Autonomic Nervous System Disorders
Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...
Code of Federal Regulations, 2012 CFR
2012-04-01
... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the AMA's...
Code of Federal Regulations, 2013 CFR
2013-04-01
... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the AMA's...
Code of Federal Regulations, 2014 CFR
2014-04-01
... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the AMA's...
Code of Federal Regulations, 2010 CFR
2010-04-01
... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the AMA's...
Code of Federal Regulations, 2011 CFR
2011-04-01
... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the AMA's...
Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.
ERIC Educational Resources Information Center
Wetherby, Amy Miller; And Others
1981-01-01
The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)
Blood pressure normalization post-jugular venous balloon angioplasty.
Sternberg, Zohara; Grewal, Prabhjot; Cen, Steven; DeBarge-Igoe, Frances; Yu, Jinhee; Arata, Michael
2015-05-01
This study is the first in a series investigating the relationship between autonomic nervous system dysfunction and chronic cerebrospinal venous insufficiency in multiple sclerosis patients. We screened patients for the combined presence of the narrowing of the internal jugular veins and symptoms of autonomic nervous system dysfunction (fatigue, cognitive dysfunction, sleeping disorders, headache, thermal intolerance, bowel/bladder dysfunction) and determined systolic and diastolic blood pressure responses to balloon angioplasty. The criteria for eligibility for balloon angioplasty intervention included ≥ 50% narrowing in one or both internal jugular veins, as determined by the magnetic resonance venography, and ≥ 3 clinical symptoms of autonomic nervous system dysfunction. Blood pressure was measured at baseline and post-balloon angioplasty. Among patients who were screened, 91% were identified as having internal jugular veins narrowing (with obstructing lesions) combined with the presence of three or more symptoms of autonomic nervous system dysfunction. Balloon angioplasty reduced the average systolic and diastolic blood pressure. However, blood pressure categorization showed a biphasic response to balloon angioplasty. The procedure increased blood pressure in multiple sclerosis patients who presented with baseline blood pressure within lower limits of normal ranges (systolic ≤ 105 mmHg, diastolic ≤ 70 mmHg) but decreased blood pressure in patients with baseline blood pressure above normal ranges (systolic ≥ 130 mmHg, diastolic ≥ 80 mmHg). In addition, gender differences in baseline blood pressure subcategories were observed. The coexistence of internal jugular veins narrowing and symptoms of autonomic nervous system dysfunction suggests that the two phenomena may be related. Balloon angioplasty corrects blood pressure deviation in multiple sclerosis patients undergoing internal jugular vein dilation. Further studies should investigate the association between blood pressure deviation and internal jugular veins narrowing, and whether blood pressure normalization affects Patient's clinical outcomes. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
[Signs and symptoms of autonomic dysfunction in dysphonic individuals].
Park, Kelly; Behlau, Mara
2011-01-01
To verify the occurrence of signs and symptoms of autonomic nervous system dysfunction in individuals with behavioral dysphonia, and to compare it with the results obtained by individuals without vocal complaints. Participants were 128 adult individuals with ages between 14 and 74 years, divided into two groups: behavioral dysphonia (61 subjects) and without vocal complaints (67 subjects). It was administered the Protocol of Autonomic Dysfunction, containing 46 questions: 22 related to the autonomic nervous system and had no direct relationship with voice, 16 related to both autonomic nervous system and voice, six non-relevant questions, and two reliability questions. There was a higher occurrence of reported neurovegetative signs in the group with behavioral dysphonia, in questions related to voice, such as frequent throat clearing, frequent swallowing need, fatigability when speaking, and sore throat. In questions not directly related to voice, dysphonic individuals presented greater occurrence of three out of 22 symptoms: gas, tinnitus and aerophagia. Both groups presented similar results in questions non-relevant to the autonomic nervous system. Reliability questions needed reformulation. Individuals with behavioral dysphonia present higher occurrence of neurovegetative signs and symptoms, particularly those with direct relationship with voice, indicating greater lability of the autonomic nervous system in these subjects.
Iramina, Keiji; Kamei, Yuuichiro; Katayama, Yoshinori
2011-01-01
We developed a simple, portable and easy system to the motion of pronation and supination of the forearm. This motion was measured by wireless acceleration and angular velocity sensor. The aim of this system is evaluation of minor nervous dysfunction. It is for the screening of the developmental disorder child. In this study, in order to confirm the effectiveness of this system, the reference curve of the neuromotor development was experimentally obtained. We studied 212 participants (108 males, 104 females) aged 7 to 12 years attending the kindergarten school. We could obtain the reference curve of the neuromotor development using this system. We also investigated the difference of neuromotor function between normally developed children and a ADHD child. There is a possibility that abnormality of the minor nervous dysfunction can be detected by using this system.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... cancer; nervous system disease; reproductive or developmental dysfunction; non-malignant respiratory... nervous system cancers, stomach cancer, prostatic cancer and testicular cancer. The non-malignant diseases... and bladder cancer exists. G. Brain and Other Central Nervous System Cancers Of the 20 published...
Axelrod, Felicia B
2013-03-01
Genetic disorders affecting the autonomic nervous system can result in abnormal development of the nervous system or they can be caused by neurotransmitter imbalance, an ion-channel disturbance or by storage of deleterious material. The symptoms indicating autonomic dysfunction, however, will depend upon whether the genetic lesion has disrupted peripheral or central autonomic centers or both. Because the autonomic nervous system is pervasive and affects every organ system in the body, autonomic dysfunction will result in impaired homeostasis and symptoms will vary. The possibility of genetic confirmation by molecular testing for specific diagnosis is increasing but treatments tend to remain only supportive and directed toward particular symptoms. Copyright © 2013 Elsevier Inc. All rights reserved.
Kondrashova, V G; Kolpakov, I E; Vdovenko, V Yu; Leonovych, O S; Lytvynets, O M; Stepanova, E I
2014-09-01
Objective. The study examined the features of functional state of the autonomic nervous system in children having endothelial dysfunction and permanently residing in contaminated areas. Materials and methods. Clinical and instrumental examination of 101 children aged 7-18 years that were born and are domiciled in contaminated territories, including 37 persons with signs of endothelial dysfunction (subgroup IA) and 64 ones with no signs of endothelial dysfunction (IB subgroup) was conducted. The control group being comparable to the subgroups IA and IB by age, gender and clinical examination results included 37 children neither been domiciled in contaminated areas nor were belonging to the contingent of Chornobyl accident survivors. There were 20 apparently healthy children also examined. Results. Due to peculiarities of physiological pathways providing adaptive responses the children having signs of endothelial dysfunction are characterized by a more pronounced dysregulation of autonomous nervous system both in a resting state and under a functional load simulation, and also by a high strain of adaptation pathways. The lack of autonomous support of cardiovascular system is caused by inadequate adaptive responses of both central regulatory bodies (hypothalamus, vasomotor center) and peripheral receptors. Mainly the failure of segmental autonomous (parasympathetic) structures was revealed. The mode of their response to stress in this case corresponds to that in healthy individuals but at a lower functional level. There is a reduced aerobic capacity of the organism by the Robinson index, contributing to low adaptive range to non-specific stress in children being domiciled on contaminated territories including children having the endothelial dysfunction. Conclusions. Endothelial dysfunction was associated with more pronounced manifestations of autonomic dysregulation and reduced aerobic capacity of the organism being the risk factors of development of a range of somatic diseases requiring the development of prevention measures in children permanently residing in contaminated areas. autonomous nervous system balance, endothelial dysfunction, children, Chornobyl accident. V. G. Kondrashova, I. E. Kolpakov, V. Yu. Vdovenko, O. S. Leonovych, O. M. Lytvynets, E. I. Stepanova.
Insights into the background of autonomic medicine.
Laranjo, Sérgio; Geraldes, Vera; Oliveira, Mário; Rocha, Isabel
2017-10-01
Knowledge of the physiology underlying the autonomic nervous system is pivotal for understanding autonomic dysfunction in clinical practice. Autonomic dysfunction may result from primary modifications of the autonomic nervous system or be secondary to a wide range of diseases that cause severe morbidity and mortality. Together with a detailed history and physical examination, laboratory assessment of autonomic function is essential for the analysis of various clinical conditions and the establishment of effective, personalized and precise therapeutic schemes. This review summarizes the main aspects of autonomic medicine that constitute the background of cardiovascular autonomic dysfunction. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
La Fountaine, Michael F
2017-11-29
Concussion is defined as a complex pathophysiological process affecting the brain that is induced by the application or transmission of traumatic biomechanical forces to the head. The result of the impact is the onset of transient symptoms that may be experienced for approximately 2weeks in most individuals. However, in some individuals, symptoms may not resolve and persist for a protracted period and a chronic injury ensues. Concussion symptoms are generally characterized by their emergence through changes in affect, cognition, or multi-sensory processes including the visual and vestibular systems. An emerging consequence of concussion is the presence of cardiovascular autonomic nervous system dysfunction that is most apparent through hemodynamic perturbations and provocations. Further interrogation of data that are derived from continuous digital electrocardiograms and/or beat-to-beat blood pressure monitoring often reveal an imbalance of parasympathetic or sympathetic nervous system activity during a provocation after an injury. The disturbance is often greatest early after injury and a resolution of the dysfunction occurs in parallel with other symptoms. The possibility exists that the disturbance may remain if the concussion does not resolve. Unfortunately, there is little evidence in humans to support the etiology for the emergence of this post-injury dysfunction. As such, evidence from experimental models of traumatic brain injury and casual observations from human studies of concussion implicate a transient abnormality of the anatomical structures and functions of the cardiovascular autonomic nervous system. The purpose of this review article is to provide a mechanistic narrative of multi-disciplinary evidence to support the anatomical and physiological basis of cardiovascular autonomic nervous system dysfunction after concussion. The review article will identify the anatomical structures of the autonomic nervous system and propose a theoretical framework to demonstrate the potential effects of concussive head trauma on corresponding outcome measurements. Evidence from experimental models will be used to describe abnormal cellular functions and provide a hypothetical mechanistic basis for the respective responses of the anatomical structures to concussive head trauma. When available, example observations from the human concussion literature will be presented to demonstrate the effects of concussive head trauma that may be related to anomalous activity in the respective anatomical structures of the autonomic nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.
The crosstalk between autonomic nervous system and blood vessels
Sheng, Yulan; Zhu, Li
2018-01-01
The autonomic nervous system (ANS), comprised of two primary branches, sympathetic and parasympathetic nervous system, plays an essential role in the regulation of vascular wall contractility and tension. The sympathetic and parasympathetic nerves work together to balance the functions of autonomic effector organs. The neurotransmitters released from the varicosities in the ANS can regulate the vascular tone. Norepinephrine (NE), adenosine triphosphate (ATP) and Neuropeptide Y (NPY) function as vasoconstrictors, whereas acetylcholine (Ach) and calcitonin gene-related peptide (CGRP) can mediate vasodilation. On the other hand, vascular factors, such as endothelium-derived relaxing factor nitric oxide (NO), and constriction factor endothelin, play an important role in the autonomic nervous system in physiologic conditions. Endothelial dysfunction and inflammation are associated with the sympathetic nerve activity in the pathological conditions, such as hypertension, heart failure, and diabetes mellitus. The dysfunction of the autonomic nervous system could be a risk factor for vascular diseases and the overactive sympathetic nerve is detrimental to the blood vessel. In this review, we summarize findings concerning the crosstalk between ANS and blood vessels in both physiological and pathological conditions and hope to provide insight into the development of therapeutic interventions of vascular diseases. PMID:29593847
Autonomic dysfunction in pediatric patients with headache: migraine versus tension-type headache.
Rabner, Jonathan; Caruso, Alessandra; Zurakowski, David; Lazdowsky, Lori; LeBel, Alyssa
2016-12-01
To examine symptoms indicating central nervous system (CNS) autonomic dysfunction in pediatric patients with migraine and tension-type headache. A retrospective chart review assessed six symptoms (i.e. constipation, insomnia, dizziness, blurry vision, abnormal blood pressure, and cold and clammy palms and soles) indicating central nervous system (CNS) autonomic dysfunction in 231 patients, ages 5-18 years, diagnosed with migraine, tension-type headache (TTH), or Idiopathic Scoliosis (IS). Higher frequencies of "insomnia," "dizziness," and "cold and clammy palms and soles" were found for both migraine and TTH patients compared to the IS control group (P < 0.001). Frequencies of all six symptoms were greater in TTH than migraine patients with "cold and clammy palms and soles" reaching significance (P < 0.001). The need for prospective research investigating autonomic dysfunction in pediatric headache patients is discussed.
Pericyte function in the physiological central nervous system.
Muramatsu, Rieko; Yamashita, Toshihide
2014-01-01
Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Space, Time, and Dyslexia: Central Nervous System Factors in Reading Disability.
ERIC Educational Resources Information Center
Krippner, Stanley
Developmental and post-traumatic dyslexia are discussed in terms of a dysfunction of the central nervous system resulting in reading disabilities. The relationship of reading to other language functions is considered, with emphasis on the temporal aspects of speech and reading. An interdisciplinary approach is held necessary for the diagnosis of…
Jóźwiak, Sergiusz; Podogrodzki, Jacek
2010-01-01
The paper compares effectiveness of NDT-Bobath and Vojta methods in the treatment of selected dysfunctions of the nervous system in children. It evaluates applicability of both methods in prenatal and perinatal injury of the central nervous system, myelomeningocele, Down syndrome and spasticity. The existing literature is supplemented by own clinical experience of the authors. The paper forms the opinion on the constant debates on the superiority of one method over another.
Music and Autonomic Nervous System (Dys)function
Ellis, Robert J.; Thayer, Julian F.
2010-01-01
Despite a wealth of evidence for the involvement of the autonomic nervous system (ANS) in health and disease and the ability of music to affect ANS activity, few studies have systematically explored the therapeutic effects of music on ANS dysfunction. Furthermore, when ANS activity is quantified and analyzed, it is usually from a point of convenience rather than from an understanding of its physiological basis. After a review of the experimental and therapeutic literatures exploring music and the ANS, a “Neurovisceral Integration” perspective on the interplay between the central and autonomic nervous systems is introduced, and the associated implications for physiological, emotional, and cognitive health are explored. The construct of heart rate variability is discussed both as an example of this complex interplay and as a useful metric for exploring the sometimes subtle effect of music on autonomic response. Suggestions for future investigations using musical interventions are offered based on this integrative account. PMID:21197136
ERIC Educational Resources Information Center
Chen, Su-Ru; Chiu, Hung-Wen; Lee, Yann-Jinn; Sheen, Tzong-Chi; Jeng, Chii
2012-01-01
Child obesity is frequently associated with dysfunction of autonomic nervous system. Children in pubertal development were suggested to be vulnerable to autonomic nervous system problems such as decrease of heart rate variability from dysregulation of metabolic control. This study explored the influence of pubertal development on autonomic nervous…
Ruskin, David N.; Masino, Susan A.
2012-01-01
A link between metabolism and brain function is clear. Since ancient times, epileptic seizures were noted as treatable with fasting, and historical observations of the therapeutic benefits of fasting on epilepsy were confirmed nearly 100 years ago. Shortly thereafter a high fat, low-carbohydrate ketogenic diet (KD) debuted as a therapy to reduce seizures. This strict regimen could mimic the metabolic effects of fasting while allowing adequate caloric intake for ongoing energy demands. Today, KD therapy, which forces predominantly ketone-based rather than glucose-based metabolism, is now well-established as highly successful in reducing seizures. Cellular metabolic dysfunction in the nervous system has been recognized as existing side-by-side with nervous system disorders – although often with much less obvious cause-and-effect as the relationship between fasting and seizures. Rekindled interest in metabolic and dietary therapies for brain disorders complements new insight into their mechanisms and broader implications. Here we describe the emerging relationship between a KD and adenosine as a way to reset brain metabolism and neuronal activity and disrupt a cycle of dysfunction. We also provide an overview of the effects of a KD on cognition and recent data on the effects of a KD on pain, and explore the relative time course quantified among hallmark metabolic changes, altered neuron function and altered animal behavior assessed after diet administration. We predict continued applications of metabolic therapies in treating dysfunction including and beyond the nervous system. PMID:22470316
Intranasal Insulin: A Novel Treatment for Gulf War Multisymptom Illness
2017-10-01
nervous system (CNS). Over the years it has been found that cognitive complaints have been particularly troublesome to GWV. Recent studies have shown a...central nervous system (CNS). Over the years it has been found that cognitive complaints have been particularly troublesome to GWV. Recent studies...GWV may reflect executive system dysfunction (Tillman et al., 2010) as reflected by slower motor responses across multiple cognitive domains (RAC
Santisteban, Monica M; Zubcevic, Jasenka; Baekey, David M; Raizada, Mohan K
2013-08-01
It is widely accepted that the pathophysiology of hypertension involves autonomic nervous system dysfunction, as well as a multitude of immune responses. However, the close interplay of these systems in the development and establishment of high blood pressure and its associated pathophysiology remains elusive and is the subject of extensive investigation. It has been proposed that an imbalance of the neuro-immune systems is a result of an enhancement of the "proinflammatory sympathetic" arm in conjunction with dampening of the "anti-inflammatory parasympathetic" arm of the autonomic nervous system. In addition to the neuronal modulation of the immune system, it is proposed that key inflammatory responses are relayed back to the central nervous system and alter the neuronal communication to the periphery. The overall objective of this review is to critically discuss recent advances in the understanding of autonomic immune modulation, and propose a unifying hypothesis underlying the mechanisms leading to the development and maintenance of hypertension, with particular emphasis on the bone marrow, as it is a crucial meeting point for neural, immune, and vascular networks.
Santisteban, Monica M.; Zubcevic, Jasenka; Baekey, David M.; Raizada, Mohan K.
2013-01-01
It is widely accepted that the pathophysiology of hypertension involves autonomic nervous system dysfunction, as well as a multitude of immune responses. However, the close interplay of these systems in the development and establishment of high blood pressure and its associated pathophysiology remains elusive and is the subject of extensive investigation. It has been proposed that an imbalance of the neuro-immune systems is a result of an enhancement of the “pro-inflammatory sympathetic” arm in conjunction with dampening of the “anti-inflammatory parasympathetic” arm of the autonomic nervous system. In addition to the neuronal modulation of the immune system, it is proposed that key inflammatory responses are relayed back to the central nervous system and alter the neuronal communication to the periphery. The overall objective of this review is to critically discuss recent advances in the understanding of autonomic immune modulation, and propose a unifying hypothesis underlying the mechanisms leading to the development and maintenance of hypertension, with particular emphasis on the bone marrow, as it is a crucial meeting point for neural, immune, and vascular networks. PMID:23715920
Central and peripheral nervous systems: master controllers in cancer metastasis.
Shi, Ming; Liu, Dan; Yang, Zhengyan; Guo, Ning
2013-12-01
Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.
Burwell, R G; Dangerfield, P H; Freeman, B J C
2008-01-01
There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). In recent years encouraging advances thought to be related to the pathogenesis of AIS have been made in several fields. After reviewing concepts of AIS pathogenesis we formulated a collective model of pathogenesis. The central concept of this collective model is a normal neuro-osseous timing of maturation (NOTOM) system operating in a child's internal world during growth and maturation; this provides a dynamic physiological balance of postural equilibrium continuously renewed between two synchronous, polarized processes (NOTOM escalator) linked through sensory input and motor output, namely: 1) osseous escalator-increasing skeletal size and relative segmental mass, and 2) neural escalator - including the CNS body schema. The latter is recalibrated continuously as the body adjusts to biomechanical and kinematic changes resulting from skeletal enlargement, enabling it to coordinate motor actions. We suggest that AIS progression results from abnormality of the neural and/or osseous components of these normal escalator in time and/or space - as asynchrony and/or asymmetries - which cause a failure of neural systems to control asymmetric growth of a rapidly enlarging and moving adolescent spine. This putative initiating asymmetric growth in the spine is explained in separate papers as resulting from dysfunction of the hypothalamus expressed through the sympathetic nervous system (leptin-sympathetic nervous system concept for AIS pathogenesis). In girls, the expression of AIS may result from disharmony between the somatic and autonomic nervous systems - relative postural maturational delay in the somatic nervous system and hypothalamic dysfunction in the autonomic nervous system, with the conflict being fought out in the spine and trunk of the girl and compounded by biomechanical spinal growth modulation.
Vascular dysfunctions following spinal cord injury
Popa, F; Grigorean, VT; Onose, G; Sandu, AM; Popescu, M; Burnei, G; Strambu, V; Sinescu, C
2010-01-01
The aim of this article is to analyze the vascular dysfunctions occurring after spinal cord injury (SCI). Vascular dysfunctions are common complications of SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. Neuroanatomy and physiology of autonomic nervous system, sympathetic and parasympathetic, is reviewed. SCI implies disruption of descendent pathways from central centers to spinal sympathetic neurons, originating in intermediolateral nuclei of T1–L2 cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant vascular dysfunction. Spinal shock occurs during the acute phase following SCI and it is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe arterial hypotension and bradycardia. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Arterial hypotension with orthostatic hypotension occurs in both acute and chronic phases. The etiology is multifactorial. We described a few factors influencing the orthostatic hypotension occurrence in SCI: sympathetic nervous system dysfunction, low plasma catecholamine levels, rennin–angiotensin–aldosterone activity, peripheral alpha–adrenoceptor hyperresponsiveness, impaired function of baroreceptors, hyponatremia and low plasmatic volume, cardiovascular deconditioning, morphologic changes in sympathetic neurons, plasticity within spinal circuits, and motor deficit leading to loss of skeletal muscle pumping activity. Additional associated cardiovascular concerns in SCI, such as deep vein thrombosis and long–term risk for coronary heart disease and systemic atherosclerosis are also described. Proper prophylaxis, including non–pharmacologic and pharmacological strategies, diminishes the occurrence of the vascular dysfunction following SCI. Each vascular disturbance requires a specific treatment. PMID:20945818
Medical and surgical management of esophageal and gastric motor dysfunction.
Awad, R A
2012-09-01
he occurrence of esophageal and gastric motor dysfunctions happens, when the software of the esophagus and the stomach is injured. This is really a program previously established in the enteric nervous system as a constituent of the newly called neurogastroenterology. The enteric nervous system is composed of small aggregations of nerve cells, enteric ganglia, the neural connections between these ganglia, and nerve fibers that supply effectors tissues, including the muscle of the gut wall. The wide range of enteric neuropathies that includes esophageal achalasia and gastroparesis highlights the importance of the enteric nervous system. A classification of functional gastrointestinal disorders based on symptoms has received attention. However, a classification based solely in symptoms and consensus may lack an integral approach of disease. As an alternative to the Rome classification, an international working team in Bangkok presented a classification of motility disorders as a physiology-based diagnosis. Besides, the Chicago Classification of esophageal motility was developed to facilitate the interpretation of clinical high-resolution esophageal pressure topography studies. This review covers exclusively the medical and surgical management of the esophageal and gastric motor dysfunction using evidence from well-designed studies. Motor control of the esophagus and the stomach, motor esophageal and gastric alterations, treatment failure, side effects of PPIs, overlap of gastrointestinal symptoms, predictors of treatment, burden of GERD medical management, data related to conservative treatment vs. antireflux surgery, and postsurgical esophagus and gastric motor dysfunction are also taken into account.
Cardiac dysfunctions following spinal cord injury
Sandu, AM; Popescu, M; Iacobini, MA; Stoian, R; Neascu, C; Popa, F
2009-01-01
The aim of this article is to analyze cardiac dysfunctions occurring after spinal cord injury (SCI). Cardiac dysfunctions are common complications following SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. We reviewed epidemiology of cardiac disturbances after SCI, and neuroanatomy and pathophysiology of autonomic nervous system, sympathetic and parasympathetic. SCI causes disruption of descendent pathways from central control centers to spinal sympathetic neurons, originating into intermediolateral nuclei of T1–L2 spinal cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant cardiac dysfunction. Impairment of autonomic nervous control system, mostly in patients with cervical or high thoracic SCI, causes cardiac dysrrhythmias, especially bradycardia and, rarely, cardiac arrest, or tachyarrhytmias and hypotension. Specific complication dependent on the period of time after trauma like spinal shock and autonomic dysreflexia are also reviewed. Spinal shock occurs during the acute phase following SCI and is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe bradycardia and hypotension. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Besides all this, additional cardiac complications, such as cardiac deconditioning and coronary heart disease may also occur. Proper prophylaxis, including nonpharmacologic and pharmacological strategies and cardiac rehabilitation diminish occurrence of the cardiac dysfunction following SCI. Each type of cardiac disturbance requires specific treatment. PMID:20108532
Baumert, Mathias; Brown, Rachael; Duma, Stephen; Broe, G Anthony; Kabir, Muammar M; Macefield, Vaughan G
2012-01-01
Heart rate and respiration display fluctuations that are interlinked by central regulatory mechanisms of the autonomic nervous system (ANS). Joint assessment of respiratory time series along with heart rate variability (HRV) may therefore provide information on ANS dysfunction. The aim of this study was to investigate cardio-respiratory interaction in patients with Parkinson's disease (PD), a neurodegenerative disorder that is associated with progressive ANS dysfunction. Short-term ECG and respiration were recorded in 25 PD patients and 28 healthy controls during rest. To assess ANS dysfunction we analyzed joint symbolic dynamics of heart rate and respiration, cardio-respiratory synchrograms along with heart rate variability. Neither HRV nor cardio-respiratory synchrograms were significantly altered in PD patients. Symbolic analysis, however, identified a significant reduction in cardio-respiratory interactions in PD patients compared to healthy controls (16 ± 3.6 % vs. 20 ± 6.1 %; p= 0.02). In conclusion, joint symbolic analysis of cardio-respiratory dynamics provides a powerful tool to detect early signs of autonomic nervous system dysfunction in Parkinson's disease patients at an early stage of the disease.
Diminished parathyroid gland responsiveness to hypocalcemia in diabetic patients with uremia.
Heidbreder, E; Götz, R; Schafferhans, K; Heidland, A
1986-01-01
The parathyroid gland responsiveness to hypocalcemia induced by short-term calcium-free hemodialysis in patients with insulin-dependent diabetes mellitus was investigated in comparison with 10 nondiabetic uremic patients and compared with test results from the autonomic nervous system. Diabetic patients had lower C-terminal parathyroid hormone (cPTH) levels before hemodialysis than uremic control patients and showed a significantly smaller increase in cPTH during hypocalcemia. The neurological tests revealed severe disturbances of the autonomic functions in the diabetic group. In conclusion, the disturbances observed in the parathyroid secretory pattern are probably caused by gland dysfunction; it is hypothesized that the defective autonomic nervous system has an additional effect on the development of this hormonal dysfunction.
Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.
Dantzer, Robert
2018-01-01
Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.
Recent Understanding on Diagnosis and Management of Central Nervous System Vasculitis in Children
Iannetti, Ludovico; Zito, Roberta; Bruschi, Simone; Papetti, Laura; Ulgiati, Fiorenza; Nicita, Francesco; Del Balzo, Francesca; Spalice, Alberto
2012-01-01
Central nervous system vasculitides in children may develop as a primary condition or secondary to an underlying systemic disease. Many vasculitides affect both adults and children, while some others occur almost exclusively in childhood. Patients usually present with systemic symptoms with single or multiorgan dysfunction. The involvement of central nervous system in childhood is not frequent and it occurs more often as a feature of subtypes like childhood polyarteritis nodosa, Kawasaki disease, Henoch Schönlein purpura, and Bechet disease. Primary angiitis of the central nervous system of childhood is a reversible cause of severe neurological impairment, including acute ischemic stroke, intractable seizures, and cognitive decline. The first line therapy of CNS vasculitides is mainly based on corticosteroids and immunosuppressor drugs. Other strategies include plasmapheresis, immunoglobulins, and biologic drugs. This paper discusses on current understanding of most frequent primary and secondary central nervous system vasculitides in children including a tailored-diagnostic approach and new evidence regarding treatment. PMID:23008735
Autonomic Nervous System in Paralympic Athletes with Spinal Cord Injury.
Walter, Matthias; Krassioukov, Andrei V
2018-05-01
Individuals sustaining a spinal cord injury (SCI) frequently suffer from sensorimotor and autonomic impairment. Damage to the autonomic nervous system results in cardiovascular, respiratory, bladder, bowel, and sexual dysfunctions, as well as temperature dysregulation. These complications not only impede quality of life, but also affect athletic performance of individuals with SCI. This article summarizes existing evidence on how damage to the spinal cord affects the autonomic nervous system and impacts the performance in athletes with SCI. Also discussed are frequently used performance-enhancing strategies, with a special focus on their legal aspect and implication on the athletes' health. Copyright © 2018 Elsevier Inc. All rights reserved.
Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation.
Yuan, Junhui; Matsuura, Eiji; Higuchi, Yujiro; Hashiguchi, Akihiro; Nakamura, Tomonori; Nozuma, Satoshi; Sakiyama, Yusuke; Yoshimura, Akiko; Izumo, Shuji; Takashima, Hiroshi
2013-04-30
To identify the clinical features of Japanese patients with suspected hereditary sensory and autonomic neuropathy (HSAN) on the basis of genetic diagnoses. On the basis of clinical, in vivo electrophysiologic, and pathologic findings, 9 Japanese patients with sensory and autonomic nervous dysfunctions were selected. Eleven known HSAN disease-causing genes and 5 related genes were screened using a next-generation sequencer. A homozygous mutation, c.3993delGinsTT, was identified in exon 22 of SCN9A from 2 patients/families. The clinical phenotype was characterized by adolescent or congenital onset with loss of pain and temperature sensation, autonomic nervous dysfunctions, hearing loss, and hyposmia. Subsequently, this mutation was discovered in one of patient 1's sisters, who also exhibited sensory and autonomic nervous system dysfunctions, with recurrent fractures being the most predominant feature. Nerve conduction studies revealed definite asymmetric sensory nerve involvement in patient 1. In addition, sural nerve pathologic findings showed loss of large myelinated fibers in patient 1, whereas the younger patient showed normal sural nerve pathology. We identified a novel homozygous mutation in SCN9A from 2 Japanese families with autosomal recessive HSAN. This loss-of-function SCN9A mutation results in disturbances in the sensory, olfactory, and autonomic nervous systems. We propose that SCN9A mutation results in the new entity of HSAN type IID, with additional symptoms including hyposmia, hearing loss, bone dysplasia, and hypogeusia.
Dysfunctional stress responses in chronic pain.
Woda, Alain; Picard, Pascale; Dutheil, Frédéric
2016-09-01
Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cardiac Dysautonomia in Huntington's Disease.
Abildtrup, Mads; Shattock, Michael
2013-01-01
Huntington's disease is a fatal, hereditary, neurodegenerative disorder best known for its clinical triad of progressive motor impairment, cognitive deficits and psychiatric disturbances. Although a disease of the central nervous system, mortality surveys indicate that heart disease is a leading cause of death. The nature of such cardiac abnormalities remains unknown. Clinical findings indicate a high prevalence of autonomic nervous system dysfunction - dysautonomia - which may be a result of pathology of the central autonomic network. Dysautonomia can have profound effects on cardiac health, and pronounced autonomic dysfunction can be associated with neurogenic arrhythmias and sudden cardiac death. Significant advances in the knowledge of neural mechanisms in cardiac disease have recently been made which further aid our understanding of cardiac mortality in Huntington's disease. Even so, despite the evidence of aberrant autonomic activity the potential cardiac consequences of autonomic dysfunction have been somewhat ignored. In fact, underlying cardiac abnormalities such as arrhythmias have been part of the exclusion criteria in clinical autonomic Huntington's disease research. A comprehensive analysis of cardiac function in Huntington's disease patients is warranted. Further experimental and clinical studies are needed to clarify how the autonomic nervous system is controlled and regulated in higher, central areas of the brain - and how these regions may be altered in neurological pathology, such as Huntington's disease. Ultimately, research will hopefully result in an improvement of management with the aim of preventing early death in Huntington's disease from cardiac causes.
Evolving Character of Chronic Central Nervous System HIV Infection
Price, Richard W.; Spudich, Serena S.; Peterson, Julia; Joseph, Sarah; Fuchs, Dietmar; Zetterberg, Henrik; Gisslén, Magnus; Swanstrom, Ronald
2014-01-01
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) begins early in systemic infection and continues throughout its untreated course. Despite a common cerebrospinal fluid inflammatory response, it is usually neurologically asymptomatic for much of this course, but can evolve in some individuals to HIV-associated dementia (HAD), a severe encephalopathy with characteristic cognitive and motor dysfunction. While widespread use of combination antiretroviral therapy (ART) has led to a marked decline in both the CNS infection and its neurologic severe consequence, HAD continues to afflict individuals presenting with advanced systemic infection in the developed world and a larger number in resource-poor settings where ART is more restricted. Additionally, milder CNS injury and dysfunction have broader prevalence, including in those treated with ART. Here we review the history and evolving nomenclature of HAD, its viral pathogenesis, clinical presentation and diagnosis, and treatment. PMID:24715483
Evolving character of chronic central nervous system HIV infection.
Price, Richard W; Spudich, Serena S; Peterson, Julia; Joseph, Sarah; Fuchs, Dietmar; Zetterberg, Henrik; Gisslén, Magnus; Swanstrom, Ronald
2014-02-01
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) begins early in systemic infection and continues throughout its untreated course. Despite a common cerebrospinal fluid inflammatory response, it is usually neurologically asymptomatic for much of this course, but can evolve in some individuals to HIV-associated dementia (HAD), a severe encephalopathy with characteristic cognitive and motor dysfunction. While widespread use of combination antiretroviral therapy (ART) has led to a marked decline in both the CNS infection and its neurologic severe consequence, HAD continues to afflict individuals presenting with advanced systemic infection in the developed world and a larger number in resource-poor settings where ART is more restricted. Additionally, milder CNS injury and dysfunction have broader prevalence, including in those treated with ART. Here we review the history and evolving nomenclature of HAD, its viral pathogenesis, clinical presentation and diagnosis, and treatment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Neuroscience Literacy: "Brain Tells" as Signals of Brain Dysfunction Affecting Daily Life.
Royeen, Charlotte B; Brašić, James R; Dvorak, Leah; Provoziak-O'Brien, Casey; Sethi, Chetna; Ahmad, S Omar
2016-01-01
The structures and circuits of the central and the peripheral nervous systems provide the basis for thinking, speaking, experiencing sensations, and performing perceptual and motor activities in daily life. Healthy people experience normal functioning without giving brain functions a second thought, while dysfunction of the neural circuits may lead to marked impairments in cognition, communication, sensory awareness, and performing perceptual and motor tasks. Neuroscience literacy provides the knowledge to associate the deficits observed in patients with the underlying deficits in the structures and circuits of the nervous system. The purpose of this paper is to begin the conversation in this area via a neuroscience literacy model of "Brain Tells," defined as stereotypical or observable behaviors often associated with brain dysfunction. Occupational therapists and other allied health professionals should be alert for the signs of "Brain Tells" that may be early warning signs of brain pathology. We also suggest that neuroscience literacy be emphasized in training provided to public safety workers, teachers, caregivers, and health care professionals at all levels.
Ewing, Graham E.
2009-01-01
There is a compelling argument that the occurrence of regressive autism is attributable to genetic and chromosomal abnormalities, arising from the overuse of vaccines, which subsequently affects the stability and function of the autonomic nervous system and physiological systems. That sense perception is linked to the autonomic nervous system and the function of the physiological systems enables us to examine the significance of autistic symptoms from a systemic perspective. Failure of the excretory system influences elimination of heavy metals and facilitates their accumulation and subsequent manifestation as neurotoxins: the long-term consequences of which would lead to neurodegeneration, cognitive and developmental problems. It may also influence regulation of neural hyperthermia. This article explores the issues and concludes that sensory dysfunction and systemic failure, manifested as autism, is the inevitable consequence arising from subtle DNA alteration and consequently from the overuse of vaccines. PMID:22666668
The effects of Chinese medicines on cAMP/PKA signaling in central nervous system dysfunction.
Li, Lin; Fan, Xiang; Zhang, Xi-Ting; Yue, Shao-Qian; Sun, Zuo-Yan; Zhu, Jin-Qiang; Zhang, Jun-Hua; Gao, Xiu-Mei; Zhang, Han
2017-06-01
Neuropathological injury in the mammalian adult central nervous system (CNS) may cause axon disruption, neuronal death and lasting neurological deficits. Failure of axon regeneration is one of the major challenges for CNS functional recovery. Recently, the cAMP/PKA signaling pathway has been proven to be a critical regulator for neuronal regeneration, neuroplasticity, learning and memory. Also, previous studies have shown the effects of Chinese medicines on the prevention and treatment of CNS dysfunction mediated in part by cAMP/PKA signaling. In this review, the authors discuss current knowledge of the role of cAMP/PKA signaling pathway in neuronal regeneration and provide an overview of the Chinese medicines that may enable CNS functional recovery via this signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
[Gastroparesis and other gastrointestinal symptoms in Parkinson's disease].
Santos-Garcia, D; de Deus, T; Tejera-Perez, C; Exposito-Ruiz, I; Suarez-Castro, E; Carpintero, P; Macias-Arribi, M
2015-09-16
Different gastrointestinal symptoms, such as excessive salivation, deterioration and other disorders affecting the teeth, dysphagia, gastroparesis, gastroesophageal reflux, constipation, difficult defecation or loss of weight are frequent events in all the stages of the development of Parkinson's disease and affect at least a third of the patients. These symptoms reflect the dysfunction of the enteric nervous system, and the stomach is one of the organs where alpha-synuclein is first deposited. Other factors, such as the dysfunction of structures in the central nervous system like the dorsal motor nucleus of the vagal nerve, hormonal factors or secondary effects deriving from the consumption of antiparkinsonian drugs, are involved in its origin. The present article offers a detailed review of the epidemiological, pathophysiological, clinical and therapeutic management aspects of the different gastrointestinal symptoms in Parkinson's disease.
Sex differences in the effects of androgens acting in the central nervous system on metabolism
Morford, Jamie; Mauvais-Jarvis, Franck
2016-01-01
One of the most sexually dimorphic aspects of metabolic regulation is the bidirectional modulation of glucose and energy homeostasis by testosterone in males and females. Testosterone deficiency predisposes men to metabolic dysfunction, with excess adiposity, insulin resistance, and type 2 diabetes, whereas androgen excess predisposes women to insulin resistance, adiposity, and type 2 diabetes. This review discusses how testosterone acts in the central nervous system, and especially the hypothalamus, to promote metabolic homeostasis or dysfunction in a sexually dimorphic manner. We compare the organizational actions of testosterone, which program the hypothalamic control of metabolic homeostasis during development, and the activational actions of testosterone, which affect metabolic function after puberty. We also discuss how the metabolic effect of testosterone is centrally mediated via the androgen receptor. PMID:28179813
Kogelnik, Andreas M; Loomis, Kristin; Hoegh-Petersen, Mette; Rosso, Fernando; Hischier, Courtney; Montoya, Jose G
2006-12-01
Twelve patients with long-standing symptoms of central nervous system (CNS) dysfunction were found to have elevated antibody titres to human herpesvirus-6 (HHV-6) and Epstein-Barr virus (EBV). All patients had four or more of the following neurocognitive symptoms: impaired cognitive functioning, slowed processing speed, sleep disturbance, short-term memory deficit, fatigue and symptoms consistent with depression. We sought to determine whether elevated antibodies to EBV and HHV-6 indicated chronic viral activation in patients with CNS dysfunction and if their symptoms could be improved by suppressing viral activity with oral valganciclovir. Patients with high IgG antibody titers against HHV-6 and EBV who were suffering from central nervous system dysfunction and debilitating fatigue for more than one year (median 3 years, range 1-8 years) were treated with 6 months of valganciclovir in an open label study. Nine out of 12 (75%) patients experienced near resolution of their symptoms, allowing them all to return to the workforce or full time activites. In the nine patients with a symptomatic response to treatment, EBV VCA IgG titers dropped from 1:2560 to 1:640 (p = 0.008) and HHV-6 IgG titers dropped from a median value of 1:1280 to 1:320 (p = 0.271). Clinically significant hematological toxicity or serious adverse events were not observed among the 12 patients. These preliminary clinical and laboratory observations merit additional studies to establish whether this clinical response is mediated by an antiviral effect of the drug, indirectly via immunomodulation or by placebo effect.
Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.
Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M
2016-06-13
Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.
Ji, Ru-Rong
2015-12-01
Itch and pain are closely related but also clearly distinct sensations. Pain is known to suppress itch, while analgesics such as morphine can provoke itch. However, in pathological and chronic conditions, pain and itch also have similarities. Dysfunction of the nervous system, as manifested by neural plastic changes in primary sensory neurons of the peripheral nervous system (peripheral sensitization) and spinal cord and brain stem neurons in the central nervous system (central sensitization) will result in chronic pain and itch. Importantly, these diseases also result from immune dysfunction, since inflammatory mediators can directly activate or sensitize nociceptive and pruriceptive neurons in the peripheral and central nervous system, leading to pain and itch hypersensitivity. In this mini-review, I discuss the roles of Toll-like receptors (TLRs), transient receptor potential ankyrin 1 (TRPA1) ion channel, and Nav1.7 sodium channel in regulating itch and inflammation, with special emphasis of neuronal TLR signaling and the interaction of TLR7 and TRPA1. Chronic pain and chronic itch are debilitating diseases and dramatically impact the life quality of patients. Targeting TLRs for the control of inflammation, neuroinflammation (inflammation restricted in the nervous system), and hyperexcitability of nociceptors and pruriceptors will lead to new therapeutics for the relief of chronic pain and chronic itch. Finally, given the shared mechanisms among chronic cough, chronic pain, and chronic itch and the demonstrated efficacy of the neuropathic pain drug gabapentin in treating chronic cough, novel therapeutics targeting TRPA1, Nav1.7, and TLRs may also help to alleviate refractory cough via modulating neuron-immune interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Koszewicz, Magdalena; Mendak, Magdalena; Konopka, Tomasz; Koziorowska-Gawron, Ewa; Budrewicz, Sławomir
2012-01-01
To conduct a clinical electrophysiologic evaluation of autonomic nervous system functions in patients with burning mouth syndrome and Parkinson disease and estimate the type and intensity of the autonomic dysfunction. The study involved 83 subjects-33 with burning mouth syndrome, 20 with Parkinson disease, and 30 controls. The BMS group included 27 women and 6 men (median age, 60.0 years), and the Parkinson disease group included 15 women and 5 men (median age, 66.5 years). In the control group, there were 20 women and 10 men (median age, 59.0 years). All patients were subjected to autonomic nervous system testing. In addition to the Low autonomic disorder questionnaire, heart rate variability (HRV), deep breathing (exhalation/inspiration [E/I] ratio), and sympathetic skin response (SSR) tests were performed in all cases. Parametric and nonparametric tests (ANOVA, Kruskal-Wallis, and Scheffe tests) were used in the statistical analysis. The mean values for HRV and E/I ratios were significantly lower in the burning mouth syndrome and Parkinson disease groups. Significant prolongation of SSR latency in the foot was revealed in both burning mouth syndrome and Parkinson disease patients, and lowering of the SSR amplitude occurred in only the Parkinson disease group. The autonomic questionnaire score was significantly higher in burning mouth syndrome and Parkinson disease patients than in the control subjects, with the Parkinson disease group having the highest scores. In patients with burning mouth syndrome, a significant impairment of both the sympathetic and parasympathetic nervous systems was found but sympathetic/parasympathetic balance was preserved. The incidence and intensity of autonomic nervous system dysfunction was similar in patients with burning mouth syndrome and Parkinson disease, which may suggest some similarity in their pathogeneses.
Behavior as a sentry of metal toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, B.
1978-01-01
Many of the toxic properties of metals are expressed as behavioral aberrations. Some of these arise from direct actions on the central nervous system. Others arise from primary events elsewhere, but still influence behavior. Toxicity may be expressed either as objectively measurable phenomena, such as ataxia, or as subjective complaints, such as depression. In neither instance is clinical medicine equipped to provide assessments of subtle, early indices of toxicity. Reviewers of visual disturbances, paresthesia, and mental retardation exemplify the potential contribution of psychology to the toxicology of metals. Behavior and nervous system functions act as sensitive mirrors of metal toxicity.more » Sensitivity is the prime aim in environmental health assessments. Early detection of adverse effects, before they progress to irreversibility, underlies the strategy for optimal health protection. Some of the toxic actions of metals originate in direct nervous system dysfunction. Others may reflect disturbances of systems less directly linked to behavior than the central nervous system. But behavior, because it expresses the integrated functioning of the organism, can indicate flaws in states and processes outside the nervous system.« less
2009-01-01
Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans. PMID:19878575
Márquez, Manlio F; Gómez-Flores, Jorge Rafael; González-Hermosillo, Jesús A; Ruíz-Siller, Teresita de Jesús; Cárdenas, Manuel
2016-12-29
Vasovagal or neurocardiogenic syncope is a common clinical situation and, as with other entities associated with orthostatic intolerance, the underlying condition is a dysfunction of the autonomic nervous system. This article reviews various aspects of vasovagal syncope, including its relationship with orthostatic intolerance and the role of the autonomic nervous system in it. A brief history of the problem is given, as well as a description of how the names and associated concepts have evolved. The response of the sympathetic system to orthostatic stress, the physiology of the baroreflex system and the neurohumoral changes that occur with standing are analyzed. Evidence is presented of the involvement of the autonomic nervous system, including studies of heart rate variability, microneurography, cardiac innervation, and molecular genetic studies. Finally, we describe different studies on the use of beta-blockers and norepinephrine transporter inhibitors (sibutramine, reboxetine) and the rationality of their use to prevent this type of syncope. Creative Commons
Undiagnosed neurological disease as a potential cause of male lower urinary tract symptoms.
Wei, Diana Y; Drake, Marcus J
2016-01-01
In the central nervous system there are many regulatory processes controlling the lower urinary tract. This review considers the possibility that urinary dysfunction may precede diagnosis of neurological disease. Lower urinary tract symptoms (LUTS) occur early in multiple system atrophy, Parkinson's disease and normal pressure hydrocephalus, and may present before neurological diagnosis. Some people present with LUTS and subsequently are diagnosed with multiple sclerosis or a spinal condition. In male LUTS, the symptoms could reflect early stages of a neurological disease, which has not yet been diagnosed ('occult neurology'). Key symptoms include erectile dysfunction, retrograde ejaculation, enuresis, loss of filling sensation or unexplained stress urinary incontinence. Directed questioning should enquire about visual symptoms, back pain, anosmia, bowel dysfunction and incontinence, or memory loss. Examination features can include resting tremor, 'croaky' speech, abnormal gait, orthostatic hypotension, ataxia, or altered perineal sensation. Imaging, such as MRI scan, should only be requested after expert neurological examination, to ensure the correct parts of the central nervous system are scanned with appropriate radiological protocols. Urologists should consider an undiagnosed neurological condition can be present in a few cases. Any finding should be further evaluated by colleagues with relevant expertise.
Does stress induce bowel dysfunction?
Chang, Yu-Ming; El-Zaatari, Mohamad; Kao, John Y
2014-08-01
Psychological stress is known to induce somatic symptoms. Classically, many gut physiological responses to stress are mediated by the hypothalamus-pituitary-adrenal axis. There is, however, a growing body of evidence of stress-induced corticotrophin-releasing factor (CRF) release causing bowel dysfunction through multiple pathways, either through the HPA axis, the autonomic nervous systems, or directly on the bowel itself. In addition, recent findings of CRF influencing the composition of gut microbiota lend support for the use of probiotics, antibiotics, and other microbiota-altering agents as potential therapeutic measures in stress-induced bowel dysfunction.
Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon.
Ma, Marek
2013-12-01
Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed. © 2013.
Neuropathophysiology of functional gastrointestinal disorders
Wood, Jackie D
2007-01-01
The investigative evidence and emerging concepts in neurogastroenterology implicate dysfunctions at the levels of the enteric and central nervous systems as underlying causes of the prominent symptoms of many of the functional gastrointestinal disorders. Neurogastroenterological research aims for improved understanding of the physiology and pathophysiology of the digestive subsystems from which the arrays of functional symptoms emerge. The key subsystems for defecation-related symptoms and visceral hyper-sensitivity are the intestinal secretory glands, the musculature and the nervous system that controls and integrates their activity. Abdominal pain and discomfort arising from these systems adds the dimension of sensory neurophysiology. This review details current concepts for the underlying pathophysiology in terms of the physiology of intestinal secretion, motility, nervous control, sensing function, immuno-neural communication and the brain-gut axis. PMID:17457962
Alpha-7 Nicotinic Receptors in Nervous System Disorders: From Function to Therapeutic Perspectives.
De Jaco, Antonella; Bernardini, Laura; Rosati, Jessica; Tata, Ada Maria
2017-01-01
The α7 nicotinic receptor consists of identical subunits and is one of the most abundant acetylcholine receptors in the mammalian central nervous system. However its expression is also found in the peripheral nervous system as well as in the immune system and various peripheral tissues. Nicotinic Receptors: They are involved in the regulation of several activities ranging from excitatory neurotransmission, the modulation of the release of several neurotransmitters, regulation of neurite outgrowth, and even neuronal survival/death. Its expression is found in brain areas that underlie learning and memory, suggesting their involvement in regulating cognitive functions. The α7-nicotinic receptor has a strategic role during development in regulating molecular pathways activated during neurogenesis. Because of its pleiotropic effects, receptor dysfunction or dysregulated expression is found in pathophysiological conditions of the nervous system including neurodegenerative diseases and neurodevelopmental disorders. Here we review the physiological and pathological roles of alpha-7 nicotinic receptor in different nervous system disorders and the current therapeutic strategies developed to target selectively this receptor for potentiating or reducing its functions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Interoceptive inference: From computational neuroscience to clinic.
Owens, Andrew P; Allen, Micah; Ondobaka, Sasha; Friston, Karl J
2018-04-22
The central and autonomic nervous systems can be defined by their anatomical, functional and neurochemical characteristics, but neither functions in isolation. For example, fundamental components of autonomically mediated homeostatic processes are afferent interoceptive signals reporting the internal state of the body and efferent signals acting on interoceptive feedback assimilated by the brain. Recent predictive coding (interoceptive inference) models formulate interoception in terms of embodied predictive processes that support emotion and selfhood. We propose interoception may serve as a way to investigate holistic nervous system function and dysfunction in disorders of brain, body and behaviour. We appeal to predictive coding and (active) interoceptive inference, to describe the homeostatic functions of the central and autonomic nervous systems. We do so by (i) reviewing the active inference formulation of interoceptive and autonomic function, (ii) survey clinical applications of this formulation and (iii) describe how it offers an integrative approach to human physiology; particularly, interactions between the central and peripheral nervous systems in health and disease. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Psychological Perspectives in Assessing Mathematics Learning Needs
ERIC Educational Resources Information Center
Augustyniak, Kristine; Murphy, Jacqueline; Phillips, Donna Kester
2005-01-01
While the definition of learning disabilities has been the subject of controversy for decades, the current federal classification system identifies three specific areas of deficit: reading, written language, and mathematics and maintains the presumption that the disabilities are a result of a central nervous system dysfunction. In contrast to the…
Roy, Jean-Sébastien; Bouyer, Laurent J; Langevin, Pierre; Mercier, Catherine
2017-11-01
To a large extent, management of musculoskeletal disorders has traditionally focused on structural dysfunctions found within the musculoskeletal system, mainly around the affected joint. While a structural-dysfunction approach may be effective for musculoskeletal conditions in some populations, especially in acute presentations, its effectiveness remains limited in patients with recurrent or chronic musculoskeletal pain. Numerous studies have shown that the human central nervous system can undergo plastic reorganizations following musculoskeletal disorders; however, they can be maladaptive and contribute to altered joint control and chronic pain. In this Viewpoint, the authors argue that to improve rehabilitation outcomes in patients with chronic musculoskeletal pain, a global view of the disorder that incorporates both central (neural) and peripheral (joint-level) changes is needed. The authors also discuss the challenge of evaluating and rehabilitating central changes and the need for large, high-level studies to evaluate approaches incorporating central and peripheral changes and emerging therapies. J Orthop Sports Phys Ther 2017;47(11):817-821. doi:10.2519/jospt.2017.0608.
Kujawska-Danecka, Hanna; Masiak, Anna; Smoleńska, Zaneta; Zdrojewski, Zbigniew
2011-01-01
The peripheral nervous system is usually involved in the majority of systemic connective tissue diseases, particularly in systemic lupus erythematosus, Sjögren's syndrome, vasculitis and systemic sclerosis. The pathogenesis of lesions in the peripheral nervous system associated with the autoimmune process is complex and it appears that two mechanisms, immunological and ischemic, are of greatest importance. Structures of the nervous system may be damaged by several autoantibodies (e.g. antineuronal, anti-nerve growth factor, anti-neurotrophins), by cytotoxic effects ofproinflammatory cytokines and by activated cells of the immune system. Local ischemia and hypoxia of neurons caused by inflammation of vasa nervosum represents the second significant mechanism leading to damage of nerve fibres in the peripheral nervous system. We present 3 cases with involvement of the peripheral nervous system as a dominant feature in the clinical picture of systemic connective tissue diseases. Clinical conditions in which the peripheral nervous system is involved include peripheral sensory and sensorimotor polyneuropathy, mononeuropathies, cranial neuropathies, acute inflammatory demyelinating polyneuropathy (Guillian-Barré syndrome), chronic inflammatory demyelinating polyneuropathy, plexopathy, myasthenia gravis, and dysfunctions of the autonomic nervous system. The diagnosis is based on clinical symptoms reported by the patient and disclosed during neurologic examination. The importance of electrophysiologic tests is advocated. Selection of treatment depends on the patient's clinical condition, as well as on the clinical form and type of disease. Treatment relies principally on glucocorticosteroids, intravenous immunoglobulins, cyclophosphamide, and other immunosuppressive drugs. Plasmapheresis and rituximab are administered in severe cases. Rehabilitation of the patient appears to be an important element of therapy. Cases with neurologic symptoms as the first and often the sole manifestation of systemic connective tissue disease are particularly problematic requiring a multidimensional approach; their process of diagnosis and treatment is usually long.
Morabito, Giuseppe; Giannelli, Serena G; Ordazzo, Gabriele; Bido, Simone; Castoldi, Valerio; Indrigo, Marzia; Cabassi, Tommaso; Cattaneo, Stefano; Luoni, Mirko; Cancellieri, Cinzia; Sessa, Alessandro; Bacigaluppi, Marco; Taverna, Stefano; Leocani, Letizia; Lanciego, José L; Broccoli, Vania
2017-12-06
The lack of technology for direct global-scale targeting of the adult mouse nervous system has hindered research on brain processing and dysfunctions. Currently, gene transfer is normally achieved by intraparenchymal viral injections, but these injections target a restricted brain area. Herein, we demonstrated that intravenous delivery of adeno-associated virus (AAV)-PHP.B viral particles permeated and diffused throughout the neural parenchyma, targeting both the central and the peripheral nervous system in a global pattern. We then established multiple procedures of viral transduction to control gene expression or inactivate gene function exclusively in the adult nervous system and assessed the underlying behavioral effects. Building on these results, we established an effective gene therapy strategy to counteract the widespread accumulation of α-synuclein deposits throughout the forebrain in a mouse model of synucleinopathy. Transduction of A53T-SCNA transgenic mice with AAV-PHP.B-GBA1 restored physiological levels of the enzyme, reduced α-synuclein pathology, and produced significant behavioral recovery. Finally, we provided evidence that AAV-PHP.B brain penetration does not lead to evident dysfunctions in blood-brain barrier integrity or permeability. Altogether, the AAV-PHP.B viral platform enables non-invasive, widespread, and long-lasting global neural expression of therapeutic genes, such as GBA1, providing an invaluable approach to treat neurodegenerative diseases with diffuse brain pathology such as synucleinopathies. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Lee, Samuel; Abd-Elsayed, Alaa
2016-12-01
Neuromodulation, including cavernous nerve stimulation, gastric electrical stimulation, deep brain stimulation, and vagus nerve stimulation, has been used with success in treating several functional disease conditions. The FDA has approved the use of neuromodulation for a few indications. We discuss in our review article the evidence of using neuromodulation for treating some important disorders involving the autonomic nervous system that are not currently FDA approved. This was a review article that included a systematic online web search for human clinical studies testing the efficacy of neuromodulation in treating erectile dysfunction, gastroparesis, gastroesophageal reflux disease, obesity, asthma, and heart failure. Our review includes all feasibility studies, nonrandomized clinical trials, and randomized controlled trials. Our systematic literature search found 3, 4, 5, 4, 1, and 4 clinical studies relating to erectile dysfunction, gastroparesis, gastroesophageal reflux disease, obesity, asthma, and heart failure, respectively. This review article shows preliminary support based on clinical studies that neuromodulation can be of benefit for patients with important autonomic nervous system disease conditions that are not currently approved by the FDA. All of these investigational uses are encouraging; further studies are necessary and warranted for all indications discussed in this review before achieving FDA approval. © 2016 International Neuromodulation Society.
The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress
Juárez Olguín, Hugo; Calderón Guzmán, David; Hernández García, Ernestina; Barragán Mejía, Gerardo
2016-01-01
Dopamine is a neurotransmitter that is produced in the substantia nigra, ventral tegmental area, and hypothalamus of the brain. Dysfunction of the dopamine system has been implicated in different nervous system diseases. The level of dopamine transmission increases in response to any type of reward and by a large number of strongly additive drugs. The role of dopamine dysfunction as a consequence of oxidative stress is involved in health and disease. Introduce new potential targets for the development of therapeutic interventions based on antioxidant compounds. The present review focuses on the therapeutic potential of antioxidant compounds as a coadjuvant treatment to conventional neurological disorders is discussed. PMID:26770661
The Neurobiology of Swallowing and Dysphagia
ERIC Educational Resources Information Center
Miller, Arthur J.
2008-01-01
The neurobiological study of swallowing and its dysfunction, defined as dysphagia, has evolved over two centuries beginning with electrical stimulation applied directly to the central nervous system, and then followed by systematic investigations that have used lesioning, transmagnetic stimulation, magnetoencephalography, and functional magnetic…
Chaverra, Marta; George, Lynn; Thorne, Julian; Grindeland, Andrea; Ueki, Yumi; Eiger, Steven; Cusick, Cassie; Babcock, A. Michael; Carlson, George A.
2017-01-01
ABSTRACT Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap, novel strategies to thwart the progressive demise of CNS neurons in FD can be developed. PMID:28167615
Patel, Sita Sharan; Udayabanu, M
2013-09-27
Diabetic neuropathy is considered as a disease of the peripheral nervous system, but recent evidences suggest the involvement of central nervous system as well. In this study we evaluated the effect of Urtica dioica (UD) extract against memory dysfunction and hypoalgesia on a mouse model of streptozotocin (STZ) induced diabetic neuropathy. STZ (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes, followed by treatment with the UD extract (50 mg/kg, oral) and rosiglitazone (5 mg/kg, oral) for 8 weeks. Cognitive functions were evaluated using Morris water maze and passive avoidance step through task. Pain thresholds were measured using thermal, mechanical and chemical induced hyperalgesia. We observed that chronic diabetes resulted in a decline in circulating insulin level, elevated blood glucose, reduced body weight, increased water intake, cognitive impairment and hypoalgesia. UD significantly reduced the blood glucose and polydypsia, as well as improved the body weight, insulin level, cognition and insensate neuropathy. In conclusion, UD showed results comparable to rosiglitazone in reversing the long standing diabetes induced complications such as central and peripheral neuronal dysfunction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Neurological Consequences of Obesity
O’Brien, Phillipe D.; Hinder, Lucy M.; Callaghan, Brian C.; Feldman, Eva L.
2017-01-01
Obesity, primarily a consequence of poor dietary choices and an increased sedentary lifestyle, has become a global pandemic that brings with it enormous medical, social, and economic challenges. Not only does obesity increase the risk of cardiovascular disease and certain cancers, but it is also recognized as a key driver of other metabolic syndrome (MetS) components. These components include insulin resistance, hyperglycemia with prediabetes or type 2 diabetes, dyslipidemia, and hypertension, and are underlying contributors to systemic metabolic dysfunction. More recently, obesity and diet-induced metabolic dysfunction have been identified as risk factors for the development of a wide variety of neurological disorders in both the central and peripheral nervous systems. An abundance of literature has shown that obesity is associated with mild cognitive impairment and altered hippocampal structure and function, and there is a robust correlation between obesity and Alzheimer’s type dementia. Similarly, many reports show that both the autonomic and somatic components of the peripheral nervous system are impacted by obesity. The autonomic nervous system, under control of the hypothalamus, displays altered catabolic and anabolic processes in obese individuals attributed to sympathetic-parasympathetic imbalances. A close association also exists between obesity and polyneuropathy, a complication most commonly found in prediabetic and diabetic patients, and is likely secondary to a combination of obesity-induced dyslipidemia with hyperglycemia. This review will outline the pathophysiological development of obesity and dyslipidemia, discuss the adverse impact of these conditions on the nervous system, and provide evidence for lipotoxicity and metabolic inflammation as the drivers underlying the neurological consequences of obesity. In addition, this review will examine the benefits of lifestyle and surgical interventions in obesity-induced neurological disorders. PMID:28504110
Autonomic dysfunction in women with fibromyalgia
2012-01-01
Fibromyalgia (FM) is an idiopathic disease characterized by widespread pain and a myriad of symptoms. Symptoms are diverse and include not only pain but also anxiety, depression, orthostatic intolerance, and cold intolerance. While the etiology of FM is not fully understood, data have suggested that FM may stem from dysfunction of the autonomic nervous system. This dysfunction has been reported at rest, and after a physiological stressor such as exercise. However, few studies have examined the responses during exercise. This novel approach may shed some new light on the effect of exercise in women with FM. PMID:22353700
The physiological functions of central nervous system pericytes and a potential role in pain
Beazley-Long, Nicholas; Durrant, Alexandra M; Swift, Matthew N; Donaldson, Lucy F
2018-01-01
Central nervous system (CNS) pericytes regulate critical functions of the neurovascular unit in health and disease. CNS pericytes are an attractive pharmacological target for their position within the neurovasculature and for their role in neuroinflammation. Whether the function of CNS pericytes also affects pain states and nociceptive mechanisms is currently not understood. Could it be that pericytes hold the key to pain associated with CNS blood vessel dysfunction? This article reviews recent findings on the important physiological functions of CNS pericytes and highlights how these neurovascular functions could be linked to pain states. PMID:29623199
The Phantom in our opera - or the hidden ways of the autonomic nervous system in cardiac patients
van Tellingen, C.
2004-01-01
The role of the autonomic nervous system in the understanding of pathophysiological mechanisms in a variety of cardiovascular clinico-pathological conditions is highlighted from a clinician's point of view with the focus on coronary mimicry, enhanced sympathetic tone and syndrome X. A unique case is presented where sinus node dysfunction in pandysautonomia seemed to be an early sign of hypothalamic glioblastoma. In addition, relevant literature on this topic is addressed to put distinct clinical patterns into a broader perspective. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:25696275
Afshar, Maryam; Birnbaum, Daniel; Golden, Carla
2014-06-01
The pathogenesis of methotrexate central nervous system toxicity is multifactorial, but it is likely related to central nervous system folate homeostasis. The use of folinate rescue has been described to decrease toxicity in patients who had received intrathecal methotrexate. It has also been described in previous studies that there is an elevated level of homocysteine in plasma and cerebrospinal fluid of patients who had received intrathecal methotrexate. Homocysteine is an N-methyl-D-aspartate receptor agonist. The use of dextromethorphan, noncompetitive N-methyl-D-aspartate receptor receptor antagonist, has been used in the treatment of sudden onset of neurological dysfunction associated with methotrexate toxicity. It remains unclear whether the dextromethorphan impacted the speed of recovery, and its use remains controversial. This study reviews the use of dextromethorphan in the setting of subacute methotrexate central nervous system toxicity. Charts of 18 patients who had sudden onset of neurological impairments after receiving methotrexate and were treated with dextromethorphan were reviewed. The use of dextromethorphan in most of our patients resulted in symptomatic improvement. In this patient population, earlier administration of dextromethorphan resulted in faster improvement of impairments and led to prevention of recurrence of seizure activity induced by methotrexate central nervous system toxicity. Our study provides support for the use of dextromethorphan in patients with subacute methotrexate central nervous system toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.
Direct and Indirect Effects of PM on the Cardiovascular System
Nelin, Timothy D.; Joseph, Allan M.; Gorr, Matthew W.; Wold, Loren E.
2011-01-01
Human exposure to particulate matter (PM) elicits a variety of responses on the cardiovascular system through both direct and indirect pathways. Indirect effects of PM on the cardiovascular system are mediated through the autonomic nervous system, which controls heart rate variability, and inflammatory responses, which augment acute cardiovascular events and atherosclerosis. Recent research demonstrates that PM also affects the cardiovascular system directly by entry into the systemic circulation. This process causes myocardial dysfunction through mechanisms of reactive oxygen species production, calcium ion interference, and vascular dysfunction. In this review, we will present key evidence in both the direct and indirect pathways, suggest clinical applications of the current literature, and recommend directions for future research. PMID:22119171
Gur, Ali; Oktayoglu, Pelin
2008-01-01
Fibromyalgia (FM) and chronic fatigue syndrome (CFS) are poorly understood disorders that share similar demographic and clinical characteristics. The etiology and pathophysiology of these diseases remain unclear. Because of the similarities between both disorders it was suggested that they share a common pathophysiological mechanisms, namely, central nervous system (CNS) dysfunction. Current hypotheses center on atypical sensory processing in the CNS and dysfunction of skeletal muscle nociception and the hypothalamic-pituitary-adrenal (HPA) axis. Researches suggest that the (CNS) is primarily involved in both disorders in regard to the pain, fatigue and sleep disturbances. Many patients experience difficulty with concentration and memory and many others have mood disturbance, including depression and anxiety. Although fibromyalgia is common and associated with substantial morbidity and disability, there are no US Food and Drug Administration (FDA)-approved treatments except pregabalin. Recent pharmacological treatment studies about fibromyalgia have focused on selective serotonin and norepinephrine (NE) reuptake inhibitors, which enhance serotonin and NE neurotransmission in the descending pain pathways and lack many of the adverse side effects associated with tricyclic medications. CFS is a descriptive term used to define a recognisable pattern of symptoms that cannot be attributed to any alternative condition. The symptoms are currently believed to be the result of disturbed brain function. To date, no pharmacological agent has been reliably shown to be effective treatment for CFS. Management strategies are therefore primarily directed at relief of symptoms and minimising impediments to recovery. This chapter presents data demonstrating CFS, abnormal pain processing and autonomic nervous system (ANS) dysfunction in FM and CFS and concludes by reviewing the new concepts in treatments in CFS and FM.
Central nervous system magnesium deficiency.
Langley, W F; Mann, D
1991-03-01
The central nervous system concentration of magnesium (Mg++) appears to have a critical level below which neurologic dysfunction occurs. Observations presented suggest that the interchange of the Mg++ ion between the cerebrospinal fluid, extracellular fluid, and bone is more rapid and dynamic than is usually believed. This is especially so when the hypertrophied parathyroid gland is associated with significant skeletal depletion of Mg++ as judged by history rather than serum level. Magnesium, much like calcium, has a large presence in bone and has a negative feedback relationship with the parathyroid gland. A decline in central nervous system Mg++ may occur when the skeletal buffer system orchestrated largely by the parathyroid glands is activated by an increase in serum calcium. Observations in veterinary medicine and obstetrics suggest that the transfer of Mg++ from the extracellular fluid into bone during mineralization processes may be extensive. If the inhibition of the hypertrophied parathyroid gland is prolonged and the skeletal depletion of Mg++ extreme, serious neurologic symptoms, including seizures, coma, and death, may occur. Noise, excitement, and bodily contact appear to precipitate neurologic symptoms in Mg+(+)-deficient human subjects as it has been documented to occur in Mg+(+)-deficient experimental animals. The similarity of the acute central nervous system demyelinating syndromes with reactive central nervous system Mg++ deficiency is reviewed.
Autonomic Impairment in Borderline Personality Disorder: A Laboratory Investigation
ERIC Educational Resources Information Center
Weinberg, Anna; Klonsky, E. David; Hajcak, Greg
2009-01-01
Recent research suggests that emotional dysfunction in psychiatric disorders can be reflected in autonomic abnormalities. The present study examines sympathetic and parasympathetic autonomic nervous system activity in individuals with Borderline Personality Disorder (BPD) before, during, and following a social stressor task. Data were obtained…
ACUTE PHARMACOLOGICAL INHIBITION OF CHOLINESTERASE RESULTS IN MINIMAL NEUROMUSCULAR JITTER CHANGES.
Concern over the lack of available endpoints to assess peripheral nervous system dysfunction after pesticide exposure has led to the search for new laboratory models. Recently our lab adapted the in vivo clinical practice of stimulation single fiber electromyography (SFEMG) for u...
Consideration of sleep dysfunction in rehabilitation.
Valenza, Marie Carmen; Rodenstein, Daniel O; Fernández-de-las-Peñas, César
2011-07-01
The physiology of sleep is not completely understood but it is widely accepted that sleep is important to the human body in the recovery of metabolic and neurological processes. This paper summarizes the effects of sleep dysfunction on different systems and considers implications in the context of rehabilitation. When sleep is experimentally completely or partially curtailed important brain functions are impacted leading to psychological and neurological disturbances. Increased cortisol levels, reduction of glucose tolerance, and increased sympathetic nervous system activity have also been identified in healthy subjects under such conditions. Several studies show that 50-80% of patients with chronic pain suffer from sleep dysfunction. It has been suggested that on the one hand pain can cause sleep dysfunction and on the other hand that sleep dysfunction can aggravate pain. The physiologic mechanism behind this interaction is not completely clear; although most authors describe the relationship between pain and sleep dysfunction as aberrant processing of tactile-cutaneous sensory inputs at the meso-encephalic level and in the trigeminal nucleus both when asleep and awake. Decreased duration of sleep also increases heart rate, blood pressure and sympathetic activity magnifying the individual's response to stressful stimuli. Possible causal mechanisms for the established connection between short sleep cycles and coronary pathology include sympathetic nervous system hyperactivity, increased blood pressure increase or reduced glucose tolerance. Finally, sleep and fatigue have traditionally been linked. Fatigue can have a physical etiology but is also associated with depression. Sleep alterations are also considered an important risk factor for psychological dysfunction and also mental illness. However, despite the noted repercussions of sleep dysfunction, studies investigating interventions to improve sleep have been limited in number. Benefits of exercise programs on sleep habits have been controversial with some have finding positive effects, whereas others did not find any significant effect. It is possible that the dose or intensity of exercise programs may have an important influence in the outcomes. It is our opinion that based on the multi-system repercussions of different sleep dysfunctions, evaluation of sleep habits should be considered fundamental in the context of rehabilitation and should be included as part of the clinical history of each patient attending physical therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Benevides, Teal W.; Lane, Shelly J.
2015-01-01
The autonomic nervous system (ANS) is responsible for multiple physiological responses, and dysfunction of this system is often hypothesized as contributing to cognitive, affective, and behavioral responses in children. Research suggests that examination of ANS activity may provide insight into behavioral dysregulation in children with autism…
Influence of cardiac nerve status on cardiovascular regulation and cardioprotection
Kingma, John G; Simard, Denys; Rouleau, Jacques R
2017-01-01
Neural elements of the intrinsic cardiac nervous system transduce sensory inputs from the heart, blood vessels and other organs to ensure adequate cardiac function on a beat-to-beat basis. This inter-organ crosstalk is critical for normal function of the heart and other organs; derangements within the nervous system hierarchy contribute to pathogenesis of organ dysfunction. The role of intact cardiac nerves in development of, as well as protection against, ischemic injury is of current interest since it may involve recruitment of intrinsic cardiac ganglia. For instance, ischemic conditioning, a novel protection strategy against organ injury, and in particular remote conditioning, is likely mediated by activation of neural pathways or by endogenous cytoprotective blood-borne substances that stimulate different signalling pathways. This discovery reinforces the concept that inter-organ communication, and maintenance thereof, is key. As such, greater understanding of mechanisms and elucidation of treatment strategies is imperative to improve clinical outcomes particularly in patients with comorbidities. For instance, autonomic imbalance between sympathetic and parasympathetic nervous system regulation can initiate cardiovascular autonomic neuropathy that compromises cardiac stability and function. Neuromodulation therapies that directly target the intrinsic cardiac nervous system or other elements of the nervous system hierarchy are currently being investigated for treatment of different maladies in animal and human studies. PMID:28706586
Del Rio, Rodrigo; Quintanilla, Rodrigo A.; Orellana, Juan A.; Retamal, Mauricio A.
2015-01-01
Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process. PMID:26648871
Teasell, Robert W; Arnold, J Malcolm O
2004-01-01
The pathophysiology of the pain associated with complex regional pain syndrome, spinal cord injury and diabetic peripheral neuropathy is not known. The pain of complex regional pain syndrome has often been attributed to abnormal sympathetic nervous system activity based on the presence of vasomotor instability and a frequently reported positive response, albeit a temporary response, to sympathetic blockade. In contrast, the pain below the level of spinal cord injury and diabetic peripheral neuropathy are generally seen as deafferentation phenomena. Each of these pain states has been associated with abnormal sympathetic nervous system function and increased peripheral alpha-1 adrenoceptor activity. This increased responsiveness may be a consequence of alpha-1 adrenoceptor postsynaptic hypersensitivity, or alpha-2 adrenoceptor presynaptic dysfunction with diminished noradrenaline reuptake, increased concentrations of noradrenaline in the synaptic cleft and increased stimulation of otherwise normal alpha-1 adrenoceptors. Plausible mechanisms based on animal research by which alpha-1 adrenoceptor hyperresponsiveness can lead to chronic neuropathic-like pain have been reported. This raises the intriguing possibility that sympathetic nervous system dysfunction may be an important factor in the generation of pain in many neuropathic pain states. Although results to date have been mixed, there may be a greater role for new drugs which target peripheral alpha-2 adrenoceptors (agonists) or alpha-1 adrenoceptors (antagonists).
ROLE OF SYMPATHETIC NERVOUS SYSTEM IN OBESITY RELATED HYPERTENSION
da Silva, Alexandre; doCarmo, Jussara; Dubinion, John; Hall, John E.
2010-01-01
Obesity is recognized as a major, worldwide, health problem. Excess weight is a major cause of increased blood pressure in most patients with essential hypertension, and greatly increases the risk for diabetes, cardiovascular diseases, and end stage renal disease. Although the mechanisms by which obesity raises blood pressure are not completely understood, increased renal sodium reabsorption, impaired pressure natriuresis, and volume expansion appear to play important roles. Several potential mechanisms have been suggested to contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system (SNS) and the renin-angiotensin-aldosterone system (RAAS), and physical compression of the kidneys, especially when visceral obesity is present. Activation of the SNS in obesity may be due, in part, to hyperleptinemia and other factors secreted by adipocytes and the gastrointestinal tract, activation of the central nervous melanocortin pathway, and baroreceptor dysfunction. PMID:19442330
Fetal Alcohol Syndrome in Adolescents and Adults.
ERIC Educational Resources Information Center
Bert, Cynthia R. Greene; Bert, Minnie
Persons with fetal alcohol syndrome (FAS) may be diagnosed at birth based on specific symptoms and anomalies. These are history of prenatal alcohol exposure, mental retardation, central nervous system dysfunctions, growth deficiency, particular physical anomalies, and speech and language anomalies. With aging, cranial and skeletal anomalies become…
Prader-Willi Disease: A Case Study.
ERIC Educational Resources Information Center
Forbus, William R., III
A case study focuses on the characteristics and physical management of a 15-year-old with Prader-Willi Syndrome, a birth defect associated with hypotonia, insatiable appetite, hypogonadism, central nervous system dysfunction, and abnormal growth and development . A literature review addresses studies dealing with behavior modification of obesity…
The cardiovascular system in the ageing patient
Moore, A; Mangoni, A A; Lyons, D; Jackson, S H D
2003-01-01
The ageing process is associated with important changes in the responses of the cardiovascular system to pharmacological stimuli. They are not limited to the arterial system, involved in the modulation of cardiac afterload and vascular resistance, but they also involve the low-resistance capacitance venous system and the heart. The main changes include loss of large artery compliance, dysfunction of some of the systems modulating resistance vessel tone, increased activity of the sympathetic nervous system, and reduced haemodynamic responses to inotropic agents. This review focuses on the effects of ageing on arterial and venous reactivity to drugs and hormones, the autonomic nervous system, and the cardiovascular responses to inotropic agents. Some of the age-related changes might be at least partially reversible. This may have important therapeutic implications. PMID:12919173
Out of time: a possible link between mirror neurons, autism and electromagnetic radiation.
Thornton, Ian M
2006-01-01
Recent evidence suggests a link between autism and the human mirror neuron system. In this paper, I argue that temporal disruption from the environment may play an important role in the observed mirror neuron dysfunction, leading in turn to the pattern of deficits associated with autism. I suggest that the developing nervous system of an infant may be particularly prone to temporal noise that can interfere with the initial calibration of brain networks such as the mirror neuron system. The most likely source of temporal noise in the environment is artificially generated electromagnetic radiation. To date, there has been little evidence that electromagnetic radiation poses a direct biological hazard. It is clear, however, that time-varying electromagnetic waves have the potential to temporally modulate the nervous system, particularly when populations of neurons are required to act together. This modulation may be completely harmless for the fully developed nervous system of an adult. For an infant, this same temporal disruption might act to severely delay or disrupt vital calibration processes.
Sei, Y; Vitković, L; Yokoyama, M M
1995-01-01
Recent evidence suggests that neurons and glia can synthesize and secrete cytokines, which play critical roles in maintaining homeostasis in the central nervous system (CNS) by mediating the interaction between cells via autocrine or paracrine mechanisms. Circulating cytokines and soluble receptors also regulate neuronal function via endocrine mechanisms. Disturbance of the cytokine-mediated interaction between cells may lead to neuronal dysfunction and/or cell death and contribute to the pathogenesis of the CNS diseases (e.g., ischemia, Alzheimer's disease and HIV encephalopathy). Defining the molecular pathways of cytokine dysregulation and neurotoxicity may help to elucidate potential therapeutic interventions for many devastating CNS diseases.
Coenzyme Q{sub 10} and alpha-tocopherol protect against amitriptyline toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordero, Mario D.; Dpto. Citologia e Histologia Normal y Patologica, Facultad de Medicina. Universidad de Sevilla. 41009 Sevilla; Moreno-Fernandez, Ana Maria
Since amitriptyline is a very frequently prescribed antidepressant drug, it is not surprising that amitriptyline toxicity is relatively common. Amitriptyline toxic systemic effects include cardiovascular, autonomous nervous, and central nervous systems. To understand the mechanisms of amitriptyline toxicity we studied the cytotoxic effects of amitriptyline treatment on cultured primary human fibroblasts and zebrafish embryos, and the protective role of coenzyme Q{sub 10} and alpha-tocopherol, two membrane antioxidants. We found that amitriptyline treatment induced oxidative stress and mitochondrial dysfunction in primary human fibroblasts. Mitochondrial dysfunction in amitriptyline treatment was characterized by reduced expression levels of mitochondrial proteins and coenzyme Q{sub 10},more » decreased NADH:cytochrome c reductase activity, and a drop in mitochondrial membrane potential. Moreover, and as a consequence of these toxic effects, amitriptyline treatment induced a significant increase in apoptotic cell death activating mitochondrial permeability transition. Coenzyme Q{sub 10} and alpha-tocopherol supplementation attenuated ROS production, lipid peroxidation, mitochondrial dysfunction, and cell death, suggesting that oxidative stress affecting cell membrane components is involved in amitriptyline cytotoxicity. Furthermore, amitriptyline-dependent toxicity and antioxidant protection were also evaluated in zebrafish embryos, a well established vertebrate model to study developmental toxicity. Amitriptyline significantly increased embryonic cell death and apoptosis rate, and both antioxidants provided a significant protection against amitriptyline embryotoxicity.« less
Acute cerebellar ataxia and infectious mononucleosis.
Wadhwa, N. K.; Ghose, R. R.
1983-01-01
A 28-year-old man, who presented with acute cerebellar ataxia, was found to have haematological features of infectious mononucleosis. There was serological evidence of recent infection with Epstein-Barr virus. It is speculated that cerebellar dysfunction results from virus-induced inflammatory changes within the central nervous system. PMID:6312442
Medical Surveillance Monthly Report (MSMR). Volume 18, Number 03, March 2011
2011-03-01
nervous system dysfunction; the diagnosis was also applicable to patients with laboratory evidence of injury to the liver , muscles, or kidneys. Th e...decrease cerebral blood fl ow and disrupt brain function (e.g., hypotonic encephalopathy , seizures, coma). Without rapid and defi nitive treatment to
2011-10-01
specific details about whether they were taking oral contraceptive medications, both of which can impact cardiovascular responses to hypovo- lemia (4, 20...Gerontology 49: 279–286, 2003. 59. Stewart JM. Autonomic nervous system dysfunction in adolescents with postural orthostatic tachycardia syndrome and
Virtual Reality Goes to War: A Brief Review of the Future of Military Behavioral Healthcare
2011-05-07
functional skill training and motor rehabilitation with patients having central nervous system dysfunction (e.g., stroke, TBI, SCI, cerebral palsy ...Improvement in cerebral function with treatment of posttraumatic stress disorder. Annals of the New York Academy of Sciences (NYAS), 1208, 142–149. Schneider
Gastric motor dysfunctions in Parkinson's disease: Current pre-clinical evidence.
Pellegrini, Carolina; Antonioli, Luca; Colucci, Rocchina; Ballabeni, Vigilio; Barocelli, Elisabetta; Bernardini, Nunzia; Blandizzi, Corrado; Fornai, Matteo
2015-12-01
Parkinson's disease (PD) is associated with several non-motor symptoms, such as behavioral changes, urinary dysfunction, sleep disorders, fatigue and, above all, gastrointestinal (GI) dysfunction, including gastric dysmotility, constipation and anorectal dysfunction. Delayed gastric emptying, progressing to gastroparesis, is reported in up to 100% of patients with PD, and it occurs at all stages of the disease with severe consequences to the patient's quality of life. The presence of α-synuclein (α-syn) aggregates in myenteric neurons throughout the digestive tract, as well as morpho-functional alterations of the enteric nervous system (ENS), have been documented in PD. In particular, gastric dysmotility in PD has been associated with an impairment of the brain-gut axis, involving the efferent fibers of the vagal pathway projecting directly to the gastric myenteric plexus. The present review intends to provide an integrated overview of available knowledge on the possible role played by the ENS, considered as a semi-autonomous nervous network, in the pathophysiology of gastric dysmotility in PD. Particular attention has been paid review how translational evidence in humans and studies in pre-clinical models are allowing a better understanding of the functional, neurochemical and molecular alterations likely underlying gastric motor abnormalities occurring in PD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metronidazole-induced central nervous system toxicity: a systematic review.
Kuriyama, Akira; Jackson, Jeffrey L; Doi, Asako; Kamiya, Toru
2011-01-01
To assess patient and medication factors that contribute to metronidazole toxicity. We searched PUBMED from 1965 through April 7, 2011, and performed a hand search of bibliographies. Case reports or case series reporting metronidazole-induced central nervous toxicity. Two authors independently abstracted demographics, metronidazole indication, dose and duration, neurological manifestations, and outcomes as well as brain imaging findings. Among 64 patients, 48 (77%) had cerebellar dysfunction, 21 (33%) had altered mental status, and 8 (15%) had seizures. Patients' ages averaged 53.3 years (range, 12-87 years), and 64% were male. The median duration of metronidazole was 54 days, although 26% had taken it less than a week and 11% had taken it less than 72 hours. Among cases with outcome data, most patients either improved (n = 18 [29%]) or had complete resolution of their symptoms with discontinuation of metronidazole (n = 41 [65%]). There was no difference in resolution of symptom by age (P = 0.71) or sex (P = 0.34). The patients with cerebellar dysfunction were less likely to experience complete resolution than those with mental status changes or seizures (relative risk, 0.67; 95% confidence interval (CI), 0.49-0.92). Nearly all patients (n = 55 [86%]) underwent imaging of the brain: 44 (69%) underwent magnetic resonance imaging (MRI) and 12 (19%) underwent computed tomographic studies. All patients with cerebellar dysfunction had abnormalities on imaging: 93% (n = 39) had a cerebellar lesion, although numerous areas in the brain were affected. On follow-up MRIs, 25 patients (83%) had complete resolution of abnormalities. Metronidazole can rarely cause central nervous system toxicity; it does not seem to be a dose- or duration-related phenomenon. Most patients will have MRI abnormalities. Prognosis is excellent with metronidazole cessation.
Mikszewski, Jessica S; Vite, Charles H
2005-01-01
Five dogs from the northeastern United States were presented with clinical signs of neurological disease associated with Rocky Mountain spotted fever (RMSF) infection. Four of the five dogs had vestibular system dysfunction. Other neurological signs included paresis, tremors, and changes in mentation. All of the dogs had an elevated indirect fluorescent antibody titer or a positive semiquantitative enzyme screening immunoassay titer for Rickettsia rickettsii at the time of presentation. Although a higher mortality rate has been reported for dogs with neurological symptoms and RMSF infection, all of the dogs in this study improved with appropriate medical therapy and supportive care.
Tran, Khiem A; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F; Göthert, Joachim R; Malik, Asrar B; Valyi-Nagy, Tibor; Zhao, You-Yang
2016-01-12
The blood-brain barrier (BBB) formed by brain endothelial cells interconnected by tight junctions is essential for the homeostasis of the central nervous system. Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Using a mouse model with tamoxifen-inducible endothelial cell-restricted disruption of ctnnb1 (iCKO), we show here that endothelial β-catenin signaling is essential for maintaining BBB integrity and central nervous system homeostasis in adult mice. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and central nervous system inflammation, and all had postictal death. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of the specific tight junction proteins claudin-1 and -3 in adult brain endothelial cells. The clinical relevance of the data is indicated by the observation of decreased expression of claudin-1 and nuclear β-catenin in brain endothelial cells of hemorrhagic lesions of hemorrhagic stroke patients. These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity, and central nervous system inflammation. © 2015 American Heart Association, Inc.
Central voice production and pathophysiology of spasmodic dysphonia.
Mor, Niv; Simonyan, Kristina; Blitzer, Andrew
2018-01-01
Our ability to speak is complex, and the role of the central nervous system in controlling speech production is often overlooked in the field of otolaryngology. In this brief review, we present an integrated overview of speech production with a focus on the role of central nervous system. The role of central control of voice production is then further discussed in relation to the potential pathophysiology of spasmodic dysphonia (SD). Peer-review articles on central laryngeal control and SD were identified from PUBMED search. Selected articles were augmented with designated relevant publications. Publications that discussed central and peripheral nervous system control of voice production and the central pathophysiology of laryngeal dystonia were chosen. Our ability to speak is regulated by specialized complex mechanisms coordinated by high-level cortical signaling, brainstem reflexes, peripheral nerves, muscles, and mucosal actions. Recent studies suggest that SD results from a primary central disturbance associated with dysfunction at our highest levels of central voice control. The efficacy of botulinum toxin in treating SD may not be limited solely to its local effect on laryngeal muscles and also may modulate the disorder at the level of the central nervous system. Future therapeutic options that target the central nervous system may help modulate the underlying disorder in SD and allow clinicians to better understand the principal pathophysiology. NA.Laryngoscope, 128:177-183, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Zhou, Yaoyao; Zhang, Junfeng
2014-09-20
Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome is a rare but fatal autosomal recessive multisystem disorder caused by mutations in the VPS33B or VIPAR gene. The classical presentation of ARC includes congenital joint contractures, renal tubular dysfunction, and cholestasis. Additional features include ichthyosis, central nervous system malformation, platelet anomalies, and severe failure to thrive. Diagnosis of ARC syndrome relies on clinical features, organ biopsy, and mutational analysis. However, no specific treatment currently exists for this syndrome. This is an overview of the latest knowledge regarding the genetic features and clinical manifestations of ARC syndrome. Greater awareness and understanding of this syndrome should allow more timely intervention with potential for improving long-term outcome.
The expanding universe of disorders of the basal ganglia.
Obeso, Jose A; Rodriguez-Oroz, Maria C; Stamelou, Maria; Bhatia, Kailash P; Burn, David J
2014-08-09
The basal ganglia were originally thought to be associated purely with motor control. However, dysfunction and pathology of different regions and circuits are now known to give rise to many clinical manifestations beyond the association of basal ganglia dysfunction with movement disorders. Moreover, disorders that were thought to be caused by dysfunction of the basal ganglia only, such as Parkinson's disease and Huntington's disease, have diverse abnormalities distributed not only in the brain but also in the peripheral and autonomic nervous systems; this knowledge poses new questions and challenges. We discuss advances and the unanswered questions, and ways in which progress might be made. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluating the autonomic nervous system in patients with laryngopharyngeal reflux.
Huang, Wan-Ju; Shu, Chih-Hung; Chou, Kun-Ta; Wang, Yi-Fen; Hsu, Yen-Bin; Ho, Ching-Yin; Lan, Ming-Ying
2013-06-01
The pathogenesis of laryngopharyngeal reflux (LPR) remains unclear. It is linked to but distinct from gastroesophageal reflux disease (GERD), which has been shown to be related to disturbed autonomic regulation. The aim of this study is to investigate whether autonomic dysfunction also plays a role in the pathogenesis of LPR. Case-control study. Tertiary care center. Seventeen patients with LPR and 19 healthy controls, aged between 19 and 50 years, were enrolled in the study. The patients were diagnosed with LPR if they had a reflux symptom index (RSI) ≥ 13 and a reflux finding score (RFS) ≥ 7. Spectral analysis of heart rate variability (HRV) analysis was used to assess autonomic function. Anxiety and depression levels measured by the Beck Anxiety Inventory (BAI) and Beck Depression Inventory II (BDI-II) were also conducted. In HRV analysis, high frequency (HF) represents the parasympathetic activity of the autonomic nervous system, whereas low frequency (LF) represents the total autonomic activity. There were no significant differences in the LF power and HF power between the 2 groups. However, significantly lower HF% (P = .003) and a higher LF/HF ratio (P = .012) were found in patients with LPR, who demonstrated poor autonomic modulation and higher sympathetic activity. Anxiety was also frequently observed in the patient group. The study suggests that autonomic dysfunction seems to be involved in the pathogenesis of LPR. The potential beneficial effect of autonomic nervous system modulation as a therapeutic modality for LPR merits further investigation.
[The clinical phenomenology of Rett's syndrome].
Calderón-González, R; Calderón-Sepulveda, R F; Treviño-Welsh, J
1999-01-01
The work was done to facilitate the clinical diagnosis and understanding of Rett syndrome (RS) by grouping the symptoms and signs in areas of neurological disfunction. This is a retrospective, longitudinal and observational study of 30 young females whose clinical manifestations were grouped using a modified Fitzgerald et al. scale for motor and behavior evaluation of patients with RS. All patients were videotaped at least during one or several appointments during their follow-up for a period of 1 to 10 years. All patients and videotapes were reviewed independently by the three authors. We followed the clinical diagnostic criteria of classic RS, and grouped the symptoms and signs in 12 groups of clinical phenomenology that represented specific areas of central or peripheral nervous system involvement: 1) dementia syndrome (fronto-temporo-parietal and limbic dysfunction); 2) extrapyramidal syndrome (basal ganglia dysfunction); 3) respiratory function disorders (brain stem reticular system disfunction); 4) sleep disorders (reticular system and limbic dysfunction); 5) epilepsy (cortico-subcortical paroxysmal bioelectrical dysfunction); 6) lower motor neuron syndrome (neuropathic dysfunction and/or peripheral neuropathy); 7) body growth retardation; 8) tonic-postural skeletal deformities; 9) deficit of pain sensation (nociceptive deficit); 10) pseudobulbar dysfunction; 11) autonomic dysfunction and 12) others (microcephaly and bruxism). In clinical practice, we recommend the use of this grouping of symptoms and signs because it makes facilities the clinical study, definition of areas of dysfunction and diagnosis of the patient with RS.
Fagan, Nathan; Alexander, Allen; Irani, Neville; Saade, Charbel; Naffaa, Lena
2017-06-01
Lysosomal storage diseases (LSD) are a complex group of genetic disorders that are a result of inborn errors of metabolism. These errors result in a variety of metabolic dysfunction and build-up certain molecules within the tissues of the central nervous system (CNS). Although, they have discrete enzymatic deficiencies, symptomology and CNS imaging findings can overlap with each other, which can become challenging to radiologists. The purpose of this paper is to review the most common CNS imaging findings in LSD in order to familiarize the radiologist with their imaging findings and help narrow down the differential diagnosis. © 2016 The Royal Australian and New Zealand College of Radiologists.
Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) may provoke cardiac events through defective co-ordination of the two main autonomic nervous system (ANS) branches. We exposed heart failure-prone rats once to DE (500 g/m3 ...
Respiratory Sinus Arrhythmia Predicts Restricted Repetitive Behavior Severity
ERIC Educational Resources Information Center
Condy, Emma E.; Scarpa, Angela; Friedman, Bruce H.
2017-01-01
In addition to social communication deficits, restricted repetitive behaviors (RRBs) are a key diagnostic feature of autism spectrum disorder (ASD). Dysfunction of the autonomic nervous system (ANS) in ASD has been posited as a mechanism of RRBs; however, most studies investigating ANS activity in ASD have focused on its relation to social…
ERIC Educational Resources Information Center
Paley, Blair; O'Connor, Mary J.
2009-01-01
Exposure to alcohol in utero is considered to be the leading cause of developmental disabilities of known etiology. The most severe consequence of such exposure, fetal alcohol syndrome (FAS), is characterized by a distinct constellation of characteristic facial anomalies, growth retardation, and central nervous system (CNS) dysfunction. Some…
Physical modalities in the treatment of neurological dysfunction.
Galea, Mary P
2012-06-01
This chapter presents modalities of physical therapy used in optimizing sensorimotor recovery from nervous system injury. A brief historical perspective, rationale, indications for application, and evidence of effectiveness of various physical treatment modalities is provided. Many of the facilitatory and inhibitory techniques used in the past are no longer used, as they were based on an understanding of recovery after nervous system injury that is now outdated. There has been a paradigm shift in the management of people with neurological dysfunction. In particular there has been a reduction in focus on the positive features or the upper motor neuron syndrome, such as spasticity, and an increasing emphasis on active, task-related practice of functional tasks. Physical therapy for people with neurological disorders has undergone a paradigm shift as a result of new knowledge about motor control, skill acquisition, and recovery of function after injury. Future research should address new applications of electrical stimulation and whole body vibration as well as the optimal dosage and timing of interventions. Copyright © 2012 Elsevier B.V. All rights reserved.
Greenblatt, Daniel; Krupp, Lauren B; Belman, Anita L
2013-01-01
Parainfectious disorders of the nervous system encompass those meningo-encephalo-radiculomyelitic conditions that are temporally associated with a systemic infection, antigenic stimuli, or toxin exposure, in the absence of evidence of direct neuronal infection or invasion of the central nervous system (CNS) or peripheral nervous system (PNS). Pathogenetic mechanisms can be due to immune-mediated processes (such as bystander activation, molecular mimicy) or the inciting insult can be due to toxic factors, as in the case of botulism. A myriad of clinical manifestations can occur including headache, seizures, and mental status changes, ranging from mood and behavioral disturbances to varying levels of alteration in consciousness. Focal neurological deficits can include aphasia, hemiparesis, or paraparesis. The PNS can also be affected leading to cranial nerve involvement, focal or multifocal neuropathies, and dysfunction of the autonomic nervous system. Diagnosis is based not only on the history, examination, laboratory, and neuroimaging data but also on epidemiological factors. The parainfectious disorders covered in this review are cat scratch disease, Lyme borreliosis, legionellosis, brucellosis, botulism, pertussis, and mycoplasma. Each is associated with a distinct organism, has both systemic and neurological manifestations, and has a different epidemiological profile. Copyright © 2013 Elsevier B.V. All rights reserved.
Crosstalk between cancer and the neuro-immune system.
Kuol, Nyanbol; Stojanovska, Lily; Apostolopoulos, Vasso; Nurgali, Kulmira
2018-02-15
In the last decade, understanding of cancer initiation and progression has been given much attention with studies mainly focusing on genetic abnormalities. Importantly, cancer cells can influence their microenvironment and bi-directionally communicate with other systems such as the immune system. The nervous system plays a fundamental role in regulating immune responses to a range of disease states including cancer. Its dysfunction influences the progression of cancer. The role of the immune system in tumor progression is of relevance to the nervous system since they can bi-directionally communicate via neurotransmitters and neuropeptides, common receptors, and, cytokines. However, cross-talk between these cells is highly complex in nature, and numerous variations are possible according to the type of cancer involved. The neuro-immune interaction is essential in influencing cancer development and progression. Copyright © 2017 Elsevier B.V. All rights reserved.
Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study.
Baum, Petra; Petroff, David; Classen, Joseph; Kiess, Wieland; Blüher, Susann
2013-01-01
To assess the distribution of autonomic nervous system (ANS) dysfunction in overweight and obese children. Parasympathetic and sympathetic ANS function was assessed in children and adolescents with no evidence of impaired glucose metabolism by analysis of heart rate variability (low frequency power ln(LF), high frequency power, ln(HF); ln(LF/HF) ratio, ratio of longest RR interval during expiration to shortest interval during inspiration (E/I ratio), root mean square of successive differences (RMSSD); sympathetic skin response (SSR); and quantitative pupillography (pupil diameter in darkness, light reflex amplitude, latency, constriction velocity, re-dilation velocity). The relationship of each ANS variable to the standard deviation score of body mass index (BMI-SDS) was assessed in a linear model considering age, gender and pubertal stage as co-variates and employing an F-statistic to compare the fit of nested models. Group comparisons between normal weight and obese children as well as an analysis of dependence on insulin resistance (as indexed by the Homeostasis Model Assessment of Insulin Resistance, HOMA-IR) were performed for parameters shown to correlate with BMI-SDS. Statistical significance was set at 5%. Measurements were performed in 149 individuals (mean age 12.0 y; 90 obese 45 boys; 59 normal weight, 34 boys). E/I ratio (p = 0.003), ln(HF) (p = 0.03), pupil diameter in darkness (p = 0.01) were negatively correlated with BMI-SDS, whereas ln(LF/HF) was positively correlated (p = 0.05). Early re-dilation velocity was in trend negatively correlated to BMI-SDS (p = 0.08). None of the parameters that depended significantly on BMI-SDS was found to be significantly correlated with HOMA-IR. These findings demonstrate extended ANS dysfunction in obese children and adolescents, affecting several organ systems. Both parasympathetic activity and sympathetic activity are reduced. The conspicuous pattern of ANS dysfunction raises the possibility that obesity may give rise to dysfunction of the peripheral autonomic nerves resembling that observed in normal-weight diabetic children and adolescents.
De Luka, Silvio R; Svetel, Marina; Pekmezović, Tatjana; Milovanović, Branislav; Kostić, Vladimir S
2014-04-01
Dysautonomia appears in almost all patients with Parkinson's disease (PD) in a certain stage of their condition. The aim of our study was to detect the development and type of autonomic disorders, find out the factors affecting their manifestation by analyzing the potential association with demographic variables related to clinical presentation, as well as the symptoms of the disease in a PD patient cohort. The patients with PD treated at the Clinic of Neurology in Belgrade during a 2-year period, divided into 3 groups were studied: 25 de novo patients, 25 patients already treated and had no long-term levodopa therapy-related complications and 22 patients treated with levodopa who manifested levodopa-induced motor complications. Simultaneously, 35 healthy control subjects, matched by age and sex, were also analyzed. Autonomic nervous system malfunction was defined by Ewing diagnostic criteria. The tests, indicators of sympathetic and parasympathetic nervous systems, were significantly different in the PD patients as compared with the controls, suggesting the failure of both systems. However, it was shown, in the selected groups of patients, that the malfunction of both systems was present in two treated groups of PD patients, while de novo group manifested only sympathetic dysfunction. For this reason, the complete autonomic neuropathy was diagnosed only in the treated PD patients, while de novo patients were defined as those with the isolated sympathetic dysfunction. The patients with the complete autonomic neuropathy differed from the subjects without such neuropathy in higher cumulative and motor unified Parkinson's disease rating score (UPDRS) (p < 0.01), activities of daily living scores (p < 0.05), Schwab-England scale (p < 0.001) and Hoehn-Yahr scale. There was no difference between the patients in other clinical-demographic characteristics (sex, age at the time of diagnosis, actual age, duration of disease, involved side of the body, pain and freezing), but mini mental status (MMS) score and Hamilton depression and anxiety rating scale were significantly lower (p < 0.05). Our results confirm a high prevalence of autonomic nervous system disturbances among PD patients from the near onset of disease, with a predominant sympathetic nervous system involvement. The patients who developed complete autonomic neuropathy (both sympathetic and parasympathetic) were individuals with considerable level of functional failure, more severe clinical presentation and the existing anxiety and depression.
Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies.
Palma, Jose-Alberto; Kaufmann, Horacio
2018-03-01
Dysfunction of the autonomic nervous system afflicts most patients with Parkinson disease and other synucleinopathies such as dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure, reducing quality of life and increasing mortality. For example, gastrointestinal dysfunction can lead to impaired drug pharmacodynamics causing a worsening in motor symptoms, and neurogenic orthostatic hypotension can cause syncope, falls, and fractures. When recognized, autonomic problems can be treated, sometimes successfully. Discontinuation of potentially causative/aggravating drugs, patient education, and nonpharmacological approaches are useful and should be tried first. Pathophysiology-based pharmacological treatments that have shown efficacy in controlled trials of patients with synucleinopathies have been approved in many countries and are key to an effective management. Here, we review the treatment of autonomic dysfunction in patients with Parkinson disease and other synucleinopathies, summarize the nonpharmacological and current pharmacological therapeutic strategies including recently approved drugs, and provide practical advice and management algorithms for clinicians, with focus on neurogenic orthostatic hypotension, supine hypertension, dysphagia, sialorrhea, gastroparesis, constipation, neurogenic overactive bladder, underactive bladder, and sexual dysfunction. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.
Petras, Dimitrios; Koutroutsos, Konstantinos; Kordalis, Athanasios; Tsioufis, Costas; Stefanadis, Christodoulos
2013-08-01
The kidney has been shown to be critically involved as both trigger and target of sympathetic nervous system overactivity in both experimental and clinical studies. Renal injury and ischemia, activation of renin angiotensin system and dysfunction of nitric oxide system have been implicated in adrenergic activation from kidney. Conversely, several lines of evidence suggest that sympathetic overactivity, through functional and morphological alterations in renal physiology and structure, may contribute to kidney injury and chronic kidney disease progression. Pharmacologic modulation of sympathetic nervous system activity has been found to have a blood pressure independent renoprotective effect. The inadequate normalization of sympathoexcitation by pharmacologic treatment asks for novel treatment options. Catheter based renal denervation targets selectively both efferent and afferent renal nerves and functionally denervates the kidney providing blood pressure reduction in clinical trials and renoprotection in experimental models by ameliorating the effects of excessive renal sympathetic drive. This review will focus on the role of sympathetic overactivity in the pathogenesis of kidney injury and CKD progression and will speculate on the effect of renal denervation to these conditions.
Pan-Montojo, Francisco; Anichtchik, Oleg; Dening, Yanina; Knels, Lilla; Pursche, Stefan; Jung, Roland; Jackson, Sandra; Gille, Gabriele; Spillantini, Maria Grazia; Reichmann, Heinz; Funk, Richard H. W.
2010-01-01
In patients with Parkinson's disease (PD), the associated pathology follows a characteristic pattern involving inter alia the enteric nervous system (ENS), the dorsal motor nucleus of the vagus (DMV), the intermediolateral nucleus of the spinal cord and the substantia nigra, providing the basis for the neuropathological staging of the disease. Here we report that intragastrically administered rotenone, a commonly used pesticide that inhibits Complex I of the mitochondrial respiratory chain, is able to reproduce PD pathological staging as found in patients. Our results show that low doses of chronically and intragastrically administered rotenone induce alpha-synuclein accumulation in all the above-mentioned nervous system structures of wild-type mice. Moreover, we also observed inflammation and alpha-synuclein phosphorylation in the ENS and DMV. HPLC analysis showed no rotenone levels in the systemic blood or the central nervous system (detection limit [rotenone]<20 nM) and mitochondrial Complex I measurements showed no systemic Complex I inhibition after 1.5 months of treatment. These alterations are sequential, appearing only in synaptically connected nervous structures, treatment time-dependent and accompanied by inflammatory signs and motor dysfunctions. These results strongly suggest that the local effect of pesticides on the ENS might be sufficient to induce PD-like progression and to reproduce the neuroanatomical and neurochemical features of PD staging. It provides new insight into how environmental factors could trigger PD and suggests a transsynaptic mechanism by which PD might spread throughout the central nervous system. PMID:20098733
Dorsher, Peter T.; McIntosh, Peter M.
2012-01-01
Congenital anomalies such as meningomyelocele and diseases/damage of the central, peripheral, or autonomic nervous systems may produce neurogenic bladder dysfunction, which untreated can result in progressive renal damage, adverse physical effects including decubiti and urinary tract infections, and psychological and social sequelae related to urinary incontinence. A comprehensive bladder-retraining program that incorporates appropriate education, training, medication, and surgical interventions can mitigate the adverse consequences of neurogenic bladder dysfunction and improve both quantity and quality of life. The goals of bladder retraining for neurogenic bladder dysfunction are prevention of urinary incontinence, urinary tract infections, detrusor overdistension, and progressive upper urinary tract damage due to chronic, excessive detrusor pressures. Understanding the physiology and pathophysiology of micturition is essential to select appropriate pharmacologic and surgical interventions to achieve these goals. Future perspectives on potential pharmacological, surgical, and regenerative medicine options for treating neurogenic bladder dysfunction are also presented. PMID:22400020
Zencirci, Beyazit
2010-05-03
Neurofibromatosis is a syndrome caused by the abnormal deposition of neural tissues of the nervous system, endocrine system, visceral structures, and skin. On the other hand, pectus carinatum and temporomandibular joint dysfunction are illnesses that adversly affect the respiratory system and cause additional problems in airway management. Fifty-eight-year-old Turkish male patient had neurofibromatosis, pectus carinatum and temporomandibular joint dysfunction. The case was due to be operated on with the diagnosis of incarcerated umbilical hernia. Spinal anesthesia was successfully performed and the duration of the surgery was 1 hour. No postoperative complications were observed and he was discharged from the hospital on the 3rd post-operative day. The anesthetic management of patients with neurofibromatosis requires attention to all possible abnormalities and associated disturbances. Furthermore, the presence of pectus carinatum and temporomandibular joint dysfunction also increase the potential risks. The operation was successfully completed with spinal anesthesia that was carefully applied upon taking the required measures and considering all pathologies that may accompany the case and complications that may occur.
2010-01-01
Background Neurofibromatosis is a syndrome caused by the abnormal deposition of neural tissues of the nervous system, endocrine system, visceral structures, and skin. On the other hand, pectus carinatum and temporomandibular joint dysfunction are illnesses that adversly affect the respiratory system and cause additional problems in airway management. Case Presentation Fifty-eight-year-old Turkish male patient had neurofibromatosis, pectus carinatum and temporomandibular joint dysfunction. The case was due to be operated on with the diagnosis of incarcerated umbilical hernia. Spinal anesthesia was successfully performed and the duration of the surgery was 1 hour. No postoperative complications were observed and he was discharged from the hospital on the 3rd post-operative day. Conclusion The anesthetic management of patients with neurofibromatosis requires attention to all possible abnormalities and associated disturbances. Furthermore, the presence of pectus carinatum and temporomandibular joint dysfunction also increase the potential risks. The operation was successfully completed with spinal anesthesia that was carefully applied upon taking the required measures and considering all pathologies that may accompany the case and complications that may occur. PMID:20438631
Deng, Mario C
2018-05-08
Heart failure (HF) is a complex clinical syndrome that causes systemic hypoperfusion and failure to meet the body's metabolic demands. In an attempt to compensate, chronic upregulation of the sympathetic nervous system and renin-angiotensin-aldosterone leads to further myocardial injury, HF progression and reduced O 2 delivery. This triggers progressive organ dysfunction, immune system activation and profound metabolic derangements, creating a milieu similar to other chronic systemic diseases and presenting as advanced HF with severely limited prognosis. We hypothesize that 1-year survival in advanced HF is linked to functional recovery potential (FRP), a novel clinical composite parameter that includes HF severity, secondary organ dysfunction, co-morbidities, frailty, disabilities as well as chronological age and that can be diagnosed by a molecular biomarker.
Drug-induced sexual dysfunction.
Aldridge, S A
1982-01-01
Commonly used drugs that may cause sexual dysfunction are reviewed. The anatomy and physiology of the normal sexual response are reviewed. The influence of drugs on neurogenic, hormonal, and vascular mechanisms may result in diminished libido, impotence, ejaculatory and orgasmic difficulties, inhibited vaginal lubrication, menstrual irregularities, and gynecomastia in men or painful breast enlargement in women. Parasympatholytic agents, which interfere with cholinergic transmission, may affect erectile potency, while adrenergic inhibiting agents may interfere with ejaculatory control. Central nervous system depressants or sedating drugs, drugs producing hyperprolactinemia, and antiandrogenic drugs also may affect the normal sexual response. Drugs such as antihypertensive and antipsychotic agents may induce sexual dysfunction that can result in patient noncompliance. Usually, drug-induced side effects are reversible with discontinuation of the offending agent.
Neuroprostheses to treat neurogenic bladder dysfunction: current status and future perspectives.
Rijkhoff, Nico J M
2004-02-01
Neural prostheses are a technology that uses electrical activation of the nervous system to restore function to individuals with neurological or sensory impairment. This article provides an introduction to neural prostheses and lists the most successful neural prostheses (in terms of implanted devices). The article then focuses on neurogenic bladder dysfunction and describes two clinically available implantable neural prostheses for treatment of neurogenic bladder dysfunction. Special attention is given to the usage of these neural prostheses in children. Finally, three new developments that may lead to a new generation of implantable neural prostheses for bladder control are described. They may improve the neural prostheses currently available and expand further the population of patients who can benefit from a neural prosthesis.
ERIC Educational Resources Information Center
Bergstrom-Isacsson, Marith; Lagerkvist, Bengt; Holck, Ulla; Gold, Christian
2013-01-01
Rett syndrome (RTT) is a neurodevelopmental disorder, including autonomic nervous system dysfunctions and severe communication impairment with an extremely limited ability to use verbal language. These individuals are therefore dependent on the capacity of caregivers to observe and interpret communicative signals, including emotional expressions.…
Sickle Cell Disease as a Neurodevelopmental Disorder
ERIC Educational Resources Information Center
Schatz, Jeffrey; McClellan, Catherine B.
2006-01-01
Sickle cell disease (SCD) is a blood disorder; however, the central nervous system (CNS) is one of the organs frequently affected by the disease. Brain disease can begin early in life and often leads to neurocognitive dysfunction. Approximately one-fourth to one-third of children with SCD have some form of CNS effects from the disease, which…
Sacral neuromodulation for lower urinary tract dysfunction.
Van Kerrebroeck, Philip E V; Marcelissen, Tom A T
2012-08-01
To review the technique, indications, results and working mechanisms of sacral neuromodulation (SNM) for lower urinary tract dysfunction. The available literature on SNM for lower urinary tract dysfunction was searched. Based on the information available in the literature and also based on personal experience, the urological indications, technique, mechanisms of action and results of SNM are presented and discussed. SNM for lower urinary tract dysfunction involves stimulation of the 3rd sacral nerve with an electrode implanted in the sacral foramen and connected to a pulse generator. The technique is accepted by the FDA since 1997. Currently, SNM for lower urinary tract dysfunction has been successfully used in about 26,000 patients with various forms of lower urinary tract dysfunction, including urgency, frequency and urgency incontinence as well as non-obstructive urinary retention. The actual procedure of SNM consists of a minimal invasive technique and is effective in about 70% of the patients who have been implanted with a permanent system. Also, in pelvic pain, interesting results have been described. SNM modulates the micturition reflexes at different levels in the central nervous system. Sacral neuromodulation is a safe and effective therapy for various forms of lower urinary tract dysfunction, including urgency, frequency and urgency incontinence as well as non-obstructive urinary retention. It should be the first choice after failure of maximal conservative therapy.
[Health status and fitness of the young men for military service].
Korenev, N M; Bulaga, L P; Komlik, P V; Nemirova, O A; Kalmykov, K K; Sidorenko, T P
2002-01-01
Submitted in the article are medical causes of unfitness of those men called up for military service in peace-time. These include psychic dysfunctions (22%), traumata (18.5%), disorders of the nervous system and sensory organs (14.5%), of the osteomuscular system and connective tissue (13.3%), digestive diseases (8.6%). Mental disorders, those of the nervous system and sensory organs, the endocrine system and digestive organs rank first among causes of striking the serviceman off the register, coming up to 40.9%, 31.2%, and 6.8% respectively. Age has been established at which disease manifestations causing unfitness for military service come to reveal themselves: in 58.4 percent of registrants the above manifestations were first diagnosed in childhood, in 5.4 percent--at 16 to 17 years of age, in 36.2 percent--at call-up age.
Descending pain modulation in irritable bowel syndrome (IBS): a systematic review and meta-analysis.
Chakiath, Rosemary J; Siddall, Philip J; Kellow, John E; Hush, Julia M; Jones, Mike P; Marcuzzi, Anna; Wrigley, Paul J
2015-12-10
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder. While abdominal pain is a dominant symptom of IBS, many sufferers also report widespread hypersensitivity and present with other chronic pain conditions. The presence of widespread hypersensitivity and extra-intestinal pain conditions suggests central nervous dysfunction. While central nervous system dysfunction may involve the spinal cord (central sensitisation) and brain, this review will focus on one brain mechanism, descending pain modulation. We will conduct a comprehensive search for the articles indexed in the databases Ovid MEDLINE, Ovid Embase, Ovid PsycINFO and Cochrane Central Register of Controlled Trial (CENTRAL) from their inception to August 2015, that report on any aspect of descending pain modulation in irritable bowel syndrome. Two independent reviewers will screen studies for eligibility, assess risk of bias and extract relevant data. Results will be tabulated and, if possible, a meta-analysis will be carried out. The systematic review outlined in this protocol aims to summarise current knowledge regarding descending pain modulation in IBS. PROSPERO CRD42015024284.
Influence of selected dietary components on the functioning of the human nervous system
Wendołowicz, Agnieszka; Stefańska, Ewa; Ostrowska, Lucyna
The diet is directly connected not only with the physical status but also with the functioning of the brain and the mental status. The potentially beneficial nutrients with a protective effect on the nervous system function include amino acids (tryptophan, phenylalanine, tyrosine, taurine), glucose and vitamins C, E, D and beta-carotene, B group vitamins (vitamin B12, vitamin B6, vitamin B4, vitamin B1) and minerals (selenium, zinc, magnesium, sodium, iron, copper, manganese, iodine). The presence of antioxidants in the diet protects against oxidative damage to nervous system cells. Biochemical data indicate that polyunsaturated fatty acids such as arachidonic acid (AA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) as structural components of the nervous system play a key role in its function. The nutrition of the entire body also influences the production of neurotransmitters in the brain. A diet without an appropriate supply of protein, mineral nutrients or vitamins may result in a failure to form appropriately balanced numbers of neurotransmitters, which, as a result, may lead to neurotransmission dysfunction. This is the reason why proper nutrition is based on vegetables, fruits, whole-grain cereal products supplemented with products providing full-value protein (dairy products, fish, lean meat) and high-quality fat products (vegetable oils, fish fats).
Multiple System Atrophy: An Oligodendroglioneural Synucleinopathy1
Jellinger, Kurt A.
2017-01-01
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a “prion-like” manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed. PMID:28984582
The Spleen: A Hub Connecting Nervous and Immune Systems in Cardiovascular and Metabolic Diseases
Lori, Andrea; Perrotta, Marialuisa; Lembo, Giuseppe; Carnevale, Daniela
2017-01-01
Metabolic disorders have been identified as major health problems affecting a large portion of the world population. In addition, obesity and insulin resistance are principal risk factors for the development of cardiovascular diseases. Altered immune responses are common features of both hypertension and obesity and, moreover, the involvement of the nervous system in the modulation of immune system is gaining even more attention in both pathophysiological contexts. For these reasons, during the last decades, researches focused their efforts on the comprehension of the molecular mechanisms connecting immune system to cardiovascular and metabolic diseases. On the other hand, it has been reported that in these pathological conditions, central neural pathways modulate the activity of the peripheral nervous system, which is strongly involved in onset and progression of the disease. It is interesting to notice that neural reflex can also participate in the modulation of immune functions. In this scenario, the spleen becomes the crucial hub allowing the interaction of different systems differently involved in metabolic and cardiovascular diseases. Here, we summarize the major findings that dissect the role of the immune system in disorders related to metabolic and cardiovascular dysfunctions, and how this could also be influenced by neural reflexes. PMID:28590409
Bourke, Christopher A
2018-01-01
Sporadic or idiopathic Parkinson's disease is a movement disorder with a worldwide distribution, a long pre-clinical latent period and a frequent association with dementia. The combination of molybdenum deficiency and purine ingestion could explain the movement disorder, the distribution, the latent period and the dementia association. Recent studies in sheep have shown that molybdenum deficiency enables some dietary purines to accumulate in the central nervous system. This causes astrocyte dysfunction, altered neuromodulation and eventually irreversible central nervous system disease. Humans and sheep share the ability to salvage purines and this ability places humans at risk when they ingest xanthosine, inosine, adenosine and guanosine. Adenosine ingestion in molybdenum-deficient humans will lead to adenosine loading and potentially a disturbance to the A2a adenosine receptors in the nigro-striatum. This could result in Parkinson's disease. Guanosine ingestion in molybdenum-deficient humans will lead to guanosine loading and potentially a disturbance to the guanosine receptors in the hippocampus, amygdala and ventral striatum. This could result in dementia. The molybdenum content of the average daily diet in the United States is 0.07 ppm and in the United Kingdom 0.04 ppm. Central nervous system disease occurs in sheep at <0.04 ppm. Consistent with the role proposed for molybdenum deficiency in Parkinson's disease is the observation that affected individuals have elevated sulfur amino acid levels, depressed sulfate levels, and depressed uric acid levels. Likewise the geographical distribution of Parkinson's dementia complex on Guam corresponds with the distribution of molybdenum-deficient soils hence molybdenum-deficient food gardens on that island.
Differential Effects of Leptin and Adiponectin in Endothelial Angiogenesis
Adya, Raghu; Tan, Bee K.; Randeva, Harpal S.
2015-01-01
Obesity is a major health burden with an increased risk of cardiovascular morbidity and mortality. Endothelial dysfunction is pivotal to the development of cardiovascular disease (CVD). In relation to this, adipose tissue secreted factors termed “adipokines” have been reported to modulate endothelial dysfunction. In this review, we focus on two of the most abundant circulating adipokines, that is, leptin and adiponectin, in the development of endothelial dysfunction. Leptin has been documented to influence a multitude of organ systems, that is, central nervous system (appetite regulation, satiety factor) and cardiovascular system (endothelial dysfunction leading to atherosclerosis). Adiponectin, circulating at a much higher concentration, exists in different molecular weight forms, essentially made up of the collagenous fraction and a globular domain, the latter being investigated minimally for its involvement in proinflammatory processes including activation of NF-κβ and endothelial adhesion molecules. The opposing actions of the two forms of adiponectin in endothelial cells have been recently demonstrated. Additionally, a local and systemic change to multimeric forms of adiponectin has gained importance. Thus detailed investigations on the potential interplay between these adipokines would likely result in better understanding of the missing links connecting CVD, adipokines, and obesity. PMID:25650072
An aberrant parasympathetic response: a new perspective linking chronic stress and itch.
Kim, Hei Sung; Yosipovitch, Gil
2013-04-01
Perceived stress has long been known to alter the dynamic equilibrium established between the nervous, endocrine and immune system and is widely recognised to trigger or enhance pruritus. However, the exact mechanism of how the major stress response systems, such as the hypothalamus-pituitary adrenal (HPA) axis and the autonomic nervous system induce or aggravate chronic itch, has not been elucidated. The limbic regions of the brain such as the prefrontal cortex and hippocampus are deeply involved in the regulation of the stress response and intersect with circuits that are responsible for memory and reward. According to the 'Polyvagal Theory', certain limbic structures that serve as a 'higher brain equivalent of the parasympathetic nervous system' play a foremost role in maintaining body homoeostasis by functioning as an active vagal brake. In addition, the limbic system has been postulated to regulate two distinct, yet related aspects of itch: (i) the sensory-discriminative aspect; and (ii) the affective-cognitive aspect. Chronic stress-induced itch is hypothesised to be caused by stress-related changes in limbic structure with subsequent rewiring of both the peripheral and central pruriceptive circuits. Herein, we review data suggesting that a dysfunctional parasympathetic nervous system associated with chronic stress may play a critical role in the regulatory control of key candidate molecules, receptors and brain structures involved in chronic itch. © 2012 John Wiley & Sons A/S.
The adverse effects of air pollution on the nervous system.
Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H; Genc, Kursad
2012-01-01
Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.
The Adverse Effects of Air Pollution on the Nervous System
Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad
2012-01-01
Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490
ERIC Educational Resources Information Center
Heckel, Leila; Clarke, Adam; Barry, Robert; McCarthy, Rory; Selikowitz, Mark
2009-01-01
It is generally accepted that Attention-Deficit/Hyperactivity Disorder (ADHD) results from a dysfunction of the central nervous system, which has led to a commonly held belief that environmental factors play little role in the behavioural problems of children identified as having ADHD. Therefore, the two studies reported in this article…
Fujimaki, Shin; Kuwabara, Tomoko
2017-01-01
Diabetes mellitus is one of the most common metabolic diseases spread all over the world, which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated under diabetic condition in several tissues. In recent years, several studies have suggested that the regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by improving the functions of both mitochondria and stem cells. In the present review, we provide an overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several target tissues under diabetes complication and to improve the physiological function of patients with diabetes, resulting in their quality of life being maintained. PMID:29036909
Electroneurographic findings in patients with solvent induced central nervous system dysfunction.
Orbaek, P; Rosén, I; Svensson, K
1988-01-01
The function of the peripheral nervous system was examined in a group of 32 men aged 30-65 (mean 49) with diagnosed solvent induced chronic toxic encephalopathy. The subjects were examined at the time of diagnosis and 26 were re-examined after a follow up period of 22-72 months (mean 40) and compared with a group of 50 unexposed male workers aged 27-64 (mean 42) with appropriate adjustment for age. All subjects were carefully scrutinised for alcohol abuse and other neurological diseases. The results of motor fibre neurography disclosed no difference between the groups. Nevertheless, a significant decrease in motor conduction velocity was found in the patients at follow up. Sensory fibre neurography showed signs of slight axonal degeneration with significantly decreased sensory nerve action potential amplitudes in the median and sural nerves; these amplitudes increased during follow up. The duration of sensory nerve action potentials was longer in the exposed group for the median and the sural nerves. The percentage of late components was significantly higher in the median nerve. The warm-cold sensitivity in the exposed group also indicated a slight sensory dysfunction with statistically significant wider detection limits. PMID:2840109
Fujimaki, Shin; Kuwabara, Tomoko
2017-10-14
Diabetes mellitus is one of the most common metabolic diseases spread all over the world, which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated under diabetic condition in several tissues. In recent years, several studies have suggested that the regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by improving the functions of both mitochondria and stem cells. In the present review, we provide an overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several target tissues under diabetes complication and to improve the physiological function of patients with diabetes, resulting in their quality of life being maintained.
Neuro-immune dysfunction during brain aging: new insights in microglial cell regulation.
Matt, Stephanie M; Johnson, Rodney W
2016-02-01
Microglia, the resident immune cells of the brain, are at the center of communication between the central nervous system and immune system. While these brain-immune interactions are balanced in healthy adulthood, the ability to maintain homeostasis during aging is impaired. Microglia develop a loss of integrated regulatory networks including aberrant signaling from other brain cells, immune sensors, and epigenetic modifiers. The low-grade chronic neuroinflammation associated with this dysfunctional activity likely contributes to cognitive deficits and susceptibility to age-related pathologies. A better understanding of the underlying mechanisms responsible for neuro-immune dysregulation with age is crucial for providing targeted therapeutic strategies to support brain repair and healthy aging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hypertension as a risk factor for heart failure.
Kannan, Arun; Janardhanan, Rajesh
2014-07-01
Hypertension remains a significant risk factor for development of congestive heart failure CHF), with various mechanisms contributing to both systolic and diastolic dysfunction. The pathogenesis of myocardial changes includes structural remodeling, left ventricular hypertrophy, and fibrosis. Activation of the sympathetic nervous system and renin-angiotensin system is a key contributing factor of hypertension, and thus interventions that antagonize these systems promote regression of hypertrophy and heart failure. Control of blood pressure is of paramount importance in improving the prognosis of patients with heart failure.
Positional and positioning down-beating nystagmus without central nervous system findings.
Ogawa, Yasuo; Suzuki, Mamoru; Otsuka, Koji; Shimizu, Shigetaka; Inagaki, Taro; Hayashi, Mami; Hagiwara, Akira; Kitajima, Naoharu
2009-12-01
We report the clinical features of 4 cases with positional or positioning down-beating nystagmus in a head-hanging or supine position without any obvious central nervous system disorder. The 4 cases had some findings in common. There were no abnormal findings on neurological tests or brain MRI. They did not have gaze nystagmus. Their nystagmus was observed only in a supine or head-hanging position and it was never observed upon returning to a sitting position and never reversed. The nystagmus had no or little torsional component, had latency and tended to decrease with time. The positional DBN (p-DBN) is known to be indicative of a central nervous system disorder. Recently there were some reports that canalithiasis of the anterior semicircular canal (ASC) causes p-DBN and that patients who have p-DBN without obvious CNS dysfunction are dealt with anterior semicircular canal (ASC) benign paroxysmal positional vertigo (BPPV). There are some doubts as to the validity of making a diagnosis of ASC-BPPV in a case of p-DBN without CNS findings. It is hard to determine the cause of p-DBN in these cases.
Cortical neuronal cytoskeletal changes associated with FIV infection
NASA Technical Reports Server (NTRS)
Jacobson, S.; Henriksen, S. J.; Prospero-Garcia, O.; Phillips, T. R.; Elder, J. H.; Young, W. G.; Bloom, F. E.; Fox, H. S.
1997-01-01
HIV-1 infection is often complicated by central nervous system (CNS) dysfunction. Degenerative neuronal changes as well as neuronal loss have been documented in individuals with AIDS. Feline immunodeficiency virus (FIV) infection of cats provides a model for both the immune and the central nervous system manifestations of HIV infection of humans. In this study we have examined neurons in the frontal cortex of feline immunodeficiency virus-infected cats and controls for immunoreactivity with SMI 32, an antibody recognizing a non-phosphorylated epitope on neurofilaments. We noted a significant increase in the number of immunoreactive pyramidal cells in infected animals compared to controls. The changes seen in the neuronal cytoskeleton as a consequence of the inoculation with FIV were similar to those seen in humans undergoing the normal aging process as well as those suffering from neurological diseases, including Alzheimer's and dementia pugilistica. The changes we noted in the feline brain were also similar to that reported in animals with traumatic injuries or with spontaneously occurring or induced motor neuron diseases, suggesting that the increase in reactivity represents a deleterious effect of FIV on the central nervous system.
Central nervous system toxicity of metallic nanoparticles
Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin
2015-01-01
Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667
Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system.
Toth, Marton Lorant; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A; Bhanot, Gyan; Rongo, Chris; Hall, David H; Driscoll, Monica
2012-06-27
Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.
Neurite Sprouting and Synapse Deterioration in the Aging C. elegans Nervous System
Toth, Marton; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A.; Bhanot, Gyan; Rongo, Chris; Hall, David H
2012-01-01
C. elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: 1) accumulation of novel outgrowths from specific neurons, and 2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a dimunition of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies. PMID:22745480
Zhivolupov, S A; Samartsev, I N; Marchenko, A A; Puliatkina, O V
2012-01-01
We have studied the efficacy of adaptol in the treatment of 45 patients with somatoform dysfunction of the autonomic nervous system and 30 patients with closed head injury. The condition of patients during the treatment was evaluated with clinical and neuropsychological scales. The serum level of BDNF before and after the treatment has been studied as well. Adaptol has been shown to enhance the production of BDNF, reduce significantly the intensity of anxiety, autonomic disorders and improve intellectual processes. The dose-dependent effect of the drug has been demonstrated. In conclusion, adaptol can be recommended for treatment of diseases that demand stimulation of neuroplasticity in the CNS.
Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury.
Helmy, Adel; De Simoni, Maria-Grazia; Guilfoyle, Mathew R; Carpenter, Keri L H; Hutchinson, Peter J
2011-11-01
There is an increasing recognition that following traumatic brain injury, a cascade of inflammatory mediators is produced, and contributes to the pathological consequences of central nervous system injury. This review summarises the key literature from pre-clinical models that underlies our understanding of innate inflammation following traumatic brain injury before focussing on the growing evidence from human studies. In addition, the underlying molecular mediators responsible for blood brain barrier dysfunction have been discussed. In particular, we have highlighted the different sampling methodologies available and the difficulties in interpreting human data of this sort. Ultimately, understanding the innate inflammatory response to traumatic brain injury may provide a therapeutic avenue in the treatment of central nervous system disease. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tay, Sen Hee; Mak, Anselm
2015-01-01
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects approximately 1–45.3 per 100,000 people worldwide. Although deaths as a result of active and renal diseases have been substantially declining amongst SLE patients, disease involving the central nervous system (CNS), collectively termed neuropsychiatric systemic lupus erythematosus (NPSLE), remains one of the important causes of death in these patients. Cognitive dysfunction is one of the most common manifestations of NPSLE, which comprises deficits in information-processing speed, attention and executive function, in conjunction with preservation of speech. Albeit a prevalent manifestation of NPSLE, the pathogenetic mechanisms of cognitive dysfunction remain unclear. Recent advances in genetic studies, molecular techniques, neuropathology, neuroimaging and cognitive science have gleaned valuable insights into the pathophysiology of lupus-related cognitive dysfunction. In recent years, a role for autoantibodies, molecular and cellular mechanisms in cognitive dysfunction, has been emerging, challenging our previous concept of the brain as an immune privileged site. This review will focus on the potential pathogenic factors involved in NPSLE, including anti-N-methyl-d-aspartate receptor subunit NR2A/B (anti-NR2A/B) antibodies, matrix metalloproteinase-9, neutrophil extracellular traps and pro-inflammatory mediators. Better understanding of these mechanistic processes will enhance identification of new therapeutic modalities to halt the progression of cognitive decline in SLE patients. PMID:25955648
Stratified active screening: where neurotechnology meets public health.
Valdés, Pedro; Obrador-Fragoso, Adianez
2007-10-01
Nearly one quarter of the global burden of disease stems from neurological, psychiatric and neurodevelopmental disorders due to malformations or dysfunctions of the central nervous system.[1] Such neuropsychiatric conditions influence quality of life worldwide, causing one third of years lost due to disability (YDL).[2] Ranging from congenital conditions to dementias of the elderly, these disorders appear throughout the life cycle and also account for a substantial proportion of mortality. Recent advances in neuroimaging and neuroinformatics have opened the way for early identification of dysfunctional brain networks, providing essential information for the early detection, proper diagnosis, treatment selection, and follow-up of people with disabilities due to brain disorders.
Stratified active screening: where neurotechnology meets public health.
Valdés, Pedro; Obrador-Fragoso, Adianez
2008-10-01
Nearly one quarter of the global burden of disease stems from neurological, psychiatric and neurodevelopmental disorders due to malformations or dysfunctions of the central nervous system.[1] Such neuropsychiatric conditions influence quality of life worldwide, causing one third of years lost due to disability (YDL).[2] Ranging from congenital conditions to dementias of the elderly, these disorders appear throughout the life cycle and also account for a substantial proportion of mortality. Recent advances in neuroimaging and neuroinformatics have opened the way for early identification of dysfunctional brain networks, providing essential information for the early detection, proper diagnosis, treatment selection, and follow-up of people with disabilities due to brain disorders.
Stratified active screening: where neurotechnology meets public health.
Valdés, Pedro; Obrador-Fragoso, Adianez
2009-01-01
Nearly one quarter of the global burden of disease stems from neurological, psychiatric and neurodevelopmental disorders due to malformations or dysfunctions of the central nervous system.[1] Such neuropsychiatric conditions influence quality of life worldwide, causing one third of years lost due to disability (YDL).[2] Ranging from congenital conditions to dementias of the elderly, these disorders appear throughout the life cycle and also account for a substantial proportion of mortality. Recent advances in neuroimaging and neuroinformatics have opened the way for early identification of dysfunctional brain networks, providing essential information for the early detection, proper diagnosis, treatment selection, and follow-up of people with disabilities due to brain disorders.
Cerebrovascular Complications of Diabetes: Focus on Cognitive Dysfunction
Hardigan, Trevor; Ward, Rebecca; Ergul, Adviye
2017-01-01
The incidence of diabetes has more than doubled in the United States in the last 30 years and the global disease rate is projected to double by 2030. Cognitive impairment has been associated with diabetes, worsening quality of life in patients. The structural and functional interaction of neurons with the surrounding vasculature is critical for proper function of the central nervous system including domains involved in learning and memory. Thus, in this review we explore cognitive impairment in patients and experimental models, focusing on links to vascular dysfunction and structural changes. Lastly, we propose a role for the innate immunity--mediated inflammation in neurovascular changes in diabetes. PMID:27634842
Effects of Alcohol on the Endocrine System
Rachdaoui, Nadia; Sarkar, Dipak K.
2013-01-01
Synopsis The endocrine system ensures a proper communication between various organs of the body to maintain a constant internal environment. The endocrine system also plays an essential role in enabling the body to respond and appropriately cope with changes in the internal or external environments, such as respond to stress and injury. These functions of the endocrine system to maintain body homeostasis are aided by its communication with the nervous system, immune system and body’s circadian mechanism. Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiological and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. PMID:24011889
ERIC Educational Resources Information Center
Reichurdt, Konrad W.; Wilson, John A. R.
This study was undertaken to measure emotional expression as mediated by the automatic nervous system during reading and during other tasks related to school work. Subjects for this research were eight normal readers, reading above the 46th percentile on the Davis Reading Test Form 1-A, used as a control group and sixteen abnormal readers drawn…
Dosha brain-types: A neural model of individual differences.
Travis, Frederick T; Wallace, Robert Keith
2015-01-01
This paper explores brain patterns associated with the three categories of regulatory principles of the body, mind, and behavior in Ayurveda, called Vata, Pitta, and Kapha dosha. A growing body of research has reported patterns of blood chemistry, genetic expression, physiological states, and chronic diseases associated with each dosha type. Since metabolic and growth factors are controlled by the nervous system, each dosha type should be associated with patterns of functioning of six major areas of the nervous system: The prefrontal cortex, the reticular activating system, the autonomic nervous system, the enteric nervous system, the limbic system, and the hypothalamus. For instance, the prefrontal cortex, which includes the anterior cingulate, ventral medial, and the dorsal lateral cortices, would exhibit a high range of functioning in the Vata brain-type leading to the possibility of being easily overstimulated. The Vata brain-type performs activity quickly. Learns quickly and forgets quickly. Their fast mind gives them an edge in creative problem solving. The Pitta brain-type reacts strongly to all challenges leading to purposeful and resolute actions. They never give up and are very dynamic and goal oriented. The Kapha brain-type is slow and steady leading to methodical thinking and action. They prefer routine and needs stimulation to get going. A model of dosha brain-types could provide a physiological foundation to understand individual differences. This model could help individualize treatment modalities to address different mental and physical dysfunctions. It also could explain differences in behavior seen in clinical as well as in normal populations.
Resistance of the peripheral nervous system to the effects of chronic canine hypothyroidism.
Rossmeisl, J H
2010-01-01
Hypothyroidism has been implicated in the development of multiple peripheral mono- and polyneuropathies in dogs. The objectives of this study were to evaluate the clinical and electrophysiologic effects of experimentally induced hypothyroidism on the peripheral nervous system of dogs. Chronic hypothyroidism will induce peripheral nerve sensorimotor dysfunction. Eighteen purpose-bred, female dogs. Prospective, longitudinal study: Hypothyroidism was induced by radioactive iodine administration in 9 dogs, and the remaining 9 served as untreated controls. Neurological examinations were performed monthly. Electrophysiologic testing consisting of electromyography (EMG); motor nerve conduction studies of the sciatic-tibial, radial, ulnar, and recurrent laryngeal nerves; sciatic-tibial and ulnar F-wave studies; sensory nerve conduction studies of the tibial, ulnar, and radial nerves; and evaluation of blink reflex and facial responses were performed before and 6, 12, and 18 months after induction of hypothyroidism and compared with controls. Clinical evidence of peripheral nervous dysfunction did not occur in any dog. At 6 month and subsequent evaluations, all hypothyroid dogs had EMG and histologic evidence of hypothyroid myopathy. Hypothyroid dogs had significant (P
Multi-organ dysfunction due to bath salts: are we aware of this entity?
Valsalan, Rohith; Varghese, Benoj; Soman, Diya; Buckmaster, Jonathan; Yew, Steven; Cooper, David
2017-01-01
Methylenedioxypyrovalerone (MDPV) is a synthetic, cathinone-derivative, central nervous system stimulant taken to produce a cocaine- or methamphetamine-like high. Physical manifestations include tachycardia, hypertension, arrhythmias, hyperthermia, sweating, rhabdomyolysis, hyperkalaemia, disseminated intravascular coagulation, oliguria and seizures. We report a patient who presented with severe metabolic acidosis, multi-organ dysfunction, rhabdomyolysis, hyperkalaemia and seizures. This case highlights that even though a urine drug screen for routine psychostimulant drugs is negative, clinicians need to be vigilant about the adverse effects of MDPV as a possible cause of multi-organ dysfunction. Substances such as this can only be detected by special tests, such as gas/liquid chromatography mass spectrometry. This is the first reported case of MDPV toxicity successfully treated in Australia to the best of our knowledge. © 2017 Royal Australasian College of Physicians.
Loftus, Tyler J; Efron, Philip A; Moldawer, Lyle L; Mohr, Alicia M
2016-10-01
Sympathetic nervous system activation and catecholamine release are important events following injury and infection. The nature and timing of different pathophysiologic insults have significant effects on adrenergic pathways, inflammatory mediators, and the host response. Beta adrenergic receptor blockers (β-blockers) are commonly used for treatment of cardiovascular disease, and recent data suggests that the metabolic and immunomodulatory effects of β-blockers can expand their use. β-blocker therapy can reduce sympathetic activation and hypermetabolism as well as modify glucose homeostasis and cytokine expression. It is the purpose of this review to examine either the biologic basis for proposed mechanisms or to describe current available clinical evidence for the use of β-blockers in traumatic brain injury, spinal cord injury, hemorrhagic shock, acute traumatic coagulopathy, erythropoietic dysfunction, metabolic dysfunction, pulmonary dysfunction, burns, immunomodulation, and sepsis.
Hypocretin-1 deficiency in a girl with ROHHAD syndrome.
Dhondt, Karlien; Verloo, Patrick; Verhelst, Hélène; Van Coster, Rudy; Overeem, Sebastiaan
2013-09-01
Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) is a rare and complex pediatric syndrome, essentially caused by dysfunction of 3 vital systems regulating endocrine, respiratory, and autonomic nervous system functioning. The clinical spectrum of ROHHAD is broad, but sleep/wake disorders have received relatively little attention so far, although the central hypothalamic dysfunction would make the occurrence of sleep symptoms likely. In this case report, we expand the phenotype of ROHHAD with a number of striking sleep symptoms that together can be classified as a secondary form of narcolepsy. We present a 7-year-old girl with ROHHAD who displayed the classic features of narcolepsy with cataplexy: excessive daytime sleepiness with daytime naps, visual hallucinations, and partial cataplexy reflected in intermittent loss of facial muscle tone. Nocturnal polysomnography revealed sleep fragmentation and a sleep-onset REM period characteristic for narcolepsy. The diagnosis was confirmed by showing an absence of hypocretin-1 in the cerebrospinal fluid. We discuss potential pathophysiological implications as well as symptomatic treatment options.
[MITOCHONDRIAL DYSFUNCTION: MODERN ASPECTS OF THERAPY (REVIEW)].
Arveladze, G; Geladze, N; Khachapuridze, N; Bakhtadze, S; Kapanadze, N
2015-01-01
Mitochondrial diseases are considered as one of the major problems of modern interdisciplinary neonatology and pediatrics. Mitochondrial pathology can be revealed as refractory myoclonic or multifocal seizures, craniofacial dysostosis, dysmetabolic manifestations and respiratory disorders. Central nervous system (CNS), muscles, heart, liver and kidneys is involved in this pathological process. An important criterion for diagnosis of mitochondrial dysfunction is increases in blood lactate and pyruvate levels; the absolute criterion - molecular genetic diagnostic studies of mitochondrial DNA. Polymorphism of clinical symptoms complicates the process of early diagnostics, the lack clear recommendations complicates therapy. Modern aspects of treatment of mitochondrial dysfunction in various neurological syndromes are based primarily in improving the efficiency of the processes of oxidative phosphorylation at the system level. Dietary carbohydrate restriction, and medication (Coenzyme Q10, Idebenonum, Cofactors, drugs which reduce lactic acidosis- Dimephosphon, Dichloroacetate, Antioxidants, Anticonvulsants and Antidiabetic agents, vitamins C, E, K, hemotransfusions) is prescribed. Such complex approach allows us to achieve a reduction in lactate-acidosis, and improve the condition of patients in 70% of cases.
Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis.
Ferret-Sena, Véronique; Capela, Carlos; Sena, Armando
2018-06-01
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) probably caused, in most cases, by the interaction of genetic and environmental factors. This review first summarizes some clinical, epidemiological and pathological characteristics of MS. Then, the involvement of biochemical pathways is discussed in the development and repair of the CNS lesions and the immune dysfunction in the disease. Finally, the potential roles of peroxisome proliferator-activated receptors (PPAR) in MS are discussed. It is suggested that metabolic mechanisms modulated by PPAR provide a window to integrate the systemic and neurological events underlying the pathogenesis of the disease. In conclusion, the reviewed data highlight molecular avenues of understanding MS that may open new targets for improved therapies and preventive strategies for the disease.
[Pathophysiology of heat illness].
Aruga, Tohru; Miyake, Yasufumi
2012-06-01
Human core temperature is strictly controlled by mechanism of radiation, conduction, convection, and evaporation from skin surface. Serial hot and humid climate induces dehydration which interferes heat pump-out from the body. Heart dysfunction is the third factor to rise body temperature. Hyperthermia and hypo-perfusion caused by dehydration and heart failure deteriorate specific organ functions, i.e. central nervous system, liver and renal functions and coagulation system. Disseminated intravascular coagulopathy is one of the standard indicators of severity and mortality of heat stroke.
Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System.
Rachdaoui, Nadia; Sarkar, Dipak K
2017-01-01
Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-growth hormone/insulin-like growth factor-1 axis, and the hypothalamic-posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol's effects on various components of the endocrine system and their consequences.
2015-01-01
Epigenetic enzymes are now targeted to treat the underlying gene expression dysregulation that contribute to disease pathogenesis. Histone deacetylases (HDACs) have shown broad potential in treatments against cancer and emerging data supports their targeting in the context of cardiovascular disease and central nervous system dysfunction. Development of a molecular agent for non-invasive imaging to elucidate the distribution and functional roles of HDACs in humans will accelerate medical research and drug discovery in this domain. Herein, we describe the synthesis and validation of an HDAC imaging agent, [11C]6. Our imaging results demonstrate that this probe has high specificity, good selectivity, and appropriate kinetics and distribution for imaging HDACs in the brain, heart, kidney, pancreas, and spleen. Our findings support the translational potential for [11C]6 for human epigenetic imaging. PMID:25203558
Meisel, Joshua D; Kim, Dennis H
2016-07-25
Lithium has been a mainstay for the treatment of bipolar disorder, yet the molecular mechanisms underlying its action remain enigmatic. Bisphosphate 3'-nucleotidase (BPNT-1) is a lithium-sensitive phosphatase that catalyzes the breakdown of cytosolic 3'-phosphoadenosine 5'-phosphate (PAP), a byproduct of sulfation reactions utilizing the universal sulfate group donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) [1-3]. Loss of BPNT-1 leads to the toxic accumulation of PAP in yeast and non-neuronal cell types in mice [4, 5]. Intriguingly, BPNT-1 is expressed throughout the mammalian brain [4], and it has been hypothesized that inhibition of BPNT-1 could contribute to the effects of lithium on behavior [5]. Here, we show that loss of BPNT-1 in Caenorhabditis elegans results in the selective dysfunction of two neurons, the bilaterally symmetric pair of ASJ chemosensory neurons. As a result, BPNT-1 mutants are defective in behaviors dependent on the ASJ neurons, such as dauer exit and pathogen avoidance. Acute treatment with lithium also causes dysfunction of the ASJ neurons, and we show that this effect is reversible and mediated specifically through inhibition of BPNT-1. Finally, we show that the selective effect of lithium on the nervous system is due in part to the limited expression of the cytosolic sulfotransferase SSU-1 in the ASJ neuron pair. Our data suggest that lithium, through inhibition of BPNT-1 in the nervous system, can cause selective toxicity to specific neurons, resulting in corresponding effects on behavior of C. elegans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prevention moderates associations between family risks and youth catecholamine levels.
Brody, Gene H; Yu, Tianyi; Chen, Edith; Miller, Gregory E
2014-11-01
The purpose of this study was to establish, using a quasi-experimental design, whether 2 family risk factors, parental psychological dysfunction and nonsupportive parenting, during preadolescence could longitudinally predict elevated sympathetic nervous system (SNS) activity 9 years later, and to determine whether participation in an efficacious family centered prevention program could moderate these associations if they emerged. Rural African American preadolescents (N = 476) were assigned randomly to the Strong African American Families (SAAF) program or to a control condition. When youths were 11 years of age (M = 11.2 years), primary caregivers provided data on their own depressive symptoms and self-esteem, and youths provided data on their receipt of nonsupportive parenting. When the youths were 20 years of age, indicators of SNS activity, the catecholamines epinephrine and norepinephrine, were assayed from their overnight urine voids. Parental psychological dysfunction and nonsupportive parenting forecast elevated catecholamine levels for youths in the control condition, but not for those in the SAAF condition. The demonstration that a prevention program can induce reduction of catecholamine levels is important from both theoretical and public health perspectives, because it shows that the developmental progression from family risk factors to heightened sympathetic nervous system activity is not immutable. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Glial Biomarkers in Human Central Nervous System Disease
Garden, Gwenn A.; Campbell, Brian M.
2017-01-01
There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. PMID:27228454
Photobiomodulation on alcohol induced dysfunction
NASA Astrophysics Data System (ADS)
Yang, Zheng-Ping; Liu, Timon C.; Zhang, Yan; Wang, Yan-Fang
2007-05-01
Alcohol, which is ubiquitous today, is a major health concern. Its use was already relatively high among the youngest respondents, peaked among young adults, and declined in older age groups. Alcohol is causally related to more than 60 different medical conditions. Overall, 4% of the global burden of disease is attributable to alcohol, which accounts for about as much death and disability globally as tobacco and hypertension. Alcohol also promotes the generation of reactive oxygen species (ROS) and/or interferes with the body's normal defense mechanisms against these compounds through numerous processes, particularly in the liver. Photobiomodulation (PBM) is a cell-specific effect of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems. The cellular effects of both alcohol and LIL are ligand-independent so that PBM might rehabilitate alcohol induced dysfunction. The PBM on alcohol induced human neutrophil dysfunction and rat chronic atrophic gastritis, the laser acupuncture on alcohol addiction, and intravascular PBM on alcoholic coma of patients and rats have been observed. The endonasal PBM (EPBM) mediated by Yangming channel, autonomic nervous systems and blood cells is suggested to treat alcohol induced dysfunction in terms of EPBM phenomena, the mechanism of alcohol induced dysfunction and our biological information model of PBM. In our opinion, the therapeutic effects of PBM might also be achieved on alcoholic myopathy.
Non-Exertional Heatstroke: A Case Report and Review of the Literature
Mozzini, Chiara; Xotta, Giovanni; Garbin, Ulisse; Pasini, Anna Maria Fratta; Cominacini, Luciano
2017-01-01
Patient: Female, 41 Final Diagnosis: Heatstroke Symptoms: Coma Medication: — Clinical Procedure: Intensive Care Unit-Internal Medicine Specialty: Critical Care Medicine Objective: Rare co-existance of disease or pathology Background: Heatstroke (HS) is a life-threatening condition characterized by an elevation of the core body temperature above 40°C, central nervous system dysfunction, and possible multi-organ failure. HS can trigger systemic inflammation, disseminated intravascular coagulation (DIC), rhabdomyolysis, cerebral edema and seizures, pulmonary edema, heart dysfunctions, and renal and hepatic failure. Case Report: We report the case of a 41-year-old Romanian woman with a history of alcoholism who developed HS after arriving by bus in Verona, Italy in June 2016. The patient developed consecutive multi-organ dysfunction, including liver and renal failure, rhabdomyolysis, DIC, and arrhythmia. The patient was successfully treated with conservative measures. After 17 days, she recovered completely. Conclusions: The exact mechanism of HS-related multiple organ dysfunction is not completely understood and its pathogenesis is complex. It involves inflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Development of a model in which chronic alcohol abuse alters oxidative, inflammatory, and ER stress response could also be a conceivable solution to the positive prognosis of severe HS patients, in which liver failure has a prominent role. PMID:28974669
Staines, Donald R
2004-01-01
Chronic fatigue syndrome is a disorder characterised by prolonged fatigue and debility and is mostly associated with post-infection sequelae although ongoing infection is unproven. Immunological aberration is likely and this may prove to be associated with an expanding group of vasoactive neuropeptides in the context of molecular mimicry and inappropriate immunological memory. Vasoactive neuropeptides including vasoactive intestinal peptide (VIP) and pituitary adenylate activating polypeptide (PACAP) belong to the secretin/glucagon superfamily and act as hormones, neurotransmitters, immune modulators and neurotrophes. They are readily catalysed to smaller peptide fragments by antibody hydrolysis. They and their binding sites are immunogenic and are known to be associated with a range of autoimmune conditions. Vasoactive neuropeptides are widely distributed in the body particularly in the central, autonomic and peripheral nervous systems and have been identified in the gut, adrenal gland, reproductive organs, vasculature, blood cells and other tissues. They have a vital role in maintaining vascular flow in organs, and in thermoregulation, memory and concentration. They are co-transmitters for acetylcholine, nitric oxide, endogenous opioids and insulin, are potent immune regulators with primarily anti-inflammatory activity, and have a significant role in protection of the nervous system to toxic assault, promotion of neural development and the maintenance of homeostasis. This paper describes a biologically plausible mechanism for the development of CFS based on loss of immunological tolerance to the vasoactive neuropeptides following infection, significant physical exercise or de novo. It is proposed that release of these substances is accompanied by a loss of tolerance either to them or their receptor binding sites in CFS. Such an occurrence would have predictably serious consequences resulting from compromised function of the key roles these substances perform. All documented symptoms of CFS are explained by vasoactive neuropeptide compromise, namely fatigue and nervous system dysfunction through impaired acetylcholine activity, myalgia through nitric oxide and endogenous opioid dysfunction, chemical sensitivity through peroxynitrite and adenosine dysfunction, and immunological disturbance through changes in immune modulation. Perverse immunological memory established against these substances or their receptors may be the reason for the protracted nature of this condition. The novel status of these substances together with their extremely small concentrations in blood and tissues means that clinical research into them is still in its infancy. A biologically plausible theory of CFS causation associated with vasoactive neuropeptide dysfunction would promote a coherent and systematic approach to research into this and other possibly associated disabling conditions.
Neurologic manifestations of chronic methamphetamine abuse
Rusyniak, Daniel E.
2011-01-01
Summary Chronic methamphetamine abuse has devastating effects on the central nervous system. The degree to which addicts will tolerate the dysfunction in the way they think, feel, move, and even look, is a powerful testimony to the addictive properties of this drug. While the mechanisms behind these disorders are complex, at their heart they involve the recurring increase in the concentrations of central monoamines with subsequent dysfunction in dopaminergic neurotransmission. The mainstay of treatment for the problems associated with chronic methamphetamine abuse is abstinence. However, by recognizing the manifestations of chronic abuse, clinicians will be better able to help their patients get treatment for their addiction and to deal with the neurologic complications related to chronic abuse. PMID:21803215
Reversible cerebellar dysfunction associated with ciguatera fish poisoning.
Oh, Sun-Young; Kim, Do-Hyung; Seo, Man-Wook; Shin, Byoung-Soo
2012-10-01
Ciguatera-fish poisoning (or ciguatera) is a common but underdiagnosed food-borne illness related to fish consumption that is characterized by nausea, vomiting and neurologic symptoms such as tingling in the fingers or toes. We describe the case of a young man who suffered from diarrhea and abdominal pain after eating raw fish and who also developed severe ataxia with spontaneous downbeat and perverted head-shaking nystagmus. The patient experienced visual fixation suppression failure during the bithermal caloric test and bilateral smooth-pursuit impairment. Oculomotor findings suggested dysfunction of the vestibulocerebellum, especially the flocculus. These findings suggest that both the peripheral and the central nervous systems can be involved in ciguatera. Copyright © 2012 Elsevier Inc. All rights reserved.
Engineering Biomaterial Properties for Central Nervous System Applications
NASA Astrophysics Data System (ADS)
Rivet, Christopher John
Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.
Extracellular vesicles and intercellular communication within the nervous system
Fitzpatrick, Zachary; Maguire, Casey A.; Breakefield, Xandra O.
2016-01-01
Extracellular vesicles (EVs, including exosomes) are implicated in many aspects of nervous system development and function, including regulation of synaptic communication, synaptic strength, and nerve regeneration. They mediate the transfer of packets of information in the form of nonsecreted proteins and DNA/RNA protected within a membrane compartment. EVs are essential for the packaging and transport of many cell-fate proteins during development as well as many neurotoxic misfolded proteins during pathogenesis. This form of communication provides another dimension of cellular crosstalk, with the ability to assemble a “kit” of directional instructions made up of different molecular entities and address it to specific recipient cells. This multidimensional form of communication has special significance in the nervous system. How EVs help to orchestrate the wiring of the brain while allowing for plasticity associated with learning and memory and contribute to regeneration and degeneration are all under investigation. Because they carry specific disease-related RNAs and proteins, practical applications of EVs include potential uses as biomarkers and therapeutics. This Review describes our current understanding of EVs and serves as a springboard for future advances, which may reveal new important mechanisms by which EVs in coordinate brain and body function and dysfunction. PMID:27035811
Fatting the brain: a brief of recent research
Hussain, Ghulam; Schmitt, Florent; Loeffler, Jean-Philippe; de Aguilar, Jose-Luis Gonzalez
2013-01-01
Fatty acids are of paramount importance to all cells, since they provide energy, function as signaling molecules, and sustain structural integrity of cellular membranes. In the nervous system, where fatty acids are found in huge amounts, they participate in its development and maintenance throughout life. Growing evidence strongly indicates that fatty acids in their own right are also implicated in pathological conditions, including neurodegenerative diseases, mental disorders, stroke, and trauma. In this review, we focus on recent studies that demonstrate the relationships between fatty acids and function and dysfunction of the nervous system. Fatty acids stimulate gene expression and neuronal activity, boost synaptogenesis and neurogenesis, and prevent neuroinflammation and apoptosis. By doing so, they promote brain development, ameliorate cognitive functions, serve as anti-depressants and anti-convulsants, bestow protection against traumatic insults, and enhance repairing processes. On the other hand, unbalance between different fatty acid families or excess of some of them generate deleterious side effects, which limit the translatability of successful results in experimental settings into effective therapeutic strategies for humans. Despite these constraints, there exists realistic evidence to consider that nutritional therapies based on fatty acids can be of benefit to several currently incurable nervous system diseases. PMID:24058332
Sillem, M; Rabe, T; Runnebaum, B
1997-01-01
Disorders of the female genital tract caused by endocrine disturbances commonly lead to two presenting complaints: dysfunctional uterine bleeding and infertility. In oestrogen deficiency, sequelae of vaginal atrophy may also be present. The common pathogenic "turntable" of these clinical signs is an impaired ovarian function, for which primary (i.e. intraovarian) and secondary (i.e. resulting from dysfunctions of other endocrine systems) causes are known. Primary ovarian failure can be the result of gonadal dysgenesis or premature menopause. Secondary ovarian dysfunction may be caused by hypothalamic-pituitary dysregulation, hyperprolactinaemia, thyroid disorders, and hyperandrogenaemia, which often also has an intraovarian component. For clinical considerations, several severities of ovarian dysfunction can be distinguished, ranging from corpus luteum insufficiency which is only relevant for the selection of infertility treatment to the complete absence of ovarian steroidogenesis leading to severe long term sequelae of the skeletal, cardiovascular and probably central nervous systems. Diagnosis and differential diagnosis are made by clinical examination, vaginal ultrasound, hormone assays, curettage and laparoscopy. Rarely, additional techniques like magnetic resonance imaging of the pituitary or the adrenals, or sequential catheterization of the inferior vena cava are needed.
Mitochondrial Dysfunction in Lysosomal Storage Disorders
de la Mata, Mario; Cotán, David; Villanueva-Paz, Marina; de Lavera, Isabel; Álvarez-Córdoba, Mónica; Luzón-Hidalgo, Raquel; Suárez-Rivero, Juan M.; Tiscornia, Gustavo; Oropesa-Ávila, Manuel
2016-01-01
Lysosomal storage diseases (LSDs) describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS), where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm), diminished ATP production and increased generation of reactive oxygen species (ROS). Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD), the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase). Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph) in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs. PMID:28933411
Diabetes-related dysfunction of the small intestine and the colon: focus on motility.
Horváth, Viktor József; Putz, Zsuzsanna; Izbéki, Ferenc; Körei, Anna Erzsébet; Gerő, László; Lengyel, Csaba; Kempler, Péter; Várkonyi, Tamás
2015-11-01
In contrast to gastric dysfunction, diabetes-related functional impairments of the small and large intestine have been studied less intensively. The gastrointestinal tract accomplishes several functions, such as mixing and propulsion of luminal content, absorption and secretion of ions, water, and nutrients, defense against pathogens, and elimination of waste products. Diverse functions of the gut are regulated by complex interactions among its functional elements, including gut microbiota. The network-forming tissues, the enteric nervous system) and the interstitial cells of Cajal, are definitely impaired in diabetic patients, and their loss of function is closely related to the symptoms in diabetes, but changes of other elements could also play a role in the development of diabetes mellitus-related motility disorders. The development of our understanding over the recent years of the diabetes-induced dysfunctions in the small and large intestine are reviewed in this article.
Exertional heat stroke and acute liver failure: a late dysfunction
Carvalho, Ana Sofia; Rodeia, Simão C; Silvestre, Joana; Póvoa, Pedro
2016-01-01
Heat stroke (HS) is defined as a severe elevation of core body temperature along with central nervous system dysfunction. Exertional heat stroke (EHS) with acute liver failure (ALF) is a rare condition. The authors report the case of a 25-year-old man with a history of cognitive enhancers’ intake who developed hyperthermia and neurological impairment while running an outdoor marathon. The patient was cooled and returned to normal body temperature after 6 h. He subsequently developed ALF and was transferred to the intensive care unit. Over-the-counter drug intake may have been related to heat intolerance and contributed to the event. The patient was successfully treated with conservative measures. In the presence of EHS, it is crucial to act promptly with aggressive total body cooling, in order to prevent progression of the clinical syndrome. Liver function must also be monitored, since it can be a late organ dysfunction. PMID:26969359
Loftus, Tyler J.; Efron, Philip A.; Moldawer, Lyle L.; Mohr, Alicia M.
2016-01-01
Sympathetic nervous system activation and catecholamine release are important events following injury and infection. The nature and timing of different pathophysiologic insults have significant effects on adrenergic pathways, inflammatory mediators, and the host response. Beta adrenergic receptor blockers (β-blockers) are commonly used for treatment of cardiovascular disease but recent data suggests that the metabolic and immunomodulatory effects of β-blockers can expand their use. β-blocker therapy can reduce sympathetic activation and hypermetabolism as well as modify glucose homeostasis and cytokine expression. It is the purpose of this review to examine either the biologic basis for proposed mechanisms or to describe current available clinical evidence for the use of β-blockers in traumatic brain injury (TBI), spinal cord injury (SCI), hemorrhagic shock, acute traumatic coagulopathy, erythropoietic dysfunction, metabolic dysfunction, pulmonary dysfunction, burns, immunomodulation, and sepsis. PMID:27172161
Anaesthesia in the Guillian-Barré syndrome. A case report and recommendations.
Perel, A; Reches, A; Davidson, J T
1977-03-01
A large proportion of patients with the Guillain Barré syndrome show signs of involvement of the autonomic nervous system beside the better known motor and sensory features of this disease. These patients present a substantial anaesthetic risk because of autonomic dysfunction. We present here an illustrative case in which the administration of a low subarachnoid block resulted in cardiac arrest and offer suggestions for the anaesthetic management of such cases.
Heart rate variability measure in breast cancer patients and survivors: A systematic review.
Arab, Claudia; Dias, Daniel Penteado Martins; Barbosa, Renata Thaís de Almeida; Carvalho, Tatiana Dias de; Valenti, Vitor Engrácia; Crocetta, Tânia Brusque; Ferreira, Marcelo; Abreu, Luiz Carlos de; Ferreira, Celso
2016-06-01
In the current study, we aimed to review literature findings showing the clinical importance of cardiac autonomic modulation assessed by heart rate variability analysis in breast cancer (BC) patients and survivors. We conducted a systematic review according to The PRISMA Statement in Medline, Scopus and Web of Science (_-2015) databases. The search was limited to articles in English language, published in peer-reviewed journals, and with adult age samples only (e.g., women, patients, or survivors, diagnosed with BC in any stage). We included observational studies and randomized trials. Detailed heart rate variability analysis (instruments, data collection protocol, and analysis methods) was required. Search terms included autonomic nervous system, heart rate variability, sympathetic and parasympathetic nervous system, autonomic dysfunction, vagal nervous and breast neoplasms, breast cancer and breast tumor. Twelve studies were included in this review. The clinical importance of cardiac autonomic modulation assessed by heart rate variability analysis in BC patients and survivors is demonstrated by association with effects of BC surgery, and treatments, and the adverse effects of surgery and treatments on survivors (e.g., cardiotoxicity, fatigue, and stress). The strength of evidence of included studies is low: small samples size and heterogeneity, presence of confounders, and observational studies design. The heart rate variability analysis could be used as a complementary non-invasive tool for the early diagnosis and better prognosis of autonomic dysfunction, and survival in BC patients. There are many potential clinical applications of heart rate variability analysis in BC patients, and the employment of such approaches could lead to lower impairment of autonomic function in this individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Central- and autonomic nervous system coupling in schizophrenia
Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen
2016-01-01
The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback–feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central–autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age–gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS–ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity. PMID:27044986
The Emergence of Single Neurons in Clinical Neurology
Cash, Sydney S.; Hochberg, Leigh R.
2015-01-01
Summary Single neuron actions and interactions are the sine qua non of brain function, and nearly all diseases and injuries of the central nervous system trace their clinical sequelae to neuronal dysfunction or failure. Remarkably, discussion of neuronal activity is largely absent in clinical neuroscience. Advances in neurotechnology and computational capabilities, accompanied by shifts in theoretical frameworks, have led to renewed interest in the information represented by single neurons. Using direct interfaces with the nervous system, millisecond-scale information will soon be extracted from single neurons in clinical environments, supporting personalized treatment of neurologic and psychiatric disease. In this review we focus on single neuronal activity in restoring communication and motor control in patients suffering from devastating neurological injuries. We also explore the single neuron's role in epilepsy and movement disorders, surgical anesthesia, and in cognitive processes disrupted in neurodegenerative and neuropsychiatric disease. Finally, we speculate on how technological advances will revolutionize neurotherapeutics. PMID:25856488
Opioids in Pregnancy and Neonatal Abstinence Syndrome
Stover, Megan W.; Davis, Jonathan M.
2015-01-01
Opiate use in pregnancy has increased dramatically over the past decade and now represents a major public health problem. More women are using prescription opioids, illegal opioids, and opioid substitution therapy. These drugs are associated with numerous obstetrical complications including intrauterine growth restriction, placental abruption, preterm delivery, oligohydramnios, stillbirth, and maternal death. Neonatal complications are also significant, such as an increased risk of mortality as well as neonatal abstinence syndrome (NAS). NAS is a serious and highly variable condition characterized by central nervous system hyperirritability and autonomic nervous system dysfunction. The present review seeks to define current practices regarding the management of opiate dependence in pregnancy and care of the neonate with prenatal opiate exposure. Since genetic factors appear to be associated with the incidence and severity of NAS, opportunities for “personalized genomic medicine” and unique therapeutic interventions could be developed in the future. PMID:26452318
[Gut microbiome and psyche: paradigm shift in the concept of brain-gut axis].
Konturek, Peter C; Zopf, Yurdagül
2016-05-25
The concept of the brain-gut axis describes the communication between the central and enteric nervous system. The exchange of information takes place in both directions. The great advances in molecular medicine in recent years led to the discovery of an enormous number of microorganisms in the intestine (gut microbiome), which greatly affect the function of the brain-gut axis. Overview Numerous studies indicate that the dysfunction of the brain-gut axis could lead to both inflammatory and functional diseases of the gastrointestinal tract. Moreover, it was shown that a faulty composition of the gut microbiota in childhood influences the maturation of the central nervous system and thus may favor the development of mental disorders such as autism, depression, or other. An exact causal relationship between psyche and microbiome must be clarified by further studies in order to find new therapeutic options.
Anderson, Nicholas J; King, Matthew R; Delbruck, Lina; Jolivalt, Corinne G
2014-06-01
One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy) but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype. © 2014. Published by The Company of Biologists Ltd.
[The application of methods of physical therapy in the military health resort].
Titov, I G; Didenko, S V
2015-03-01
Presented the main guidelines concerning the application of methods and forms of physical therapy in the complex sanatorium treatment and rehabilitation in sanatoria and health resorts of the Ministry of Defence of the Russian Federation. It is concluded that the basis for the application and further development of forms and methods of physical therapy should be based on the methodological principle of a differentiated approach to the assessment of the severity of dysfunction cardiorespiratory and nervous system, musculoskeletal system, the mode of motor activity and exercise tolerance.
Effects of alcohol on the endocrine system.
Rachdaoui, Nadia; Sarkar, Dipak K
2013-09-01
Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. Copyright © 2013 Elsevier Inc. All rights reserved.
2015-01-01
The first kinase inhibitor drug approval in 2001 initiated a remarkable decade of tyrosine kinase inhibitor drugs for oncology indications, but a void exists for serine/threonine protein kinase inhibitor drugs and central nervous system indications. Stress kinases are of special interest in neurological and neuropsychiatric disorders due to their involvement in synaptic dysfunction and complex disease susceptibility. Clinical and preclinical evidence implicates the stress related kinase p38αMAPK as a potential neurotherapeutic target, but isoform selective p38αMAPK inhibitor candidates are lacking and the mixed kinase inhibitor drugs that are promising in peripheral tissue disease indications have limitations for neurologic indications. Therefore, pursuit of the neurotherapeutic hypothesis requires kinase isoform selective inhibitors with appropriate neuropharmacology features. Synaptic dysfunction disorders offer a potential for enhanced pharmacological efficacy due to stress-induced activation of p38αMAPK in both neurons and glia, the interacting cellular components of the synaptic pathophysiological axis, to be modulated. We report a novel isoform selective p38αMAPK inhibitor, MW01-18-150SRM (=MW150), that is efficacious in suppression of hippocampal-dependent associative and spatial memory deficits in two distinct synaptic dysfunction mouse models. A synthetic scheme for biocompatible product and positive outcomes from pharmacological screens are presented. The high-resolution crystallographic structure of the p38αMAPK/MW150 complex documents active site binding, reveals a potential low energy conformation of the bound inhibitor, and suggests a structural explanation for MW150’s exquisite target selectivity. As far as we are aware, MW150 is without precedent as an isoform selective p38MAPK inhibitor or as a kinase inhibitor capable of modulating in vivo stress related behavior. PMID:25676389
Pediatric neurological syndromes and inborn errors of purine metabolism.
Camici, Marcella; Micheli, Vanna; Ipata, Piero Luigi; Tozzi, Maria Grazia
2010-02-01
This review is devised to gather the presently known inborn errors of purine metabolism that manifest neurological pediatric syndromes. The aim is to draw a comprehensive picture of these rare diseases, characterized by unexpected and often devastating neurological symptoms. Although investigated for many years, most purine metabolism disorders associated to psychomotor dysfunctions still hide the molecular link between the metabolic derangement and the neurological manifestations. This basically indicates that many of the actual functions of nucleosides and nucleotides in the development and function of several organs, in particular central nervous system, are still unknown. Both superactivity and deficiency of phosphoribosylpyrophosphate synthetase cause hereditary disorders characterized, in most cases, by neurological impairments. The deficiency of adenylosuccinate lyase and 5-amino-4-imidazolecarboxamide ribotide transformylase/IMP cyclohydrolase, both belonging to the de novo purine synthesis pathway, is also associated to severe neurological manifestations. Among catabolic enzymes, hyperactivity of ectosolic 5'-nucleotidase, as well as deficiency of purine nucleoside phosphorylase and adenosine deaminase also lead to syndromes affecting the central nervous system. The most severe pathologies are associated to the deficiency of the salvage pathway enzymes hypoxanthine-guanine phosphoribosyltransferase and deoxyguanosine kinase: the former due to an unexplained adverse effect exerted on the development and/or differentiation of dopaminergic neurons, the latter due to a clear impairment of mitochondrial functions. The assessment of hypo- or hyperuricemic conditions is suggestive of purine enzyme dysfunctions, but most disorders of purine metabolism may escape the clinical investigation because they are not associated to these metabolic derangements. This review may represent a starting point stimulating both scientists and physicians involved in the study of neurological dysfunctions caused by inborn errors of purine metabolism with the aim to find novel therapeutical approaches. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Ripellino, Paolo; Fleetwood, Thomas; Cantello, Roberto; Comi, Cristoforo
2014-01-01
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease of the peripheral nervous system, in which both cellular and humoral immune responses are involved. The disease is clinically heterogeneous with some patients displaying pure motor form and others also showing a variable degree of sensory dysfunction; disease evolution may also differ from patient to patient, since monophasic, progressive, and relapsing forms are reported. Underlying such clinical variability there is probably a broad spectrum of molecular dysfunctions that are and will be the target of therapeutic strategies. In this review we first explore the biological bases of current treatments and subsequently we focus on the practical management that must also take into account pharmacoeconomic issues. PMID:24527207
Vidal, R.; Garzuly, F.; Budka, H.; Lalowski, M.; Linke, R. P.; Brittig, F.; Frangione, B.; Wisniewski, T.
1996-01-01
We describe a novel transthyretin mutation at codon 18 where Asp is replaced by Gly (D18G) in a Hungarian kindred. This mutation is associated with meningocerebrovascular amyloidosis, producing dementia, ataxia, and spasticity. Fifty different transthyretin mutations are related to amyloid deposition, typically producing a peripheral neuropathy or cardiac dysfunction. These symptoms are absent in this family. Up to now, amyloid-beta (A beta), cystatin C, and prion proteins have been known to be deposited as amyloid in the brain, leading to stroke or dementia. With this report we establish that transthyretin amyloid deposition can also produce central nervous system dysfunction as the major clinical symptom. Images Figure 2 Figure 4 PMID:8579098
Uranium and the Central Nervous System: What Should We Learn from Recent New Tools and Findings?
Dinocourt, Céline
2017-01-01
Increasing industrial and military use of uranium has led to environmental pollution, which may result in uranium reaching the brain and causing cerebral dysfunction. A recent literature review has discussed data published over the last 10 years on uranium and its effects on brain function (Dinocourt C, Legrand M, Dublineau I, et al., Toxicology 337:58-71, 2015). New models of uranium exposure during neonatal brain development and the emergence of new technologies (omics and epigenetics) are of value in identifying new specific targets of uranium. Here we review the latest studies of neurogenesis, epigenetics, and metabolic dysfunctions and the identification of new biomarkers used to establish potential pathophysiological states of neurodevelopmental and neurodegenerative diseases.
Abdala, Ana P.; Bissonnette, John M.; Newman-Tancredi, Adrian
2014-01-01
Rett syndrome is a neurological disorder caused by loss of function of methyl-CpG-binding protein 2 (MeCP2). Reduced function of this ubiquitous transcriptional regulator has a devastating effect on the central nervous system. One of the most severe and life-threatening presentations of this syndrome is brainstem dysfunction, which results in autonomic disturbances such as breathing deficits, typified by episodes of breathing cessation intercalated with episodes of hyperventilation or irregular breathing. Defects in numerous neurotransmitter systems have been observed in Rett syndrome both in animal models and patients. Here we dedicate special attention to serotonin due to its role in promoting regular breathing, increasing vagal tone, regulating mood, alleviating Parkinsonian-like symptoms and potential for therapeutic translation. A promising new symptomatic strategy currently focuses on regulation of serotonergic function using highly selective serotonin type 1A (5-HT1A) “biased agonists.” We address this newly emerging therapy for respiratory brainstem dysfunction and challenges for translation with a holistic perspective of Rett syndrome, considering potential mood and motor effects. PMID:24910619
Neuroinflamm-aging and neurodegenerative diseases: an overview.
Pizza, Vincenzo; Agresta, Anella; D'Acunto, Cosimo W; Festa, Michela; Capasso, Anna
2011-08-01
Neuroinflammation is considered a chronic activation of the immune response in the central nervous system (CNS) in response to different injuries. This brain immune activation results in various events: circulating immune cells infiltrate the CNS; resident cells are activated; and pro-inflammatory mediators produced and released induce neuroinflammatory brain disease. The effect of immune diffusible mediators on synaptic plasticity might result in CNS dysfunction during neuroinflammatory brain diseases. The CNS dysfunction may induce several human pathological conditions associated with both cognitive impairment and a variable degree of neuroinflammation. Furthermore, age has a powerful effect on enhanced susceptibility to neurodegenerative diseases and age-dependent enhanced neuroinflammatory processes may play an important role in toxin generation that causes death or dysfunction of neurons in neurodegenerative diseases This review will address current understanding of the relationship between ageing, neuroinflammation and neurodegenerative disease by focusing on the principal mechanisms by which the immune system influences the brain plastic phenomena. Also, the present review considers the principal human neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis and psychiatric disorders caused by aging and neuroinflammation.
[Effects of diabetes and obesity on the higher brain functions in rodents].
Asato, Megumi; Ikeda, Hiroko; Kamei, Junzo
2012-11-01
Metabolic disorders, such as diabetes and obesity, have been indicated to disturb the function of the central nervous system (CNS) as well as several peripheral organs. Clinically, it is well recognized that the prevalence of anxiety and depression is higher in diabetic and obesity patients than in the general population. We have recently indicated that streptozotocin-induced diabetic and diet-induced obesity mice have enhanced fear memory and higher anxiety-like behavior in several tests such as the conditioned fear, tail-suspension, hole-board and elevated open-platform tests. The changes in fear memory and anxiety-like behavior of diabetic and obese mice are due to the dysfunction of central glutamatergic and monoaminergic systems, which is mediated by the changes of intracellular signaling. These results suggest that metabolic disorders strongly affect the function of the CNS and disturb the higher brain functions. These dysfunctions of the CNS in diabetes and obesity are involved in the increased prevalence of anxiety disorders and depression. Normalization of these dysfunctions in the CNS will be a new attractive target to treat the metabolic disorders and their complications.
Endocrine dysfunction in sepsis: a beneficial or deleterious host response?
Gheorghiţă, Valeriu; Barbu, Alina Elena; Gheorghiu, Monica Livia; Căruntu, Florin Alexandru
2015-01-01
Sepsis is a systemic, deleterious inflammatory host response triggered by an infective agent leading to severe sepsis, septic shock and multi-organ failure. The host response to infection involves a complex, organized and coherent interaction between immune, autonomic, neuroendocrine and behavioral systems. Recent data have confirmed that disturbances of the autonomic nervous and neuroendocrine systems could contribute to sepsis-induced organ dysfunction. Through this review, we aimed to summarize the current knowledge about the endocrine dysfunction as response to sepsis, specifically addressed to vasopressin, copeptin, cortisol, insulin and leptin. We searched the following readily accessible, clinically relevant databases: PubMed, UpToDate, BioMed Central. The immune system could be regarded as a “diffuse sensory organ” that signals the presence of pathogens to the brain through different pathways, such as the vagus nerve, endothelial activation/dysfunction, cytokines and neurotoxic mediators and the circumventricular organs, especially the neurohypophysis. The hormonal profile changes substantially as a consequence of inflammatory mediators and microorganism products leading to inappropriately low levels of vasopressin, sick euthyroid syndrome, reduced adrenal responsiveness to ACTH, insulin resistance, hyperglycemia as well as hyperleptinemia. In conclusion, clinical diagnosis of this “pan-endocrine illness” is frequently challenging due to the many limiting factors. The most important benefits of endocrine markers in the management of sepsis may be reflected by their potential to be used as biomarkers in different scoring systems to estimate the severity of the disease and the risk of death. PMID:25763364
Chi, Laiting; Du, Kairong; Liu, Dongdong; Bo, Yulong; Li, Wenzhi
2018-03-01
The demand for using parasympathetic activation for stroke therapy is unmet. In the current study, we investigated whether the neuroprotection provided by electroacupuncture (EA) in an experimental stroke model was associated with activation of the parasympathetic nervous system (PNS). The results showed that parasympathetic dysfunction (PD), performed as unilateral vagotomy combined with peripheral atropine, attenuated both the functional benefits of EA and its effects in improving cerebral perfusion, reducing infarct volume, and hindering apoptosis, neuronal and peripheral inflammation, and oxidative stress. Most importantly, EA rats showed a dramatically less reduction in the mRNA level of choline acetyltransferase, five subtypes of muscarinic receptors and α7nAChR, suggesting the inhibition of the impairment of the central cholinergic system; EA also activated dorsal motor nucleus of the vagus, the largest source of parasympathetic pre-ganglionic neurons in the lower brainstem (detected by c-fos immunohistochemistry), and PD suppressed these changes. These findings indicated EA may serve as an alternative modality of PNS activation for stroke therapy.
Kv1 channels and neural processing in vestibular calyx afferents.
Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J
2015-01-01
Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.
Yamamoto, Shinji; Gotoh, Mari; Kawamura, Yuuki; Yamashina, Kota; Yagishita, Sosuke; Awaji, Takeo; Tanaka, Motomu; Maruyama, Kei; Murakami-Murofushi, Kimiko; Yoshikawa, Keisuke
2014-10-15
Multiple sclerosis is a chronic demyelinating disease of the central nervous system leading to progressive cognitive and motor dysfunction, which is characterized by neuroinflammation, demyelination, astrogliosis, loss of oligodendrocytes, and axonal pathologies. Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death. In this study, we investigated the effects of cPA on cuprizone-induced demyelination, which is a model of multiple sclerosis. Mice were fed a diet containing 0.2% cuprizone for 5 weeks, which induces severe demyelination, astrocyte and microglial activation, and motor dysfunction. Simultaneous administration of cPA effectively attenuated cuprizone-induced demyelination, glial activation, and motor dysfunction. These data indicate that cPA may be a useful treatment to reduce the extent of demyelination and the severity of motor dysfunction in multiple sclerosis. cPA is a potential lead compound in the development of drugs for the treatment of this devastating disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System
Rachdaoui, Nadia; Sarkar, Dipak K.
2017-01-01
Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body’s most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic–pituitary–adrenal axis, the hypothalamic–pituitary–gonadal axis, the hypothalamic–pituitary–thyroid axis, the hypothalamic–pituitary–growth hormone/insulin-like growth factor-1 axis, and the hypothalamic–posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol’s effects on various components of the endocrine system and their consequences. PMID:28988577
At the interface of sensory and motor dysfunctions and Alzheimer's disease.
Albers, Mark W; Gilmore, Grover C; Kaye, Jeffrey; Murphy, Claire; Wingfield, Arthur; Bennett, David A; Boxer, Adam L; Buchman, Aron S; Cruickshanks, Karen J; Devanand, Davangere P; Duffy, Charles J; Gall, Christine M; Gates, George A; Granholm, Ann-Charlotte; Hensch, Takao; Holtzer, Roee; Hyman, Bradley T; Lin, Frank R; McKee, Ann C; Morris, John C; Petersen, Ronald C; Silbert, Lisa C; Struble, Robert G; Trojanowski, John Q; Verghese, Joe; Wilson, Donald A; Xu, Shunbin; Zhang, Li I
2015-01-01
Recent evidence indicates that sensory and motor changes may precede the cognitive symptoms of Alzheimer's disease (AD) by several years and may signify increased risk of developing AD. Traditionally, sensory and motor dysfunctions in aging and AD have been studied separately. To ascertain the evidence supporting the relationship between age-related changes in sensory and motor systems and the development of AD and to facilitate communication between several disciplines, the National Institute on Aging held an exploratory workshop titled "Sensory and Motor Dysfunctions in Aging and AD." The scientific sessions of the workshop focused on age-related and neuropathologic changes in the olfactory, visual, auditory, and motor systems, followed by extensive discussion and hypothesis generation related to the possible links among sensory, cognitive, and motor domains in aging and AD. Based on the data presented and discussed at this workshop, it is clear that sensory and motor regions of the central nervous system are affected by AD pathology and that interventions targeting amelioration of sensory-motor deficits in AD may enhance patient function as AD progresses. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Ono, Yosuke; Ono, Sachiko; Yasunaga, Hideo; Matsui, Hiroki; Fushimi, Kiyohide; Tanaka, Yuji
2016-02-01
Thyroid storm is a life-threatening and emergent manifestation of thyrotoxicosis. However, predictive features associated with fatal outcomes in this crisis have not been clearly defined because of its rarity. The objective of this study was to investigate the associations of patient characteristics, treatments, and comorbidities with in-hospital mortality. We conducted a retrospective observational study of patients diagnosed with thyroid storm using a national inpatient database in Japan from April 1, 2011 to March 31, 2014. Of approximately 21 million inpatients in the database, we identified 1324 patients diagnosed with thyroid storm. The mean (standard deviation) age was 47 (18) years, and 943 (71.3%) patients were female. The overall in-hospital mortality was 10.1%. The number of patients was highest in the summer season. The most common comorbidity at admission was cardiovascular diseases (46.6%). Multivariable logistic regression analyses showed that higher mortality was significantly associated with older age (≥60 years), central nervous system dysfunction at admission, nonuse of antithyroid drugs and β-blockade, and requirement for mechanical ventilation and therapeutic plasma exchange combined with hemodialysis. The present study identified clinical features associated with mortality of thyroid storm using large-scale data. Physicians should pay special attention to older patients with thyrotoxicosis and coexisting central nervous system dysfunction. Future prospective studies are needed to clarify treatment options that could improve the survival outcomes of thyroid storm.
Factors Associated With Mortality of Thyroid Storm
Ono, Yosuke; Ono, Sachiko; Yasunaga, Hideo; Matsui, Hiroki; Fushimi, Kiyohide; Tanaka, Yuji
2016-01-01
Abstract Thyroid storm is a life-threatening and emergent manifestation of thyrotoxicosis. However, predictive features associated with fatal outcomes in this crisis have not been clearly defined because of its rarity. The objective of this study was to investigate the associations of patient characteristics, treatments, and comorbidities with in-hospital mortality. We conducted a retrospective observational study of patients diagnosed with thyroid storm using a national inpatient database in Japan from April 1, 2011 to March 31, 2014. Of approximately 21 million inpatients in the database, we identified 1324 patients diagnosed with thyroid storm. The mean (standard deviation) age was 47 (18) years, and 943 (71.3%) patients were female. The overall in-hospital mortality was 10.1%. The number of patients was highest in the summer season. The most common comorbidity at admission was cardiovascular diseases (46.6%). Multivariable logistic regression analyses showed that higher mortality was significantly associated with older age (≥60 years), central nervous system dysfunction at admission, nonuse of antithyroid drugs and β-blockade, and requirement for mechanical ventilation and therapeutic plasma exchange combined with hemodialysis. The present study identified clinical features associated with mortality of thyroid storm using large-scale data. Physicians should pay special attention to older patients with thyrotoxicosis and coexisting central nervous system dysfunction. Future prospective studies are needed to clarify treatment options that could improve the survival outcomes of thyroid storm. PMID:26886648
Inhalation of Hydrocarbon Jet Fuel Suppress Central Auditory Nervous System Function.
Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R
2015-01-01
More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue.
Studer, Valeria; Rocchi, Camilla; Motta, Caterina; Lauretti, Benedetta; Perugini, Jacopo; Brambilla, Laura; Pareja-Gutierrez, Lorena; Camera, Giorgia; Barbieri, Francesca Romana; Marfia, Girolama A; Centonze, Diego; Rossi, Silvia
2017-01-01
Sympathovagal imbalance has been associated with poor prognosis in chronic diseases, but there is conflicting evidence in multiple sclerosis. The objective of this study was to investigate the autonomic nervous system dysfunction correlation with inflammation and progression in multiple sclerosis. Heart rate variability was analysed in 120 multiple sclerosis patients and 60 healthy controls during supine rest and head-up tilt test; the normalised units of low frequency and high frequency power were considered to assess sympathetic and vagal components, respectively. Correlation analyses with clinical and radiological markers of disease activity and progression were performed. Sympathetic dysfunction was closely related to the progression of disability in multiple sclerosis: progressive patients showed altered heart rate variability with respect to healthy controls and relapsing-remitting patients, with higher rest low frequency power and lacking the expected low frequency power increase during the head-up tilt test. In relapsing-remitting patients, disease activity, even subclinical, was associated with lower rest low frequency power, whereas stable relapsing-remitting patients did not differ from healthy controls. Less sympathetic reactivity and higher low frequency power at rest were associated with incomplete recovery from relapse. Autonomic balance appears to be intimately linked with both the inflammatory activity of multiple sclerosis, which is featured by an overall hypoactivity of the sympathetic nervous system, and its compensatory plastic processes, which appear inefficient in case of worsening and progressive multiple sclerosis.
Autonomic dysfunction and osteoporosis after electrical burn.
Roshanzamir, Sharareh; Dabbaghmanesh, Mohammad Hossein; Dabbaghmanesh, Alireza; Nejati, Solmaz
2016-05-01
Several studies have shown the importance of the sympathetic nervous system in bone metabolism. There is an evidence of sympathetic skin response (SSR) impairment in electrical burn patients up to 2 years after their injuries. The acute phase of burn is accompanied by increased bone resorption. Whether the prolonged dysfunction of sympathetic nervous system may result in bone metabolism derangement even after the acute phase of electrical burn is the inspiring question for this study. And we tried to find correlation between SSR abnormality and areal bone mineral density (BMD) in electrical burn patients 6 months or more after the incidents. 42 electrical burn patients (≥6 months prior to study) who did not have a known joint or bone disease, history of neuropathy (central or peripheral), diabetes mellitus or consumption of any drug affecting the autonomic nervous system or evidence of neuropathy in nerve conduction study were recruited. We also gathered a control group of 50 healthy subjects (without electrical burn or the exclusion criteria). They went under dual energy X-ray absorptiometry and SSR study. Data were analyzed statistically with SPSS 16.0 making use of independent t-test and Pearson correlation coefficient. P<0.05 was considered significant statistically. Areal BMD was significantly lower in electrical burn patients than control group (P<0.001). SSR latency was significantly prolonged and its amplitude was significantly reduced in burn patients compared to control group (P<0.001). In burn patients there was an inverse correlation of areal BMD of lumbar vertebrae, left femur neck and total femur with SSR latency and a direct correlation of areal BMD with SSR amplitude. In control group there was just direct correlation of areal BMD of lumbar vertebrae and left femur neck with SSR amplitude. Electrical burn patients are at risk of reduced areal BMD long after their injuries. Sympathetic derangement and impaired SSR are correlated with reduction in areal BMD in these patients. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Attention dysfunction of postoperative patients with glioma.
Fang, Dazhao; Jiang, Jian; Sun, Xiaoyang; Wang, Weijie; Dong, Nan; Fu, Xianhua; Pang, Cong; Chen, Xingui; Ding, Lianshu
2014-10-15
Attention dysfunction has been observed among many kinds of nervous system diseases, including glioma. This study aimed to investigate the correlation between glioma localization, malignancy, postoperative recovery time and attention deficit. A total of 45 patients with glioma who underwent surgical resection and 18 healthy volunteers were enrolled. The attention network test, digital span test, color trail test II and Stroop test were used to detect the characteristics of attention deficit. Orientation network dysfunction was detected in the parietal lobe tumor group, and execution network deficit was detected in both the frontal and parietal lobe groups, while no significant difference was detected in the temporal lobe group compared to healthy controls. The high-grade glioma group (grade III-IV) exhibited more serious functional impairment than the low-grade group (grade I-II). No significant correlation was observed between postoperative recovery time and attention impairment. High-grade glioma patients suffer more severe attention impairment. In addition, the frontal and parietal lobe glioma patients suffer attention dysfunction in dissimilar manner. These findings will provide important guidance on the care of glioma patients after therapy.
Inflammation as a Therapeutic Target for Diabetic Neuropathies
Ang, Lynn; Holmes, Crystal; Gallagher, Katherine; Feldman, Eva L.
2016-01-01
Diabetic neuropathies (DNs) are one of the most prevalent chronic complications of diabetes and a major cause of disability, high mortality, and poor quality of life. Given the complex anatomy of the peripheral nervous system and types of fiber dysfunction, DNs have a wide spectrum of clinical manifestations. The treatment of DNs continues to be challenging, likely due to the complex pathogenesis that involves an array of systemic and cellular imbalances in glucose and lipids metabolism. These lead to the activation of various biochemical pathways, including increased oxidative/nitrosative stress, activation of the polyol and protein kinase C pathways, activation of polyADP ribosylation, and activation of genes involved in neuronal damage, cyclooxygenase-2 activation, endothelial dysfunction, altered Na+/K+-ATPase pump function, impaired C-peptide-related signaling pathways, endoplasmic reticulum stress, and low-grade inflammation. This review summarizes current evidence regarding the role of low-grade inflammation as a potential therapeutic target for DNs. PMID:26897744
[The role of natriuretic peptides in heart failure].
Ancona, R; Limongelli, G; Pacileo, G; Miele, T; Rea, A; Roselli, T; Masarone, D; Messina, S; Palmieri, R; Golia, E; Iacomino, M; Gala, S; Calabrò, P; Di Salvo, G; Calabrò, R
2007-10-01
Over the last decades, there has been a significant increase in incidence and prevalence of heart failure, a major cause of cardiac morbidity and mortality. Measurements of neurohormones, in particular B-type natriuretic peptide (BNP), can significantly improve diagnostic accuracy, and also correlate with long-term morbidity and mortality in patients with chronic heart failure presenting to the emergency department. BNP is secreted by cardiac ventricles mainly in response to wall stress and neurohormonal factors like the sympathetic nervous system, endothelins, and the rennin-angiotensin-aldosterone system. BNP increases myocardial relaxation and oppose the vasoconstrictive, sodium retaining, and natriuretic effects caused by vasoconstrictive factors. BNP is the first biomarker to prove its clinical value for the diagnosis of left ventricular systolic and diastolic dysfunction but also for the right ventricular dysfunction, guiding prognosis and therapy management. Emerging clinical data will help further refine biomarker-guided therapeutic and monitoring strategies involving BNP.
Impact of incarceration in Nazi concentration camps on multimorbidity of former prisoners
Jablonski, Robert K; Leszek, Jerzy; Rosińczuk, Joanna; Uchmanowicz, Izabella; Panaszek, Bernard
2015-01-01
Objective To show the extent to which the health of former prisoners was affected by incarceration in extermination camps after 5 and 30 years of leaving the camp, and to determine the etiological factors underlying particular dysfunctions. Methods Medical records of former prisoners developed in 1950 (n=250) and 1975 (n=120) were then, after several decades, retrospectively analyzed and compared with the control group, randomized and matched according to age, sex, occupation, and environment. None of the subjects in the control group was a prisoner either at a concentration camp or at any other prison or detention facility. Results Multimorbidity affected mainly the central nervous system (CNS). Five years after leaving a camp, CNS dysfunctions were observed in 66% of former prisoners. Skeletal (42.4%) and cardiovascular system (34.4%) dysfunctions were the second and third most frequent dysfunctions. Thirty years after leaving a camp, the most prevalent coexisting conditions were also found within the CNS (80%), cardiovascular system (58.33%), and skeletal system (55%). Five and 30 years after leaving a camp, multiorgan lesions were found in 21.6% and 60% of survivors, respectively. Multimorbidity was more frequent in a group of prisoners who underwent the state of apathy and depression or who had been incarcerated longer than 24 months. The rate of CNS diseases was four times higher, and the rate of cardiovascular diseases or skeletal system dysfunctions was two times higher, in the study group after 30 years of leaving a camp compared with the control group. Conclusion The consequences of incarceration in concentration camps manifesting as multimorbidity, premature aging, and dramatic increase in mortality rate are observed in the majority of former prisoners. The multimorbidity mostly affected older prisoners who stayed at a camp for a longer time period. PMID:25792836
Impact of incarceration in Nazi concentration camps on multimorbidity of former prisoners.
Jablonski, Robert K; Leszek, Jerzy; Rosińczuk, Joanna; Uchmanowicz, Izabella; Panaszek, Bernard
2015-01-01
To show the extent to which the health of former prisoners was affected by incarceration in extermination camps after 5 and 30 years of leaving the camp, and to determine the etiological factors underlying particular dysfunctions. Medical records of former prisoners developed in 1950 (n=250) and 1975 (n=120) were then, after several decades, retrospectively analyzed and compared with the control group, randomized and matched according to age, sex, occupation, and environment. None of the subjects in the control group was a prisoner either at a concentration camp or at any other prison or detention facility. Multimorbidity affected mainly the central nervous system (CNS). Five years after leaving a camp, CNS dysfunctions were observed in 66% of former prisoners. Skeletal (42.4%) and cardiovascular system (34.4%) dysfunctions were the second and third most frequent dysfunctions. Thirty years after leaving a camp, the most prevalent coexisting conditions were also found within the CNS (80%), cardiovascular system (58.33%), and skeletal system (55%). Five and 30 years after leaving a camp, multiorgan lesions were found in 21.6% and 60% of survivors, respectively. Multimorbidity was more frequent in a group of prisoners who underwent the state of apathy and depression or who had been incarcerated longer than 24 months. The rate of CNS diseases was four times higher, and the rate of cardiovascular diseases or skeletal system dysfunctions was two times higher, in the study group after 30 years of leaving a camp compared with the control group. The consequences of incarceration in concentration camps manifesting as multimorbidity, premature aging, and dramatic increase in mortality rate are observed in the majority of former prisoners. The multimorbidity mostly affected older prisoners who stayed at a camp for a longer time period.
Brindley, Rebecca L; Bauer, Mary Beth; Blakely, Randy D; Currie, Kevin P M
2017-05-17
Serotonin (5-HT) is an important neurotransmitter in the central nervous system where it modulates circuits involved in mood, cognition, movement, arousal, and autonomic function. The 5-HT transporter (SERT; SLC6A4) is a key regulator of 5-HT signaling, and genetic variations in SERT are associated with various disorders including depression, anxiety, and autism. This review focuses on the role of SERT in the sympathetic nervous system. Autonomic/sympathetic dysfunction is evident in patients with depression, anxiety, and other diseases linked to serotonergic signaling. Experimentally, loss of SERT function (SERT knockout mice or chronic pharmacological block) has been reported to augment the sympathetic stress response. Alterations to serotonergic signaling in the CNS and thus central drive to the peripheral sympathetic nervous system are presumed to underlie this augmentation. Although less widely recognized, SERT is robustly expressed in chromaffin cells of the adrenal medulla, the neuroendocrine arm of the sympathetic nervous system. Adrenal chromaffin cells do not synthesize 5-HT but accumulate small amounts by SERT-mediated uptake. Recent evidence demonstrated that 5-HT 1A receptors inhibit catecholamine secretion from adrenal chromaffin cells via an atypical mechanism that does not involve modulation of cellular excitability or voltage-gated Ca 2+ channels. This raises the possibility that the adrenal medulla is a previously unrecognized peripheral hub for serotonergic control of the sympathetic stress response. As a framework for future investigation, a model is proposed in which stress-evoked adrenal catecholamine secretion is fine-tuned by SERT-modulated autocrine 5-HT signaling.
Franco, Claudinéia C S; Prates, Kelly V; Previate, Carina; Moraes, Ana M P; Matiusso, Camila C I; Miranda, Rosiane A; de Oliveira, Júlio C; Tófolo, Laize P; Martins, Isabela P; Barella, Luiz F; Ribeiro, Tatiane A; Malta, Ananda; Pavanello, Audrei; Francisco, Flávio A; Gomes, Rodrigo M; Alves, Vander S; Moreira, Veridiana M; Rigo, Késia P; Almeida, Douglas L; de Sant Anna, Juliane R; Prado, Marialba A A C; Mathias, Paulo C F
2017-05-01
Autonomic nervous system imbalance is associated with metabolic diseases, including diabetes. Glibenclamide is an antidiabetic drug that acts by stimulating insulin secretion from pancreatic beta cells and is widely used in the treatment of type 2 diabetes. Since there is scarce data concerning autonomic nervous system activity and diabetes, the aim of this work was to test whether glibenclamide can improve autonomic nervous system activity and muscarinic acetylcholine receptor function in pre-diabetic obese male rats. Pre-diabetes was induced by treatment with monosodium L-glutamate in neonatal rats. The monosodium L-glutamate group was treated with glibenclamide (2 mg/kg body weight /day) from weaning to 100 days of age, and the control group was treated with water. Body weight, food intake, Lee index, fasting glucose, insulin levels, homeostasis model assessment of insulin resistance, omeostasis model assessment of β-cell function, and fat tissue accumulation were measured. The vagus and sympathetic nerve electrical activity were recorded. Insulin secretion was measured in isolated islets challenged with glucose, acetylcholine, and the selective muscarinic acetylcholine receptor antagonists by radioimmunoassay technique. Glibenclamide treatment prevented the onset of obesity and diminished the retroperitoneal (18%) and epididymal (25%) fat pad tissues. In addition, the glibenclamide treatment also reduced the parasympathetic activity by 28% and glycemia by 20% in monosodium L-glutamate-treated rats. The insulinotropic effect and unaltered cholinergic actions in islets from monosodium L-glutamate groups were increased. Early glibenclamide treatment prevents monosodium L-glutamate-induced obesity onset by balancing autonomic nervous system activity.
Sympathetic nerve dysfunction is common in patients with chronic intestinal pseudo-obstruction.
Mattsson, Tomas; Roos, Robert; Sundkvist, Göran; Valind, Sven; Ohlsson, Bodil
2008-02-01
To clarify whether disturbances in the autonomic nervous system, reflected in abnormal cardiovascular reflexes, could explain symptoms of impaired heat regulation in patients with intestinal pseudo-obstruction. Chronic intestinal pseudo-obstruction is a clinical syndrome characterized by diffuse, unspecific gastrointestinal symptoms due to damage to the enteric nervous system or the smooth muscle cells. These patients often complain of excessive sweating or feeling cold, suggesting disturbances in the autonomic nervous system. Earlier studies have pointed to a coexistence of autonomic disturbances in the enteric and cardiovascular nervous system. Thirteen consecutive patients (age range 23 to 79, mean 44 y) fulfilling the criteria for chronic intestinal pseudo-obstruction were investigated. Six of them complained of sweating or a feeling of cold. Examination of autonomic reflexes included heart rate variation to deep-breathing (expiration/inspiration index), heart rate reaction to tilt (acceleration index, brake index), and vasoconstriction (VAC) due to indirect cooling by laser doppler (VAC-index; high index indicates impaired VAC). Test results in patients were compared with healthy individuals. Patients had significantly higher (more abnormal) median VAC-index compared with healthy controls [1.79 (interquartile ranges 1.89) vs. 0.08 (interquartile ranges 1.29); P=0.0007]. However, symptoms of impaired heat regulation were not related to the VAC-index. There were no differences in expiration/inspiration, acceleration index, or brake index between patients and controls. The patients with severe gastrointestinal dysmotility showed impaired sympathetic nerve function which, however, did not seem to be associated with symptoms of impaired heat regulation.
Nijs, Jo; Loggia, Marco L; Polli, Andrea; Moens, Maarten; Huysmans, Eva; Goudman, Lisa; Meeus, Mira; Vanderweeën, Luc; Ickmans, Kelly; Clauw, Daniel
2017-08-01
The mechanism of sensitization of the central nervous system partly explains the chronic pain experience in many patients, but the etiological mechanisms of this central nervous system dysfunction are poorly understood. Recently, an increasing number of studies suggest that aberrant glial activation takes part in the establishment and/or maintenance of central sensitization. Areas covered: This review focused on preclinical work and mostly on the neurobiochemistry studied in animals, with limited human studies available. Glial overactivation results in a low-grade neuroinflammatory state, characterized by high levels of BDNF, IL-1β, TNF-α, which in turn increases the excitability of the central nervous system neurons through mechanisms like long-term potentiation and increased synaptic efficiency. Aberrant glial activity in chronic pain might have been triggered by severe stress exposure, and/or sleeping disturbances, each of which are established initiating factors for chronic pain development. Expert opinion: Potential treatment avenues include several pharmacological options for diminishing glial activity, as well as conservative interventions like sleep management, stress management and exercise therapy. Pharmacological options include propentofylline, minocycline, β -adrenergic receptor antagonists, and cannabidiol. Before translating these findings from basic science to clinical settings, more human studies exploring the outlined mechanisms in chronic pain patients are needed.
Fricke, Lisa; Petroff, David; Desch, Steffen; Lurz, Philipp; Reinhardt, Sebastian; Sonnabend, Melanie; Classen, Joseph; Baum, Petra
2017-01-01
Renal denervation is an interventional approach aiming to reduce high blood pressure. Its efficacy is subject of controversial debate. We analyzed autonomic function in patients undergoing renal denervation to identify responders. A total of 21 patients with treatment-resistant hypertension scheduled for renal denervation were included. Heart rate variability, pupillary function and sympathetic skin response were examined prior to intervention. Before and 1 or 3 months after intervention, 24-h ambulatory blood pressure readings were taken. Patients were stratified according to sympathetic nervous system function. Sympathetic activity was reduced in 12 participants (group 1) and normal or enhanced in nine patients (group 2). The mean of daytime systolic blood pressure decreased in groups 1 and 2 from 168 to 157 mmHg (95% confidence interval for difference, 1-21 mmHg, p = 0.035) and from 166 to 145 mmHg (8-34 mmHg, p = 0.005), respectively. In a linear model, blood pressure reduction was 11.3 mmHg (0.3-22 mmHg) greater in group 2 than in group 1 (p = 0.045). Patients with preexisting reduced activity of the sympathetic nervous system benefited less from renal denervation.
Marthol, H; Hilz, M J
2004-03-01
Sexual dysfunction is defined as "disturbances in sexual desire and in the psychophysiological changes that characterize the sexual response cycle and cause marked distress and interpersonal difficulty". The female sexual response cycle consists of three phases: desire, arousal, and orgasm. Various organs of the external and internal genitalia, e.g. vagina, clitoris, labia minora, vestibular bulbs, pelvic floor muscles and uterus, contribute to female sexual function. During sexual arousal, genital blood flow and sensation are increased. The vaginal canal is moistened (lubrication). During orgasm, there is rhythmical contraction of the uterus and pelvic floor muscles. Within the central nervous system, hypothalamic, limbic-hippocampal structures play a central role for sexual arousal. Sexual arousal largely depends on the sympathetic nervous system. Moreover, nonadrenergic/noncholinergic neurotransmitters (NANC), e.g. vasoactive intestinal polypeptide (VIP) and nitric oxide (NO), are involved in smooth muscle relaxation and enhancement of genital blood flow. Furthermore, various hormones may influence female sexual function. Estrogen has a significant role in maintaining vaginal mucosal epithelium as well as sensory thresholds and genital blood flow. Androgens primarily affect sexual desire, arousal, orgasm and the overall sense of well-being. The internationally accepted classification of female sexual dysfunction consists of hypoactive sexual desire disorders, sexual aversion disorders, sexual arousal disorders, orgasmic disorders and sexual pain disorders. Vascular insufficiency, e.g. due to atherosclerosis, and neurologic diseases, e.g. diabetic neuropathy, are major causes of sexual dysfunction. Additionally, sexual dysfunction may be due to changes in hormonal levels, medications with sexual side effects or of psychological origin. For the diagnosis of female sexual dysfunction, a detailed history should be taken initially, followed by a physical examination and laboratory studies. Physiologic monitoring of parameters of arousal potentially allows to diagnose organic diseases. Recordings at baseline and following sexual stimulation are recommended to determine pathologic changes that occur with arousal. Duplex Doppler sonography, photoplethysmography or the measurement of vaginal and minor labial oxygen tension may help to evaluate genital blood flow. Moreover, measurements of vaginal pH and compliance should be performed. Neurophysiological examination, e.g. measurement of the bulbocavernosus reflex and pudendal evoked potentials, genital sympathetic skin response (SSR), warm, cold and vibratory perception thresholds as well as testing of the pressure and touch sensitivity of the external genitalia, should be performed to evaluate neurogenic etiologies. Medical management of female sexual dysfunction so far is primarily based on hormone replacement therapy. Application of estrogen results in decreased pain and burning during intercourse. The efficacy of various other medications, e.g. sildenafil, L-arginine, yohimbine, phentolamine, apomorphine and prostaglandin E1, in the treatment of female sexual dysfunction is still under investigation.
Hamshary, Azza Abd Elkader El; Sherbini, Seham Awad El; Elgebaly, HebatAllah Fadel; Amin, Samah Abdelkrim
2017-01-01
Objectives To assess the frequency of primary multiple organ failure and the role of sepsis as a causative agent in critically ill pediatric patients; and calculate and evaluate the accuracy of the Pediatric Risk of Mortality III (PRISM III) and Pediatric Logistic Organ Dysfunction (PELOD) scores to predict the outcomes of critically ill children. Methods Retrospective study, which evaluated data from patients admitted from January to December 2011 in the pediatric intensive care unit of the Children's Hospital of the University of Cairo. Results Out of 237 patients in the study, 72% had multiple organ dysfunctions, and 45% had sepsis with multiple organ dysfunctions. The mortality rate in patients with multiple organ dysfunction was 73%. Independent risk factors for death were mechanical ventilation and neurological failure [OR: 36 and 3.3, respectively]. The PRISM III score was more accurate than the PELOD score in predicting death, with a Hosmer-Lemeshow X2 (Chi-square value) of 7.3 (df = 8, p = 0.5). The area under the curve was 0.723 for PRISM III and 0.78 for PELOD. Conclusion A multiple organ dysfunctions was associated with high mortality. Sepsis was the major cause. Pneumonia, diarrhea and central nervous system infections were the major causes of sepsis. PRISM III had a better calibration than the PELOD for prognosis of the patients, despite the high frequency of the multiple organ dysfunction syndrome. PMID:28977260
Peripheral nervous system involvement in primary burning mouth syndrome--results of a pilot study.
Puhakka, A; Forssell, H; Soinila, S; Virtanen, A; Röyttä, M; Laine, M; Tenovuo, O; Teerijoki-Oksa, T; Jääskeläinen, S K
2016-05-01
The pathophysiology of primary burning mouth syndrome (BMS) has remained enigmatic, but recent studies suggest pathology within the nervous system at multiple levels. This study aimed to investigate in detail the contribution of either focal or generalized alterations within the peripheral nervous system (PNS) in the etiopathogenesis of BMS. Intraepithelial nerve fiber density (IENFD) of tongue mucosa was assessed in 10 carefully characterized BMS, and the results were compared to 19 age- and gender-matched cadaver controls, 6 with lifetime diabetes. Extensive neurophysiologic and psychophysical examinations of the trigeminal system and distal extremities were performed to profile PNS function in BMS. Patients with BMS had significantly fewer intraepithelial nerve fibers (0,27, s.e. 0,18 mm(-1); P = 0.0253) than non-diabetic controls (0,92, s.e. 0,15 mm(-1)). In the subepithelial space, the amount of nerve fibers did not differ between the groups. The majority (9/10) of patients with BMS showed neurophysiologic or psychophysical signs of a more generalized PNS dysfunction. Our results in neurophysiologically optimally characterized BMS patients confirm that pure focal small fiber neuropathy of the oral mucosa has a role in the pathophysiology of primary BMS. Furthermore, BMS may be related to a more generalized, yet subclinical peripheral neuropathy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Canine distemper virus-associated hypocalcemia.
Weisbrode, S E; Krakowka, S
1979-01-01
A retrospective study was done to correlate serum calcium concentrations and parathyroid gland ultrastructure to clinical, immunologic, and pathologic changes experimentally induced in gnotobiotic dogs by canine distemper virus (CDV). Dogs infected with CDV had significantly reduced serum calcium concentrations associated with ultrastructural evidence of parathyroid gland inactivity, degeneration, and viral inclusions. Although CDV-infected dogs exhibited neurologic signs, minimal lesions were present in the central nervous system. It is suggested that viral-induced parathyroid dysfunction may contribute to neutrologic disturbance of CDV infection.
Towards bridging the gap between acid-base transporters and neuronal excitability modulation
Liu, Ying; Chen, Li-Ming
2014-01-01
pH homeostasis is a fundamental regulator of the function of the central nervous system. Dysfunction of acid-base transporters often results in disturbance of neuronal excitability. In a latest issue of Journal of Neuroscience, Jones et al. report that increasing intracellular bicarbonate concentration substantially stimulates the excitability of pyramidal neurons from mouse hippocampus by inhibiting KCNQ potassium channel. The finding shed important new light in understanding the molecular mechanism underlying the regulation of neuronal excitability by acid-base transporters. PMID:25755844
Exome-first approach identified a novel gloss deletion associated with Lowe syndrome.
Watanabe, Miki; Nakagawa, Ryuji; Kohmoto, Tomohiro; Naruto, Takuya; Suga, Ken-Ichi; Goji, Aya; Horikawa, Hideaki; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei
2016-01-01
Lowe syndrome (LS) is an X-linked disorder affecting the eyes, nervous system and kidneys, typically caused by missense or nonsense/frameshift OCRL mutations. We report a 6-month-old male clinically suspected to have LS, but without the Fanconi-type renal dysfunction. Using a targeted-exome sequencing-first approach, LS was diagnosed by the identification of a deletion involving 1.7 Mb at Xq25-q26.1, encompassing the entire OCRL gene and neighboring loci.
Exome-first approach identified a novel gloss deletion associated with Lowe syndrome
Watanabe, Miki; Nakagawa, Ryuji; Kohmoto, Tomohiro; Naruto, Takuya; Suga, Ken-ichi; Goji, Aya; Horikawa, Hideaki; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei
2016-01-01
Lowe syndrome (LS) is an X-linked disorder affecting the eyes, nervous system and kidneys, typically caused by missense or nonsense/frameshift OCRL mutations. We report a 6-month-old male clinically suspected to have LS, but without the Fanconi-type renal dysfunction. Using a targeted-exome sequencing-first approach, LS was diagnosed by the identification of a deletion involving 1.7 Mb at Xq25-q26.1, encompassing the entire OCRL gene and neighboring loci. PMID:27867521
Smits, M; Gabreëls, F; Froeling, P; Thijssen, H; Colon, E; ter Haar, B; Ruland, C; Lam, R
1982-01-01
The neurological manifestations of idiopathic hypoparathyroidism in a father, his son, and his daughter are reported. In all three epilepsy was the first manifestation of the disease. Father and son also showed mental deterioration and striocerebellar symptoms; their CT scans revealed symmetrical calcification in the basal ganglia and dentate nuclei. The extent of this calcification increased during normocalcemia, which was produced by dihydrotachysterol therapy. This indicates that other factors than merely hypocalcemia influence the intracerebral calcifying process. Somatosensory evoked potentials (SSEP) showed an abnormal nonspecific complex, indicating dysfunction of the cortical gray matter. It is suggested that in the evaluation of idiopathic hypoparathyroidism one also must be beware of the possibility of epilepsy, mental deterioration, striocerebellar symptoms, intracerebral calcification and SSEP disturbances.
Blood-brain barrier dysfunction in mice induced by lipopolysaccharide is attenuated by dapsone.
Zhou, Ting; Zhao, Lei; Zhan, Rui; He, Qihua; Tong, Yawei; Tian, Xiaosheng; Wang, Hecheng; Zhang, Tao; Fu, Yaoyun; Sun, Yang; Xu, Feng; Guo, Xiangyang; Fan, Dongsheng; Han, Hongbin; Chui, Dehua
2014-10-24
Blood-brain barrier (BBB) dysfunction is a key event in the development of many central nervous system (CNS) diseases, such as septic encephalopathy and stroke. 4,4'-Diaminodiphenylsulfone (DDS, Dapsone) has displayed neuroprotective effect, but whether DDS has protective role on BBB integrity is not clear. This study was designed to examine the effect of DDS on lipopolysaccharide (LPS)-induced BBB disruption and oxidative stress in brain vessels. Using in vivo multiphoton imaging, we found that DDS administration significantly restored BBB integrity compromised by LPS. DDS also increased the expression of tight junction proteins occludin, zona occludens-1 (ZO-1) and claudin-5 in brain vessels. Level of reactive oxygen species (ROS) was reduced by DDS treatment, which may due to decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and NOX2 expression. Our results showed that LPS-induced BBB dysfunction could be attenuated by DDS, indicated that DDS has a therapeutic potential for treating CNS infection and other BBB related diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
Khan, Mohammad; Nishi, Shamima Easmin; Hassan, Siti Nazihahasma; Islam, Md Asiful; Gan, Siew Hua
2017-01-01
Neuropathic pain is a common phenomenon that affects millions of people worldwide. Maxillofacial structures consist of various tissues that receive frequent stimulation during food digestion. The unique functions (masticatory process and facial expression) of the maxillofacial structure require the exquisite organization of both the peripheral and central nervous systems. Neuralgia is painful paroxysmal disorder of the head-neck region characterized by some commonly shared features such as the unilateral pain, transience and recurrence of attacks, and superficial and shock-like pain at a trigger point. These types of pain can be experienced after nerve injury or as a part of diseases that affect peripheral and central nerve function, or they can be psychological. Since the trigeminal and glossopharyngeal nerves innervate the oral structure, trigeminal and glossopharyngeal neuralgia are the most common syndromes following myofascial pain dysfunction syndrome. Nevertheless, misdiagnoses are common. The aim of this review is to discuss the currently available diagnostic procedures and treatment options for trigeminal neuralgia, glossopharyngeal neuralgia, and myofascial pain dysfunction syndrome.
Nishi, Shamima Easmin; Hassan, Siti Nazihahasma
2017-01-01
Neuropathic pain is a common phenomenon that affects millions of people worldwide. Maxillofacial structures consist of various tissues that receive frequent stimulation during food digestion. The unique functions (masticatory process and facial expression) of the maxillofacial structure require the exquisite organization of both the peripheral and central nervous systems. Neuralgia is painful paroxysmal disorder of the head-neck region characterized by some commonly shared features such as the unilateral pain, transience and recurrence of attacks, and superficial and shock-like pain at a trigger point. These types of pain can be experienced after nerve injury or as a part of diseases that affect peripheral and central nerve function, or they can be psychological. Since the trigeminal and glossopharyngeal nerves innervate the oral structure, trigeminal and glossopharyngeal neuralgia are the most common syndromes following myofascial pain dysfunction syndrome. Nevertheless, misdiagnoses are common. The aim of this review is to discuss the currently available diagnostic procedures and treatment options for trigeminal neuralgia, glossopharyngeal neuralgia, and myofascial pain dysfunction syndrome. PMID:28827979
Chen, Chi-Jung; Kumar, K J Senthil; Chen, Yu-Ting; Tsao, Nai-Wen; Chien, Shih-Chang; Chang, Shang-Tzen; Chu, Fang-Hua; Wang, Sheng-Yang
2015-07-01
Meniki (Chamecyparis formosensis) and Hinoki (C. obtusa) are precious conifers with excellent wood properties and distinctive fragrances that make these species popular in Taiwan for construction, interiors and furniture. In the present study, the compositions of essential oils prepared from Meniki and Hinoki were analyzed by gas chromatography-mass spectrometry (GC/MS). Thirty-six compounds were identified from the wood essential oil of Meniki, including Δ-cadinene, γ-cadinene, Δ-cadinol, α-muurolene, calamenene, linalyl acetate and myrtenol; 29 compounds were identified from Hinoki, including α-terpineol, α-pinene, Δ-cadinene, borneol, terpinolene, and limonene. Next, we examined the effect of Meniki and Hinoki essential oils on human autonomic nervous system activity. Sixteen healthy adults received Meniki or Hinoki by inhalation for 5 min, and the physiological and psychological effects were examined. After inhaling Meniki essential oil, participant's systolic blood pressure and heart rate (HR) were decreased, and diastolic blood pressure increased. In addition, sympathetic nervous activity (SNS) was significantly decreased, and parasympathetic activity (PSNS) was significantly increased. On the other hand, after inhaling Hinoki essential oil, systolic blood pressure, heart rate and PSNS were decreased, whereas SNA was increased. Indeed, both Meniki and Hinoki essential oils increased heart rate variability (HRV) in tested adults. Furthermore, in the Profile of Mood States (POMS) test, both Meniki and Hinoki wood essential oils stimulated a pleasant mood status. Our results strongly suggest that Meniki and Hinoki essential oils could be suitable agents for the development of regulators of sympathetic nervous system dysfunctions.
Neuronopathic lysosomal storage disorders: Approaches to treat the central nervous system.
Scarpa, Maurizio; Bellettato, Cinzia Maria; Lampe, Christina; Begley, David J
2015-03-01
Pharmacological research has always focused on developing new therapeutic strategies capable of modifying a disease's natural history and improving patients' quality of life. Despite recent advances within the fields of medicine and biology, some diseases still represent a major challenge for successful therapy. Neuronopathic lysosomal storage disorders, in particular, have high rates of morbidity and mortality and a devastating socio-economic effect. Many of the available therapies, such as enzyme replacement therapy, can reverse the natural history of the disease in peripheral organs but, unfortunately, are still unable to reach the central nervous system effectively because they cannot cross the blood-brain barrier that surrounds and protects the brain. Moreover, many lysosomal storage disorders are characterized by a number of blood-brain barrier dysfunctions, which may further contribute to disease neuropathology and accelerate neuronal cell death. These issues, and their context in the development of new therapeutic strategies, will be discussed in detail in this chapter. Copyright © 2014 Elsevier Ltd. All rights reserved.
GM2 gangliosidosis in British Jacob sheep.
Wessels, M E; Holmes, J P; Jeffrey, M; Jackson, M; Mackintosh, A; Kolodny, E H; Zeng, B J; Wang, C B; Scholes, S F E
2014-01-01
GM2 gangliosidosis (Tay-Sachs disease) was diagnosed in 6- to 8-month-old pedigree Jacob lambs from two unrelated flocks presenting clinically with progressive neurological dysfunction of 10 day's to 8 week's duration. Clinical signs included hindlimb ataxia and weakness, recumbency and proprioceptive defects. Histopathological examination of the nervous system identified extensive neuronal cytoplasmic accumulation of material that stained with periodic acid--Schiff and Luxol fast blue. Electron microscopy identified membranous cytoplasmic bodies within the nervous system. Serum biochemistry detected a marked decrease in hexosaminidase A activity in the one lamb tested, when compared with the concentration in age matched controls and genetic analysis identified a mutation in the sheep hexa allele G444R consistent with Tay-Sachs disease in Jacob sheep in North America. The identification of Tay-Sachs disease in British Jacob sheep supports previous evidence that the mutation in North American Jacob sheep originated from imported UK stock. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood.
Ouvrier, Robert; Geevasingha, Nimeshan; Ryan, Monique M
2007-08-01
The hereditary motor and sensory neuropathies (HMSNs, Charcot-Marie-Tooth neuropathies) are the most common degenerative disorders of the peripheral nervous system. In recent years a dramatic expansion has occurred in our understanding of the molecular basis and cell biology of the recessively inherited demyelinating and axonal neuropathies, with delineation of a number of new neuropathies. Mutations in some genes cause a wide variety of clinical, neurophysiologic, and pathologic phenotypes, rendering diagnosis difficult. The X-linked forms of HMSN represent at least 10%-15% of all HMSNs and have an expanded disease spectrum including demyelinating, intermediate, and axonal neuropathies, transient central nervous system (CNS) dysfunction, mental retardation, and hearing loss. This review presents an overview of the recessive and X-linked forms of HMSN observed in childhood, with particular reference to disease phenotype and neurophysiologic and pathologic abnormalities suggestive of specific diagnoses. These findings can be used by the clinician to formulate a differential diagnosis and guide targeted genetic testing.
The Synapse as a Central Target for Neurodevelopmental Susceptibility to Pesticides
Vester, Aimee; Caudle, W. Michael
2016-01-01
The developmental period of the nervous system is carefully orchestrated and highly vulnerable to alterations. One crucial factor of a properly-functioning nervous system is the synapse, as synaptic signaling is critical for the formation and maturation of neural circuits. Studies show that genetic and environmental impacts can affect diverse components of synaptic function. Importantly, synaptic dysfunction is known to be associated with neurologic and psychiatric disorders, as well as more subtle cognitive, psychomotor, and sensory defects. Given the importance of the synapse in numerous domains, we wanted to delineate the effects of pesticide exposure on synaptic function. In this review, we summarize current epidemiologic and molecular studies that demonstrate organochlorine, organophosphate, and pyrethroid pesticide exposures target the developing synapse. We postulate that the synapse plays a central role in synaptic vulnerability to pesticide exposure during neurodevelopment, and the synapse is a worthy candidate for investigating more subtle effects of chronic pesticide exposure in future studies. PMID:29051423
NEONATAL ABSTINENCE SYNDROME: PHARMACOLOGIC STRATEGIES FOR THE MOTHER AND INFANT
Kraft, Walter K.; Stover, Megan W.; Davis, Jonathan M.
2015-01-01
Opioid use in pregnancy has increased dramatically over the past decade. Since prenatal opioid use is associated with numerous obstetrical and neonatal complications, this now has become a major public health problem. In particular, in utero opioid exposure can result in neonatal abstinence syndrome (NAS) which is a serious condition characterized by central nervous system hyperirritability and autonomic nervous system dysfunction. The present review seeks to define current practices regarding the approach to the pregnant mother and neonate with prenatal opiate exposure. Although the cornerstone of prenatal management of opioid dependence is opioid maintenance therapy, the ideal agent has yet to be definitively established. Pharmacologic management of NAS is also highly variable and may include an opioid, barbiturate, and/or α-agonist. Genetic factors appear to be associated with the incidence and severity of NAS. Establishing pharmacogenetic risk factors for the development of NAS has the potential for creating opportunities for “personalized genomic medicine” and novel, individualized therapeutic interventions. PMID:26791055
Increased presence of T lymphocytes in central nervous system of EPM affected horses.
Scott, Patricia; Witonsky, Sharon; Robertson, John; Daft, Barbara
2005-12-01
Equine protozoal myeloencephalitis (EPM), caused by Sarcocystis neurona infection in the central nervous system (CNS), affects up to 1% of all horses during their lifetimes. Neither the protective immune response nor the immunopathology associated with the disease is well understood. To begin to clarify the pathogenesis of the disease, immunohistochemical staining for B and T lymphocytes was performed on spinal cord sections obtained from 17 horses, all of which were all positive for S. neurona based on immunohistochemical staining. Fifteen of the 17 horses included in the study were killed due to neurologic dysfunction; 2 of the 17 horses were killed because of fractures. All 17 horses had histologic changes consistent with S. neurona infection. A significantly greater number of T cells were seen in sections from S. neurona-infected versus control horses. Because this was a small descriptive study, we were not able to determine the mechanisms of enhanced T-cell recruitment in the sections from the S. neurona-infected horses.
Narcolepsy and syndromes of primary excessive daytime somnolence.
Black, Jed E; Brooks, Stephen N; Nishino, Seiji
2004-09-01
Excessive daytime sleepiness (EDS) or somnolence is common in our patients and in society in general. The most common cause of EDS is "voluntary" sleep restriction. Other common causes include sleep-fragmenting disorders such as the obstructive sleep apnea syndrome. Somewhat less familiar to the clinician are EDS conditions arising from central nervous system dysfunction. Of these so-called primary disorders of somnolence, narcolepsy is the most well known and extensively studied, yet often misunderstood and misdiagnosed. Idiopathic hypersomnia, the recurrent hypersomnias, and EDS associated with nervous system disorders also must be well-understood to provide appropriate evaluation and management of the patient with EDS. This review summarizes the distinguishing features of these clinical syndromes of primary EDS. A brief overview of the pharmacological management of primary EDS is included. Finally, in view of the tremendous advances that have occurred in the past few years in our understanding of the pathophysiology of canine and human narcolepsy, we also highlight these discoveries.
Frøkjær, Jens B; Graversen, Carina; Brock, Christina; Khodayari-Rostamabad, Ahmad; Olesen, Søren S; Hansen, Tine M; Søfteland, Eirik; Simrén, Magnus; Drewes, Asbjørn M
2017-02-01
Diabetes mellitus (DM) is associated with structural and functional changes of the central nervous system. We used electroencephalography (EEG) to assess resting state cortical activity and explored associations to relevant clinical features. Multichannel resting state EEG was recorded in 27 healthy controls and 24 patients with longstanding DM and signs of autonomic dysfunction. The power distribution based on wavelet analysis was summarized into frequency bands with corresponding topographic mapping. Source localization analysis was applied to explore the electrical cortical sources underlying the EEG. Compared to controls, DM patients had an overall decreased EEG power in the delta (1-4Hz) and gamma (30-45Hz) bands. Topographic analysis revealed that these changes were confined to the frontal region for the delta band and to central cortical areas for the gamma band. Source localization analysis identified sources with reduced activity in the left postcentral gyrus for the gamma band and in right superior parietal lobule for the alpha1 (8-10Hz) band. DM patients with clinical signs of autonomic dysfunction and gastrointestinal symptoms had evidence of altered resting state cortical processing. This may reflect metabolic, vascular or neuronal changes associated with diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Diya; Zhang, Jianbin; Jiang, Wenkai; Cao, Zipeng; Zhao, Fang; Cai, Tongjian; Aschner, Michael; Luo, Wenjing
2017-05-04
Central nervous system (CNS) inflammation and autophagy dysfunction are known to be involved in the pathology of neurodegenerative diseases. Manganese (Mn), a neurotoxic metal, has the potential to induce microglia-mediated neuroinflammation as well as autophagy dysfunction. NLRP3 (NLR family, pyrin domain containing 3)- CASP1 (caspase 1) inflammasome-mediated neuroinflammation in microglia has specific relevance to neurological diseases. However, the mechanism driving these phenomena remains poorly understood. We demonstrate that Mn activates the NLRP3-CASP1 inflammasome pathway in the hippocampus of mice and BV2 cells by triggering autophagy-lysosomal dysfunction. The autophagy-lysosomal dysfunction is induced by lysosomal damage caused by excessive Mn accumulation, damaging the structure and normal function of these organelles. Additionally, we show that the release of lysosomal CTSB (cathepsin B) plays an important role in Mn-induced NLRP3-CASP1 inflammasome activation, and that the increased autophagosomes in the cytoplasm are not the main cause of NLRP3-CASP1 inflammasome activation. The accumulation of proinflammatory cytokines, such as IL1B (interleukin 1 β) and IL18 (interleukin 18), as well as the dysfunctional autophagy pathway may damage hippocampal neuronal cells, thus leading to hippocampal-dependent impairment in learning and memory, which is associated with the pathogenesis of Alzheimer disease (AD).
Plinsinga, Melanie L; Brink, Michel S; Vicenzino, Bill; van Wilgen, C Paul
2015-11-01
Study Design Systematic review. Objectives To elucidate if there is sensitization of the nervous system in those with persistent rotator cuff (shoulder), lateral elbow, patellar, and Achilles tendinopathies. Background Tendinopathy can be difficult to treat, and persistent intractable pain and dysfunction are frequent. It is hypothesized that induction or maintenance of persistent pain in tendinopathy may be, at least in part, based on changes in the nervous system. Methods The PRISMA guidelines were followed. Relevant articles were identified through a computerized search in Embase, PubMed, and Web of Science, followed by a manual search of reference lists of retained articles. To be eligible, studies had to include quantitative sensory testing and evaluate individuals diagnosed with a persistent tendinopathy of the rotator cuff (shoulder), lateral elbow, patella, or Achilles tendon. Methodological quality assessment was evaluated with the Newcastle-Ottawa Scale. Results In total, 16 full-text articles met the criteria for inclusion, of which the majority were case-control studies with heterogeneous methodological quality. No studies on Achilles tendinopathy were found. Mechanical algometry was the predominant quantitative sensory testing used. Lowered pressure pain threshold was observed across different tendinopathies at the site of tendinopathy, as well as at other sites, the latter being suggestive of central sensitization. Conclusion Although more research on sensory abnormalities is warranted, it appears likely that there is an association between persistent tendon pain and sensitization of the nervous system. This evidence is primarily from studies of upper-limb tendinopathy, and caution should be exercised with inference to lower-limb tendinopathy. J Orthop Sports Phys Ther 2015;45(11):864-875. Epub 21 Sep 2015. doi:10.2519/jospt.2015.5895.
Diet-induced obesity and low testosterone increase neuroinflammation and impair neural function.
Jayaraman, Anusha; Lent-Schochet, Daniella; Pike, Christian J
2014-09-16
Low testosterone and obesity are independent risk factors for dysfunction of the nervous system including neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we investigate the independent and cooperative interactions of testosterone and diet-induced obesity on metabolic, inflammatory, and neural health indices in the central and peripheral nervous systems. Male C57B6/J mice were maintained on normal or high-fat diet under varying testosterone conditions for a four-month treatment period, after which metabolic indices were measured and RNA isolated from cerebral cortex and sciatic nerve. Cortices were used to generate mixed glial cultures, upon which embryonic cerebrocortical neurons were co-cultured for assessment of neuron survival and neurite outgrowth. Peripheral nerve damage was determined using paw-withdrawal assay, myelin sheath protein expression levels, and Na+,K+-ATPase activity levels. Our results demonstrate that detrimental effects on both metabolic (blood glucose, insulin sensitivity) and proinflammatory (cytokine expression) responses caused by diet-induced obesity are exacerbated by testosterone depletion. Mixed glial cultures generated from obese mice retain elevated cytokine expression, although low testosterone effects do not persist ex vivo. Primary neurons co-cultured with glial cultures generated from high-fat fed animals exhibit reduced survival and poorer neurite outgrowth. In addition, low testosterone and diet-induced obesity combine to increase inflammation and evidence of nerve damage in the peripheral nervous system. Testosterone and diet-induced obesity independently and cooperatively regulate neuroinflammation in central and peripheral nervous systems, which may contribute to observed impairments in neural health. Together, our findings suggest that low testosterone and obesity are interactive regulators of neuroinflammation that, in combination with adipose-derived inflammatory pathways and other factors, increase the risk of downstream disorders including type 2 diabetes and Alzheimer's disease.
Suneson, A; Hansson, H A; Seeman, T
1990-03-01
The aim of the present study was to investigate if distant effects could be detected within the central nervous system after impact of a high-energy missile in the left thigh of young pigs. Pressure transducers implanted in various parts of the body of the animal, including the brain, recorded a short-lasting burst of oscillating pressure waves with high frequencies and large amplitudes, traversing the body tissue with a velocity of about that of sound in water (1,460 m/s). The distance between the point of impact and the brain and cervical spinal cord is in the range of 0.5 m. Macroscopic examination revealed that there was no gross brain tissue disruption or visible blood-brain barrier dysfunction. Light microscopic examination demonstrated myelin invaginations in the largest axons and shrinkage of axoplasm. Electron microscopic examination revealed a reduction in the number of microtubules, especially in the larger axons in the brainstem. Disintegration of Nissl substance, i.e., chromatolysis, was noticed after 48 hr in many Purkinje nerve cells in the cerebellum, concomitantly with the appearance of an increased frequency of association between lamellar bodies and mitochondria. Changes could also be observed in the cervical spinal cord and, at reduced frequency and extent, in the optic nerve and in other parts of the brain. These effects were evident within a few minutes after the trauma and persisted even 48 hr after the extremity injury. It is concluded that distant effects, likely to be caused by the oscillating high-frequency pressure waves, appear in the central nervous system after a high-energy missile extremity impact.
Djossou, Félix; Vesin, Guillaume; Bidaud, Bastien; Mosnier, Emilie; Simonnet, Christine; Matheus, Séverine; Prince, Christelle; Balcaen, John; Donutil, Gerd; Egmann, Gérald; Okandze, Antoine; Malvy, Denis; Nacher, Mathieu
2016-01-01
The frequency, the clinical characteristics, and the prognosis of dengue is highly variable. Dengue fever is associated with a range of neurological manifestations. The objective of the present study was to determine the incidence of neurological signs and their predictive factors using data from cases of dengue seen and followed in Cayenne Hospital during the Dengue 2 epidemic in 2013. In 2013, a longitudinal study using data from all cases of dengue seen in Cayenne hospital was collected. Medical records used a standardized form to collect demographic information, clinical signs and biological results and the date at which they were present. The analysis used Cox proportional modeling to obtain adjusted Hazard ratios. A total of 1574 patients were included 221 of whom developed central nervous system signs. These signs were spontaneously resolutive. There were 9298person days of follow-up and the overall incidence rate for central nervous system signs was 2.37 per 100 person-days. The variables independently associated with central nervous system anomalies were headache, Adjusted Hazard ratio (AHR) = 1.9(95%CI = 1.4-2.6), bleeding AHR = 2 ((95%CI = 1.3-3.1), P = 0.001, abdominal pain AHR = 1.9 ((95%CI = 1.4-2.6), P<0.001, aches AHR = 2.1 ((95%CI = 1.5-2.9), P<0.001, and fatigue AHR = 1.5 ((95%CI = 1.3-1.7), P<0.001. Overall, the present study suggests that neurological signs of dengue are not exceptional even in patients without the most severe features of dengue. These manifestations were spontaneously resolutive. Here it was not possible to distinguish between encephalitis or encephalopathy. Further studies would require more in depth exploration of the patients.
Generaal, Ellen; Vogelzangs, Nicole; Macfarlane, Gary J; Geenen, Rinie; Smit, Johannes H; de Geus, Eco J C N; Dekker, Joost; Penninx, Brenda W J H
2017-02-01
Dysfunction of biological stress systems and adverse life events, independently and in interaction, have been hypothesized to predict chronic pain persistence. Conversely, these factors may hamper the improvement of chronic pain. Longitudinal evidence is currently lacking. We examined whether: 1) function of biological stress systems, 2) adverse life events, and 3) their combination predict the improvement of chronic multisite musculoskeletal pain. Subjects of the Netherlands Study of Depression and Anxiety (NESDA) with chronic multisite musculoskeletal pain at baseline (N = 665) were followed-up 2, 4, and 6 years later. The Chronic Pain Grade Questionnaire was used to determine improvement (not meeting the criteria) of chronic multisite musculoskeletal pain at follow-up. Baseline assessment of biological stress systems included function of hypothalamic-pituitary-adrenal axis (1-hour cortisol awakening response, evening level, and post dexamethasone level), the immune system (basal and lipopolysaccharide-stimulated inflammatory markers), the autonomic nervous system (heart rate, pre-ejection period, SD of the normal-to-normal interval, and respiratory sinus arrhythmia). The number of adverse life events were assessed at baseline and 2-year follow-up using the List of Threatening Events Questionnaire. We showed that hypothalamic-pituitary-adrenal axis, immune system, and autonomic nervous system functioning and adverse life events were not associated with the improvement of chronic multisite musculoskeletal pain, either as a main effect or in interaction. This longitudinal study could not confirm that biological stress system dysfunction and adverse life events affect the course of chronic multisite musculoskeletal pain. Biological stress systems and adverse life events are not associated with the improvement of chronic multisite musculoskeletal pain over 6 years of follow-up. Other determinants should thus be considered in future research to identify in which persons pain symptoms will improve. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan
2015-06-10
As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellularmore » energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.« less
Kan, Min Hui; Yang, Ting; Fu, Hui Qun; Fan, Long; Wu, Yan; Terrando, Niccolò; Wang, Tian-Long
2016-01-01
Systemic inflammation, for example as a result of infection, often contributes to long-term complications. Neuroinflammation and cognitive decline are key hallmarks of several neurological conditions, including advance age. The contribution of systemic inflammation to the central nervous system (CNS) remains not fully understood. Using a model of peripheral endotoxemia with lipopolysaccharide (LPS) we investigated the role of nuclear factor-κB (NF-κB) activity in mediating long-term neuroinflammation and cognitive dysfunction in aged rats. Herein we describe the anti-inflammatory effects of pyrrolidine dithiocarbamate (PDTC), a selective NF-κB inhibitor, in modulating systemic cytokines including tumor necrosis factor (TNF)-α and interleukin-1β (IL-1β) and CNS markers after LPS exposure in aged rats. In the hippocampus, PDTC not only reduced neuroinflammation by modulating canonical NF-κB activity but also affected IL-1β expression in astrocytes. Parallel effects were observed on behavior and postsynaptic density-95 (PSD95), a marker of synaptic function. Taken together these changes improved acute and long-term cognitive function in aged rats after LPS exposure. PMID:27493629
Sabharwal, Rasna; Chapleau, Mark W
2014-04-01
New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of LV dysfunction and higher mortality in Sgcd-/- mice. Treatment of Sgcd-/- mice with the angiotensin type 1 receptor blocker losartan for 8-9 weeks, beginning at 3 weeks of age, decreased fibrosis and oxidative stress in skeletal muscle, increased locomotor activity and prevented autonomic dysfunction. Chronic infusion of the counter-regulatory peptide angiotensin-(1-7) resulted in similar protection. We conclude that activation of the renin-angiotensin system, at a young age, contributes to skeletal muscle and autonomic dysfunction in muscular dystrophy. We speculate that the latter is mediated via abnormal sensory nerve and/or cytokine signalling from dystrophic skeletal muscle to the brain and contributes to age-related LV dysfunction, dilated cardiomyopathy, arrhythmias and premature death. Therefore, correcting the early autonomic dysregulation and renin-angiotensin system activation may provide a novel therapeutic approach in muscular dystrophy.
Karmakar, Chandan; Jelinek, Herbert; Khandoker, Ahsan; Tulppo, Mikko; Makikallio, Timo; Kiviniemi, Antti; Huikuri, Heikki; Palaniswami, Marimuthu
2012-01-01
Diabetes mellitus is associated with multi-organ system dysfunction. One of the key causative factors is the increased blood sugar level that leads to an increase in free radical activity and organ damage including the cardiovascular and nervous system. Heart rhythm is extrinsically modulated by the autonomic nervous system and cardiac autonomic neuropathy or dysautonomia has been shown to lead to sudden cardiac death in people with diabetes due to the decrease in heart rate variability (HRV). Current algorithms for determining HRV describe only beat-to-beat variation and therefore do not consider the ability of a heart beat to influence a train of succeeding beats. Therefore mortality risk analysis based on HRV has often not been able to discern the presence of an increased risk. This study used a novel innovation of the tone-entropy algorithm by incorporating increased lag intervals and found that both the sympatho-vagal balance and total activity changed at larger lag intervals. Tone-Entropy was found to be better risk identifier of cardiac mortality in people with diabetes at lags higher than one and best at lag seven.
Lunardini, Francesca; Casellato, Claudia; Bertucco, Matteo; Sanger, Terence D; Pedrocchi, Alessandra
2015-01-01
Muscle synergies are hypothesized to represent motor modules recruited by the nervous system to flexibly perform subtasks necessary to achieve movement. Muscle synergy analysis may offer a better view of the neural structure underlying motor behaviors and how they change in motor deficits and rehabilitation. The aim of this study is to investigate if muscle synergies are able to encode regularities in the musculoskeletal system organization and dynamic behavior of patients with dystonia, or if they are altered as a consequence of the nervous system dysfunction in dystonia. To do so, we applied muscle synergies analysis to muscle activity recorded during the execution of upper limb writing tasks in 10 children with dystonia and 9 age-matched healthy controls. We show that, although children with dystonia present movement abnormalities compared to control subjects, the muscle synergies extracted from the two groups are very similar, and that the two groups share a significant number of motor modules. Our finding therefore suggests that a regular modular organization of upper limb muscle coordination is preserved for childhood dystonia.
Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction.
Noda, Mami
2018-01-01
The endocrine system and the central nervous system (CNS) are intimately linked. Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and neuroglia and hence for development and function of the CNS. T3 (3,3',5-triiodothyronine), an active form of TH, is important not only for neuronal development but also for differentiation of astrocytes and oligodendrocytes, and for microglial development. In adult brain, T3 affects glial morphology with sex- and age-dependent manner and therefore may affect their function, leading to influence on neuron-glia interaction. T3 is an important signaling factor that affects microglial functions such as migration and phagocytosis via complex mechanisms. Therefore, dysfunction of THs may impair glial function as well as neuronal function and thus disturb the brain, which may cause mental disorders. Investigations on molecular and cellular basis of hyperthyroidism and hypothyroidism will help us to understand changes in neuron-glia interaction and therefore consequent psychiatric symptoms. © 2018 Elsevier Inc. All rights reserved.
HERC1 Ubiquitin Ligase Is Required for Normal Axonal Myelination in the Peripheral Nervous System.
Bachiller, Sara; Roca-Ceballos, María Angustias; García-Domínguez, Irene; Pérez-Villegas, Eva María; Martos-Carmona, David; Pérez-Castro, Miguel Ángel; Real, Luis Miguel; Rosa, José Luis; Tabares, Lucía; Venero, José Luis; Armengol, José Ángel; Carrión, Ángel Manuel; Ruiz, Rocío
2018-03-30
A missense mutation in HERC1 provokes loss of cerebellar Purkinje cells, tremor, and unstable gait in tambaleante (tbl) mice. Recently, we have shown that before cerebellar degeneration takes place, the tbl mouse suffers from a reduction in the number of vesicles available for release at the neuromuscular junction (NMJ). The aim of the present work was to study to which extent the alteration in HERC1 may affect other cells in the nervous system and how this may influence the motor dysfunction observed in these mice. The functional analysis showed a consistent delay in the propagation of the action potential in mutant mice in comparison with control littermates. Morphological analyses of glial cells in motor axons revealed signs of compact myelin damage as tomacula and local hypermyelination foci. Moreover, we observed an alteration in non-myelinated terminal Schwann cells at the level of the NMJ. Additionally, we found a significant increment of phosphorylated Akt-2 in the sciatic nerve. Based on these findings, we propose a molecular model that could explain how mutated HERC1 in tbl mice affects the myelination process in the peripheral nervous system. Finally, since the myelin abnormalities found in tbl mice are histological hallmarks of neuropathic periphery diseases, tbl mutant mice could be considered as a new mouse model for this type of diseases.
Baroreflex Function in Rats after Simulated Microgravity
NASA Technical Reports Server (NTRS)
Hasser, Eileen M.
1997-01-01
Prolonged exposure of humans to decreased gravitational forces during spaceflight results in a number of adverse cardiovascular consequences, often referred to as cardiovascular deconditioning. Prominent among these negative cardiovascular effects are orthostatic intolerance and decreased exercise capacity. Rat hindlimb unweighting is an animal model which simulates weightlessness, and results in similar cardiovascular consequences. Cardiovascular reflexes, including arterial and cardiopulmonary baroreflexes, are required for normal adjustment to both orthostatic challenges and exercise. Therefore, the orthostatic intolerance and decreased exercise capacity associated with exposure to microgravity may be due to cardiovascular reflex dysfunction. The proposed studies will test the general hypothesis that hindlimb unweighting in rats results in impaired autonomic reflex control of the sympathetic nervous system. Specifically, we hypothesize that the ability to reflexly increase sympathetic nerve activity in response to decreases in arterial pressure or blood volume will be blunted due to hindlimb unweighting. There are 3 specific aims: (1) To evaluate arterial and cardiopulmonary baroreflex control of renal and lumbar sympathetic nerve activity in conscious rats subjected to 14 days of hindlimb unweighting; (2) To examine the interaction between arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in conscious hindlimb unweighted rats; (3) to evaluate changes in afferent and/or central nervous system mechanisms in baroreflex regulation of the sympathetic nervous system. These experiments will provide information related to potential mechanisms for orthostatic and exercise intolerance due to microgravity.
Mitochondrial dysfunction in obesity.
de Mello, Aline Haas; Costa, Ana Beatriz; Engel, Jéssica Della Giustina; Rezin, Gislaine Tezza
2018-01-01
Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS. Copyright © 2017 Elsevier Inc. All rights reserved.
Pseudotumor Cerebri and Glymphatic Dysfunction.
Bezerra, Marcio Luciano de Souza; Ferreira, Ana Carolina Andorinho de Freitas; de Oliveira-Souza, Ricardo
2017-01-01
In contrast to virtually all organ systems of the body, the central nervous system was until recently believed to be devoid of a lymphatic system. The demonstration of a complex system of paravascular channels formed by the endfeet of astroglial cells ultimately draining into the venous sinuses has radically changed this idea. The system is subsidized by the recirculation of cerebrospinal fluid (CSF) through the brain parenchyma along paravascular spaces (PVSs) and by exchanges with the interstitial fluid (IF). Aquaporin-4 channels are the chief transporters of water through these compartments. This article hypothesizes that glymphatic dysfunction is a major pathogenetic mechanism underpinning idiopathic intracranial hypertension (IIH). The rationale for the hypothesis springs from MRI studies, which have shown many signs related to IIH without evidence of overproduction of CSF. We propose that diffuse retention of IF is a direct consequence of an imbalance of glymphatic flow. This imbalance, in turn, may result from an augmented flow from the arterial PVS into the IF, by impaired outflow of the IF into the paravenous spaces, or both. Our hypothesis is supported by the facts that (i) visual loss, one of the main complications of IIH, is secondary to the impaired drainage of the optic nerve, a nerve richly surrounded by water channels and with a long extracranial course in its meningeal sheath; (ii) there is a high association between IIH and obesity, a condition related to paravascular inflammation and lymphatic disturbance, and (iii) glymphatic dysfunction has been related to the deposition of β-amyloid in Alzheimer's disease. We conclude that the concept of glymphatic dysfunction provides a new perspective for understanding the pathophysiology of IIH; it may likewise entice the development of novel therapeutic approaches aiming at enhancing the flow between the CSF, the glymphatic system, and the dural sinuses.
Pseudotumor Cerebri and Glymphatic Dysfunction
Bezerra, Marcio Luciano de Souza; Ferreira, Ana Carolina Andorinho de Freitas; de Oliveira-Souza, Ricardo
2018-01-01
In contrast to virtually all organ systems of the body, the central nervous system was until recently believed to be devoid of a lymphatic system. The demonstration of a complex system of paravascular channels formed by the endfeet of astroglial cells ultimately draining into the venous sinuses has radically changed this idea. The system is subsidized by the recirculation of cerebrospinal fluid (CSF) through the brain parenchyma along paravascular spaces (PVSs) and by exchanges with the interstitial fluid (IF). Aquaporin-4 channels are the chief transporters of water through these compartments. This article hypothesizes that glymphatic dysfunction is a major pathogenetic mechanism underpinning idiopathic intracranial hypertension (IIH). The rationale for the hypothesis springs from MRI studies, which have shown many signs related to IIH without evidence of overproduction of CSF. We propose that diffuse retention of IF is a direct consequence of an imbalance of glymphatic flow. This imbalance, in turn, may result from an augmented flow from the arterial PVS into the IF, by impaired outflow of the IF into the paravenous spaces, or both. Our hypothesis is supported by the facts that (i) visual loss, one of the main complications of IIH, is secondary to the impaired drainage of the optic nerve, a nerve richly surrounded by water channels and with a long extracranial course in its meningeal sheath; (ii) there is a high association between IIH and obesity, a condition related to paravascular inflammation and lymphatic disturbance, and (iii) glymphatic dysfunction has been related to the deposition of β-amyloid in Alzheimer’s disease. We conclude that the concept of glymphatic dysfunction provides a new perspective for understanding the pathophysiology of IIH; it may likewise entice the development of novel therapeutic approaches aiming at enhancing the flow between the CSF, the glymphatic system, and the dural sinuses. PMID:29387036
Gut dysfunction in Parkinson's disease
Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar
2016-01-01
Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087
van Riel, Debby; Verdijk, Rob; Kuiken, Thijs
2015-01-01
The olfactory nerve consists mainly of olfactory receptor neurons and directly connects the nasal cavity with the central nervous system (CNS). Each olfactory receptor neuron projects a dendrite into the nasal cavity on the apical side, and on the basal side extends its axon through the cribriform plate into the olfactory bulb of the brain. Viruses that can use the olfactory nerve as a shortcut into the CNS include influenza A virus, herpesviruses, poliovirus, paramyxoviruses, vesicular stomatitis virus, rabies virus, parainfluenza virus, adenoviruses, Japanese encephalitis virus, West Nile virus, chikungunya virus, La Crosse virus, mouse hepatitis virus, and bunyaviruses. However, mechanisms of transport via the olfactory nerve and subsequent spread through the CNS are poorly understood. Proposed mechanisms are either infection of olfactory receptor neurons themselves or diffusion through channels formed by olfactory ensheathing cells. Subsequent virus spread through the CNS could occur by multiple mechanisms, including trans-synaptic transport and microfusion. Viral infection of the CNS can lead to damage from infection of nerve cells per se, from the immune response, or from a combination of both. Clinical consequences range from nervous dysfunction in the absence of histopathological changes to severe meningoencephalitis and neurodegenerative disease. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
The New Neurobiology of Autism
Minshew, Nancy J.; Williams, Diane L.
2008-01-01
This review covers a fraction of the new research developments in autism but establishes the basic elements of the new neurobiologic understanding of autism. Autism is a polygenetic developmental neurobiologic disorder with multiorgan system involvement, though it predominantly involves central nervous system dysfunction. The evidence supports autism as a disorder of the association cortex, both its neurons and their projections. In particular, it is a disorder of connectivity, which appears, from current evidence, to primarily involve intrahemispheric connectivity. The focus of connectivity studies thus far has been on white matter, but alterations in functional magnetic resonance imaging activation suggest that intracortical connectivity is also likely to be disturbed. Furthermore, the disorder has a broad impact on cognitive and neurologic functioning. Deficits in high-functioning individuals occur in processing that places high demands on integration of information and coordination of multiple neural systems. Intact or enhanced abilities share a dependence on low information-processing demands and local neural connections. This multidomain model with shared characteristics predicts an underlying pathophysiologic mechanism that impacts the brain broadly, according to a common neurobiologic principle. The multiorgan system involvement and diversity of central nervous system findings suggest an epigenetic mechanism. PMID:17620483
Zhu, Chun-Min; Ma, Ye; Xie, Lei; Huang, Jin-Zhuang; Sun, Zong-Bo; Duan, Shou-Xing; Lin, Zhi-Rong; Yin, Jing-Jing; Le, Hong-Bo; Sun, Dan-Miao; Xu, Wen-Can; Ma, Shu-Hua
2017-02-01
Using ethology and functional magnetic resonance imaging (fMRI) to explore mild cognitive dysfunction and spatial working memory (WM) impairment in patients with systemic lupus erythematosus (SLE) without overt neuropsychiatric symptoms (non-NPSLE) and to study whether any clinical biomarkers could serve as predictors of brain dysfunction in this disease. Eighteen non-NPSLE patients and 18 matched subjects were all tested using the Montreal cognitive assessment scale test and scanned using blood-oxygen-level dependent fMRI while performing the n-back task to investigate the activation intensity of some cognition-related areas. Ethology results showed that non-NPSLE patients had mild cognitive dysfunction and memory dysfunction (p < 0.05). The fMRI scan confirmed a neural network consisting of bilateral dorsolateral prefrontal cortex (DLPFC), premotor area, parietal lobe, and supplementary motor area (SMA)/anterior cingulate cortex (ACC) that was activated during the n-back task, with right hemisphere dominance. However, only the right SMA/ACC showed a load effect in the non-NPSLE group; the activation intensity of most WM-related brain areas for the non-NPSLE group was lower than for the control group under 3 memory loads. Further, we found that the activation intensity of some cognition-related areas, including the bilateral caudate nucleus/insula and hippocampus/parahippocampal gyrus were lower than the control group under the memory loads. An inverse correlation existed between individual activation intensity and disease duration. Non-NPSLE-related brain damage with right DLPFC-posterior parietal lobe and parahippocampal gyrus default network causes impairment of spatial WM and mild cognitive dysfunction. Patients with longer disease duration would be expected to exhibit increased central nervous system damage.
An integrative view of microbiome-host interactions in inflammatory bowel diseases
Wlodarska, Marta; Kostic, Aleksandar D.; Xavier, Ramnik J.
2015-01-01
Summary The intestinal microbiota, which is composed of bacteria, viruses, and micro-eukaryotes, acts as an accessory organ system with distinct functions along the intestinal tract that are critical for health. This review focuses on how the microbiota drives intestinal disease through alterations in microbial community architecture, disruption of the mucosal barrier, modulation of innate and adaptive immunity, and dysfunction of the enteric nervous system. Inflammatory bowel disease is used as a model system to understand these microbial-driven pathologies, but the knowledge gained in this space is extended to less well studied intestinal diseases that may also have an important microbial component, including environmental enteropathy and chronic colitis-associated colorectal cancer. PMID:25974300
Addison's Disease: A Diagnostic Dilemma.
Afroz, S; Bain, S
2017-07-01
Adrenal insufficiency is a rare disease, but is life threatening when overlooked. Addison's disease may be an acquired form of adrenal insufficiency due to the destruction or dysfunction of the adrenal cortex. It affects both glucocorticoid and mineralocorticoid function. Main presenting symptoms of Addison's disease such as fatigue, anorexia, vomiting and convulsion often mimics central nervous system (CNS) infections. We describe a case of Addison's disease who was initially misdiagnosed as a case of meningo-encephalitis subsequently renal tubular acidosis and finally Addison's disease. Addison's disease can remain unrecognized until acute crisis and sometimes it may be misdiagnosed.
Wu, Luling; Wang, Yang; James, Tony D; Jia, Nengqin; Huang, Chusen
2018-05-29
Heat stroke is a lethal condition which can cause dysfunction in the central nervous system, multi-organ damage and even death. However, there is still limited knowledge of the detailed mechanism about the roles of lysosomes in heat stroke due to lack of effective tools. Herein, we introduce our previously developed hemicyanine with a large D-π-A structure as the key fluorophore to develop a new fluorescent probe (CPY) for ratiometric mapping of lysosomal pH changes in live cells under a heat shock stimulus.
Skvortsov, I A; Khavkhun, L A; Ustinova, E V; I'lin, L B
1989-01-01
In 121 children with perinatal CNS damage a combined therapy was performed including, besides routine drug treatment, imitation stimulation of age-matched posture-++-tonic attitudes and motor skills, metameric reflexotherapy aimed at the CNS region lesioned, magnetotherapy, electric laser puncture targeted at correction of dysfunctioning brain structures. Treatment efficiency was controlled by the brain "development profile" derived from formalized neurological and neuropsychological investigations, and electroneuromyography. The efficiency of the therapy was considerably decreased by the 3rd semester of life.
[Diagnosis and treatment of peripheral neuropathy induced by ANCA-associated vasculitis].
Hattori, Naoki
2014-07-01
ANCA-associated vasculitis is induced by necrotizing angiitis of small vessels supplying the peripheral nervous system. Ischemic processes induce neuronal damage and axonal degeneration in the peripheral nerve. Motor dysfunction as well as sensory disturbance and allodynia caused by neuropathic symptoms may influence an individual's activities of daily living and quality of life. Notably, the peripheral nerve is predominantly affected in ANCA-associated vasculitis. We suggest that early diagnosis and appropriate treatment are important to improve survival in and functional prognosis of ANCA-associated vasculitis.
Polarization of microglia and its role in bacterial sepsis.
Michels, Monique; Sonai, Beatriz; Dal-Pizzol, Felipe
2017-02-15
Microglial polarization in response to brain inflammatory conditions is a crescent field in neuroscience. However, the effect of systemic inflammation, and specifically sepsis, is a relatively unexplored field that has great interest and relevance. Sepsis has been associated with both early and late harmful events of the central nervous system, suggesting that there is a close link between sepsis and neuroinflammation. During sepsis evolution it is supposed that microglial could exert both neurotoxic and repairing effects depending on the specific microglial phenotype assumed. In this context, here it was reviewed the role of microglial polarization during sepsis-associated brain dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.
Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Randall; Lanni, Lydia; Jen, K.-L. Catherine
In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure maymore » be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.« less
An update on cardiovascular effects of obstructive sleep apnoea syndrome.
Uyar, Meral; Davutoglu, Vedat
2016-09-01
Obstructive sleep apnoea syndrome is an important health problem which may cause or worsen systemic diseases. Chronic intermittent hypoxia during repetitive airflow cessations may cause endothelial dysfunction. Sleep apnoea is also shown to be associated with hypercoagulability which may be due to decreased nitric oxide levels and impaired vasodilatation. Endothelial dysfunction, increased systemic inflammation, sympathetic nervous system activation, increased oxidative stress and dysglycaemia may all contribute to cardiovascular processes such as hypertension, arrhythmia, stroke, heart failure and coronary artery disease in patients with obstructive sleep apnoea. Treatment approaches in patients with obstructive sleep apnoea mainly focus on maintaining upper airway patency either with positive airway pressure devices or upper airway appliances. Strategies involving positive airway pressure therapy are associated with decreased morbidity and mortality. Obstructive sleep apnoea should be suspected as an underlying mechanism in patients with cardiovascular disease and warrants appropriate treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Tsutsui-Kimura, Iku; Takiue, Hiroyuki; Yoshida, Keitaro; Xu, Ming; Yano, Ryutaro; Ohta, Hiroyuki; Nishida, Hiroshi; Bouchekioua, Youcef; Okano, Hideyuki; Uchigashima, Motokazu; Watanabe, Masahiko; Takata, Norio; Drew, Michael R; Sano, Hiromi; Mimura, Masaru; Tanaka, Kenji F
2017-02-01
Impaired motivation is present in a variety of neurological disorders, suggesting that decreased motivation is caused by broad dysfunction of the nervous system across a variety of circuits. Based on evidence that impaired motivation is a major symptom in the early stages of Huntington's disease, when dopamine receptor type 2-expressing striatal medium spiny neurons (D2-MSNs) are particularly affected, we hypothesize that degeneration of these neurons would be a key node regulating motivational status. Using a progressive, time-controllable, diphtheria toxin-mediated cell ablation/dysfunction technique, we find that loss-of-function of D2-MSNs within ventrolateral striatum (VLS) is sufficient to reduce goal-directed behaviours without impairing reward preference or spontaneous behaviour. Moreover, optogenetic inhibition and ablation of VLS D2-MSNs causes, respectively, transient and chronic reductions of goal-directed behaviours. Our data demonstrate that the circuitry containing VLS D2-MSNs control motivated behaviours and that VLS D2-MSN loss-of-function is a possible cause of motivation deficits in neurodegenerative diseases.
Yang, Mingjun; Wang, Bo; Gao, Jufang; Zhang, Yang; Xu, Wenping; Tao, Liming
2017-02-01
Spinosad, a reduced-risk insecticide, acts on the nicotinic acetylcholine receptors and the gamma-aminobutyric acid receptor in the nervous system of target insects. However, its mechanism of action in non-neural insect cells is unclear. This study aimed to evaluate mitochondrial functional changes associated with spinosad in Spodoptera frugiperda (Sf9) insect cells. Our results indicate that in Sf9 cells, spinosad induces programmed cell death and mitochondrial dysfunction through enhanced reactive oxygen species production, mitochondrial permeability transition pore (mPTP) opening, and mitochondrial membrane potential collapse, eventually leading to cytochrome C release and apoptosis. The cytochrome C release induced by spinosad treatment was partly inhibited by the mPTP inhibitors cyclosporin A and bongkrekic acid. Subsequently, we found that spinosad downregulated Bcl-2 expression and upregulated p53 and Bax expressions, activated caspase-9 and caspase-3, and triggered PARP cleavage in Sf9 cells. These findings suggested that spinosad-induced programmed cell death was modulated by mitochondrial dysfunction and cytochrome C release. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anxiety, depression and autonomic nervous system dysfunction in hypertension.
Bajkó, Zoltán; Szekeres, Csilla-Cecília; Kovács, Katalin Réka; Csapó, Krisztina; Molnár, Sándor; Soltész, Pál; Nyitrai, Erika; Magyar, Mária Tünde; Oláh, László; Bereczki, Dániel; Csiba, László
2012-06-15
This study examined the relationship between autonomic nervous system dysfunction, anxiety and depression in untreated hypertension. 86 newly diagnosed hypertensive patients and 98 healthy volunteers were included in the study. The psychological parameters were assessed with Spielberger State-Trait Anxiety Inventory and Beck Depression Inventory by a skilled psychologist. Autonomic parameters were examined during tilt table examination (10min lying position, 10min passive tilt). Heart rate variability (HRV) was calculated by autoregressive methods. Baroreflex sensitivity (BRS) was calculated by non-invasive sequence method from the recorded beat to beat blood pressure values and RR intervals. Significantly higher state (42.6±9.3 vs. 39.6±10.7 p=0.05) and trait (40.1±8.9 vs. 35.1±8.6, p<0.0001) anxiety scores were found in the hypertension group. There was no statistically significant difference in the depression level. LF-RRI (Low Frequency-RR interval) of HRV in passive tilt (377.3±430.6 vs. 494.1±547, p=0.049) and mean BRS slope (11.4±5.5 vs. 13.2±6.4, p=0.07) in lying position were lower in hypertensives. Trait anxiety score correlates significantly with sympatho/vagal balance (LF/HF-RRI) in passive tilt position (Spearman R=-0.286, p=0.01). Anxiety could play a more important role than depression in the development of hypertension. Altered autonomic control of the heart could be one of the pathophysiological links between hypertension and psychological factors. Copyright © 2012 Elsevier B.V. All rights reserved.
Monozygotic twins discordant for ROHHAD phenotype.
Patwari, Pallavi P; Rand, Casey M; Berry-Kravis, Elizabeth M; Ize-Ludlow, Diego; Weese-Mayer, Debra E
2011-09-01
Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) falls within a group of pediatric disorders with both respiratory control and autonomic nervous system dysregulation. Children with ROHHAD typically present after 1.5 years of age with rapid weight gain as the initial sign. Subsequently, they develop alveolar hypoventilation, autonomic nervous system dysregulation, and, if untreated, cardiorespiratory arrest. To our knowledge, this is the first report of discordant presentation of ROHHAD in monozygotic twins. Twin girls, born at term, had concordant growth and development until 8 years of age. From 8 to 12 years of age, the affected twin developed features characteristic of ROHHAD including obesity, alveolar hypoventilation, scoliosis, hypothalamic dysfunction (central diabetes insipidus, hypothyroidism, premature pubarche, and growth hormone deficiency), right paraspinal/thoracic ganglioneuroblastoma, seizures, and autonomic dysregulation including altered pain perception, large and sluggishly reactive pupils, hypothermia, and profound bradycardia that required a cardiac pacemaker. Results of genetic testing for PHOX2B (congenital central hypoventilation syndrome disease-defining gene) mutations were negative. With early recognition and conservative management, the affected twin had excellent neurocognitive outcome that matched that of the unaffected twin. The unaffected twin demonstrated rapid weight gain later in age but not development of signs/symptoms consistent with ROHHAD. This discordant twin pair demonstrates key features of ROHHAD including the importance of early recognition (especially hypoventilation), complexity of signs/symptoms and clinical course, and importance of initiating comprehensive, multispecialty care. These cases confound the hypothesis of a monogenic etiology for ROHHAD and indicate alternative etiologies including autoimmune or epigenetic phenomenon or a combination of genetic predisposition and acquired precipitant.
Caio, Giacomo; Giorgio, Roberto De; Venturi, Alessandro; Giancola, Fiorella; Latorre, Rocco; Boschetti, Elisa; Serra, Mauro; Ruggeri, Eugenio; Volta, Umberto
2015-01-01
Aim: To assess anti-neuronal antibodies (NA) prevalence and their correlation with neurological disorders and bowel habits in celiac disease (CD) patients. Background: Neurological manifestations are estimated to occur in about 10% of celiac disease patients and NA to central nervous system (CNS) and enteric nervous system (ENS) are found in a significant proportion of them. Little is known about the clinical and immunological features in CD patients with neurological manifestations. Patients and methods: NA to CNS and ENS were investigated in 106 CD patients and in 60 controls with autoimmune disorders by indirect immunofluorescence on rat / primate cerebellar cortex and intestinal (small and large bowel) sections. Results: IgG NA to CNS (titer 1:50 - 1:400) were positive in 23 celiacs (21%), being more frequently detected in those with neurological disorders that in those without neurological dysfunction (49% vs. 8%, P< 0.0001). Of the 26 celiacs (24%) with IgG NA to ENS, 11 out of 12 with an antibody titer > 1:200 had severe constipation. Only one patient with cerebellar ataxia and intestinal sub-occlusion was positive for NA to CNS and ENS. NA to CNS and ENS were found in 7% and 5% of controls, respectively. Conclusion: In CD the positivity of NA to CNS can be regarded as a marker of neurological manifestations. High titer NA to ENS are associated with severe constipation. The demonstration of NA to CNS and ENS suggests an immune-mediated pathogenesis leading to central neural impairment as well as gut dysfunction (hence constipation), respectively. PMID:25926940
The assessment of neural injury following open heart surgery by physiological tremor analysis.
Németh, Adám; Hejjel, László; Ajtay, Zénó; Kellényi, Lóránd; Solymos, Andor; Bártfai, Imre; Kovács, Norbert; Lenkey, Zsófia; Cziráki, Attila; Szabados, Sándor
2013-02-21
The appearance of post-operative cognitive dysfunction as a result of open heart surgery has been proven by several studies. Focal and/or sporadic neuron damage emerging in the central nervous system may not only appear as cognitive dysfunction, but might strongly influence features of physiological tremor. We investigated 110 patients (age: 34-73 years; 76 male, 34 female; 51 coronary artery bypass grafting (CABG), 25 valve replacement, 25 combined open heart surgery, 9 off-pump CABG) before surgery and after open-heart surgery on the 3(rd) to 5(th) post-operative day. The assessment of the physiological tremor analysis was performed with our newly developed equipment based on the Analog Devices ADXL 320 JPC integrated accelerometer chip. Recordings were stored on a PC and spectral analysis was performed by fast Fourier transformation (FFT). We compared power integrals in the 1-4 Hz, 4-8 Hz and 8-12 Hz frequency ranges and these were statistically assessed by the Wilcoxon rank correlation test. We found significant changes in the power spectrum of physiological tremor. The spectrum in the 8-12 Hz range (neuronal oscillation) decreased and a shift was recognised to the lower spectrum (p < 0.01). The magnitude of the shift was not significantly higher for females than for males (p < 0.157). We found no significant difference between the shift and the cross-clamp or perfusion time (p < 0.6450). The assessment of physiological tremor by means of our novel, feasible method may provide a deeper insight into the mechanism of central nervous system damage associated with open heart surgery.
Walker, Lynn S; Stone, Amanda L; Smith, Craig A; Bruehl, Stephen; Garber, Judy; Puzanovova, Martina; Diedrich, André
2017-08-01
Considerable research links chronic pain to autonomic nervous system (ANS) dysfunction, specifically low heart rate variability (HRV) mediated by reduced parasympathetic activity. However, little is known about factors that influence ANS function in chronic pain. The ANS is the primary pathway for brain-gut communication, making it of particular interest in gastrointestinal disorders, such as irritable bowel syndrome, characterized by functional abdominal pain (FAP). We evaluated the relation of sex, pain severity, and psychological stress to ANS function in adolescents/young adults from a database of pediatric FAP and control participants enrolled 8 years earlier in a prospective study of pain. At follow-up in adolescence/young adulthood (Mean age = 19.46, SD = 3.48), we classified participants as Pain-Remit (n = 130), Pain-Persist (n = 96), and pain-free controls (n = 123). We recorded electrocardiogram data at rest and during laboratory stressors. Results demonstrated significantly lower HRV in Pain-Persist females compared with Pain-Remit females, female controls, and all males regardless of pain category. Spectral analysis of electrocardiogram showed that Pain-Persist females had reduced power in the high frequency domain of cardiac activity, ie, reduced parasympathetic "braking" of sympathetic activity, both at rest and during stress. Pain-Remit females exhibited levels of autonomic imbalance intermediate between those of females with persistent FAP and all other participants. Parasympathetically mediated low HRV in young women with persistent FAP may reflect a peripheral mechanism (eg, gut dysfunction) or a central nervous system mechanism (eg, pain amplification or poor emotion self-regulation) involving prolonged sympathetic activation.
Dietary enrichment counteracts age-associated cognitive dysfunction in canines.
Milgram, N W; Zicker, S C; Head, E; Muggenburg, B A; Murphey, H; Ikeda-Douglas, C J; Cotman, C W
2002-01-01
Advanced age is accompanied by cognitive decline indicative of central nervous system dysfunction. One possibly critical causal factor is oxidative stress. Accordingly, we studied the effects of dietary antioxidants and age in a canine model of aging that parallels the key features of cognitive decline and neuropathology in humans. Old and young animals were placed on either a standard control food, or a food enriched with a broad spectrum of antioxidants and mitochondrial enzymatic cofactors. After 6 months of treatment, the animals were tested on four increasingly difficult oddity discrimination learning problems. The old animals learned more slowly than the young, making significantly more errors. However, this age-associated decline was reduced in the animals fed the enriched food, particularly on the more difficult tasks. These results indicate that maintenance on foods fortified with complex mixtures of antioxidants can partially counteract the deleterious effects of aging on cognition. Copyright 2002 Elsevier Science Inc.
Microglia: new roles for the synaptic stripper.
Kettenmann, Helmut; Kirchhoff, Frank; Verkhratsky, Alexei
2013-01-09
Any pathologic event in the brain leads to the activation of microglia, the immunocompetent cells of the central nervous system. In recent decades diverse molecular pathways have been identified by which microglial activation is controlled and by which the activated microglia affects neurons. In the normal brain microglia were considered "resting," but it has recently become evident that they constantly scan the brain environment and contact synapses. Activated microglia can remove damaged cells as well as dysfunctional synapses, a process termed "synaptic stripping." Here we summarize evidence that molecular pathways characterized in pathology are also utilized by microglia in the normal and developing brain to influence synaptic development and connectivity, and therefore should become targets of future research. Microglial dysfunction results in behavioral deficits, indicating that microglia are essential for proper brain function. This defines a new role for microglia beyond being a mere pathologic sensor. Copyright © 2013 Elsevier Inc. All rights reserved.
Lassnig, Elisabeth; Dinkhauser, Patrick; Maurer, Edwin; Eber, Bernd
2014-08-01
Heat stroke is a life-threatening condition due to an acute thermoregulatory failure during exposure to high environmental temperatures. We report a series of four cases (three exertional, one classic heat stroke) during the heat wave of July 2013 in Austria. All of them presented with a core temperature > 41 °C, central nervous dysfunction, acute respiratory and renal failure, disseminated intravascular coagulation, rhabdomyolysis, and severe electrocardiographic changes, two cases even mimicking ST-elevation myocardial infarction. The patients were cooled to normal temperature with the "Arctic sun" external cooling system within hours. Electrocardiographic changes resolved quickly. All patients primarily recovered from multiple organ dysfunction and could be discharged from intensive care unit. Unfortunately, the two elder patients died 1 week and 5 weeks later because of late complications.
Mafrica, Federica; Fodale, Vincenzo
2008-05-01
Hypothyroidism and hyperthyroidism are commonly present conditions in adults, leading to neurological symptoms, affecting the central and peripheral nervous system, and to neurocognitive impairment. Several studies investigated a possible association between Alzheimer's disease (AD) and thyroid dysfunctions. Increasing evidence supports an extensive interrelationship between thyroid hormones and the cholinergic system, which is selectively and early affected in AD. Moreover, thyroid hormones negatively regulate expression of the amyloid-beta protein precursor (AbetaPP), which plays a key role in the development of AD. A condition, the so called euthyroid sick syndrome (ESS), characterized by reduced serum T_{3} and T_{4} concentrations without increased serum thyroid stimulation hormone secretion, occurs within hours after major surgery. After surgery, elderly patients often exhibit a transient, reversible state of cognitive alterations. Delirium occurs in 10-26% of general medical patients over 65, and it is associated with a significant increase in morbidity and mortality. Modifications in thyroid hormone functioning may take place as a consequence of psycho-physical stress caused by surgery, and probably as a consequence of reduced conversion of T4 into T3 by the liver engaged in metabolizing anesthetic drugs. Therefore, modifications of thyroid hormones post-surgery, might play a role in the pathogenesis of postoperative cognitive dysfunction.
Neural Mechanisms Underlying Lower Urinary Tract Dysfunction
Ogawa, Teruyuki; Miyazato, Minoru; Kitta, Takeya; Furuta, Akira; Chancellor, Michael B.; Tyagi, Pradeep
2014-01-01
This article summarizes anatomical, neurophysiological, and pharmacological studies in humans and animals to provide insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract and alterations in these mechanisms in lower urinary tract dysfunction. The functions of the lower urinary tract, to store and periodically release urine, are dependent on the activity of smooth and striated muscles in the bladder, urethra, and external urethral sphincter. During urine storage, the outlet is closed and the bladder smooth muscle is quiescent. When bladder volume reaches the micturition threshold, activation of a micturition center in the dorsolateral pons (the pontine micturition center) induces a bladder contraction and a reciprocal relaxation of the urethra, leading to bladder emptying. During voiding, sacral parasympathetic (pelvic) nerves provide an excitatory input (cholinergic and purinergic) to the bladder and inhibitory input (nitrergic) to the urethra. These peripheral systems are integrated by excitatory and inhibitory regulation at the levels of the spinal cord and the brain. Therefore, injury or diseases of the nervous system, as well as disorders of the peripheral organs, can produce lower urinary tract dysfunction, leading to lower urinary tract symptoms, including both storage and voiding symptoms, and pelvic pain. Neuroplasticity underlying pathological changes in lower urinary tract function is discussed. PMID:24578802
Milioni, Ana Luiza V; Nagy, Balázs V; Moura, Ana Laura A; Zachi, Elaine C; Barboni, Mirella T S; Ventura, Dora F
2017-03-01
Mercury vapor is highly toxic to the human body. The present study aimed to investigate the occurrence of neuropsychological dysfunction in former workers of fluorescent lamps factories that were exposed to mercury vapor (years after cessation of exposure), diagnosed with chronic mercurialism, and to investigate the effects of such exposure on the Autonomic Nervous System (ANS) using the non-invasive method of dynamic pupillometry. The exposed group and a control group matched by age and educational level were evaluated by the Beck Depression Inventory and with the computerized neuropsychological battery CANTABeclipse - subtests of working memory (Spatial Span), spatial memory (Spatial Recognition Memory), visual memory (Pattern Recognition Memory) and action planning (Stockings of Cambridge). The ANS was assessed by dynamic pupillometry, which provides information on the operation on both the sympathetic and parasympathetic functions. Depression scores were significantly higher among the former workers when compared with the control group. The exposed group also showed significantly worse performance in most of the cognitive functions assessed. In the dynamic pupillometry test, former workers showed significantly lower response than the control group in the sympathetic response parameter (time of 75% of pupillary recovery at 10cd/m 2 luminance). Our study found indications that are suggestive of cognitive deficits and losses in sympathetic autonomic activity among patients occupationally exposed to mercury vapor. Copyright © 2016 Elsevier B.V. All rights reserved.
Pastorelli, F; Di Silvestre, M; Vommaro, F; Maredi, E; Morigi, A; Bacchin, M R; Bonarelli, S; Plasmati, R; Michelucci, R; Greggi, T
2015-11-01
Combined intraoperative monitoring (IOM) of transcranial electric motor-evoked potentials (tce-MEPs) and somatosensory-evoked potentials (SSEPs) is safe and effective for spinal cord monitoring during scoliosis surgery. However, the literature data regarding the reliability of spinal cord monitoring in patients with neuromuscular scoliosis are conflicting and need to be confirmed. We reviewed IOM records of 40 consecutive patients with neuromuscular scoliosis related to central nervous system (CNS) (29 pts) or peripheral nervous system (PNS) (11 patients) diseases, who underwent posterior fusion with instrumentation surgery for spinal deformity. Multimodalitary IOM with SSEPs and tce-MEPs was performed. Spinal cord monitoring using at least one modality was attempted in 38/40 (95 %) patients. No false-negative results were present in either group, but a relatively high incidence of false-positive cases (4/29, 13.8 %) was noted in the CNS group. Two patients in the CNS group and one patient in the PNS group presented transient postoperative motor deficits (true positive), related to surgical manoeuvres in two cases and to malposition in the other one. Multimodalitary IOM is safe and effective to detect impending spinal cord and peripheral nerves dysfunction in neuromuscular scoliosis surgery. However, the interpretation of neurophysiological data may be challenging in such patients, and the rate of false-positive results is high when pre-operatory motor deficits are severe.
Autoimmune Neurology of the Central Nervous System.
Tobin, W Oliver; Pittock, Sean J
2017-06-01
This article reviews the rapidly evolving spectrum of autoimmune neurologic disorders with a focus on those that involve the central nervous system, providing an understanding of how to approach the diagnostic workup of patients presenting with central nervous system symptoms or signs that could be immune mediated, either paraneoplastic or idiopathic, to guide therapeutic decision making. The past decade has seen a dramatic increase in the discovery of novel neural antibodies and their targets. Many commercial laboratories can now test for these antibodies, which serve as diagnostic markers of diverse neurologic disorders that occur on an autoimmune basis. Some are highly specific for certain cancer types, and the neural antibody profiles may help direct the physician's cancer search. The diagnosis of an autoimmune neurologic disorder is aided by the detection of an objective neurologic deficit (usually subacute in onset with a fluctuating course), the presence of a neural autoantibody, and improvement in the neurologic status after a course of immunotherapy. Neural autoantibodies should raise concern for a paraneoplastic etiology and may inform a targeted oncologic evaluation (eg, N-methyl-D-aspartate [NMDA] receptor antibodies are associated with teratoma, antineuronal nuclear antibody type 1 [ANNA-1, or anti-Hu] are associated with small cell lung cancer). MRI, EEG, functional imaging, videotaped evaluations, and neuropsychological evaluations provide objective evidence of neurologic dysfunction by which the success of immunotherapy may be measured. Most treatment information emanates from retrospective case series and expert opinion. Nonetheless, early intervention may allow reversal of deficits in many patients and prevention of future disability.
Chen, Yeong-Chang; Wei, Tsui-Shan; Sun, Ding-Ping; Wang, Jhi-Joung; Yeh, Ching-Hua
2015-01-01
Excessive production of cytokines by microglia may cause cognitive dysfunction and long-lasting behavioral changes. Activating the peripheral innate immune system stimulates cytokine secretion in the central nervous system, which modulates cognitive function. Histone deacetylases (HDACs) modulate cytokine synthesis and release. Trichostatin A (TSA), an HDAC inhibitor, is documented to be anti-inflammatory and neuroprotective. We investigated whether TSA reduces lipopolysaccharide- (LPS-) induced neuroinflammation and cognitive dysfunction. ICR mice were first intraperitoneally (i.p.) injected with vehicle or TSA (0.3 mg/kg). One hour later, they were injected (i.p.) with saline or Escherichia coli LPS (1 mg/kg). We analyzed the food and water intake, body weight loss, and sucrose preference of the injected mice and then determined the microglia activation and inflammatory cytokine expression in the brains of LPS-treated mice and LPS-treated BV-2 microglial cells. In the TSA-pretreated mice, microglial activation was lower, anhedonia did not occur, and LPS-induced cognitive dysfunction (anorexia, weight loss, and social withdrawal) was attenuated. Moreover, mRNA expression of HDAC2, HDAC5, indoleamine 2,3-dioxygenase (IDO), TNF-α, MCP-1, and IL-1β in the brain of LPS-challenged mice and in the LPS-treated BV-2 microglial cells was lower. TSA diminished LPS-induced inflammatory responses in the mouse brain and modulated the cytokine-associated changes in cognitive function, which might be specifically related to reducing HDAC2 and HDAC5 expression. PMID:26273133
Ariza, Lorena; Giménez-Llort, Lydia; Cubizolle, Aurélie; Pagès, Gemma; García-Lareu, Belén; Serratrice, Nicolas; Cots, Dan; Thwaite, Rosemary; Chillón, Miguel; Kremer, Eric J.
2014-01-01
Abstract Canine adenovirus type 2 vectors (CAV-2) are promising tools to treat global central nervous system (CNS) disorders because of their preferential transduction of neurons and efficient retrograde axonal transport. Here we tested the potential of a helper-dependent CAV-2 vector expressing β-glucuronidase (HD-RIGIE) in a mouse model of mucopolysaccharidosis type VII (MPS VII), a lysosomal storage disease caused by deficiency in β-glucuronidase activity. MPS VII leads to glycosaminoglycan accumulation into enlarged vesicles in peripheral tissues and the CNS, resulting in peripheral and neuronal dysfunction. After intracranial administration of HD-RIGIE, we show long-term expression of β-glucuronidase that led to correction of neuropathology around the injection site and in distal areas. This phenotypic correction correlated with a decrease in secondary-elevated lysosomal enzyme activity and glycosaminoglycan levels, consistent with global biochemical correction. Moreover, HD-RIGIE-treated mice show significant cognitive improvement. Thus, injections of HD-CAV-2 vectors in the brain allow a global and sustained expression and may have implications for brain therapy in patients with lysosomal storage disease. PMID:24299455
Endocrinology and physiology of pseudocyesis
2013-01-01
This literature review on pseudocyesis or false pregnancy aims to find epidemiological, psychiatric/psychologic, gynecological and endocrine traits associated with this condition in order to propose neuroendocrine/endocrine mechanisms leading to the emergence of pseudocyetic traits. Ten women from 5 selected studies were analyzed after applying stringent criteria to discriminate between cases of true pseudocyesis (pseudocyesis vera) versus delusional, simulated or erroneous pseudocyesis. The analysis of the reviewed studies evidenced that pseudocyesis shares many endocrine traits with both polycystic ovarian syndrome and major depressive disorder, although the endocrine traits are more akin to polycystic ovarian syndrome than to major depressive disorder. Data support the notion that pseudocyetic women may have increased sympathetic nervous system activity, dysfunction of central nervous system catecholaminergic pathways and decreased steroid feedback inhibition of gonadotropin-releasing hormone. Although other neuroendocrine/endocrine pathways may be involved, the neuroendocrine/endocrine mechanisms proposed in this review may lead to the development of pseudocyetic traits including hypomenorrhea or amenorrhea, galactorrhea, diurnal and/or nocturnal hyperprolactinemia, abdominal distension and apparent fetal movements and labor pains at the expected date of delivery. PMID:23672289
Neocortical Transplants in the Mammalian Brain Lack a Blood-Brain Barrier to Macromolecules
NASA Astrophysics Data System (ADS)
Rosenstein, Jeffrey M.
1987-02-01
In order to determine whether the blood-brain barrier was present in transplants of central nervous tissue, fetal neocortex, which already possesses blood-brain and blood-cerebrospinal fluid barriers to protein, was grafted into the undamaged fourth ventricle or directly into the neocortex of recipient rats. Horseradish peroxidase or a conjugated human immunoglobulin G-peroxidase molecule was systemically administered into the host. These proteins were detected within the cortical transplants within 2 minutes regardless of the age of the donor or postoperative time. At later times these compounds, which normally do not cross the blood-brain barrier, inundated the grafts and adjacent host brain and also entered the cerebrospinal fluid. Endogenous serum albumin detected immunocytochemically in untreated hosts had a comparable although less extensive distribution. Thus, transplants of fetal central nervous tissue have permanent barrier dysfunction, probably due to microvascular changes, and are not integrated physiologically within the host. Blood-borne compounds, either systemically administered or naturally occurring, which should never contact normal brain tissue, have direct access to these transplants and might affect neuronal function.
Huang, Xuefei; Yang, Jing; Yang, Sijin; Cao, Shousong; Qin, Dalian; Zhou, Ya; Li, Xiaoli; Ye, Yun; Wu, Jianming
2017-11-24
5-hydroxytryptamine (5-HT, serotonin) is an important neurotransmitter in the modulation of the cognitive, behavioral and psychological functions in animals and humans. Among the fourteen subtypes of 5-HT receptor, 5-HT1A receptor has been extensively studied. Tandospirone, an azapirone derivative with strong and selective agonist effect on 5-HT1A receptor, has been used for the treatment of anxiety disorders especially generalized anxiety disorder for decades. Recently, tandospirone showed the efficacy in relieving the syndromes of social anxiety disorder and post-traumatic stress disorder as well as in potentiating the effect of antidepressants in the treatment of depression in both preclinical and clinical studies. More impressively, the beneficial effect of tandospirone has been revealed on improvement of motor dysfunction of Parkinson's disease and cognitive deficits of schizophrenia either in monotherapy or in combination with other drugs. This review discusses the superiority of tandospirone in the treatment of the disorders and associated mechanisms in central nervous system from the literature.
Mastication as a Stress-Coping Behavior
Iinuma, Mitsuo
2015-01-01
Exposure to chronic stress induces various physical and mental effects that may ultimately lead to disease. Stress-related disease has become a global health problem. Mastication (chewing) is an effective behavior for coping with stress, likely due to the alterations chewing causes in the activity of the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Mastication under stressful conditions attenuates stress-induced increases in plasma corticosterone and catecholamines, as well as the expression of stress-related substances, such as neurotrophic factors and nitric oxide. Further, chewing reduces stress-induced changes in central nervous system morphology, especially in the hippocampus and hypothalamus. In rodents, chewing or biting on wooden sticks during exposure to various stressors reduces stress-induced gastric ulcer formation and attenuates spatial cognitive dysfunction, anxiety-like behavior, and bone loss. In humans, some studies demonstrate that chewing gum during exposure to stress decreases plasma and salivary cortisol levels and reduces mental stress, although other studies report no such effect. Here, we discuss the neuronal mechanisms that underline the interactions between masticatory function and stress-coping behaviors in animals and humans. PMID:26090453
Leigh and Leigh-like syndrome in children and adults.
Finsterer, Josef
2008-10-01
Leigh syndrome (also termed subacute, necrotizing encephalopathy) is a devastating neurodegenerative disorder, characterized by almost identical brain changes, e.g., focal, bilaterally symmetric lesions, particularly in the basal ganglia, thalamus, and brainstem, but with considerable clinical and genetic heterogeneity. Clinically, Leigh syndrome is characterized by a wide variety of abnormalities, from severe neurologic problems to a near absence of abnormalities. Most frequently the central nervous system is affected, with psychomotor retardation, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure. Some patients also present with peripheral nervous system involvement, including polyneuropathy or myopathy, or non-neurologic abnormalities, e.g., diabetes, short stature, hypertrichosis, cardiomyopathy, anemia, renal failure, vomiting, or diarrhea (Leigh-like syndrome). In the majority of cases, onset is in early childhood, but in a small number of cases, adults are affected. In the majority of cases, dysfunction of the respiratory chain (particularly complexes I, II, IV, or V), of coenzyme Q, or of the pyruvate dehydrogenase complex are responsible for the disease. Associated mutations affect genes of the mitochondrial or nuclear genome. Leigh syndrome and Leigh-like syndrome are the mitochondrial disorders with the largest genetic heterogeneity.
Clinical effects of air pollution on the central nervous system; a review.
Babadjouni, Robin M; Hodis, Drew M; Radwanski, Ryan; Durazo, Ramon; Patel, Arati; Liu, Qinghai; Mack, William J
2017-09-01
The purpose of this review is to describe recent clinical and epidemiological studies examining the adverse effects of urban air pollution on the central nervous system (CNS). Air pollution and particulate matter (PM) are associated with neuroinflammation and reactive oxygen species (ROS). These processes affect multiple CNS pathways. The conceptual framework of this review focuses on adverse effects of air pollution with respect to neurocognition, white matter disease, stroke, and carotid artery disease. Both children and older individuals exposed to air pollution exhibit signs of cognitive dysfunction. However, evidence on middle-aged cohorts is lacking. White matter injury secondary to air pollution exposure is a putative mechanism for neurocognitive decline. Air pollution is associated with exacerbations of neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. Increases in stroke incidences and mortalities are seen in the setting of air pollution exposure and CNS pathology is robust. Large populations living in highly polluted environments are at risk. This review aims to outline current knowledge of air pollution exposure effects on neurological health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maternal Thyroid Dysfunction and Risk of Seizure in the Child: A Danish Nationwide Cohort Study
Laurberg, Peter; Wu, Chun Sen; Olsen, Jørn
2013-01-01
Thyroid hormones are essential for brain development, and maternal thyroid disease may affect child neurocognitive development. Some types of seizures may also depend upon early exposure of the developing central nervous system, and we hypothesized that maternal thyroid dysfunction could increase the risk of seizure in the child. In a Danish population-based study we included 1,699,693 liveborn singletons, and from the Danish National Hospital Register we obtained information on maternal diagnosis of hyper- or hypothyroidism and neonatal seizure, febrile seizure, and epilepsy in the child. Maternal diagnosis of thyroid dysfunction before or after birth of the child was registered in two percent of the singleton births. In adjusted analyses, maternal hyperthyroidism and hypothyroidism first time diagnosed after birth of the child were associated with a significant increased risk of epilepsy in the child. Moreover, hypothyroidism diagnosed after birth of the child was associated with a significant increased risk of neonatal and febrile seizures. No significant association was seen for maternal diagnosis prior to birth of the child. We speculate if some degree of maternal thyroid dysfunction was already present during the pregnancy in mothers diagnosed after birth of the child and if this untreated condition may present a neurodevelopmental risk. PMID:23984072
Maternal thyroid dysfunction and risk of seizure in the child: a Danish nationwide cohort study.
Andersen, Stine Linding; Laurberg, Peter; Wu, Chun Sen; Olsen, Jørn
2013-01-01
Thyroid hormones are essential for brain development, and maternal thyroid disease may affect child neurocognitive development. Some types of seizures may also depend upon early exposure of the developing central nervous system, and we hypothesized that maternal thyroid dysfunction could increase the risk of seizure in the child. In a Danish population-based study we included 1,699,693 liveborn singletons, and from the Danish National Hospital Register we obtained information on maternal diagnosis of hyper- or hypothyroidism and neonatal seizure, febrile seizure, and epilepsy in the child. Maternal diagnosis of thyroid dysfunction before or after birth of the child was registered in two percent of the singleton births. In adjusted analyses, maternal hyperthyroidism and hypothyroidism first time diagnosed after birth of the child were associated with a significant increased risk of epilepsy in the child. Moreover, hypothyroidism diagnosed after birth of the child was associated with a significant increased risk of neonatal and febrile seizures. No significant association was seen for maternal diagnosis prior to birth of the child. We speculate if some degree of maternal thyroid dysfunction was already present during the pregnancy in mothers diagnosed after birth of the child and if this untreated condition may present a neurodevelopmental risk.
Symptomatic arrhythmias due to syringomyelia-induced severe autonomic dysfunction.
Riedlbauchová, Lucie; Nedělka, Tomáš; Schlenker, Jakub
2014-10-01
Syringomyelia is characterized by cavity formation in the spinal cord, most often at C2-Th9 level. Clinical manifestation reflects extent and localization of the spinal cord injury. 20-year old woman was admitted for recurrent rest-related presyncopes with sudden manifestation. Paroxysms of sinus bradycardia with SA and AV blocks were repeatedly documented during symptoms. There was normal echocardiographic finding, (para) infectious etiology was not proved. Character of the ECG findings raised suspicion on neurogenic cause. Autonomic nervous system testing demonstrated abnormalities reflecting predominant sympathetic dysfunction. Suspicion on incipient myelopathy was subsequently confirmed by MRI, which discovered syringomyelia at Th5 level as the only pathology. A 52-year old man with hypotrophic quadruparesis resulting from perinatal brain injury was sent for 2-years lasting symptoms (sudden palpitation, sweating, muscle tightness, shaking) with progressive worsening. Symptoms occurred in association with sudden increase of sinus rhythm rate and blood pressure that were provoked by minimal physical activity. Presence of significant autonomic dysregulation with baroreflex hyperreactivity in orthostatic test and symptomatic postural orthostatic tachycardia with verticalization-associated hypertension were proved. MRI revealed syringomyelia at C7 and Th7 level affecting sympathetic centers at these levels. Sympathetic fibers dysfunction at C-Th spinal level may cause significant autonomic dysfunction with arrhythmic manifestation.
Wu, Bing; Zhang, Chunping; Zou, Lifang; Ma, Yucheng; Huang, Kangyu; Lv, Qiulan; Zhang, Xi; Wang, Shouyu; Xue, Yun; Yi, Zhihua; Jia, Tianyu; Zhao, Shanhong; Liu, Shuangmei; Xu, Hong; Li, Guilin; Liang, Shangdong
2016-05-01
Diabetic autonomic neuropathy includes the sympathetic ganglionic dysfunction. P2X7 receptor in superior cervical ganglia (SCG) participated in the pathological changes of cardiac dysfunction. Abnormal expression of long noncoding RNAs (lncRNAs) was reported to be involved in nervous system diseases. Our preliminary results obtained from rat lncRNA array profiling revealed that the expression of the uc.48+ was significantly increased in the rat SCG in response to diabetic sympathetic pathology. In this study, we found that lncRNAuc.48+ and P2X7 receptor in the SCG were increased in type 2 diabetic rats and were associated with the cardiac dysfunction. The uc.48+ small interference RNA (siRNA) improved the cardiac autonomic dysfunction and decreased the up-regulation P2X7 and the ratio of phosphorylated extracellular regulated protein kinases1/2 (p-ERK1/2) to ERK1/2 in SCG of type 2 diabetic rats. In conclusion, lncRNA uc.48+ siRNA improved diabetic sympathetic neuropathy in type 2 diabetic rats through regulating the expression of P2X7 and ERK signaling in SCG. Copyright © 2016 Elsevier B.V. All rights reserved.
Is there a hierarchy of survival reflexes?
Macphail, Kieran
2013-10-01
A hierarchy of survival reflexes for prioritising assessment and treatment in patients with pain of insidious onset is hypothesised. The hierarchy asserts that some systems are more vital than others and that the central nervous system (CNS) prioritises systems based on their significance to survival. The hypothesis suggests that dysfunction in more important systems will cause compensation in less important systems. This paper presents studies examining these effects for each system, arguing that each section of the hierarchy may have effects on other systems within the hierarchy. This concept is untested empirically, highly speculative and substantial research is required to validate the suggested hierarchical prioritisation by the CNS. Nonetheless, the hierarchy does provide a theoretical framework to use to exclude contributing systems in patients with pain of insidious onset. Copyright © 2013 Elsevier Ltd. All rights reserved.
R1 autonomic nervous system in acute kidney injury.
Hering, Dagmara; Winklewski, Pawel J
2017-02-01
Acute kidney injury (AKI) is a rapid loss of kidney function resulting in accumulation of end metabolic products and associated abnormalities in fluid, electrolyte and acid-base homeostasis. The pathophysiology of AKI is complex and multifactorial involving numerous vascular, tubular and inflammatory pathways. Neurohumoral activation with heightened activity of the sympathetic nervous system and renin-angiotensin-aldosterone system play a critical role in this scenario. Inflammation and/or local renal ischaemia are underlying mechanisms triggering renal tissue hypoxia and resultant renal microcirculation dysfunction; a common feature of AKI occurring in numerous clinical conditions leading to a high morbidity and mortality rate. The contribution of renal nerves to the pathogenesis of AKI has been extensively demonstrated in a series of experimental models over the past decades. While this has led to better knowledge of the pathogenesis of human AKI, therapeutic approaches to improve patient outcomes are scarce. Restoration of autonomic regulatory function with vagal nerve stimulation resulting in anti-inflammatory effects and modulation of centrally-mediated mechanisms could be of clinical relevance. Evidence from experimental studies suggests that a therapeutic splenic ultrasound approach may prevent AKI via activation of the cholinergic anti-inflammatory pathway. This review briefly summarizes renal nerve anatomy, basic insights into neural control of renal function in the physiological state and the involvement of the autonomic nervous system in the pathophysiology of AKI chiefly due to sepsis, cardiopulmonary bypass and ischaemia/reperfusion experimental model. Finally, potentially preventive experimental pre-clinical approaches for the treatment of AKI aimed at sympathetic inhibition and/or parasympathetic stimulation are presented. © 2016 John Wiley & Sons Australia, Ltd.
The Gut Microbiome and the Brain
Galland, Leo
2014-01-01
Abstract The human gut microbiome impacts human brain health in numerous ways: (1) Structural bacterial components such as lipopolysaccharides provide low-grade tonic stimulation of the innate immune system. Excessive stimulation due to bacterial dysbiosis, small intestinal bacterial overgrowth, or increased intestinal permeability may produce systemic and/or central nervous system inflammation. (2) Bacterial proteins may cross-react with human antigens to stimulate dysfunctional responses of the adaptive immune system. (3) Bacterial enzymes may produce neurotoxic metabolites such as D-lactic acid and ammonia. Even beneficial metabolites such as short-chain fatty acids may exert neurotoxicity. (4) Gut microbes can produce hormones and neurotransmitters that are identical to those produced by humans. Bacterial receptors for these hormones influence microbial growth and virulence. (5) Gut bacteria directly stimulate afferent neurons of the enteric nervous system to send signals to the brain via the vagus nerve. Through these varied mechanisms, gut microbes shape the architecture of sleep and stress reactivity of the hypothalamic-pituitary-adrenal axis. They influence memory, mood, and cognition and are clinically and therapeutically relevant to a range of disorders, including alcoholism, chronic fatigue syndrome, fibromyalgia, and restless legs syndrome. Their role in multiple sclerosis and the neurologic manifestations of celiac disease is being studied. Nutritional tools for altering the gut microbiome therapeutically include changes in diet, probiotics, and prebiotics. PMID:25402818
van Bilsen, Marc; Patel, Hitesh C; Bauersachs, Johann; Böhm, Michael; Borggrefe, Martin; Brutsaert, Dirk; Coats, Andrew J S; de Boer, Rudolf A; de Keulenaer, Gilles W; Filippatos, Gerasimos S; Floras, John; Grassi, Guido; Jankowska, Ewa A; Kornet, Lilian; Lunde, Ida G; Maack, Christoph; Mahfoud, Felix; Pollesello, Piero; Ponikowski, Piotr; Ruschitzka, Frank; Sabbah, Hani N; Schultz, Harold D; Seferovic, Petar; Slart, Riemer H J A; Taggart, Peter; Tocchetti, Carlo G; Van Laake, Linda W; Zannad, Faiez; Heymans, Stephane; Lyon, Alexander R
2017-11-01
Despite improvements in medical therapy and device-based treatment, heart failure (HF) continues to impose enormous burdens on patients and health care systems worldwide. Alterations in autonomic nervous system (ANS) activity contribute to cardiac disease progression, and the recent development of invasive techniques and electrical stimulation devices has opened new avenues for specific targeting of the sympathetic and parasympathetic branches of the ANS. The Heart Failure Association of the European Society of Cardiology recently organized an expert workshop which brought together clinicians, trialists and basic scientists to discuss the ANS as a therapeutic target in HF. The questions addressed were: (i) What are the abnormalities of ANS in HF patients? (ii) What methods are available to measure autonomic dysfunction? (iii) What therapeutic interventions are available to target the ANS in patients with HF, and what are their specific strengths and weaknesses? (iv) What have we learned from previous ANS trials? (v) How should we proceed in the future? © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.
A Potential Contribution of Chemokine Network Dysfunction to the Depressive Disorders
Ślusarczyk, Joanna; Trojan, Ewa; Chwastek, Jakub; Głombik, Katarzyna; Basta-Kaim, Agnieszka
2016-01-01
In spite of many years of research, the pathomechanism of depression has not yet been elucidated. Among many hypotheses, the immune theory has generated a substantial interest. Up till now, it has been thought that depression is accompanied by the activation of inflammatory response and increase in pro-inflammatory cytokine levels. However, recently this view has become controversial, mainly due to the family of small proteins called chemokines. They play a key role in the modulation of peripheral function of the immune system by controlling immune reactions, mediating immune cell communication, and regulating chemotaxis and cell adhesion. Last studies underline significance of chemokines in the central nervous system, not only in the neuromodulation but also in the regulation of neurodevelopmental processes, neuroendocrine functions and in mediating the action of classical neurotransmitters. Moreover, it was demonstrated that these proteins are responsible for maintaining interactions between neuronal and glial cells both in the developing and adult brain also in the course of diseases. This review outlines the role of chemokine in the central nervous system under physiological and pathological conditions and their involvement in processes underlying depressive disorder. It summarizes the most important data from experimental and clinical studies. PMID:26893168
Adams, Scott C; Schondorf, Ronald; Benoit, Julie; Kilgour, Robert D
2015-05-18
Preliminary evidence suggests cancer- and chemotherapy-related autonomic nervous system (ANS) dysfunction may contribute to the increased cardiovascular (CV) morbidity- and mortality-risks in cancer survivors. However, the reliability of these findings may have been jeopardized by inconsistent participant screening and assessment methods. Therefore, good laboratory practices must be established before the presence and nature of cancer-related autonomic dysfunction can be characterized. The purpose of this study was to assess the feasibility of conducting concurrent ANS and cardiovascular evaluations in young adult cancer patients, according to the following criteria: i) identifying methodological pitfalls and proposing good laboratory practice criteria for ANS testing in cancer, and ii) providing initial physiologic evidence of autonomic perturbations in cancer patients using the composite autonomic scoring scale (CASS). Thirteen patients (mixed diagnoses) were assessed immediately before and after 4 cycles of chemotherapy. Their results were compared to 12 sex- and age-matched controls. ANS function was assessed using standardized tests of resting CV (tilt-table, respiratory sinus arrhythmia and Valsalva maneuver) and sudomotor (quantitative sudomotor axon reflex test) reactivity. Cardiovascular reactivity during exercise was assessed using a modified Astrand-Ryhming cycle ergometer protocol. Our feasibility criteria addressed: i) recruitment potential, ii) retention rates, iii) pre-chemotherapy assessment potential, iv) test performance/tolerability, and v) identification and minimizing the influence of potentially confounding medication. T-tests and repeated measures ANOVAs were used to assess between- and within-group differences at baseline and follow-up. The overall success rate in achieving our feasibility criteria was 98.4 %. According to the CASS, there was evidence of ANS impairment at baseline in 30.8 % of patients, which persisted in 18.2 % of patients at follow-up, compared to 0 % of controls at baseline or follow-up. Results from our feasibility assessment suggest that the investigation of ANS function in young adult cancer patients undergoing chemotherapy is possible. To the best of our knowledge, this is the first study to report CASS-based evidence of ANS impairment and sudomotor dysfunction in any cancer population. Moreover, we provide evidence of cancer- and chemotherapy-related parasympathetic dysfunction - as a possible contributor to the pathogenesis of CV disease in cancer survivors.
B vitamins and the aging brain.
Selhub, Jacob; Troen, Aron; Rosenberg, Irwin H
2010-12-01
Deficiencies of the vitamins folate, B(12) , and B(6) are associated with neurological and psychological dysfunction and with congenital defects. In the elderly, cognitive impairment and incident dementia may be related to the high prevalence of inadequate B vitamin status and to elevations of plasma homocysteine. Plausible mechanisms include homocysteine neurotoxicity, vasotoxicity, and impaired S-adenosylmethionine-dependent methylation reactions vital to central nervous system function. In light of this, it is imperative to find safe ways of improving vitamin B status in the elderly without exposing some individuals to undue risk. © 2010 International Life Sciences Institute.
Dysfunction of the CaV2.1 calcium channel in cerebellar ataxias
Rajakulendran, Sanjeev; Schorge, Stephanie; Kullmann, Dimitri M
2010-01-01
Mutations in the CACNA1A gene are associated with episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). CACNA1A encodes the α-subunit of the P/Q-type calcium channel or CaV2.1, which is highly enriched in the cerebellum. It is one of the main channels linked to synaptic transmission throughout the human central nervous system. Here, we compare recent advances in the understanding of the genetic changes that underlie EA2 and SCA6 and what these new findings suggest about the mechanism of the disease. PMID:20948794
Caya, J G
2001-01-01
The anaerobic bacterium Clostridium botulinum causes disease by elaborating an extremely potent neurotoxin that inhibits release of acetylcholine at presynaptic nerve endings, thereby resulting in a descending flaccid paralysis and autonomic nervous system dysfunction. Possible ophthalmological effects of this neurotoxin are many and typically constitute the earliest manifestations of botulism. This review summarizes the medical literature on botulism with regard to historical perspective, epidemiology, clinical manifestations, and treatment. Ophthalmological findings of botulism are tabulated and their frequencies are provided. Finally, the bioterrorism/biologic warfare ramifications of botulinum toxin are briefly discussed.
Cryptococcal osteomyelitis: a report of 5 cases and a review of the recent literature.
Medaris, Leigh Ann; Ponce, Brent; Hyde, Zane; Delgado, Dennis; Ennis, David; Lapidus, William; Larrison, Matthew; Pappas, Peter G
2016-06-01
Cryptococcus neoformans is a fungal pathogen associated with advanced HIV disease and other disorders associated with immune dysfunction. The pulmonary and the central nervous system are the most common manifestations of the disease. Localised osteomyelitis as the sole manifestation of extrapulmonary disease is rare. Herein, we present five cases of Cryptococcus osteomyelitis as the only manifestation of extrapulmonary disease. We also identified 84 additional cases of isolated cryptococcal osteomyelitis in the literature. Using these data, we have made some general recommendations regarding an approach to treatment of this uncommon clinical entity. © 2016 Blackwell Verlag GmbH.
[A role of the autonomic nervous system in cerebro-cardiac disorders].
Basantsova, N Yu; Tibekina, L M; Shishkin, A N
The authors consider anatomical/physiological characteristics and a role of different autonomic CNS regions, including insula cortex, amygdala complex, anterior cingulate cortex, ventral medial prefrontal cortex, hypothalamus and epiphysis, involved in the regulation of cardiovascular activity. The damage of these structures, e.g., due to the acute disturbance of cerebral blood circulation, led to arrhythmia, including fatal arrhythmia, in previously intact myocardium; systolic and diastolic dysfunction, ischemic changes considered in the frames of cerebro-cardial syndrome. On the cellular level, the disturbance of autonomic regulation resulted in catechol amine excitotoxicity, oxidative stress and free radical myocardium injury.
Haughey, Norman J.; Steiner, Joesph; Nath, Avindra; McArthur, Justin; Sacktor, Ned; Pardo, Carlos; Bandaru, Veera Venkata Ratnam
2009-01-01
Sphingolipids are a class of lipids enriched in the central nervous system that have important roles in signal transduction. Recent advances in our understanding of how sphingolipids are involved in the control of life and death signaling have uncovered roles for these lipids in the neuropathogenesis of HIV-associated neurocognitive disorders (HAND). In this review we briefly summarize the molecular mechanisms involved in the pathological production of the toxic sphingolipid, ceramide and address questions of how cytokine and cellular stress pathways that are perturbed in HAND converge to deregulate ceramide-associated signaling. PMID:18508574
Chondromyxoid fibromas of the neurocranium.
Linskey, M E; Hogg, J; Sekhar, L N
1991-01-01
We report a case of a chondromyxoid fibroma involving the upper clivus in a 73-year-old man. Chondromyxoid fibromas are uncommon benign bone tumors that rarely involve the skull. Chondromyxoid fibromas arising in the membranous neurocranium resemble their extracranial counterparts, appearing as radiolucent lesions with sclerotic margins and presenting most often as a painless focal swelling. Chondromyxoid fibromas arising in the chondrocranium differ from their extracranial counterparts and from those arising in the membranous neurocranium. They appear as locally destructive, often calcified, and exophytic lesions without sclerotic margins and present with cranial nerve dysfunction and symptoms caused by central nervous system compression.
Serotonin neuron development: shaping molecular and structural identities.
Deneris, Evan; Gaspar, Patricia
2018-01-01
The continuing fascination with serotonin (5-hydroxytryptamine, 5-HT) as a nervous system chemical messenger began with its discovery in the brains of mammals in 1953. Among the many reasons for this decades-long interest is that the small numbers of neurons that make 5-HT influence the excitability of neural circuits in nearly every region of the brain and spinal cord. A further reason is that 5-HT dysfunction has been linked to a range of psychiatric and neurological disorders many of which have a neurodevelopmental component. This has led to intense interest in understanding 5-HT neuron development with the aim of determining whether early alterations in their generation lead to brain disease susceptibility. Here, we present an overview of the neuroanatomical organization of vertebrate 5-HT neurons, their neurogenesis, and prodigious axonal architectures, which enables the expansive reach of 5-HT neuromodulation in the central nervous system. We review recent findings that have revealed the molecular basis for the tremendous diversity of 5-HT neuron subtypes, the impact of environmental factors on 5-HT neuron development, and how 5-HT axons are topographically organized through disparate signaling pathways. We summarize studies of the gene regulatory networks that control the differentiation, maturation, and maintenance of 5-HT neurons. These studies show that the regulatory factors controlling acquisition of 5-HT-type transmitter identity continue to play critical roles in the functional maturation and the maintenance of 5-HT neurons. New insights are presented into how continuously expressed 5-HT regulatory factors control 5-HT neurons at different stages of life and how the regulatory networks themselves are maintained. WIREs Dev Biol 2018, 7:e301. doi: 10.1002/wdev.301 This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Nervous System Development > Secondary: Vertebrates: Regional Development. © 2017 Wiley Periodicals, Inc.
Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease
Hadjihambi, Anna; De Chiara, Francesco; Hosford, Patrick S.; Habtetion, Abeba; Karagiannis, Anastassios; Davies, Nathan
2017-01-01
The pathogenesis of hepatic encephalopathy (HE) in cirrhosis is multifactorial and ammonia is thought to play a key role. Astroglial dysfunction is known to be present in HE. Astrocytes are extensively connected by gap junctions formed of connexins, which also exist as functional hemichannels allowing exchange of molecules between the cytoplasm and the extracellular milieu. The astrocyte‐neuron lactate shuttle hypothesis suggests that neuronal activity is fueled (at least in part) by lactate provided by neighboring astrocytes. We hypothesized that in HE, astroglial dysfunction could impair metabolic communication between astrocytes and neurons. In this study, we determined whether hyperammonemia leads to hemichannel dysfunction and impairs lactate transport in the cerebral cortex using rat models of HE (bile duct ligation [BDL] and induced hyperammonemia) and also evaluated the effect of ammonia‐lowering treatment (ornithine phenylacetate [OP]). Plasma ammonia concentration in BDL rats was significantly reduced by OP treatment. Biosensor recordings demonstrated that HE is associated with a significant reduction in both tonic and hypoxia‐induced lactate release in the cerebral cortex, which was normalized by OP treatment. Cortical dye loading experiments revealed hemichannel dysfunction in HE with improvement following OP treatment, while the expression of key connexins was unaffected. Conclusion: The results of the present study demonstrate that HE is associated with central nervous system hemichannel dysfunction, with ammonia playing a key role. The data provide evidence of a potential neuronal energy deficit due to impaired hemichannel‐mediated lactate transport between astrocytes and neurons as a possible mechanism underlying pathogenesis of HE. (Hepatology 2017;65:1306‐1318) PMID:28066916
Cerebrovascular dysfunction is an attractive target for therapy in heat stroke.
Chen, Sheng-Hsien; Niu, Ko-Chi; Lin, Mao-Tsun
2006-08-01
1. The aim of the present review is to summarize clinical observations and results of animal models that advance the knowledge of the attenuation of cerebrovascular dysfunction in the setting of heat stroke. It is a narrative review of selected published literature from Medline over the period 1959-2005. 2. All heat-stressed rodents, even under general anaesthesia, have hyperthermia, systemic inflammation, hypercoagulable state, arterial hypotension and tissue ischaemia and injury in multiple organs. These findings demonstrate that rodent heat stroke models can nearly mirror the full spectrum of human heat stroke. Experimental heat stroke fulfills the empirical triad used for the diagnosis of classical human heat stroke, namely hyperthermia, central nervous system alterations and a history of heat stress. 3. These physiological dysfunctions and survival during heat stroke can be improved by whole-body or brain cooling therapy adopted immediately after the onset of heat stroke. 4. However, in the absence of body or brain cooling, these heat stroke reactions can still be reduced by the following measures: (i) fluid replacement with 3% NaCl solution, 10% human albumin or hydroxyethyl starch; (ii) intravenous delivery of anti-inflammatory drugs, free radical scavengers or interleukin-1 receptor antagonists; (iii) hyperbaric oxygen therapy; or (iv) transplantation of human umbilical cord blood cells. 5. In addition, before initiation of heat stress, prior manipulations with one of the following measures was found to be able to protect against heat stroke reactions: (i) systemic delivery of alpha-tocopherol, mannitol, inducible nitric oxide synthase inhibitors, mu-opioid receptor antagonists, endothelin ETA receptor antagonists, serotoninergic nerve depletors or receptor antagonists, or glutamate receptor antagonists; or (ii) heat shock protein 72 preconditioning. 6. There is compelling evidence that cerebrovascular dysfunction is an attractive target for therapy in heat stroke.
Brainstem dysfunction protects against syncope in multiple sclerosis.
Habek, Mario; Krbot Skorić, Magdalena; Crnošija, Luka; Adamec, Ivan
2015-10-15
The aim of this study was to investigate the correlation between autonomic dysfunction in multiple sclerosis (MS) and brainstem dysfunction evaluated with the vestibular evoked myogenic potentials (VEMP) score and conventional MRI. Forty-five patients with the diagnosis of clinically isolated syndrome (CIS) suggestive of MS were enrolled. VEMP, heart rate, and blood pressure responses to the Valsalva maneuver, heart rate response to deep breathing, and pain provoked head-up tilt table test, as well as brain and spinal cord MRI were performed. There was no difference in the VEMP score between patients with and without signs of sympathetic or parasympathetic dysfunction. However, patients with syncope had significantly lower VEMP score compared to patients without syncope (p<0.01). Patients with orthostatic hypotension (OH) showed a trend of higher VEMP score compared to patients without OH (p=0.06). There was no difference in the presence of lesions in the brainstem or cervical spinal cord between patients with or without any of the studied autonomic parameters. The model consisting of a VEMP score of ≤5 and normal MRI of the midbrain and cervical spinal cord has sensitivity and specificity of 83% for the possibility that the patient with MS can develop syncope. Pathophysiological mechanisms underlying functional and structural disorders of autonomic nervous system in MS differ significantly. While preserved brainstem function is needed for development of syncope, structural disorders like OH could be associated with brainstem dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.
Tokunaga, Mikiko; Saito, Kazuyoshi; Kawabata, Daisuke; Imura, Yoshitaka; Fujii, Takao; Nakayamada, Shingo; Tsujimura, Shizuyo; Nawata, Masao; Iwata, Shigeru; Azuma, Taeko; Mimori, Tsuneyo; Tanaka, Yoshiya
2007-01-01
Aim Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious treatment‐resistant phenotype of systemic lupus erythematosus. A standard treatment for NPSLE is not available. This report describes the clinical and laboratory tests of 10 patients with NPSLE before and after rituximab treatment, including changes in lymphocyte phenotypes. Methods Rituximab was administered at different doses in 10 patients with refractory NPSLE, despite intensive treatment. Results Treatment with rituximab resulted in rapid improvement of central nervous system‐related manifestations, particularly acute confusional state. Rituximab also improved cognitive dysfunction, psychosis and seizure, and reduced the SLE Disease Activity Index Score at day 28 in all 10 patients. These effects lasted for >1 year in five patients. Flow cytometric analysis showed that rituximab down regulated CD40 and CD80 on B cells and CD40L, CD69 and inducible costimulator on CD4+ T cells. Conclusions Rituximab rapidly improved refractory NPSLE, as evident by resolution of various clinical signs and symptoms and improvement of radiographic findings. The down regulation of functional molecules on B and T cells suggests that rituximab modulates the interaction of activated B and T cells through costimulatory molecules. These results warrant further analysis of rituximab as treatment for NPSLE. PMID:17107983
Sunitinib in Treating Young Patients With Refractory Solid Tumors
2014-01-27
Central Nervous System Metastases; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
Acute urinary retention due to HSV-1: a case report.
Mancino, P; Dalessandro, M; Falasca, K; Ucciferri, C; Pizzigallo, E; Vecchiet, J
2009-03-01
Complications in urinary tract nervous routes due to herpes viruses as VZV and HSV-2 are well known. Acute urinary retention and chronic neuropathic pain are not rare when sacral dermatomes are involved by these viruses. However, an analogous condition has not yet been clearly ascribed to HSV-1 infection. We present a 32-year-old immunocompetent patient with fever, lumbar pain and acute urinary retention who had never had herpetic clinical manifestations. Urodynamic studies diagnosed a neurologic bladder with an absent filling sensation. Cystoscopic assessment revealed the presence of reddened and isolated small mucosal areas in the bladder walls. The search for herpes viruses in plasma and CSF by PCR assay were positive for HSV-1. After treatment with antiviral therapy the disease resolved. Intermittent catheterization was necessary and voiding dysfunction resolved after three weeks by its appearance. Neurological damage to the central nervous system (CNS) and/or PNS due to HSV-1 seems to be the most likely reason. The course of disease was benign and self-remitting.
BIOMARKERS for CHRONIC FATIGUE
Broderick, Gordon; Fletcher, Mary Ann
2012-01-01
Fatigue that persists for 6 months or more is termed chronic fatigue. Chronic fatigue (CF) in combination with a minimum of 4 of 8 symptoms and the absence of diseases that could explain these symptoms, constitute the case definition for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Inflammation, immune system activation, autonomic dysfunction, impaired functioning in the hypothalamic-pituitary-adrenal axis, and neuroendocrine dysregulation have all been suggested as root causes of fatigue. The identification of objective markers consistently associated with CFS/ME is an important goal in relation to diagnosis and treatment, as the current case definitions are based entirely on physical signs and symptoms. This review is focused on the recent literature related to biomarkers for fatigue associated with CFS/ME and, for comparison, those associated with other diseases. These markers are distributed across several of the body’s core regulatory systems. A complex construct of symptoms emerges from alterations and/or dysfunctions in the nervous, endocrine and immune systems. We propose that new insight will depend on our ability to develop and deploy an integrative profiling of CFS/ME pathogenesis at the molecular level. Until such a molecular signature is obtained efforts to develop effective treatments will continue to be severely limited. PMID:22732129
Chang, Chia-Yu; Chen, Jen-Yin; Chen, Sheng-Hsien; Cheng, Tain-Junn; Lin, Mao-Tsun; Hu, Miao-Lin
2016-04-01
The impact of ascorbate on oxidative stress-related diseases is moderate because of its limited oral bioavailability and rapid clearance. However, recent evidence of the clinical benefit of parenteral vitamin C administration has emerged, especially in critical care. Heatstroke is defined as a form of excessive hyperthermia associated with a systemic inflammatory response that results in multiple organ dysfunctions in which central nervous system disorders such as delirium, convulsions, and coma are predominant. The thermoregulatory, immune, coagulation and tissue injury responses of heatstroke closely resemble those observed during sepsis and are likely mediated by similar cellular mechanisms. This study was performed by using the characteristic high lethality rate and sepsis-mimic systemic inflammatory response of a murine model of heat stroke to test our hypothesis that supra-physiological doses of ascorbate may have therapeutic use in critical care. We demonstrated that parenteral administration of ascorbate abrogated the lethality and thermoregulatory dysfunction in murine model of heat stroke by attenuating heat stroke-induced accelerated systemic inflammatory, coagulation responses and the resultant multiple organ injury, especially in hypothalamus. Overall, our findings support the hypothesis and notion that supra-physiological doses of ascorbate may have therapeutic use in critical care. Copyright © 2016. Published by Elsevier Inc.
Yamada, M; Mizuta, K; Ito, Y; Furuta, M; Sawai, S; Miyata, H
1999-10-01
A hypothesis has been advanced that the autonomic nervous dysfunction (AND) relates to the development of vertigo in Meniere's disease (MD). We also studied the causal relationship between AND and vertigo in MD. We evaluated autonomic nervous function in 17 patients with MD (five men and 12 women ranging in age from 16 to 70 years) by classifying them by their stages of attack and interval of vertigo and with power spectral analysis (PSA) of heart rate variability. Fourteen healthy volunteers were also tested as controls. At the interval stage, parasympathetic nervous hypofunction and significant depression of sympathetic response due to postural changes from the supine to the standing position were observed in many of those patients. At the attack stage, sympathetic nervous hypofunction was observed in some of the patients. These findings lead us to the conclusion that AND relates to vertigo in MD as a predisposing factor. However, the question of whether AND relates as a trigger or as a consequence of vertigo in MD has not been adequately solved in this study. We will make further studies on circadian variation of autonomic nervous function.
Kita, Kayoko; Suzuki, Toshihide; Ochi, Takafumi
2007-05-01
In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments.
Joly, Florence; Giffard, Bénédicte; Rigal, Olivier; De Ruiter, Michiel B; Small, Brent J; Dubois, Martine; LeFel, Johan; Schagen, Sanne B; Ahles, Tim A; Wefel, Jeffrey S; Vardy, Janette L; Pancré, Véronique; Lange, Marie; Castel, Hélène
2015-12-01
Although cognitive impairments have been identified in patients with non-central nervous system cancer, especially breast cancer, the respective roles of cancer and therapies, and the mechanisms involved in cognitive dysfunction remain unclear. To report a state-of-the-art update from the International Cognitive and Cancer Task Force conference held in 2012. A report of the meeting and recent new perspectives are presented. Recent clinical data support that non-central nervous system cancer per se may be involved in cognitive dysfunctions associated with inflammation parameters. The role of chemotherapy on cognitive decline was confirmed in colorectal and testicular cancers. Whereas the impact of hormone therapy remains debatable, some studies support a negative impact of targeted therapies on cognition. Regarding interventions, preliminary results of cognitive rehabilitation showed encouraging results. The methodology of future longitudinal studies has to be optimized by a priori end points, the use of validated test batteries, and the inclusion of control groups. Comorbidities and aging are important factors to be taken into account in future studies. Preclinical studies in animal models highlighted the role of cancer itself on cognition and support the possible benefits of prevention/care during chemotherapy. Progress in neuroimaging will help specify neural processes affected by treatments. Clinical data and animal models confirmed that chemotherapy induces direct cognitive deficit. The benefits of cognitive rehabilitation are still to be confirmed. Studies evaluating the mechanisms underlying cognitive impairments using advanced neuroimaging techniques integrating the evaluation of genetic factors are ongoing. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Alvares, Gail A.; Quintana, Daniel S.; Hickie, Ian B.; Guastella, Adam J.
2016-01-01
Background Autonomic nervous system (ANS) dysfunction is a putative underlying mechanism for increased cardiovascular disease risk in individuals with psychiatric disorders. Previous studies suggest that this risk may be related to psychotropic medication use. In the present study we systematically reviewed and analyzed published studies of heart rate variability (HRV), measuring ANS output, to determine the effect of psychiatric illness and medication use. Methods We searched for studies comparing HRV in physically healthy adults with a diagnosed psychiatric disorder to controls and comparing HRV pre- and post-treatment with a psychotropic medication. Results In total, 140 case–control (mood, anxiety, psychosis, dependent disorders, k = 151) and 30 treatment (antidepressants, antipsychotics; k = 43) studies were included. We found that HRV was reduced in all patient groups compared to controls (Hedges g = −0.583) with a large effect for psychotic disorders (Hedges g = −0.948). Effect sizes remained highly significant for medication-free patients compared to controls across all disorders. Smaller and significant reductions in HRV were observed for specific antidepressants and antipsychotics. Limitations Study quality significantly moderated effect sizes in case–control analyses, underscoring the importance of assessing methodological quality when interpreting HRV findings. Conclusion Combined findings confirm substantial reductions in HRV across psychiatric disorders, and these effects remained significant even in medication-free individuals. Reductions in HRV may therefore represent a significant mechanism contributing to elevated cardiovascular risk in individuals with psychiatric disorders. The negative impact of specific medications on HRV suggest increased risk for cardiovascular disease in these groups, highlighting a need for treatment providers to consider modifiable cardiovascular risk factors to attenuate this risk. PMID:26447819
The therapeutic potential of G-protein coupled receptors in Huntington's disease.
Dowie, Megan J; Scotter, Emma L; Molinari, Emanuela; Glass, Michelle
2010-11-01
Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease. Copyright © 2010 Elsevier Inc. All rights reserved.
Caito, Samuel W.; Valentine, William M.; Aschner, Michael
2013-01-01
Epidemiological studies corroborate a correlation between pesticide use and Parkinson’s disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S-methyl-N,N-diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. Additionally, worms treated with the three test compounds showed a drastic loss of DAergic-dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD. PMID:23786526
Hypothyroid-associated central vestibular disease in 10 dogs: 1999-2005.
Higgins, Michael A; Rossmeisl, John H; Panciera, David L
2006-01-01
With the exception of myxedema coma, central nervous system signs are rare in hypothyroid dogs. Central vestibular dysfunction is a possible and reversible manifestation of hypothyroidism. Medical records of dogs with vestibular dysfunction and hypothyroidism were reviewed. Of 113 records identified, 10 dogs with at least 2 concurrent clinical neurologic abnormalities localizable to the central vestibular system were included. Retrospective, descriptive study. Median age at diagnosis was 7 years (range, 5-10 years). All dogs were referred for progressive neurologic disease. Lesions were localized to the myelencephalic region in 5 dogs and to the vestibulocerebellum in 5 dogs. Two dogs had evidence of multifocal intracranial disease. Non-neurologic physical abnormalities suggestive of hypothyroidism were absent in 7 of 10 dogs. Hypercholesterolemia was the only consistent clinicopathologic abnormality detected, and was present in 7 of 10 dogs. All dogs had total thyroxine (TT4) and free thyroxine (fT4) concentrations below reference ranges, and 9 of 10 had increased TSH concentrations. Intracranial imaging studies were normal in 5 of 8 dogs, and identified lesions consistent with infarctions in 3 of 8 dogs. Albuminocytologic dissociation was detected in 5 of 6 CSF analyses. Brainstem auditory-evoked responses disclosed prolonged wave V latencies in 3 of 4 dogs tested. No other causes of central vestibular dysfunction were identified during other diagnostic investigations. The median time from initiation of treatment to clinical improvement was 4 days. Vestibular signs resolved in 9 of 10 dogs within 4 weeks. Although the pathogenesis in dogs without evidence of infarction is unknown, central vestibular dysfunction appears to be a rare but reversible neurologic sequelae of hypothyroidism.
Yu, Shu-Yang; Cao, Chen-Jie; Zuo, Li-Jun; Chen, Ze-Jie; Lian, Teng-Hong; Wang, Fang; Hu, Yang; Piao, Ying-Shan; Li, Li-Xia; Guo, Peng; Liu, Li; Yu, Qiu-Jin; Wang, Rui-Dan; Chan, Piu; Chen, Sheng-di; Wang, Xiao-Min; Zhang, Wei
2018-01-17
Transcranial ultrasound is a useful tool for providing the evidences for the early diagnosis and differential diagnosis of Parkinson disease (PD). However, the relationship between hyper echogenicity in substantia nigra (SN) and clinical symptoms of PD patients remains unknown, and the role of dysfunction of iron metabolism on the pathogenesis of SN hyper echogenicity is unclear. PD patients was detected by transcranial sonography and divided into with no hyper echogenicity (PDSN-) group and with hyper echogenicity (PDSN+) group. Motor symptoms (MS) and non-motor symptoms (NMS) were evaluated, and the levels of iron and related proteins in serum and cerebrospinal fluid (CSF) were detected for PD patients. Data comparison between the two groups and correlation analyses were performed. PDSN+ group was significantly older, and had significantly older age of onset, more advanced Hohen-Yahr stage, higher SCOPA-AUT score and lower MoCA score than PDSN- group (P < 0.05). Compared with PDSN- group, the levels of transferrin and light-ferritin in serum and iron level in CSF were significantly elevated (P < 0.05), but ferroportin level in CSF was significantly decreased in PDSN+ group (P < 0.05). PD patients with hyper echogenicity in SN are older, at more advanced disease stage, have severer motor symptoms, and non-motor symptoms of cognitive impairment and autonomic dysfunction. Hyper echogenicity of SN in PD patients is related to dysfunction of iron metabolism, involving increased iron transport from peripheral system to central nervous system, reduction of intracellular iron release and excessive iron deposition in brain.
Jha, Saurabh Kumar; Jha, Niraj Kumar; Kumar, Dhiraj; Sharma, Renu; Shrivastava, Abhishek; Ambasta, Rashmi K; Kumar, Pravir
2017-01-01
The communication between neurons at synaptic junctions is an intriguing process that monitors the transmission of various electro-chemical signals in the central nervous system. Albeit any aberration in the mechanisms associated with transmission of these signals leads to loss of synaptic contacts in both the neocortex and hippocampus thereby causing insidious cognitive decline and memory dysfunction. Compelling evidence suggests that soluble amyloid-β (Aβ) and hyperphosphorylated tau serve as toxins in the dysfunction of synaptic plasticity and aberrant neurotransmitter (NT) release at synapses consequently causing a cognitive decline in Alzheimer's disease (AD). Further, an imbalance between excitatory and inhibitory neurotransmission systems induced by impaired redox signaling and altered mitochondrial integrity is also amenable for such abnormalities. Defective NT release at the synaptic junction causes several detrimental effects associated with altered activity of synaptic proteins, transcription factors, Ca2+ homeostasis, and other molecules critical for neuronal plasticity. These detrimental effects further disrupt the normal homeostasis of neuronal cells and thereby causing synaptic loss. Moreover, the precise mechanistic role played by impaired NTs and neuromodulators (NMs) and altered redox signaling in synaptic dysfunction remains mysterious, and their possible interlink still needs to be investigated. Therefore, this review elucidates the intricate role played by both defective NTs/NMs and altered redox signaling in synaptopathy. Further, the involvement of numerous pharmacological approaches to compensate neurotransmission imbalance has also been discussed, which may be considered as a potential therapeutic approach in synaptopathy associated with AD.
Kindling and Oxidative Stress as Contributors to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
Jason, L. A.; Porter, N.; Herrington, J.; Sorenson, M.; Kubow, S.
2010-01-01
Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS) is one of the more complex illnesses involving multiple systems within the body. Onset of ME/CFS frequently occurs quickly, and many patients report a prior exposure to a viral infection. This debilitating illness can affect the immune, neuroendocrine, autonomic, and neurologic systems. Abnormal biological findings among some patients have included aberrant ion transport and ion channel activity, cortisol deficiency, sympathetic nervous system hyperactivity, EEG spike waves, left ventricular dysfunction in the heart, low natural killer cell cytotoxicity, and a shift from Th1 to Th2 cytokines. We propose that the kindling and oxidative stress theories provide a heuristic template for better understanding the at times conflicting findings regarding the etiology and pathophysiology of this illness. PMID:21253446
Heart rate variability in stroke patients submitted to an acute bout of aerobic exercise.
Raimundo, Rodrigo Daminello; de Abreu, Luiz Carlos; Adami, Fernando; Vanderlei, Franciele Marques; de Carvalho, Tatiana Dias; Moreno, Isadora Lessa; Pereira, Valdelias Xavier; Valenti, Vitor Engracia; Sato, Monica Akemi
2013-10-01
Stroke has been associated with cardiac autonomic impairment due to damage in central nervous system. Dysfunction in heart rate variability (HRV) may reflect dysfunction of the autonomic nervous system. Aerobic training has been used in the rehabilitation procedure of patients, due to improvement of aerobic function and other beneficial effects as increased recruitment of motor units, favoring the development of muscle fibers. The purpose of this study was to evaluate the cardiac autonomic modulation in patients with stroke before, during, and after an acute bout of aerobic exercise. The heart rate of 38 stroke patients was recorded using a heart rate (HR) monitor and the data were used to assess cardiac autonomic modulation through HRV analysis. The patients were in supine position and remained at resting condition (R) for 10 min before starting the experiment. Afterwards, they were submitted to walking exercise (E) on a treadmill until achieve 50-70% of maximum heart rate. After 30 min of aerobic exercise, the subjects were advised to remain in supine position for additional 30 min in order to record the HR during the recovery (RC) period. The recordings were divided in three periods: RC1, immediately after the end of exercise bout, RC2, between 12 and 17 min of recovery, and RC3, at the final 5 min of recovery. A significant decrease was observed during exercise in the MeanRR index (577.3±92 vs. 861.1+109), RRtri (5.1±2 vs. 9.1±3), high frequency component (11.2±4 vs. 167±135 ms) and SD1 (5.7±2 vs. 16.9±7 ms) compared to resting values. The SDNN index reduced during E (27.6±19) and RC1 (29.9±11), RC2 (27.9±9) and RC3 (32.4±13) compared to resting values (42.4±19). The low frequency component increased during E (545±82), but decreased during RC1 (166.3±129), RC2 (206.9±152), and RC3 (249.5±236) compared to R levels (394.6±315). These findings suggest that stroke patients showed a reduced HRV during and at least 30 min after exercise, due to an autonomic imbalance reflected by increased indexes that represent the sympathetic nervous system.
Giampá, Sara Quaglia de Campos; Mônico-Neto, Marcos; de Mello, Marco Tulio; Souza, Helton de Sá; Tufik, Sergio; Lee, Kil Sun; Koike, Marcia Kiyomi; Dos Santos, Alexandra Alberta; Antonio, Ednei Luiz; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Antunes, Hanna Karen Moreira
2016-01-01
Paradoxical sleep deprivation activates the sympathetic nervous system and the hypothalamus-pituitary-adrenal axis, subsequently interfering with the cardiovascular system. The beneficial effects of resistance training are related to hemodynamic, metabolic and hormonal homeostasis. We hypothesized that resistance training can prevent the cardiac remodeling and dysfunction caused by paradoxical sleep deprivation. Male Wistar rats were distributed into four groups: control (C), resistance training (RT), paradoxical sleep deprivation for 96 hours (PSD96) and both resistance training and sleep deprivation (RT/PSD96). Doppler echocardiograms, hemodynamics measurements, cardiac histomorphometry, hormonal profile and molecular analysis were evaluated. Compared to the C group, PSD96 group had a higher left ventricular systolic pressure, heart rate and left atrium index. In contrast, the left ventricle systolic area and the left ventricle cavity diameter were reduced in the PSD96 group. Hypertrophy and fibrosis were also observed. Along with these alterations, reduced levels of serum testosterone and insulin-like growth factor-1 (IGF-1), as well as increased corticosterone and angiotensin II, were observed in the PSD96 group. Prophylactic resistance training attenuated most of these changes, except angiotensin II, fibrosis, heart rate and concentric remodeling of left ventricle, confirmed by the increased of NFATc3 and GATA-4, proteins involved in the pathologic cardiac hypertrophy pathway. Resistance training effectively attenuates cardiac dysfunction and hormonal imbalance induced by paradoxical sleep deprivation.
RAAS inhibition and cardiorenal syndrome.
Onuigbo, Macaulay Amechi C
2014-01-01
The consensus conference on cardio-renal syndromes (2008) defined 'cardio-renal syndromes' as 'disorders of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other' and identified five subtypes of the syndromes. Various pathophysiologic mechanisms underlie cardiorenal syndrome including hemodynamic derangements, reduced cardiac output leading to impaired renal perfusion, reduced stroke volume, raised atrial filling pressures, elevated atrial pressures, sodium and water retention, venous congestion, right ventricular dysfunction and venous hypertension causing increased renal venous pressure, intra-abdominal hypertension, various neurohormonal adaptations including activation of the renin-angiotensin-aldosterone system, adaptive activation of the sympathetic nervous system, cytokine release and oxidative stress. Although there are standardized clinical guidelines for the management of heart failure, and chronic kidney disease, respectively, there are no similar consensus clinical guidelines for the management of the cardiorenal syndromes. RAAS inhibition is advocated in treating systolic heart failure. There is evidence that RAAS inhibition is also useful in cardiorenal syndrome. However, RAAS inhibition, while potentially useful in the management of cardiorenal syndrome, is not the 'magic bullet', is sometimes limited by adverse renal events, is not applicable to all patients, and must be applied by physicians with due diligence and caution. Nevertheless, a more comprehensive multidisciplinary multipronged approach to managing patients with cardiorenal syndrome is even more pragmatic and commonsense given the multiple mechanisms and pathogenetic pathways implicated in the causation and perpetuation of cardiorenal syndrome.
Combination Chemotherapy in Treating Young Patients With Advanced Solid Tumors
2013-05-01
Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
Drake, Marcus John; Apostolidis, Apostolos; Cocci, Andrea; Emmanuel, Anton; Gajewski, Jerzy B; Harrison, Simon C W; Heesakkers, John P F A; Lemack, Gary E; Madersbacher, Helmut; Panicker, Jalesh N; Radziszewski, Piotr; Sakakibara, Ryuji; Wyndaele, Jean Jacques
2016-08-01
Evidence-based guidelines for the management of neurological disease and lower urinary tract dysfunction have been produced by the International Consultations on Incontinence (ICI). These are comprehensive guidelines, and were developed to have world-wide relevance. To update clinical management of neurogenic bladder dysfunction from the recommendations of the fourth ICI, 2009. A series of evidence reviews and updates were performed by members of the working group. The resulting guidelines were presented at the 2012 meeting of the European Association of Urology for consultation, and consequently amended to deliver evidence-based conclusions and recommendations in 2013. The current review is a synthesis of the conclusions and recommendations, including the algorithms for initial and specialized management of neurogenic lower urinary tract dysfunction. The pathophysiology is categorized according to the nature of onset of neurological disease and the part(s) of the nervous system affected. Assessment requires clinical evaluation, general investigations, and specialized testing. Treatment primarily focuses on ensuring safety of the patient and optimizing quality of life. Symptom management covers conservative and interventional measures to aid urine storage and bladder emptying, along with containment of incontinence. A multidisciplinary approach to management is essential. The review offers a pragmatic review of management in the context of complex pathophysiology and varied evidence base. Neurourol. Urodynam. 35:657-665, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cellular changes in the enteric nervous system during ageing.
Saffrey, M Jill
2013-10-01
The intrinsic neurons of the gut, enteric neurons, have an essential role in gastrointestinal functions. The enteric nervous system is plastic and continues to undergo changes throughout life, as the gut grows and responds to dietary and other environmental changes. Detailed analysis of changes in the ENS during ageing suggests that enteric neurons are more vulnerable to age-related degeneration and cell death than neurons in other parts of the nervous system, although there is considerable variation in the extent and time course of age-related enteric neuronal loss reported in different studies. Specific neuronal subpopulations, particularly cholinergic myenteric neurons, may be more vulnerable than others to age-associated loss or damage. Enteric degeneration and other age-related neuronal changes may contribute to gastrointestinal dysfunction that is common in the elderly population. Evidence suggests that caloric restriction protects against age-associated loss of enteric neurons, but recent advances in the understanding of the effects of the microbiota and the complex interactions between enteric ganglion cells, mucosal immune system and intestinal epithelium indicate that other factors may well influence ageing of enteric neurons. Much remains to be understood about the mechanisms of neuronal loss and damage in the gut, although there is evidence that reactive oxygen species, neurotrophic factor dysregulation and/or activation of a senescence associated phenotype may be involved. To date, there is no evidence for ongoing neurogenesis that might replace dying neurons in the ageing gut, although small local sites of neurogenesis would be difficult to detect. Finally, despite the considerable evidence for enteric neurodegeneration during ageing, and evidence for some physiological changes in animal models, the ageing gut appears to maintain its function remarkably well in animals that exhibit major neuronal loss, indicating that the ENS has considerable functional reserve. © 2013 Elsevier Inc. All rights reserved.
Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System.
Ren, Xiaoyuan; Zou, Lili; Zhang, Xu; Branco, Vasco; Wang, Jun; Carvalho, Cristina; Holmgren, Arne; Lu, Jun
2017-11-01
The thioredoxin (Trx) and glutathione (GSH) systems play important roles in maintaining the redox balance in the brain, a tissue that is prone to oxidative stress due to its high-energy demand. These two disulfide reductase systems are active in various areas of the brain and are considered to be critical antioxidant systems in the central nervous system (CNS). Various neuronal disorders have been characterized to have imbalanced redox homeostasis. Recent Advances: In addition to their detrimental effects, recent studies have highlighted that reactive oxygen species/reactive nitrogen species (ROS/RNS) act as critical signaling molecules by modifying thiols in proteins. The Trx and GSH systems, which reversibly regulate thiol modifications, regulate redox signaling involved in various biological events in the CNS. In this review, we focus on the following: (i) how ROS/RNS are produced and mediate signaling in CNS; (ii) how Trx and GSH systems regulate redox signaling by catalyzing reversible thiol modifications; (iii) how dysfunction of the Trx and GSH systems causes alterations of cellular redox signaling in human neuronal diseases; and (iv) the effects of certain small molecules that target thiol-based signaling pathways in the CNS. Further study on the roles of thiol-dependent redox systems in the CNS will improve our understanding of the pathogenesis of many human neuronal disorders and also help to develop novel protective and therapeutic strategies against neuronal diseases. Antioxid. Redox Signal. 27, 989-1010.
Giachini, Fernanda Regina; Galaviz-Hernandez, Carlos; Damiano, Alicia E; Viana, Marta; Cadavid, Angela; Asturizaga, Patricia; Teran, Enrique; Clapes, Sonia; Alcala, Martin; Bueno, Julio; Calderón-Domínguez, María; Ramos, María P; Lima, Victor Vitorino; Sosa-Macias, Martha; Martinez, Nora; Roberts, James M; Escudero, Carlos
2017-10-06
Pregnancy is a physiologically stressful condition that generates a series of functional adaptations by the cardiovascular system. The impact of pregnancy on this system persists from conception beyond birth. Recent evidence suggests that vascular changes associated with pregnancy complications, such as preeclampsia, affect the function of the maternal and offspring vascular systems, after delivery and into adult life. Since the vascular system contributes to systemic homeostasis, defective development or function of blood vessels predisposes both mother and infant to future risk for chronic disease. These alterations in later life range from fertility problems to alterations in the central nervous system or immune system, among others. It is important to note that rates of morbi-mortality due to pregnancy complications including preeclampsia, as well as cardiovascular diseases, have a higher incidence in Latin-American countries than in more developed countries. Nonetheless, there is a lack both in the amount and impact of research conducted in Latin America. An impact, although smaller, can be seen when research in vascular disorders related to problems during pregnancy is analyzed. Therefore, in this review, information about preeclampsia and endothelial dysfunction generated from research groups based in Latin-American countries will be highlighted. We relate the need, as present in many other countries in the world, for increased effective regional and international collaboration to generate new data specific to our region on this topic.
Stein, Colleen S.; Ghodsi, Abdi; Derksen, Todd; Davidson, Beverly L.
1999-01-01
Mucopolysaccharidosis (MPS) type VII patients lack functional β-glucuronidase, leading to systemic and central nervous system dysfunction. In this study we tested whether recombinant adenovirus that encodes β-glucuronidase (Adβgluc), delivered intravenously and into the brain parenchyma of MPS type VII mice, could provide long-term transgene expression and correction of lysosomal distension. We also tested whether systemic treatment with the immunosuppressive anti-CD40 ligand antibody, MR-1, affected transgene expression. We found substantial plasma β-glucuronidase activity for over 9 weeks after gene transfer in the MR-1- treated group, with subsequent decline in activity corresponding to a delayed anti-β-glucuronidase antibody response. At 16 weeks, near wild-type amounts of β-glucuronidase activity and striking reduction of lysosomal pathology were detected in livers from mice that had received either MR-1 cotreatment or control antibody. In the lung and kidney, β-glucuronidase activity was markedly higher for the MR-1-treated group. β-Glucuronidase activity in the brain persisted independently of MR-1 treatment. Activity was intense in the injected hemisphere and was also evident in the noninjected cortex and striatum, with dramatic improvements in storage deposits in areas of both hemispheres. These results indicate that prolonged enzyme expression from transgenes delivered to deficient liver and brain can mediate pervasive correction and illustrate the potential for gene therapy of MPS and other lysosomal storage diseases. PMID:10074197
de Miranda, Aline Silva; Lacerda-Queiroz, Norinne; de Carvalho Vilela, Márcia; Rodrigues, David Henrique; Rachid, Milene Alvarenga; Quevedo, João; Teixeira, Antônio Lúcio
2011-03-24
Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection. The underlying mechanisms of CM pathogenesis remain incompletely understood. The imbalance between the release of proinflammatory and anti-inflammatory cytokines has been associated with central nervous system dysfunction found in human and experimental CM. The current study investigated anxiety-like behavior, histopathological changes and release of brain cytokines in C57BL/6 mice infected with Plasmodium berghei strain ANKA (PbA). Anxiety-like behavior was assessed in control and PbA-infected mice using the elevated plus maze test. Histopathological changes in brain tissue were assessed by haematoxylin and eosin staining. Brain concentration of the cytokines IL-1β, IL-4, IL-10, TNF-α and IFN-γ was determined by ELISA. We found that PbA-infected mice on day 5 post-infection presented anxiety symptoms, histopathological alterations in the brainstem, cerebrum and hippocampus and increased cerebral levels of proinflammatory cytokines IL-1β and TNF-α. These findings suggest an involvement of central nervous system inflammatory mediators in anxiety symptoms found in CM. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Gastrointestinal manifestations of mitochondrial disorders: a systematic review
Finsterer, Josef; Frank, Marlies
2016-01-01
Mitochondrial disorders (MIDs) due to respiratory-chain defects or nonrespiratory chain defects are usually multisystem conditions [mitochondrial multiorgan disorder syndrome (MIMODS)] affecting the central nervous system (CNS), peripheral nervous system, eyes, ears, endocrine organs, heart, kidneys, bone marrow, lungs, arteries, and also the intestinal tract. Frequent gastrointestinal (GI) manifestations of MIDs include poor appetite, gastroesophageal sphincter dysfunction, constipation, dysphagia, vomiting, gastroparesis, GI pseudo-obstruction, diarrhea, or pancreatitis and hepatopathy. Rare GI manifestations of MIDs include dry mouth, paradontosis, tracheoesophageal fistula, stenosis of the duodeno-jejunal junction, atresia or imperforate anus, liver cysts, pancreas lipomatosis, pancreatic cysts, congenital stenosis or obstruction of the GI tract, recurrent bowel perforations with intra-abdominal abscesses, postprandial abdominal pain, diverticulosis, or pneumatosis coli. Diagnosing GI involvement in MIDs is not at variance from diagnosing GI disorders due to other causes. Treatment of mitochondrial GI disease includes noninvasive or invasive measures. Therapy is usually symptomatic. Only for myo-neuro-gastro-intestinal encephalopathy is a causal therapy with autologous stem-cell transplantation available. It is concluded that GI manifestations of MIDs are more widespread than so far anticipated and that they must be recognized as early as possible to initiate appropriate diagnostic work-up and avoid any mitochondrion-toxic treatment. PMID:28286566
[Therapeutic approaches in autism spectrum disorders].
Ruggieri, Víctor L; Arberas, Claudia L
2015-02-25
Autistic spectrum disorders affect one out of every 68 persons, with a 4:1 dominance in males. Since they are dysfunctions rather than irreversible injuries to the central nervous system, which can be attributed to deficits in the neuronal networks and synaptogenesis and are modifiable thanks to the plasticity of the brain, starting therapy as early as possible is essential for more favourable progress. Very few treatments are backed by solid scientific evidence. We will analyse the therapeutic approaches oriented towards improving autism spectrum disorders which showed a clinical improvement that can be related to neurophysiological or functional changes in the central nervous system. We will classify the behavioural educational treatments and those in the research phase into a hierarchy, highlighting the neurogenetic entities with a high prevalence of autism, in which their pathophysiology and molecular base are known, that attempt to modify the consequences of those alterations by means of pharmacological agents. These entities include fragile X syndrome (GABAergic and metabotropic glutamate receptor inhibitors), tuberous sclerosis (mTOR inhibitors), Phelan-McDermid syndrome and Rett syndrome (insulin-like growth factor 1 inhibitors). Oxytocin, which has been shown to improve social cognition in persons with autism spectrum disorders, is analysed separately.
Sun, Liting; Gooding, Hayley L; Brunton, Paula J; Russell, John A; Mitchell, Rory; Fleetwood-Walker, Sue
2013-11-01
Adverse events at critical stages of development can lead to lasting dysfunction in the central nervous system (CNS). To seek potential underlying changes in synaptic function, we used a newly developed protocol to measure alterations in receptor-mediated Ca(2+) fluorescence responses of synaptoneurosomes, freshly isolated from selected regions of the CNS concerned with emotionality and pain processing. We compared adult male controls and offspring of rats exposed to social stress in late pregnancy (prenatal stress, PS), which showed programmed behavioural changes indicating anxiety, anhedonia and pain hypersensitivity. We found corresponding increases, in PS rats compared with normal controls, in responsiveness of synaptoneurosomes from frontal cortex to a glutamate receptor (GluR) agonist, and from spinal cord to activators of nociceptive afferents. Through a combined pharmacological and biochemical strategy, we found evidence for a role of phospholipase D1 (PLD1)-mediated signalling, that may involve 5-HT2A receptor (5-HT2AR) activation, at both levels of the nervous system. These changes might participate in underpinning the enduring alterations in behaviour induced by PS. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bertrand, Luc; Nair, Madhavan; Toborek, Michal
2016-01-01
Recent decades mark a great progress in the treatment of HIV infection. What was once a deadly disease is now a chronic infection. However, HIV-infected patients are prone to develop comorbidities, which severely affect their daily functions. For example, a large population of patients develop a variety of neurological and cognitive complications, called HIV associated neurological disorders (HAND). Despite efficient repression of viral replication in the periphery, evidence shows that the virus can remain active in the central nervous system (CNS). This low level of replication is believed to result in a progression of neurocognitive dysfunction in infected individuals. Insufficient viral inhibition in the brain results from the inability of several treatment drugs in crossing the blood-brain barrier (BBB) and reaching therapeutic concentrations in the CNS. The current manuscript discusses several strategies that are being developed to enable therapeutics to cross the BBB, including bypassing BBB, inhibition of efflux transporters, the use of active transporters present at the BBB, and nanotechnology. The increased concentration of therapeutics in the CNS is desirable to prevent viral replication; however, potential side effects of anti-retroviral drugs need also to be taken into consideration.
Cognitive impairment and memory loss associated with histoplasmosis: a case study.
Loughan, Ashlee R; Perna, Robert; Hertza, Jeremy
2014-01-01
Histoplasmosis is a rare disease caused by inhalation of the fungus Histoplasma capsulatum. It can spread via cerebral circulation to the central nervous system as a manifestation of a disseminated infection; particularly in patients with immune suppression, which can result in isolated ring-enhancing lesions and inflammation in the brain. Of the reported disseminated histoplasmosis cases (approximately 1 in 2000 per year), only 5-20% have evidence of central nervous system involvement. This paper reviews a single case study of a 57-year-old female diagnosed with disseminated CNS histoplasmosis. Patient's complaints included reduced short-term memory, word-finding problems, and difficulty organizing, making decisions, getting lost while driving, recalling names, retaining information while reading, and slowed processing speed. There was also a history of mild depression and anxiety. Direct testing revealed deficits in multiple cognitive domains including complex attention, processing speed, semantic fluency, visual scanning, motor speed, set-shifting, naming, nonverbal memory, and verbal memory. Neuropsychological deficits suggest cortical and subcortical brain dysfunction, including anterior, temporal, and mesial-temporal regions. This case illustrates the need for neuropsychologists to understand histoplasmosis, the related pathophysiology, and the neuropsychological impact; particularly with the potential for delayed progression.
Role of resident CNS cell populations in HTLV-1-associated neuroinflammatory disease.
Lepoutre, Veronique; Jain, Pooja; Quann, Kevin; Wigdahl, Brian; Khan, Zafar K
2009-01-01
Human T cell leukemia virus type 1 (HTLV-1), the first human retrovirus discovered, is the etiologic agent for a number of disorders; the two most common pathologies include adult T cell leukemia (ATL) and a progressive demyelinating neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The neurologic dysfunction associated with HAM/TSP is a result of viral intrusion into the central nervous system (CNS) and the generation of a hyperstimulated host response within the peripheral and central nervous system that includes expanded populations of CD4+ and CD8+ T cells and proinflammatory cytokines/chemokines in the cerebrospinal fluid (CSF). This robust, yet detrimental immune response likely contributes to the death of myelin producing oligodendrocytes and degeneration of neuronal axons. The mechanisms of neurological degeneration in HAM/TSP have yet to be fully delineated in vivo and may involve the immunogenic properties of the HTLV-1 transactivator protein Tax. This comprehensive review characterizes the available knowledge to date concerning the effects of HTLV-1 on CNS resident cell populations with emphasis on both viral and host factors contributing to the genesis of HAM/TSP.
Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice
Stieglitz, Marc S.; Fenske, Stefanie; Hammelmann, Verena; Becirovic, Elvir; Schöttle, Verena; Delorme, James E.; Schöll-Weidinger, Martha; Mader, Robert; Deussing, Jan; Wolfer, David P.; Seeliger, Mathias W.; Albrecht, Urs; Wotjak, Carsten T.; Biel, Martin; Michalakis, Stylianos; Wahl-Schott, Christian
2018-01-01
Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/−) mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure. PMID:29375299
Epigenetics and Therapeutic Targets Mediating Neuroprotection
Qureshi, Irfan A.; Mehler, Mark F.
2015-01-01
The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020
Hypothalamic inflammation and the central nervous system control of energy homeostasis.
Pimentel, Gustavo D; Ganeshan, Kirthana; Carvalheira, José B C
2014-11-01
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Inborn Errors of Metabolism with Hyperammonemia: Urea Cycle Defects and Related Disorders.
Summar, Marshall L; Mew, Nicholas Ah
2018-04-01
The urea cycle disorders are a group of inherited biochemical diseases caused by a complete or partial deficiency of any one of the enzymes or transport proteins required to convert toxic ammonia into urea and to produce arginine and citrulline. The clinical manifestations of these disorders are mostly the result of acute or chronic hyperammonemia, which affects the central nervous system. Affected individuals can also develop hepatic dysfunction. These disorders can present at any age from the immediate newborn to later in life. Early diagnosis and treatment are key to improving outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
Glucocorticoids and Metabolic Control.
Magomedova, Lilia; Cummins, Carolyn L
2016-01-01
In response to stress, the central nervous system initiates a signaling cascade, which leads to the production of glucocorticoids (GCs). GCs act through the glucocorticoid receptor (GR) to coordinate the appropriate cellular response with the primary goal of mobilizing the storage forms of carbon precursors to generate a continuous glucose supply for the brain. Although GCs are critical for maintaining energy homeostasis, excessive GC stimulation leads to a number of undesirable side effects, including hyperglycemia, insulin resistance, fatty liver, obesity, and muscle wasting leading to severe metabolic dysfunction. Summarized below are the diverse metabolic roles of glucocorticoids in energy homeostasis and dysregulation, focusing specifically on glucose, lipid, and protein metabolism.
Outpatient anesthesia for oral surgery in a juvenile with Leigh disease.
Ellis, Zachary; Bloomer, Charles
2005-01-01
We report a case of anesthesia for elective outpatient third molar extraction in a juvenile with Leigh disease, a progressive neurodegenerative disorder related to respiratory chain deficiency. This syndrome usually presents in infancy and is characterized by nervous system dysfunction and respiratory abnormalities. Anesthesia has been reported to aggravate respiratory symptoms and frequently precipitate respiratory failure. Preoperative swallowing difficulty or respiratory symptoms should be carefully diagnosed, because they can be a warning sign of postoperative complications or mortality. Adverse effects of anesthesia may quickly lead into metabolic acidosis. Anesthetics should be carefully chosen that do not interfere with mitochondrial respiration, which can lead to lactic acidosis.
Pharmacological approaches to restore mitochondrial function
Andreux, Pénélope A.; Houtkooper, Riekelt H.; Auwerx, Johan
2014-01-01
Mitochondrial dysfunction is not only a hallmark of rare inherited mitochondrial disorders, but is also implicated in age-related diseases, including those that affect the metabolic and nervous system, such as type 2 diabetes and Parkinson’s disease. Numerous pathways maintain and/or restore proper mitochondrial function, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and the mitochondrial unfolded protein response. New and powerful phenotypic assays in cell-based models, as well as multicellular organisms, have been developed to explore these different aspects of mitochondrial function. Modulating mitochondrial function has therefore emerged as an attractive therapeutic strategy for a range of diseases, which has spurred active drug discovery efforts in this area. PMID:23666487
Chondromyxoid Fibromas of the Neurocranium
Linskey, Mark E.; Hogg, Jeffrey; Sekhar, Laligam N.
1991-01-01
We report a case of a chondromyxoid fibroma involving the upper clivus in a 73-year-old man. Chondromyxoid fibromas are uncommon benign bone tumors that rarely involve the skull. Chondromyxoid fibromas arising in the membranous neurocranium resemble their extracranial counterparts, appearing as radiolucent lesions with sclerotic margins and presenting most often as a painless focal swelling. Chondromyxoid fibromas arising in the chondrocranium differ from their extracranial counterparts and from those arising in the membranous neurocranium. They appear as locally destructive, often calcified, and exophytic lesions without sclerotic margins and present with cranial nerve dysfunction and symptoms caused by central nervous system compression. ImagesFigure 1Figure 2Figure 3 PMID:17170833
[Clinical use of neurostimulation].
Schmidt, R A; Tanagho, E A
1990-07-01
Our experience is broad-based and covers a number of difficult conditions that urologists deal with regularly. In patients who have been followed for several years, consistency of stimulation response has been observed. Even after use of the stimulator for several months or years, symptoms often return as soon as the stimulation ceases in cases of a malfunction or electrode movement. Neurostimulation, however, is no panacea. Patients with specific muscular dysfunction, determined urodynamically, must be carefully selected. They must also be willing to cooperate actively in their care. Test stimulation of the sacral nerves has provided invaluable insight into the neuromuscular responses mediated by the S2-4 nerves and has thus helped identify dysfunction that is specifically associated with each of these nerves. It has also helped discern differences between the integrity of pelvic muscles and the capability of the patient to use these muscles. This information allows the urologist to focus on a specific muscular dysfunction and to re-educate the patient to use the pelvic musculature properly or, failing this, to use neurostimulation via an implant to modulate the dysfunction. There must be a strong commitment on the part of the physician. No two patients are alike. Attention to patients' symptoms, the pattern of muscle dysfunction found in the pelvis, the responses to test stimulation, the urodynamic findings with and without stimulation, and the underlying anxieties of patients, which can contribute to symptoms, are all important considerations. Neurostimulation is an exciting and fascinating addition to the urologist's armamentarium. Most important, urologists are now able to test the functional integrity of the pelvic musculature and specifically identify weakness and dysfunction. Therapy can now be based on an assessment of the functional capabilities of the nervous system involved in micturition control.
The Association between Central Adiposity and Autonomic Dysfunction in Obesity
Fidan-Yaylali, Güzin; Yaylali, Yalin Tolga; Erdogan, Çağdaş; Can, Beray; Senol, Hande; Gedik-Topçu, Bengi; Topsakal, Senay
2016-01-01
Objective To determine the relationship between central adiposity parameters and autonomic nervous system (ANS) dysfunction. Subjects and Methods The study included 114 obese individuals without any cardiovascular risk factors. Weight (in kg), height (in m), and waist circumference (WC; in cm) were measured and body mass index was calculated. Echocardiographic examination was performed to measure left ventricular mass and epicardial fat thickness (EFT). All the participants underwent an exercise test and electrophysiological evaluation using electromyography. Heart rate recovery (HRR) at 1-5 min, R-R interval variation at rest and during hyperventilation, and sympathetic skin response were measured. Pearson's correlation analysis was used. Multiple linear regression analysis was used to identify the factors associated with autonomic dysfunction. Results The HRR at 1-5 min was negatively correlated with WC and age (WC-HRR1: r = −0.32; WC-HRR2: r = −0.31; WC-HRR3: r = −0.26; WC-HRR4: r = −0.23; WC-HRR5: r = −0.21; age-HRR2: r = −0.32; age-HRR3: r = −0.28; age-HRR4: r = −0.41; age-HRR5: r = −0.42). Age was the only independent predictor of reduced HRR at 1-5 min. In addition, WC predicted a reduced HRR at 3 min. There were no significant associations between central obesity and electrophysiological parameters. EFT was not associated with ANS dysfunction. Conclusion In this study, central adiposity and aging were associated with ANS dysfunction in obese individuals. The WC could be a marker of ANS dysfunction in obese individuals without any cardiovascular risk factors. The HRR assessment at a later decay phase could be more valuable for evaluating ANS function than during early recovery. PMID:27194294
Lewis, Dorothy Otnow; Yeager, Catherine A; Blake, Pamela; Bard, Barbara; Strenziok, Maren
2004-01-01
Eighteen males condemned to death in Texas for homicides committed prior to the defendants' 18th birthdays received systematic psychiatric, neurologic, neuropsychological, and educational assessments, and all available medical, psychological, educational, social, and family data were reviewed. Six subjects began life with potentially compromised central nervous system (CNS) function (e.g., prematurity, respiratory distress syndrome). All but one experienced serious head traumas in childhood and adolescence. All subjects evaluated neurologically and neuropsychologically had signs of prefrontal cortical dysfunction. Neuropsychological testing was more sensitive to executive dysfunction than neurologic examination. Fifteen (83%) had signs, symptoms, and histories consistent with bipolar spectrum, schizoaffective spectrum, or hypomanic disorders. Two subjects were intellectually limited, and one suffered from parasomnias and dissociation. All but one came from extremely violent and/or abusive families in which mental illness was prevalent in multiple generations. Implications regarding the ethics involved in matters of culpability and mitigation are considered.
Dissecting dysfunctional crosstalk pathways regulated by miRNAs during glioma progression
Li, Feng; Li, Xiang; Feng, Li; Shi, Xinrui; Wang, Lihua; Li, Xia
2016-01-01
Glioma is a malignant nervous system tumor with a high fatality rate and poor prognosis. MicroRNAs (miRNAs) are important post-transcriptional modulators of glioma initiation and progression. Tumor progression often results from dysfunctional co-operation between pathways regulated by miRNAs. We therefore constructed a glioma progression-related miRNA-pathway crosstalk network that not only revealed some key miRNA-pathway patterns, but also helped characterize the functional roles of miRNAs during glioma progression. Our data indicate that crosstalk between cell cycle and p53 pathways is associated with grade II to grade III progression, while cell communications-related pathways involving regulation of actin cytoskeleton and adherens junctions are associated with grade IV glioblastoma progression. Furthermore, miRNAs and their crosstalk pathways may be useful for stratifying glioma and glioblastoma patients into groups with short or long survival times. Our data indicate that a combination of miRNA and pathway crosstalk information can be used for survival prediction. PMID:27013589
[Chronic renal disease as cardiovascular risk factor].
Hermans, M M H; Kooman, J P; Stehouwer, C D A
2008-07-19
A lowering of the glomerular filtration rate (GFR) and/or the presence of albuminuria are signs of chronic renal disease. Both variables are for the most part independently associated with an increased risk of cardiovascular morbidity and mortality. Albuminuria is a marker of endothelial dysfunction. A decrease of the GFR is associated with non-traditional risk factors, e.g. renal anaemia, uraemic toxins due to a decrease of the renal clearance, hyperhomocysteinaemia caused by a diminished homocysteine metabolism, excessive activation of the sympathetic nervous system which is related to sleep apnoea syndrome, oxidative stress and dyslipidaemia associated with the formation of vasotoxic, oxidised LDL cholesterol. These non-traditional risk factors may, alone or in combination with traditional atherogenic risk factors (e.g. age, male gender, smoking, hypercholesterolaemia, hypertension, obesity, positive family history and diabetes mellitus), partially via endothelial dysfunction, result in harmful effects on arterial function, increasing cardiovascular morbidity and mortality. Different stages of chronic kidney disease are associated with specific risk factors, making a specific therapeutic approach essential.
Laughter is not always funny: breath-holding spells in familial dysautonomia.
Maayan, Channa; Katz, Eliot; Begin, Michal; Yuvchev, Ivelin; Kharasch, Virginia S
2015-02-01
Familial dysautonomia (FD) is a genetic disease characterized by primary autonomic dysfunction including parasympathetic hypersensitivity. Breath-holding spells (BHS) are believed to be caused by autonomic dysregulation mediated via the vagus nerve and increased in patients with a family history of BHS. Details and understanding of its pathophysiology are lacking. In this retrospective study of patients with FD, the incidence of BHS was higher at 53.3%, compared with previous studies in normal children. Laughter as a precipitating factor for BHS has not been previously reported in FD and occurred in 10% of patients in this study. Lower lung volumes, chronic lung disease, chronic CO2 retention, and inadequate autonomic compensation occur in those with FD leading to a higher incidence and severity of BHS when crying or laughing. Thus, FD may be a good model for understanding manifestations of the autonomic nervous system dysfunction and contribute to our knowledge of BHS mechanisms. © The Author(s) 2014.
Ricci, Katia; Libro, Giuseppe; Vecchio, Eleonora; Delussi, Marianna; Montemurno, Anna; Iannone, Florenzo
2017-01-01
Background A dysfunction of pain processing at central and peripheral levels was reported in fibromyalgia (FM). We aimed to correlate laser evoked potentials (LEPs), Sympathetic Skin Response (SSR), and clinical features in FM patients. Methods Fifty FM patients and 30 age-matched controls underwent LEPs and SSR by the right hand and foot. The clinical evaluation included FM disability (FIQ) and severity scores (WPI), anxiety (SAS) and depression (SDS) scales, and questionnaires for neuropathic pain (DN4). Results The LEP P2 latency and amplitude and the SSR latency were increased in FM group. This latter feature was more evident in anxious patients. The LEPs habituation was reduced in FM patients and correlated to pain severity scores. In a significant number of patients (32%) with higher DN4 and FIQ scores, SSR or LEP responses were absent. Conclusions LEPs and SSR might contribute to clarifying the peripheral and central nervous system involvement in FM patients. PMID:29093972
de Tommaso, Marina; Ricci, Katia; Libro, Giuseppe; Vecchio, Eleonora; Delussi, Marianna; Montemurno, Anna; Lopalco, Giuseppe; Iannone, Florenzo
2017-01-01
A dysfunction of pain processing at central and peripheral levels was reported in fibromyalgia (FM). We aimed to correlate laser evoked potentials (LEPs), Sympathetic Skin Response (SSR), and clinical features in FM patients. Fifty FM patients and 30 age-matched controls underwent LEPs and SSR by the right hand and foot. The clinical evaluation included FM disability (FIQ) and severity scores (WPI), anxiety (SAS) and depression (SDS) scales, and questionnaires for neuropathic pain (DN4). The LEP P2 latency and amplitude and the SSR latency were increased in FM group. This latter feature was more evident in anxious patients. The LEPs habituation was reduced in FM patients and correlated to pain severity scores. In a significant number of patients (32%) with higher DN4 and FIQ scores, SSR or LEP responses were absent. LEPs and SSR might contribute to clarifying the peripheral and central nervous system involvement in FM patients.
Koganemaru, Satoko; Goto, Fumiyuki; Arai, Miki; Toshikuni, Keitaro; Hosoya, Makoto; Wakabayashi, Takeshi; Yamamoto, Nobuko; Minami, Shujiro; Ikeda, Satoshi; Ikoma, Katsunori; Mima, Tatsuya
Vestibular rehabilitation is useful to alleviate chronic dizziness in patients with vestibular dysfunction. It aims to induce neuronal plasticity in the central nervous system (especially in the cerebellum) to promote vestibular compensation. Transcranial cerebellar direct current stimulation (tcDCS) reportedly enhances cerebellar function. We investigated whether vestibular rehabilitation partially combined with tcDCS is superior to the use of rehabilitation alone for the alleviation of dizziness. Patients with chronic dizziness due to vestibular dysfunction received rehabilitation concurrently with either 20-min tcDCS or sham stimulation for 5 days. Pre- and post-intervention (at 1 month) dizziness handicap inventory (DHI) scores and psychometric and motor parameters were compared. Sixteen patients completed the study. DHI scores in the tcDCS group showed significant improvement over those in the sham group (Mann-Whitney U test, p = 0.033). Vestibular rehabilitation partially combined with tcDCS appears to be a promising approach. Copyright © 2017 Elsevier Inc. All rights reserved.
Anderson-Fabry disease in heart failure.
Akhtar, M M; Elliott, P M
2018-06-16
Anderson-Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the GLA gene that result in deficiency of the enzyme alpha-galactosidase A. The worldwide incidence of Fabry's disease is reported to be in the range of 1 in 40,000-117,000, although this value may be a significant underestimate given under recognition of symptoms and delayed or missed diagnosis. Deficiency in alpha-galactosidase A causes an accumulation of neutral glycosphingolipids such as globotriaosylceramide (Gb3) in lysosomes within various tissues including the vascular endothelium, kidneys, heart, eyes, skin and nervous system. Gb3 accumulation induces pathology via the release of pro-inflammatory cytokines, growth-promoting factors and by oxidative stress, resulting in myocardial extracellular matrix remodelling, left ventricular hypertrophy (LVH), vascular dysfunction and interstitial fibrosis. Cardiac involvement manifesting as ventricular hypertrophy, systolic and diastolic dysfunction, valvular abnormalities and conduction tissue disease is common in AFD and is associated with considerable cardiovascular morbidity and mortality from heart failure, sudden cardiac death and stroke-related death.
Primary CNS lymphoma as a cause of Korsakoff syndrome.
Toth, Cory; Voll, Chris; Macaulay, Robert
2002-01-01
Korsakoff syndrome presents with memory dysfunction with retrograde amnesia, anterograde amnesia, limited insight into dysfunction, and confabulation. The most common etiology of Korsakoff syndrome is thiamine deficiency secondary to alcoholism. There are limited case reports of structural lesions causing Korsakoff syndrome. A 46-year-old male with a long history of alcoholism presented with a history of confusion, amnesia, and confabulation with no localizing features on neurological examination. The patient showed no clinical change with intravenous thiamine. Computed tomography of the brain revealed a heterogenous, enhancing mass lesion centered within the third ventricle, with other lesions found throughout cortical and subcortical regions. The patient was given dexamethasone i.v. without noticeable clinical improvement but with marked radiological improvement with mass reduction. Stereotactic biopsy revealed a diagnosis of primary central nervous system (CNS) lymphoma. Most patients presenting with Korsakoff syndrome have thiamine deficiency; however, mass lesions can produce an identical clinical picture. This is the first case report of a patient with primary CNS lymphoma presenting as Korsakoff syndrome.
Zifko, U; Chen, R
1996-10-01
Neurological disorders frequently contribute to respiratory failure in critically ill patients. They may be the primary reason for the initiation of mechanical ventilation, or may develop later as a secondary complication. Disorders of the central nervous system leading to respiratory failure include metabolic encephalopathies, acute stroke, lesions of the motor cortex and brain-stem respiratory centres, and their descending pathways. Guillan-Barré syndrome, critical illness polyneuropathy and acute quadriplegic myopathy are the more common neuromuscular causes of respiratory failure. Clinical observations and pulmonary function tests are important in monitoring respiratory function. Respiratory electrophysiological studies are useful in the investigation and monitoring of respiratory failure. Transcortical and cervical magnetic stimulation can assess the central respiratory drive, and may be useful in determining the prognosis in ventilated patients, with cervical cord dysfunction. It is also helpful in the assessment of failure to wean, which is often caused by a combination of central and peripheral nervous system disorders. Phrenic nerve conduction studies and needle electromyography of the diaphragm and chest wall muscles are useful to characterize neuropathies and myopathies affecting the diaphragm. Repetitive phrenic nerve stimulation can assess neuromuscular transmission defects. It is important to identify patients at risk of respiratory failure. They should be carefully monitored and mechanical ventilation should be initiated before the development of severe hypoxaemia.
Influence of the Enteric Nervous System on Gut Motility Patterns in Zebrafish
NASA Astrophysics Data System (ADS)
Baker, Ryan; Ganz, Julia; Melancon, Ellie; Eisen, Judith; Parthasarathy, Raghuveer
The enteric nervous system (ENS), composed of diverse neuronal subtypes and glia, regulates essential gut functions including motility, secretion, and homeostasis. In humans and animals, decreased numbers of enteric neurons lead to a variety of types of gut dysfunction. However, surprisingly little is known about how the number, position, or subtype of enteric neurons affect the regulation of gut peristalsis, due to the lack of good model systems and the lack of tools for the quantitative characterization of gut motion. We have therefore developed a method of quantitative spatiotemporal mapping using differential interference contrast microscopy and particle image velocimetry, and have applied this to investigate intestinal dynamics in normal and mutant larval zebrafish. From movies of gut motility, we obtain a velocity vector field representative of gut motion, from which we can quantify parameters relating to gut peristalsis such as frequency, wave speed, deformation amplitudes, wave duration, and non-linearity of waves. We show that mutants with reduced neuron number have contractions that are more regular in time and reduced in amplitude compared to wild-type (normal) fish. We also show that feeding fish before their yolk is consumed leads to stronger motility patterns. We acknowledge support from NIH awards P50 GM098911 and P01 HD022486.
The ubiquitin-proteasome system in spongiform degenerative disorders
Whatley, Brandi R.; Li, Lian; Chin, Lih-Shen
2008-01-01
Summary Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer's disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan's spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin-proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin-protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders. PMID:18790052
Neuromodulation of lower limb motor control in restorative neurology.
Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried
2012-06-01
One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. Copyright © 2012 Elsevier B.V. All rights reserved.
Gur'ianov, V A; Shepetovskaia, N L; Pivovarova, G M; Tolmachev, G N; Volodin, A V
2007-01-01
By taking into account the fact that the autonomic nervous and cardiovascular systems (ANS and CVS) are the major links of development of the general adaptation syndrome in pregnancy, which are affected by all the processes involved in the development of the syndrome, the author analyzed the state of these systems in healthy non-pregnant and pregnant women (HNPW and HPW) and in pregnant women with gestosis. HNPW were found to have already a prerequisite for impairing pregnancy adaptive processes as ANS and CVS dysfunction. In HPW, these impairments were more pronounced. In the pregnant women, impaired adaptive processes manifested themselves as excess sympathicotonia in 72% and parasympathicotonia in 23% of cases despite the treatment performed, which was accompanied by hypokinetic hemodynamics in 53 and 50%, respectively. In hyper- and eukinetic hemodynamics, there were no physiologically required decreases in total peripheral vascular resistance while in hypokinetic hemodynamics, there was its pathological increase. Such disorders enhance the significance of abdominal compartment syndrome, aortocaval compression, ischemia-reperfusion, hydrodynamic and membranogenic (capillary leakage) factors of impaired water metabolism, which contributes to adaptation derangement. Based on the findings, the authors have created a developmental modulation algorithm for the general adaptation syndrome by completed pregnancy and surgical delivery.
Neuromodulation of lower limb motor control in restorative neurology
Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried
2012-01-01
One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657
Aspects of mental health dysfunction among survivors of childhood cancer.
Fidler, Miranda M; Ziff, Oliver J; Wang, Sarra; Cave, Joshua; Janardhanan, Pradeep; Winter, David L; Kelly, Julie; Mehta, Susan; Jenkinson, Helen; Frobisher, Clare; Reulen, Raoul C; Hawkins, Michael M
2015-09-29
Some previous studies have reported that survivors of childhood cancer are at an increased risk of developing long-term mental health morbidity, whilst others have reported that this is not the case. Therefore, we analysed 5-year survivors of childhood cancer using the British Childhood Cancer Survivor Study (BCCSS) to determine the risks of aspects of long-term mental health dysfunction. Within the BCCSS, 10 488 survivors completed a questionnaire that ascertained mental health-related information via 10 questions from the Short Form-36 survey. Internal analyses were conducted using multivariable logistic regression to determine risk factors for mental health dysfunction. External analyses were undertaken using direct standardisation to compare mental health dysfunction in survivors with UK norms. This study has shown that overall, childhood cancer survivors had a significantly higher prevalence of mental health dysfunction for 6/10 questions analysed compared to UK norms. Central nervous system (CNS) and bone sarcoma survivors reported the greatest dysfunction, compared to expected, with significant excess dysfunction in 10 and 6 questions, respectively; the excess ranged from 4.4-22.3% in CNS survivors and 6.9-15.9% in bone sarcoma survivors. Compared to expected, excess mental health dysfunction increased with attained age; this increase was greatest for reporting 'limitations in social activities due to health', where the excess rose from 4.5% to 12.8% in those aged 16-24 and 45+, respectively. Within the internal analyses, higher levels of educational attainment and socio-economic classification were protective against mental health dysfunction. Based upon the findings of this large population-based study, childhood cancer survivors report significantly higher levels of mental health dysfunction than those in the general population, where deficits were observed particularly among CNS and bone sarcoma survivors. Limitations were also observed to increase with age, and thus it is important to emphasise the need for mental health evaluation and services across the entire lifespan. There is evidence that low educational attainment and being unemployed or having never worked adversely impacts long-term mental health. These findings provide an evidence base for risk stratification and planning interventions.
2013-09-27
Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Metastatic Childhood Soft Tissue Sarcoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Childhood Visual Pathway Glioma; Unspecified Childhood Solid Tumor, Protocol Specific
Chronic stress impacts the cardiovascular system: animal models and clinical outcomes.
Golbidi, Saeid; Frisbee, Jefferson C; Laher, Ismail
2015-06-15
Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies. Copyright © 2015 the American Physiological Society.
The effects of ozone exposure and associated injury mechanisms on the central nervous system.
Martínez-Lazcano, Juan Carlos; González-Guevara, Edith; del Carmen Rubio, María; Franco-Pérez, Javier; Custodio, Verónica; Hernández-Cerón, Miguel; Livera, Carlos; Paz, Carlos
2013-01-01
Ozone (O3) is a component of photochemical smog, which is a major air pollutant and demonstrates properties that are harmful to health because of the toxic properties that are inherent to its powerful oxidizing capabilities. Environmental O3 exposure is associated with many symptoms related to respiratory disorders, which include loss of lung function, exacerbation of asthma, airway damage, and lung inflammation. The effects of O3 are not restricted to the respiratory system or function - adverse effects within the central nervous system (CNS) such as decreased cognitive response, decrease in motor activity, headaches, disturbances in the sleep-wake cycle, neuronal dysfunctions, cell degeneration, and neurochemical alterations have also been described; furthermore, it has also been proposed that O3 could have epigenetic effects. O3 exposure induces the reactive chemical species in the lungs, but the short half-life of these chemical species has led some authors to attribute the injurious mechanisms observed within the lungs to inflammatory processes. However, the damage to the CNS induced by O3 exposure is not well understood. In this review, the basic mechanisms of inflammation and activation of the immune system by O3 exposure are described and the potential mechanisms of damage, which include neuroinflammation and oxidative stress, and the signs and symptoms of disturbances within the CNS caused by environmental O3 exposure are discussed.
Neonatal abstinence syndrome: Historical perspective, current focus, future directions.
Jones, Hendrée E; Fielder, Andrea
2015-11-01
Neonatal abstinence syndrome (NAS) occurs following prenatal opioid exposure. It is characterized by signs and symptoms indicating central nervous system hyperirritability and autonomic nervous system, gastrointestinal tract, and respiratory system dysfunction. This article: (1) briefly reviews NAS history, including initial identification, assessment, and treatment efforts; (2) summarizes the current status of and current issues surrounding recent NAS assessment and treatment, and (3) details future directions in NAS conceptualization, measurement, and treatment. Mortality rate estimates in neonates treated for NAS exceeded 33%, and surpassed 90% for un-treated infants during the late-1800s until the mid-1900s. The focus of both assessment and treatment over the past 50years is predominantly due to two forces. First, methadone pharmacotherapy for "heroin addiction" led to women in methadone maintenance programs who were, or became pregnant. The second was defining NAS and developing a measure of neonatal withdrawal, the Neonatal Abstinence Scoring System (NASS). Various NAS treatment protocols were based on the NASS as well as other NAS measures. Future research must focus on psychometrically sound screening and assessment measures of neonatal opioid withdrawal for premature, term and older infants, measuring and treating possible withdrawal from non-opioids, particularly benzodiazepines, integrated non-pharmacological treatment of NAS, weight-based versus symptom-based treatment of NAS, and second-line treatment for NAS. Copyright © 2015 Elsevier Inc. All rights reserved.
Alcoholism: A Multi-Systemic Cellular Insult to Organs.
Dguzeh, Ucee; Haddad, Natasha C; Smith, Kathia T S; Johnson, John O; Doye, Angelia A; Gwathmey, Judith K; Haddad, Georges E
2018-05-28
Alcohol abuse can affect more than the heart and the liver. Many observers often do not appreciate the complex and differing aspects of alcohol's effects in pathophysiologies that have been reported in multiple organs. Chronic alcohol abuse is known to be associated with pathophysiological changes that often result in life-threatening clinical outcomes, e.g., breast and colon cancer, pancreatic disease, cirrhosis of the liver, diabetes, osteoporosis, arthritis, kidney disease, immune system dysfunction, hypertension, coronary artery disease, cardiomyopathy, and can be as far-reaching as to cause central nervous system disorders. In this review article, we will discuss the various organs impacted by alcohol abuse. The lack of clear guidelines on the amount and frequency of alcohol intake, complicated by personal demographics, make extrapolations to real-life practices at best difficult for public health policy-makers.
NASA Technical Reports Server (NTRS)
Schmidt, M. A.; Goodwin, T. J.
2014-01-01
Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth
Kulshreshtha, Poorvi; Deepak, Kishore K
2013-03-01
This review imparts an impressionistic tone to our current understanding of autonomic nervous system abnormalities in fibromyalgia. In the wake of symptoms present in patients with fibromyalgia (FM), autonomic dysfunction seems plausible in fibromyalgia. A popular notion is that of a relentless sympathetic hyperactivity and hyporeactivity based on heart rate variability (HRV) analyses and responses to various physiological stimuli. However, some exactly opposite findings suggesting normal/hypersympathetic reactivity in patients with fibromyalgia do exist. This heterogeneous picture along with multiple comorbidities accounts for the quantitative and qualitative differences in the degree of dysautonomia present in patients with FM. We contend that HRV changes in fibromyalgia may not actually represent increased cardiac sympathetic tone. Normal muscle sympathetic nerve activity (MSNA) and normal autonomic reactivity tests in patients with fibromyalgia suggest defective vascular end organ in fibromyalgia. Previously, we proposed a model linking deconditioning with physical inactivity resulting from widespread pain in patients with fibromyalgia. Deconditioning also modulates the autonomic nervous system (high sympathetic tone and a low parasympathetic tone). A high peripheral sympathetic tone causes regional ischaemia, which in turn results in widespread pain. Thus, vascular dysregulation and hypoperfusion in patients with FM give rise to ischaemic pain leading to physical inactivity. Microvascular abnormalities are also found in patients with FM. Therapeutic interventions (e.g. exercise) that result in vasodilatation and favourable autonomic alterations have proven to be effective. In this review, we focus on the vascular end organ in patients with fibromyalgia in particular and its modulation by exercise in general. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss.
Maiese, Kenneth
2017-01-01
With almost 47 million individuals worldwide suffering from some aspect of dementia, it is clear that cognitive loss impacts a significant proportion of the global population. Unfortunately, definitive treatments to resolve or prevent the onset of cognitive loss are limited. In most cases such care is currently non-existent prompting the need for novel treatment strategies. Mammalian forkhead transcription factors of the O class (FoxO) are one such avenue of investigation that offer an exciting potential to bring new treatments forward for disorders that involve cognitive loss. Here we examine the background, structure, expression, and function of FoxO transcription factors and their role in cognitive loss, programmed cell death in the nervous system with apoptosis and autophagy, and areas to target FoxOs for dementia and specific disorders such as Alzheimer's disease. FoxO proteins work in concert with a number of other cell survival pathways that involve growth factors, such as erythropoietin and neurotrophins, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), Wnt1 inducible signaling pathway protein 1 (WISP1), Wnt signaling, and cancer-related pathways. FoxO transcription factors oversee proinflammatory pathways, affect nervous system amyloid (Aβ) production and toxicity, lead to mitochondrial dysfunction, foster neuronal apoptotic cell death, and accelerate the progression of degenerative disease. However, under some scenarios such as those involving autophagy, FoxOs also can offer protection in the nervous system and reduce toxic intracellular protein accumulations and potentially limit Aβ toxicity. Given the ability of FoxOs to not only promote apoptotic cell death in the nervous system, but also through the induction of autophagy offer protection against degenerative disease that can lead to dementia, a fine balance in the activity of FoxOs may be required to target cognitive loss in individuals. Future work should yield exciting new prospects for FoxO proteins as new targets to treat the onset and progression of cognitive loss and dementia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Echolalia as a novel manifestation of neuropsychiatric systemic lupus erythematosus.
Zapor, M; Murphy, F T; Enzenauer, R
2001-01-01
"That tongue of yours, by which I have been tricked, shall have its power curtailed and enjoy the briefest use of speech." With these words, Hera, of Greek mythology, deprived the nymph Echo of spontaneous speech, constraining her instead to merely repeating the words of others. Echolalia, which derives from the word "echo," is disordered speech in which an individual persistently repeats what is heard. Echolalia has been described in patients with a number of neuropsychiatric illnesses including autism and Tourette's syndrome. Neuropsychiatric systemic lupus erythematosus (NPSLE) is a heterogeneous disease with protean manifestations that may occur in approximately 25% to 50% of patients with systemic lupus erythematosus (SLE). Although the most common manifestations include cognitive dysfunction (50%) and seizures (20%), NPSLE may also present as peripheral neuropathy (15%), psychosis (10%), or other central nervous system abnormalities. We report the case of a 57-year-old woman with SLE and echolalia.
Overview of the Autonomic Nervous System
... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...
Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H.; Barnett, Nigel L.; Kirk, Joshua K.; Lee, SoRa; Coorey, Nathan J.; Killingsworth, Murray; Sherman, Larry S.; Gillies, Mark C.
2014-01-01
Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium derived factor. Intravitreal injection of cilliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the central nervous system associated with glial dysfunction. PMID:23136411
EEG in Sarcoidosis Patients Without Neurological Findings.
Bilgin Topçuoğlu, Özgür; Kavas, Murat; Öztaş, Selahattin; Arınç, Sibel; Afşar, Gülgün; Saraç, Sema; Midi, İpek
2017-01-01
Sarcoidosis is a multisystem granulomatous disease affecting nervous system in 5% to 10% of patients. Magnetic resonance imaging (MRI) is accepted as the most sensitive method for detecting neurosarcoidosis. However, the most common findings in MRI are the nonspecific white matter lesions, which may be unrelated to sarcoidosis and can occur because of hypertension, diabetes mellitus, smoking, and other inflammatory or infectious disorders, as well. Autopsy studies report more frequent neurological involvement than the ante mortem studies. The aim of this study is to assess electroencephalography (EEG) in sarcoidosis patients without neurological findings in order to display asymptomatic neurological dysfunction. We performed EEG on 30 sarcoidosis patients without diagnosis of neurosarcoidosis or prior neurological comorbidities. Fourteen patients (46.7%) showed intermittant focal and/or generalized slowings while awake and not mentally activated. Seven (50%) of these 14 patients with EEG slowings had nonspecific white matter changes while the other half showed EEG slowings in the absence of MRI changes. We conclude that EEG slowings, when normal variants (psychomotor variant, temporal theta of elderly, frontal theta waves) are eliminated, may be an indicator of dysfunction in brain activity even in the absence of MRI findings. Hence, EEG may contribute toward detecting asymptomatic neurological dysfunction or probable future neurological involvement in sarcoidosis patients. © EEG and Clinical Neuroscience Society (ECNS) 2016.
Lipton, Jonathan O; Sahin, Mustafa
2014-10-22
The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.
Bell, David S H
2011-05-01
Vitamin D deficiency is associated with the risk factors of inflammation, insulin resistance and endothelial dysfunction, and left ventricular hypertrophy. As a result there is an increase in cardiovascular events (CVEs) associated with vitamin D deficiency. Vitamin D deficiency itself or secondary hyperparathyroidism or both may be responsible for the increase in CVEs. Correction of vitamin D deficiency may decrease the incidence of CVEs. Vitamin D deficiency is also associated with Alzheimer disease, schizophrenia, depression, and chronic pain and muscle weakness. Vitamin D deficiency is early treated with oral vitamin D supplements which may improve the manifestations of the diseases associated with vitamin D deficiency.
Pierce, Melinda J; Morse, Richard P
2012-03-01
Taybi-Linder syndrome, also known as microcephalic osteodysplastic primordial dwarfism types I and III, is a rare disorder with presumed autosomal recessive inheritance. It is characterized by intrauterine growth retardation, distinctive bone dysplasia, and central nervous system malformations. We present two siblings with Taybi-Linder syndrome, with an emphasis on the neurological profile in this disease, which includes brain malformations, intractable epilepsy, sensory deficits, profound cognitive deficits, and neuroendocrine dysfunction. We also present distinctive correlative neuroimaging (MRI) and electroencephalographic (EEG) findings. Increased knowledge of the neurological profile of Taybi-Linder syndrome may be helpful for clinicians and genetic counselors managing these patients. Copyright © 2012 Wiley Periodicals, Inc.
Functional neuroanatomy of human cortex cerebri in relation to wanting sex and having it.
Georgiadis, Janniko R
2015-04-01
Neuroanatomical textbooks typically restrict the central nervous system control of sexual responsiveness to the hypothalamus, brainstem and spinal cord. However, for all its primitive functions human sex is surprisingly complex and versatile. This review aims to extend the neuroanatomy of sexual responsiveness by providing a comprehensive overview of the empirical evidence for cerebral cortical involvement. To this end I will structure relevant human brain research data to fit the sexual pleasure cycle template-wanting sex, having sex, inhibiting sex-arguing that going through these sexual response phases requires adequate shifting between functional cortical networks. The relevance of this notion for understanding certain sexual dysfunctions is discussed. © 2015 Wiley Periodicals, Inc.
Diagnosis and management of congenital hypothyroidism.
Harrell, G B; Murray, P D
1998-03-01
Thyroid hormones are integral to the development and maturation of the central nervous system as well as normal growth and development. Comprehensive knowledge of the maturation and function of the thyroid gland is essential to understanding the pathophysiology of thyroid dysfunction. Early diagnosis and appropriate treatment in thyroid disease are imperative for normalization of thyroid hormone ratios. Optimal management includes early introduction and strict adherence to a regimen of L-thyroxine and routine monitoring of thyroid levels throughout life. Parents need to understand the importance of consistent medication administration and daily assessment of well-being because these actions are crucial to the attainment of an optimal level of development for infants with congenital hypothyroidism.
Congenital hemangioma in spondylocostal dysostosis: a novel association*
Salinas-Torres, Victor Michael
2016-01-01
Congenital hemangioma is a benign tumor caused by dysfunction in embryogenesis and vasculogenesis, which progresses during fetal life to manifest as fully developed at birth. Although hemangiomas are the most common tumor of infancy, rapidly involuting congenital hemangioma has not been described in spondylocostal dysostosis. I report the novel association of congenital hemangioma and spondylocostal dysostosis in a Mexican newborn female patient with neural tube defects. Given the embryological relationship between skin and nervous system, I surmise that this association is not coincidental. I also propose that these morphologic alterations be incorporated to the spondylocostal dysostosis phenotype and specifically looked for in other affected children, in order to provide appropriate medical management and genetic counseling. PMID:28300884
Regulatory mechanisms in arterial hypertension: role of microRNA in pathophysiology and therapy.
Klimczak, Dominika; Jazdzewski, Krystian; Kuch, Marek
2017-02-01
Multiple factors underlie the pathophysiology of hypertension, involving endothelial dysregulation, vascular smooth muscle dysfunction, increased oxidative stress, sympathetic nervous system activation and altered renin -angiotensin -aldosterone regulatory activity. A class of non-coding RNA called microRNA, consisting of 17-25 nucleotides, exert regulatory function over these processes. This paper summarizes the currently available data from preclinical and clinical studies on miRNA in the development of hypertension as well as the impact of anti-hypertensive treatment on their plasma expression. We present microRNAs' characteristics, their biogenesis and role in the regulation of blood pressure together with their potential diagnostic and therapeutic application in clinical practice.
Congenital hemangioma in spondylocostal dysostosis: a novel association.
Salinas-Torres, Victor Michael
2016-01-01
Congenital hemangioma is a benign tumor caused by dysfunction in embryogenesis and vasculogenesis, which progresses during fetal life to manifest as fully developed at birth. Although hemangiomas are the most common tumor of infancy, rapidly involuting congenital hemangioma has not been described in spondylocostal dysostosis. I report the novel association of congenital hemangioma and spondylocostal dysostosis in a Mexican newborn female patient with neural tube defects. Given the embryological relationship between skin and nervous system, I surmise that this association is not coincidental. I also propose that these morphologic alterations be incorporated to the spondylocostal dysostosis phenotype and specifically looked for in other affected children, in order to provide appropriate medical management and genetic counseling.
Understanding Parkinson Disease: A Complex and Multifaceted Illness.
Gopalakrishna, Apoorva; Alexander, Sheila A
2015-12-01
Parkinson disease is an incredibly complex and multifaceted illness affecting millions of people in the United States. Parkinson disease is characterized by progressive dopaminergic neuronal dysfunction and loss, leading to debilitating motor, cognitive, and behavioral symptoms. Parkinson disease is an enigmatic illness that is still extensively researched today to search for a better understanding of the disease, develop therapeutic interventions to halt or slow progression of the disease, and optimize patient outcomes. This article aims to examine in detail the normal function of the basal ganglia and dopaminergic neurons in the central nervous system, the etiology and pathophysiology of Parkinson disease, related signs and symptoms, current treatment, and finally, the profound impact of understanding the disease on nursing care.
Psychobiology of depression/distress in congestive heart failure
Hassan, Mustafa; Sheps, David S.
2011-01-01
Heart failure affects millions of Americans and new diagnosis rates are expected to almost triple over the next 30 years as our population ages. Affective disorders including clinical depression and anxiety are common in patients with congestive heart failure. Furthermore, the presence of these disorders significantly impacts quality of life, medical outcomes, and healthcare service utilization. In recent years, the literature has attempted to describe potential pathophysiologic mechanisms relating affective disorders and psychosocial stress to heart failure. Several potential mechanisms have been proposed including autonomic nervous system dysfunction, inflammation, cardiac arrhythmias, and altered platelet function. These mechanisms are reviewed in this article. Additional novel mechanisms such as mental stress-induced myocardial ischemia are also discussed. PMID:18368481
A rare case of Weil's disease with alveolar haemorrhage.
Chakrabarti, Abhiram; Nandy, Manab; Pal, Dipankar; Mallik, Sudesna
2014-05-01
Leptospirosis, a disease of protean manifestations occurs sporadically throughout the year with a peak seasonal incidence during the rainy season mimicking other febrile viral illness. In the rare case, the disease leads to renal and hepatic involvement with hemorrhage which may be associated with multisystem organ dysfunction in form of pulmonary, cardiac and central nervous system, when it is known as Weil's disease. Rarely haemorrhagic manifestations are assosciated. Early diagnosis is important as sometimes the disease may be life threatening. Proper antibiotics results in dramatic improvement. We hereby presented a case that had clinical features of Weil's disease with cough, dyspnoea and haemoptysis. Leptospirosis was detected on ELISA testing. Patient was cured rapidly with antibiotics.
[The interaction between gamma-aminobutyric acid and other related neurotransmitters in depression].
Li, Zhen; An, Shu-Cheng; Li, Jiang-Na
2014-06-01
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system (CNS) in mammalian, which involved in several mood disorders such as anxiety, depression and schizophrenia. Nowadays, there are growing evidences showed that the depression is concerned with a deficiency in brain GABA. However, there are numerous studies based on the monoamine hypothesis and glutamatergic dysfunction, while the study on GABA is relatively less and scattered. Our aim is to discuss the relationship between depression and GABA by introducing the role of GABA receptors and the interaction between GABA and 5-hydroxytryptamine, dopamine and glutamic acid. It provides new ideas for further study on the pathogenesis and therapy of depression.
Evaluation of community-acquired sepsis by PIRO system in the emergency department.
Chen, Yun-Xia; Li, Chun-Sheng
2013-09-01
The predisposition, infection/insult, response, and organ dysfunction (PIRO) staging system for septic patients allows grouping of heterogeneous patients into homogeneous subgroups. The purposes of this single-center, prospective, observational cohort study were to create a PIRO system for patients with community-acquired sepsis (CAS) presenting to the emergency department (ED) and assess its prognostic and stratification capabilities. Septic patients were enrolled and allocated to derivation (n = 831) or validation (n = 860) cohorts according to their enrollment dates. The derivation cohort was used to identify independent predictors of mortality and create a PIRO system by binary logistic regression analysis, and the prognostic performance of PIRO was investigated in the validation cohort by receiver operator characteristic (ROC) curve. Ten independent predictors of 28-day mortality were identified. The PIRO system combined the components of predisposition (age, chronic obstructive pulmonary disease, hypoalbuminemia), infection (central nervous system infection), response (temperature, procalcitonin), and organ dysfunction (brain natriuretic peptide, troponin I, mean arterial pressure, Glasgow coma scale score). The area under the ROC of PIRO was 0.833 for the derivation cohort and 0.813 for the validation cohort. There was a stepwise increase in 28-day mortality with increasing PIRO score and the differences between the low- (PIRO 0-10), intermediate- (11-20), and high- (>20) risk groups were very significant in both cohorts (p < 0.01). The present study demonstrates that this PIRO system is valuable for prognosis and risk stratification in patients with CAS in the ED.
Salicylate-induced cochlear impairments, cortical hyperactivity and re-tuning, and tinnitus.
Chen, Guang-Di; Stolzberg, Daniel; Lobarinas, Edward; Sun, Wei; Ding, Dalian; Salvi, Richard
2013-01-01
High doses of sodium salicylate (SS) have long been known to induce temporary hearing loss and tinnitus, effects attributed to cochlear dysfunction. However, our recent publications reviewed here show that SS can induce profound, permanent, and unexpected changes in the cochlea and central nervous system. Prolonged treatment with SS permanently decreased the cochlear compound action potential (CAP) amplitude in vivo. In vitro, high dose SS resulted in a permanent loss of spiral ganglion neurons and nerve fibers, but did not damage hair cells. Acute treatment with high-dose SS produced a frequency-dependent decrease in the amplitude of distortion product otoacoustic emissions and CAP. Losses were greatest at low and high frequencies, but least at the mid-frequencies (10-20 kHz), the mid-frequency band that corresponds to the tinnitus pitch measured behaviorally. In the auditory cortex, medial geniculate body and amygdala, high-dose SS enhanced sound-evoked neural responses at high stimulus levels, but it suppressed activity at low intensities and elevated response threshold. When SS was applied directly to the auditory cortex or amygdala, it only enhanced sound evoked activity, but did not elevate response threshold. Current source density analysis revealed enhanced current flow into the supragranular layer of auditory cortex following systemic SS treatment. Systemic SS treatment also altered tuning in auditory cortex and amygdala; low frequency and high frequency multiunit clusters up-shifted or down-shifted their characteristic frequency into the 10-20 kHz range thereby altering auditory cortex tonotopy and enhancing neural activity at mid-frequencies corresponding to the tinnitus pitch. These results suggest that SS-induced hyperactivity in auditory cortex originates in the central nervous system, that the amygdala potentiates these effects and that the SS-induced tonotopic shifts in auditory cortex, the putative neural correlate of tinnitus, arises from the interaction between the frequency-dependent losses in the cochlea and hyperactivity in the central nervous system. Copyright © 2012 Elsevier B.V. All rights reserved.
Courtney, Rosalba; Cohen, Marc; van Dixhoorn, Jan
2011-01-01
Heart rate variability (HRV) biofeedback is a self-regulation strategy used to improve conditions including asthma, stress, hypertension, and chronic obstructive pulmonary disease. Respiratory muscle function affects hemodynamic influences on respiratory sinus arrhythmia (RSA), and HRV and HRV-biofeedback protocols often include slow abdominal breathing to achieve physiologically optimal patterns of HRV with power spectral distribution concentrated around the 0.1-Hz frequency and large amplitude. It is likely that optimal balanced breathing patterns and ability to entrain heart rhythms to breathing reflect physiological efficiency and resilience and that individuals with dysfunctional breathing patterns may have difficulty voluntarily modulating HRV and RSA. The relationship between breathing movement patterns and HRV, however, has not been investigated. This study examines how individuals' habitual breathing patterns correspond with their ability to optimize HRV and RSA. Breathing pattern was assessed using the Manual Assessment of Respiratory Motion (MARM) and the Hi Lo manual palpation techniques in 83 people with possible dysfunctional breathing before they attempted HRV biofeedback. Mean respiratory rate was also assessed. Subsequently, participants applied a brief 5-minute biofeedback protocol, involving breathing and positive emotional focus, to achieve HRV patterns proposed to reflect physiological "coherence" and entrainment of heart rhythm oscillations to other oscillating body systems. Thoracic-dominant breathing was associated with decreased coherence of HRV (r = -.463, P = .0001). Individuals with paradoxical breathing had the lowest HRV coherence (t(8) = 10.7, P = .001), and the negative relationship between coherence of HRV and extent of thoracic breathing was strongest in this group (r = -.768, P = .03). Dysfunctional breathing patterns are associated with decreased ability to achieve HRV patterns that reflect cardiorespiratory efficiency and autonomic nervous system balance. This suggests that dysfunctional breathing patterns are not only biomechanically inefficient but also reflect decreased physiological resilience. Breathing assessment using simple manual techniques such as the MARM and Hi Lo may be useful in HRV biofeedback to identify if poor responders require more emphasis on correction of dysfunctional breathing.
On heart rate variability and autonomic activity in homeostasis and in systemic inflammation.
Scheff, Jeremy D; Griffel, Benjamin; Corbett, Siobhan A; Calvano, Steve E; Androulakis, Ioannis P
2014-06-01
Analysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature. In this paper we explored mathematical modeling of the relationship between the autonomic nervous system and the heart, incorporating basic mechanisms such as perturbing mean values of oscillating autonomic activities and saturating signal transduction pathways to explore their impacts on HRV. We focused our analysis on human endotoxemia, a well-established, controlled experimental model of systemic inflammation that provokes changes in HRV representative of acute stress. By contrasting modeling results with published experimental data and analyses, we found that even a simple model linking the autonomic nervous system and the heart confound the interpretation of HRV changes in human endotoxemia. Multiple plausible alternative hypotheses, encoded in a model-based framework, equally reconciled experimental results. In total, our work illustrates how conventional assumptions about the relationships between autonomic activity and frequency-domain HRV metrics break down, even in a simple model. This underscores the need for further experimental work towards unraveling the underlying mechanisms of autonomic dysfunction and HRV changes in systemic inflammation. Understanding the extent of information encoded in HRV signals is critical in appropriately analyzing prior and future studies. Copyright © 2014 Elsevier Inc. All rights reserved.
On heart rate variability and autonomic activity in homeostasis and in systemic inflammation
Scheff, Jeremy D.; Griffel, Benjamin; Corbett, Siobhan A.; Calvano, Steve E.; Androulakis, Ioannis P.
2014-01-01
Analysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature. In this paper we explored mathematical modeling of the relationship between the autonomic nervous system and the heart, incorporating basic mechanisms such as perturbing mean values of oscillating autonomic activities and saturating signal transduction pathways to explore their impacts on HRV. We focused our analysis on human endotoxemia, a well-established, controlled experimental model of systemic inflammation that provokes changes in HRV representative of acute stress. By contrasting modeling results with published experimental data and analyses, we found that even a simple model linking the autonomic nervous system and the heart confound the interpretation of HRV changes in human endotoxemia. Multiple plausible alternative hypotheses, encoded in a model-based framework, equally reconciled experimental results. In total, our work illustrates how conventional assumptions about the relationships between autonomic activity and frequency-domain HRV metrics break down, even in a simple model. This underscores the need for further experimental work towards unraveling the underlying mechanisms of autonomic dysfunction and HRV changes in systemic inflammation. Understanding the extent of information encoded in HRV signals is critical in appropriately analyzing prior and future studies. PMID:24680646
Bellinger, Denise L; Lorton, Dianne
2018-04-13
Immune-Mediated Inflammatory Diseases (IMIDs) is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA), Sjőgren's syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA) axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS). These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs. Using a rodent model of inflammatory arthritis as an IMID model, we report disease-specific maladaptive changes in β₂-adrenergic receptor (AR) signaling from protein kinase A (PKA) to mitogen activated protein kinase (MAPK) pathways in the spleen. Beta₂-AR signal "shutdown" in the spleen and switching from PKA to G-coupled protein receptor kinase (GRK) pathways in lymph node cells drives inflammation and disease advancement. Based on these findings and the existing literature in other IMIDs, we present and discuss relevant literature that support the hypothesis that unresolvable immune stimulation from chronic inflammation leads to a maladaptive disease-inducing and perpetuating sympathetic response in an attempt to maintain allostasis. Since the role of sympathetic dysfunction in IMIDs is best studied in RA and rodent models of RA, this IMID is the primary one used to evaluate data relevant to our hypothesis. Here, we review the relevant literature and discuss sympathetic dysfunction as a significant contributor to the pathophysiology of IMIDs, and then discuss a novel target for treatment. Based on our findings in inflammatory arthritis and our understanding of common inflammatory process that are used by the immune system across all IMIDs, novel strategies to restore SNS homeostasis are expected to provide safe, cost-effective approaches to treat IMIDs, lower comorbidities, and increase longevity.
Rothaug, Michelle; Stroobants, Stijn; Schweizer, Michaela; Peters, Judith; Zunke, Friederike; Allerding, Mirka; D'Hooge, Rudi; Saftig, Paul; Blanz, Judith
2015-01-31
The Lysosomal Associated Membrane Protein type-2 (LAMP-2) is an abundant lysosomal membrane protein with an important role in immunity, macroautophagy (MA) and chaperone-mediated autophagy (CMA). Mutations within the Lamp2 gene cause Danon disease, an X-linked lysosomal storage disorder characterized by (cardio)myopathy and intellectual dysfunction. The pathological hallmark of this disease is an accumulation of glycogen and autophagic vacuoles in cardiac and skeletal muscle that, along with the myopathy, is also present in LAMP-2-deficient mice. Intellectual dysfunction observed in the human disease suggests a pivotal role of LAMP-2 within brain. LAMP-2A, one specific LAMP-2 isoform, was proposed to be important for the lysosomal degradation of selective proteins involved in neurodegenerative diseases such as Huntington's and Parkinson's disease. To elucidate the neuronal function of LAMP-2 we analyzed knockout mice for neuropathological changes, MA and steady-state levels of CMA substrates. The absence of LAMP-2 in murine brain led to inflammation and abnormal behavior, including motor deficits and impaired learning. The latter abnormality points to hippocampal dysfunction caused by altered lysosomal activity, distinct accumulation of p62-positive aggregates, autophagic vacuoles and lipid storage within hippocampal neurons and their presynaptic terminals. The absence of LAMP-2 did not apparently affect MA or steady-state levels of selected CMA substrates in brain or neuroblastoma cells under physiological and prolonged starvation conditions. Our data contribute to the understanding of intellectual dysfunction observed in Danon disease patients and highlight the role of LAMP-2 within the central nervous system, particularly the hippocampus.
Jensen, Judy L; Jones, Christopher R; Kartsonaki, Christiana; Packer, Kristyn A; Adler, Frederick R; Liou, Theodore G
2017-08-01
Cystic fibrosis (CF) transmembrane regulator (CFTR) protein dysfunction causes CF. Improving survival allows detection of increasingly subtle disease manifestations. CFTR dysfunction in the central nervous system (CNS) may disturb circadian rhythm and thus sleep phase. We studied sleep in adults to better understand potential CNS CFTR dysfunction. We recruited participants from April 2012 through April 2015 and administered the Munich Chronotype Questionnaire (MCTQ). We compared free-day sleep measurements between CF and non-CF participants and investigated associations with CF survival predictors. We recruited 23 female and 22 male adults with CF aged 18 to 46 years and 26 female and 22 male volunteers aged 18 to 45 years. Compared with volunteers without CF, patients with CF had delayed sleep onset (0.612 h; P = .015), midsleep (1.11 h; P < .001), and wake (1.15 h; P < .001) times and prolonged sleep latency (7.21 min; P = .05) and duration (0.489 h; P = .05). Every hour delay in sleep onset was associated with shorter sleep duration by 0.29 h in patients with CF and 0.75 h in subjects without CF (P = .007) and longer sleep latency by 7.51 min in patients with CF and 1.6 min in volunteers without CF (P = .035). Among patients with CF, FEV 1 % predicted, prior acute pulmonary exacerbations, and weight were independent of all free-day sleep measurements. CF in adults is associated with marked delays in sleep phase consistent with circadian rhythm phase delays. Independence from disease characteristics predictive of survival suggests that sleep phase delay is a primary manifestation of CFTR dysfunction in the CNS. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Wang, Huei-Bin; Loh, Dawn H; Whittaker, Daniel S; Cutler, Tamara; Howland, David; Colwell, Christopher S
2018-01-01
Huntington's disease (HD) patients suffer from a progressive neurodegeneration that results in cognitive, psychiatric, cardiovascular, and motor dysfunction. Disturbances in sleep/wake cycles are common among HD patients with reports of delayed sleep onset, frequent bedtime awakenings, and fatigue during the day. The heterozygous Q175 mouse model of HD has been shown to phenocopy many HD core symptoms including circadian dysfunctions. Because circadian dysfunction manifests early in the disease in both patients and mouse models, we sought to determine if early intervention that improve circadian rhythmicity can benefit HD and delay disease progression. We determined the effects of time-restricted feeding (TRF) on the Q175 mouse model. At six months of age, the animals were divided into two groups: ad libitum (ad lib) and TRF. The TRF-treated Q175 mice were exposed to a 6-h feeding/18-h fasting regimen that was designed to be aligned with the middle of the time when mice are normally active. After three months of treatment (when mice reached the early disease stage), the TRF-treated Q175 mice showed improvements in their locomotor activity rhythm and sleep awakening time. Furthermore, we found improved heart rate variability (HRV), suggesting that their autonomic nervous system dysfunction was improved. Importantly, treated Q175 mice exhibited improved motor performance compared to untreated Q175 controls, and the motor improvements were correlated with improved circadian output. Finally, we found that the expression of several HD-relevant markers was restored to WT levels in the striatum of the treated mice using NanoString gene expression assays.
Holsen, Laura M.; Lee, Jong-Hwan; Spaeth, Sarah B.; Ogden, Lauren A.; Klibanski, Anne; Whitfield-Gabrieli, Susan; Sloan, Richard P.; Goldstein, Jill M.
2012-01-01
The comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) is among the 10th leading cause of morbidity and mortality worldwide. Thus, understanding the co-occurrence of these disorders will have major public health significance. MDD is associated with an abnormal stress response, manifested in brain circuitry deficits, gonadal dysfunction, and autonomic nervous system (ANS) dysregulation. Contribution of the relationships between these systems to the pathophysiology of MDD is not well understood. The objective of this preliminary study was to investigate, in parallel, relationships between HPG-axis functioning, stress response circuitry activation, and parasympathetic reactivity in healthy controls and women with MDD. Using fMRI with pulse oximetry [from which we calculated the high frequency (HF) component of R-R interval variability (HF-RRV), a measure of parasympathetic modulation] and hormone data, we studied eight women with recurrent MDD in remission and six controls during a stress response paradigm. We demonstrated that hypoactivations of hypothalamus, amygdala, hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and subgenual ACC were associated with lower parasympathetic cardiac modulation in MDD women. Estradiol and progesterone attenuated group differences in the effect of HF-RRV on hypoactivation in the amygdala, hippocampus, ACC, and OFC in MDD women. Findings have implications for understanding the relationship between mood, arousal, heart regulation, and gonadal hormones, and may provide insights into MDD and CVD risk comorbidity. PMID:22395084
Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia.
Hoover, D B; Isaacs, E R; Jacques, F; Hoard, J L; Pagé, P; Armour, J A
2009-12-15
Dysfunction of the intrinsic cardiac nervous system is implicated in the genesis of atrial and ventricular arrhythmias. While this system has been studied extensively in animal models, far less is known about the intrinsic cardiac nervous system of humans. This study was initiated to anatomically identify neurotransmitters associated with the right atrial ganglionated plexus (RAGP) of the human heart. Biopsies of epicardial fat containing a portion of the RAGP were collected from eight patients during cardiothoracic surgery and processed for immunofluorescent detection of specific neuronal markers. Colocalization of markers was evaluated by confocal microscopy. Most intrinsic cardiac neuronal somata displayed immunoreactivity for the cholinergic marker choline acetyltransferase and the nitrergic marker neuronal nitric oxide synthase. A subpopulation of intrinsic cardiac neurons also stained for noradrenergic markers. While most intrinsic cardiac neurons received cholinergic innervation evident as punctate immunostaining for the high affinity choline transporter, some lacked cholinergic inputs. Moreover, peptidergic, nitrergic, and noradrenergic nerves provided substantial innervation of intrinsic cardiac ganglia. These findings demonstrate that the human RAGP has a complex neurochemical anatomy, which includes the presence of a dual cholinergic/nitrergic phenotype for most of its neurons, the presence of noradrenergic markers in a subpopulation of neurons, and innervation by a host of neurochemically distinct nerves. The putative role of multiple neurotransmitters in controlling intrinsic cardiac neurons and mediating efferent signaling to the heart indicates the possibility of novel therapeutic targets for arrhythmia prevention.
Noh, Kyung-Min; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W.; Shen, Li; Li, Haitao; Allis, C. David
2015-01-01
ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of “repressive” histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX’s ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this “methyl/phos” switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction. PMID:25538301
Noh, Kyung-Min; Maze, Ian; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W; Shen, Li; Li, Haitao; Allis, C David
2015-06-02
ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of "repressive" histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX's ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this "methyl/phos" switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction.
Malan, Leoné; Hamer, Mark; Frasure-Smith, Nancy; Steyn, Hendrik S; Malan, Nicolaas T
2015-12-01
Adapting to an over-demanding stressful urban environment may exhaust the psychophysiological resources to cope with these demands, and lead to sympathetic nervous system dysfunction. The evidence that an urban-dwelling lifestyle may be detrimental to the cardiometabolic health of Africans motivated the design of the Sympathetic activity and Ambulatory Blood Pressure in African Prospective cohort study. We aimed to determine neural mechanistic pathways involved in emotional distress and vascular remodelling. The baseline sample included 409 teachers representing a bi-ethnic sex cohort from South Africa. The study was conducted in 2008-09 and repeated after 3-year follow-up in 2011-12, with an 87.8% successful follow-up rate. Seasonal changes were avoided and extensive clinical assessments were performed in a well-controlled setting. Data collection included sociodemographics, lifestyle habits, psychosocial battery and genetic analysis, mental stress responses mimicking daily life stress (blood pressure and haemostatic, cardiometabolic, endothelial and stress hormones). Target organ damage was assessed in the brain, heart, kidney, blood vessels and retina. A unique highly phenotyped cohort is presented that can address the role of a hyperactive sympathetic nervous system and neural response pathways contributing to the burden of cardiometabolic diseases in Africans. © The Author 2014. Published by Oxford University Press on behalf of the International Epidemiological Association.
A case of disseminated central nervous system sparganosis.
Noiphithak, Raywat; Doungprasert, Gahn
2016-01-01
Sparganosis is a very rare parasitic infection in various organs caused by the larvae of tapeworms called spargana. The larva usually lodges in the central nervous system (CNS) and the orbit. However, lumbar spinal canal involvement, as noted in the present case, is extremely rare. We report a rare case of disseminated CNS sparganosis involving the brain and spinal canal and review the literature. A 54-year-old man presented with progressive low back pain and neurological deficit at the lumbosacral level for 2 months. Imaging indicated arachnoiditis and an abnormal lesion at the L4-5 vertebral level. The patient underwent laminectomy of the L4-5 with lesionectomy and lysis of adhesions between the nerve roots. Microscopic examination indicated sparganum infection. Further brain imaging revealed evidence of chronic inflammation in the left parieto-occipital area without evidence of live parasites. In addition, an ophthalmologist reported a nonactive lesion in the right conjunctiva. The patient recovered well after surgery, although he had residual back pain and bladder dysfunction probably due to severe adhesion of the lumbosacral nerve roots. CNS sparganosis can cause various neurological symptoms similar to those of other CNS infections. A preoperative enzyme-linked immunosorbent assay is helpful for diagnosis, especially in endemic areas. Surgical removal of the worm remains the treatment of choice.
Kawasaki, Hideya; Kosugi, Isao; Meguro, Shiori; Iwashita, Toshihide
2017-02-01
In humans, the herpes virus family member cytomegalovirus (CMV) is the most prevalent mediator of intrauterine infection-induced congenital defect. Central nervous system (CNS) dysfunction is a distinguishing symptom of CMV infection, and characterized by ventriculoencephalitis and microglial nodular encephalitis. Reports on the initial distribution of CMV particles and its receptors on the blood brain barrier (BBB) are rare. Nevertheless, several factors are suggested to affect CMV etiology. Viral particle size is the primary factor in determining the pattern of CNS infections, followed by the expression of integrin β1 in endothelial cells, pericytes, meninges, choroid plexus, and neural stem progenitor cells (NSPCs), which are the primary targets of CMV infection. After initial infection, CMV disrupts BBB structural integrity to facilitate the spread of viral particles into parenchyma. Then, the initial meningitis and vasculitis eventually reaches NSPC-dense areas such as ventricular zone and subventricular zone, where viral infection inhibits NSPC proliferation and differentiation and results in neuronal cell loss. These cellular events clinically manifest as brain malformations such as a microcephaly. The purpose of this review is to clearly delineate the pathophysiological basis of congenital CNS anomalies caused by CMV. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Guan, Ling; Collet, Jean-Paul; Mazowita, Garey; Claydon, Victoria E
2018-01-01
Transient ischemic attack (TIA) and minor stroke have high risks of recurrence and deterioration into severe ischemic strokes. Risk stratification of TIA and minor stroke is essential for early effective treatment. Traditional tools have only moderate predictive value, likely due to their inclusion of the limited number of stroke risk factors. Our review follows Hans Selye's fundamental work on stress theory and the progressive shift of the autonomic nervous system (ANS) from adaptation to disease when stress becomes chronic. We will first show that traditional risk factors and acute triggers of ischemic stroke are chronic and acute stress factors or "stressors," respectively. Our first review shows solid evidence of the relationship between chronic stress and stroke occurrence. The stress response is tightly regulated by the ANS whose function can be assessed with heart rate variability (HRV). Our second review demonstrates that stress-related risk factors of ischemic stroke are correlated with ANS dysfunction and impaired HRV. Our conclusions support the idea that HRV parameters may represent the combined effects of all body stressors that are risk factors for ischemic stroke and, thus, may be of important predictive value for the risk of subsequent ischemic events after TIA or minor stroke.
Nair, Arun T; Ramachandran, Vadivelan; Joghee, Nanjan M; Antony, Shanish; Ramalingam, Gopalakrishnan
2018-01-01
Recent investigations suggest that gut microbiota affects the brain activity through the microbiota-gut-brain axis under both physiological and pathological disease conditions like Parkinson’s disease. Further dopamine synthesis in the brain is induced by dopamine producing enzymes that are controlled by gut microbiota via the microbiota-gut-brain axis. Also alpha synuclein deposition and the associated neurodegeneration in the enteric nervous system that increase intestinal permeability, oxidative stress, and local inflammation, accounts for constipation in Parkinson’s disease patients. The trigger that causes blood brain barrier leakage, immune cell activation and inflammation, and ultimately neuroinflammation in the central nervous system is believed to be due to the chronic low-grade inflammation in the gut. The non-motor symptoms that appear years before motor symptoms could be reliable early biomarkers, if they could be correlated with the established and reliable neuroimaging techniques or behavioral indices. The future directions should therefore, focus on the exploration of newer investigational techniques to identify these reliable early biomarkers and define the specific gut microbes that contribute to the development of Parkinson’s disease. This ultimately should pave the way to safer and novel therapeutic approaches that avoid the complications of the drugs delivered today to the brain of Parkinson’s disease patients. PMID:29291606
Armao, Diane; Bailey, Rachel M; Bouldin, Thomas W; Kim, Yongbaek; Gray, Steven J
2016-08-01
Giant axonal neuropathy (GAN) is an inherited severe sensorimotor neuropathy. The aim of this research was to investigate the neuropathologic features and clinical autonomic nervous system (ANS) phenotype in two GAN knockout (KO) mouse models. Little is known about ANS involvement in GAN in humans, but autonomic signs and symptoms are commonly reported in early childhood. Routine histology and immunohistochemistry was performed on GAN KO mouse specimens taken at various ages. Enteric dysfunction was assessed by quantifying the frequency, weight, and water content of defecation in GAN KO mice. Histological examination of the enteric, parasympathetic and sympathetic ANS of GAN KO mice revealed pronounced and widespread neuronal perikaryal intermediate filament inclusions. These neuronal inclusions served as an easily identifiable, early marker of GAN in young GAN KO mice. Functional studies identified an age-dependent alteration in fecal weight and defecation frequency in GAN KO mice. For the first time in the GAN KO mouse model, we described the early, pronounced and widespread neuropathologic features involving the ANS. In addition, we provided evidence for a clinical autonomic phenotype in GAN KO mice, reflected in abnormal gastrointestinal function. These findings in GAN KO mice suggest that consideration should be given to ANS involvement in human GAN, especially when considering treatments and patient care.
Guan, Ling; Collet, Jean-Paul; Mazowita, Garey; Claydon, Victoria E.
2018-01-01
Transient ischemic attack (TIA) and minor stroke have high risks of recurrence and deterioration into severe ischemic strokes. Risk stratification of TIA and minor stroke is essential for early effective treatment. Traditional tools have only moderate predictive value, likely due to their inclusion of the limited number of stroke risk factors. Our review follows Hans Selye’s fundamental work on stress theory and the progressive shift of the autonomic nervous system (ANS) from adaptation to disease when stress becomes chronic. We will first show that traditional risk factors and acute triggers of ischemic stroke are chronic and acute stress factors or “stressors,” respectively. Our first review shows solid evidence of the relationship between chronic stress and stroke occurrence. The stress response is tightly regulated by the ANS whose function can be assessed with heart rate variability (HRV). Our second review demonstrates that stress-related risk factors of ischemic stroke are correlated with ANS dysfunction and impaired HRV. Our conclusions support the idea that HRV parameters may represent the combined effects of all body stressors that are risk factors for ischemic stroke and, thus, may be of important predictive value for the risk of subsequent ischemic events after TIA or minor stroke. PMID:29556209
Verheij, Johanna B G M; Sival, Deborah A; van der Hoeven, Johannes H; Vos, Yvonne J; Meiners, Linda C; Brouwer, Oebele F; van Essen, Anthonie J
2006-01-01
Shah-Waardenburg syndrome is a rare congenital disorder with variable clinical expression, characterised by aganglionosis of the rectosigmoïd (Hirschsprung disease), and abnormal melanocyte migration, resulting in pigmentary abnormalities and sensorineural deafness (Waardenburg syndrome). Mutations in the EDN, EDNRB and SOX10 genes can be found in patients with this syndrome. SOX10 mutations are specifically associated with a more severe phenotype called PCWH: peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease. Neuronal expression of SOX10 occurs in neural crest cells during early embryonic development and in glial cells of the peripheral and central nervous systems during late embryonic development and in adults. We present a 4-year-old girl with the PCWH phenotype associated with a de novo nonsense mutation (S384X) in SOX10. Main clinical features were mental retardation, peripheral neuropathy, deafness, Hirschsprung disease, distal arthrogryposis, white hairlock, and growth retardation. She presented with hypotonia, developmental delay, reduced peripheral nerve conduction velocities, and radiologically assessed central hypomyelination. Subsequently, the formation of abnormal myelin within the central and peripheral nervous system was functionally and radiologically assessed. Children presenting with features of Waardenburg syndrome and neurological dysfunction should be tested for mutations in the SOX10 gene to enable diagnosis and counselling.
The nature of the autonomic dysfunction in multiple system atrophy
NASA Technical Reports Server (NTRS)
Parikh, Samir M.; Diedrich, Andre; Biaggioni, Italo; Robertson, David
2002-01-01
The concept that multiple system atrophy (MSA, Shy-Drager syndrome) is a disorder of the autonomic nervous system is several decades old. While there has been renewed interest in the movement disorder associated with MSA, two recent consensus statements confirm the centrality of the autonomic disorder to the diagnosis. Here, we reexamine the autonomic pathophysiology in MSA. Whereas MSA is often thought of as "autonomic failure", new evidence indicates substantial persistence of functioning sympathetic and parasympathetic nerves even in clinically advanced disease. These findings help explain some of the previously poorly understood features of MSA. Recognition that MSA entails persistent, constitutive autonomic tone requires a significant revision of our concepts of its diagnosis and therapy. We will review recent evidence bearing on autonomic tone in MSA and discuss their therapeutic implications, particularly in terms of the possible development of a bionic baroreflex for better control of blood pressure.
77 FR 56133 - Dinotefuran; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... is the nervous system but effects on the nervous system were only observed at high doses. Nervous... cholinergic nervous system seen after repeated dosing. Typically, low to moderate levels of neonicotinoids... peripheral nervous system (PNS). High levels of neonicotinoids can over stimulate the PNS, maintaining cation...
Sepsis-induced myocardial dysfunction and myocardial protection from ischemia/reperfusion injury.
McDonough, Kathleen H; Virag, Jitka Ismail
2006-01-01
Sepsis, bacteremia and inflammation cause myocardial depression. The mechanism of the dysfunction is not clearly established partly because dysfunction can be elicited by many different mechanisms which can all manifest in disruption of myocardial mechanical function. In addition the models of sepsis and bacteremia and inflammation may vary drastically in the sequence of the coordinated immune response to the inflammatory or septic stimulus. Patterns of cytokine expression can vary as can other responses of the immune system. Patterns of neurohumoral activation in response to the stress of sepsis or bacteremia or inflammation can also vary in both magnitude of response and temporal sequence of response. Stress induced activation of the sympathetic nervous system and humoral responses to stress have a wide range of intensity that can be elicited. The fairly uniform response of the myocardium indicating cardiac dysfunction is surprisingly constant. Systolic performance, as measured by stroke volume or cardiac output and pressure work as estimated by ventricular pressure, are impaired when myocardial contraction is compromised. At times, diastolic function, assessed by ventricular relaxation and filling, is impaired. In addition to the dysfunction that occurs, there is a longer term response of the myocardium to sepsis, and this response is similar to that which is elicited in the heart by multiple brief ischemia/reperfusion episodes and by numerous pharmacological agents as well as heat stress and modified forms of lipopolysaccharide. The myocardium develops protection after an initial stress such that during a second stress, the myocardium does not exhibit as much damage as does a non-protected heart. Many agents can induce this protection which has been termed preconditioning. Both early preconditioning (protection that is measurable min to hours after the initial stimulus) and late preconditioning (protection that is measurable hours to days after the initial trigger or stimulus) are effective in protecting the heart from prolonged ischemia and reperfusion injury. Understanding the mechanisms of sepsis/bacteremia induced dysfunction and protection and if the dysfunction and protection are the products of the same intracellular pathways is important in protecting the heart from failing to perform adequately during severe sepsis and/or septic shock and for understanding the multitude of mechanism by which the myocardium maintains reserve capacity.
Ferini-Strambi, Luigi; Rinaldi, Fabrizio; Giora, Enrico; Marelli, Sara; Galbiati, Andrea
2016-01-01
Rapid Eye Movement (REM) sleep Behaviour Disorder (RBD) is a REM sleep parasomnia characterized by loss of the muscle atonia that typically occurs during REM sleep, therefore allowing patients to act out their dreams. RBD manifests itself clinically as a violent behaviour occurring during the night, and is detected at the polysomnography by phasic and/or tonic muscle activity on the electromyography channel. In absence of neurological signs or central nervous system lesions, RBD is defined as idiopathic. Nevertheless, in a large number of cases the development of neurodegenerative diseases in RBD patients has been described, with the duration of the follow-up representing a fundamental aspect. A growing number of clinical, neurophysiologic and neuropsychological studies aimed to detect early markers of neurodegenerative dysfunction in RBD patients. Anyway, the evidence of impaired cortical activity, subtle neurocognitive dysfunction, olfactory and autonomic impairment and neuroimaging brain changes in RBD patients is challenging the concept of an idiopathic form of RBD, supporting the idea of RBD as an early manifestation of a more complex neurodegenerative process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chew, H B; Ngu, L H; Keng, W T
2011-03-01
A rare syndrome of rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD) has been recently described. We report the first patient with this syndrome in Southeast Asia and review reported cases to date. Our patient was good health with normal development until the age of 2. He then developed hyperphagic obesity, hypersomnolence, seizures, alveolar hypoventilation, central hypothyroidism, sodium and water dysregulation, gastrointestinal dysmotility, strabismus, disordered temperature and irregular heart rate, altered sweating, delayed puberty, mental retardation and recurrent respiratory tract infections. The cardiomyopathy with heart failure and abnormal cerebral spinal fluid (CSF) neurotransmitter analysis present in our patient have not been reported previously. Tumours of the sympathetic nervous system are known to be associated with this syndrome but had not been found in our patient at the time of reporting. We highlight the difficulty of achieving the diagnosis of ROHHAD syndrome and its overlap with other well-established disease entities. The mortality and morbidity resulting from the high incidence of cardiorespiratory arrest may be prevented by early ventilatory support.
Chew, H B; Ngu, L H; Keng, W T
2011-01-01
A rare syndrome of rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD) has been recently described. We report the first patient with this syndrome in Southeast Asia and review reported cases to date. Our patient was good health with normal development until the age of 2. He then developed hyperphagic obesity, hypersomnolence, seizures, alveolar hypoventilation, central hypothyroidism, sodium and water dysregulation, gastrointestinal dysmotility, strabismus, disordered temperature and irregular heart rate, altered sweating, delayed puberty, mental retardation and recurrent respiratory tract infections. The cardiomyopathy with heart failure and abnormal cerebral spinal fluid (CSF) neurotransmitter analysis present in our patient have not been reported previously. Tumours of the sympathetic nervous system are known to be associated with this syndrome but had not been found in our patient at the time of reporting. We highlight the difficulty of achieving the diagnosis of ROHHAD syndrome and its overlap with other well-established disease entities. The mortality and morbidity resulting from the high incidence of cardiorespiratory arrest may be prevented by early ventilatory support. PMID:22715259
Collebrusco, Luca; Lombardini, Rita
2014-01-01
A chronic continuous or intermittent gastrointestinal tract dysfunction, the irritable bowel syndrome (IBS), appears to be due to dysregulation of brain-gut-microbiota communication. Furthermore, the "microbiota" greatly impacts the bi-directional brain-gut axis communication. This article describes IBS in relation to similar diseases, presents the background to osteopathy, and proposes osteopathic manipulative treatment (OMT) to manage IBS. In IBS, OMT focuses on the nervous and circulatory systems, spine, viscera, and thoracic and pelvic diaphragms in order to restore homeostatic balance, normalize autonomic activity in the intestine, promote lymphatic flow, and address somatic dysfunction. Lymphatic and venous congestion are treated by the lymphatic pump techniques and stimulation of Chapman׳s reflex points. A simple treatment plan designed to lessen chronic pain and inflammation in IBS is presented based on current evidence-based literature. Since food itself, food allergies, and intolerance could contribute to symptom onset or even cause IBS, this article also provides dietary modifications to consider for patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Old Maids: Aging and Its Impact on Microglia Function
Koellhoffer, Edward C.; McCullough, Louise D.; Ritzel, Rodney M.
2017-01-01
Microglia are highly active and vigilant housekeepers of the central nervous system that function to promote neuronal growth and activity. With advanced age, however, dysregulated inflammatory signaling and defects in phagocytosis impede their ability to perform the most essential of homeostatic functions, including immune surveillance and debris clearance. Microglial activation is one of the hallmarks of the aging brain and coincides with age-related neurodegeneration and cognitive decline. Age-associated microglial dysfunction leads to cellular senescence and can profoundly alter the response to sterile injuries and immune diseases, often resulting in maladaptive responses, chronic inflammation, and worsened outcomes after injury. Our knowledge of microglia aging and the factors that regulate age-related microglial dysfunction remain limited, as the majority of pre-clinical studies are performed in young animals, and human brain samples are difficult to obtain quickly post-mortem or in large numbers. This review outlines the impact of normal aging on microglial function, highlights the potential mechanisms underlying age-related changes in microglia, and discusses how aging can shape the recovery process following injury. PMID:28379162
Combining neuroendocrine inhibitors in heart failure: reflections on safety and efficacy.
Jneid, Hani; Moukarbel, George V; Dawson, Bart; Hajjar, Roger J; Francis, Gary S
2007-12-01
Neuroendocrine activation in heart failure has become the major target of pharmacotherapy for this growing epidemic. Agents targeting the renin-angiotensin-aldosterone and sympathetic nervous systems have shown cardiovascular and survival benefits in clinical trials. Beta-blockers and angiotensin-converting enzyme (ACE) inhibitors remain the mainstream initial therapy. The benefits of aldosterone antagonists have been demonstrated in advanced heart failure (spironolactone) and after myocardial infarction complicated by left ventricular dysfunction and heart failure (eplerenone). Emerging clinical evidence demonstrated that angiotensin receptor blockers may be a reasonable alternative to ACE inhibitors in patients with heart failure (candesartan) and following myocardial infarction complicated by heart failure or left ventricular dysfunction (valsartan). Angiotensin receptor blockers (candesartan) also provided incremental benefits when added to ACE inhibitors in chronic heart failure. Thus, combining neuroendocrine inhibitors in heart failure appears both biologically plausible and evidence-based. However, this approach raised concerns about side effects, such as hypotension, renal insufficiency, hyperkalemia, and others. Close follow-up and implementation of evidence-based medicine (ie, using agents and doses proven beneficial in clinical trials) should therefore be undertaken when combining neuroendocrine inhibitors.
Wen, Wanxin; Gao, Hongxia; Kang, Nini; Lu, Aili; Qian, Caiwen; Zhao, Yuanqi
2017-07-01
Fluoroacetamide poisoning is the acute and severe disease of human, which leads to nervous, digestive, and cardiovascular system damage or even death in a short period of time. We report a case of a 65-year-old woman with loss of consciousness, nausea, and vomiting who was sent to the hospital by passers-by. She was diagnosed with severe fluoroacetamide poisoning with combined multiple organ dysfunction syndrome. When the diagnosis was unclear, we gave gastric lavage, support and symptomatic treatment, and closely with the vital sign. When the diagnosis was clear, based on the evidence of retrieved, muscle injection of acetamide, calcium gluconate, and vitamin C. Traditional Chinese medicine aspect, oral administration of mung bean soup of glycyrrhizae and Da-Cheng-Qi decoction enema. By setting reasonable treatment for patients, she had no special discomfort and complications after treatment. Besides, through 1-month follow-up, it was confirmed that the treatments were effective. Evidence-based integrated Chinese and Western medicines can effectively improve the therapeutic effects in severe fluoroacetamide-poisoned patients with combined MODS.
Parkinson's: a syndrome rather than a disease?
Titova, Nataliya; Padmakumar, C; Lewis, Simon J G; Chaudhuri, K Ray
2017-08-01
Emerging concepts suggest that a multitude of pathology ranging from misfolding of alpha-synuclein to neuroinflammation, mitochondrial dysfunction, and neurotransmitter driven alteration of brain neuronal networks lead to a syndrome that is commonly known as Parkinson's disease. The complex underlying pathology which may involve degeneration of non-dopaminergic pathways leads to the expression of a range of non-motor symptoms from the prodromal stage of Parkinson's to the palliative stage. Non-motor clinical subtypes, cognitive and non-cognitive, have now been proposed paving the way for possible subtype specific and non-motor treatments, a key unmet need currently. Natural history of these subtypes remains unclear and need to be defined. In addition to in vivo biomarkers which suggest variable involvement of the cholinergic and noradrenergic patterns of the Parkinson syndrome, abnormal alpha-synuclein accumulation have now been demonstrated in the gut, pancreas, heart, salivary glands, and skin suggesting that Parkinson's is a multi-organ disorder. The Parkinson's phenotype is thus not just a dopaminergic motor syndrome, but a dysfunctional multi-neurotransmitter pathway driven central and peripheral nervous system disorder that possibly ought to be considered a syndrome and not a disease.
Cerebro-renal interactions: impact of uremic toxins on cognitive function.
Watanabe, Kimio; Watanabe, Tsuyoshi; Nakayama, Masaaki
2014-09-01
Cognitive impairment (CI) associated with chronic kidney disease (CKD) has received attention as an important problem in recent years. Causes of CI with CKD are multifactorial, and include cerebrovascular disease, renal anemia, secondary hyperparathyroidism, dialysis disequilibrium, and uremic toxins (UTs). Among these causes, little is known about the role of UTs. We therefore selected 21 uremic compounds, and summarized reports of cerebro-renal interactions associated with UTs. Among the compounds, uric acid, indoxyl sulfate, p-cresyl sulfate, interleukin 1-β, interleukin 6, TNF-α, and PTH were most likely to affect the cerebro-renal interaction dysfunction; however, sufficient data have not been obtained for other UTs. Notably, most of the data were not obtained under uremic conditions; therefore, the impact and mechanism of each UT on cognition and central nervous system in uremic state remains unknown. At present, impacts and mechanisms of UT effects on cognition are poorly understood. Clarifying the mechanisms and establishing novel therapeutic strategies for cerebro-renal interaction dysfunction is expected to be subject of future research. Copyright © 2014 Elsevier Inc. All rights reserved.
The Tale of the Storyteller and the Painter: The Paradoxes in Nature.
Chandra, Sadanandavalli Retnaswami; Viswanathan, Lakshminarayanapuram Gopal; Wahatule, Rahul; Shetty, Safal
2017-01-01
Brain as the seat of behavior is acknowledged from the times of Charaka, however where neurology ends and philosophy begins remains an enigma. It is certainly every neurologist's observation that there is loss of function either region based or domain based in progressive diseases of the nervous system making it the seat of all useful activities. However, there are references to occurrence of new skills seen during various illnesses causing progressive cognitive dysfunction. This serves as a pharmaco-sparing agent in behavior management and therefore serves as a rehabilitatory tool. However, its pathomechanism is not clear. Two patients comprising one male and one female who were being evaluated for progressive cognitive dysfunction and were found to have interesting creative skills and are being described. The first patient is a case of young onset behavioral variant frontotemporal dementia and the second patient is a case of neurosarcoidosis. The emergence of these skills could be due to disinhibition of some of the innate skills of the patients during degeneration or establishment of new data linking circuits with creative potential during attempted repair.
Depression and Cardiac Disease: Epidemiology, Mechanisms, and Diagnosis
Huffman, Jeff C.; Celano, Christopher M.; Beach, Scott R.; Motiwala, Shweta R.; Januzzi, James L.
2013-01-01
In patients with cardiovascular disease (CVD), depression is common, persistent, and associated with worse health-related quality of life, recurrent cardiac events, and mortality. Both physiological and behavioral factors—including endothelial dysfunction, platelet abnormalities, inflammation, autonomic nervous system dysfunction, and reduced engagement in health-promoting activities—may link depression with adverse cardiac outcomes. Because of the potential impact of depression on quality of life and cardiac outcomes, the American Heart Association has recommended routine depression screening of all cardiac patients with the 2- and 9-item Patient Health Questionnaires. However, despite the availability of these easy-to-use screening tools and effective treatments, depression is underrecognized and undertreated in patients with CVD. In this paper, we review the literature on epidemiology, phenomenology, comorbid conditions, and risk factors for depression in cardiac disease. We outline the associations between depression and cardiac outcomes, as well as the mechanisms that may mediate these links. Finally, we discuss the evidence for and against routine depression screening in patients with CVD and make specific recommendations for when and how to assess for depression in this high-risk population. PMID:23653854
Liu, Dong-Xu; He, Xia; Wu, Dan; Zhang, Qun; Yang, Chao; Liang, Feng-Yin; He, Xiao-Fei; Dai, Guang-Yan; Pei, Zhong; Lan, Yue; Xu, Guang-Qing
2017-07-13
Sleep deprivation (SD) is a common condition associated with a variety of nervous system diseases, and has a negative impact on emotional and cognitive function. Continuous theta burst stimulation (cTBS) is known to improve cognition and emotion function in normal situations as well as in various types of dysfunction, but the mechanism remains unknown. We used two-photon in vivo imaging to explore the effect of cTBS on glymphatic pathway clearance in normal and SD C57BL/6J mice. Aquaporin-4 (AQP4) polarization was detected by immunofluorescence. Anxiety-like behaviors was measured using open field tests. We found that SD reduced influx efficiency along the peri-vascular space (PVS), disturbed AQP4 polarization and induced anxiety-like behaviors. CTBS significantly attenuated the decrease in efficiency of solute clearance usually incurred with SD, restored the loss of AQP4 polarization and improved anxiety-like behavior in SD animals. Our results implied that cTBS had the potential to protect against neuronal dysfunction induced by sleep disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
[Neurofibromatosis type 2 in childhood: a clinical characterization].
Hinojosa-Mateo, C M; Reche-Sainz, J A; Hernandez-Nunez, A; Ramos-Lopez, M; Arpa-Fernandez, A; Natera-de Benito, D
2017-02-01
Neurofibromatosis type 2 (NF2) is a dominantly inherited neuroectodermal syndrome that predispose to the development of tumors of the central and peripheral nervous system. Additional features include eye and skin abnormalities. A 12-year old male with diagnosis of MF2 according to Baser et al and presentation in childhood was included. A comprehensive bibliographic review of evolution of the diagnostic criteria for NF2 in children was performed. The pattern of presentation of NF2 in childhood differs from adulthood in many aspects. Ophthalmologic and skin manifestations, and not an auditory dysfunction, are the most common initial symptoms in prepuberal-onset NF2. The most frequent symptoms and signs at presentation are posterior subcapsular cataract, skin manifestations as NF2 plaques and/or peripheral nerve tumors, and neurological dysfunction related to isolated or multiple cranial nerve deficits (other than nerve VIII), brainstem masses or spinal masses. As sensitivity of diagnostic criteria in children is low, those prepuberal patients with congenital or early-onset cataracts and typical skin manifestations of NF2 should be systematically assessed.
Antenatal environmental stress and maturation of the breathing control, experimental data.
Cayetanot, F; Larnicol, N; Peyronnet, J
2009-08-31
The nervous respiratory system undergoes postnatal maturation and yet still must be functional at birth. Any antenatal suboptimal environment could upset either its building prenatally and/or its maturation after birth. Here, we would like to briefly summarize some of the major stresses leading to clinical postnatal respiratory dysfunction that can occur during pregnancy, we then relate them to experimental models that have been developed in order to better understand the underlying mechanisms implicated in the respiratory dysfunctions observed in neonatal care units. Four sections are aimed to review our current knowledge based on experimental data. The first will deal with the metabolic factors such as oxygen and glucose, the second with consumption of psychotropic substances (nicotine, cocaine, alcohol, morphine, cannabis and caffeine), the third with psychoactive molecules commonly consumed by pregnant women within a therapeutic context and/or delivered to premature neonates in critical care units (benzodiazepine, caffeine). In the fourth section, we take into account care protocols involving extended maternal-infant separation due to isolation in incubators. The effects of this stress potentially adds to those previously described.
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
Miranda, A S; Vieira, L B; Lacerda-Queiroz, N; Souza, A H; Rodrigues, D H; Vilela, M C; Gomez, M V; Machado, F S; Rachid, M A; Teixeira, A L
2010-12-01
Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection. This condition has been associated with cognitive, behavioral and motor dysfunctions, seizures and coma. The underlying mechanisms of CM are incompletely understood. Glutamate and other metabolites such as lactate have been implicated in its pathogenesis. In the present study, we investigated the involvement of glutamate in the behavioral symptoms of CM. Seventeen female C57BL/6 mice (20-25 g) aged 6-8 weeks were infected with P. berghei ANKA by the intraperitoneal route using a standardized inoculation of 10⁶ parasitized red blood cells suspended in 0.2 mL PBS. Control animals (N = 17) received the same volume of PBS. Behavioral and neurological symptoms were analyzed by the SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment (SHIRPA) battery. Glutamate release was measured in the cerebral cortex and cerebrospinal fluid of infected and control mice by fluorimetric assay. All functional categories of the SHIRPA battery were significantly altered in the infected mice at 6 days post-infection (dpi) (P ≤ 0.05). In parallel to CM symptoms, we found a significant increase in glutamate levels in the cerebral cortex (mean ± SEM; control: 11.62 ± 0.90 nmol/mg protein; infected at 3 dpi: 10.36 ± 1.17 nmol/mg protein; infected at 6 dpi: 26.65 ± 0.73 nmol/mg protein; with EGTA, control: 5.60 ± 1.92 nmol/mg protein; infected at 3 dpi: 6.24 ± 1.87 nmol/mg protein; infected at 6 dpi: 14.14 ± 0.84 nmol/mg protein) and in the cerebrospinal fluid (control: 128 ± 51.23 pmol/mg protein; infected: 301.4 ± 22.52 pmol/mg protein) of infected mice (P ≤ 0.05). These findings suggest a role of glutamate in the central nervous system dysfunction found in CM.
Effects of weight changes in the autonomic nervous system: A systematic review and meta-analysis.
Costa, João; Moreira, André; Moreira, Pedro; Delgado, Luís; Silva, Diana
2018-01-09
Obesity has been linked to autonomic dysfunction, which is thought to be one of the main contributors for hypertension, cardiac remodelling and death. Exercise and diet-based weight loss are the mainstay therapy for obesity, but there is a paucity of data regarding the effect of weight changes in autonomic nervous system (ANS) activity. To describe the impact of weight changes in autonomic nervous system. A systematic literature search of four biomedical databases was performed evaluating effects of weight changes, thorough diet and/or exercise-based interventions, in the following ANS outcomes: heart rate variability, namely low frequency (LF)/high frequency (HF) ratio (LF/HF ratio), normalized units of LF (LFnu) and HF (HFnu), muscle sympathetic nerve activity (MSNA), noradrenaline spillover rate (NA-SR), standard deviation of normal-to-normal intervals (SDNN), root mean square of successive differences (RMSSD), baroreflex sensitivity and pupillometry. Quality appraisal was performed using the GRADE methodology and, where fitting, studies with comparable outcomes were pooled for meta-analysis. Twenty-seven studies - 7 controlled clinical trials and 20 observational studies - were included. Weight gain was reported in 4 studies and weight loss in all the other studies. Interventions inducing weight changes included: hypocaloric or hypercaloric diets, exercise (strength, endurance or aerobic training) and hypocaloric diet coupled with exercise programs. Most studies which resulted in weight loss reported decreases in LF/HF ratio, LFnu, MSNA burst frequency and incidence, NA-SR, and an increase of baroreflex sensitivity, HF, HFnu and RMSSD, pointing to a parasympathetic nervous system activation. Meta-analysis regarding weight loss interventions showed a significant pooled effect size (95% CI) with a decreased of MSNA burst frequency -5.09 (-8.42, -1.75), MSNA incidence -6.66 (-12.40, -0.62), however this was not significant for SDNN 14.32 (-4.31, 32.96). Weight gain was associated with an increase in LF/HF, LFnu, MSNA burst frequency and incidence. The weight loss effects were potentiated by the association of hypocaloric diet with exercise. Nevertheless, weight changes effects in these outcomes were based in low or very low quality of evidence. Diet and exercise based weight loss appears to increase parasympathetic and decrease sympathetic activity, the opposing effects being observed with weight gain. These findings are not uniformly reported in the literature, possibly due to differences in study design, methodology, characteristics of the participants and techniques used to estimate autonomic nervous activity. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Martin, Bronwen; Wang, Rui; Cong, Wei-Na; Daimon, Caitlin M; Wu, Wells W; Ni, Bin; Becker, Kevin G; Lehrmann, Elin; Wood, William H; Zhang, Yongqing; Etienne, Harmonie; van Gastel, Jaana; Azmi, Abdelkrim; Janssens, Jonathan; Maudsley, Stuart
2017-07-07
The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Thyroid hormones states and brain development interactions.
Ahmed, Osama M; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M; Ahmed, R G
2008-04-01
The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical abnormalities (pathophysiology). Thus, further studies need to be done to emphasize this concept.
[THE CORRECTION WITH NOOPHEN OF AUTONOMIC DYSFUNCTION IN YOUNG MEN WITH HYPERTENSION].
Knyazkova, I I; Kuzminova, N V; Osovskaya, N Yu
2015-01-01
The aim of this study was to investigate the influence of antihypertensive therapy with adding of gamma-amino-beta-phenylbutyric acid hydrochloride on the autonornic regulation of tcardiovascular system and the psychoemotional status in young men with hypertension. The study included 58 male with hypertension, aged 18-39 years (mean age 31.7 yearst 2.3 years), of them 28 patients (group I) administered beta-blocker and the other received a complex therapy which included beta-blocker and gamma-amino-beta-phenylbutyric acid hydrochiotide--Noofen ("OlainFarm", Latvia) 250 mg 3 times a day for 4 weeks. The control group consisted of 20 healthy indi&iduals aged 18-39 years (mean age 31.5 years +/- 2.5 years). The examination included of standard clinical; biochemical and instrumental investigatIons. We conducted a clinical measurement of blorid pressure, ambulatory blood pressure monitoring (ABPM), Doppler echocardiography, heart rate variability, autononlic symptoms questionnaire and Spielberger--Hanina Anxiety Scale. Analysis of circadian blbod pressure profile arid autonomic nervous system state in young men with hypertension, in spite of the short disenle history demonstratnl violations of the blood pressure circadian rhythm associated with the violation of the autonomic regulation of cardiovascular system as indreased sympathetic activity and decreased parasympathetic activity heart tate. In hypertensive patients with autonomic dysfunction we noted a reduction of level of mental health, which was reflected in an increase in'the number of people with high and moderate levels of reactive and personal anxiety It has been demonstratedthat the use of combination therapy with adding Noofen in young hypertensive men and autonomic dysfunction helped significantly improve the HRV parameters and restore autonomic balance on time parameters of heart rate variability reduced the level of reactive anxiety and imprdved the psychoemotional state.
Hachulla, E; Leys, D; Deleume, J F; Pruvo, J P; Devulder, B
1995-01-01
Antiphospholipid antibody is associated with a clinical syndrome of vascular thrombosis, thrombocytopenia, recurrent fetal loss and livedo reticularis, whether or not a clinical diagnosis of systemic lupus erythematosus (SLE) coexists. Central nervous system involvement in SLE is multifactorial, thrombotic events, antineuronal antibodies, hypertension, infection, side effects of drugs etc. Antiphospholipid antibodies may play a role in focal neurological manifestations in SLE. In the absence of SLE, different neurological symptoms are well associated with antiphospholipid antibodies including stroke, seizures, dementia, migraine, ocular ischemia, chorea, transverse myelopathy, cerebral phlebitis. Other association are more controversal like Guillain Barré syndrome, motor neuron disease, communicating hydrocephalus. In all patients with antiphospholipid antibodies with neurological involvement, cerebral MRI may be performed with an echocardiographic study because a possible association with Libman and Sacks endocarditis, valve dysfunction or cardiac thrombus source of cerebral ischemia.
Central Mechanisms in the Maintenance of Chronic Widespread Noninflammatory Muscle Pain
DeSantana, Josimari M.; Sluka, Kathleen A.
2009-01-01
Chronic widespread pain (CWP) conditions such as fibromyalgia and myofascial syndromes are characterized by generalized pain, tenderness, morning stiffness, disturbed sleep, and pronounced fatigue. However, CWP pathophysiology is still unclear. A number of hypotheses have been proposed as the underlying pathophysiology of CWP: muscular dysfunction/ischemia, central sensitization, and a deficit in endogenous pain-modulating systems. This article reviews the current and emerging literature about the pathophysiology and neurobiology of chronic widespread musculoskeletal pain. Widespread musculoskeletal pain results in changes in the central nervous system in human subjects and animal models. These changes likely reflect alterations in supraspinal modulation of nociception, and include increases in excitatory and decreases in inhibitory modulation pathways. These alterations in excitation and inhibition likely drive changes observed in the spinal cord to result in central sensitization, and the consequent pain and hyperalgesia. PMID:18765138
Nishi, Erika E; Bergamaschi, Cássia T; Campos, Ruy R
2015-04-20
What is the topic of this review? This review describes the role of renal nerves as the key carrier of signals from the kidneys to the CNS and vice versa; the brain and kidneys communicate through this carrier to maintain homeostasis in the body. What advances does it highlight? Whether renal or autonomic dysfunction is the predominant contributor to systemic hypertension is still debated. In this review, we focus on the role of the renal nerves in a model of renovascular hypertension. The sympathetic nervous system influences the renal regulation of arterial pressure and body fluid composition. Anatomical and physiological evidence has shown that sympathetic nerves mediate changes in urinary sodium and water excretion by regulating the renal tubular water and sodium reabsorption throughout the nephron, changes in the renal blood flow and the glomerular filtration rate by regulating the constriction of renal vasculature, and changes in the activity of the renin-angiotensin system by regulating the renin release from juxtaglomerular cells. Additionally, renal sensory afferent fibres project to the autonomic central nuclei that regulate blood pressure. Hence, renal nerves play a key role in the crosstalk between the kidneys and the CNS to maintain homeostasis in the body. Therefore, the increased sympathetic nerve activity to the kidney and the renal afferent nerve activity to the CNS may contribute to the outcome of diseases, such as hypertension. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Schulz, Steffen; Haueisen, Jens; Bär, Karl-Juergen; Voss, Andreas
2018-06-22
The new interdisciplinary field of network physiology is getting more and more into the focus of interest in medicine. The autonomic nervous system (ANS) dysfunction is well described in schizophrenia (SZO). However, the linear and nonlinear coupling between the ANS and central nervous system (CNS) is only partly addressed until now. This coupling can be assumed as a feedback-feedforward network, reacting with flexible and adaptive responses to internal and external factors. Approach: For the first time, in this study, we investigated linear and nonlinear short-term central-cardiorespiratory couplings of 17 patients suffering from paranoid schizophrenia (SZO) in comparison to 17 age-gender matched healthy subjects (CON) analyzing heart rate (HR), respiration (RESP) and the power of frontal EEG activity (PEEG). The objective is to determine how the different regulatory aspects of the CNS-ANS compose the central-cardiorespiratory network (CCRN). To quantify these couplings within the CCRN the normalized short time partial directed coherence (NSTPDC) and the new multivariate high-resolution joint symbolic dynamics (mHRJSD) were applied. Main results: We found that the CCRN in SZO is characterized as a bidirectional one, with stronger central driving mechanisms (PEEG→HR) towards HR regulation than vice versa, and with stronger respiratory influence (RESP→PEEG) on central activity than vice versa. This suggests that the central-cardiorespiratory process (closed-loop) is mainly focusing on adapting the HR via the sinoatrial node than focusing on respiratory regulation. On the other side, the feedback-loop from ANS to CNS is strongly dominated via respiratory activity. Significance: We could demonstrate a considerably significantly different central-cardiorespiratory network structure in schizophrenia with strong central influence on the cardiac system and a strong respiratory influence on the central nervous system. Moreover, this study provides a more in-depth understanding of the interplay of the central and autonomic regulatory network in healthy subjects and schizophrenic patients. . © 2018 Institute of Physics and Engineering in Medicine.
Abnormalities of the QT interval in primary disorders of autonomic failure.
Choy, A M; Lang, C C; Roden, D M; Robertson, D; Wood, A J; Robertson, R M; Biaggioni, I
1998-10-01
Experimental evidence shows that activation of the autonomic nervous system influences ventricular repolarization and, therefore, the QT interval on the ECG. To test the hypothesis that the QT interval is abnormal in autonomic dysfunction, we examined ECGs in patients with severe primary autonomic failure and in patients with congenital dopamine beta-hydroxylase (DbetaH) deficiency who are unable to synthesize norepinephrine and epinephrine. Maximal QT and rate-corrected QT (QTc) intervals and adjusted QTc dispersion [(maximal QTc - minimum QTc on 12 lead ECG)/square root of the number of leads measured] were determined in blinded fashion from ECGs of 67 patients with primary autonomic failure (36 patients with multiple system atrophy [MSA], and 31 patients with pure autonomic failure [PAF]) and 17 age- and sex-matched healthy controls. ECGs of 5 patients with congenital DbetaH deficiency and 6 age- and sex-matched controls were also analyzed. Patients with MSA and PAF had significantly prolonged maximum QTc intervals (492+/-58 ms(1/2) and 502+/-61 ms(1/2) [mean +/- SD]), respectively, compared with controls (450+/-18 ms(1/2), P < .05 and P < .01, respectively). A similar but not significant trend was observed for QT. QTc dispersion was also increased in MSA (40+/-20 ms(1/2), P < .05 vs controls) and PAF patients (32+/-19 ms(1/2), NS) compared with controls (21+/-5 ms(1/2)). In contrast, patients with congenital DbetaH deficiency did not have significantly different RR, QT, QTc intervals, or QTc dispersion when compared with controls. Patients with primary autonomic failure who have combined parasympathetic and sympathetic failure have abnormally prolonged QT interval and increased QT dispersion. However, QT interval in patients with congenital DbetaH deficiency was not significantly different from controls. It is possible, therefore, that QT abnormalities in patients with primary autonomic failure are not solely caused by lesions of the sympathetic nervous system, and that the parasympathetic nervous system is likely to have a modulatory role in ventricular repolarization.
Vigil, Darlene; Konstantinov, Nikifor K; Barry, Marc; Harford, Antonia M; Servilla, Karen S; Kim, Young Ho; Sun, Yijuan; Ganta, Kavitha; Tzamaloukas, Antonios H
2016-01-01
Nephropathy secondary to BK virus, a member of the Papoviridae family of viruses, has been recognized for some time as an important cause of allograft dysfunction in renal transplant recipients. In recent times, BK nephropathy (BKN) of the native kidneys has being increasingly recognized as a cause of chronic kidney disease in patients with solid organ transplants, bone marrow transplants and in patients with other clinical entities associated with immunosuppression. In such patients renal dysfunction is often attributed to other factors including nephrotoxicity of medications used to prevent rejection of the transplanted organs. Renal biopsy is required for the diagnosis of BKN. Quantitation of the BK viral load in blood and urine are surrogate diagnostic methods. The treatment of BKN is based on reduction of the immunosuppressive medications. Several compounds have shown antiviral activity, but have not consistently shown to have beneficial effects in BKN. In addition to BKN, BK viral infection can cause severe urinary bladder cystitis, ureteritis and urinary tract obstruction as well as manifestations in other organ systems including the central nervous system, the respiratory system, the gastrointestinal system and the hematopoietic system. BK viral infection has also been implicated in tumorigenesis. The spectrum of clinical manifestations from BK infection and infection from other members of the Papoviridae family is widening. Prevention and treatment of BK infection and infections from other Papovaviruses are subjects of intense research. PMID:27683628
Central Nervous System Vasculitis
... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...
Subacute combined degeneration
... SCD Images Central nervous system and peripheral nervous system Central nervous system References Pytel P, Anthony DC. Peripheral nerves and ... chap 27. So YT. Deficiency diseases of the nervous system. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...
Konishi, Hanako; Mizota, Toshiyuki; Fukuda, Kazuhiko
2015-06-01
We report a case of persistent bilateral vocal cord paralysis which developed after spine surgery under general anesthesia in a patient with multiple system atrophy. A 64-year-old woman was scheduled to receive spinal fusion surgery for kyphoscoliosis. She did not have apparent symptoms of vocal cord paralysis such as hoarseness before surgery. The surgery was performed smoothly under general anesthesia with endotracheal intubation. However, immediately after extubation, the patient developed severe upper airway obstruction and was re-intubated. Fiberoptic laryngoscopy revealed bilateral vocal cord abductor paralysis. Vocal cord paralysis did not improve and she received tracheotomy on the 12th day after surgery. She also showed symptoms of autonomic nervous system dysfunction and cerebellar ataxia, and was diagnosed as multiple system atrophy on postoperative day 64. We discuss differential diagnosis of persistent vocal cord paralysis after general anesthesia, and anesthetic management of a patient with multiple system atrophy.
Oguanobi, Nelson I; Onwubere, Basden J C; Anisiuba, Benedict C; Ike, Samuel O; Ejim, Emmanuel C; Ibegbulam, Obike G
2012-04-01
Involvement of the cardiovascular autonomic nervous system in various diseases is often associated with increased morbidity and mortality. The objective of this study was to examine the clinical features associated with cardiovascular autonomic neuropathy (CAN) in adult Nigerians with sickle cell anaemia. A cross-sectional study was carried out on 62 steady state sickle cell anaemia patients recruited from the adult out-patient clinic. Cardiovascular autonomic dysfunction was determined based on abnormal values in at least two of five non-invasive tests: Valsalva manoeuvre, heart rate variation during deep breathing, heart rate response to standing, blood pressure response to sustained handgrip, and blood pressure response to standing. All the subjects were initially evaluated in the clinic for symptoms of cardiovascular disease and peripheral vascular disease, and then clinically examined to assess their cardiovascular and neurological status at rest. Out of the 44 patients with cardiovascular autonomic neuropathy 23 were males, while 21 were females. The mean ages were 28.3 +/- 5.8 y for patients with CAN and 28.0 +/- 5.0 y for patients without CAN (P = 0.817). Sickle cell anaemia patients with CAN had significantly lower ankle systolic blood pressure, reduced ankle brachial blood pressure index, mean arterial blood pressure and haematocrit than patients without CAN. Of all the variables evaluated leg ulcers, postural dizziness, erectile dysfunction in men, and history of recurrent acute chest syndromes were found significantly more in patients with CAN than without. Clinical abnormalities tend to worsen with increasing degree of cardiovascular autonomic dysfunction. Significant cardiac morbidity is associated with abnormal cardiovascular autonomic function in sickle cell anaemia.
Barczyński, M; Thor, P
2001-08-01
The autonomic nervous system (ANS) function in hyperthyroidism has been so far investigated mainly from the cardiovascular point of view. The aim of this study is to show that the ANS dysfunction in hyperthyroidism is also expressed in gastric myoelectrical activity disturbances and gastric emptying disorders and to search for a correlation between the severity of clinical manifestation and free thyroid hormone levels and the degree of the ANS dysfunction. The analyzed group included 50 recently diagnosed patients with hyperthyroidism who were examined twice: before and after 3 months of thyrostatic treatment. Results were compared with those of a sex-, age- and BMI-matched control group of 50 healthy volunteers. The study included: heart rate variability analysis in time and frequency domain, at rest and during a deep-breathing test, surface electrogastrography in preprandial and postprandial periods measured simultaneously with the ultrasound assessment of gastric emptying time by Bolondi method. In patients with hyperthyroidism in comparison with the control group, the following significant differences were observed: a sharp reduction of the high-frequency component and a decrease of heart rate variability, a high incidence of dysrhythmia with dominant bradyarrhythmia, and a delay of gastric emptying. The degree of disorders related to the degree of clinical manifestation of hyperthyroidism's symptoms and free triiodothyronine serum concentration both. All the disorders were functional and disappeared in a stable euthyroidism. To conclude, the ANS dysfunction in hyperthyroidism results not only in withdrawal of vagal inhibitory effect on sinoatrial node, but in impaired mutual neuro-hormonal regulation (decrease of vagal influence) of gastric myoelectrical activity followed by delay of gastric emptying.
Chen, Ying; Huang, Liyong; Zhang, Huiyong; Diao, Xiling; Zhao, Shuyang; Zhou, Wenke
2017-01-01
Mitochondrial dysfunction and subsequent autophagy, which are common features in central nervous system (CNS) disorders, were found to contribute to neuronal cell injury after subarachnoid hemorrhage (SAH). (-)-Epigallocatechin-3-gallate (EGCG), the main biological active of tea catechin, is well known for its beneficial effects in the treatment of CNS diseases. Here, the ability of EGCG to rescue cellular injury and mitochondrial function following the improvement of autophagic flux after SAH was investigated. As expected, EGCG-protected mitochondrial function depended on the inhibition of cytosolic Ca 2+ concentration ([Ca 2+ ] i ) influx via voltage-gated calcium channels (VGCCs) and, consequently, mitochondrial Ca 2+ concentration ([Ca 2+ ] m ) overload via mitochondrial Ca 2+ uniporter (MCU). The attenuated [Ca 2+ ] i and [Ca 2+ ] m levels observed in the EGCG-treated group likely lessened oxyhemoglobin (OxyHb)-induced mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondrial membrane permeability transition pore (mPTP) opening, reactive oxygen species (ROS), and cytochrosome c (cyt c) releasing. Subsequently, EGCG can restore the disrupted autophagy flux after SAH both at the initiation and formation stages by regulating Atg5, LC3B, and Becn-1 (Beclin-1) mRNA expressions. Thus, precondition EGCG resulted in autophagosomes and more autolysosomes compared with SAH group. As a result, EGCG pre-treatment increased the neurological score and decreased cell death. This study suggested that the mitochondrial dysfunction and abnormal autophagy flux synergistically contribute to SAH pathogenesis. Thus, EGCG can be regarded as a new pharmacological agent that targets both mitochondria and altered autophagy in SAH therapy.
Garza-Lombó, Carla; Posadas, Yanahi; Quintanar, Liliana; Gonsebatt, María E; Franco, Rodrigo
2018-06-20
Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations. Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated. In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems. Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669-1703.
Krajnak, Kristine; Miller, G R; Waugh, Stacey
2018-01-01
Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.
Kiyono, Ken; Hayano, Junichiro; Kwak, Shin; Watanabe, Eiichi; Yamamoto, Yoshiharu
2012-01-01
The correlates of indices of long-term ambulatory heart rate variability (HRV) of the autonomic nervous system have not been completely understood. In this study, we evaluated conventional HRV indices, obtained from the daytime (12:00–18:00) Holter recording, and a recently proposed non-Gaussianity index (λ; Kiyono et al., 2008) in 12 patients with multiple system atrophy (MSA) and 10 patients with Parkinson disease (PD), known to have varying degrees of cardiac vagal and sympathetic dysfunction. Compared with the age-matched healthy control group, the MSA patients showed significantly decreased HRV, most probably reflecting impaired vagal heart rate control, but the PD patients did not show such reduced variability. In both MSA and PD patients, the low-to-high frequency (LF/HF) ratio and the short-term fractal exponent α1, suggested to reflect the sympathovagal balance, were significantly decreased, as observed in congestive heart failure (CHF) patients with sympathetic overdrive. In contrast, the analysis of the non-Gaussianity index λ showed that a marked increase in intermittent and non-Gaussian HRV observed in the CHF patients was not observed in the MSA and PD patients with sympathetic dysfunction. These findings provide additional evidence for the relation between the non-Gaussian intermittency of HRV and increased sympathetic activity. PMID:22371705
Dysautonomia, a heuristic approach to a revised model for etiology of disease.
Lonsdale, Derrick
2009-03-01
Dysautonomia refers to a disease where the autonomic nervous system is dysfunctional. This may be a central control mechanism, as in genetically determined familial dysautonomia (Riley-Day Syndrome), or peripherally in the distribution of the sympathetic and parasympathetic systems. There are multiple reports of a number of different diseases associated with dysautonomia. The etiology of this association has never been explained. There are also multiple publications on dysautonomia associated with specific non-caloric nutritional deficiencies. Beriberi is the prototype of autonomic dysfunction. It is the best known nutritional deficiency disease caused by an imbalance between ingested calories and the vitamins required for their oxidation, particularly thiamin. Long thought to be abolished in modern medical thinking, there are occasional isolated reports of the full-blown disease in developed Western cultures. Apart from genetically and epigenetically determined disease, evidence is presented that marginal high calorie malnutrition, particularly with reference to simple carbohydrates, is responsible for widespread dysautonomia. The brain and heart are the organs that have a fast rate of oxidative metabolism and are affected early by any mechanism that reduces oxidative efficiency. It is hypothesized that this results in a chaotic state of the hypothalamic/autonomic/endocrine axis. Due to the lack of adequate automatic controls, this may be responsible in some cases for breakdown of organ systems through long-standing energy deficiency, thus leading eventually to organic disease.
Zhang, Dainan; Mably, Alexandra J; Walsh, Dominic M; Rowan, Michael J
2017-07-01
Dysregulation of glutamate homeostasis in the interstitial fluid of the brain is strongly implicated in causing synaptic dysfunction in many neurological and psychiatric illnesses. In the case of Alzheimer's disease (AD), amyloid β (Aβ)-mediated disruption of synaptic plasticity and memory can be alleviated by interventions that directly remove glutamate or block certain glutamate receptors. An alternative strategy is to facilitate the removal of excess glutamate from the nervous system by activating peripheral glutamate clearance systems. One such blood-based system, glutamate oxaloacetate transaminase (GOT), is activated by oxaloacetate, which acts as a co-substrate. We report here that synthetic and AD brain-derived Aβ-mediated inhibition of synaptic long-term potentiation in the hippocampus is alleviated by oxaloacetate. Moreover the effect of oxaloacetate was GOT-dependent. The disruptive effects of a general inhibitor of excitatory amino acid transport or TNFα, a pro-inflammatory mediator of Aβ action, were also reversed by oxaloacetate. Furthermore, another intervention that increases peripheral glutamate clearance, peritoneal dialysis, mimicked the beneficial effect of oxaloacetate. These findings lend support to the promotion of the peripheral clearance of glutamate as a means to alleviate synaptic dysfunction that is caused by impaired glutamate homeostasis in the brain. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Nervous system active pharmaceutical ingredients (APIs), including anti-depressants and opioids, are important clinically administered pharmaceuticals within healthcare facilities. Concentrations and mass loadings of ten nervous system APIs and three nervous system API metaboli...
Vanhaesebrouck, An E; Bhatti, Sofie F M; Franklin, Robin J M; Van Ham, Luc
2013-08-01
Involuntary muscle hyperactivity can result from muscle or peripheral nerve hyperexcitability or central nervous system dysfunction. In humans, diseases causing hyperexcitability of peripheral nerves are grouped together under the term 'peripheral nerve hyperexcitability' (PNH). Hyperexcitability of the peripheral motor nerve can result into five different phenotypic main variants, i.e. fasciculations, myokymia, neuromyotonia, cramps and tetany, each with their own clinical and electromyographic characteristics. This review focuses on the most commonly described expressions of PNH in veterinary medicine, i.e. myokymia and neuromyotonia, in particular in young Jack Russell terriers. Data from 58 veterinary cases with generalized myokymia and neuromyotonia were analyzed, including unpublished treatment and follow-up data on eight Jack Russell terriers from a previous study and seven additional Jack Russell terriers. A dysfunction of the potassium channel or its associated proteins has been found in many human syndromes characterized by PNH, in particular in generalized myokymia and neuromyotonia, and is suspected to occur in veterinary medicine. Potential pathomechanisms of potassium channel dysfunction leading to signs of PNH are broad and include genetic mutations, antibody-mediated attack or ion channel maldistribution due to axonal degeneration or demyelination. A more accurate classification of the different PNH syndromes will facilitate a more rapid diagnosis and guide further research into natural occurring PNH in animals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lozeron, Pierre; Mantsounga, Chris S; Broqueres-You, Dong; Dohan, Anthony; Polivka, Marc; Deroide, Nicolas; Silvestre, Jean-Sébastien; Kubis, Nathalie; Lévy, Bernard I
2015-09-01
Neuropathy is the most common complication of the peripheral nervous system during the progression of diabetes. The pathophysiology is unclear but may involve microangiopathy, reduced endoneurial blood flow, and tissue ischemia. We used a mouse model of type 1 diabetes to study parallel alterations of nerves and microvessels following tissue ischemia. We designed an easily reproducible model of ischemic neuropathy induced by irreversible ligation of the femoral artery. We studied the evolution of behavioral function, epineurial and endoneurial vessel impairment, and large nerve myelinated fiber as well as small cutaneous unmyelinated fiber impairment for 1 month following the onset of ischemia. We observed a more severe hindlimb dysfunction and delayed recovery in diabetic animals. This was associated with reduced density of large arteries in the hindlimb and reduced sciatic nerve epineurial blood flow. A reduction in sciatic nerve endoneurial capillary density was also observed, associated with a reduction in small unmyelinated epidermal fiber number and large myelinated sciatic nerve fiber dysfunction. Moreover, vascular recovery was delayed, and nerve dysfunction was still present in diabetic animals at day 28. This easily reproducible model provides clear insight into the evolution over time of the impact of ischemia on nerve and microvessel homeostasis in the setting of diabetes. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Liu, Jing; Wan, Shengming; Zhang, Yun; Zhang, Shu; Zhang, Hongying; Wu, Shiwen
2018-05-11
Heat stroke, the most serious type of heat illness, refers to the presence of hyperthermia (core temperature >40°C), accompanied by central nervous system dysfunction. The hippocampus is a particularly vulnerable region in the early stage of heat stroke. Increasing evidence suggests that dysregulation of brain iron metabolism is involved in many neurodegenerative diseases. However, whether heat stroke causes dysfunction of iron metabolism, as well as iron-regulatory proteins, in the hippocampus remains unknown. The present study was conducted to explore the effects on spatial learning and memory, as well as iron content, ferroportin 1 (Fpn1), and hepcidin expression in the hippocampus after heat stroke in rats. Compared with the Sham group, learning ability and memory declined in rats after heat stroke. Iron concentration was significantly increased in the hippocampus. Expression of Fpn1 protein significantly decreased in the hippocampus, while expression of hepcidin increased. Interestingly, Fpn1 mRNA expression in the hippocampus increased. Our data thereby indicate that heat stroke can decrease learning ability and memory in rats. The mechanism may be related to changes of iron levels, as well as Fpn1 and hepcidin expression, in the hippocampus. Furthermore, hepcidin may rapidly decrease cellular Fpn1 protein levels, even under conditions of iron loading, indicating that hepcidin is a more dominant regulator of Fpn1 than is iron.
Almaguel, Frankis G.; Liu, Jo-Wen; Pacheco, Fabio J.; De Leon, Daisy; Casiano, Carlos A.; De Leon, Marino
2010-01-01
Lipotoxicity, which is triggered when cells are exposed to elevated levels of free fatty acids, involves cell dysfunction and apoptosis and is emerging as an underlying factor contributing to various pathological conditions including disorders of the central nervous system and diabetes. We have shown that palmitic acid (PA)-induced lipotoxicity (PA-LTx) in nerve growth factor-differentiated PC12 (NGFDPC12) cells is linked to an augmented state of cellular oxidative stress (ASCOS) and apoptosis, and that these events are inhibited by docosahexanoic acid (DHA). The mechanisms of PA-LTx in nerve cells are not well understood, but our previous findings indicate that it involves ROS generation, mitochondrial membrane permeabilization (MMP), and caspase activation. The present study used nerve growth factor differentiated PC12 cells (NGFDPC12 cells) and found that lysosomal membrane permeabilization (LMP) is an early event during PA-induced lipotoxicity that precedes MMP and apoptosis. Cathepsin L, but not cathepsin B, is an important contributor in this process since its pharmacological inhibition significantly attenuated LMP, MMP, and apoptosis. In addition, co-treatment of NGFDPC12 cells undergoing lipotoxicity with DHA significantly reduced LMP, suggesting that DHA acts by antagonizing upstream signals leading to lysosomal dysfunction. These results suggest that LMP is a key early mediator of lipotoxicity, and underscore the value of interventions targeting upstream signals leading to LMP for the treatment of pathological conditions associated with lipotoxicity. PMID:20043885
[X-linked adrenoleukodystrophy: a report of three cases. The importance of early diagnosis].
López Úbeda, Marta; de Arriba Muñoz, Antonio; Ferrer Lozano, Marta; Labarta Aizpún, José I; García Jiménez, María C
2017-10-01
X-linked adrenoleukodystrophy is the most common peroxisomal disorder. This disease is caused by a defect in the ABCD1 gen. Saturated very long chain fatty acids are accumulated in serum, adrenal cortex and central nervous system white matter. The clinical spectrum is characterized by progressive neurological dysfunction and adrenal insufficiency with a devastating prognosis. We report a first case of X-linked adrenoleukodystrophy with fatal evolution which identified two asymptomatic family members and established a preventive treatment. Although there is no definitive cure, we stress the importance of family study and evaluation of the individual in situation of risk to establish an early preventive treatment and to give in each particular situation suitable professional advice. Sociedad Argentina de Pediatría.
Glutamate and Neurodegenerative Disease
NASA Astrophysics Data System (ADS)
Schaeffer, Eric; Duplantier, Allen
As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.
Global left atrial failure in heart failure.
Triposkiadis, Filippos; Pieske, Burkert; Butler, Javed; Parissis, John; Giamouzis, Gregory; Skoularigis, John; Brutsaert, Dirk; Boudoulas, Harisios
2016-11-01
The left atrium plays an important role in the maintenance of cardiovascular and neurohumoral homeostasis in heart failure. However, with progressive left ventricular dysfunction, left atrial (LA) dilation and mechanical failure develop, which frequently culminate in atrial fibrillation. Moreover, LA mechanical failure is accompanied by LA endocrine failure [deficient atrial natriuretic peptide (ANP) processing-synthesis/development of ANP resistance) and LA regulatory failure (dominance of sympathetic nervous system excitatory mechanisms, excessive vasopressin release) contributing to neurohumoral overactivity, vasoconstriction, and volume overload (global LA failure). The purpose of the present review is to describe the characteristics and emphasize the clinical significance of global LA failure in patients with heart failure. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.
Epilepsy, autism, and neurodevelopment: kindling a shared vulnerability?
Gilby, Krista L; O'Brien, Terence J
2013-03-01
Epilepsy and autism spectrum disorder (ASD) share many primary and comorbid symptoms. The degree of clinical overlap is believed to signify a 'spectrum of vulnerability' that arises out of an early common dysfunction in central nervous system development. However, research into the underlying, and potentially shared, etiopathological mechanisms is challenging given the extensive comorbidity profiles. Adding to the degree of difficulty is the frequently evolving recompartmentalization of diagnostic criteria within each disorder. This review discusses potential preclinical strategies that, through the use of animal models, are designed to gain insight into the biological basis of the overlap between epilepsy and autism and to foster a rapid clinical translation of the insights gained. Copyright © 2012 Elsevier Inc. All rights reserved.
Zebrafish models for translational neuroscience research: from tank to bedside
Stewart, Adam Michael; Braubach, Oliver; Spitsbergen, Jan; Gerlai, Robert; Kalueff, Allan V.
2014-01-01
The zebrafish (Danio rerio) is emerging as a new important species for studying mechanisms of brain function and dysfunction. Focusing on selected central nervous system (CNS) disorders (brain cancer, epilepsy, and anxiety) and using them as examples, we discuss the value of zebrafish models in translational neuroscience. We further evaluate the contribution of zebrafish to neuroimaging, circuit level, and drug discovery research. Outlining the role of zebrafish in modeling a wide range of human brain disorders, we also summarize recent applications and existing challenges in this field. Finally, we emphasize the potential of zebrafish models in behavioral phenomics and high-throughput genetic/small molecule screening, which is critical for CNS drug discovery and identifying novel candidate genes. PMID:24726051
Stress and tension-type headache mechanisms.
Cathcart, Stuart; Winefield, Anthony H; Lushington, Kurt; Rolan, Paul
2010-10-01
Stress is widely demonstrated as a contributing factor in tension-type headache (TTH). The mechanisms underlying this remain unclear at present. Recent research indicates the importance of central pain processes in tension-type headache (TTH) pathophysiology. Concurrently, research with animals and healthy humans has begun to elucidate the relationship between stress and pain processing in the central nervous system, including central pain processes putatively dysfunctional in TTH. Combined, these two fields of research present new insights and hypotheses into possible mechanisms by which stress may contribute to TTH. To date, however, there has been no comprehensive review of this literature. The present paper provides such a review, which may be valuable in facilitating a broader understanding of the central mechanisms by which stress may contribute to TTH.
Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis.
Ward, Sarah; Pearce, Alan J; Pietrosimone, Brian; Bennell, Kim; Clark, Ross; Bryant, Adam L
2015-03-01
In addition to biomechanical disturbances, peripheral joint injuries (PJIs) can also result in chronic neuromuscular alterations due in part to loss of mechanoreceptor-mediated afferent feedback. An emerging perspective is that PJI should be viewed as a neurophysiological dysfunction, not simply a local injury. Neurophysiological and neuroimaging studies have provided some evidence for central nervous system (CNS) reorganization at both the cortical and spinal levels after PJI. The novel hypothesis proposed is that CNS reorganization is the underlying mechanism for persisting neuromuscular deficits after injury, particularly muscle weakness. There is a lack of direct evidence to support this hypothesis, but future studies utilizing force-matching tasks with superimposed transcranial magnetic stimulation may be help clarify this notion. © 2014 Wiley Periodicals, Inc.
Central insulin and leptin-mediated autonomic control of glucose homeostasis
Marino, Joseph S.; Xu, Yong; Hill, Jennifer W.
2016-01-01
Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis. PMID:21489811
Central insulin and leptin-mediated autonomic control of glucose homeostasis.
Marino, Joseph S; Xu, Yong; Hill, Jennifer W
2011-07-01
Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Neurosyphilis as a great imitator: a case report.
Sabre, Liis; Braschinsky, Mark; Taba, Pille
2016-07-28
Neurosyphilis is defined as any involvement of the central nervous system by the bacterium Treponema pallidum. Movement disorders as manifestations of syphilis have been reported quite rarely. We report a case of a 42-year-old Russian man living in Estonia with rapidly progressive dementia and movement disorders manifesting as myoclonus, cerebellar ataxia and parkinsonism. The mini mental state examination score was 12/30. After excluding different neurodegenerative causes, further diagnostic testing was consistent with neurosyphilis. Treatment with penicillin was started and 6 months later his mini mental state examination score was 25/30 and he had no myoclonus, parkinsonism or cerebellar dysfunction. Since syphilis is easily diagnosed and treatable, it should be considered and tested in patients with cognitive impairment and movement disorders.
Epigenetics and therapeutic targets mediating neuroprotection.
Qureshi, Irfan A; Mehler, Mark F
2015-12-02
The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection. Copyright © 2015 Elsevier B.V. All rights reserved.
Albuquerque, Edson X.; Schwarcz, Robert
2013-01-01
Kynurenic acid (KYNA), a major tryptophan metabolite, is a glutamate receptor antagonist, which is also reported to inhibit α7 nicotinic acetylcholine receptors (α7nAChRs). Due to variations in experimental approaches, controversy has arisen regarding the ability of KYNA to directly influence α7nAChR function. Here we summarize current concepts of KYNA neurobiology and review evidence pertaining to the proposed role of KYNA as an endogenous modulator of α7nAChRs and synaptic transmission. As dysfunction of α7nAChRs plays a major role in the pathophysiology of central nervous system disorders, elucidation of KYNA's action on this receptor subtype has significant therapeutic implications. PMID:23270993
Congenital atresia of the external ear and tinnitus: a new syndrome.
Shulman, Abraham; Strashun, Arnold M; Goldstein, Barbara; Lenhardt, Martin L
2006-01-01
Congenital atresia of the external ears and severe tinnitus has been reported by two patients to be contralateral to the atretic ear. The use of the nuclear medicine imaging technique of single-photon emission computed tomography (SPECT) of brain has demonstrated hypoperfusion in brain areas supplied by the middle cerebral artery on the side of the atretic ear. Ultrahigh-frequency audiometry (UHFA) has revealed a bilateral loss of hearing greater than expected for the age of affected patients. Quantitative electroencephalography (QEEG) has shown a significant central nervous system electrical dysfunction correlated with the SPECT of brain findings. One case is reported in detail at this time. Completion of the medical audiological tinnitus patient protocol, including SPECT of brain, UHFA, and QEEG, accurately established the clinical tinnitus diagnosis of predominantly a central-type tinnitus, a clinical hypothesis that the medical significance of the tinnitus is a "soft" sign of cerebrovascular disease, and provided a rationale for treatment directed to a presumed ischemia of brain based on a receptor-targeted therapy targeted to the GABA-A receptor, resulting in significant tinnitus relief. Questions that have arisen include (1) the incidence of occurrence of hypoperfusion of the middle cerebral artery in congenital atresia patients; (2) implications and long-term consequences of this finding in this patient population for development of cerebrovascular disease; (3) brain plasticity for tinnitus relief (i.e., neuronal reprogramming, particularly in response to treatment recommendations for complaints of the cochleovestibular system in general and specifically for tinnitus); (4) the clinical significance of the UHFA thresholds of bilateral hearing loss greater than expected for the age of the patient; and (5) whether congenital atresia of the external ear may be part of a syndrome that includes hypoperfusion in brain areas supplied by the middle cerebral artery on the side of the atretic ear, ultra-high-frequency bilateral loss of hearing greater than expected for the age of the patient, and significant central nervous system electrical dysfunction. As far as we can determine, these findings, highlighted by the brain SPECT, have not previously been reported in patients with congenital atresia of the external ear.
What Health-Related Functions Are Regulated by the Nervous System?
... What health-related functions are regulated by the nervous system? The nervous system plays a role in nearly every aspect of ... feeling emotions. Functions that are regulated by the nervous system include (but are not limited to): Brain growth ...
Pereira, Vitor H; Marques, Paulo; Magalhães, Ricardo; Português, João; Calvo, Lucy; Cerqueira, João J; Sousa, Nuno
2016-04-01
Takotsubo cardiomyopathy is an intriguing disease characterized by acute transient left ventricular dysfunction usually triggered by an episode of severe stress. The excessive levels of catecholamines and the overactivation of the sympathetic system are believed to be the main pathophysiologic mechanisms of Takotsubo cardiomyopathy, but it is unclear whether there is a structural or functional signature of the disease. In this sense, our aim was to characterize the central autonomic system response to autonomic challenges in patients with a previous episode of Takotsubo cardiomyopathy when compared with a control group of healthy volunteers. Functional magnetic resonance imaging (fMRI) was performed in four patients with a previous episode of Takotsubo cardiomyopathy (average age of 67 ± 12 years) and in eight healthy volunteers (average age of 66 ± 5 years) while being submitted to different autonomic challenges (cold exposure and Valsalva manoeuvre). The fMRI analysis revealed a significant variation of the blood oxygen level dependent signal triggered by the Valsalva manoeuvre in specific areas of the brain involved in the cortical control of the autonomic system and significant differences in the pattern of activation of the insular cortex, amygdala and the right hippocampus between patients with Takotsubo cardiomyopathy and controls, even though these regions did not present significant volumetric changes. The central autonomic response to autonomic challenges is altered in patients with Takotsubo cardiomyopathy, thus suggesting a dysregulation of the central autonomic nervous system network. Subsequent studies are needed to unveil whether these alterations are causal or predisposing factors to Takotsubo cardiomyopathy. © The European Society of Cardiology 2015.
Stocker, Abigail; Abell, Thomas L.; Rashed, Hani; Kedar, Archana; Boatright, Ben; Chen, Jiande
2016-01-01
Background Disorders of nausea, vomiting, abdominal pain, and related problems often are manifestations of gastrointestinal, neuromuscular, and/or autonomic dysfunction. Many of these patients respond to neurostimulation, either gastric electrical stimulation or electroacupuncture. Both of these therapeutic techniques appear to influence the autonomic nervous system which can be evaluated directly by traditional testing and indirectly by heart rate variability. Methods We studied patients undergoing gastric neuromodulation by both systemic autonomic testing (39 patients, six males and 33 females, mean age 38 years) and systemic autonomic testing and heart rate variability (35 patients, seven males and 28 females, mean age 37 years) testing before and after gastric neuromodulation. We also performed a pilot study using both systemic autonomic testing and heart rate variability in a small number of patients (five patients, all females, mean age 48.6 years) with diabetic gastroparesis at baseline to compare the two techniques at baseline. Systemic autonomic testing and heart rate variability were performed with standardized techniques and gastric electrical stimulation was performed as previously described with electrodes implanted serosally in the myenteric plexus. Results Both systemic autonomic testing and heart rate variability measures were often abnormal at baseline and showed changes after gastric neuromodulation therapy in two groups of symptomatic patients. Pilot data on a small group of similar patients with systemic automatic nervous measures and heart rate variability showed good concordance between the two techniques. Conclusions Both traditional direct autonomic measures and indirect measures such as heart rate variability were evaluated, including a pilot study of both methods in the same patient group. Both appear to be useful in evaluation of patients at baseline and after stimulation therapies; however, a future full head-to-head comparison is warranted. PMID:27785318
Considerations on the role of environmental toxins in idiopathic Parkinson’s disease pathophysiology
2014-01-01
Neurodegenerative diseases are characterized by a progressive dysfunction of the nervous system. Often associated with atrophy of the affected central or peripheral nervous structures, they include diseases such as Parkinson’s Disease (PD), Alzheimer’s Disease and other dementias, Genetic Brain Disorders, Amyotrophic Lateral Sclerosis (ALS or Lou Gehrig’s Disease), Huntington’s Disease, Prion Diseases, and others. The prevalence of neurodegenerative diseases has increased over the last years. This has had a major impact both on patients and their families and has exponentially increased the medical bill by hundreds of billions of Euros. Therefore, understanding the role of environmental and genetic factors in the pathogenesis of PD is crucial to develop preventive strategies. While some authors believe that PD is mainly genetic and that the aging of the society is the principal cause for this increase, different studies suggest that PD may be due to an increased exposure to environmental toxins. In this article we review epidemiological, sociological and experimental studies to determine which hypothesis is more plausible. Our conclusion is that, at least in idiopathic PD (iPD), the exposure to toxic environmental substances could play an important role in its aetiology. PMID:24826210
An option space for early neural evolution.
Jékely, Gáspár; Keijzer, Fred; Godfrey-Smith, Peter
2015-12-19
The origin of nervous systems has traditionally been discussed within two conceptual frameworks. Input-output models stress the sensory-motor aspects of nervous systems, while internal coordination models emphasize the role of nervous systems in coordinating multicellular activity, especially muscle-based motility. Here we consider both frameworks and apply them to describe aspects of each of three main groups of phenomena that nervous systems control: behaviour, physiology and development. We argue that both frameworks and all three aspects of nervous system function need to be considered for a comprehensive discussion of nervous system origins. This broad mapping of the option space enables an overview of the many influences and constraints that may have played a role in the evolution of the first nervous systems. © 2015 The Author(s).
78 FR 9311 - Hazard Communication; Corrections and Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
... Column for Standard No. 1910.1051. ``Cancer; eye and respiratory tract irritation; center nervous system... irritation; central nervous system effects; and flammability.'' The following table contains a summary of the... (l)(1)(ii) ``center nervous system effects'' is paragraph. corrected to ``central nervous system...
The Nervous System and Gastrointestinal Function
ERIC Educational Resources Information Center
Altaf, Muhammad A.; Sood, Manu R.
2008-01-01
The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…
α6β2* and α4β2* Nicotinic Acetylcholine Receptors As Drug Targets for Parkinson's Disease
Wonnacott, Susan
2011-01-01
Parkinson's disease is a debilitating movement disorder characterized by a generalized dysfunction of the nervous system, with a particularly prominent decline in the nigrostriatal dopaminergic pathway. Although there is currently no cure, drugs targeting the dopaminergic system provide major symptomatic relief. As well, agents directed to other neurotransmitter systems are of therapeutic benefit. Such drugs may act by directly improving functional deficits in these other systems, or they may restore aberrant motor activity that arises as a result of a dopaminergic imbalance. Recent research attention has focused on a role for drugs targeting the nicotinic cholinergic systems. The rationale for such work stems from basic research findings that there is an extensive overlap in the organization and function of the nicotinic cholinergic and dopaminergic systems in the basal ganglia. In addition, nicotinic acetylcholine receptor (nAChR) drugs could have clinical potential for Parkinson's disease. Evidence for this proposition stems from studies with experimental animal models showing that nicotine protects against neurotoxin-induced nigrostriatal damage and improves motor complications associated with l-DOPA, the “gold standard” for Parkinson's disease treatment. Nicotine interacts with multiple central nervous system receptors to generate therapeutic responses but also produces side effects. It is important therefore to identify the nAChR subtypes most beneficial for treating Parkinson's disease. Here we review nAChRs with particular emphasis on the subtypes that contribute to basal ganglia function. Accumulating evidence suggests that drugs targeting α6β2* and α4β2* nAChR may prove useful in the management of Parkinson's disease. PMID:21969327
Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment.
Goines, Paula E; Ashwood, Paul
2013-01-01
Autism spectrum disorders (ASD) are neurodevelopmental diseases that affect an alarming number of individuals. The etiological basis of ASD is unclear, and evidence suggests it involves both genetic and environmental factors. There are many reports of cytokine imbalances in ASD. These imbalances could have a pathogenic role, or they may be markers of underlying genetic and environmental influences. Cytokines act primarily as mediators of immunological activity but they also have significant interactions with the nervous system. They participate in normal neural development and function, and inappropriate activity can have a variety of neurological implications. It is therefore possible that cytokine dysregulation contributes directly to neural dysfunction in ASD. Further, cytokine profiles change dramatically in the face of infection, disease, and toxic exposures. Imbalances in cytokines may represent an immune response to environmental contributors to ASD. The following review is presented in two main parts. First, we discuss select cytokines implicated in ASD, including IL-1Β, IL-6, IL-4, IFN-γ, and TGF-Β, and focus on their role in the nervous system. Second, we explore several neurotoxic environmental factors that may be involved in the disorders, and focus on their immunological impacts. This review represents an emerging model that recognizes the importance of both genetic and environmental factors in ASD etiology. We propose that the immune system provides critical clues regarding the nature of the gene by environment interactions that underlie ASD pathophysiology. Copyright © 2012 Elsevier Inc. All rights reserved.
Cytokine dysregulation in autism spectrum disorders (ASD): Possible role of the environment
Goines, Paula E.; Ashwood, Paul
2012-01-01
Autism spectrum disorders (ASD) are neurodevelopmental diseases that affect an alarming number of individuals. The etiological basis of ASD is unclear, and evidence suggests it involves both genetic and environmental factors. There are many reports of cytokine imbalances in ASD. These imbalances could have a pathogenic role, or they may be markers of underlying genetic and environmental influences. Cytokines act primarily as mediators of immunological activity, but they also have significant interactions with the nervous system. They participate in normal neural development and function, and inappropriate activity can have a variety of neurological implications. It is therefore possible that cytokine dysregulation contributes directly to neural dysfunction in ASD. Further, cytokine profiles change dramatically in the face of infection, disease, and toxic exposures. Therefore, imbalances may represent an immune response to environmental contributors to ASD. The following review is presented in two main parts. First, we discuss select cytokines implicated in ASD, including IL-1Β, IL-6, IL-4, IFN-γ, and TGF-Β, and focus on their role in the nervous system. Second, we explore several neurotoxic environmental factors that may be involved in the disorders, and focus on their immunological impacts. This review represents an emerging model that recognizes the importance of both genetic and environmental factors in ASD etiology. We propose that the immune system provides critical clues regarding the nature of the gene by environment interactions that underlie ASD pathophysiology. PMID:22918031
77 FR 70908 - Dinotefuran; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-28
... level of skin irritation. The main target of toxicity is the nervous system but effects on the nervous system were only observed at high doses. Nervous system toxicity was manifested as clinical signs and... motor activity which are consistent with effects on the nicotinic cholinergic nervous system seen after...
78 FR 21267 - Dinotefuran; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... causes a low level of skin irritation. The main target of toxicity is the nervous system, but effects on the nervous system were only observed at high doses. Nervous system toxicity was manifested as... in motor activity which are consistent with effects on the nicotinic cholinergic nervous system seen...
Report of a rare case of trauma-induced thyroid storm.
Vora, Neil M; Fedok, Fred; Stack, Brendan C
2002-08-01
Thyroid storm is a potentially life-threatening endocrinologic emergency characterized by an exacerbation of a hyperthyroid state. Several inciting factors can instigate the conversion of thyrotoxicosis to thyroid storm; trauma is one such trigger, but it is rare. Patients with thyroid storm can manifest fever, nervous system disorders, gastrointestinal or hepatic dysfunction (e.g., nausea, vomiting, diarrhea, and/or jaundice), and arrhythmia and other cardiovascular abnormalities. Treatment of thyroid storm is multimodal and is best managed by the endocrinologist and medical intensivist. Initial medical and supportive therapies are directed at stabilizing the patient, correcting the hyperthyroid state, managing the systemic decompensation, and treating the underlying cause. Once this has been achieved, definitive treatment in the form of radioactive ablation or surgery should be undertaken. We describe a case of thyroid storm in a young man that was precipitated by a motor vehicle accident.
[Involvement of aquaporin-4 in synaptic plasticity, learning and memory].
Wu, Xin; Gao, Jian-Feng
2017-06-25
Aquaporin-4 (AQP-4) is the predominant water channel in the central nervous system (CNS) and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. However, the role of AQP-4 in regulating synaptic plasticity, learning and memory, cognitive function is only beginning to be investigated. It is well known that synaptic plasticity is the prime candidate for mediating of learning and memory. Long term potentiation (LTP) and long term depression (LTD) are two forms of synaptic plasticity, and they share some but not all the properties and mechanisms. Hippocampus is a part of limbic system that is particularly important in regulation of learning and memory. This article is to review some research progresses of the function of AQP-4 in synaptic plasticity, learning and memory, and propose the possible role of AQP-4 as a new target in the treatment of cognitive dysfunction.
Cocaine-induced agitated delirium: a case report and review.
Plush, Theodore; Shakespeare, Walter; Jacobs, Dorian; Ladi, Larry; Sethi, Sheeba; Gasperino, James
2015-01-01
Cocaine use continues to be a major public health problem in the United States. Although many of the initial signs and symptoms of cocaine intoxication result from increased stimulation of the sympathetic nervous system, this condition can present as a spectrum of acuity from hypertension and tachycardia to multiorgan system failure. Classic features of acute intoxication include tachycardia, arterial vasoconstriction, enhanced thrombus formation, mydriasis, psychomotor agitation, and altered level of consciousness. At the extreme end of this toxidrome is a rare condition known as cocaine-induced agitated delirium. This syndrome is characterized by severe cardiopulmonary dysfunction, hyperthermia, and acute neurologic changes frequently leading to death. We report a case of cocaine-induced agitated delirium in a man who presented to our institution in a paradoxical form of circulatory shock. Rapid evaluation, recognition, and proper management enabled our patient not only to survive but also to leave the hospital without neurologic sequelae. © The Author(s) 2013.
The autonomic nervous system at high altitude
Drinkhill, Mark J.; Rivera-Chira, Maria
2007-01-01
The effects of hypobaric hypoxia in visitors depend not only on the actual elevation but also on the rate of ascent. Sympathetic activity increases and there are increases in blood pressure and heart rate. Pulmonary vasoconstriction leads to pulmonary hypertension, particularly during exercise. The sympathetic excitation results from hypoxia, partly through chemoreceptor reflexes and partly through altered baroreceptor function. High pulmonary arterial pressures may also cause reflex systemic vasoconstriction. Most permanent high altitude dwellers show excellent adaptation although there are differences between populations in the extent of the ventilatory drive and the erythropoiesis. Some altitude dwellers, particularly Andeans, may develop chronic mountain sickness, the most prominent characteristic of which being excessive polycythaemia. Excessive hypoxia due to peripheral chemoreceptor dysfunction has been suggested as a cause. The hyperviscous blood leads to pulmonary hypertension, symptoms of cerebral hypoperfusion, and eventually right heart failure and death. PMID:17264976
[Risk, cause and disease in the occupational environment. Neurologic risk factors].
Maqueda-Blasco, J
In this paper we study the epidemiological criteria and those of etiological investigation which should be considered when analysing and investigating problems with health due to exposure to occupational hazards, with special attention to neurological damage due to chemical or physical contamination or to the ergonometric requirements of the task. We define the part played by occupational hazards in causing disease both professional and related to other occupations. The different preventive models used in the history of prevention of professional hazards are analysed. Particular attention is paid to the so-called socio-technical model which considers illness as dysfunction of the relation man/work. The neurological risk factors are analysed separately; therefore we emphasize the different neurotoxic chemicals, physical and ergonomic agents (the latter may be considered a pandemic in the workplace), and we establish the relationships with the main clinical and functional disorders of the central and peripheral nervous systems and the musculoskeletal system.
Biological substrates of schizophrenia.
Kovelman, J A; Scheibel, A B
1986-01-01
Schizophrenia is increasingly believed to represent a group of organic disorders which primarily, although not exclusively, affect the central nervous system. Our purpose is to review a representative sample of twentieth-century literature which speaks to the biological substrates of the syndrome. Subjects reviewed include genetic and environmental contributions to the onset of illness, early and recent findings of gross structural anomalies, and apparent histopathological alterations in cerebral cortex, cerebellar vermis, limbic system, and brain stem, as well as problems of cerebral asymmetry. Data from a diverse group of electrophysiological studies reveal several promising correlates of these areas of investigation. Despite the inconsistent nature of the findings to date, several themes have begun to emerge, including patterns of hypofrontal/hyperparietal regional cerebral flow and glucose utilization, left hemispheric dysfunction, and deficits of interhemispheric information processing. The interpretation and significance of these emerging patterns remains unclear and must await more profound insights into the nature of normal and abnormal cerebral function.
[Roles of Aquaporins in Brain Disorders].
Yasui, Masato
2015-06-01
Aquaporin (AQP) is a water channel protein that is expressed in the cell membranes. AQPs are related to several kinds of human diseases such as cataract. In the mammalian central nervous system (CNS), AQP4 is specifically expressed in the astrocyte membranes lining the perivascular and periventricular structures. AQP4 plays a role in the development of brain edema associated with certain brain disorders. Neuromyelitis optica (NMO) is a demyelinating disorder, and patients with NMO develop autoimmune antibodies against AQP4 in their serum. Therefore, AQP4 is involved in NMO pathogenesis. A new concept referred to as "glymphatic pathway" has been recently proposed to explain the lymphatic system in the CNS. Dysfunction of the "glymphatic pathway" may cause several neurodegenerative diseases and mood disorders. Importantly, AQP4 may play a role in the "glymphatic pathway". Further investigation of AQP4 in CNS disorders is necessary, and a new drug against AQP4 is expected.
Pathophysiologic Mechanisms in Heart Failure: Role of the Sympathetic Nervous System.
Antoine, Steve; Vaidya, Gaurang; Imam, Haider; Villarreal, Daniel
2017-01-01
The syndrome of heart failure involves complex pathophysiologic mechanisms and is associated with extremely high-morbidity, mortality and economic costs. This growing global epidemic has diverse etiologies and is fundamentally characterized by dyshomeostasis between heart and kidneys, leading to development and progression of the cardiorenal syndrome. Excessive and sustained sympathoexcitation has emerged as a single prominent factor involved in the structural and functional dysfunction of multiple organ systems during this disease. Studies in experimental models of heart failure indicate that ablation of the renal nerves may help restore renal sodium and water equilibrium as well as the attenuation of adverse cardiac remodeling. With the recent development of minimally invasive endovascular renal denervation in humans, it is anticipated that this technology would become a novel and important paradigm shift in the management of heart failure. Copyright © 2017. Published by Elsevier Inc.
Slow transit constipation: a review of a colonic functional disorder.
Frattini, Jared C; Nogueras, Juan J
2008-05-01
Constipation is a common gastrointestinal complaint that can cause significant physical and psychosocial problems. It has been categorized as slow transit constipation, normal transit constipation, and obstructed defecation. Both the definition and pathophysiology of constipation are unclear, but attempts to describe each of the three types have been made. Slow transit constipation, a functional colonic disorder represents approximately 15 to 30% of constipated patients. The theorized etiologies are disorders of the autonomic and enteric nervous system and/or a dysfunctional neuroendocrine system. Slow transit constipation can be diagnosed with a complete history, physical exam, and a battery of specific diagnostic studies. Once the diagnosis is affirmed and medical management has failed, there are several treatment options. Biofeedback, sacral nerve stimulation, segmental colectomy, and subtotal colectomy with various anastomoses have all been used. Of those treatment options, a subtotal colectomy with ileorectal anastomosis is the most efficacious with the data to support its use.
Strauser, David; Wagner, Stacia; Wong, Alex W K; O'Sullivan, Deidre
2013-04-01
The primary purpose of this paper is to undertake foundational research in the area of career readiness, work personality and age of onset with young adult central nervous system (CNS) survivors. Participants for this study consisted of 43 individuals whose age range from 18 to 30 (M = 21.64, SD = 3.46), an average age of brain tumor onset of 9.50 years (SD = 4.73) and average years off of treatment of 7.25 years (SD = 5.80). Packets were distributed to survivors who were participating in a psychosocial cancer treatment program. Participants completed multiple career instruments and a demographic form. Differences between groups and among the variables were examined and size effect sizes were analyzed. Young adult CNS survivors had significantly lower levels of work personality and career readiness when compared to young adult non-cancer survivors with CNS cancer with those between the ages of 6 and 12 reported significantly lower levels when compared to individuals diagnosed before age 6 and after the age of 13. Young adult CNS survivors at an increased risk for having lower levels of work personality and career readiness then a norm group comparison. Age of onset (between 6 and 12) may be at significant risk factor for developing poor or dysfunctional work and career behaviors. • Young adults with central nervous system (CNS) cancer are at particular risk for experiencing difficulties related to career and employment. • Work personality and career readiness are two constructs that have been found to be related to one's ability to meet the demands of work. • Young adult CNS cancer survivors have lower levels of work personality and career readiness. • Individuals diagnosed between the ages of 6 and 12 may be at particular risk and may need specific vocational rehabilitation interventions. • The results of this study point to the need for comprehensive career and vocational services for young adult CNS cancer survivors.
The sympathetic nervous system in polycystic ovary syndrome: a novel therapeutic target?
Lansdown, Andrew; Rees, D Aled
2012-12-01
Polycystic ovary syndrome (PCOS) is a common endocrine condition associated with long-term health risks, including type 2 diabetes and vascular dysfunction in addition to reproductive sequelae. Many of the common features of PCOS, such as central obesity, hyperinsulinaemia and obstructive sleep apnoea (OSA), are associated with chronic sympathetic overactivity, suggesting that sympathoexcitation may be involved in the pathogenesis of this condition. Rodent models of polycystic ovaries have shown that ovarian sympathetic outflow may be increased, accompanied by elevated intra-ovarian synthesis of nerve growth factor (NGF) which may be involved in initiation of ovarian pathology. Patients with PCOS have evidence of increased muscle sympathetic nerve activity (MSNA), altered heart rate variability and attenuated heart rate recovery postexercise, compared with age- and BMI-matched controls, suggesting a generalized increase in sympathetic nerve activity. Active weight loss can reduce MSNA and whole body noradrenaline spillover, whereas low-frequency electroacupuncture decreased MSNA in overweight women with PCOS. Treatment of OSA with continuous positive airways pressure may reduce plasma noradrenaline levels and diastolic blood pressure and improve cardiac sympathovagal balance. Renal sympathetic denervation also reduced MSNA, noradrenaline spillover and blood pressure in two PCOS subjects with hypertension, accompanied by improved insulin sensitivity. The sympathetic nervous system may thus offer a new therapeutic target in PCOS but larger and longer-term studies are needed before these treatments can be considered in clinical practice. © 2012 Blackwell Publishing Ltd.
Gastrointestinal and nutritional problems in neurologically impaired children.
Quitadamo, Paolo; Thapar, Nikhil; Staiano, Annamaria; Borrelli, Osvaldo
2016-11-01
The current increasing survival of children with severe central nervous system damage has created a major challenge for medical care. Gastrointestinal and nutritional problems in neurologically impaired children have been recently recognized as an integral part of their disease, often leading to growth failure and worsened quality of life for both children and caregivers. Nutritional support is essential for the optimal care of these children. Undernourished handicapped children might not respond properly to intercurrent diseases and suffer unnecessarily. On the other hand, restoring a normal nutritional status results in a better quality of life in many. The easiest and least invasive method to increase energy intake is to improve oral intake. However, oral intake can be maintained as long as there is no risk of aspiration, the child is growing well and the time required to feed the child remains within acceptable limits. When oral intake is unsafe, insufficient or too time consuming, enteral nutrition should be initiated. Damage to the developing central nervous system may result in significant dysfunction in the gastrointestinal tract and is reflected in impairment in oral-motor function, rumination, gastro-oesophageal reflux (GER), with or without aspiration, delayed gastric emptying and constipation. These problems can all potentially contribute to feeding difficulty in disabled children, carrying further challenging long-term management issues. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Wireless Power Transfer Strategies for Implantable Bioelectronics.
Agarwal, Kush; Jegadeesan, Rangarajan; Guo, Yong-Xin; Thakor, Nitish V
2017-01-01
Neural implants have emerged over the last decade as highly effective solutions for the treatment of dysfunctions and disorders of the nervous system. These implants establish a direct, often bidirectional, interface to the nervous system, both sensing neural signals and providing therapeutic treatments. As a result of the technological progress and successful clinical demonstrations, completely implantable solutions have become a reality and are now commercially available for the treatment of various functional disorders. Central to this development is the wireless power transfer (WPT) that has enabled implantable medical devices (IMDs) to function for extended durations in mobile subjects. In this review, we present the theory, link design, and challenges, along with their probable solutions for the traditional near-field resonant inductively coupled WPT, capacitively coupled short-ranged WPT, and more recently developed ultrasonic, mid-field, and far-field coupled WPT technologies for implantable applications. A comparison of various power transfer methods based on their power budgets and WPT range follows. Power requirements of specific implants like cochlear, retinal, cortical, and peripheral are also considered and currently available IMD solutions are discussed. Patient's safety concerns with respect to electrical, biological, physical, electromagnetic interference, and cyber security from an implanted neurotech device are also explored in this review. Finally, we discuss and anticipate future developments that will enhance the capabilities of current-day wirelessly powered implants and make them more efficient and integrable with other electronic components in IMDs.