glossopharyngeal suturing was done. In the other two animals glossopharyngeal nerve transection with concomitant central segment avulsion was done and these two animals were used as controls. The animals of the five groups were sacrified at 4-week intervals starting by the first group on the 4th post-operative week and ending by the fifth group on the 20th week; the circumvallate papillae were studied. On the 4th week following either operative procedure, few taste buds persisted on the circumvallate papillae. Invasion of the papillae by regenerating hypoglossal fibres from the 8th week onwards was not followed by any appreciable increase in the number of taste buds. The difference in number of taste buds between hypoglossal-glossopharyngeal suture and glossopharyngeal avulsion procedures was not statistically significant. from the 8th weeks following cross-innervation the reaction for acetylcholinesterase was more intense than in denervated papillae which showed a persistent weakly positive reaction up to the 20th post-operative week.

  11. A line transect model for aerial surveys

    USGS Publications Warehouse

    Quang, Pham Xuan; Lanctot, Richard B.

    1991-01-01

    We employ a line transect method to estimate the density of the common and Pacific loon in the Yukon Flats National Wildlife Refuge from aerial survey data. Line transect methods have the advantage of automatically taking into account “visibility bias” due to detectability difference of animals at different distances from the transect line. However, line transect methods must overcome two difficulties when applied to inaccurate recording of sighting distances due to high travel speeds, so that in fact only a few reliable distance class counts are available. We propose a unimodal detection function that provides an estimate of the effective area lost due to the blind strip, under the assumption that a line of perfect detection exists parallel to the transect line. The unimodal detection function can also be applied when a blind strip is absent, and in certain instances when the maximum probability of detection is less than 100%. A simple bootstrap procedure to estimate standard error is illustrated. Finally, we present results from a small set of Monte Carlo experiments.

  12. Nerve growth factor regulates galanin and neuropeptide Y expression in primary cultured superior cervical ganglion neurons.

    PubMed

    Liu, Huaxiang; Liu, Zhen; Xu, Xiaobo; Yang, Xiangdong; Wang, Huaijing; Li, Zhengzhong

    2010-03-01

    Both galanin and neuropeptide Y (NPY) are expressed in superior cervical ganglion (SCG) neurons. Following nerve transection or axotomy galanin is strongly upregulated and NPY is downregulated in SCG neurons because target-derived nerve growth factor (NGF) content decreased. It is not known whether or to what extent NGF affects both galanin and NPY expression in primary cultured SCG neurons. In the present study we examine whether exogenous NGF affects expression of neuropeptides for galanin and NPY in primary cultured SCG neurons. In addition, we explore whether mRNAs for galanin and NPY are affected by administration of exogenous NGF in SCG cultures. The significance of expression of galanin and NPY and their mRNAs was revealed by performing experiments without and with administration of exogenous NGF. Galanin and its mRNA expression was attenuated by administration of exogenous NGF in SCG cultures. The enhancement of NPY and its mRNA expression by administration of exogenous NGF in SCG cultures was dose-dependent. The physiological or pathophysiological mechanisms of the alterations of galanin and NPY expression affected by NGF in primary cultured SCG neurons are still unknown. The present data provide basic knowledge about the expression of galanin and NPY in primary cultured SCG neurons of rats, which may further improve our understanding of the functional significance of galanin and NPY expression affected by NGF.

  13. Properties and connections of cat fastigiospinal neurons.

    PubMed

    Wilson, V J; Uchino, Y; Maunz, R A; Susswein, A; Fukushima, K

    1978-05-12

    1. Neurons in the cat fastigial nucleus that project to the upper cervical spinal segments (fastigiospinal neurons) were fired by antidromic stimulation of the contralateral spinal cord. Dye ejection from the recording electrode was used to show that most neurons were in the rostral half of the fastigial nucleus. 2. Fastigiospinal neurons can be excited and/or inhibited by stimulation of forelimb and hindlimb nerves and by stimulation of the vestibular nerve. These inputs converge on many neurons. 3. Antidromic microstimulation was used to trace fastigiospinal axons to the vicinity of motor nuclei in in C2-C3. 4. The rostral fastigial nucleus was stimulated in preparations with the medial longitudinal fasciculus transected by a wide lesion that impinged on the medial reticular formation in the caudal medulla, to eliminate some potential axon reflexes. Short-latency EPSPs were recorded in some trapezius and biventer-cervicis motoneurons. In many cases there was little or no occlusion between these EPSPs and others evoked by stimulation of the vestibular nerve ipsilateral to the motoneurons. 5. Movement of the stimulating electrode and placement of this electrode lateral to the fastigial nucleus show that the zone from which low threshold EPSPs can be evoked is localized. 6. Latency measurements and lack of temporal facilitation with double shocks suggest that the EPSPs are monosynaptic. The evidence suggests that they are caused by fastigiospinal fibers terminating on motoneurons.

  14. Glucocorticoid inhibition of neuropathic limb edema and cutaneous neurogenic extravasation.

    PubMed

    Kingery, W S; Guo, T; Agashe, G S; Davies, M F; Clark, J D; Maze, M

    2001-09-21

    Sciatic nerve section in rats evokes chronic limb edema, pain behavior, and hindpaw hyperalgesia, a syndrome resembling the complex regional pain syndrome type II (CRPS II or causalgia) in man. Glucocorticoids such as methylprednisolone (MP) have been used as analgesic and anti-edematous agents in patients suffering from CRPS, and interestingly these therapeutic effects appear to persist in some patients after stopping the medication. Similar to the CRPS clinical response to glucocorticoids, we now demonstrate that chronic hindpaw edema in the sciatic transection CRPS model is reversed by a continuous infusion of MP (3 mg/kg/day over 21 days), and this anti-edematous effect persists for at least 1 week after discontinuing MP. Furthermore, there is a chronic increase in spontaneous protein extravasation in the hindpaw skin of rats after sciatic transection, similar to the increased protein extravasation observed in the edematous hands of CRPS patients. A 2-week infusion of MP (3 mg/kg/day) reduced spontaneous protein extravasation in the hindpaw skin by 80%. We postulated that increased spontaneous neurogenic extravasation resulted in development of limb edema in both the animal model and the CRPS patient, and that the anti-edematous effects of MP are due to an inhibition of spontaneous extravasation. Additional experiments examined the inhibitory effects of MP infusion on electrically-evoked neurogenic extravasation in the hindpaw skin of normal rats. MP inhibition was dose- and time-dependent, with an ED(50) of 1.2 mg/kg/day for a 14-day continuous infusion of MP, and a maximum inhibitory effect requiring 17 days of MP infusion (3 mg/kg/day). MP (3 mg/kg/day for 14 days) also blocked both capsaicin- and SP-evoked neurogenic extravasation, indicating a post-junctional inhibitory effect. Our interpretation is that increased spontaneous neurogenic extravasation in this CRPS model contributed to the development and maintenance of hindpaw edema, and that chronic MP administration dose- and time-dependently blocked neurogenic extravasation at a post-junctional level, thus reversing spontaneous extravasation and limb edema in this model.

  15. Axotomy increases NADPH-diaphorase activity in the dorsal root ganglia and lumbar spinal cord of the turtle Trachemys dorbigni.

    PubMed

    Partata, W A; Krepsky, A M; Marques, M; Achaval, M

    1999-04-01

    Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.

  16. Barrier effects of remote high mountain on atmospheric metal transport in the eastern Tibetan Plateau.

    PubMed

    Bing, Haijian; Zhou, Jun; Wu, Yanhong; Luo, Xiaosan; Xiang, Zhongxiang; Sun, Hongyang; Wang, Jipeng; Zhu, He

    2018-07-01

    Anthropogenic metals adsorbed on suspended fine particles can be deposited on remote and inaccessible high mountains by long-range atmospheric transport. In this study, we investigated the cadmium (Cd) and lead (Pb) in the soils, mosses and rainfall of three transects on the Gongga Mountain, eastern Tibetan Plateau, to understand the mountain interception effects on their atmospheric transport. The concentrations of Cd and Pb in the soils and mosses displayed a pattern of eastern transect>northern transect>western transect. The distribution of Cd and Pb on the eastern transect increased from 2000 to 2900m a.s.l. (above sea level), decreased toward the timberline, and increased again with altitude; on the northern transect, it generally decreased with altitude whereas a distribution trend was not clearly observed on the western transect. The Cd and Pb concentrations in the rainfall of the eastern transect generally decreased with altitude, and they were higher inside forests than outside forests and temporally higher in the winter than the summer. The Pb isotopic ratios coupled with moss bio-monitoring distinguished anthropogenic sources of Cd and Pb on the eastern and northern transects, whereas bedrock weathering was the main source of Cd and Pb on the western transect. We proposed a conceptual model to delineate the effects of terrain, local climate and vegetation on the transport of atmospheric metals. Our results highlighted the high mountains in the eastern Tibetan Plateau as an effective natural barrier limiting atmospheric metal transport. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Testing the effectiveness and the contribution of experimental supercharge (reversed) end-to-side nerve transfer.

    PubMed

    Nadi, Mustafa; Ramachandran, Sudheesh; Islam, Abir; Forden, Joanne; Guo, Gui Fang; Midha, Rajiv

    2018-05-18

    OBJECTIVE Supercharge end-to-side (SETS) transfer, also referred to as reverse end-to-side transfer, distal to severe nerve compression neuropathy or in-continuity nerve injury is gaining clinical popularity despite questions about its effectiveness. Here, the authors examined SETS distal to experimental neuroma in-continuity (NIC) injuries for efficacy in enhancing neuronal regeneration and functional outcome, and, for the first time, they definitively evaluated the degree of contribution of the native and donor motor neuron pools. METHODS This study was conducted in 2 phases. In phase I, rats (n = 35) were assigned to one of 5 groups for unilateral sciatic nerve surgeries: group 1, tibial NIC with distal peroneal-tibial SETS; group 2, tibial NIC without SETS; group 3, intact tibial and severed peroneal nerves; group 4, tibial transection with SETS; and group 5, severed tibial and peroneal nerves. Recovery was evaluated biweekly using electrophysiology and locomotion tasks. At the phase I end point, after retrograde labeling, the spinal cords were analyzed to assess the degree of neuronal regeneration. In phase II, 20 new animals underwent primary retrograde labeling of the tibial nerve, following which they were assigned to one of the following 3 groups: group 1, group 2, and group 4. Then, secondary retrograde labeling from the tibial nerve was performed at the study end point to quantify the native versus donor regenerated neuronal pool. RESULTS In phase I studies, a significantly increased neuronal regeneration in group 1 (SETS) compared with all other groups was observed, but with modest (nonsignificant) improvement in electrophysiological and behavioral outcomes. In phase II experiments, the authors discovered that secondary labeling in group 1 was predominantly contributed from the donor (peroneal) pool. Double-labeling counts were dramatically higher in group 2 than in group 1, suggestive of hampered regeneration from the native tibial motor neuron pool across the NIC segment in the presence of SETS. CONCLUSIONS SETS is indeed an effective strategy to enhance axonal regeneration, which is mainly contributed by the donor neuronal pool. Moreover, the presence of a distal SETS coaptation appears to negatively influence neuronal regeneration across the NIC segment. The clinical significance is that SETS should only employ synergistic donors, as the use of antagonistic donors can downgrade recovery.

  18. Field trials of line transect methods applied to estimation of desert tortoise abundance

    USGS Publications Warehouse

    Anderson, David R.; Burnham, Kenneth P.; Lubow, Bruce C.; Thomas, L. E. N.; Corn, Paul Stephen; Medica, Philip A.; Marlow, R.W.

    2001-01-01

    We examine the degree to which field observers can meet the assumptions underlying line transect sampling to monitor populations of desert tortoises (Gopherus agassizii). We present the results of 2 field trials using artificial tortoise models in 3 size classes. The trials were conducted on 2 occasions on an area south of Las Vegas, Nevada, where the density of the test population was known. In the first trials, conducted largely by experienced biologists who had been involved in tortoise surveys for many years, the density of adult tortoise models was well estimated (-3.9% bias), while the bias was higher (-20%) for subadult tortoise models. The bias for combined data was -12.0%. The bias was largely attributed to the failure to detect all tortoise models on or near the transect centerline. The second trials were conducted with a group of largely inexperienced student volunteers and used somewhat different searching methods, and the results were similar to the first trials. Estimated combined density of subadult and adult tortoise models had a negative bias (-7.3%), again attributable to failure to detect some models on or near the centerline. Experience in desert tortoise biology, either comparing the first and second trials or in the second trial with 2 experienced biologists versus 16 novices, did not have an apparent effect on the quality of the data or the accuracy of the estimates. Observer training, specific to line transect sampling, and field testing are important components of a reliable survey. Line transect sampling represents a viable method for large-scale monitoring of populations of desert tortoise; however, field protocol must be improved to assure the key assumptions are met.

  19. Effect on Laryngeal Adductor Function of Vincristine Block of Posterior Cricoarytenoid Muscle 3-5 Months After Recurrent Laryngeal Nerve Injury

    PubMed Central

    Paniello, Randal C.; Park, Andrea

    2015-01-01

    Objectives It has been shown, in a canine model, that a single injection of vincristine into the PCA muscle at the time of recurrent laryngeal nerve (RLN) injury effectively blocks its reinnervation and results in improved adductor strength. But clinically, such injuries are usually diagnosed weeks or months after onset. Vincristine injection does not affect a muscle that is already innervated; thus, there is a limited time frame following RLN injury during which a vincristine injection could effectively improve ultimate laryngeal adductor functional recovery. A series of delayed injections were performed in a canine model and results assessed. Study Design Animal (canine) experiment. Methods The RLN was transected and repaired, and vincristine (0.4 mg) was injected into the PCA muscle at the time of injury (n=12), or at 3, 4, and 5 months later (n=8 each study group). Six months after RLN injury, laryngeal adductor function was measured. Results of vincristine injection without RLN injury (n=6), and longer-term (12 months) follow-up for time zero injections (n=4), are also reported. Results The animals injected at time zero had better adductor function than non-injected controls, as reported previously, and this result was further increased at 12 months. The 3-month delay gave results similar to the time zero group. The 5-month delay group showed no vincristine benefit, and the 4-month delay group gave an intermediate result. Vincristine to the PCA had no effect on adductor function when the RLN was left intact. Plasma levels showed 19% of injected vincristine reached systemic circulation, which was cleared within 69 hours. Conclusions Vincristine injection of the PCA muscle after RLN injury, which blocks this functional recovery. The window of opportunity to apply this treatment closes by four months after RLN injury in the canine model. Human RLN recovery follows a similar time course and can reasonably be expected to have a similar therapeutic window. PMID:25595140

  20. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    USGS Publications Warehouse

    Haines, Seth S.; Burton, Bethany L.; Sweetkind, Donald S.; Asch, Theodore H.

    2008-01-01

    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we inverted, yielding a velocity model that shows lateral heterogeneity similar to the 2006 DC resistivity models. Finally, we collected P-wave data along a second transect in Area 2, located north of the first line and in an area of a very minor fault that was targeted by another 2006 DC resistivity survey. The P-wave refraction velocity model shows generally high velocities, with a zone of somewhat lower velocities in the central part of the transect. The position of the low velocity zone corresponds with the location of a minor fault, though it is unclear whether the two are related. Together, these results demonstrate the value of geophysical data for mapping the subsurface extent of faults. The 2007 DC resistivity data complement the 2006 data and provide important new detail of the overlapping fault splays. The seismic data demonstrate the ability of P-wave refraction methods to identify the damage zones at faults, and they show the difficulties associated with S-wave methods in areas with caliche. Combining all of the geophysical data from the Area 7 studies, we are able to develop a coherent interpretation of the relation between the site geology, the fault, and the observations.

  1. TNF-α contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury.

    PubMed

    He, Xin-Hua; Zang, Ying; Chen, Xi; Pang, Rui-Ping; Xu, Ji-Tian; Zhou, Xiang; Wei, Xu-Hong; Li, Yong-Yong; Xin, Wen-Jun; Qin, Zhi-Hai; Liu, Xian-Guo

    2010-11-01

    A large body of evidence has demonstrated that the ectopic discharges of action potentials in primary afferents, resulted from the abnormal expression of voltage gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons following peripheral nerve injury are important for the development of neuropathic pain. However, how nerve injury affects the expression of VGSCs is largely unknown. Here, we reported that selective injury of motor fibers by L5 ventral root transection (L5-VRT) up-regulated Nav1.3 and Nav1.8 at both mRNA and protein level and increased current densities of TTX-S and TTX-R channels in DRG neurons, suggesting that nerve injury may up-regulate functional VGSCs in sensory neurons indirectly. As the up-regulated Nav1.3 and Nav1.8 were highly co-localized with TNF-α, we tested the hypothesis that the increased TNF-α may lead to over-expression of the sodium channels. Indeed, we found that peri-sciatic administration of recombinant rat TNF-α (rrTNF) without any nerve injury, which produced lasting mechanical allodynia, also up-regulated Nav1.3 and Nav1.8 in DRG neurons in vivo and that rrTNF enhanced the expression of Nav1.3 and Nav1.8 in cultured adult rat DRG neurons in a dose-dependent manner. Furthermore, inhibition of TNF-α synthesis, which prevented neuropathic pain, strongly inhibited the up-regulation of Nav1.3 and Nav1.8. The up-regulation of the both channels following L5-VRT was significantly lower in TNF receptor 1 knockout mice than that in wild type mice. These data suggest that increased TNF-α may be responsible for up-regulation of Nav1.3 and Nav1.8 in uninjured DRG neurons following nerve injury. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  2. Brain-derived neurotrophic factor (BDNF) in the rostral anterior cingulate cortex (rACC) contributes to neuropathic spontaneous pain-related aversion via NR2B receptors.

    PubMed

    Zhang, Le; Wang, Gongming; Ma, Jinben; Liu, Chengxiao; Liu, Xijiang; Zhan, Yufeng; Zhang, Mengyuan

    2016-10-01

    The rostral anterior cingulate cortex (rACC) plays an important role in pain affect. Previous investigations have reported that the rACC mediates the negative affective component of inflammatory pain and contributed to the aversive state of nerve injury-induced neuropathic pain. Brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator in the adult brain, is believed to play a role in the development and maintenance of inflammatory and neuropathic pain in the spinal cord. However, whether and how BDNF in the rACC regulates pain-related aversion due to peripheral nerve injury is largely unknown. Behaviorally, using conditioned place preference (CPP) training in rats, which is thought to reveal spontaneous pain-related aversion, we found that CPP was acquired following spinal clonidine in rats with partial sciatic nerve transection. Importantly, BDNF was upregulated within the rACC in of rats with nerve injury and enhanced the CPP acquisition, while a local injection of a BDNF-tropomyosin receptor kinase B (TrkB) antagonist into the rACC completely blocked this process. Finally, we demonstrated that the BDNF/TrkB pathway exerted its function by activating the NR2B receptor, which is widely accepted to be a crucial factor contributing to pain affect. In conclusion, our results demonstrate that the BDNF/TrkB-mediated signaling pathway in the rACC is involved in the development of neuropathic spontaneous pain-related aversion and that this process is dependent upon activation of NR2B receptors. These findings suggest that suppression of the BDNF-related signaling pathway in the rACC may provide a novel strategy to overcome pain-related aversion. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. RNA editing enzyme ADAR2 is a mediator of neuropathic pain after peripheral nerve injury.

    PubMed

    Uchida, Hitoshi; Matsumura, Shinji; Okada, Shunpei; Suzuki, Tsutomu; Minami, Toshiaki; Ito, Seiji

    2017-05-01

    Transcriptional and post-translational regulations are important in peripheral nerve injury-induced neuropathic pain, but little is known about the role of post-transcriptional modification. Our objective was to determine the possible effect of adenosine deaminase acting on RNA (ADAR) enzymes, which catalyze post-transcriptional RNA editing, in tactile allodynia, a hallmark of neuropathic pain. Seven days after L5 spinal nerve transection (SNT) in adult mice, we found an increase in ADAR2 expression and a decrease in ADAR3 expression in the injured, but not in the uninjured, dorsal root ganglions (DRGs). These changes were accompanied by elevated levels of editing at the D site of the serotonin (5-hydroxytryptamine) 2C receptor (5-HT 2C R), at the I/V site of coatomer protein complex subunit α (COPA), and at the R/G site of AMPA receptor subunit GluA2 in the injured DRG. Compared to Adar2 +/+ /Gria2 R/R littermate controls, Adar2 -/- /Gria2 R/R mice completely lacked the increased editing of 5-HT 2C R, COPA, and GluA2 transcripts in the injured DRG and showed attenuated tactile allodynia after SNT. Furthermore, the antidepressant fluoxetine inhibited neuropathic allodynia after injury and reduced the COPA I/V site editing in the injured DRG. These findings suggest that ADAR2 is a mediator of injury-induced tactile allodynia and thus a potential therapeutic target for the treatment of neuropathic pain.-Uchida, H., Matsumura, S., Okada, S., Suzuki, T., Minami, T., Ito, S. RNA editing enzyme ADAR2 is a mediator of neuropathic pain after peripheral nerve injury. © FASEB.

  4. A novel in vivo method for isolating antibodies from a phage display library by neuronal retrograde transport selectively yields antibodies against p75(NTR.).

    PubMed

    Tani, Hiroaki; Osbourn, Jane K; Walker, Edward H; Rush, Robert A; Ferguson, Ian A

    2013-01-01

    The neurotrophin receptor p75(NTR) is utilized by a variety of pathogens to gain entry into the central nervous system (CNS). We tested if this entry portal might be exploited using a phage display library to isolate internalizing antibodies that target the CNS in vivo. By applying a phage library that expressed human single chain variable fragment (scFv) antibodies on their surface to a transected sciatic nerve, we showed that (1) phage conjugated to anti-p75(NTR) antibody or phage scFv library pre-panned against p75(NTR) are internalized by neurons expressing p75(NTR); (2) subsequent retrograde axonal transport separates internalized phage from the applied phage; and, (3) internalized phage can be recovered from a proximal ligature made on a nerve. This approach resulted in 13-fold increase in the number of phage isolated from the injured nerve compared with the starting population, and isolation of 18 unique internalizing p75(NTR) antibodies that were transported from the peripheral nerve into the spinal cord, through the blood-brain barrier. In addition, antibodies recognizing other potentially internalized antigens were identified through in vivo selection using a fully diverse library. Because p75(NTR) expression is upregulated in motor neurons in response to injury and in disease, the p75(NTR) antibodies may have substantial potential for cell-targeted drug/gene delivery. In addition, this novel selection method provides the potential to generate panels of antibodies that could be used to identify further internalization targets, which could aid drug delivery across the blood-brain barrier.

  5. Incidence of Posterior Interosseous Nerve Trauma During Creation of the 3-4 Wrist Arthroscopy Portal in Cadavers.

    PubMed

    Cheah, Andre Eu-Jin; Le, Wei; Yao, Jeffrey

    2017-04-01

    To describe histologic evidence of nerve trauma during the creation and use of the 3-4 portal. Fourteen fresh-frozen cadaveric wrists were mounted on a custom-built frame that simulated a wrist arthroscopy traction tower. After the 3-4 portal was created in the usual manner, the skin was dissected off to identify possible trauma to the posterior interosseous nerve (PIN). Specimens were categorized into those where there was clearly no trauma to the PIN and those where trauma was possible. In the cases where trauma was possible, we harvested the PIN with a cuff of the proximal edge of the portal and examined the cross-sectional histology of the most distal sections for the presence of neural tissue. There was clearly no trauma to the PIN in 3 of the wrists during the creation of the 3-4 portal. In the remaining 11 wrists with possible trauma to the PIN, we identified axonal tissue on histologic examination at the proximal edge of the 3-4 portal in 7 of these specimens. In summary, 50% (7 of 14) of our specimens had visual and histologic evidence of trauma to the PIN. Based on the findings of this study, there may be more instances of trauma to the PIN during routine wrist arthroscopy than have been previously reported. Findings suggest that transection or injury to this nerve may not lead to any clinical sequelae. However, if there is an instance where a patient has persistent, otherwise unexplained, dorsal wrist pain after a wrist arthroscopy procedure, iatrogenic neuroma of the PIN may be responsible and should be considered. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  6. A novel in vivo method for isolating antibodies from a phage display library by neuronal retrograde transport selectively yields antibodies against p75NTR

    PubMed Central

    Tani, Hiroaki; Osbourn, Jane K.; Walker, Edward H.; Rush, Robert A.; Ferguson, Ian A.

    2013-01-01

    The neurotrophin receptor p75NTR is utilized by a variety of pathogens to gain entry into the central nervous system (CNS). We tested if this entry portal might be exploited using a phage display library to isolate internalizing antibodies that target the CNS in vivo. By applying a phage library that expressed human single chain variable fragment (scFv) antibodies on their surface to a transected sciatic nerve, we showed that (1) phage conjugated to anti-p75NTR antibody or phage scFv library pre-panned against p75NTR are internalized by neurons expressing p75NTR; (2) subsequent retrograde axonal transport separates internalized phage from the applied phage; and, (3) internalized phage can be recovered from a proximal ligature made on a nerve. This approach resulted in 13-fold increase in the number of phage isolated from the injured nerve compared with the starting population, and isolation of 18 unique internalizing p75NTR antibodies that were transported from the peripheral nerve into the spinal cord, through the blood-brain barrier. In addition, antibodies recognizing other potentially internalized antigens were identified through in vivo selection using a fully diverse library. Because p75NTR expression is upregulated in motor neurons in response to injury and in disease, the p75NTR antibodies may have substantial potential for cell-targeted drug/gene delivery. In addition, this novel selection method provides the potential to generate panels of antibodies that could be used to identify further internalization targets, which could aid drug delivery across the blood-brain barrier. PMID:23549155

  7. Procedural Documentation and Accuracy Assessment of Bathymetric Maps and Area/Capacity Tables for Small Reservoirs

    USGS Publications Warehouse

    Wilson, Gary L.; Richards, Joseph M.

    2006-01-01

    Because of the increasing use and importance of lakes for water supply to communities, a repeatable and reliable procedure to determine lake bathymetry and capacity is needed. A method to determine the accuracy of the procedure will help ensure proper collection and use of the data and resulting products. It is important to clearly define the intended products and desired accuracy before conducting the bathymetric survey to ensure proper data collection. A survey-grade echo sounder and differential global positioning system receivers were used to collect water-depth and position data in December 2003 at Sugar Creek Lake near Moberly, Missouri. Data were collected along planned transects, with an additional set of quality-assurance data collected for use in accuracy computations. All collected data were imported into a geographic information system database. A bathymetric surface model, contour map, and area/capacity tables were created from the geographic information system database. An accuracy assessment was completed on the collected data, bathymetric surface model, area/capacity table, and contour map products. Using established vertical accuracy standards, the accuracy of the collected data, bathymetric surface model, and contour map product was 0.67 foot, 0.91 foot, and 1.51 feet at the 95 percent confidence level. By comparing results from different transect intervals with the quality-assurance transect data, it was determined that a transect interval of 1 percent of the longitudinal length of Sugar Creek Lake produced nearly as good results as 0.5 percent transect interval for the bathymetric surface model, area/capacity table, and contour map products.

  8. Retroauricular transmeatal approach to manage mandibular condylar head fractures.

    PubMed

    Benech, Arnaldo; Arcuri, Francesco; Baragiotta, Nicola; Nicolotti, Matteo; Brucoli, Matteo

    2011-03-01

    There is a multitude of reported surgical approaches and technical variants with some unresolved technical problems to gain direct access to mandibular condylar head fractures; they can be divided into 2 groups: intraoral and extraoral. In 2005, Neff et al (Mund Kiefer Gesichtschir 2005;9:80), supported by a previous experimental work, reported a successful clinical study of condylar head fractures treated by a retroauricular approach; this article is in German, and the later English-language literature does not mention about this approach to open reduction and internal fixation of mandibular condylar fractures. The retroauricular transmeatal access, selected and performed by the senior author to treat 14 patients affected by highly located condylar head fracture, is illustrated in details. We collected data of 14 consecutive adult patients who, after the discussion about all options, had consented to have 16 mandibular condylar head fractures treated with open reduction and internal fixation by miniplates and screws via a retroauricular transmeatal approach. We exposed the temporomandibular joint area easily and better by dissecting via a retroauricular route with identification, ligation, and transection of the retromandibular vein; because of the posterior access, the frontal branch of the facial nerve and the auriculotemporal nerve are located and protected within the substance of the anteriorly retracted flap, superficial to the retromandibular vein. The follow-up clinical examination showed temporary weakness of the frontal branch of the facial nerve in 1 case with a recovery to normal function of 1.6 months; no patients had permanent weakness of the facial nerve or injury of the auriculotemporal nerve. There was absence of any salivary fistula, sialocele, and Frey syndrome; hearing was preserved in all cases, without any auditory stenosis or aesthetic deformity, and there was absence of any infections, hematoma, or scarring. Retroauricular approach provides good exposure of the temporomandibular joint and satisfactory protection from nerve injuries and vascular lesions, allowing an adequate osteosynthesis. The scar is hidden behind the ear, and the morbidity is low in terms of auditory stenosis, aesthetic deformity, and salivary fistulas.

  9. Thoracic 9 Spinal Transection-Induced Model of Muscle Spasticity in the Rat: A Systematic Electrophysiological and Histopathological Characterization

    PubMed Central

    Corleto, Jose A.; Bravo-Hernández, Mariana; Kamizato, Kota; Kakinohana, Osamu; Santucci, Camila; Navarro, Michael R.; Platoshyn, Oleksandr; Cizkova, Dasa; Lukacova, Nadezda; Taylor, Julian; Marsala, Martin

    2015-01-01

    The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI). The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9) complete transection model of muscle spasticity in Sprague-Dawley (SD) rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i) ankle-rotation-evoked peripheral muscle resistance (PMR) and corresponding electromyography (EMG) activity, ii) Hoffmann reflex, and iii) EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist), tizanidine (α2-adrenergic agonist) and NGX424 (AMPA receptor antagonist) was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the pathophysiology of chronic spinal injury-induced spasticity. In addition a consistent anti-spastic effect measured after treatment with clinically effective anti-spastic agents indicate that this model can effectively be used in screening new anti-spasticity compounds or procedures aimed at modulating chronic spinal trauma-associated muscle spasticity. PMID:26713446

  10. Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors

    PubMed Central

    Santos, Daniel; González-Pérez, Francisco; Giudetti, Guido; Micera, Silvestro; Udina, Esther; Del Valle, Jaume; Navarro, Xavier

    2016-01-01

    After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation. PMID:28036084

  11. Muscle paralyzing effect of the juice from the trunk of the banana tree.

    PubMed

    Singh, Y N; Dryden, W F

    1985-01-01

    The effect of an extract from the trunk of the banana tree (Musa sapientum) was investigated in isolated skeletal muscle preparations from the chick, mouse and frog using twitch tension and intracellular recording techniques. The extract produced, in the same concentration range and after an initial period of twitch augmentation, paralysis of skeletal muscle in both directly and indirectly stimulated preparations. It also had a dose-dependent stimulant effect on the muscle causing a contracture. The neuromuscular blockade was reversed by calcium, but only when added before complete paralysis of the muscle. On the other hand, neostigmine usually hastened the blockade and aggravated the contracture. The frequency of the miniature endplate potential in the mouse phrenic nerve-diaphragm preparation greatly increased initially, declining to an elevated plateau. Effects on quantal content of endplate potentials (e.p.p.s) were studied in the transected mouse phrenic nerve-hemidiaphragm using trains of e.p.p.s. In the presence of the extract, only a few e.p.p. trains could normally be evoked, probably due to nerve terminal block. When quantal content could be measured at low concentrations of the extract, an increase was usually obtained. Muscle action potentials in the frog sartorius muscle were decreased in amplitude until no further potentials could be generated. The results suggest that the nature of the block produced by the extract resembles that of a potent local anaesthetic with an initial atypical labilizing effect on cell calcium rather than a conventional curariform block.

  12. The role of spinal cord transmission in the ventilatory response to electrically induced exercise in the anaesthetized dog

    PubMed Central

    Cross, Brenda A.; Davey, A.; Guz, A.; Katona, P. G.; Maclean, M.; Murphy, K.; Semple, S. J. G.; Stidwill, R.

    1982-01-01

    1. The ventilatory response to electrically induced `exercise' was studied in six chloralose-anaesthetized dogs. The on-transient and steady-state responses to `exercise' were compared in the same dogs before and after spinal cord transection at T8/9 (dermatome level T6/7) on fifteen occasions. 2. Phasic hind limb `exercise' was induced for periods of 4 min by passing current (2 Hz modulated 50 Hz sine wave) between two needles inserted through the hamstring muscles. The maximum current used was 30 mA. This was below the level previously found to produce an artifactual stimulation of breathing with the cord intact. 3. Cord transection produced no significant change in either the resting values of ventilation (˙VI) and CO2 production (˙VCO2) or the ventilatory equivalent for CO2 during `exercise' (△ ˙VI/ △ ˙VCO2). 4. During the steady state of exercise Pa, CO2 was on average significantly lower than at rest with the cord intact (mean △Pa, CO2, - 2·1 mmHg; range - 5·7 to + 1), and higher, though not significantly, with the cord cut (mean Pa, CO2, + 1·2 mmHg; range - 1·5 to + 4·3). However, even in the absence of spinal cord transmission, the ventilatory response to exercise could not be accounted for on the basis of CO2 sensitivity; the △ ˙VI/ △Pa,CO2 obtained with exercise (apparent sensitivity) was significantly greater than that obtained with CO2 inhalation (true sensitivity) both before and after cord section. 5. ˙VI and ˙VCO2 increased more slowly with the cord cut than with the cord intact. This was thought to be due to a slower increase in venous return in the absence of sympathetic innervation of the lower half of the body following cord transection. 6. Similar experiments were performed during muscle paralysis (following gallamine triethiodide). Ventilation was maintained with a respirator controlled by phrenic nerve activity. These experiments showed an increase in ventilation, independent of muscle contraction, which was only present when the cord was intact and which was confined to the on-transient. Only in the absence of spinal cord transmission could there be certainty that the dynamics of the ventilatory response to electrically induced `exercise' was free of artifact. 7. It was concluded that spinal cord transmission is not necessary for the steady-state ventilatory response to electrically induced exercise of the hind limbs. 8. The dog with spinal cord transection provides a suitable model for the study of the chemical control of breathing during electrically induced exercise. PMID:6292406

  13. Numerical simulations to assess the tracer dilution method for measurement of landfill methane emissions.

    PubMed

    Taylor, Diane M; Chow, Fotini K; Delkash, Madjid; Imhoff, Paul T

    2016-10-01

    Landfills are a significant contributor to anthropogenic methane emissions, but measuring these emissions can be challenging. This work uses numerical simulations to assess the accuracy of the tracer dilution method, which is used to estimate landfill emissions. Atmospheric dispersion simulations with the Weather Research and Forecast model (WRF) are run over Sandtown Landfill in Delaware, USA, using observation data to validate the meteorological model output. A steady landfill methane emissions rate is used in the model, and methane and tracer gas concentrations are collected along various transects downwind from the landfill for use in the tracer dilution method. The calculated methane emissions are compared to the methane emissions rate used in the model to find the percent error of the tracer dilution method for each simulation. The roles of different factors are examined: measurement distance from the landfill, transect angle relative to the wind direction, speed of the transect vehicle, tracer placement relative to the hot spot of methane emissions, complexity of topography, and wind direction. Results show that percent error generally decreases with distance from the landfill, where the tracer and methane plumes become well mixed. Tracer placement has the largest effect on percent error, and topography and wind direction both have significant effects, with measurement errors ranging from -12% to 42% over all simulations. Transect angle and transect speed have small to negligible effects on the accuracy of the tracer dilution method. These tracer dilution method simulations provide insight into measurement errors that might occur in the field, enhance understanding of the method's limitations, and aid interpretation of field data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mechanisms Involved in Guiding the Preference for Fat Emulsion Differ Depending on the Concentration.

    PubMed

    Sakamoto, Kazuhiro; Matsumura, Shigenobu; Okafuji, Yoko; Eguchi, Ai; Lee, Shinhye; Adachi, Shin-ichi; Fujitani, Mina; Tsuzuki, Satoshi; Inoue, Kazuo; Fushiki, Tohru

    2015-01-01

    High-fat foods tend to be palatable and can cause addiction in mice via a reinforcing effect. However, mice showed preference for low fat concentrations that do not elicit a reinforcing effect in a two-bottle choice test with water as the alternative. This behavior indicates the possibility that the mechanism underlying fat palatability may differ depending on the dietary fat content. To address this issue, we examined the influences of the opioid system and olfactory and gustatory transductions on the intake and reinforcing effects of various concentrations of a dietary fat emulsion (Intralipid). We found that the intake and reinforcing effects of fat emulsion were reduced by the administration of an opioid receptor antagonist (naltrexone). Furthermore, the action of naltrexone was only observed at higher concentrations of fat emulsion. The intake and the reinforcing effects of fat emulsion were also reduced by olfactory and glossopharyngeal nerve transections (designated ONX and GLX, respectively). In contrast to naltrexone, the effects of ONX and GLX were mainly observed at lower concentrations of fat emulsion. These results imply that the opioid system seems to have a greater role in determining the palatability of high-fat foods unlike the contribution of olfactory and glossopharyngeal nerves.

  15. Evaluation of Scat Deposition Transects versus Radio Telemetry for Developing a Species Distribution Model for a Rare Desert Carnivore, the Kit Fox.

    PubMed

    Dempsey, Steven J; Gese, Eric M; Kluever, Bryan M; Lonsinger, Robert C; Waits, Lisette P

    2015-01-01

    Development and evaluation of noninvasive methods for monitoring species distribution and abundance is a growing area of ecological research. While noninvasive methods have the advantage of reduced risk of negative factors associated with capture, comparisons to methods using more traditional invasive sampling is lacking. Historically kit foxes (Vulpes macrotis) occupied the desert and semi-arid regions of southwestern North America. Once the most abundant carnivore in the Great Basin Desert of Utah, the species is now considered rare. In recent decades, attempts have been made to model the environmental variables influencing kit fox distribution. Using noninvasive scat deposition surveys for determination of kit fox presence, we modeled resource selection functions to predict kit fox distribution using three popular techniques (Maxent, fixed-effects, and mixed-effects generalized linear models) and compared these with similar models developed from invasive sampling (telemetry locations from radio-collared foxes). Resource selection functions were developed using a combination of landscape variables including elevation, slope, aspect, vegetation height, and soil type. All models were tested against subsequent scat collections as a method of model validation. We demonstrate the importance of comparing multiple model types for development of resource selection functions used to predict a species distribution, and evaluating the importance of environmental variables on species distribution. All models we examined showed a large effect of elevation on kit fox presence, followed by slope and vegetation height. However, the invasive sampling method (i.e., radio-telemetry) appeared to be better at determining resource selection, and therefore may be more robust in predicting kit fox distribution. In contrast, the distribution maps created from the noninvasive sampling (i.e., scat transects) were significantly different than the invasive method, thus scat transects may be appropriate when used in an occupancy framework to predict species distribution. We concluded that while scat deposition transects may be useful for monitoring kit fox abundance and possibly occupancy, they do not appear to be appropriate for determining resource selection. On our study area, scat transects were biased to roadways, while data collected using radio-telemetry was dictated by movements of the kit foxes themselves. We recommend that future studies applying noninvasive scat sampling should consider a more robust random sampling design across the landscape (e.g., random transects or more complete road coverage) that would then provide a more accurate and unbiased depiction of resource selection useful to predict kit fox distribution.

  16. Probabilistic Forecasting of Coastal Morphodynamic Storm Response at Fire Island, New York

    NASA Astrophysics Data System (ADS)

    Wilson, K.; Adams, P. N.; Hapke, C. J.; Lentz, E. E.; Brenner, O.

    2013-12-01

    Site-specific probabilistic models of shoreline change are useful because they are derived from direct observations so that local factors, which greatly influence coastal response, are inherently considered by the model. Fire Island, a 50-km barrier island off Long Island, New York, is periodically subject to large storms, whose waves and storm surge dramatically alter beach morphology. Nor'Ida, which impacted the Fire Island coast in 2009, was one of the larger storms to occur in the early 2000s. In this study, we improve upon a Bayesian Network (BN) model informed with historical data to predict shoreline change from Nor'Ida. We present two BN models, referred to as 'original' model (BNo) and 'revised' model (BNr), designed to predict the most probable magnitude of net shoreline movement (NSM), as measured at 934 cross-shore transects, spanning 46 km. Both are informed with observational data (wave impact hours, shoreline and dune toe change rates, pre-storm beach width, and measured NSM) organized within five nodes, but the revised model contains a sixth node to represent the distribution of material added during an April 2009 nourishment project. We evaluate model success by examining the percentage of transects on which the model chooses the correct (observed) bin value of NSM. Comparisons of observed to model-predicted NSM show BNr has slightly higher predictive success over the total study area and significantly higher success at nourished locations. The BNo, which neglects anthropogenic modification history, correctly predicted the most probable NSM in 66.6% of transects, with ambiguous prediction at 12.7% of the locations. BNr, which incorporates anthropogenic modification history, resulted in 69.4% predictive accuracy and 13.9% ambiguity. However, across nourished transects, BNr reported 72.9% predictive success, while BNo reported 61.5% success. Further, at nourished transects, BNr reported higher ambiguity of 23.5% compared to 9.9% in BNo. These results demonstrate that BNr recognizes that nourished transects may behave differently from the expectation derived from historical data and therefore is more 'cautious' in its predictions at these locations. In contrast, BNo is more confident, but less accurate, demonstrating the risk of ignoring the influences of anthropogenic modification in a probabilistic model. Over the entire study region, both models produced greatest predictive accuracy for low retreat observations (BNo: 77.6%; BNr: 76.0%) and least success at predicting low advance observations, although BNr shows considerable improvement over BNo (39.4% vs. 28.6%, respectively). BNr also was significantly more accurate at predicting observations of no shoreline change (BNo: 56.2%; BNr: 68.93%). Both models were accurate for 60% of high advance observations, and reported high predictive success for high retreat observations (BNo: 69.1%; BNr: 67.6%), the scenario of greatest concern to coastal managers.

  17. Macroscopic in vivo imaging of facial nerve regeneration in Thy1-GFP rats.

    PubMed

    Placheta, Eva; Wood, Matthew D; Lafontaine, Christine; Frey, Manfred; Gordon, Tessa; Borschel, Gregory H

    2015-01-01

    Facial nerve injury leads to severe functional and aesthetic deficits. The transgenic Thy1-GFP rat is a new model for facial nerve injury and reconstruction research that will help improve clinical outcomes through translational facial nerve injury research. To determine whether serial in vivo imaging of nerve regeneration in the transgenic rat model is possible, facial nerve regeneration was imaged under the main paradigms of facial nerve injury and reconstruction. Fifteen male Thy1-GFP rats, which express green fluorescent protein (GFP) in their neural structures, were divided into 3 groups in the laboratory: crush-injury, direct repair, and cross-face nerve grafting (30-mm graft length). The distal nerve stump or nerve graft was predegenerated for 2 weeks. The facial nerve of the transgenic rats was serially imaged at the time of operation and after 2, 4, and 8 weeks of regeneration. The imaging was performed under a GFP-MDS-96/BN excitation stand (BLS Ltd). Facial nerve injury. Optical fluorescence of regenerating facial nerve axons. Serial in vivo imaging of the regeneration of GFP-positive axons in the Thy1-GFP rat model is possible. All animals survived the short imaging procedures well, and nerve regeneration was followed over clinically relevant distances. The predegeneration of the distal nerve stump or the cross-face nerve graft was, however, necessary to image the regeneration front at early time points. Crush injury was not suitable to sufficiently predegenerate the nerve (and to allow for degradation of the GFP through Wallerian degeneration). After direct repair, axons regenerated over the coaptation site in between 2 and 4 weeks. The GFP-positive nerve fibers reached the distal end of the 30-mm-long cross-face nervegrafts after 4 to 8 weeks of regeneration. The time course of facial nerve regeneration was studied by serial in vivo imaging in the transgenic rat model. Nerve regeneration was followed over clinically relevant distances in a small number of experimental animals, as they were subsequently imaged at multiple time points. The Thy1-GFP rat model will help improve clinical outcomes of facial reanimation surgery through improving the knowledge of facial nerve regeneration after surgical procedures. NA.

  18. Cross-continental comparison of the functional composition and carbon allocation of two altitudinal forest transects in Ecuador and Rwanda.

    NASA Astrophysics Data System (ADS)

    Bauters, Marijn; Bruneel, Stijn; Demol, Miro; Taveirne, Cys; Van Der Heyden, Dries; Boeckx, Pascal; Kearsley, Elizabeth; Cizungu, Landry; Verbeeck, Hans

    2016-04-01

    Tropical forests are key actors in the global carbon cycle. Predicting future responses of these forests to global change is challenging, but important for global climate models. However, our current understanding of such responses is limited, due to the complexity of forest ecosystems and the slow dynamics that inherently form these systems. Our understanding of ecosystem ecology and functioning could greatly benefit from experimental setups including strong environmental gradients in the tropics, as found on altitudinal transects. We setup two such transects in both South-America and Africa, focussing on shifts in carbon allocation, forest structure and functional composition. By a cross-continental comparison of both transects, we will gain insight in how different or alike both tropical forests biomes are in their responses, and how universal the observed adaption mechanisms are.

  19. Novel Model of Somatosensory Nerve Transfer in the Rat.

    PubMed

    Paskal, Adriana M; Paskal, Wiktor; Pelka, Kacper; Podobinska, Martyna; Andrychowski, Jaroslaw; Wlodarski, Pawel K

    2018-05-09

    Nerve transfer (neurotization) is a reconstructive procedure in which the distal denervated nerve is joined with a proximal healthy nerve of a less significant function. Neurotization models described to date are limited to avulsed roots or pure motor nerve transfers, neglecting the clinically significant mixed nerve transfer. Our aim was to determine whether femoral-to-sciatic nerve transfer could be a feasible model of mixed nerve transfer. Three Sprague Dawley rats were subjected to unilateral femoral-to-sciatic nerve transfer. After 50 days, functional recovery was evaluated with a prick test. At the same time, axonal tracers were injected into each sciatic nerve distally to the lesion site, to determine nerve fibers' regeneration. In the prick test, the rats retracted their hind limbs after stimulation, although the reaction was moderately weaker on the operated side. Seven days after injection of axonal tracers, dyes were visualized by confocal microscopy in the spinal cord. Innervation of the recipient nerve originated from higher segments of the spinal cord than that on the untreated side. The results imply that the femoral nerve axons, ingrown into the damaged sciatic nerve, reinnervate distal targets with a functional outcome.

  20. Double-observer line transect surveys with Markov-modulated Poisson process models for animal availability.

    PubMed

    Borchers, D L; Langrock, R

    2015-12-01

    We develop maximum likelihood methods for line transect surveys in which animals go undetected at distance zero, either because they are stochastically unavailable while within view or because they are missed when they are available. These incorporate a Markov-modulated Poisson process model for animal availability, allowing more clustered availability events than is possible with Poisson availability models. They include a mark-recapture component arising from the independent-observer survey, leading to more accurate estimation of detection probability given availability. We develop models for situations in which (a) multiple detections of the same individual are possible and (b) some or all of the availability process parameters are estimated from the line transect survey itself, rather than from independent data. We investigate estimator performance by simulation, and compare the multiple-detection estimators with estimators that use only initial detections of individuals, and with a single-observer estimator. Simultaneous estimation of detection function parameters and availability model parameters is shown to be feasible from the line transect survey alone with multiple detections and double-observer data but not with single-observer data. Recording multiple detections of individuals improves estimator precision substantially when estimating the availability model parameters from survey data, and we recommend that these data be gathered. We apply the methods to estimate detection probability from a double-observer survey of North Atlantic minke whales, and find that double-observer data greatly improve estimator precision here too. © 2015 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  1. Developing accurate survey methods for estimating population sizes and trends of the critically endangered Nihoa Millerbird and Nihoa Finch.

    USGS Publications Warehouse

    Gorresen, P. Marcos; Camp, Richard J.; Brinck, Kevin W.; Farmer, Chris

    2012-01-01

    Point-transect surveys indicated that millerbirds were more abundant than shown by the striptransect method, and were estimated at 802 birds in 2010 (95%CI = 652 – 964) and 704 birds in 2011 (95%CI = 579 – 837). Point-transect surveys yielded population estimates with improved precision which will permit trends to be detected in shorter time periods and with greater statistical power than is available from strip-transect survey methods. Mean finch population estimates and associated uncertainty were not markedly different among the three survey methods, but the performance of models used to estimate density and population size are expected to improve as the data from additional surveys are incorporated. Using the pointtransect survey, the mean finch population size was estimated at 2,917 birds in 2010 (95%CI = 2,037 – 3,965) and 2,461 birds in 2011 (95%CI = 1,682 – 3,348). Preliminary testing of the line-transect method in 2011 showed that it would not generate sufficient detections to effectively model bird density, and consequently, relatively precise population size estimates. Both species were fairly evenly distributed across Nihoa and appear to occur in all or nearly all available habitat. The time expended and area traversed by observers was similar among survey methods; however, point-transect surveys do not require that observers walk a straight transect line, thereby allowing them to avoid culturally or biologically sensitive areas and minimize the adverse effects of recurrent travel to any particular area. In general, pointtransect surveys detect more birds than strip-survey methods, thereby improving precision and resulting population size and trend estimation. The method is also better suited for the steep and uneven terrain of Nihoa

  2. Reconstruction of peripheral nerves using acellular nerve grafts with implanted cultured Schwann cells.

    PubMed

    Frerichs, Onno; Fansa, Hisham; Schicht, Christoph; Wolf, Gerald; Schneider, Wolfgang; Keilhoff, Gerburg

    2002-01-01

    The bridging of nerve gaps is still one of the major problems in peripheral nerve surgery. The present experiment describes our attempt to engineer different biologic nerve grafts in a rat sciatic nerve model: cultured isogenic Schwann cells were implanted into 2-cm autologous acellular nerve grafts or autologous predegenerated nerve grafts. Autologous nerve grafts and predegenerated or acellular nerve grafts without implanted Schwann cells served as controls. The regenerated nerves were assessed histologically and morphometrically after 6 weeks. Predegenerated grafts showed results superior in regard to axon count and histologic appearance in comparison to standard grafts and acellular grafts. The acellular nerve grafts showed the worst histologic picture, but axon counts were in the range of standard grafts. The implantation of Schwann cells did not yield significant improvements in any group. In conclusion, the status of activation of Schwann cells and the stadium of Wallerian degeneration in a nerve graft might be key factors for regeneration, rather than total number of Schwann cells. Predegenerated nerve grafts are therefore superior to standard grafts in the rat model. Acellular grafts are able to bridge nerve gaps of up to 2 cm in the rat model, but even the addition of cultivated Schwann cells did not lead to results as good as in the group with autologous nerve grafts. Copyright 2002 Wiley-Liss, Inc. MICROSURGERY 22:311-315 2002

  3. Quantitative Characterization of Spurious Gibbs Waves in 45 CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Geil, K. L.; Zeng, X.

    2014-12-01

    Gibbs oscillations appear in global climate models when representing fields, such as orography, that contain discontinuities or sharp gradients. It has been known for decades that the oscillations are associated with the transformation of the truncated spectral representation of a field to physical space and that the oscillations can also be present in global models that do not use spectral methods. The spurious oscillations are potentially detrimental to model simulations (e.g., over ocean) and this work provides a quantitative characterization of the Gibbs oscillations that appear across the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. An ocean transect running through the South Pacific High toward the Andes is used to characterize the oscillations in ten different variables. These oscillations are found to be stationary and hence are not caused by (physical) waves in the atmosphere. We quantify the oscillation amplitude using the root mean square difference (RMSD) between the transect of a variable and its running mean (rather than the constant mean across the transect). We also compute the RMSD to interannual variability (IAV) ratio, which provides a relative measure of the oscillation amplitude. Of the variables examined, the largest RMSD values exist in the surface pressure field of spectral models, while the smallest RMSD values within the surface pressure field come from models that use finite difference (FD) techniques. Many spectral models have a surface pressure RMSD that is 2 to 15 times greater than IAV over the transect and an RMSD:IAV ratio greater than one for many other variables including surface temperature, incoming shortwave radiation at the surface, incoming longwave radiation at the surface, and total cloud fraction. In general, the FD models out-perform the spectral models, but not all the spectral models have large amplitude oscillations and there are a few FD models where the oscillations do appear. Finally, we present a brief comparison of the numerical methods of a select few models to better understand their Gibbs oscillations.

  4. Tissue engineering of peripheral nerves: Epineurial grafts with application of cultured Schwann cells.

    PubMed

    Fansa, H; Dodic, T; Wolf, G; Schneider, W; Keilhoff, G

    2003-01-01

    After a simple nerve lesion, primary microsurgical suture is the treatment of choice. A nerve gap has to be bridged, with a nerve graft sacrificing a functioning nerve. Alternatively, tissue engineering of nerve grafts has become a subject of experimental research. It is evident that nerve regeneration requires not only an autologous, allogenous, or biodegradable scaffold, but additional interactions with regeneration-promoting Schwann cells. In this study, we compared epineurial and acellularized epineurial tubes with and without application of cultured Schwann cells as alternative grafts in a rat sciatic nerve model. Autologous nerve grafts served as controls. Evaluation was performed after 6 weeks; afterwards, sections of the graft and distal nerve were harvested for histological and morphometrical analysis. Compared to controls, all groups showed a significantly lower number of axons, less well-shaped remyelinizated axons, and a delay in clinical recovery (e.g., toe spread). The presented technique with application of Schwann cells into epineurial tubes did not offer any major advantages for nerve regeneration. Thus, in this applied model, neither the implantation of untreated nor the implantation of acellularized epineurial tubes with cultured Schwann cells to bridge nerve defects was capable of presenting a serious alternative to the present gold standard of conventional nerve grafts for bridging nerve defects in this model. Copyright 2003 Wiley-Liss, Inc.

  5. Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.

    PubMed

    Chang, Cheng-Tao; Chen, Yu-Hsing; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-07-16

    The mechanical characteristics of ultrastructures of rat sciatic nerves were investigated through animal experiments and finite element analyses. A custom-designed dynamic testing apparatus was used to conduct in vitro transverse compression experiments on the nerves. The optical coherence tomography (OCT) was utilized to record the cross-sectional images of nerve during the dynamic testing. Two-dimensional finite element models of the nerves were built based on their OCT images. A hyper-viscoelastic model was employed to describe the elastic and stress relaxation response of each ultrastructure of the nerve, namely the endoneurium, the perineurium and the epineurium. The first-order Ogden model was employed to describe the elasticity of each ultrastructure and a generalized Maxwell model for the relaxation. The inverse finite element analysis was used to estimate the material parameters of the ultrastructures. The results show the instantaneous shear modulus of the ultrastructures in decreasing order is perineurium, endoneurium, and epineurium. The FE model combined with the first-order Ogden model and the second-order Prony series is good enough for describing the compress-and-hold response of the nerve ultrastructures. The integration of OCT and the nonlinear finite element modeling may be applicable to study the viscoelasticity of peripheral nerve down to the ultrastructural level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency

    NASA Astrophysics Data System (ADS)

    Marthews, T.; Malhi, Y.; Girardin, C.; Silva-Espejo, J.; Aragão, L.; Metcalfe, D.; Rapp, J.; Mercado, L.; Fisher, R.; Galbraith, D.; Fisher, J.; Salinas-Revilla, N.; Friend, A.; Restrepo-Coupe, N.; Williams, R.

    2012-04-01

    A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the results to published field measurements. In the upper montane zone the model predicted a vegetation dieback, indicating a need for better parameterisation of cloud forest vegetation. In the lower montane and lowland zones simulated ecosystem productivity and respiration were predicted with reasonable accuracy, although not always within the error bounds of the observations. Model-predicted carbon use efficiency in this transect surprisingly did not increase with elevation, but remained close to the 'temperate' value 0.5. This may be explained by elevational changes in the balance between growth and maintenance respiration within the forest canopy, as controlled by both temperature- and pressure-mediated processes.

  7. Biomechanical implications of lumbar spinal ligament transection.

    PubMed

    Von Forell, Gregory A; Bowden, Anton E

    2014-11-01

    Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.

  8. The anatomical and imaging study of pes anserinus and its clinical application

    PubMed Central

    Zhong, Sheng; Wu, Bo; Wang, Miao; Wang, Xiaohong; Yan, Qi; Fan, Xingyu; Hu, Yanmei; Han, Yingying; Li, Youqiong

    2018-01-01

    Abstract Background: The pes anserinus was an important graft choice for anterior cruciate ligament (ACL) reconstruction. The infrapatellar branch of the saphenous nerve (IPBSN) might be damaged in this surgery. This study aimed to provide anatomic and ultrasonic measurement data of pes anserinus and superficial nerves. Methods: Eighty lower limb specimens of forty adult cadavers were dissected. The length, width, thickness, and the position of the tibial attachment of pes anserinus tendons were anthropometric measured, as well as the distance between the infrapatellar branch of the saphenous nerve and the pes anserinus. Sixty healthy adult participants were enrolled for ultrasonic research. The length, width, thickness of pes anserinus was also measured and the saphenous nerve was also assessed. Results: Anatomic results showed that there were 3 types of pes anserinus, the infrapatellar branch of the saphenous nerve (IPBSN) was almost paralleled to the upper edge of the pes anserinus tendon, and the average of distance between them was about 0.95 cm. The length of semitendinosus and gracilis tendons were 146.49 ± 12.83 mm and 124.62 ± 8.86 mm, the width of sartorius tendon was 25.58 ± 4.65 mm, wider than other tendons. The classification of pes anserinus tendons and the saphenous nerves could be identified in ultrasonic image. The length of semitendinosus and gracilis tendons were 151.35 ± 9.65 mm and 120.86 ± 8.99 mm, the width of sartorius tendon was 22.84 ± 3.83 mm. And there was no significance difference between anatomic and ultrasonic measurement (P > .05). Conclusion: The morphology of pes anserinus and its peripheral structures could be identified and measured precisely by ultrasound device, a presurgical ultrasonic examination was recommended. The arrangement of pes anserinus tendons was classified into 3 types according to our results. The incision should be performed medial to tibial eminence 1.5 cm and under the tibial tubercle level 2 to 3 cm, an oblique incision formed an angle of 50° with tibial transection was recommend, which was parallel to the direction of pes anserinus tendon. PMID:29642176

  9. Somatotopic changes in the nucleus ambiguus after section and regeneration of the recurrent laryngeal nerve of the rat.

    PubMed

    Hernández-Morato, Ignacio; Berdugo-Vega, Gabriel; Sañudo, Jose R; McHanwell, Stephen; Vázquez, Teresa; Valderrama-Canales, Francisco J; Pascual-Font, Arán

    2014-05-01

    Changes in motoneurons innervating laryngeal muscles after section and regeneration of the recurrent laryngeal nerve (RLN) are far from being understood. Here, we report the somatotopic changes within the nucleus ambiguus (Amb) after the nerve injury and relates it to the resulting laryngeal fold impairment. The left RLN of each animal was transected and the stumps were glued together using surgical fibrin glue. After several survival periods (1, 2, 4, 8, 12, 16 weeks; at least six rats at each time point) the posterior cricoarytenoid (PCA) and thyroarytenoid (TA) muscles were injected with fluorescent-conjugated cholera toxin and the motility of the vocal folds evaluated. After section and subsequent repair of the RLN, no movement of the vocal folds could be detected at any of the survival times studied and the somatotopy and the number of labeled motoneurons changed. From 4 wpi award, the somatotopy was significantly disorganized, with the PCA motoneurons being located rostrally relative to their normal location. A rostrocaudal overlap between the two pools of motoneurons supplying the PCA and TA muscles was observed from 2 wpi onwards. Hardly any labeled neurons were found in the contralateral Amb in any of the experimental groups. An injury of the RLN leads to a reinnervation of the denervated motor endplates of PCA and TA. However, misdirected axons sprout and regrowth from the proximal stump to the larynx. As a result, misplaced innervation of muscles results in a lack of functional recovery of the laryngeal folds movement following a RLN injury. Copyright © 2014 Wiley Periodicals, Inc.

  10. Sympathetic block by metal clips may be a reversible operation.

    PubMed

    Thomsen, Lars L; Mikkelsen, Rasmus T; Derejko, Miroslawa; Schrøder, Henrik D; Licht, Peter B

    2014-12-01

    Thoracoscopic sympathectomy is now used routinely to treat patients with disabling primary hyperhidrosis or facial blushing. Published results are excellent, but side effects, such as compensatory sweating, are also very frequent. The surgical techniques used and the levels of targeting the sympathetic chain vary tremendously. Most surgeons transect or resect the sympathetic chain, but application of a metal clip that blocks transmission of nerve impulses in the sympathetic chain is used increasingly worldwide. This approach offers potential reversibility if patients regret surgery, but the question of reversibility remains controversial. Two recent experimental studies found severe histological signs of nerve damage 4-6 weeks after clip removal, but they only used conventional histopathological staining methods. Thoracoscopic clipping of the sympathetic trunk was performed in adult sheep, and the clip was removed thoracoscopically after 7 days. Following another 4 weeks (n = 6) or 12 weeks (n = 3), the sympathetic trunks were harvested and analysed by conventional and specific nerve tissue immunohistochemical stains (S100, neurofilament protein and synaptophysin). The contralateral sympathetic chains were used as controls. Conventional and immunohistochemical stains demonstrated severe signs of neural damage on the operated side 4 weeks after clip removal. After 12 weeks, these changes had decreased markedly and conventional histology had almost normalized. Conventional and immunohistochemical stains confirmed that application of metal clips to the sympathetic chain caused severe histological damage in the sympathetic trunk that remained visible 4 weeks after clip removal. However, after 12 weeks, these signs of damage had clearly decreased, which suggests in theory that application of metal clips to the sympathetic chain is a reversible procedure if only the observation period is prolonged. Further studies with longer periods between application and removal as well as investigations of nerve conduction should be encouraged, because we do not know whether histological reversibility at cellular level translates into physiological reversibility and possible correlation of nerve trauma with the duration of the applied clip. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  11. Modeling abundance using hierarchical distance sampling

    USGS Publications Warehouse

    Royle, Andy; Kery, Marc

    2016-01-01

    In this chapter, we provide an introduction to classical distance sampling ideas for point and line transect data, and for continuous and binned distance data. We introduce the conditional and the full likelihood, and we discuss Bayesian analysis of these models in BUGS using the idea of data augmentation, which we discussed in Chapter 7. We then extend the basic ideas to the problem of hierarchical distance sampling (HDS), where we have multiple point or transect sample units in space (or possibly in time). The benefit of HDS in practice is that it allows us to directly model spatial variation in population size among these sample units. This is a preeminent concern of most field studies that use distance sampling methods, but it is not a problem that has received much attention in the literature. We show how to analyze HDS models in both the unmarked package and in the BUGS language for point and line transects, and for continuous and binned distance data. We provide a case study of HDS applied to a survey of the island scrub-jay on Santa Cruz Island, California.

  12. Influence of Different Geometric Representations of the Volume Conductor on Nerve Activation during Electrical Stimulation

    PubMed Central

    Gómez-Tames, José; González, José; Yu, Wenwei

    2014-01-01

    Volume conductor models with different geometric representations, such as the parallel layer model (PM), the cylindrical layer model (CM), or the anatomically based model (AM), have been employed during the implementation of bioelectrical models for electrical stimulation (FES). Evaluating their strengths and limitations to predict nerve activation is fundamental to achieve a good trade-off between accuracy and computation time. However, there are no studies aimed at clarifying the following questions. (1) Does the nerve activation differ between CM and PM? (2) How well do CM and PM approximate an AM? (3) What is the effect of the presence of blood vessels and nerve trunk on nerve activation prediction? Therefore, in this study, we addressed these questions by comparing nerve activation between CM, PM, and AM models by FES. The activation threshold was used to evaluate the models under different configurations of superficial electrodes (size and distance), nerve depths, and stimulation sites. Additionally, the influences of the sciatic nerve, femoral artery, and femoral vein were inspected for a human thigh. The results showed that the CM and PM had a high error rate, but the variation of the activation threshold followed the same tendency for electrode size and interelectrode distance variation as AM. PMID:25276222

  13. Heat tracing to determine spatial patterns of hyporheic exchange across a river transect

    NASA Astrophysics Data System (ADS)

    Lu, Chengpeng; Chen, Shuai; Zhang, Ying; Su, Xiaoru; Chen, Guohao

    2017-09-01

    Significant spatial variability of water fluxes may exist at the water-sediment interface in river channels and has great influence on a variety of water issues. Understanding the complicated flow systems controlling the flux exchanges along an entire river is often limited due to averaging of parameters or the small number of discrete point measurements usually used. This study investigated the spatial pattern of the hyporheic flux exchange across a river transect in China, using the heat tracing approach. This was done with measurements of temperature at high spatial resolution during a 64-h monitoring period and using the data to identify the spatial pattern of the hyporheic exchange flux with the aid of a one-dimensional conduction-advection-dispersion model (VFLUX). The threshold of neutral exchange was considered as 126 L m-2 d-1 in this study and the heat tracing results showed that the change patterns of vertical hyporheic flux varied with buried depth along the river transect; however, the hyporheic flux was not simply controlled by the streambed hydraulic conductivity and water depth in the river transect. Also, lateral flow dominated the hyporheic process within the shallow high-permeability streambed, while the vertical flow was dominant in the deep low-permeability streambed. The spatial pattern of hyporheic exchange across the river transect was naturally controlled by the heterogeneity of the streambed and the bedform of the stream cross-section. Consequently, a two-dimensional conceptual illustration of the hyporheic process across the river transect is proposed, which could be applicable to river transects of similar conditions.

  14. Model for nerve visualization in preoperative image data based on intraoperatively gained EMG signals.

    PubMed

    Strauss, Mario; Lueders, Christian; Strauss, Gero; Stopp, Sebastian; Shi, Jiaxi; Lueth, Tim C

    2008-01-01

    While removing bone tissue of the mastoid, the facial nerve is at risk of being injured. In this contribution a model for nerve visualization in preoperative image data based on intraoperatively gained EMG signals is proposed. A neuro monitor can assist the surgeon locating and preserving the nerve. With the proposed model gained EMG signals can be spatially related to the patient resp. the image data. During navigation the detected nerve course will be visualized and hence permanently available for assessing the situs.

  15. Mesoscale variability observed in the Northern Adriatic in autumn 2016

    NASA Astrophysics Data System (ADS)

    Pasaric, Zoran; Iva, Medjugorac; Nastjenka, Supic; Tamara, Djakovac; Mirko, Orlic

    2017-04-01

    Quasi-synoptic measurements of hydrographic properties were performed in the Northern Adriatic along the transect extending from Rovinj to the Po River mouth in an approximately east-west direction. The depth along the transect slowly varies between 30 and 40 m. Three one-day cruises were conducted, the first on 12 Nov, the second on 18 Nov, and the third on 25 Nov 2016. During the first and the third cruise the sampling was done with a CTD probe lowered from the surface to the bottom, at eleven stations placed nearly equidistantly along the transect. Average distance between the stations was 6 km. The second cruise was conducted with a towed yo-yo profiler equipped with the CTD probe and continuously undulating between the surface and some 4 m above the bottom. With roughly three undulations per kilometer, horizontal resolution along the transect was about 200 m. The data suggest that three processes occurred during the cruises: 1) surface cooling and related vertical mixing, 2) intrusion of high-salinity waters into the western part of the transect, and 3) propagation of a mesoscale formation in a westward direction. The existence and propagation of the mesoscale feature is supported by a simple analytical model of topographic Rossby waves. By assuming that the bottom varies linearly in the direction perpendicular to the transect, the propagation speed of O(1 km/day) is obtained - in agreement with the observations.

  16. Effect on laryngeal adductor function of vincristine block of posterior cricoarytenoid muscle 3 to 5 months after recurrent laryngeal nerve injury.

    PubMed

    Paniello, Randal C; Park, Andrea

    2015-06-01

    It has been shown in a canine model that a single injection of vincristine into the posterior cricoarytenoid (PCA) muscle at the time of recurrent laryngeal nerve (RLN) injury effectively blocks its reinnervation and results in improved adductor strength. But clinically, such injuries are usually diagnosed weeks or months after onset. Vincristine injection does not affect a muscle that is already innervated; thus, there is a limited time frame following RLN injury during which a vincristine injection could effectively improve ultimate laryngeal adductor functional recovery. A series of delayed injections was performed in a canine model and results assessed. Animal (canine) experiment. The RLN was transected and repaired, and vincristine (0.4 mg) was injected into the PCA muscle at the time of injury (n=12) or 3, 4, and 5 months later (n=8 each study group). Six months after RLN injury, laryngeal adductor function was measured. Results of vincristine injection without RLN injury (n=6) and longer-term (12 months) follow-up for time zero injections (n=4) are also reported. The animals injected at time zero had better adductor function than non-injected controls, as reported previously, and this result was further increased at 12 months. The 3-month delay gave results similar to the time zero group. The 5-month delay group showed no vincristine benefit, and the 4-month delay group gave an intermediate result. Vincristine to the PCA had no effect on adductor function when the RLN was left intact. Plasma levels showed 19% of injected vincristine reached systemic circulation, which was cleared within 69 hours. Vincristine injection of the PCA muscle after RLN injury, which blocks this antagonist muscle from synkinetic reinnervation, leads to improved laryngeal adductor functional recovery. The window of opportunity to apply this treatment closes by 4 months after RLN injury in the canine model. Human RLN recovery follows a similar time course and can reasonably be expected to have a similar therapeutic window. © The Author(s) 2015.

  17. Validation of a novel animal model for sciatic nerve repair with an adipose-derived stem cell loaded fibrin conduit.

    PubMed

    Saller, Maximilian M; Huettl, Rosa-Eva; Mayer, Julius M; Feuchtinger, Annette; Krug, Christian; Holzbach, Thomas; Volkmer, Elias

    2018-05-01

    Despite the regenerative capabilities of peripheral nerves, severe injuries or neuronal trauma of critical size impose immense hurdles for proper restoration of neuro-muscular circuitry. Autologous nerve grafts improve re-establishment of connectivity, but also comprise substantial donor site morbidity. We developed a rat model which allows the testing of different cell applications, i.e., mesenchymal stem cells, to improve nerve regeneration in vivo. To mimic inaccurate alignment of autologous nerve grafts with the injured nerve, a 20 mm portion of the sciatic nerve was excised, and sutured back in place in reversed direction. To validate the feasibility of our novel model, a fibrin gel conduit containing autologous undifferentiated adipose-derived stem cells was applied around the coaptation sites and compared to autologous nerve grafts. After evaluating sciatic nerve function for 16 weeks postoperatively, animals were sacrificed, and gastrocnemius muscle weight was determined along with morphological parameters (g-ratio, axon density & diameter) of regenerating axons. Interestingly, the addition of undifferentiated adipose-derived stem cells resulted in a significantly improved re-myelination, axon ingrowth and functional outcome, when compared to animals without a cell seeded conduit. The presented model thus displays several intriguing features: it imitates a certain mismatch in size, distribution and orientation of axons within the nerve coaptation site. The fibrin conduit itself allows for an easy application of cells and, as a true critical-size defect model, any observed improvement relates directly to the performed intervention. Since fibrin and adipose-derived stem cells have been approved for human applications, the technique can theoretically be performed on humans. Thus, we suggest that the model is a powerful tool to investigate cell mediated assistance of peripheral nerve regeneration.

  18. End-point diameter and total length coarse woody debris models for the United States

    Treesearch

    C.W. Woodall; J.A. Westfall; D.C. Lutes; S.N. Oswalt

    2008-01-01

    Coarse woody debris (CWD) may be defined as dead and down trees of a certain minimumsize that are an important forest ecosystem component (e.g., wildlife habitat, carbon stocks, and fuels). Due to field efficiency concerns, some natural resource inventories only measure the attributes of CWD pieces at their point of intersection with a sampling transect (e.g., transect...

  19. Interactive modeling and simulation of peripheral nerve cords in virtual environments

    NASA Astrophysics Data System (ADS)

    Ullrich, Sebastian; Frommen, Thorsten; Eckert, Jan; Schütz, Astrid; Liao, Wei; Deserno, Thomas M.; Ntouba, Alexandre; Rossaint, Rolf; Prescher, Andreas; Kuhlen, Torsten

    2008-03-01

    This paper contributes to modeling, simulation and visualization of peripheral nerve cords. Until now, only sparse datasets of nerve cords can be found. In addition, this data has not yet been used in simulators, because it is only static. To build up a more flexible anatomical structure of peripheral nerve cords, we propose a hierarchical tree data structure where each node represents a nerve branch. The shape of the nerve segments itself is approximated by spline curves. Interactive modeling allows for the creation and editing of control points which are used for branching nerve sections, calculating spline curves and editing spline representations via cross sections. Furthermore, the control points can be attached to different anatomic structures. Through this approach, nerve cords deform in accordance to the movement of the connected structures, e.g., muscles or bones. As a result, we have developed an intuitive modeling system that runs on desktop computers and in immersive environments. It allows anatomical experts to create movable peripheral nerve cords for articulated virtual humanoids. Direct feedback of changes induced by movement or deformation is achieved by visualization in real-time. The techniques and the resulting data are already used for medical simulators.

  20. Evaluation of purinergic mechanism for the treatment of voiding dysfunction: a study in conscious spinal cord-injured rats.

    PubMed

    Lu, Shing-Hwa; Groat, William C de; Lin, Alex T L; Chen, Kuang-Kuo; Chang, Luke S

    2007-10-01

    To investigate the effect of a selective P2X(3-)P2X(2/3) purinergic receptor antagonist (a-317491) on detrusor hyperreflexia in conscious chronic spinal cord-injured female rats. Six chronic spinal cord-transected female Sprague-Dawley rats (290-336 g) were used in this study. Spinal transection at the T8-T9 segmental level was performed using aseptic techniques under halothane anesthesia. Fourteen to 16 weeks after spinal transection, A-317491, a selective P2X(3-)P2X(2/3) purinergic receptor antagonist, was administered intravenously in cystometry studies at increasing doses of 0.03, 0.1, 0.3, 1, 3, 10 and 30 micromol/kg at 40-50 minute intervals. Cystometrograms (CMGs) were performed before and after the administration of each dose of the drug. The continuous filling of CMGs revealed a large number of small-amplitude (> 8 cmH(2)O), non-voiding contractions (NVCs) (average, 9.7 per voiding cycle) preceding voiding contractions (mean amplitude, 31 cmH(2)O; duration, 2.5 minutes), which occurred at an interval of 539 seconds and at a pressure threshold of 5.7 cmH(2)O. When tested in a range of doses (0.03-30 micromol/kg, intravenous), A-317491 in doses between 1 and 30 micromol/kg significantly (p < 0.05) increased the interval between voids by 25%, reduced the number of NVCs by 42-62%, and increased the pressure threshold for voiding by 53-73%, but did not change the amplitude of the duration of the voiding contractions. The effects of the drug were apparent within 10 minutes following administration. These results indicate that purinergic mechanisms, presumably involving P2X(3) or P2X(2/3) receptors on bladder C-fiber afferent nerves, play an important role in the detrusor hyperreflexia that occurs after spinal cord injury in rats.

  1. Quantifying Demyelination in NK venom treated nerve using its electric circuit model

    NASA Astrophysics Data System (ADS)

    Das, H. K.; Das, D.; Doley, R.; Sahu, P. P.

    2016-03-01

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  2. Quantifying Demyelination in NK venom treated nerve using its electric circuit model

    PubMed Central

    Das, H. K.; Das, D.; Doley, R.; Sahu, P. P.

    2016-01-01

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination. PMID:26932543

  3. Quantifying Demyelination in NK venom treated nerve using its electric circuit model.

    PubMed

    Das, H K; Das, D; Doley, R; Sahu, P P

    2016-03-02

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  4. Dose-Dependent Differential Effect of Neurotrophic Factors on In Vitro and In Vivo Regeneration of Motor and Sensory Neurons

    PubMed Central

    Santos, Daniel; Gonzalez-Perez, Francisco; Navarro, Xavier

    2016-01-01

    Although peripheral axons can regenerate after nerve transection and repair, functional recovery is usually poor due to inaccurate reinnervation. Neurotrophic factors promote directional guidance to regenerating axons and their selective application may help to improve functional recovery. Hence, we have characterized in organotypic cultures of spinal cord and dorsal root ganglia the effect of GDNF, FGF-2, NGF, NT-3, and BDNF at different concentrations on motor and sensory neurite outgrowth. In vitro results show that GDNF and FGF-2 enhanced both motor and sensory neurite outgrowth, NGF and NT-3 were the most selective to enhance sensory neurite outgrowth, and high doses of BDNF selectively enhanced motor neurite outgrowth. Then, NGF, NT-3, and BDNF (as the most selective factors) were delivered in a collagen matrix within a silicone tube to repair the severed sciatic nerve of rats. Quantification of Fluorogold retrolabeled neurons showed that NGF and NT-3 did not show preferential effect on sensory regeneration whereas BDNF preferentially promoted motor axons regeneration. Therefore, the selective effects of NGF and NT-3 shown in vitro are lost when they are applied in vivo, but a high dose of BDNF is able to selectively enhance motor neuron regeneration both in vitro and in vivo. PMID:27867665

  5. Bladder volume-dependent excitatory and inhibitory influence of lumbosacral dorsal and ventral roots on bladder activity in rats

    PubMed Central

    Sugaya, Kimio; de Groat, William C.

    2011-01-01

    This study was undertaken to examine the role of the afferent and efferent pathways of the lumbosacral spinal nerve roots in the tonic control of bladder activity. Changes of isovolumetric bladder activity were recorded in 21 sympathectomized female rats under urethane anesthesia following transection of the dorsal (DRT) and ventral (VRT) lumbosacral spinal roots, and after intraperitoneal administration of hexamethonium. DRT altered the baseline intravesical pressure in a bladder volume-dependent manner in each animal. The percent change of baseline pressure after VRT following DRT was also dependent upon bladder volume. The percent change of baseline pressure after VRT alone was similarly dependent on bladder volume, but not after VRT followed by DRT. The percent change of baseline intravesical pressure (y)(−9 to +8 cm H2O, −56 to +46%) after DRT and VRT depended upon bladder volume (x)(y = 44.7 x −40.4) in all rats. Hexamethonium increased the amplitude of small myogenic bladder contractions after DRT and VRT. In conclusion, the bladder is tonically excited or inhibited by a local reflex pathway and by a parasympathetic reflex pathway that depends on connections with the lumbosacral spinal cord and the pelvic nerves. Both reflex mechanisms are influenced by bladder volume. PMID:17878597

  6. [Effects of transections and electrical coagulations in the medulla oblongata upon the activities in the respiratory muscles of the crucian carp (author's transl)].

    PubMed

    Fukuda, H

    1975-06-01

    The following conclusions may be drawn from the results in this work. The respiratory cycles are formed by the neuronal machinery in the reticular formation under the posterior part of the vagal motor nucleus. The motor neurones or the neuronal networks composing the motor nucleus of the respiratory muscles tonically discharge the action potentials, when the neurones or the networks are released from the inhibitory influences of the interneurones connecting the neuronal machinery to the motor neurones. Furthermore, the interneurones probably generate the tonic discharges after removing the inhibitory influences of the other interneurones or the neuronal machinery on them. A reflex mouth closing is elicited by a mechanical stimulus applying on the upper lip. The motor neurones of the m. adductor mandibulae are activated via only one synapse in the reflex. The reflex action potentials recorded from the motor nerve reduce in amplitude at the resting phase of the nerve in the respiratory cycles. These results suggest that the respiratory motor neurones are by nature spontaneous generators of the tonic action potentials and, in the time of the normal breathing, the tonic activity is interrupted by an inhibitory influence of the neuronal machinery generating the respiratory cycles.

  7. Convection-Enhanced Delivery (CED) in an Animal Model of Malignant Peripheral Nerve Sheath (MPNST) Tumors and Plexiform Neurofibromas (PN)

    DTIC Science & Technology

    2012-09-01

    TITLE: Convection-Enhanced Delivery ( CED ) in an Animal Model of Malignant Peripheral Nerve Sheath ( MPNST ) Tumors and Plexiform Neurofibromas (PN...within the sciatic nerve. 15. SUBJECT TERMS Convection-Enhanced Delivery ( CED ), Malignant Peripheral Nerve Sheath ( MPNST ), Plexiform Neurofibromas...determine the distribution of macromolecules delivered to intraneural PNs and MPNST via CED . Design: Orthotopic xenograft models of sciatic intraneural

  8. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    PubMed Central

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  9. Sciatic endometriosis induces mechanical hypersensitivity, segmental nerve damage, and robust local inflammation in rats

    PubMed Central

    Chen, S.; Xie, W.; Strong, J. A.; Jiang, J.; Zhang, J.-M.

    2015-01-01

    Background Endometriosis is a common cause of pain including radicular pain. Ectopic endometrial tissue may directly affect peripheral nerves including the sciatic, which has not been modelled in animals. Methods We developed a rat model for sciatic endometriosis by grafting a piece of autologous uterine tissue around the sciatic nerve. Control animals underwent a similar surgery but received a graft of pelvic fat tissue. Results The uterine grafts survived and developed fluid filled cysts; the adjacent nerve showed signs of swelling and damage. Mechanical and cold hypersensitivity and allodynia of the ipsilateral hindpaw developed gradually over the first two weeks after the surgery, peaked at 2 to 5 weeks, and was almost resolved by 7 weeks. Control animals showed only minor changes in these pain behaviors. Histological signs of inflammation in the uterine graft and in the adjacent nerve were observed at 3 weeks but were resolving by 7 weeks. In vivo fiber recording showed increased spontaneous activity, especially of C fibers, in sciatic nerve proximal to the uterine graft. Several pro-inflammatory cytokines including interluekin-18, VEGF, fractalkine, and MIP-1α, were elevated in the uterine graft plus sciatic nerve samples, compared to samples from normal nerve or nerve plus fat graft. Growth associated protein 43 (GAP43), a marker of regenerating nerve fibers, was observed in the adjacent sciatic nerve as well as in the uterine graft. Conclusions This model shared many features with other rat models of endometriosis, but also had some unique features more closely related to neuropathic pain models. PMID:26688332

  10. Botulinum Toxin Induces Muscle Paralysis and Inhibits Bone Regeneration in Zebrafish

    PubMed Central

    Recidoro, Anthony M.; Roof, Amanda C.; Schmitt, Michael; Worton, Leah E.; Petrie, Timothy; Strand, Nicholas; Ausk, Brandon J.; Srinivasan, Sundar; Moon, Randall T.; Gardiner, Edith M.; Kaminsky, Werner; Bain, Steven D.; Allan, Christopher H.; Gross, Ted S.; Kwon, Ronald Y.

    2016-01-01

    Intramuscular administration of Botulinum toxin (BTx) has been associated with impaired osteogenesis in diverse conditions of bone formation (e.g., development, growth, and healing), yet the mechanisms of neuromuscular-bone crosstalk underlying these deficits have yet to be identified. Motivated by the emerging utility of zebrafish (Danio rerio) as a rapid, genetically tractable, and optically transparent model for human pathologies (as well as the potential to interrogate neuromuscular-mediated bone disorders in a simple model that bridges in vitro and more complex in vivo model systems), in this study we developed a model of BTx-induced muscle paralysis in adult zebrafish, and examined its effects on intramembranous ossification during tail fin regeneration. BTx administration induced rapid muscle paralysis in adult zebrafish in a manner that was dose-dependent, transient, and focal, mirroring the paralytic phenotype observed in animal and human studies. During fin regeneration, BTx impaired continued bone ray outgrowth, morphology, and patterning, indicating defects in early osteogenesis. Further, BTx significantly decreased mineralizing activity and crystalline mineral accumulation, suggesting delayed late-stage osteoblast differentiation and/or altered secondary bone apposition. Bone ray transection proximal to the amputation site focally inhibited bone outgrowth in the affected ray, implicating intra- and/or inter-ray nerves in this process. Taken together, these studies demonstrate the potential to interrogate pathological features of BTx-induced osteoanabolic dysfunction in the regenerating zebrafish fin, define the technological toolbox for detecting bone growth and mineralization deficits in this process, and suggest that pathways mediating neuromuscular regulation of osteogenesis may be conserved beyond established mammalian models of bone anabolic disorders. PMID:24806738

  11. Development of a decision support system for monitoring, reporting and forecasting ecological conditions of the Appalachian Trail

    USGS Publications Warehouse

    Wang, Yeqiao; Nemani, Ramakrishna; Dieffenbach, Fred; Stolte, Kenneth; Holcomb, Glenn B.; Robinson, Matt; Reese, Casey C.; McNiff, Marcia; Duhaime, Roland; Tierney, Geri; Mitchell, Brian; August, Peter; Paton, Peter; LaBash, Charles

    2010-01-01

    This paper introduces a collaborative multi-agency effort to develop an Appalachian Trail (A.T.) MEGA-Transect Decision Support System (DSS) for monitoring, reporting and forecasting ecological conditions of the A.T. and the surrounding lands. The project is to improve decisionmaking on management of the A.T. by providing a coherent framework for data integration, status reporting and trend analysis. The A.T. MEGA-Transect DSS is to integrate NASA multi-platform sensor data and modeling through the Terrestrial Observation and Prediction System (TOPS) and in situ measurements from A.T. MEGA-Transect partners to address identified natural resource priorities and improve resource management decisions.

  12. A valuable animal model of spinal cord injury to study motor dysfunctions, comorbid conditions, and aging associated diseases.

    PubMed

    Rouleau, Pascal; Guertin, Pierre A

    2013-01-01

    Most animal models of contused, compressed or transected spinal cord injury (SCI) require a laminectomy to be performed. However, despite advantages and disadvantages associated with each of these models, the laminectomy itself is generally associated with significant problems including longer surgery and anaesthesia (related post-operative complications), neuropathic pain, spinal instabilities, deformities, lordosis, and biomechanical problems, etc. This review provides an overview of findings obtained mainly from our laboratory that are associated with the development and characterization of a novel murine model of spinal cord transection that does not require a laminectomy. A number of studies successfully conducted with this model provided strong evidence that it constitutes a simple, reliable and reproducible transection model of complete paraplegia which is particularly useful for studies on large cohorts of wild-type or mutant animals - e.g., drug screening studies in vivo or studies aimed at characterizing neuronal and non-neuronal adaptive changes post-trauma. It is highly suitable also for studies aimed at identifying and developing new pharmacological treatments against aging associated comorbid problems and specific SCI-related dysfunctions (e.g., stereotyped motor behaviours such as locomotion, sexual response, defecation and micturition) largely related with 'command centers' located in lumbosacral areas of the spinal cord.

  13. Evaluation of Partial Transection versus Synovial Debridement of the ACL as Novel Canine Models for Management of ACL Injuries.

    PubMed

    Bozynski, Chantelle C; Kuroki, Keiichi; Stannard, James P; Smith, Patrick A; Stoker, Aaron M; Cook, Cristi R; Cook, James L

    2015-10-01

    A major hurdle in investigating important clinical questions in knee ligament treatment is a lack of valid translational animal models. This study characterizes the effects of partial transection versus synovial debridement of the anterior (cranial) cruciate ligament (ACL) in dogs. A total of 27 adult purpose-bred research hounds underwent surgery and were assessed over the following 8 weeks. Dogs were randomized into the following three ACL status groups: sham control (n = 9), intact ACL with synovial debridement (exposed ACL) (n = 9), and partial transection of the ACL (partial tear ACL) (n = 9). Dogs in the exposed ACL group and partial tear ACL group had significantly (p < 0.05) more severe lameness, pain, effusion, reduced function, and reduced comfortable range of motion compared with controls, with the partial tear ACL group being most severely affected. More severe ACL and whole-joint pathology, and radiographic scores for osteoarthritis were present in the partial tear ACL group compared with exposed and/or sham control group. On the basis of these findings, biologic components of ACL injury (exposed ACL) played a role in whole-joint inflammation, but the clinical and pathological effects were more severe when both biologic and biomechanical components were present (i.e., partial tear ACL). These novel canine models were successfully developed to evaluate partial transection versus synovial debridement of the ACL and these models will be used to evaluate treatment options for acute management of ACL injuries. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Quantitative US Elastography Can Be Used to Quantify Mechanical and Histologic Tendon Healing in a Rabbit Model of Achilles Tendon Transection.

    PubMed

    Yamamoto, Yohei; Yamaguchi, Satoshi; Sasho, Takahisa; Fukawa, Taisuke; Akatsu, Yorikazu; Akagi, Ryuichiro; Yamaguchi, Tadashi; Takahashi, Kenji; Nagashima, Kengo; Takahashi, Kazuhisa

    2017-05-01

    Purpose To determine the time-dependent change in strain ratios (SRs) at the healing site of an Achilles tendon rupture in a rabbit model of tendon transection and to assess the correlation between SRs and the mechanical and histologic properties of the healing tissue. Materials and Methods Experimental methods were approved by the institutional animal care and use committee. The Achilles tendons of 24 New Zealand white rabbits (48 limbs) were surgically transected. The SRs of Achilles tendons were calculated by using compression-based quantitative ultrasonographic elastography measurements obtained 2, 4, 8, and 12 weeks after transection. After in vivo elastography, the left Achilles tendon was harvested for mechanical testing of ultimate load, ultimate stress, elastic modulus, and linear stiffness, and the right tendons were harvested for tissue histologic analysis with the Bonar scale. Time-dependent changes in SRs, mechanical parameters, and Bonar scale scores were evaluated by using repeated-measures analysis of variance. The correlation between SRs and each measured variable was evaluated by using the Spearman rank correlation coefficient. Results Mean SRs and Bonar scale values decreased as a function of time after transection, whereas mechanical parameters increased (P < .001). SR correlated with ultimate stress (ρ = 0.68, P <.001,) elastic modulus (ρ = 0.74, P <.001), and the Bonar scale (ρ = 0.87, P <.001). Conclusion Quantitative elastography could be a useful method with which to evaluate mechanical and histologic properties of the healing tendon. © RSNA, 2017 Online supplemental material is available for this article.

  15. The cranial nerve skywalk: A 3D tutorial of cranial nerves in a virtual platform.

    PubMed

    Richardson-Hatcher, April; Hazzard, Matthew; Ramirez-Yanez, German

    2014-01-01

    Visualization of the complex courses of the cranial nerves by students in the health-related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways is difficult using two-dimensional (2D) illustrations alone. Three-dimensional (3D) models aid the teacher in describing intricate and complex anatomical structures and help students visualize them. The study of the cranial nerves can be supplemented with 3D, which permits the students to fully visualize their distribution within the craniofacial complex. This article describes the construction and usage of a virtual anatomy platform in Second Life™, which contains 3D models of the cranial nerves III, V, VII, and IX. The Cranial Nerve Skywalk features select cranial nerves and the associated autonomic pathways in an immersive online environment. This teaching supplement was introduced to groups of pre-healthcare professional students in gross anatomy courses at both institutions and student feedback is included. © 2014 American Association of Anatomists.

  16. Functional and Physical Outcomes following Use of a Flexible CO2 Laser Fiber and Bipolar Electrocautery in Close Proximity to the Rat Sciatic Nerve with Correlation to an In Vitro Thermal Profile Model

    PubMed Central

    Robinson, A. M.; Fishman, A. J.; Bendok, B. R.; Richter, C.-P.

    2015-01-01

    This study compared functional and physical collateral damage to a nerve when operating a Codman MALIS Bipolar Electrosurgical System CMC-III or a CO2 laser coupled to a laser, with correlation to an in vitro model of heating profiles created by the devices in thermochromic ink agarose. Functional damage of the rat sciatic nerve after operating the MALIS or CO2 laser at various power settings and proximities to the nerve was measured by electrically evoked nerve action potentials, and histology of the nerve was used to assess physical damage. Thermochromic ink dissolved in agarose was used to model the spatial and temporal profile of the collateral heating zone of the electrosurgical system and the laser ablation cone. We found that this laser can be operated at 2 W directly above the nerve with minimal damage, while power settings of 5 W and 10 W resulted in acute functional and physical nerve damage, correlating with the maximal heating cone in the thermochromic ink model. MALIS settings up to 40 (11 W) did not result in major functional or physical nerve damage until the nerve was between the forceps tips, correlating with the hottest zone, localized discretely between the tips. PMID:25699266

  17. The "Tracked Roaming Transect" and distance sampling methods increase the efficiency of underwater visual censuses.

    PubMed

    Irigoyen, Alejo J; Rojo, Irene; Calò, Antonio; Trobbiani, Gastón; Sánchez-Carnero, Noela; García-Charton, José A

    2018-01-01

    Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer's experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1-31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC.

  18. The "Tracked Roaming Transect" and distance sampling methods increase the efficiency of underwater visual censuses

    PubMed Central

    2018-01-01

    Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer’s experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1–31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC. PMID:29324887

  19. Assessment of nerve regeneration across nerve allografts treated with tacrolimus.

    PubMed

    Haisheng, Han; Songjie, Zuo; Xin, Li

    2008-01-01

    Although regeneration of nerve allotransplant is a major concern in the clinic, there have been few papers quantitatively assessing functional recovery of animals' nerve allografts in the long term. In this study, functional recovery, histopathological study, and immunohistochemistry changes of rat nerve allograft with FK506 were investigated up to 12 weeks without slaughtering. C57 and SD rats were used for transplantation. The donor's nerve was sliced and transplanted into the recipient. The sciatic nerve was epineurally sutured with 10-0 nylon. In total, 30 models of transplantation were performed and divided into 3 groups that were either treated with FK506 or not. Functional recovery of the grafted nerve was serially assessed by the pin click test, walking track analysis and electrophysiological evaluations. A histopathological study and immunohistochemistry study were done in the all of the models. Nerve allografts treated with FK506 have no immune rejection through 12 weeks. Sensibility had similarly improved in both isografts and allografts. There has been no difference in each graft. Walk track analysis demonstrates significant recovery of motor function of the nerve graft. No histological results of difference were found up to 12 weeks in each graft. In the rodent nerve graft model, FK506 prevented nerve allograft rejection across a major histocompatibility barrier. Sensory recovery seems to be superior to motor function. Nerve isograft and allograft treated with FK506 have no significant difference in function recovery, histopathological result, and immunohistochemistry changes.

  20. Transection of vessels in epiphyseal cartilage canals leads to osteochondrosis and osteochondrosis dissecans in the femoro-patellar joint of foals; a potential model of juvenile osteochondritis dissecans.

    PubMed

    Olstad, K; Hendrickson, E H S; Carlson, C S; Ekman, S; Dolvik, N I

    2013-05-01

    To transect blood vessels within epiphyseal cartilage canals and observe whether this resulted in ischaemic chondronecrosis, an associated focal delay in enchondral ossification [osteochondrosis (OC)] and pathological cartilage fracture [osteochondrosis dissecans (OCD)] in the distal femur of foals, with potential translational value to the pathogenesis of juvenile osteochondritis dissecans (JOCD) in children. Ten Norwegian Fjord Pony foals were operated at the age of 13-15 days. Two vessels supplying the epiphyseal growth cartilage of the lateral trochlear ridge of the left distal femur were transected in each foal. Follow-up examination was carried out from 1 to 49 days post-operatively and included plain radiography, macroscopic and histological examination. Transection of blood vessels within epiphyseal cartilage canals resulted in necrosis of vessels and chondrocytes, i.e., ischaemic chondronecrosis, in foals. Areas of ischaemic chondronecrosis were associated with a focal delay in enchondral ossification (OC) in foals examined 21 days or more after transection, and pathological cartilage fracture (OCD) in one foal examined 42 days after transection. The ischaemic hypothesis for the pathogenesis of OC has been reproduced experimentally in foals. There are several similarities between OCD in animals and JOCD in children. It should be investigated whether JOCD also occurs due to a focal failure in the cartilage canal blood supply, followed by ischaemic chondronecrosis. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. Cross-continental comparison of the functional composition and carbon allocation of two altitudinal forest transects in Ecuador and Rwanda.

    NASA Astrophysics Data System (ADS)

    Verbeeck, Hans; Bauters, Marijn; Bruneel, Stijn; Demol, Miro; Taveirne, Cys; Van Der Heyden, Dries; Kearsley, Elizabeth; Cizungu, Landry; Boeckx, Pascal

    2017-04-01

    Tropical forests are key actors in the global carbon cycle. Predicting future responses of these forests to global change is challenging, but important for global climate models. However, our current understanding of such responses is limited, due to the complexity of forest ecosystems and the slow dynamics that inherently form these systems. Our understanding of ecosystem ecology and functioning could greatly benefit from experimental setups including strong environmental gradients in the tropics, as found on altitudinal transects. We setup two such transects in both South-America and Central Africa, focussing on shifts in carbon allocation, forest structure, nutrient cycling and functional composition. The Ecuadorian transect has 16 plots (40 by 40 m) and ranges from 400 to 3000 m.a.s.l., and the Rwandan transect has 20 plots (40 by 40 m) from 1500 to 3000 m.a.s.l. All plots were inventoried and canopy, litter and soil were extensively sampled. By a cross-continental comparison of both transects, we will gain insight in how different or alike both tropical forests biomes are in their responses, and how universal the observed altitudinal adaption mechanisms are. This could provide us with vital information of the ecological responses of both biomes to future global change scenarios. Additionally, comparison of nutrient shifts and trait-based functional composition allows us to compare the biogeochemical cycles of African and South-American tropical forests.

  2. [Integration of the functional signal of intraoperative EMG of the facial nerve in to navigation model for surgery of the petrous bone].

    PubMed

    Strauss, G; Strauss, M; Lüders, C; Stopp, S; Shi, J; Dietz, A; Lüth, T

    2008-10-01

    PROBLEM DEFINITION: The goal of this work is the integration of the information of the intraoperative EMG monitoring of the facial nerve into the radiological data of the petrous bone. The following hypotheses are to be examined: (I) the N. VII can be determined intraoperatively with a high reliability by the stimulation-probe. A computer program is able to discriminate true-positive EMG signals from false-positive artifacts. (II) The course of the facial nerve can be registered in a three-dimensional area by EMG signals at a nerve model in the lab test. The individual items of the nerve can be combined into a route model. The route model can be integrated into the data of digital volume tomography (DVT). (I) Intraoperative EMG signals of the facial nerve were classified at 128 measurements by an automatic software. The results were correlated with the actual intraoperative situation. (II) The nerve phantom was designed and a DVT data set was provided. Phantom was registered with a navigation system (Karl Storz NPU, Tuttlingen, Germany). The stimulation probe of the EMG-system was tracked by the navigation system. The navigation system was extended by a processing unit (MiMed, Technische Universität München, Germany). Thus the classified EMG parameters of the facial route can be received, processed and be generated to a model of the facial nerve route. The operability was examined at 120 (10 x 12) measuring points. The evaluation of the examined algorithm for classification EMG-signals of the facial nerve resulted as correct in all measuring events. In all 10 attempts it succeeded to visualize the nerve route as three-dimensional model. The different sizes of the individual measuring points reflect the appropriate values of Istim and UEMG correctly. This work proves the feasibility of an automatic classification of an intraoperative EMG signal of the facial nerve by a processing unit. Furthermore the work shows the feasibility of tracking of the position of the stimulation probe and its integration into amodel of the route of the facial nerve (e. g. DVT). The rediability, with which the position of the nerve can be seized by the stimulation probe, is also included into the resulting route model.

  3. PAR1 activation affects the neurotrophic properties of Schwann cells.

    PubMed

    Pompili, Elena; Fabrizi, Cinzia; Somma, Francesca; Correani, Virginia; Maras, Bruno; Schininà, Maria Eugenia; Ciraci, Viviana; Artico, Marco; Fornai, Francesco; Fumagalli, Lorenzo

    2017-03-01

    Protease-activated receptor-1 (PAR1) is the prototypic member of a family of four G-protein-coupled receptors that signal in response to extracellular proteases. In the peripheral nervous system, the expression and/or the role of PARs are still poorly investigated. High PAR1 mRNA expression was found in the rat dorsal root ganglia and the signal intensity of PAR1 mRNA increased in response to sciatic nerve transection. In the sciatic nerve, functional PAR1 receptor was reported at the level of non-compacted Schwann cell myelin microvilli of the nodes of Ranvier. Schwann cells are the principal population of glial cells of the peripheral nervous system which myelinate axons playing an important role during axonal regeneration and remyelination. The present study was undertaken in order to determine if the activation of PAR1 affects the neurotrophic properties of Schwann cells. Our results suggest that the stimulation of PAR1 could potentiate the Schwann cell ability to favour nerve regeneration. In fact, the conditioned medium obtained from Schwann cell cultures challenged with a specific PAR1 activating peptide (PAR1 AP) displays increased neuroprotective and neurotrophic properties with respect to the culture medium from untreated Schwann cells. The proteomic analysis of secreted proteins in untreated and PAR1 AP-treated Schwann cells allowed the identification of factors differentially expressed in the two samples. Some of them (such as macrophage migration inhibitory factor, matrix metalloproteinase-2, decorin, syndecan 4, complement C1r subcomponent, angiogenic factor with G patch and FHA domains 1) appear to be transcriptionally regulated after PAR1 AP treatment as shown by RT-PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Intravenous mesenchymal stem cell therapy after recurrent laryngeal nerve injury: a preliminary study.

    PubMed

    Lerner, Michael Z; Matsushita, Takashi; Lankford, Karen L; Radtke, Christine; Kocsis, Jeffery D; Young, Nwanmegha O

    2014-11-01

    Intravenous administration of mesenchymal stem cells (MSCs) has been recently shown to enhance functional recovery after stroke and spinal cord injury. The therapeutic properties of MSCs are attributed to their secretion of a variety of potent antiinflammatory and neurotrophic factors. We hypothesize that intravenous administration of MSCs after recurrent laryngeal nerve (RLN) injury in the rat may enhance functional recovery. Animal Research. Twelve 250-gram Sprague-Dawley rats underwent a controlled crush injury to the left RLN. After confirming postoperative vocal fold immobility, each rat was intravenously infused with either green fluorescent protein-expressing MSCs or control media in a randomized and blinded fashion. Videolaryngoscopy was performed weekly. The laryngoscopy video recordings were reviewed and rated by a fellowship-trained laryngologist who remained blinded to the intervention using a 0 to 3 scale. At 1 week postinjury, the MSC-infused group showed a trend for higher average functional recovery scores compared to the control group (2.2 vs 1.3), but it did not reach statistical significance (P value of 0.06). By 2 weeks, however, both groups exhibited complete return of function. These pilot data indicate that with complete nerve transection by crush injury of the RLN in rat, there is complete recovery of vocal fold mobility at 2 weeks. At 1 week postinjury, animals receiving intravenous infusion of MSCs showed a trend for greater functional recovery, suggesting a potential beneficial effect of MSCs; however, this did not reach statistical significance. Therefore, no definite conclusions can be drawn from these data and further study is required. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  5. [Evolution of ideas and techniques, and future prospects in epilepsy surgery].

    PubMed

    Mathon, B; Bédos-Ulvin, L; Baulac, M; Dupont, S; Navarro, V; Carpentier, A; Cornu, P; Clemenceau, S

    2015-02-01

    The aim of this article was to review and evaluate the published literature related to the outcome of epilepsy surgery, while placing it in an historical perspective, and to describe the future prospects in this field. Temporal lobe surgery achieves seizure freedom in about 70% of cases. Seizure outcome is similar in the pediatric population. Extratemporal resections impart good results to 40% to 60% of patients, with a better prognosis in the case of frontal lobe surgery. Pediatric hemispherotomy leads to seizure control in about 80% of children. Radiosurgery used as a treatment for temporal mesial epilepsy has an outcome quite similar to that obtained with surgical resection, but provides a neuropsychological advantage. Radiosurgery is also effective in 60% of children treated for seizures related to hypothalamic hamartoma. Regarding palliative surgery, callosotomy and multiple subpial transections show satisfactory outcomes in over 60% of cases. Neuromodulation techniques (vagus nerve stimulation and bilateral stimulation of the anterior nucleus of the thalamus) allow a 50% reduction of seizures in half of patients. Transcranial magnetic stimulation combined with electroencephalography seems a promising technique because of its diagnostic, prognostic and therapeutic applications. Transcranial ultrasound stimulation, which can reversibly control neuronal activity, is also under consideration. Concerning neuromodulation, trigeminal nerve stimulation may become an alternative to vagus nerve stimulation; while other targets of deep brain stimulation are being evaluated. Also, the possibility of coupling SEEG seizure focus detection with concomitant laser or radiofrequency focus destruction is under development. Constant evolution of epilepsy surgery has improved patient outcomes over time. Current research and development axes suggest the continuation of this trend and a reduction of the invasiveness of surgical procedures. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain.

    PubMed

    Damasceno, Marina B M V; de Melo Júnior, José de Maria A; Santos, Sacha Aubrey A R; Melo, Luana T M; Leite, Laura Hévila I; Vieira-Neto, Antonio E; Moreira, Renato de A; Monteiro-Moreira, Ana Cristina de O; Campos, Adriana R

    2016-08-25

    Orofacial pain is a highly prevalent clinical condition, yet difficult to control effectively with available drugs. Much attention is currently focused on the anti-inflammatory and antinociceptive properties of lectins. The purpose of this study was to evaluate the antinociceptive effect of frutalin (FTL) using rodent models of inflammatory and neuropathic orofacial pain. Acute pain was induced by formalin, glutamate or capsaicin (orofacial model) and hypertonic saline (corneal model). In one experiment, animals were pretreated with l-NAME and naloxone to investigate the mechanism of antinociception. The involvement of the lectin domain in the antinociceptive effect of FTL was verified by allowing the lectin to bind to its specific ligand. In another experiment, animals pretreated with FTL or saline were submitted to the temporomandibular joint formalin test. In yet another, animals were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of thermal hypersensitivity using acetone. Motor activity was evaluated with the rotarod test. A molecular docking was performed using the TRPV1 channel. Pretreatment with FTL significantly reduced nociceptive behaviour associated with acute and neuropathic pain, especially at 0.5 mg/kg. Antinociception was effectively inhibited by l-NAME and d-galactose. In line with in vivo experiments, docking studies indicated that FTL may interact with TRPV1. Our results confirm the potential pharmacological relevance of FTL as an inhibitor of orofacial nociception in acute and chronic pain mediated by TRPA1, TRPV1 and TRPM8 receptor. Copyright © 2016. Published by Elsevier Ireland Ltd.

  7. The Relation Between Rotation Deformity and Nerve Root Stress in Lumbar Scoliosis

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Joong; Lee, Hwan-Mo; Moon, Seong-Hwan; Chun, Heoung-Jae; Kang, Kyoung-Tak

    Even though several finite element models of lumbar spine were introduced, there has been no model including the neural structure. Therefore, the authors made the novel lumbar spine finite element model including neural structure. Using this model, we investigated the relation between the deformity pattern and nerve root stress. Two lumbar models with different types of curve pattern (lateral bending and lateral bending with rotation curve) were made. In the model of lateral bending curves without rotation, the principal compressive nerve root stress on the concave side was greater than the principal tensile stress on the convex side at the apex vertebra. Contrarily, in the lateral bending curve with rotational deformity, the nerve stress on the convex side was higher than that on the concave side. Therefore, this study elicit that deformity pattern could have significantly influence on the nerve root stress in the lumbar spine.

  8. The Distribution and Magnitude of Glacial Erosion on 103-year Timescales at Engabreen, Norway

    NASA Astrophysics Data System (ADS)

    Rand, C.; Goehring, B. M.

    2017-12-01

    We derive the magnitudes of glacial erosion integrated over 103-year timescales across a transect transverse to the direction of ice flow at Engabreen, Norway. Understanding the distribution of glacial erosion is important for several reasons, including sediment budgeting to fjord environments, development of robust landscape evolution models, and if a better understanding between erosion and ice-bed interface properties (e.g., sliding rate, basal water pressure) can be developed, we can use records of glacial erosion to infer glaciological properties that can ultimately benefit models of past and future glaciers. With few exceptions, measurements of glacial erosion are limited to the historical past and even then are rare owing to the difficulty of accessing the glacier bed. One method proven useful in estimating glacial erosion on 103-year timescales is to measure the remaining concentrations of cosmogenic nuclides that accumulate in exposed bedrock during periods of retracted glacier extent and are removed by glacial erosion and radioactive decay during ice cover. Here we will present measurements of 14C and 10Be measured in proglacial bedrock from Engabreen. Our transects are ca. 600 and 400 meters in front of the modern ice front, and based on historical imagery, was ice covered until the recent past. Initial 10Be results show an increase in concentrations of nearly an order of magnitude from the samples near the center of the glacial trough to those on the lateral margin, consistent with conceptual models of glacial erosion parameterized in terms of sliding velocity. Naïve exposure ages that assume no subglacial erosion range from 0.22 - 9.04 ka. More importantly, we can estimate erosion depths by assuming zero erosion of the highest concentration sample along the two transects and calculate the amount of material removed to yield the lower concentrations elsewhere along the two transects. Results indicate minimum erosion depths of 1-183 cm for most ice proximal transect and 7-56 cm for the more distal one.

  9. Transplants of Neurotrophin-Producing Autologous Fibroblasts Promote Recovery of Treadmill Stepping in the Acute, Sub-Chronic, and Chronic Spinal Cat.

    PubMed

    Krupka, Alexander J; Fischer, Itzhak; Lemay, Michel A

    2017-05-15

    Adult cats show limited spontaneous locomotor capabilities following spinal transection, but recover treadmill stepping with body-weight-supported training. Delivery of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and neurotrophic factor 3 (NT-3) can substitute for body-weight-supported training, and promotes a similar recovery in a shorter period of time. Autologous cell grafts would negate the need for the immunosuppressive agents currently used with most grafts, but have not shown functional benefits in incomplete spinal cord injury models and have never been tested in complete transection or chronic injury models. In this study, we explored the effects of autologous fibroblasts, prepared from the individual cats and modified to produce BDNF and NT-3, on the recovery of locomotion in acute, sub-chronic and chronic full-transection models of spinal injury. Fourteen female cats underwent complete spinal transection at T11/T12. Cats were separated into four groups: sham graft at the time of injury, and BDNF and NT-3 producing autologous fibroblasts grafted at the time of injury, 2 weeks after injury, or 6 weeks after injury. Kinematics were recorded 3 and 5 weeks after cell graft. Additional kinematic recordings were taken for some cats until 12 weeks post-graft. Eleven of 12 cats with neurotrophin-producing grafts recovered plantar weight-bearing stepping at treadmill speeds from 0.3 to 0.8 m/sec within 5 weeks of grafting, whereas control cats recovered poor quality stepping at low speeds only (≤ 0.4 m/sec). Further, kinematic measures in cats with grafts were closer to pre-transection values than those for controls, and recovery was maintained up to 12 weeks post-grafting. Our results show that not only are autologous neurotrophin-producing grafts effective at promoting recovery of locomotion, but that delayed delivery of neurotrophins does not diminish the therapeutic effect, and may improve outcome.

  10. Transplants of Neurotrophin-Producing Autologous Fibroblasts Promote Recovery of Treadmill Stepping in the Acute, Sub-Chronic, and Chronic Spinal Cat

    PubMed Central

    Krupka, Alexander J.; Fischer, Itzhak

    2017-01-01

    Abstract Adult cats show limited spontaneous locomotor capabilities following spinal transection, but recover treadmill stepping with body-weight-supported training. Delivery of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and neurotrophic factor 3 (NT-3) can substitute for body-weight-supported training, and promotes a similar recovery in a shorter period of time. Autologous cell grafts would negate the need for the immunosuppressive agents currently used with most grafts, but have not shown functional benefits in incomplete spinal cord injury models and have never been tested in complete transection or chronic injury models. In this study, we explored the effects of autologous fibroblasts, prepared from the individual cats and modified to produce BDNF and NT-3, on the recovery of locomotion in acute, sub-chronic and chronic full-transection models of spinal injury. Fourteen female cats underwent complete spinal transection at T11/T12. Cats were separated into four groups: sham graft at the time of injury, and BDNF and NT-3 producing autologous fibroblasts grafted at the time of injury, 2 weeks after injury, or 6 weeks after injury. Kinematics were recorded 3 and 5 weeks after cell graft. Additional kinematic recordings were taken for some cats until 12 weeks post-graft. Eleven of 12 cats with neurotrophin-producing grafts recovered plantar weight-bearing stepping at treadmill speeds from 0.3 to 0.8 m/sec within 5 weeks of grafting, whereas control cats recovered poor quality stepping at low speeds only (≤ 0.4 m/sec). Further, kinematic measures in cats with grafts were closer to pre-transection values than those for controls, and recovery was maintained up to 12 weeks post-grafting. Our results show that not only are autologous neurotrophin-producing grafts effective at promoting recovery of locomotion, but that delayed delivery of neurotrophins does not diminish the therapeutic effect, and may improve outcome. PMID:27829315

  11. Location and description of transects for ecological studies in floodplain forests of the lower Suwannee River, Florida

    USGS Publications Warehouse

    Lewis, L.J.; Light, H.M.; Darst, M.R.

    2001-01-01

    Twelve transects were established in floodplain forests along the lower Suwannee River, Florida, as the principal data collection sites for a comprehensive study conducted by the U.S. Geological Survey and the Suwannee River Water Management District from 1996 to 2001. Data collected along the 12 transects included hydrologic conditions, land-surface elevations, soils, and vegetation of floodplain forests in relation to river flow. Transect locations are marked in the field with permanent markers at approximately 30 meter intervals. Detailed descriptions of the 12 transects and their locations are provided so that they can be used for future ecological studies. Descriptions of the transects include contact information necessary for access to the property on which the transects are located, maps showing transect locations and routes from the nearest city or major road, small scale maps of each transect showing marker locations, latitude and longitude of each marker, compass bearings of each transect line and graphs showing land-surface elevations of the transect with marker locations.

  12. Renal artery nerve distribution and density in the porcine model: biologic implications for the development of radiofrequency ablation therapies.

    PubMed

    Tellez, Armando; Rousselle, Serge; Palmieri, Taylor; Rate, William R; Wicks, Joan; Degrange, Ashley; Hyon, Chelsea M; Gongora, Carlos A; Hart, Randy; Grundy, Will; Kaluza, Greg L; Granada, Juan F

    2013-12-01

    Catheter-based renal artery denervation has demonstrated to be effective in decreasing blood pressure among patients with refractory hypertension. The anatomic distribution of renal artery nerves may influence the safety and efficacy profile of this procedure. We aimed to describe the anatomic distribution and density of periarterial renal nerves in the porcine model. Thirty arterial renal sections were included in the analysis by harvesting a tissue block containing the renal arteries and perirenal tissue from each animal. Each artery was divided into 3 segments (proximal, mid, and distal) and assessed for total number, size, and depth of the nerves according to the location. Nerve counts were greatest proximally (45.62% of the total nerves) and decreased gradually distally (mid, 24.58%; distal, 29.79%). The distribution in nerve size was similar across all 3 sections (∼40% of the nerves, 50-100 μm; ∼30%, 0-50 μm; ∼20%, 100-200 μm; and ∼10%, 200-500 μm). In the arterial segments ∼45% of the nerves were located within 2 mm from the arterial wall whereas ∼52% of all nerves were located within 2.5 mm from the arterial wall. Sympathetic efferent fibers outnumbered sensory afferent fibers overwhelmingly, intermixed within the nerve bundle. In the porcine model, renal artery nerves are seen more frequently in the proximal segment of the artery. Nerve size distribution appears to be homogeneous throughout the artery length. Nerve bundles progress closer to the arterial wall in the distal segments of the artery. This anatomic distribution may have implications for the future development of renal denervation therapies. Crown Copyright © 2013. Published by Mosby, Inc. All rights reserved.

  13. Two-dimensional basement modeling of central loop transient electromagnetic data from the central Azraq basin area, Jordan

    NASA Astrophysics Data System (ADS)

    Yogeshwar, P.; Tezkan, B.

    2017-01-01

    Thick sedimentary sequences are deposited in the central area of the Azraq basin in Jordan consisting mostly of hyper-saline clay and various evaporates. These sediment successions form the 10 km × 10 km large Azraq mudflat and are promising archives for a palaeoclimatical reconstruction. Besides palaeoclimatical research, the Azraq area is of tremendous importance to Jordan due to groundwater and mineral resources. The heavy exploitation of groundwater has lead to a drastic decline of the water table and drying out of the former Azraq Oasis. Two 7 and 5 km long transects were investigated from the periphery of the mudflat across its center using a total of 150 central loop transient electromagnetic (TEM) soundings. The scope of the survey was to detect the thickness of sedimentary deposits along both transects and to provide a basis for future drilling activities. We derive a two-dimensional model which can explain the TEM data for all soundings along each profile simultaneously. Previously uncertain depths of geological boundaries were determined along both transects. Particularly the thickness of the deposited mudflat sediments was identified and ranges from 40 m towards the periphery down to approximately 130 m at the deepest location. Besides that, the depth and lateral extent of a buried basalt layer was identified. In the basin center the groundwater is hyper-saline. The lateral extent of the saline water body was determined precisely along both transects. In order to investigate the detectability of the basement below the high conductive mudflat sediments an elaborate two-dimensional modeling study was performed. Both, the resistivity and depth of the basement were varied systematically. The basement resistivity cannot be determined precisely in most zones and may range roughly between 1 and 100 Ωm without deteriorating the misfit. In contrast to that, the depth down to the basement is detected accurately in most zones and along both transects. Varying the depth of the basement or removing it completely results in a poor data fitting and, therefore, proves its significance. From the modeling study we derived bounds for the resistivity and depth of the base layer as a measure of their uncertainty.

  14. Muscle Activation During Peripheral Nerve Field Stimulation Occurs Due to Recruitment of Efferent Nerve Fibers, Not Direct Muscle Activation.

    PubMed

    Frahm, Ken Steffen; Hennings, Kristian; Vera-Portocarrero, Louis; Wacnik, Paul W; Mørch, Carsten Dahl

    2016-08-01

    Peripheral nerve field stimulation (PNFS) is a potential treatment for chronic low-back pain. Pain relief using PNFS is dependent on activation of non-nociceptive Aβ-fibers. However, PNFS may also activate muscles, causing twitches and discomfort. In this study, we developed a mathematical model, to investigate the activation of sensory and motor nerves, as well as direct muscle fiber activation. The extracellular field was estimated using a finite element model based on the geometry of CT scanned lumbar vertebrae. The electrode was modeled as being implanted to a depth of 10-15 mm. Three implant directions were modeled; horizontally, vertically, and diagonally. Both single electrode and "between-lead" stimulation between contralateral electrodes were modeled. The extracellular field was combined with models of sensory Aβ-nerves, motor neurons and muscle fibers to estimate their activation thresholds. The model showed that sensory Aβ fibers could be activated with thresholds down to 0.563 V, and the lowest threshold for motor nerve activation was 7.19 V using between-lead stimulation with the cathode located closest to the nerves. All thresholds for direct muscle activation were above 500 V. The results suggest that direct muscle activation does not occur during PNFS, and concomitant motor and sensory nerve fiber activation are only likely to occur when using between-lead configuration. Thus, it may be relevant to investigate the location of the innervation zone of the low-back muscles prior to electrode implantation to avoid muscle activation. © 2016 International Neuromodulation Society.

  15. Use of a Bioactive Scaffold to Stimulate ACL Healing Also Minimizes Post-traumatic Osteoarthritis after Surgery

    PubMed Central

    Murray, Martha M.; Fleming, Braden C.

    2013-01-01

    Background While ACL reconstruction is the treatment gold standard for ACL injury, it does not reduce the risk of post-traumatic osteoarthritis. Therefore, new treatments that minimize this postoperative complication are of interest. Bio-enhanced ACL repair, in which a bioactive scaffold is used to stimulate healing of an ACL transection, has shown considerable promise in short term studies. The long-term results of this technique and the effects of the bio-enhancement on the articular cartilage have not been previously evaluated in a large animal model. Hypothesis 1) The structural (tensile) properties of the porcine ACL at 6 and 12 months after injury are similar when treated with bio-enhanced ACL repair, bio-enhanced ACL reconstruction, or conventional ACL reconstruction, and all treatments yield results superior to untreated ACL transection. 2) After one year, macroscopic cartilage damage following bio-enhanced ACL repair is similar to bio-enhanced ACL reconstruction and less than conventional ACL reconstruction and untreated ACL transection. Study Design Controlled laboratory study (porcine model) Methods Sixty-two Yucatan mini-pigs underwent ACL transection and randomization to four experimental groups: 1) no treatment, 2) conventional ACL reconstruction, 3) “bio-enhanced” ACL reconstruction using a bioactive scaffold, and 4) “bio-enhanced” ACL repair using a bioactive scaffold. The biomechanical properties of the ligament or graft and macroscopic assessments of the cartilage surfaces were performed after 6 and 12 months of healing. Results The structural properties (i.e., linear stiffness, yield and maximum loads) of the ligament following bio-enhanced ACL repair were not significantly different from bio-enhanced ACL reconstruction or conventional ACL reconstruction, but were significantly greater than untreated ACL transection after 12 months of healing. Macroscopic cartilage damage after bio-enhanced ACL repair was significantly less than untreated ACL transection and bio-enhanced ACL reconstruction, and there was a strong trend (p=.068) that it was less than conventional ACL reconstruction in the porcine model at 12 months. Conclusions Bio-enhanced ACL repair produces a ligament that is biomechanically similar to an ACL graft and provides chondroprotection to the joint following ACL surgery. Clinical Relevance Bio-enhanced ACL repair may provide a new less invasive treatment option that reduces cartilage damage following joint injury. PMID:23857883

  16. A gastrocnemius heterotopical transplant model with end-to-side neurorraphy.

    PubMed

    Jaeger, Marcos Ricardo de Oliveira; Silva, Jefferson Luis Braga; Bain, James; Ely, Pedro Bins; Pires, Jefferson André; Ferreira, Lydia Masako

    2014-01-01

    To present an animal model to assess the effects of end-to-side innervation in the heterotopically transplanted model with reduced chances of neural contamination. The medial portion of the gastrocnemius muscle in wistar male rats was isolated and its pedicle dissected and performed a flap in the abdominal portion. To prevent neural contamination in the abdominal region, the muscle was wrapped with a Goretex(r) sheet. The specimens were divided into 2 groups (G). In G1 was performed an end-to-end suture between tibial nerve of the gastrocnemius and femoral motor nerve and between the saphenous sensory nerve and the motor nerve. In G2 was performed a end-to-side suture between the tibial nerve and the motor femoral and between the tibial nerve and saphenous motor nerve. The specimens were evaluated 60 days later to check the structure of the neurorraphy. Sections were obtained proximal and distal to the coaptation site. The medial gastrocnemius muscle had the advantage of maintaining visible mass after 60 days. No disruption of the coaptation site was found. No major injury to the donor nerve was seen in group 2. The proposed model is simple, reproduciple and prevent the neural contamination in the flap in end-to-side suture.

  17. Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes.

    PubMed

    Hinder, Lucy M; Vivekanandan-Giri, Anuradha; McLean, Lisa L; Pennathur, Subramaniam; Feldman, Eva L

    2013-01-01

    Diabetic neuropathy (DN) is the most common complication of diabetes and is characterized by distal-to-proximal loss of peripheral nerve axons. The idea of tissue-specific pathological alterations in energy metabolism in diabetic complications-prone tissues is emerging. Altered nerve metabolism in type 1 diabetes models is observed; however, therapeutic strategies based on these models offer limited efficacy to type 2 diabetic patients with DN. Therefore, understanding how peripheral nerves metabolically adapt to the unique type 2 diabetic environment is critical to develop disease-modifying treatments. In the current study, we utilized targeted liquid chromatography-tandem mass spectrometry (LC/MS/MS) to characterize the glycolytic and tricarboxylic acid (TCA) cycle metabolomes in sural nerve, sciatic nerve, and dorsal root ganglia (DRG) from male type 2 diabetic mice (BKS.Cg-m+/+Lepr(db); db/db) and controls (db/+). We report depletion of glycolytic intermediates in diabetic sural nerve and sciatic nerve (glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate (sural nerve only), 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, and lactate), with no significant changes in DRG. Citrate and isocitrate TCA cycle intermediates were decreased in sural nerve, sciatic nerve, and DRG from diabetic mice. Utilizing LC/electrospray ionization/MS/MS and HPLC methods, we also observed increased protein and lipid oxidation (nitrotyrosine; hydroxyoctadecadienoic acids) in db/db tissue, with a proximal-to-distal increase in oxidative stress, with associated decreased aconitase enzyme activity. We propose a preliminary model, whereby the greater change in metabolomic profile, increase in oxidative stress, and decrease in TCA cycle enzyme activity may cause distal peripheral nerves to rely on truncated TCA cycle metabolism in the type 2 diabetes environment.

  18. Optimising monitoring efforts for secretive snakes: a comparison of occupancy and N-mixture models for assessment of population status.

    PubMed

    Ward, Robert J; Griffiths, Richard A; Wilkinson, John W; Cornish, Nina

    2017-12-22

    A fifth of reptiles are Data Deficient; many due to unknown population status. Monitoring snake populations can be demanding due to crypsis and low population densities, with insufficient recaptures for abundance estimation via Capture-Mark-Recapture. Alternatively, binomial N-mixture models enable abundance estimation from count data without individual identification, but have rarely been successfully applied to snake populations. We evaluated the suitability of occupancy and N-mixture methods for monitoring an insular population of grass snakes (Natrix helvetica) and considered covariates influencing detection, occupancy and abundance within remaining habitat. Snakes were elusive, with detectability increasing with survey effort (mean: 0.33 ± 0.06 s.e.m.). The probability of a transect being occupied was moderate (mean per kilometre: 0.44 ± 0.19 s.e.m.) and increased with transect length. Abundance estimates indicate a small threatened population associated to our transects (mean: 39, 95% CI: 20-169). Power analysis indicated that the survey effort required to detect occupancy declines would be prohibitive. Occupancy models fitted well, whereas N-mixture models showed poor fit, provided little extra information over occupancy models and were at greater risk of closure violation. Therefore we suggest occupancy models are more appropriate for monitoring snakes and other elusive species, but that population trends may go undetected.

  19. A hierarchical model combining distance sampling and time removal to estimate detection probability during avian point counts

    USGS Publications Warehouse

    Amundson, Courtney L.; Royle, J. Andrew; Handel, Colleen M.

    2014-01-01

    Imperfect detection during animal surveys biases estimates of abundance and can lead to improper conclusions regarding distribution and population trends. Farnsworth et al. (2005) developed a combined distance-sampling and time-removal model for point-transect surveys that addresses both availability (the probability that an animal is available for detection; e.g., that a bird sings) and perceptibility (the probability that an observer detects an animal, given that it is available for detection). We developed a hierarchical extension of the combined model that provides an integrated analysis framework for a collection of survey points at which both distance from the observer and time of initial detection are recorded. Implemented in a Bayesian framework, this extension facilitates evaluating covariates on abundance and detection probability, incorporating excess zero counts (i.e. zero-inflation), accounting for spatial autocorrelation, and estimating population density. Species-specific characteristics, such as behavioral displays and territorial dispersion, may lead to different patterns of availability and perceptibility, which may, in turn, influence the performance of such hierarchical models. Therefore, we first test our proposed model using simulated data under different scenarios of availability and perceptibility. We then illustrate its performance with empirical point-transect data for a songbird that consistently produces loud, frequent, primarily auditory signals, the Golden-crowned Sparrow (Zonotrichia atricapilla); and for 2 ptarmigan species (Lagopus spp.) that produce more intermittent, subtle, and primarily visual cues. Data were collected by multiple observers along point transects across a broad landscape in southwest Alaska, so we evaluated point-level covariates on perceptibility (observer and habitat), availability (date within season and time of day), and abundance (habitat, elevation, and slope), and included a nested point-within-transect and park-level effect. Our results suggest that this model can provide insight into the detection process during avian surveys and reduce bias in estimates of relative abundance but is best applied to surveys of species with greater availability (e.g., breeding songbirds).

  20. Spatial and temporal variability of soil hydraulic properties of topsoil affected by soil erosion

    NASA Astrophysics Data System (ADS)

    Nikodem, Antonin; Kodesova, Radka; Jaksik, Ondrej; Jirku, Veronika; Klement, Ales; Fer, Miroslav

    2014-05-01

    This study is focused on the comparison of soil hydraulic properties of topsoil that is affected by erosion processes. In order to include variable morphological and soil properties along the slope three sites - Brumovice, Vidim and Sedlčany were selected. Two transects (A, B) and five sampling sites along each one were chosen. Soil samples were taken in Brumovice after the tillage and sowing of winter wheat in October 2010 and after the wheat harvest in August 2011. At locality Vidim and Sedlčany samples were collected in May and August 2012. Soil hydraulic properties were studied in the laboratory on the undisturbed 100-cm3 soil samples placed in Tempe cells using the multi-step outflow test. Soil water retention data points were obtained by calculating water balance in the soil sample at each pressure head step of the experiment. The single-porosity model in HYDRUS-1D was applied to analyze the multi-step outflow and to obtain the parameters of soil hydraulic properties using the numerical inversion. The saturated hydraulic conductivities (Ks) and unsaturated hydraulic conductivities (Kw) for the pressure head of -2 cm of topsoil were also measured after the harvest using Guelph permeameter and Minidisk tensiometer, respectively. In general soil water retention curves measured before and after vegetation period apparently differed, which indicated soil material consolidation and soil-porous system rearrangement. Soil water retention curves obtained on the soil samples and hydraulic conductivities measured in the field reflected the position at the elevation transect and the effect of erosion/accumulation processes on soil structure and consequently on the soil hydraulic properties. The highest Ks values in Brumovice were obtained at the steepest parts of the elevation transects, that have been the most eroded. The Ks values at the bottom parts decreased due to the sedimentation of eroded soil particles. The change of the Kw values along transects didn't show similar trends. However, the variability of values within both transects was low. Higher values were obtained in transect B, where the soil was more affected by erosion. The highest values of Ks as well as the value of Kw were also obtained in the steepest part of transect A in Vidim. This trend was not observed in transect B. The results corresponded with measured retention curves. Two different trends were shown in Sedlčany. While the highest values of Ks and Kw were found in the upper part of transect A, in the case of transect B the highest values were measured at the bottom of transect. Differences observed at both localities were caused by the different terrain attributes of both transects and extent of soil erosion. Acknowledgement: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic (QJ1230319).

  1. Effect of partial and complete posterior cruciate ligament transection on medial meniscus: A biomechanical evaluation in a cadaveric model.

    PubMed

    Gao, Shu-Guang; Zhang, Can; Zhao, Rui-Bo; Liao, Zhan; Li, Yu-Sheng; Yu, Fang; Zeng, Chao; Luo, Wei; Li, Kang-Hua; Lei, Guang-Hua

    2013-09-01

    The relationship between medial meniscus tear and posterior cruciate ligament (PCL) injury has not been exactly explained. We studied to investigate the biomechanical effect of partial and complete PCL transection on different parts of medial meniscus at different flexion angles under static loading conditions. TWELVE FRESH HUMAN CADAVERIC KNEE SPECIMENS WERE DIVIDED INTO FOUR GROUPS: PCL intact (PCL-I), anterolateral bundle transection (ALB-T), posteromedial bundle transection (PMB-T) and PCL complete transection (PCL-T) group. Strain on the anterior horn, body part and posterior horn of medial meniscus were measured under different axial compressive tibial loads (200-800 N) at 0°, 30°, 60° and 90° knee flexion in each groups respectively. Compared with the PCL-I group, the PCL-T group had a higher strain on whole medial meniscus at 30°, 60° and 90° flexion in all loading conditions and at 0° flexion with 400, 600 and 800 N loads. In ALB-T group, strain on whole meniscus increased at 30°, 60° and 90° flexion under all loading conditions and at 0° flexion with 800 N only. PMB-T exihibited higher strain at 0° flexion with 400 N, 600 N and 800 N, while at 30° and 60° flexion with 800 N and at 90° flexion under all loading conditions. Partial PCL transection triggers strain concentration on medial meniscus and the effect is more pronounced with higher loading conditions at higher flexion angles.

  2. Delineating high-density areas in spatial Poisson fields from strip-transect sampling using indicator geostatistics: application to unexploded ordnance removal.

    PubMed

    Saito, Hirotaka; McKenna, Sean A

    2007-07-01

    An approach for delineating high anomaly density areas within a mixture of two or more spatial Poisson fields based on limited sample data collected along strip transects was developed. All sampled anomalies were transformed to anomaly count data and indicator kriging was used to estimate the probability of exceeding a threshold value derived from the cdf of the background homogeneous Poisson field. The threshold value was determined so that the delineation of high-density areas was optimized. Additionally, a low-pass filter was applied to the transect data to enhance such segmentation. Example calculations were completed using a controlled military model site, in which accurate delineation of clusters of unexploded ordnance (UXO) was required for site cleanup.

  3. Dixie Valley, Nevada playa bathymetry constructed from Landsat TM data

    NASA Astrophysics Data System (ADS)

    Groeneveld, David P.; Barz, David D.

    2014-05-01

    A bathymetry model was developed from a series of Landsat Thematic Mapper (TM) images to assist discrimination of hydrologic processes on a low-relief, stable saline playa in Dixie Valley, Nevada, USA. The slope of the playa surface, established by field survey on a reference transect, enabled calculation of relative elevation of the edges of pooled brine mapped from Landsat TM5 band 5 reflectance (TMB5) in the 1.55-1.75 μm shortwave infrared region (SWIR) of the spectrum. A 0.02 TMB5 reflectance threshold accurately differentiated the shallow (1-2 mm depth) edges of pools. Isocontours of equal elevations of pool margins were mapped with the TMB5 threshold, forming concentric rings that were assigned relative elevations according to the position that the pool edges intersected the reference transect. These data were used to fit a digital elevation model and a curve for estimating pooled volume given the distance from the playa edge to the intersection of the pool edge with the reference transect. To project pooled volume using the bathymetric model for any TM snapshot, within a geographic information system, the 0.02 TMB5 threshold is first used to define the edge of the exposed brine. The distance of this edge from the playa edge along the reference transect is then measured and input to the bathymetric equation to yield pooled volume. Other satellite platforms with appropriate SWIR bands require calibration to Landsat TMB5. The method has applicability for filling reservoirs, bodies of water that fluctuate and especially bodies of water inaccessible to acoustic or sounding methods.

  4. The Ubiquitin Ligase Nedd4-1 Participates in Denervation-Induced Skeletal Muscle Atrophy in Mice

    PubMed Central

    Nagpal, Preena; Plant, Pamela J.; Correa, Judy; Bain, Alexandra; Takeda, Michiko; Kawabe, Hiroshi; Rotin, Daniela; Bain, James R.; Batt, Jane A. E.

    2012-01-01

    Skeletal muscle atrophy is a consequence of muscle inactivity resulting from denervation, unloading and immobility. It accompanies many chronic disease states and also occurs as a pathophysiologic consequence of normal aging. In all these conditions, ubiquitin-dependent proteolysis is a key regulator of the loss of muscle mass, and ubiquitin ligases confer specificity to this process by interacting with, and linking ubiquitin moieties to target substrates through protein∶protein interaction domains. Our previous work suggested that the ubiquitin-protein ligase Nedd4-1 is a potential mediator of skeletal muscle atrophy associated with inactivity (denervation, unloading and immobility). Here we generated a novel tool, the Nedd4-1 skeletal muscle-specific knockout mouse (myoCre;Nedd4-1flox/flox) and subjected it to a well validated model of denervation induced skeletal muscle atrophy. The absence of Nedd4-1 resulted in increased weights and cross-sectional area of type II fast twitch fibres of denervated gastrocnemius muscle compared with wild type littermates controls, at seven and fourteen days following tibial nerve transection. These effects are not mediated by the Nedd4-1 substrates MTMR4, FGFR1 and Notch-1. These results demonstrate that Nedd4-1 plays an important role in mediating denervation-induced skeletal muscle atrophy in vivo. PMID:23110050

  5. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin-Hua; Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029; Yao, Shen

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signalingmore » in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.« less

  6. The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model.

    PubMed

    Pace, Lauren A; Plate, Johannes F; Smith, Thomas L; Van Dyke, Mark E

    2013-08-01

    Peripheral nerve injuries requiring surgery can be repaired by autograft, the clinical "gold standard", allograft, or nerve conduits. Most published clinical studies show the effectiveness of nerve conduits in small size defects in sensory nerves. Many preclinical studies suggest that peripheral nerve regeneration through conduits can be enhanced and repair lengths increased with the use of a biomaterial filler in the conduit lumen. We have previously shown that a luminal hydrogel filler derived from human hair keratin (HHK) can improve electrophysiological and histological outcomes in mouse, rabbit, and non-human primate nerve injury models, but insight into potential mechanisms has been lacking. Based on the premise that a keratin biomaterial (KOS) hydrogel provides an instantaneous structural matrix within the lumen, the current study compares the cellular behavior elicited by KOS hydrogel to Matrigel (MAT) and saline (SAL) conduit fillers in a 1 cm rat sciatic nerve injury model at early stages of regeneration. While there was little difference in initial cellular influx, the KOS group showed earlier migration of dedifferentiated Schwann cells (SC) from the proximal nerve end compared to the other groups. The KOS group also showed faster SC dedifferentiation and myelin debris clearance, and decreased macrophage infiltration during Wallerian degeneration of the distal nerve tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.

    PubMed

    Takeda, Norifumi; Jain, Rajan; Li, Deqiang; Li, Li; Lu, Min Min; Epstein, Jonathan A

    2013-01-01

    Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.

  8. N-acetylaspartylglutamate: a transmitter candidate for the retinohypothalamic tract.

    PubMed Central

    Moffett, J R; Williamson, L; Palkovits, M; Namboodiri, M A

    1990-01-01

    The retinohypothalamic tract is the neural pathway mediating the photic entrainment of circadian rhythms in mammals. Important targets for these retinal fibers are the suprachiasmatic nuclei (SCN) of the hypothalamus, which are thought to be primary sites for the biological clock. The neurotransmitters that operate in this projection system have not yet been determined. Immunohistochemistry and radioimmunoassay performed with affinity-purified antibodies to N-acetylaspartylglutamate (NAAG) demonstrate that this neuron-specific dipeptide, which may act as an excitatory neurotransmitter, is localized extensively in the retinohypothalamic tract and its target zones, including the SCN. Optic nerve transections resulted in significant reductions in NAAG immunoreactivity in the optic chiasm and SCN. Analysis of NAAG concentrations in micropunches of SCN, by means of radioimmunoassay, showed approximately 50% reductions in NAAG levels. These results suggest that this peptide may act as one of the neurotransmitters involved in retinohypothalamic communication and circadian rhythm entrainment. Images PMID:1978319

  9. Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway.

    PubMed

    Guo, Hongsun; Hamilton, Mark; Offutt, Sarah J; Gloeckner, Cory D; Li, Tianqi; Kim, Yohan; Legon, Wynn; Alford, Jamu K; Lim, Hubert H

    2018-06-06

    Ultrasound (US) can noninvasively activate intact brain circuits, making it a promising neuromodulation technique. However, little is known about the underlying mechanism. Here, we apply transcranial US and perform brain mapping studies in guinea pigs using extracellular electrophysiology. We find that US elicits extensive activation across cortical and subcortical brain regions. However, transection of the auditory nerves or removal of cochlear fluids eliminates the US-induced activity, revealing an indirect auditory mechanism for US neural activation. Our findings indicate that US activates the ascending auditory system through a cochlear pathway, which can activate other non-auditory regions through cross-modal projections. This cochlear pathway mechanism challenges the idea that US can directly activate neurons in the intact brain, suggesting that future US stimulation studies will need to control for this effect to reach reliable conclusions. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Myosin-Va-Dependent Cell-To-Cell Transfer of RNA from Schwann Cells to Axons

    PubMed Central

    Sotelo, José R.; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José R.; Xu, Lei; Wallrabe, Horst; Calliari, Aldo; Rosso, Gonzalo; Cal, Karina; Mercer, John A.

    2013-01-01

    To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells) at the site of injury to promote regeneration. PMID:23626749

  11. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons.

    PubMed

    Sotelo, José R; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José R; Xu, Lei; Wallrabe, Horst; Calliari, Aldo; Rosso, Gonzalo; Cal, Karina; Mercer, John A

    2013-01-01

    To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells) at the site of injury to promote regeneration.

  12. Accelerated recovery of sensorimotor function in a dog submitted to quasi-total transection of the cervical spinal cord and treated with PEG.

    PubMed

    Kim, C-Yoon; Hwang, In-Kyu; Kim, Hana; Jang, Se-Woong; Kim, Hong Seog; Lee, Won-Young

    2016-01-01

    A case report on observing the recovery of sensory-motor function after cervical spinal cord transection. Laminectomy and transection of cervical spinal cord (C5) was performed on a male beagle weighing 3.5 kg. After applying polyethylene glycol (PEG) on the severed part, reconstruction of cervical spinal cord was confirmed by the restoration of sensorimotor function. Tetraplegia was observed immediately after operation, however, the dog showed stable respiration and survival without any complication. The dog showed fast recovery after 1 week, and recovered approximately 90% of normal sensorimotor function 3 weeks after the operation, although urinary disorder was still present. All recovery stages were recorded by video camera twice a week for behavioral analysis. While current belief holds that functional recovery is impossible after a section greater than 50% at C5-6 in the canine model, this case study shows the possibility of cervical spinal cord reconstruction after near-total transection. Furthermore, this case study also confirms that PEG can truly expedite the recovery of sensorimotor function after cervical spinal cord sections in dogs.

  13. Surgical animal models of neuropathic pain: Pros and Cons.

    PubMed

    Challa, Siva Reddy

    2015-03-01

    One of the biggest challenges for discovering more efficacious drugs for the control of neuropathic pain has been the diversity of chronic pain states in humans. It is now acceptable that different mechanisms contribute to normal physiologic pain, pain arising from tissue damage and pain arising from injury to the nervous system. To study pain transmission, spot novel pain targets and characterize the potential analgesic profile of new chemical entities, numerous experimental animal pain models have been developed that attempt to simulate the many human pain conditions. Among the neuropathic pain models, surgical models have paramount importance in the induction of pain states. Many surgical animal models exist, like the chronic constriction injury (CCI) to the sciatic nerve, partial sciatic nerve ligation (pSNL), spinal nerve ligation (SNL), spared nerve injury (SNI), brachial plexus avulsion (BPA), sciatic nerve transaction (SNT) and sciatic nerve trisection. Most of these models induce responses similar to those found in causalgia, a syndrome of sustained burning pain often seen in the distal extremity after partial peripheral nerve injury in humans. Researchers most commonly use these surgical models in both rats and mice during drug discovery to screen new chemical entities for efficacy in the area of neuropathic pain. However, there is scant literature that provides a comparative discussion of all these surgical models. Each surgical model has its own benefits and limitations. It is very difficult for a researcher to choose a suitable surgical animal model to suit their experimental set-up. Therefore, particular attention has been given in this review to comparatively provide the pros and cons of each model of surgically induced neuropathic pain.

  14. Spontaneous laryngeal reinnervation following chronic recurrent laryngeal nerve injury.

    PubMed

    Kupfer, Robbi A; Old, Matthew O; Oh, Sang Su; Feldman, Eva L; Hogikyan, Norman D

    2013-09-01

    To enhance understanding of spontaneous laryngeal muscle reinnervation following severe recurrent laryngeal nerve injury by testing the hypotheses that 1) nerve fibers responsible for thyroarytenoid muscle reinnervation can originate from multiple sources and 2) superior laryngeal nerve is a source of reinnervation. Prospective, controlled, animal model. A combination of retrograde neuronal labeling techniques, immunohistochemistry, electromyography, and sequential observations of vocal fold mobility were employed in rat model of chronic recurrent laryngeal nerve injury. The current study details an initial set of experiments in sham surgical and denervated group animals and a subsequent set of experiments in a denervated group. At 3 months after recurrent laryngeal nerve resection, retrograde brainstem neuronal labeling identified cells in the characteristic superior laryngeal nerve cell body location as well as cells in a novel caudal location. Regrowth of neuron fibers across the site of previous recurrent laryngeal nerve resection was seen in 87% of examined animals in the denervated group. Electromyographic data support innervation by both the superior and recurrent laryngeal nerves following chronic recurrent laryngeal nerve injury. Following chronic recurrent laryngeal nerve injury in the rat, laryngeal innervation is demonstrated through the superior laryngeal nerve from cells both within and outside of the normal cluster of cells that supply the superior laryngeal nerve. The recurrent laryngeal nerve regenerates across a surgically created gap, but functional significance of regenerated nerve fibers is unclear. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Gas hydrate drilling transect across northern Cascadia margin - IODP Expedition 311

    USGS Publications Warehouse

    Riedel, M.; Collett, T.; Malone, M.J.; Collett, T.S.; Mitchell, M.; Guerin, G.; Akiba, F.; Blanc-Valleron, M.; Ellis, M.; Hashimoto, Y.; Heuer, V.; Higashi, Y.; Holland, M.; Jackson, P.D.; Kaneko, M.; Kastner, M.; Kim, J.-H.; Kitajima, H.; Long, P.E.; Malinverno, A.; Myers, Gwen E.; Palekar, L.D.; Pohlman, J.; Schultheiss, P.; Teichert, B.; Torres, M.E.; Trehu, A.M.; Wang, Jingyuan; Worthmann, U.G.; Yoshioka, H.

    2009-01-01

    A transect of four sites (U1325, U1326, U1327 and U1329) across the northern Cascadia margin was established during Integrated Ocean Drilling Program Expedition 311 to study the occurrence and formation of gas hydrate in accretionary complexes. In addition to the transect sites, a fifth site (U1328) was established at a cold vent with active fluid flow. The four transect sites represent different typical geological environments of gas hydrate occurrence across the northern Cascadia margin from the earliest occurrence on the westernmost first accreted ridge (Site U1326) to the eastward limit of the gas hydrate occurrence in shallower water (Site U1329). Expedition 311 complements previous gas hydrate studies along the Cascadia accretionary complex, especially ODP Leg 146 and Leg 204 by extending the aperture of the transect sampled and introducing new tools to systematically quantify the gas hydrate content of the sediments. Among the most significant findings of the expedition was the occurrence of up to 20 m thick sand-rich turbidite intervals with gas hydrate concentrations locally exceeding 50% of the pore space at Sites U1326 and U1327. Moreover, these anomalous gas hydrate intervals occur at unexpectedly shallow depths of 50-120 metres below seafloor, which is the opposite of what was expected from previous models of gas hydrate formation in accretionary complexes, where gas hydrate was predicted to be more concentrated near the base of the gas hydrate stability zone just above the bottom-simulating reflector. Gas hydrate appears to be mainly concentrated in turbidite sand layers. During Expedition 311, the visual correlation of gas hydrate with sand layers was clearly and repeatedly documented, strongly supporting the importance of grain size in controlling gas hydrate occurrence. The results from the transect sites provide evidence for a structurally complex, lithology-controlled gas hydrate environment on the northern Cascadia margin. Local shallow occurrences of high gas hydrate concentrations contradict the previous model of gas hydrate formation at an accretionary prism. However, long-lived fluid flow (part of the old model) is still required to explain the shallow high gas hydrate concentrations, although it is most likely not pervasive throughout the entire accretionary prism, but rather localized and focused by the tectonic processes. Differences in the fluid flow regime across all of the transect drill sites indicate site-specific and probably disconnected (compartmented) deeper fluid sources in the various parts of the accretionary prism. The data and future analyses will yield a better understanding of the geologic controls, evolution and ultimate fate of gas hydrate in an accretionary prism as an important contribution to the role of gas hydrate methane gas in slope stability and possibly in climate change. ?? The Geological Society of London 2009.

  16. Volumetry of human taste buds using laser scanning microscopy.

    PubMed

    Just, T; Srur, E; Stachs, O; Pau, H W

    2009-10-01

    In vivo laser scanning confocal microscopy is a relatively new, non-invasive method for assessment of oral cavity epithelia. The penetration depth of approximately 200-400 microm allows visualisation of fungiform papillae and their taste buds. This paper describes the technique of in vivo volumetry of human taste buds. Confocal laser scanning microscopy used a diode laser at 670 nm for illumination. Digital laser scanning confocal microscopy equipment consisted of the Heidelberg Retina Tomograph HRTII and the Rostock Cornea Module. Volume scans of fungiform papillae were used for three-dimensional reconstruction of the taste bud. This technique supplied information on taste bud structure and enabled measurement and calculation of taste bud volume. Volumetric data from a 23-year-old man over a nine-day period showed only a small deviation in values. After three to four weeks, phenomenological changes in taste bud structures were found (i.e. a significant increase in volume, followed by disappearance of the taste bud and appearance of a new taste bud). The data obtained indicate the potential application of this non-invasive imaging modality: to evaluate variation of taste bud volume in human fungiform papillae with ageing; to study the effects of chorda tympani nerve transection on taste bud volume; and to demonstrate recovery of taste buds in patients with a severed chorda tympani nerve who show recovery of gustatory sensibility after surgery.

  17. The Cranial Nerve Skywalk: A 3D Tutorial of Cranial Nerves in a Virtual Platform

    ERIC Educational Resources Information Center

    Richardson-Hatcher, April; Hazzard, Matthew; Ramirez-Yanez, German

    2014-01-01

    Visualization of the complex courses of the cranial nerves by students in the health-related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways…

  18. Early CALP2 expression and microglial activation are potential inducers of spinal IL-6 up-regulation and bilateral pain following motor nerve injury.

    PubMed

    Chen, Shao-Xia; Wang, Shao-Kun; Yao, Pei-Wen; Liao, Guang-Jie; Na, Xiao-Dong; Li, Yong-Yong; Zeng, Wei-An; Liu, Xian-Guo; Zang, Ying

    2018-04-01

    Previous work from our laboratory showed that motor nerve injury by lumbar 5 ventral root transection (L5-VRT) led to interleukin-6 (IL-6) over-expression in bilateral spinal cord, and that intrathecal administration of IL-6 neutralizing antibody delayed the induction of mechanical allodynia in bilateral hind paws. However, early events and upstream mechanisms underlying spinal IL-6 expression following L5-VRT require elucidation. The model of L5-VRT was used to induce neuropathic pain, which was assessed with von Frey hairs and the plantar tester in adult male Sprague-Dawley rats. Calpain-2 (CALP2, a calcium-dependent protease) knockdown or over-expression and microglia depletion were conducted intrathecally. Western blots and immunohistochemistry were performed to explore the possible mechanisms. Here, we provide the first evidence that both IL-6 and CALP2 levels are increased in lumbar spinal cord within 30 min following L5-VRT. IL-6 and CALP2 co-localized in both spinal dorsal horn (SDH) and spinal ventral horn. Post-operative (PO) increase in CALP2 in ipsilateral SDH was evident at 10 min PO, preceding increased IL-6 at 20 min PO. Knockdown of spinal CALP2 by intrathecal CALP2-shRNA administration prevented VRT-induced IL-6 overproduction in ipsilateral spinal cord and alleviated bilateral mechanical allodynia. Spinal microglia activation also played a role in early IL-6 up-regulation. Macrophage/microglia markers ED1/Iba1 were increased at 30 min PO, while glial fibrillary acidic protein (astrocyte) and CNPase (oligodendrocyte) markers were not. Increased Iba1 was detected as early as 20 min PO and peaked at 3 days. Morphology changed from a small soma with fine processes in resting cells to an activated ameboid shape. Depletion of microglia using Mac-1-saporin partially prevented IL-6 up-regulation and attenuated VRT-induced bilateral mechanical allodynia. Taken together, our findings provide evidence that increased spinal cord CALP2 and microglia cell activation may have early causative roles in IL-6 over-expression following motor nerve injury. Agents that inhibit CALP2 and/or microglia activation may therefore prove valuable for treating neuropathic pain. © 2018 International Society for Neurochemistry.

  19. Role of spared pathways in locomotor recovery after body-weight-supported treadmill training in contused rats.

    PubMed

    Singh, Anita; Balasubramanian, Sriram; Murray, Marion; Lemay, Michel; Houle, John

    2011-12-01

    Body-weight-supported treadmill training (BWSTT)-related locomotor recovery has been shown in spinalized animals. Only a few animal studies have demonstrated locomotor recovery after BWSTT in an incomplete spinal cord injury (SCI) model, such as contusion injury. The contribution of spared descending pathways after BWSTT to behavioral recovery is unclear. Our goal was to evaluate locomotor recovery in contused rats after BWSTT, and to study the role of spared pathways in spinal plasticity after BWSTT. Forty-eight rats received a contusion, a transection, or a contusion followed at 9 weeks by a second transection injury. Half of the animals in the three injury groups were given BWSTT for up to 8 weeks. Kinematics and the Basso-Beattie-Bresnahan (BBB) test assessed behavioral improvements. Changes in Hoffmann-reflex (H-reflex) rate depression property, soleus muscle mass, and sprouting of primary afferent fibers were also evaluated. BWSTT-contused animals showed accelerated locomotor recovery, improved H-reflex properties, reduced muscle atrophy, and decreased sprouting of small caliber afferent fibers. BBB scores were not improved by BWSTT. Untrained contused rats that received a transection exhibited a decrease in kinematic parameters immediately after the transection; in contrast, trained contused rats did not show an immediate decrease in kinematic parameters after transection. This suggests that BWSTT with spared descending pathways leads to neuroplasticity at the lumbar spinal level that is capable of maintaining locomotor activity. Discontinuing training after the transection in the trained contused rats abolished the improved kinematics within 2 weeks and led to a reversal of the improved H-reflex response, increased muscle atrophy, and an increase in primary afferent fiber sprouting. Thus continued training may be required for maintenance of the recovery. Transected animals had no effect of BWSTT, indicating that in the absence of spared pathways this training paradigm did not improve function.

  20. ACL/MCL transection affects knee ligament insertion distance of healing and intact ligaments during gait in the Ovine model.

    PubMed

    Tapper, Janet E; Funakoshi, Yusei; Hariu, Mitsuhiro; Marchuk, Linda; Thornton, Gail M; Ronsky, Janet L; Zernicke, Ron; Shrive, Nigel G; Frank, Cyril B

    2009-08-25

    The objective of this study was to assess the impact of combined transection of the anterior cruciate and medial collateral ligaments on the intact and healing ligaments in the ovine stifle joint. In vivo 3D stifle joint kinematics were measured in eight sheep during treadmill walking (accuracy: 0.4+/-0.4mm, 0.4+/-0.4 degrees ). Kinematics were measured with the joint intact and at 2, 4, 8, 12, 16 and 20 weeks after either surgical ligament transection (n=5) or sham surgery without transection (n=3). After sacrifice at 20 weeks, the 3D subject-specific bone and ligament geometry were digitized, and the 3D distances between insertions (DBI) of ligaments during the dynamic in vivo motion were calculated. Anterior cruciate ligament/medial collateral ligament (ACL/MCL) transection resulted in changes in the DBI of not only the transected ACL, but also the intact lateral collateral ligament (LCL) and posterior cruciate ligament (PCL), while the DBI of the transected MCL was not significantly changed. Increases in the maximal ACL DBI (2 week: +4.2mm, 20 week: +5.7mm) caused increases in the range of ACL DBI (2 week: 3.6mm, 20 week: +3.8mm) and the ACL apparent strain (2 week: +18.9%, 20 week: +24.0%). Decreases in the minimal PCL DBI (2 week: -3.2mm, 20 week: -4.3mm) resulted in increases in the range of PCL DBI (2 week: +2.7mm, 20 week: +3.2mm). Decreases in the maximal LCL DBI (2 week: -1.0mm, 20 week: -2.0mm) caused decreased LCL apparent strain (2 week: -3.4%, 20 week: -6.9%). Changes in the mechanical environment of these ligaments may play a significant role in the biological changes observed in these ligaments.

  1. Effects of noninvasive facial nerve stimulation in the dog middle cerebral artery occlusion model of ischemic stroke.

    PubMed

    Borsody, Mark K; Yamada, Chisa; Bielawski, Dawn; Heaton, Tamara; Castro Prado, Fernando; Garcia, Andrea; Azpiroz, Joaquín; Sacristan, Emilio

    2014-04-01

    Facial nerve stimulation has been proposed as a new treatment of ischemic stroke because autonomic components of the nerve dilate cerebral arteries and increase cerebral blood flow when activated. A noninvasive facial nerve stimulator device based on pulsed magnetic stimulation was tested in a dog middle cerebral artery occlusion model. We used an ischemic stroke dog model involving injection of autologous blood clot into the internal carotid artery that reliably embolizes to the middle cerebral artery. Thirty minutes after middle cerebral artery occlusion, the geniculate ganglion region of the facial nerve was stimulated for 5 minutes. Brain perfusion was measured using gadolinium-enhanced contrast MRI, and ATP and total phosphate levels were measured using 31P spectroscopy. Separately, a dog model of brain hemorrhage involving puncture of the intracranial internal carotid artery served as an initial examination of facial nerve stimulation safety. Facial nerve stimulation caused a significant improvement in perfusion in the hemisphere affected by ischemic stroke and a reduction in ischemic core volume in comparison to sham stimulation control. The ATP/total phosphate ratio showed a large decrease poststroke in the control group versus a normal level in the stimulation group. The same stimulation administered to dogs with brain hemorrhage did not cause hematoma enlargement. These results support the development and evaluation of a noninvasive facial nerve stimulator device as a treatment of ischemic stroke.

  2. Comparison of longitudinal excursion of a nerve-phantom model using quantitative ultrasound imaging and motion analysis system methods: A convergent validity study.

    PubMed

    Paquette, Philippe; El Khamlichi, Youssef; Lamontagne, Martin; Higgins, Johanne; Gagnon, Dany H

    2017-08-01

    Quantitative ultrasound imaging is gaining popularity in research and clinical settings to measure the neuromechanical properties of the peripheral nerves such as their capability to glide in response to body segment movement. Increasing evidence suggests that impaired median nerve longitudinal excursion is associated with carpal tunnel syndrome. To date, psychometric properties of longitudinal nerve excursion measurements using quantitative ultrasound imaging have not been extensively investigated. This study investigates the convergent validity of the longitudinal nerve excursion by comparing measures obtained using quantitative ultrasound imaging with those determined with a motion analysis system. A 38-cm long rigid nerve-phantom model was used to assess the longitudinal excursion in a laboratory environment. The nerve-phantom model, immersed in a 20-cm deep container filled with a gelatin-based solution, was moved 20 times using a linear forward and backward motion. Three light-emitting diodes were used to record nerve-phantom excursion with a motion analysis system, while a 5-cm linear transducer allowed simultaneous recording via ultrasound imaging. Both measurement techniques yielded excellent association ( r  = 0.99) and agreement (mean absolute difference between methods = 0.85 mm; mean relative difference between methods = 7.48 %). Small discrepancies were largely found when larger excursions (i.e. > 10 mm) were performed, revealing slight underestimation of the excursion by the ultrasound imaging analysis software. Quantitative ultrasound imaging is an accurate method to assess the longitudinal excursion of an in vitro nerve-phantom model and appears relevant for future research protocols investigating the neuromechanical properties of the peripheral nerves.

  3. Constraining the velocity structure of the Juan de Fuca plate from ridge to trench with a 2D tomographic study of wide angle OBS data

    NASA Astrophysics Data System (ADS)

    Boulahanis, B.; Canales, J. P.; Carbotte, S. M.; Carton, H. D.; Han, S.; Nedimovic, M. R.

    2016-12-01

    We conduct a two-dimensional travel time tomography study of a cross-plate, 300-km long, ocean bottom seismometer (OBS) transect collected as part of the Ridge to Trench (R2T) program to investigate the structure, evolution and state of hydration of the Juan de Fuca (JdF) plate from the ridge axis to subduction at the Cascadia margin offshore Washington. Our study employs the methodology of Korenaga et al. (2000) to derive a P-wave velocity model using wide-angle data from 15 OBSs spaced on average 15 km apart, spanning from the Endeavour segment of the JdF ridge to the Cascadia accretionary prism. A top down modeling approach is employed, first assessing velocities of the sediment layer, then the crust, and finally the upper mantle; at each stage of the inversion we fix the structure of the overlaying layers. Quality of data fit is evaluated using the root mean square value of the difference between predicted and observed travel times normalized by pick uncertainty. Previous studies provide a well-resolved multi-channel seismic (MCS) reflection image of this transect (Han et al., 2016), affording good constraints of the location of basement and Moho reflectors while allowing for comparison of the relationship between velocities and crustal structure. MCS results along this transect suggest evidence of little bending faulting confined to the sediment and upper-middle crust. An initial velocity model of the sediment layer above igneous crust is constructed utilizing the MCS derived sediment velocities. A one-dimensional velocity starting model of the oceanic crust is generated using the results of Horning et al. (in press) from a quasi-parallel cross-plate transect also acquired as part of the R2T study. Seismic velocities are compared to predicted velocities for crustal and mantle lithologies at temperatures estimated from a plate-cooling model and are used to provide constraints on water contents in these layers.

  4. Collagen scaffolds combined with collagen-binding ciliary neurotrophic factor facilitate facial nerve repair in mini-pigs.

    PubMed

    Lu, Chao; Meng, Danqing; Cao, Jiani; Xiao, Zhifeng; Cui, Yi; Fan, Jingya; Cui, Xiaolong; Chen, Bing; Yao, Yao; Zhang, Zhen; Ma, Jinling; Pan, Juli; Dai, Jianwu

    2015-05-01

    The preclinical studies using animal models play a very important role in the evaluation of facial nerve regeneration. Good models need to recapitulate the distance and time for axons to regenerate in humans. Compared with the most used rodent animals, the structure of facial nerve in mini-pigs shares more similarities with humans in microanatomy. To evaluate the feasibility of repairing facial nerve defects by collagen scaffolds combined with ciliary neurotrophic factor (CNTF), 10-mm-long gaps were made in the buccal branch of mini-pigs' facial nerve. Three months after surgery, electrophysiological assessment and histological examination were performed to evaluate facial nerve regeneration. Immunohistochemistry and transmission electron microscope observation showed that collagen scaffolds with collagen binding (CBD)-CNTF could promote better axon regeneration, Schwann cell migration, and remyelination at the site of implant device than using scaffolds alone. Electrophysiological assessment also showed higher recovery rate in the CNTF group. In summary, combination of collagen scaffolds and CBD-CNTF showed promising effects on facial nerve regeneration in mini-pig models. © 2014 Wiley Periodicals, Inc.

  5. Nerve Fiber Activation During Peripheral Nerve Field Stimulation: Importance of Electrode Orientation and Estimation of Area of Paresthesia.

    PubMed

    Frahm, Ken Steffen; Hennings, Kristian; Vera-Portocarrero, Louis; Wacnik, Paul W; Mørch, Carsten Dahl

    2016-04-01

    Low back pain is one of the indications for using peripheral nerve field stimulation (PNFS). However, the effect of PNFS varies between patients; several stimulation parameters have not been investigated in depth, such as orientation of the nerve fiber in relation to the electrode. While placing the electrode parallel to the nerve fiber may give lower activation thresholds, anodal blocking may occur when the propagating action potential passes an anode. A finite element model was used to simulate the extracellular potential during PNFS. This was combined with an active cable model of Aβ and Aδ nerve fibers. It was investigated how the angle between the nerve fiber and electrode affected the nerve activation and whether anodal blocking could occur. Finally, the area of paresthesia was estimated and compared with any concomitant Aδ fiber activation. The lowest threshold was found when nerve and electrode were in parallel, and that anodal blocking did not appear to occur during PNFS. The activation of Aβ fibers was within therapeutic range (<10V) of PNFS; however, within this range, Aδ fiber activation also may occur. The combined area of activated Aβ fibers (paresthesia) was at least two times larger than Aδ fibers for similar stimulation intensities. No evidence of anodal blocking was observed in this PNFS model. The thresholds were lowest when the nerves and electrodes were parallel; thus, it may be relevant to investigate the overall position of the target nerve fibers prior to electrode placement. © 2015 International Neuromodulation Society.

  6. Measurement and simulation of unmyelinated nerve electrostimulation: Lumbricus terrestris experiment and numerical model

    NASA Astrophysics Data System (ADS)

    Šarolić, A.; Živković, Z.; Reilly, J. P.

    2016-06-01

    The electrostimulation excitation threshold of a nerve depends on temporal and frequency parameters of the stimulus. These dependences were investigated in terms of: (1) strength-duration (SD) curve for a single monophasic rectangular pulse, and (2) frequency dependence of the excitation threshold for a continuous sinusoidal current. Experiments were performed on the single-axon measurement setup based on Lumbricus terrestris having unmyelinated nerve fibers. The simulations were performed using the well-established SENN model for a myelinated nerve. Although the unmyelinated experimental model differs from the myelinated simulation model, both refer to a single axon. Thus we hypothesized that the dependence on temporal and frequency parameters should be very similar. The comparison was made possible by normalizing each set of results to the SD time constant and the rheobase current of each model, yielding the curves that show the temporal and frequency dependencies regardless of the model differences. The results reasonably agree, suggesting that this experimental setup and method of comparison with SENN model can be used for further studies of waveform effect on nerve excitability, including unmyelinated neurons.

  7. Measurement and simulation of unmyelinated nerve electrostimulation: Lumbricus terrestris experiment and numerical model.

    PubMed

    Šarolić, A; Živković, Z; Reilly, J P

    2016-06-21

    The electrostimulation excitation threshold of a nerve depends on temporal and frequency parameters of the stimulus. These dependences were investigated in terms of: (1) strength-duration (SD) curve for a single monophasic rectangular pulse, and (2) frequency dependence of the excitation threshold for a continuous sinusoidal current. Experiments were performed on the single-axon measurement setup based on Lumbricus terrestris having unmyelinated nerve fibers. The simulations were performed using the well-established SENN model for a myelinated nerve. Although the unmyelinated experimental model differs from the myelinated simulation model, both refer to a single axon. Thus we hypothesized that the dependence on temporal and frequency parameters should be very similar. The comparison was made possible by normalizing each set of results to the SD time constant and the rheobase current of each model, yielding the curves that show the temporal and frequency dependencies regardless of the model differences. The results reasonably agree, suggesting that this experimental setup and method of comparison with SENN model can be used for further studies of waveform effect on nerve excitability, including unmyelinated neurons.

  8. Neuroprotective effect of lurasidone via antagonist activities on histamine in a rat model of cranial nerve involvement.

    PubMed

    He, Baoming; Yu, Liang; Li, Suping; Xu, Fei; Yang, Lili; Ma, Shuai; Guo, Yi

    2018-04-01

    Cranial nerve involvement frequently involves neuron damage and often leads to psychiatric disorder caused by multiple inducements. Lurasidone is a novel antipsychotic agent approved for the treatment of cranial nerve involvement and a number of mental health conditions in several countries. In the present study, the neuroprotective effect of lurasidone by antagonist activities on histamine was investigated in a rat model of cranial nerve involvement. The antagonist activities of lurasidone on serotonin 5‑HT7, serotonin 5‑HT2A, serotonin 5‑HT1A and serotonin 5‑HT6 were analyzed, and the preclinical therapeutic effects of lurasidone were examined in a rat model of cranial nerve involvement. The safety, maximum tolerated dose (MTD) and preliminary antitumor activity of lurasidone were also assessed in the cranial nerve involvement model. The therapeutic dose of lurasidone was 0.32 mg once daily, administered continuously in 14‑day cycles. The results of the present study found that the preclinical prescriptions induced positive behavioral responses following treatment with lurasidone. The MTD was identified as a once daily administration of 0.32 mg lurasidone. Long‑term treatment with lurasidone for cranial nerve involvement was shown to improve the therapeutic effects and reduce anxiety in the experimental rats. In addition, treatment with lurasidone did not affect body weight. The expression of the language competence protein, Forkhead‑BOX P2, was increased, and the levels of neuroprotective SxIP motif and microtubule end‑binding protein were increased in the hippocampal cells of rats with cranial nerve involvement treated with lurasidone. Lurasidone therapy reinforced memory capability and decreased anxiety. Taken together, lurasidone treatment appeared to protect against language disturbances associated with negative and cognitive impairment in the rat model of cranial nerve involvement, providing a basis for its use in the clinical treatment of patients with cranial nerve involvement.

  9. Primary non-transecting bulbar urethroplasty long-term success rates are similar to transecting urethroplasty.

    PubMed

    Anderson, Kirk M; Blakely, Stephen A; O'Donnell, Colin I; Nikolavsky, Dmitriy; Flynn, Brian J

    2017-01-01

    To review the long-term outcomes of transecting versus non-transecting urethroplasty to repair bulbar urethral strictures. A retrospective review was conducted of 342 patients who underwent anterior urethroplasty performed by a single surgeon from 2003 to 2014. Patients were excluded from further analysis if there had been prior urethroplasty, stricture location outside the bulbous urethra, or age <18 years. In the transecting group, surgical techniques used included excision and primary anastomosis and augmented anastomotic urethroplasty. In the non-transecting group, surgical techniques used included non-transecting anastomotic urethroplasty and dorsal and/or ventral buccal grafting. The primary endpoint was stricture resolution in transecting vs. non-transecting bulbar urethroplasty. Success was defined as freedom from secondary procedures including dilation, urethrotomy, or repeat urethroplasty. One hundred and fifty-two patients met inclusion criteria. At a mean follow-up of 65 months (range: 10-138 months), stricture-free recurrence in the transecting and non-transecting groups was similar, 83% (n = 85/102) and 82% (n = 41/50), respectively (p = 0.84). Surgical technique (p = 0.91), stricture length (p = 0.8), and etiology (p = 0.6) did not affect stricture recurrence rate on multivariate analysis. There was no difference detected in time to stricture recurrence (p = 0.21). In this retrospective series, transecting and non-transecting primary bulbar urethroplasty resulted in similar long-term stricture resolution rate. Prospective studies are needed to determine what differences may present in outcomes related to sexual function and long-term success.

  10. Correlation of final evoked potential amplitudes on intraoperative electromyography of the recurrent laryngeal nerve with immediate postoperative vocal fold function after thyroid and parathyroid surgery.

    PubMed

    Genther, Dane J; Kandil, Emad H; Noureldine, Salem I; Tufano, Ralph P

    2014-02-01

    Thyroid and parathyroid surgery are among the most common operations in the United States. Recurrent laryngeal nerve (RLN) injury is an infrequent but potentially detrimental complication. To correlate the final evoked potential amplitudes on intraoperative electromyography (EMG) after stimulation of the RLN with immediate postoperative vocal fold function after thyroid and parathyroid surgery. Retrospective observational study at a tertiary academic medical center. We included 674 patients (with 1000 nerves at risk) undergoing thyroid or parathyroid surgery from July 1, 2008, through June 30, 2012. Thyroid and parathyroid surgery. The association of final evoked potential amplitudes on EMG after thyroid and parathyroid surgery with vocal fold function as determined by postoperative fiberoptic laryngoscopy. Three patients experienced permanent vocal fold paresis (VFP) secondary to intraoperative RLN transection. Of the remaining 997 RLNs at risk, 22 (2.2%) in 20 patients exhibited temporary VFP on fiberoptic laryngoscopy after extubation. Eighteen patients experienced unilateral temporary VFP, and 2 experienced bilateral VFP without the need for tracheostomy or reintubation. Of the 22 RLNs, postdissection EMG amplitudes were less than 200 µV (true-positive findings) in 21 and at least 200 µV (false-negative finding) in 1. Of the 975 RLNs (97.5%) with normal function, postdissection EMG amplitudes were at least 200 µV (true-negative findings) in 967 and less than 200 µV (false-positive findings) in 8. In regard to immediate postoperative VFP, sensitivity, specificity, positive and negative predictive values, and accuracy of postdissection EMG amplitudes of less than 200 µV were 95.5%, 99.2%, 72.4%, 99.9%, and 99.1%, respectively. Intraoperative nerve monitoring of the RLN with EMG provides real-time information regarding neurophysiologic function of the RLN and can predict immediate postoperative VFP reliably when a cutoff of 200 µV is used. The high negative predictive value means that the surgeon can presume with confidence that the RLN has not been injured in the presence of a potential of at least 200 µV. This information would be useful in patients for whom bilateral thyroid surgery is being considered.

  11. Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity.

    PubMed

    Deurloo, K E; Holsheimer, J; Boom, H B

    1998-01-01

    Various anode-cathode configurations in a nerve cuff are modelled to predict their spatial selectivity characteristics for functional nerve stimulation. A 3D volume conductor model of a monofascicular nerve is used for the computation of stimulation-induced field potentials, whereas a cable model of myelinated nerve fibre is used for the calculation of the excitation thresholds of fibres. As well as the usual configurations (monopole, bipole, longitudinal tripole, 'steering' anode), a transverse tripolar configuration (central cathode) is examined. It is found that the transverse tripole is the only configuration giving convex recruitment contours and therefore maximises activation selectivity for a small (cylindrical) bundle of fibres in the periphery of a monofascicular nerve trunk. As the electrode configuration is changed to achieve greater selectivity, the threshold current increases. Therefore threshold currents for fibre excitation with a transverse tripole are relatively high. Inverse recruitment is less extreme than for the other configurations. The influences of several geometrical parameters and model conductivities of the transverse tripole on selectivity and threshold current are analysed. In chronic implantation, when electrodes are encapsulated by a layer of fibrous tissue, threshold currents are low, whereas the shape of the recruitment contours in transverse tripolar stimulation does not change.

  12. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2013-10-01

    can provide fixation strengths approaching that of conventional microsurgery and that the PTB repair is unlikely to be disturbed in vivo. The...of nerve wrap biomaterial during long periods of recovery associated with large nerve deficit reconstruction and long nerve grafts. As with the...PTB/xHAM wrap compared to standard (suture) of care microsurgery . Demonstrated improved nerve regeneration in a muscle mass retention model

  13. End-to-side neurorraphy: a long-term study of neural regeneration in a rat model.

    PubMed

    Tarasidis, G; Watanabe, O; Mackinnon, S E; Strasberg, S R; Haughey, B H; Hunter, D A

    1998-10-01

    This study evaluated long-term reinnervation of an end-to-side neurorraphy and the resultant functional recovery in a rat model. The divided distal posterior tibial nerve was repaired to the side of an intact peroneal nerve. Control groups included a cut-and-repair of the posterior tibial nerve and an end-to-end repair of the peroneal nerve to the posterior tibial nerve. Evaluations included walking-track analysis, nerve conduction studies, muscle mass measurements, retrograde nerve tracing, and histologic evaluation. Walking tracks indicated poor recovery of posterior tibial nerve function in the experimental group. No significant difference in nerve conduction velocities was seen between the experimental and control groups. Gastrocnemius muscle mass measurements revealed no functional recovery in the experimental group. Similarly, retrograde nerve tracing revealed minimal motor neuron staining in the experimental group. However, some sensory staining was seen within the dorsal root ganglia of the end-to-side group. Histologic study revealed minimal myelinated axonal regeneration in the experimental group as compared with findings in the other groups. These results suggest that predominantly sensory regeneration occurs in an end-to-side neurorraphy at an end point of 6 months.

  14. Methylxanthines do not affect rhythmogenic preBötC inspiratory network activity but impair bursting of preBötC-driven motoneurons.

    PubMed

    Panaitescu, B; Kuribayashi, J; Ruangkittisakul, A; Leung, V; Iizuka, M; Ballanyi, K

    2013-01-01

    Clinical stimulation of preterm infant breathing with methylxanthines like caffeine and theophylline can evoke seizures. It is unknown whether underlying neuronal hyperexcitability involves the rhythmogenic inspiratory active pre-Bötzinger complex (preBötC) in the brainstem or preBötC-driven motor networks. Inspiratory-related preBötC interneuronal plus spinal (cervical/phrenic) or cranial hypoglossal (XII) motoneuronal bursting was studied in newborn rat en bloc brainstem-spinal cords and brainstem slices, respectively. Non-respiratory bursting perturbed inspiratory cervical nerve activity in en bloc models at >0.25mM theophylline or caffeine. Rhythm in the exposed preBötC of transected en bloc preparations was less perturbed by 10mM theophylline than cervical root bursting which was more affected than phrenic nerve activity. In the preBötC of slices, even 10mM methylxanthine did not evoke seizure-like bursting whereas >1mM masked XII rhythm via large amplitude 1-10Hz oscillations. Blocking A-type γ-aminobutyric (GABAA) receptors evoked seizure-like cervical activity whereas in slices neither XII nor preBötC rhythm was disrupted. Methylxanthines (2.5-10mM), but not blockade of adenosine receptors, phosphodiesterase-4 or the sarcoplasmatic/endoplasmatic reticulum ATPase countered inspiratory depression by muscimol-evoked GABAA receptor activation that was associated with a hyperpolarization and input resistance decrease silencing preBötC neurons in slices. The latter blockers did neither affect preBötC or cranial/spinal motor network bursting nor evoke seizure-like activity or mask corresponding methylxanthine-evoked discharges. Our findings show that methylxanthine-evoked hyperexcitability originates from motor networks, leaving preBötC activity largely unaffected, and suggest that GABAA receptors contribute to methylxanthine-evoked seizure-like perturbation of spinal motoneurons whereas non-respiratory XII motoneuron oscillations are of different origin. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. New Theoretical Model of Nerve Conduction in Unmyelinated Nerves

    PubMed Central

    Akaishi, Tetsuya

    2017-01-01

    Nerve conduction in unmyelinated fibers has long been described based on the equivalent circuit model and cable theory. However, without the change in ionic concentration gradient across the membrane, there would be no generation or propagation of the action potential. Based on this concept, we employ a new conductive model focusing on the distribution of voltage-gated sodium ion channels and Coulomb force between electrolytes. Based on this new model, the propagation of the nerve conduction was suggested to take place far before the generation of action potential at each channel. We theoretically showed that propagation of action potential, which is enabled by the increasing Coulomb force produced by inflowing sodium ions, from one sodium ion channel to the next sodium channel would be inversely proportionate to the density of sodium channels on the axon membrane. Because the longitudinal number of sodium ion channel would be proportionate to the square root of channel density, the conduction velocity of unmyelinated nerves is theoretically shown to be proportionate to the square root of channel density. Also, from a viewpoint of equilibrium state of channel importation and degeneration, channel density was suggested to be proportionate to axonal diameter. Based on these simple basis, conduction velocity in unmyelinated nerves was theoretically shown to be proportionate to the square root of axonal diameter. This new model would also enable us to acquire more accurate and understandable vision on the phenomena in unmyelinated nerves in addition to the conventional electric circuit model and cable theory. PMID:29081751

  16. Application and histology-driven refinement of active contour models to functional region and nerve delineation: towards a digital brainstem atlas

    NASA Astrophysics Data System (ADS)

    Patel, Nirmal; Sultana, Sharmin; Rashid, Tanweer; Krusienski, Dean; Audette, Michel A.

    2015-03-01

    This paper presents a methodology for the digital formatting of a printed atlas of the brainstem and the delineation of cranial nerves from this digital atlas. It also describes on-going work on the 3D resampling and refinement of the 2D functional regions and nerve contours. In MRI-based anatomical modeling for neurosurgery planning and simulation, the complexity of the functional anatomy entails a digital atlas approach, rather than less descriptive voxel or surface-based approaches. However, there is an insufficiency of descriptive digital atlases, in particular of the brainstem. Our approach proceeds from a series of numbered, contour-based sketches coinciding with slices of the brainstem featuring both closed and open contours. The closed contours coincide with functionally relevant regions, whereby our objective is to fill in each corresponding label, which is analogous to painting numbered regions in a paint-by-numbers kit. Any open contour typically coincides with a cranial nerve. This 2D phase is needed in order to produce densely labeled regions that can be stacked to produce 3D regions, as well as identifying the embedded paths and outer attachment points of cranial nerves. Cranial nerves are modeled using an explicit contour based technique called 1-Simplex. The relevance of cranial nerves modeling of this project is two-fold: i) this atlas will fill a void left by the brain segmentation communities, as no suitable digital atlas of the brainstem exists, and ii) this atlas is necessary to make explicit the attachment points of major nerves (except I and II) having a cranial origin. Keywords: digital atlas, contour models, surface models

  17. Regional Retinal Ganglion Cell Axon Loss in a Murine Glaucoma Model

    PubMed Central

    Schaub, Julie A.; Kimball, Elizabeth C.; Steinhart, Matthew R.; Nguyen, Cathy; Pease, Mary E.; Oglesby, Ericka N.; Jefferys, Joan L.; Quigley, Harry A.

    2017-01-01

    Purpose To determine if retinal ganglion cell (RGC) axon loss in experimental mouse glaucoma is uniform in the optic nerve. Methods Experimental glaucoma was induced for 6 weeks with a microbead injection model in CD1 (n = 78) and C57BL/6 (B6, n = 68) mice. From epoxy-embedded sections of optic nerve 1 to 2 mm posterior to the globe, total nerve area and regional axon density (axons/1600 μm2) were measured in superior, inferior, nasal, and temporal zones. Results Control eyes of CD1 mice have higher axon density and more total RGCs than control B6 mice eyes. There were no significant differences in control regional axon density in all mice or by strain (all P > 0.2, mixed model). Exposure to elevated IOP caused loss of RGC in both strains. In CD1 mice, axon density declined without significant loss of nerve area, while B6 mice had less density loss, but greater decrease in nerve area. Axon density loss in glaucoma eyes was not significantly greater in any region in either mouse strain (both P > 0.2, mixed model). In moderately damaged CD1 glaucoma eyes, and CD1 eyes with the greatest IOP elevation exposure, density loss differed by region (P = 0.05, P = 0.03, mixed model) with the greatest loss in the temporal and superior regions, while in severely injured B6 nerves superior loss was greater than inferior loss (P = 0.01, mixed model, Bonferroni corrected). Conclusions There was selectively greater loss of superior and temporal optic nerve axons of RGCs in mouse glaucoma at certain stages of damage. Differences in nerve area change suggest non-RGC responses differ between mouse strains. PMID:28549091

  18. Radon and ammonia transects across the Cerro Prieto geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semprini, L.; Kruger, P.

    1981-01-01

    Radon and ammonia transects, conducted at the Cerro Prieto geothermal field, involve measurement of concentration gradients at wells along lines of structural significance in the reservoir. Analysis of four transects showed radon concentrations ranging from 0.20 to 3.60 nCi/kg and ammonia concentrations from 17.6 to 59.3 mg/l. The data showed the lower concentrations in wells of lowest enthalpy fluid and the higher concentrations in wells of highest enthalpy fluid. Linear correlation analysis of the radon-enthalpy data indicated a strong relationship, with a marked influence by the two-phase conditions of the produced fluid. It appears that after phase separation in themore » reservoir, radon achieves radioactive equilibrium between fluid and rock, suggesting that the phase separation occurs well within the reservoir. A two-phase mixing model based on radon-enthalpy relations allows estimation of the fluid phase temperatures in the reservoir. Correlations of ammonia concentration with fluid enthalpy suggests an equilibrium partitioning model in which enrichment of ammonia correlates with higher enthalpy vapor.« less

  19. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2017-09-01

    that the AFS seeded ANA used for nerve repair resulted in an improved functional outcome for the rats compared to ANA alone and were equivalent to...junction morphology were equivalent between the AFS seeded ANA. Additional studies investigated the use of post-partum acellular materials to...techniques for repairing large-gap (6 cm) nerve injuries in non -human primates. This pre-clinical model represents a more translational model of

  20. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts Plus Amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2017-09-01

    AFS seeded ANA used for nerve repair resulted in an improved functional outcome for the rats compared to ANA alone and were equivalent to those...junction morphology were equivalent between the AFS seeded ANA. Additional studies investigated the use of post-partum acellular materials to promote...techniques for repairing large-gap (6 cm) nerve injuries in non -human primates. This pre-clinical model represents a more translational model of peripheral

Top