Science.gov

Sample records for nervous system effects

  1. Environmental effects on the central nervous system.

    PubMed Central

    Paulson, G W

    1977-01-01

    The central nervous system (CNS) is designed to respond to the environment and is peculiarly vulnerable to many of the influences found in the environment. Utilizing an anatomical classification (cortex, cerebellum, peripheral nerves) major toxins and stresses are reviewed with selections from recent references. Selective vulnerability of certain areas to particular toxins is apparent at all levels of the CNS, although the amount of damage produced by any noxious agent depends on the age and genetic substrate of the subject. It is apparent that the effects of certain well known and long respected environmental toxins such as lead, mercury, etc., deserve continued surveillance. In addition, the overwhelming impact on the CNS of social damages such as trauma, alcohol, and tobacco cannot be ignored by environmentalists. The effect of the hospital and therapeutic environment has become apparent in view of increased awareness of iatrogenic disorders. The need for particular laboratory tests, for example, examination of CSF and nerve conduction toxicity studies, is suggested. Epidemics such as the recent solvent neuropathies suggest a need for continued animal studies that are chronic, as well as acute evaluations when predicting the potential toxic effects of industrial compounds. PMID:202447

  2. A rare adverse effect of metronidazole: nervous system symptoms.

    PubMed

    Kafadar, Ihsan; Moustafa, Fatma; Yalçın, Koray; Klç, Betül Aydn

    2013-06-01

    Metronidazole, as a 5-nitroimidazole compound, is effective on anaerobic bacteria and protozoon diseases. Mostly, metronidazole is a tolerable drug but rarely presents serious adverse effects on the nervous system. In case of these adverse effects, treatment must be stopped.In this report, a 3-year-old child hospitalized because of diarrhea is presented. During the metronidazole treatment, loss of sight, vertigo, ataxia, and headache occurred as the adverse effects. By this report, we want to express the rare adverse effects of drugs in the differential diagnoses of nervous system diseases.

  3. Central nervous system depressant effect of Hoslundia opposita vahl.

    PubMed

    Olajide, O A; Awe, S O; Makinde, J M

    1999-08-01

    The chloroform extract of the dried root of Hoslundia opposita has been evaluated for effects on the central nervous system (CNS). The extract significantly potentiated the phenobarbitone sleeping time in mice and produced a 60% protection against leptazol-induced convulsion. Neuropharmacological screening revealed CNS depression. Copyright 1999 John Wiley & Sons, Ltd.

  4. Effects of snake venom polypeptides on central nervous system.

    PubMed

    Osipov, Alexey; Utkin, Yuri

    2012-12-01

    The nervous system is a primary target for animal venoms as the impairment of its function results in the fast and efficient immobilization or death of a prey. There are numerous evidences about effects of crude snake venoms or isolated toxins on peripheral nervous system. However, the data on their interactions with the central nervous system (CNS) are not abundant, as the blood-brain barrier (BBB) impedes penetration of these compounds into brain. This updated review presents the data about interaction of snake venom polypeptides with CNS. Such data will be described according to three main modes of interactions: - Direct in vivo interaction of CNS with venom polypeptides either capable to penetrate BBB or injected into the brain. - In vitro interactions of cell or sub-cellular fractions of CNS with crude venoms or purified toxins. - Indirect effects of snake venoms or their components on functioning of CNS under different conditions. Although the venom components penetrating BBB are not numerous, they seem to be the most suitable candidates for the leads in drug design. The compounds with other modes of action are more abundant and better studied, but the lack of the data about their ability to penetrate BBB may substantially aggravate the potentials for their medical perspectives. Nevertheless, many such compounds are used for research of CNS in vitro. These investigations may give invaluable information for understanding the molecular basis of CNS diseases and thus lay the basis for targeted drug design. This aspect also will be outlined in the review.

  5. The Adverse Effects of Air Pollution on the Nervous System

    PubMed Central

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  6. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  7. Clinical implications of thyroid hormones effects on nervous system development.

    PubMed

    Carreón-Rodríguez, Alfonso; Pérez-Martínez, Leonor

    2012-03-01

    Thyroid hormones have an important role throughout prenatal and postnatal nervous system development. They are involved in several processes such as neurogenesis, gliogenesis, myelination, synaptogenesis, etc., as shown in many cases of deficiency like congenital hypothyroidism or hypothyroxinemia. Those pathologies if untreated could lead to severe damages in cognitive, motor, neudoendocrine functions among other effects. Some could be reversed after adequate supplementation of thyroid hormones at birth, however there are other cellular processes highly sensitive to low levels of thyroid hormones and lasting a limited period of time during which if thyroid hormone action is lacking or deficient, the functional and structural damages would produce permanent defects.

  8. The effect of octopamine on the locust stomatogastric nervous system.

    PubMed

    Rand, David; Knebel, Daniel; Ayali, Amir

    2012-01-01

    Octopamine (OA) is a prominent neuromodulator of invertebrate nervous systems, influencing multiple physiological processes. Among its many roles in insects are the initiation and maintenance of various rhythmic behaviors. Here, the neuromodulatory effects of OA on the components of the locust stomatogastric nervous system were studied, and one putative source of OA modulation of the system was identified. Bath application of OA was found to abolish the endogenous rhythmic output of the fully isolated frontal ganglion (FG), while stimulating motor activity of the fully isolated hypocerebral ganglion (HG). OA also induced rhythmic movements in a foregut preparation with intact HG innervation. Complex dose-dependent effects of OA on interconnected FG-HG preparations were seen: 10(-5) M OA accelerated the rhythmic activity of both the HG and FG in a synchronized manner, while 10(-4) M OA decreased both rhythms. Intracellular stimulation of an identified octopaminergic dorsal unpaired median neuron in the subesophageal ganglion was found to exert a similar effect on the FG motor output as that of OA application. Our findings suggest a mechanism of regulation of insect gut patterns and feeding-related behavior during stress and times of high energy demand.

  9. Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration.

    PubMed

    Sarlak, Golmaryam; Jenwitheesuk, Anorut; Chetsawang, Banthit; Govitrapong, Piyarat

    2013-09-20

    Neural aging as a progressive loss of function involves central and peripheral post-mitotic neurons and neural stem cells (NSCs). It promotes neurodegeneration, impairs neurogenesis, and can be considered a cause of cognitive impairment and sensory and motor deficits in the elderly. Age-related morphological atrophic changes and cellular alterations are addressed by neural aging mechanisms. Neurogenesis declines during aging through several mechanisms such as an increase in quiescence state, changes in lineage fate, telomerase dysfunction, the failure of the DNA repair system, increased apoptosis, and the impairment of self-renewal. The self-renewal transcriptional factor Sox2 has been correlated with retrotransposon L1 and certain cell-cycle- and epigenetic-related factors, which are sometimes considered age-related factors in NSC aging. As neurogenesis decreases, non-mitotic neurons undergo neurodegeneration by oxidative stress, sirtuin, insulin signaling and mTOR alteration, mitochondrial dysfunction, and protein misfolding and aggregation. As neurodegeneration and impaired neurogenesis promote the nervous system aging process, the identification of neuronal anti-aging is required to raise life expectancy. The role of melatonin in increasing neurogenesis and protecting against neurodegeneration has been investigated. Here, we review nervous system aging that is correlated with mechanisms of neurodegeneration and the impairment of neurogenesis and evaluate the effects of melatonin on these processes.

  10. The effect of space radiation of the nervous system

    NASA Astrophysics Data System (ADS)

    Gauger, Grant E.; Tobias, Cornelius A.; Yang, Tracy; Whitney, Monroe

    The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.

  11. Autonomic Nervous System Disorders

    MedlinePlus

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart and ... blood vessels. When something goes wrong in this system, it can cause serious problems, including Blood pressure ...

  12. HIV and aging: effects on the central nervous system.

    PubMed

    Cañizares, Silvia; Cherner, Mariana; Ellis, Ronald J

    2014-02-01

    With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some markers of Alzheimer's disease is presented. Current research findings emphasize multiple mechanisms related to HIV and combination antiretroviral therapy that compromise CNS structure and function with advancing age.

  13. HIV and Aging: Effects on the Central Nervous System

    PubMed Central

    Cañizares, Silvia; Cherner, Mariana; Ellis, Ronald J.

    2014-01-01

    With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some markers of Alzheimer’s disease is presented. Current research findings emphasize multiple mechanisms related to HIV and combination antiretroviral therapy that compromise CNS structure and function with advancing age. PMID:24715486

  14. Central nervous system

    MedlinePlus

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  15. Anticholinergics for overactive bladder therapy: central nervous system effects.

    PubMed

    Chancellor, Michael; Boone, Timothy

    2012-02-01

    The mainstay of pharmacological treatment of overactive bladder (OAB) is anticholinergic therapy using muscarinic receptor antagonists (tertiary or quaternary amines). Muscarinic receptors in the brain play an important role in cognitive function, and there is growing awareness that antimuscarinic OAB drugs may have adverse central nervous system (CNS) effects, ranging from headache to cognitive impairment and episodes of psychosis. This review discusses the physicochemical and pharmacokinetic properties of OAB antimuscarinics that affect their propensity to cause adverse CNS effects, as observed in phase III clinical trials and in specific investigations on cognitive function and sleep architecture. PubMed/MEDLINE was searched for "OAB" plus "muscarinic antagonists" or "anticholinergic drug." Additional relevant literature was identified by examining the reference lists of papers identified through the search. Preclinical and clinical trials in adults were assessed, focusing on the OAB antimuscarinics approved in the United States. The blood-brain barrier (BBB) plays a key role in protecting the CNS, but it is penetrable. The lipophilic tertiary amines, particularly oxybutynin, are more likely to cross the BBB than the hydrophilic quaternary amine trospium chloride, for which there are very few reports of adverse CNS effects. In fact, in 2008 the US product labels for oral oxybutynin were modified to include the potential for anticholinergic CNS events and a warning to monitor patients for adverse CNS effects. Even modest cognitive impairment in the elderly may negatively affect independence; therefore, selection of an antimuscarinic OAB drug with reduced potential for CNS effects is advisable. © 2011 Blackwell Publishing Ltd.

  16. Effect of hyperthermia on the central nervous system: a review.

    PubMed

    Sminia, P; van der Zee, J; Wondergem, J; Haveman, J

    1994-01-01

    Experimental data show that nervous tissue is sensitive to heat. Animal data indicate that the maximum tolerated heat dose after local hyperthermia of the central nervous system (CNS) lies in the range of 40-60 min at 42-42 x 5 degrees C or 10-30 min at 43 degrees C. No conclusions concerning the heat sensitivity of nervous tissue can be derived from clinical studies using localized hyperthermia. The choice whether or not to exceed the critical heat dose, as derived from laboratory studies, in clinical practice is very much dependent on the clinical situation such as the anatomical site and volume of the tissue involved, and prior therapy. Data on clinical application of whole body hyperthermia (WBH) show that nervous tissue can withstand a slightly higher heat dose than after localized heating, which might be the result of developing thermal resistance during treatment. Expression of thermotolerance was observed in the spinal cord of laboratory animals. After WBH in man at a maximum between 40 and 43 degrees C for 6 h-30 min CNS complications were reported, but other complications seemed to be more life-threatening. Most studies indicate that impairment of the CNS after WBH was not due to direct heat injury to the brain or spinal cord, but was secondary as a result of physiological changes. Heat, at least if applied shortly after X-rays, enhances the response of nervous tissue to radiation. Neurotoxicity of chemotherapeutic drugs does not seem to be a limiting complication in hyperthermia if combined with chemotherapy, but only few data are available. The limited clinical experience shows that safe hyperthermic treatment of CNS malignancies or tumours located close to the CNS seems feasible under appropriate technical conditions with adequate thermometry and taking the sensitivity of the surrounding normal nervous tissue into account.

  17. Protective effects and mechanisms of sirtuins in the nervous system

    PubMed Central

    Zhang, Feng; Wang, Suping; Gan, Li; Vosler, Peter S.; Gao, Yanqin; Chen, Jun

    2011-01-01

    Silent information regulator two proteins (sirtuins or SIRTs) are a group of histone deacetylases whose activities are dependent on and regulated by nicotinamide adenine dinucleotide (NAD+). They suppress genome-wide transcription, yet upregulate a select set of proteins related to energy metabolism and pro-survival mechanisms, and therefore play a key role in the longevity effects elicited by calorie restriction. Recently, a neuroprotective effect of sirtuins has been reported for both acute and chronic neurological diseases. The focus of this review is to summarize the latest progress regarding the protective effects of sirtuins, with a focus on SIRT1. We first introduce the distribution of sirtuins in the brain and how their expression and activity are regulated. We then highlight their protective effects against common neurological disorders, such as cerebral ischemia, axonal injury, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. Finally, we analyze the mechanisms underlying sirtuin-mediated neuroprotection, centering on their non-histone substrates such as DNA repair enzymes, protein kinases, transcription factors, and coactivators. Collectively, the information compiled here will serve as a comprehensive reference for the actions of sirtuins in the nervous system to date, and will hopefully help to design further experimental research and expand sirtuins as therapeutic targets in the future. PMID:21930182

  18. Effects of radiation on development, especially of the nervous system

    SciTech Connect

    Hicks, S.P.; D'Amato, C.J.

    1980-12-01

    Humans and other organisms are exposed to ionizing radiations from a variety of natural and man-made sources. Radiation may cause mutations and chromosome abnormalities, cell-killing, alterations and transformations in cell growth, and carcinogenetic changes. This paper considers principally the cell-killing and nonlethal cell alterations in developing laboratory mammals and humans, especially the nervous system, that follow irradiation and often lead to malformation and disturbed function, but at certain stages to restitution of the injury. Most of what researchers know about the mechanisms of these radiation effects in man is derived from animal experiments, especially with rats. The few observations in humans have corresponded closely to them. Researchers illustrate the cellular effects and malformative results with an example of cell-killing in the developing cortex of a human fetus exposed to therapeutic radiation in utero; a current timetable of the malformative and other effects of radiation on rats during development from which expectations of human effects might be extrapolated; examples of hydrocephalus produced in rats; low-dose alterations of nerve cells in rats; and a microcephalic Japanese boy exposed in utero to the atomic bomb at Hiroshima in 1945.

  19. The Nervous System Game

    ERIC Educational Resources Information Center

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  20. The Nervous System Game

    ERIC Educational Resources Information Center

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  1. Central Nervous System Effects of Ginkgo Biloba, a Plant Extract.

    PubMed

    Itil, Turan M.; Eralp, Emin; Tsambis, Elias; Itil, Kurt Z.; Stein, Ulrich

    1996-01-01

    Extracts of Ginkgo biloba (EGb) are among the most prescribed drugs in France and Germany. EGb is claimed to be effective in peripheral arterial disorders and in "cerebral insufficiency." The mechanism of action is not yet well understood. Three of the ingredients of the extract have been isolated and found to be pharmacologically active, but which one alone or in combination is responsible for clinical effects is unknown. The recommended daily dose (3 x 40 mg extract) is based more on empirical data than on clinical dose-findings studies. However, despite these, according to double-blind, placebo-controlled clinical trials, EGb has therapeutic effects, at least, on the diagnostic entity of "cerebral insufficiency," which is used in Europe as synonymous with early dementia. To determine whether EGb has significant pharmacological effects on the human brain, a pharmacodynamic study was conducted using the Quantitative Pharmacoelectroencephalogram (QPEEG(R)) method. It was established that the pharmacological effects (based on a predetermined 7.5--13.0-Hz alpha frequency band in a computer-analyzed electroencephalogram = CEEG(R)) of EGb on the central nervous system (CNS) are significantly different than placebo, and the high and low doses could be discriminated from each other. The 120-mg, but particularly the 240-mg, single doses showed the most consistent CNS effects with an earlier onset (1 h) and longer duration (7 h). Furthermore, it was established that the electrophysiological effects of EGb in CNS are similar to those of well-known cognitive activators such as "nootropics" as well as tacrine, the only marketed "antidementia" drug currently available in the United States.

  2. Central nervous system effects of whole-body proton irradiation.

    PubMed

    Sweet, Tara Beth; Panda, Nirlipta; Hein, Amy M; Das, Shoshana L; Hurley, Sean D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2014-07-01

    Space missions beyond the protection of Earth's magnetosphere expose astronauts to an environment that contains ionizing proton radiation. The hazards that proton radiation pose to normal tissues, such as the central nervous system (CNS), are not fully understood, although it has been shown that proton radiation affects the neurogenic environment, killing neural precursors and altering behavior. To determine the time and dose-response characteristics of the CNS to whole-body proton irradiation, C57BL/6J mice were exposed to 1 GeV/n proton radiation at doses of 0-200 cGy and behavioral, physiological and immunohistochemical end points were analyzed over a range of time points (48 h-12 months) postirradiation. These experiments revealed that proton radiation exposure leads to: 1. an acute decrease in cell division within the dentate gyrus of the hippocampus, with significant differences detected at doses as low as 10 cGy; 2. a persistent effect on proliferation in the subgranular zone, at 1 month postirradiation; 3. a decrease in neurogenesis at doses as low as 50 cGy, at 3 months postirradiation; and 4. a decrease in hippocampal ICAM-1 immunoreactivity at doses as low as 10 cGy, at 1 month postirradiation. The data presented contribute to our understanding of biological responses to whole-body proton radiation and may help reduce uncertainty in the assessment of health risks to astronauts. These findings may also be relevant to clinical proton beam therapy.

  3. Effects of imidacloprid on Rana catesbeiana immune and nervous system.

    PubMed

    Rios, Francesca M; Wilcoxen, Travis E; Zimmerman, Laura M

    2017-08-30

    Imidacloprid (IMD), a neonicotinoid, is generally considered to be of low toxicity in vertebrates. However, the inhibition of acetylcholine (ACh) receptors can have a profound effect on both the immune and nervous system due to the anti-inflammatory effects of ACh. Vertebrates, such as amphibians, might be affected by IMD because they breed in wetlands where the concentration of IMD is high. In our study, we experimentally exposed Rana catesbeiana tadpoles to environmentally relevant IMD and then quantified the ACh and antibody to non-replicating antigens. We hypothesized that IMD exposure would result in higher AChE and antibody levels. We completed a factorial experiment in which tadpoles were divided into four groups, two of which were exposed to 100 ng/L of IMD. After five weeks, two groups were injected with the novel antigen keyhole limpet hemocyanin (KLH) and two injected with a control. Three weeks later, tadpoles were euthanized and blood samples collected. At 100 ng/L, IMD exposure did not cause a significant difference in AChE levels or KLH-specific IgY antibodies. However, tadpoles injected with KLH had slightly higher levels of AChE. In addition, we saw a trend in total IgM with higher levels in tadpoles exposed to IMD. While we found no effect of IMD at 100 ng/L on antibody response to a novel, non-replicating antigen nor on ACh production, further research is needed to determine if higher concentrations of IMD or parasite infection can influence development of R.catesbeiana. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The effects of space travel on the nervous system.

    PubMed

    Angel, A

    1989-08-01

    The translation of man from terrestrial to an extra terrestrial environment is accompanied by an upset in the servo-control of movement engendered by the removal of the normal gravitational signal. Unfortunately the "natural" response of the nervous system, to ocular and vestibular confusion, is to cause varying degrees of sickness which can only be avoided by choice of suitable space travellers i.e., those who are least upset by gravitational chaos. This will remain so until much more is learned about the fundamental physiological mechanisms whereby man maintains a correct head/trunk, head/eye, trunk/limb and eye/limb positional coordination and why if these are upset man's natural response is to vomit.

  5. Nervous System Lyme Disease.

    PubMed

    Halperin, John J

    2015-12-01

    Nervous system involvement occurs in 10% to 15% of patients infected with the tick-borne spirochetes Borrelia burgdorferi, B afzelii, and B garinii. Peripheral nervous system involvement is common. Central nervous system (CNS) involvement, most commonly presenting with lymphocytic meningitis, causes modest cerebrospinal fluid (CSF) pleocytosis. Parenchymal CNS infection is rare. If the CNS is invaded, however, measuring local production of anti-B burgdorferi antibodies in the CSF provides a useful marker of infection. Most cases of neuroborreliosis can be cured with oral doxycycline; parenteral regimens should be reserved for patients with particularly severe disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Brain and Nervous System

    MedlinePlus

    ... such as the beating of your heart, the digestion of your food, and yes, even the amount ... functions, like breathing, heart rate, blood pressure, swallowing, digestion, and blinking. previous continue How the Nervous System ...

  7. Noise in the nervous system.

    PubMed

    Faisal, A Aldo; Selen, Luc P J; Wolpert, Daniel M

    2008-04-01

    Noise--random disturbances of signals--poses a fundamental problem for information processing and affects all aspects of nervous-system function. However, the nature, amount and impact of noise in the nervous system have only recently been addressed in a quantitative manner. Experimental and computational methods have shown that multiple noise sources contribute to cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous system, from the molecular to the behavioural level, and show how noise contributes to trial-to-trial variability. We highlight how noise affects neuronal networks and the principles the nervous system applies to counter detrimental effects of noise, and briefly discuss noise's potential benefits.

  8. Novel central nervous system drug delivery systems.

    PubMed

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  9. Imaging nervous system activity.

    PubMed

    Fields, Douglas R; Shneider, Neil; Mentis, George Z; O'Donovan, Michael J

    2009-10-01

    This unit describes methods for loading ion- and voltage-sensitive dyes into neurons, with a particular focus on the spinal cord as a model system. In addition, we describe the use of these dyes to visualize neural activity. Although the protocols described here concern spinal networks in culture or an intact in vitro preparation, they can be, and have been, widely used in other parts of the nervous system.

  10. Central nervous system toxicity.

    PubMed

    Ruha, Anne-Michelle; Levine, Michael

    2014-02-01

    Central nervous system toxicity caused by xenobiotic exposure is a common reason for presentation to the emergency department. Sources of exposure may be medicinal, recreational, environmental, or occupational; the means of exposure may be intentional or unintended. Toxicity may manifest as altered thought content resulting in psychosis or confusion; may affect arousal, resulting in lethargy, stupor, or coma; or may affect both elements of consciousness. Seizures may also occur. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The Effects of Electromagnetic Fields on The Nervous System,

    DTIC Science & Technology

    FROGS , EAR, RADIATION EFFECTS, RADIATION HAZARDS, AUDITORY SIGNALS, COCHLEA, ELECTROPHYSIOLOGY, GUINEA PIGS, NEUROMUSCULAR TRANSMISSION, DIAPHRAGMS(ANATOMY), AUDITORY NERVE, CATS, GANGLIA, SCIATIC NERVE.

  12. Effects of inhaled rosemary oil on subjective feelings and activities of the nervous system.

    PubMed

    Sayorwan, Winai; Ruangrungsi, Nijsiri; Piriyapunyporn, Teerut; Hongratanaworakit, Tapanee; Kotchabhakdi, Naiphinich; Siripornpanich, Vorasith

    2013-01-01

    Rosemary oil is one of the more famous essential oils widely used in aroma-therapy. However, the effects of rosemary oil on the human body, in particular the nervous system, have not been sufficiently studied. This study investigates the effects of the inhalation of rosemary oil on test subjects' feelings, as well as its effects on various physiological parameters of the nervous system. Twenty healthy volunteers participated in the experiment. All subjects underwent autonomic nervous system (ANS) recording. This consisted of measurements of skin temperature; heart rate; respiratory rate; blood pressure; evaluations of the subjects' mood states; and electroencephalography (EEG) recordings in the pre-, during treatment, and post-rosemary inhalation periods as compared with control conditions. Our results showed significant increases in blood pressure, heart rate, and respiratory rate after rosemary oil inhalation. After the inhalation treatments, subjects were found to have become more active and stated that they felt "fresher". The analysis of EEGs showed a reduction in the power of alpha1 (8-10.99 Hz) and alpha2 (11-12.99 Hz) waves. Moreover, an increment in the beta wave (13-30 Hz) power was observed in the anterior region of the brain. These results confirm the stimulatory effects of rosemary oil and provide supporting evidence that brain wave activity, autonomic nervous system activity, as well as mood states are all affected by the inhalation of the rosemary oil.

  13. Your Brain and Nervous System

    MedlinePlus

    ... Room? What Happens in the Operating Room? Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  14. Your Brain and Nervous System

    MedlinePlus

    ... los dientes Video: Getting an X-ray Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  15. Imaging nervous system activity.

    PubMed

    Fields, R D; O'Donovan, M J

    2001-05-01

    Optical imaging methods rely upon visualization of three types of signals: (1) intrinsic optical signals, including light scattering and reflectance, birefringence, and spectroscopic changes of intrinsic molecules, such as NADH or oxyhemoglobin; (2) changes in fluorescence or absorbance of voltage-sensitive membrane dyes; and (3) changes in fluorescence or absorbance of calcium-sensitive indicator dyes. Of these, the most widely used approach is fluorescent microscopy of calcium-sensitive dyes. This unit describes protocols for the use of calcium-sensitive dyes and voltage-dependent dyes for studies of neuronal activity in culture, tissue slices, and en-bloc preparations of the central nervous system.

  16. Molecular mechanisms underlying the effects of statins in the central nervous system.

    PubMed

    McFarland, Amelia J; Anoopkumar-Dukie, Shailendra; Arora, Devinder S; Grant, Gary D; McDermott, Catherine M; Perkins, Anthony V; Davey, Andrew K

    2014-11-10

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins' effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins' effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins' possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed.

  17. Molecular Mechanisms Underlying the Effects of Statins in the Central Nervous System

    PubMed Central

    McFarland, Amelia J.; Anoopkumar-Dukie, Shailendra; Arora, Devinder S.; Grant, Gary D.; McDermott, Catherine M.; Perkins, Anthony V.; Davey, Andrew K.

    2014-01-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins’ effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins’ effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins’ possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed. PMID:25391045

  18. Aquaporins in Nervous System.

    PubMed

    Xu, Mengmeng; Xiao, Ming; Li, Shao; Yang, Baoxue

    2017-01-01

    Aquaporins (AQPs ) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the 9 AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2 and AQP4 expressed in the peripheral nervous system (PNS) are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema, and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica , brain tumors and Alzheimer's disease. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.

  19. Early and late endocrine effects in pediatric central nervous system diseases.

    PubMed

    Aslan, Ivy R; Cheung, Clement C

    2014-01-01

    Endocrinopathies are frequently linked to central nervous system disease, both as early effects prior to the disease diagnosis and/or late effects after the disease has been treated. In particular, tumors and infiltrative diseases of the brain and pituitary, such as craniopharyngioma, optic pathway and hypothalamic gliomas, intracranial germ cell tumor, and Langerhans cell histiocytosis, can present with abnormal endocrine manifestations that precede the development of neurological symptoms. Early endocrine effects include diabetes insipidus, growth failure, obesity, and precocious or delayed puberty. With improving prognosis and treatment of childhood brain tumors, many survivors experience late endocrine effects related to medical and surgical interventions. Chemotherapeutic agents and radiation therapy can affect the hypothalamic-pituitary axes governing growth, thyroid, gonadal, and adrenal function. In addition, obesity and metabolic alterations are frequent late manifestations. Diagnosing and treating both early and late endocrine manifestations can dramatically improve the growth, well-being, and quality of life of patients with childhood central nervous system diseases.

  20. Effects Of Excitotoxic Lesion With Inhaled Anesthetics On Nervous System Cells Of Rodents.

    PubMed

    Quiroz-Padilla, Maria Fernanda; Guillazo-Blanch, Gemma; Sanchez, Magdy Y; Dominguez-Sanchez, Maria Andrea; Gomez, Rosa Margaria

    2017-08-17

    Different anesthesia methods can variably influence excitotoxic lesion effects on the brain. The main purpose of this review is to identify potential differences in the toxicity to nervous system cells of two common inhalation anesthesia methods, isoflurane and sevoflurane, used in combination with an excitotoxic lesion procedure in rodents. The use of bioassays in animal models has provided the opportunity to examine the role of specific molecules and cellular interactions that underlie important aspects of neurotoxic effects relating to calcium homeostasis and apoptosis activation. Processes induced by NMDA antagonist drugs involve translocation of Bax protein to mitochondrial membranes, allowing extra-mitochondrial leakage of cytochrome c, followed by sequence of changes that ending in activation of CASP-3. The literature demonstrates that the use of these anesthetics in excitotoxic surgery increases neuroinflammation activity facilitating the effects of apoptosis and necrosis on nervous system cells, depending on the concentration and exposure duration of the anesthetic. High numbers of microglia and astrocytes and high levels of proinflammatory cytokines and caspase activation possibly mediate these inflammatory responses. However, it is necessary to continue studies in rodents to understand the effect of the use of inhaled anesthetics with excitotoxic lesions in different developmental stages, including newborns, juveniles and adults. Understanding the mechanisms of regulation of cell death during development can potentially provide tools to promote neuroprotection and eventually achieve the repair of the nervous system in pathological conditions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Effects of water temperature on cardiac autonomic nervous system modulation during foot immersion (foot bath)

    NASA Astrophysics Data System (ADS)

    Nishimura, M.; Ono, K.; Onodera, S.

    2005-08-01

    The purpose of this study was to make clear the effects of water temperature during foot immersion (foot bath) on heart rate, blood pressure, rectal temperature and autonomic nervous system modulation. The subjects performed foot immersion at 25, 35, 41 and 45 degrees Celsius at random, during different days, but always at the same time. Cardiac autonomic nervous system modulation was estimated with the power spectrum analysis of heart rate variability by using the Fast Fourier Transformation. The two frequency components of HRV was measured by integrate low frequency (LF; 0.04- 0.15 Hz) and high frequency (HF; 0.15- 0.40 Hz). HF was used as an indicator of cardiac vagal modulation and was showed logarithmically (LogHF). LogHF during foot immersion at 35 and 41 degrees Celsius was significantly increased. These data indicate that cardiac vagal activity was affected by water temperature during foot immersion (foot bath).

  2. Effects of Petroleum Ether Extract of Amorphophallus paeoniifolius Tuber on Central Nervous System in Mice

    PubMed Central

    Das, S. S.; Sen, Malini; Dey, Y. N.; De, S.; Ghosh, A. K.

    2009-01-01

    The central nervous system activity of the petroleum ether extract of Amorphophallus paeoniifolius tuber was examined in mice, fed normal as well as healthy conditions. The petroleum ether extract of Amorphophallus paeoniifolius tuber at the doses of 100, 300 and 1000 mg/kg showed significant central nervous system activity in mice. PMID:20376218

  3. Effects of alpha-glucosylhesperidin on the peripheral body temperature and autonomic nervous system.

    PubMed

    Takumi, Hiroko; Fujishima, Noboru; Shiraishi, Koso; Mori, Yuka; Ariyama, Ai; Kometani, Takashi; Hashimoto, Shinichi; Nadamoto, Tomonori

    2010-01-01

    We studied the effects of alpha-glucosylhesperidin (G-Hsp) on the peripheral body temperature and autonomic nervous system in humans. We first conducted a survey of 97 female university students about excessive sensitivity to the cold; 74% of them replied that they were susceptible or somewhat susceptible to the cold. We subsequently conducted a three-step experiment. In the first experiment, G-Hsp (500 mg) was proven to prevent a decrease in the peripheral body temperature under an ambient temperature of 24 degrees C. In the second experiment, a warm beverage containing G-Hsp promoted blood circulation and kept the finger temperature higher for a longer time. We finally used a heart-rate variability analysis to study whether G-Hsp changed the autonomic nervous activity. The high-frequency (HF) component tended to be higher, while the ratio of the low-frequency (LF)/HF components tended to be lower after the G-Hsp administration. These results suggest that the mechanism for temperature control by G-Hsp might involve an effect on the autonomic nervous system.

  4. The Effects of Normal Aging on Myelinated Nerve Fibers in Monkey Central Nervous System

    PubMed Central

    Peters, Alan

    2009-01-01

    The effects of aging on myelinated nerve fibers of the central nervous system are complex. Many myelinated nerve fibers in white matter degenerate and are lost, leading to some disconnections between various parts of the central nervous system. Other myelinated nerve fibers are affected differently, because only their sheaths degenerate, leaving the axons intact. Such axons are remyelinated by a series of internodes that are much shorter than the original ones and are composed of thinner sheaths. Thus the myelin-forming cells of the central nervous system, the oligodendrocytes, remain active during aging. Indeed, not only do these neuroglial cell remyelinate axons, with age they also continue to add lamellae to the myelin sheaths of intact nerve fibers, so that sheaths become thicker. It is presumed that the degeneration of myelin sheaths is due to the degeneration of the parent oligodendrocyte, and that the production of increased numbers of internodes as a consequence of remyelination requires additional oligodendrocytes. Whether there is a turnover of oligodendrocytes during life has not been studied in primates, but it has been established that over the life span of the monkey, there is a substantial increase in the numbers of oligodendrocytes. While the loss of some myelinated nerve fibers leads to some disconnections, the degeneration of other myelin sheaths and the subsequent remyelination of axons by shorter internodes slow down the rate conduction along nerve fibers. These changes affect the integrity and timing in neuronal circuits, and there is evidence that they contribute to cognitive decline. PMID:19636385

  5. Nervous System Complexity Baffles Scientists.

    ERIC Educational Resources Information Center

    Fox, Jeffrey L.

    1982-01-01

    New research findings about how nerve cells transmit signals are forcing researchers to overhaul their simplistic ideas about the nervous system. Topics highlighted include the multiple role of peptides in the nervous system, receptor molecules, and molecules that form ion channels within membranes. (Author/JN)

  6. Nervous System Complexity Baffles Scientists.

    ERIC Educational Resources Information Center

    Fox, Jeffrey L.

    1982-01-01

    New research findings about how nerve cells transmit signals are forcing researchers to overhaul their simplistic ideas about the nervous system. Topics highlighted include the multiple role of peptides in the nervous system, receptor molecules, and molecules that form ion channels within membranes. (Author/JN)

  7. Effects of music during exercise on RPE, heart rate and the autonomic nervous system.

    PubMed

    Yamashita, S; Iwai, K; Akimoto, T; Sugawara, J; Kono, I

    2006-09-01

    The purpose of this study was to investigate the relationship between the influence of music on RPE during sub-maximal exercise and on the autonomic nervous system before and after sub-maximal exercise. Heart rate (HR), HR variability (HRV) and rates of physical fatigue (RPE) during exercise at 60% and at 40% VO2max with and without music were measured. The exercise protocol consisted of a 30-min seated rest (control) period followed by a 30-min submaximal cycling exercise and a 35-min recovery period. Autonomic-nervous activity was measured before and after exercise. During exercise, RPE was recorded every 3 min and HR was recorded for every minute. Although RPE did not differ during exercise at 60% VO2max, this value was lower during exercise at 40% VO2max in the presence, than in the absence of a favorite piece music (P < 0.05). HR, HFA and LFA/HFA of HRV significantly differed with exercise intensity in the absence (P < 0.05), but not in the presence of music. These findings suggested that music evokes a ''distraction effect'' during low intensity exercise, but might not influence the autonomic nervous system. Therefore, when jogging or walking at comparatively low exercise intensity, listening to a favorite piece of music might decrease the influence of stress caused by fatigue, thus increasing the ''comfort'' level of performing the exercise.

  8. Cocaine and the nervous system.

    PubMed

    Prakash, A; Das, G

    1993-12-01

    Cocaine abuse today has reached greater heights than it did during the first cocaine epidemic in the late nineteenth century. It is estimated that one out of every four Americans has used cocaine and some six million people in the US use it regularly. Although cocaine affects all systems in the body, the central nervous system (CNS) is the primary target. Cocaine blocks the reuptake of neurotransmitters in the neuronal synapses. Almost all CNS effects of cocaine can be attributed to this mechanism. Euphoria, pharmacological pleasure and intense cocaine craving share basis in this system. The effects of cocaine on other organ systems, in addition to its effects on the CNS, account for the majority of the complications associated with cocaine abuse. In this paper, the CNS effects following cocaine administration and their treatment are discussed.

  9. Lavender and the Nervous System

    PubMed Central

    Koulivand, Peir Hossein; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2013-01-01

    Lavender is traditionally alleged to have a variety of therapeutic and curative properties, ranging from inducing relaxation to treating parasitic infections, burns, insect bites, and spasm. There is growing evidence suggesting that lavender oil may be an effective medicament in treatment of several neurological disorders. Several animal and human investigations suggest anxiolytic, mood stabilizer, sedative, analgesic, and anticonvulsive and neuroprotective properties for lavender. These studies raised the possibility of revival of lavender therapeutic efficacy in neurological disorders. In this paper, a survey on current experimental and clinical state of knowledge about the effect of lavender on the nervous system is given. PMID:23573142

  10. Effect of postural stimulation on systemic hemodynamics and sympathetic nervous activity in systemic hypertension.

    PubMed

    Izzo, J L; Sander, E; Larrabee, P S

    1990-02-01

    The contributions of the carotid sinus and cardiopulmonary baroreflexes to the interindividual variation in sympathetic nervous system activation caused by postural adaptation were indirectly assessed in 68 mild hypertensive subjects. Supine and upright plasma norepinephrine (NE), blood pressure (cuff) and cardiac output (acetylene rebreathing) were measured. Mean arterial pressure (MAP), carotid sinus pressure, stroke volume and systemic vascular resistance were calculated. Stroke volume was assumed to be proportional to the degree of stretch of cardiac mechanoreceptors, carotid sinus MAP was assumed to be proportional to carotid sinus stretch and plasma NE to reflect sympathetic nervous activity. Plasma NE correlated inversely with stroke volume (r = -0.62, p less than 10(-14] and estimated carotid sinus MAP (r = -0.33, p less than 0.0002) and positively with systemic vascular resistance (r = 0.59, p less than 10(-10]. Holding systemic vascular resistance constant by partial regression, the inverse relation between plasma NE and stroke volume remained (partial r = -0.36, p less than 0.02). Multiple linear regression yielded the equation: plasma NE (pg/ml) = 720 + 4.3 age - 5.1 stroke volume (ml) - 1.0 carotid sinus MAP (mm Hg). Substituting mean supine and upright values for stroke volume and carotid sinus MAP in this equation, it can be roughly estimated that changes in stroke volume account for as much as 60% of the postural variation in plasma NE in hypertensives, whereas only 15% of this variation is caused by changes in carotid sinus pressure. These findings suggest that cardiopulmonary baroreflexes are primary activators of the sympathetic nervous system during postural adaptation.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review

    PubMed Central

    Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein; Hosseini, Mahmoud; Rezaee, Ramin; M. Tsatsakis, Aristidis

    2015-01-01

    Saffron or Crocus sativus L. (C. sativus) has been widely used as a medicinal plant to promote human health, especially in Asia. The main components of saffron are crocin, picrocrocin and safranal. The median lethal doses (LD50) of C. sativus are 200 mg/ml and 20.7 g/kg in vitro and in animal studies, respectively. Saffron has been suggested to be effective in the treatment of a wide range of disorders including coronary artery diseases, hypertension, stomach disorders, dysmenorrhea and learning and memory impairments. In addition, different studies have indicated that saffron has anti-inflammatory, anti-atherosclerotic, antigenotoxic and cytotoxic activities. Antitussive effects of stigmas and petals of C. sativus and its components, safranal and crocin have also been demonstrated. The anticonvulsant and anti-Alzheimer properties of saffron extract were shown in human and animal studies. The efficacy of C. sativus in the treatment of mild to moderate depression was also reported in clinical trial. Administration of C. sativus and its constituents increased glutamate and dopamine levels in the brain in a dose-dependent manner. It also interacts with the opioid system to reduce withdrawal syndrome. Therefore, in the present article, the effects of C. sativus and its constituents on the nervous system and the possible underlying mechanisms are reviewed. Our literature review showed that C. sativus and its components can be considered as promising agents in the treatment of nervous system disorders. PMID:26468457

  12. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review.

    PubMed

    Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein; Hosseini, Mahmoud; Rezaee, Ramin; M Tsatsakis, Aristidis

    2015-01-01

    Saffron or Crocus sativus L. (C. sativus) has been widely used as a medicinal plant to promote human health, especially in Asia. The main components of saffron are crocin, picrocrocin and safranal. The median lethal doses (LD50) of C. sativus are 200 mg/ml and 20.7 g/kg in vitro and in animal studies, respectively. Saffron has been suggested to be effective in the treatment of a wide range of disorders including coronary artery diseases, hypertension, stomach disorders, dysmenorrhea and learning and memory impairments. In addition, different studies have indicated that saffron has anti-inflammatory, anti-atherosclerotic, antigenotoxic and cytotoxic activities. Antitussive effects of stigmas and petals of C. sativus and its components, safranal and crocin have also been demonstrated. The anticonvulsant and anti-Alzheimer properties of saffron extract were shown in human and animal studies. The efficacy of C. sativus in the treatment of mild to moderate depression was also reported in clinical trial. Administration of C. sativus and its constituents increased glutamate and dopamine levels in the brain in a dose-dependent manner. It also interacts with the opioid system to reduce withdrawal syndrome. Therefore, in the present article, the effects of C. sativus and its constituents on the nervous system and the possible underlying mechanisms are reviewed. Our literature review showed that C. sativus and its components can be considered as promising agents in the treatment of nervous system disorders.

  13. Organotypic cultures as tool to test long-term effects of chemicals on the nervous system.

    PubMed

    Peña, F

    2010-01-01

    The study of neuroscience has vastly benefited from the use of brain slices. This preparation has been fundamental for the understanding of the cellular basis of nervous system function as well as for the study of the mechanisms involved in neuronal network dysfunction. This experimental model provides flexible access, and control of, specific neural circuits and maintains their basic properties, allowing them to reproduce most of their natural network activities. Brain slices permit the combination of sophisticated techniques such as electrophysiology, fluorescence imaging, pharmacology, molecular biology, etc. More recently, the development of organotypic brain slice cultures has expanded the use of modern technical approaches to the study neuronal networks, while increasing their possibilities of evaluating long-term effects of acute experimental conditions, as well as the effects of chronic treatments on neuronal network function in vitro. Here, I will provide an overview of the use of organotypic cultures to understand neuronal network function and dysfunction, as well as the pharmacological approaches used for these studies. As a final example, I will review the studies performed in organotypic cultures regarding the deleterious effects of long-term amyloid beta application on neuronal networks in vitro, as well as the use of drugs that may prevent or revert their deleterious effects on nervous system function. Overall, this review will provide elements to support the use of organotypic cultures as a very reliable model to explore long-term neuropharmacological studies in vitro.

  14. Effects on the nervous system among welders exposed to aluminium and manganese.

    PubMed Central

    Sjögren, B; Iregren, A; Frech, W; Hagman, M; Johansson, L; Tesarz, M; Wennberg, A

    1996-01-01

    OBJECTIVES--The purpose was to study the effects on the nervous system in welders exposed to aluminium and manganese. METHODS--The investigation included questionnaires on symptoms, psychological methods (simple reaction time, finger tapping speed and endurance, digit span, vocabulary, tracking, symbol digit, cylinders, olfactory threshold, Luria-Nebraska motor scale), neurophysiological methods (electroencephalography, event related auditory evoked potential (P-300), brainstem auditory evoked potential, and diadochokinesometry) and assessments of blood and urine concentrations of metals (aluminium, lead, and manganese). RESULTS--The welders exposed to aluminium (n = 38) reported more symptoms from the central nervous system than the control group (n = 39). They also had a decreased motor function in five tests. The effect was dose related in two of these five tests. The median exposure of aluminium welders was 7065 hours and they had about seven times higher concentrations of aluminium in urine than the controls. The welders exposed to manganese (n = 12) had a decreased motor function in five tests. An increased latency of event related auditory evoked potential was also found in this group. The median manganese exposure was 270 hours. These welders did not have higher concentrations of manganese in blood than the controls. CONCLUSIONS--The neurotoxic effects found in the groups of welders exposed to aluminium and manganese are probably caused by the aluminium and manganese exposure, respectively. These effects indicate a need for improvements in the work environments of these welders. PMID:8563855

  15. Effects on the nervous system among welders exposed to aluminium and manganese.

    PubMed

    Sjögren, B; Iregren, A; Frech, W; Hagman, M; Johansson, L; Tesarz, M; Wennberg, A

    1996-01-01

    The purpose was to study the effects on the nervous system in welders exposed to aluminium and manganese. The investigation included questionnaires on symptoms, psychological methods (simple reaction time, finger tapping speed and endurance, digit span, vocabulary, tracking, symbol digit, cylinders, olfactory threshold, Luria-Nebraska motor scale), neurophysiological methods (electroencephalography, event related auditory evoked potential (P-300), brainstem auditory evoked potential, and diadochokinesometry) and assessments of blood and urine concentrations of metals (aluminium, lead, and manganese). The welders exposed to aluminium (n = 38) reported more symptoms from the central nervous system than the control group (n = 39). They also had a decreased motor function in five tests. The effect was dose related in two of these five tests. The median exposure of aluminium welders was 7065 hours and they had about seven times higher concentrations of aluminium in urine than the controls. The welders exposed to manganese (n = 12) had a decreased motor function in five tests. An increased latency of event related auditory evoked potential was also found in this group. The median manganese exposure was 270 hours. These welders did not have higher concentrations of manganese in blood than the controls. The neurotoxic effects found in the groups of welders exposed to aluminium and manganese are probably caused by the aluminium and manganese exposure, respectively. These effects indicate a need for improvements in the work environments of these welders.

  16. Effects of estrogen receptor modulators on cytoskeletal proteins in the central nervous system.

    PubMed

    Segura-Uribe, Julia J; Pinto-Almazán, Rodolfo; Coyoy-Salgado, Angélica; Fuentes-Venado, Claudia E; Guerra-Araiza, Christian

    2017-08-01

    Estrogen receptor modulators are compounds of interest because of their estrogenic agonistic/antagonistic effects and tissue specificity. These compounds have many clinical applications, particularly for breast cancer treatment and osteoporosis in postmenopausal women, as well as for the treatment of climacteric symptoms. Similar to estrogens, neuroprotective effects of estrogen receptor modulators have been described in different models. However, the mechanisms of action of these compounds in the central nervous system have not been fully described. We conducted a systematic search to investigate the effects of estrogen receptor modulators in the central nervous system, focusing on the modulation of cytoskeletal proteins. We found that raloxifene, tamoxifen, and tibolone modulate some cytoskeletal proteins such as tau, microtuble-associated protein 1 (MAP1), MAP2, neurofilament 38 (NF38) by different mechanisms of action and at different levels: neuronal microfilaments, intermediate filaments, and microtubule-associated proteins. Finally, we emphasize the importance of the study of these compounds in the treatment of neurodegenerative diseases since they present the benefits of estrogens without their side effects.

  17. Effects of benzo[a]pyrene on autonomic nervous system of coke oven workers.

    PubMed

    Zhang, Hong-Mei; Nie, Ji-Sheng; Wang, Fang; Shi, Ying-Tao; Zhang, Ling; Antonucci, Andrea; Liu, Hui-Jun; Wang, Jing; Zhao, Jie; Zhang, Qin-Li; Wang, Lin-Ping; Song, Jing; Xue, Cui-E; Di Gioacchino, Mario; Niu, Qiao

    2008-01-01

    Objectives are to investigate the effects of benzo[a]pyrene (B[a]P) on the autonomic nervous system of coke oven workers. One hundred eighty-four coke oven workers were divided into 3 groups according to their working sites (coke oven bottom group, coke oven side group and coke oven top group), and 93 referents were recruited. B[a]P monitored by air sampling pumps as well as urinary 1-hydroxypyrene (1-OH-Py) was determined by high performance liquid chromatograph with a fluorescence detector (HPLC-FD). The autonomic nervous system (ANS) function was determined by 4 tests: Valsalva Manoeuvre heart rate variation (HR-V), variation of heart rate when breathing deeply (HR-DB), variation of heart rate when instantly standing up (HR-IS, including RR30:15 and RRmax:min) and variation of blood pressure when instantly standing up (BP-IS). The B[a]P mean concentrations in coke oven bottom, coke oven side and coke oven top were 19, 185 and 1,623 ng/m(3), respectively. The levels of urinary 1-OH-Py were markedly higher in the 3 exposed groups than that in the referent group (p<0.01). No significant difference was found in each group between smokers and non-smokers (p>0.05). Compared with referents, HR-V decreased significantly in coke oven workers (p<0.01), representing modulation of parasympathetic nervous function. However, no statistical differences were found in HR-DB, RR30:15, RRmax:min and BP-IS between the exposed groups and the control group (p>0.05). HR-V decreased with the increment of 1-OH-Py (p<0.05), and results of multiple linear stepwise regression demonstrated that external exposure level and duration of education entered the HR-V model; age was a significant factor of HR-DB and RRmax:min, but no variable was involved in RR30:15 and BP-IS regression. Benzo[a]pyrene affects the autonomic nervous function of coke oven workers mainly by down-regulating the parasympathetic nervous function.

  18. Functional Observational Battery Testing for Nervous System Effects of Drugs and Other Chemicals

    EPA Science Inventory

    Screening for behavioral toxicity, or neurotoxicity, has become standard practice in preclinical safety pharmacology and toxicology. Behavior represents the integrated sum of activities mediated by the nervous system. Current screening batteries, such as the functional observat...

  19. Functional Observational Battery Testing for Nervous System Effects of Drugs and Other Chemicals

    EPA Science Inventory

    Screening for behavioral toxicity, or neurotoxicity, has become standard practice in preclinical safety pharmacology and toxicology. Behavior represents the integrated sum of activities mediated by the nervous system. Current screening batteries, such as the functional observat...

  20. The effects of prophylactic treatment of the central nervous system on the intellectual functioning of children with acute lymphocytic leukemia

    SciTech Connect

    Moss, H.A.; Nannis, E.D.; Poplack, D.G.

    1981-07-01

    The effect of central nervous system prophylaxis (cranial radiation and intrathecal chemotherapy) on intellectual function was studied in 24 children with acute lymphocytic leukemia. The Wechsler Intelligence tests were administered to these children and to a sample of their healthy siblings, who served as a comparison group. The mean Full Scale lQ was 98.6 for the patients and 112.5 for the sibling controls (p less than 0.001 level). Those patients who received central nervous system preventive treatment at a young age exhibited a greater decrement in intellectual abilities than did patients who were older when they received this treatment. In contrast, leukemia patients who had not received central nervous system prophylaxis had IQs that did not differ statistically from those of their siblings. These data suggest that central nervous system prophylaxis may have an adverse effect on the intellectual capability of children with acute lymphocytic leukemia.

  1. Bioterrorism and the nervous system.

    PubMed

    Han, M H; Zunt, J R

    2003-11-01

    Recent events of war, terrorist attacks, and mail-borne anthrax exposure have produced increasing awareness of potential bioterrorism attacks in the United States and other parts of the world. Physicians and healthcare personnel play a key role in identifying potential bioterrorist attacks. Early recognition and preparedness for bioterrorism-associated illnesses is especially important for neurologists because most bioterrorism agents can directly or indirectly affect the nervous system. This article reviews the neurologic manifestations, diagnosis, and treatments of syndromes caused by potential bioterrorism agents, as well as the potential side effects of vaccines against some of these agents.

  2. Effect of Hinoki and Meniki Essential Oils on Human Autonomic Nervous System Activity and Mood States.

    PubMed

    Chen, Chi-Jung; Kumar, K J Senthil; Chen, Yu-Ting; Tsao, Nai-Wen; Chien, Shih-Chang; Chang, Shang-Tzen; Chu, Fang-Hua; Wang, Sheng-Yang

    2015-07-01

    Meniki (Chamecyparis formosensis) and Hinoki (C. obtusa) are precious conifers with excellent wood properties and distinctive fragrances that make these species popular in Taiwan for construction, interiors and furniture. In the present study, the compositions of essential oils prepared from Meniki and Hinoki were analyzed by gas chromatography-mass spectrometry (GC/MS). Thirty-six compounds were identified from the wood essential oil of Meniki, including Δ-cadinene, γ-cadinene, Δ-cadinol, α-muurolene, calamenene, linalyl acetate and myrtenol; 29 compounds were identified from Hinoki, including α-terpineol, α-pinene, Δ-cadinene, borneol, terpinolene, and limonene. Next, we examined the effect of Meniki and Hinoki essential oils on human autonomic nervous system activity. Sixteen healthy adults received Meniki or Hinoki by inhalation for 5 min, and the physiological and psychological effects were examined. After inhaling Meniki essential oil, participant's systolic blood pressure and heart rate (HR) were decreased, and diastolic blood pressure increased. In addition, sympathetic nervous activity (SNS) was significantly decreased, and parasympathetic activity (PSNS) was significantly increased. On the other hand, after inhaling Hinoki essential oil, systolic blood pressure, heart rate and PSNS were decreased, whereas SNA was increased. Indeed, both Meniki and Hinoki essential oils increased heart rate variability (HRV) in tested adults. Furthermore, in the Profile of Mood States (POMS) test, both Meniki and Hinoki wood essential oils stimulated a pleasant mood status. Our results strongly suggest that Meniki and Hinoki essential oils could be suitable agents for the development of regulators of sympathetic nervous system dysfunctions.

  3. Effects of agarwood extracts on the central nervous system in mice.

    PubMed

    Okugawa, H; Ueda, R; Matsumoto, K; Kawanishi, K; Kato, A

    1993-02-01

    Agarwood (Jinkoh in Japanese) is an Oriental medicine for use as a sedative. Neuropharmacological studies have been conducted with the extracts of petroleum ether, benzene, chloroform, and water from agarwood (Aquilaria sp.; probably Aquilaria malaccensis Benth.) in mice. The benzene extract showed a reducing effect in spontaneous motility, a prolonging effect on hexobarbiturate-induced sleeping time, a hypothermic effect in terms of rectal temperature, and a suppressive effect on acetic acid-writhing by oral administration. Fr. 1 of the three fractions which were obtained from the benzene extract by column chromatography was found to produce more positive effects on these neuropharmacological tests than the original benzene extract. These facts suggest that the benzene extractable compounds of agarwood possess potent central nervous system depressant activities.

  4. Brain and nervous system (image)

    MedlinePlus

    The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, ...

  5. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review.

    PubMed

    Wang, Huiying; Lee, In-Seon; Braun, Christoph; Enck, Paul

    2016-10-30

    To systematically review the effects of probiotics on central nervous system function in animals and humans, to summarize effective interventions (species of probiotic, dose, duration), and to analyze the possibility of translating preclinical studies. Literature searches were conducted in Pubmed, Medline, Embase, and the Cochrane Library. Only randomized controlled trials were included. In total, 38 studies were included: 25 in animals and 15 in humans (2 studies were conducted in both). Most studies used Bifidobacterium (eg, B. longum, B. breve , and B. infantis ) and Lactobacillus (eg, L. helveticus , and L. rhamnosus ), with doses between 10⁸ and 10¹⁰ colony-forming units for 2 weeks in animals and 4 weeks in humans. These probiotics showed efficacy in improving psychiatric disorder-related behaviors including anxiety, depression, autism spectrum disorder (ASD), obsessive-compulsive disorder, and memory abilities, including spatial and non-spatial memory. Because many of the basic science studies showed some efficacy of probiotics on central nervous system function, this background may guide and promote further preclinical and clinical studies. Translating animal studies to human studies has obvious limitations but also suggests possibilities. Here, we provide several suggestions for the translation of animal studies. More experimental designs with both behavioral and neuroimaging measures in healthy volunteers and patients are needed in the future.

  6. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review

    PubMed Central

    Wang, Huiying; Lee, In-Seon; Braun, Christoph; Enck, Paul

    2016-01-01

    To systematically review the effects of probiotics on central nervous system function in animals and humans, to summarize effective interventions (species of probiotic, dose, duration), and to analyze the possibility of translating preclinical studies. Literature searches were conducted in Pubmed, Medline, Embase, and the Cochrane Library. Only randomized controlled trials were included. In total, 38 studies were included: 25 in animals and 15 in humans (2 studies were conducted in both). Most studies used Bifidobacterium (eg, B. longum, B. breve, and B. infantis) and Lactobacillus (eg, L. helveticus, and L. rhamnosus), with doses between 109 and 1010 colony-forming units for 2 weeks in animals and 4 weeks in humans. These probiotics showed efficacy in improving psychiatric disorder-related behaviors including anxiety, depression, autism spectrum disorder (ASD), obsessive-compulsive disorder, and memory abilities, including spatial and non-spatial memory. Because many of the basic science studies showed some efficacy of probiotics on central nervous system function, this background may guide and promote further preclinical and clinical studies. Translating animal studies to human studies has obvious limitations but also suggests possibilities. Here, we provide several suggestions for the translation of animal studies. More experimental designs with both behavioral and neuroimaging measures in healthy volunteers and patients are needed in the future. PMID:27413138

  7. Effects of differential touch on nervous system arousal of patients recovering from cardiac disease.

    PubMed

    Weiss, S J

    1990-09-01

    Previous research suggests that the neural properties of certain types of touch as well as their perceived significance to the disease state may be related to heightened activation of the nervous system. In this study the effects of different types of touch on nervous system arousal were examined in 59 adult patients who were receiving treatment for coronary artery disease. They were exposed to a standardized protocol that systematically varied the neural properties and procedural nature of the touch received. Measures of cardiovascular reactivity (heart rate and rhythm data as well as blood pressure measurements) and state anxiety were used as indexes of arousal. The results indicated that all types of touch evoked heart rate deceleration in contrast to both baseline and verbal conditions. However, there were no differential effects related to either the neural properties or procedural nature of touch. Diastolic blood pressure and state anxiety were also lower as a result of the touch. No changes were observed for systolic blood pressure or heart rhythm. In general, findings suggested that touch served to reduce arousal rather than to produce negative psychophysiologic consequences for recovery.

  8. Effect of jinkoh-eremol and agarospirol from agarwood on the central nervous system in mice.

    PubMed

    Okugawa, H; Ueda, R; Matsumoto, K; Kawanishi, K; Kato, A

    1996-02-01

    Agarwood (Jinkoh in Japanese), one of the Oriental medicines, is used as a sedative. The benzene extract of this medicine showed a prolonged effect on the hexobarbital-induced sleeping time, and hypothermic effects in terms of rectal temperature, a suppressive effect on acetic acid-writhing, and a reduction of the spontaneous motility in mice. By repeated fractionation, oral administration in mice, and pharmacological screening, the active principles, jinkoh-eremol and agarospirol, were obtained from the benzene extract. They also gave positive effects on the central nervous system by peritoneal and intracerebroventricular administration. They decreased both methamphetamine- and apomorphine-induced spontaneous motility. The level of homovanillic acid in the brain was increased by them, while the levels of monoamines and other metabolites were unchanged. Similar results were seen in chlorpromazine-administered mice. Therefore, jinkoh-eremol and agarospirol can be considered to be neuroleptic.

  9. Effects of hawthorn seed and pulp extracts on the central nervous system.

    PubMed

    Can, Ozgür Devrim; Ozkay, Umide Demir; Oztürk, Nilgün; Oztürk, Yusuf

    2010-08-01

    Investigating potential central nervous system (CNS) activities of Crataegus monogyna Jacq. (Rosaceae), hawthorn, fruit extracts. Evaluating CNS effects and analgesic activities of hawthorn fruit extracts based on the traditional uses of the plant for neurosedative and pain killer actions. Effects of hawthorn pulp (HPE) and seed extracts (HSE) at the dose range of 1-1000 mg/kg were examined on anxiety level, spontaneous locomotor activity, motor coordination, and nociceptive perception of mice. Morphine was used as a reference drug. HPE (100-1000 mg/kg) and HSE (10-1000 mg/kg) significantly decreased not only the exploratory behaviors in hole-board experiments, but also the spontaneous locomotor activities in activity cage tests. The same doses of extracts were found to be ineffective in Rota-Rod tests of mice. In tail-clip, hot-plate, and acetic acid-induced writhing tests, quite potent and dose-dependent analgesic activities were seen at 100-1000 mg/kg doses of HPE and 10-1000 mg/kg doses of HSE. Analgesic effects observed in all analgesia tests were antagonized by naloxone. Significant and dose-dependent decreases in spontaneous locomotor activities and exploratory behaviors of animals suggested CNS depressant activities of both extracts. Complete naloxone antagonism in all applied analgesia tests indicated opioid-related analgesic activities of both extracts. These findings seem to support the traditional use of this plant to treat stress, nervousness, sleep disorders, and pain control.

  10. Hazard effects of nanoparticles in central nervous system: Searching for biocompatible nanomaterials for drug delivery.

    PubMed

    Leite, Paulo Emílio Corrêa; Pereira, Mariana Rodrigues; Granjeiro, José Mauro

    2015-10-01

    Nanostructured materials are widely used in many applications of industry and biomedical fields. Nanoparticles emerges as potential pharmacological carriers that can be applied in the regenerative medicine, diagnosis and drug delivery. Different types of nanoparticles exhibit ability to cross the brain blood barrier (BBB) and accumulate in several brain areas. Then, efforts have been done to develop safer nanocarrier systems to treat disorders of central nervous system (CNS). However, several in vitro and in vivo studies demonstrated that nanoparticles of different materials exhibit a wide range of neurotoxic effects inducing neuroinflammation and cognitive impairment. For this reason, polymeric nanoparticles arise as a promisor alternative due to their biocompatible and biodegradable properties. After an overview of CNS location and neurotoxic effects of translocated nanoparticles, this review addresses the use of polymeric nanoparticles to the treatment of neuroinfectious diseases, as acquired immunodeficiency syndrome (AIDS) and meningitis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of noinionizing radiation on the central nervous system, behavior, and blood: a progress report.

    PubMed Central

    McRee, D I; Elder, J A; Gage, M I; Reiter, L W; Rosenstein, L S; Shore, M L; Galloway, W D; Adey, W R; Guy, A W

    1979-01-01

    This paper presents a progress report on the U. S. research which has been designated as collaborative research with the Soviet Union to study the biological effects of nonionizing radiation on the central nervous system, behavior, and blood. Results of investigations to study the effects of microwaves on isolated nerves, synaptic function, transmission of neural impulses, electroencephalographic recordings, behavior, and on chemical, cytochemical and immunological properties of the blood are presented. Specifically, the effects of microwave exposure on chick brain and cat spinal cords, on EEG patterns of rats, on behavioral of neonatal rats exposed during development, on behavior of adult rats, on behavior of rhesus monkeys and on the pathology, hematology, and immunology of rabbits will be reported in a summary format. Much of the information is new and has not been published previously. PMID:446443

  12. Overseas survey of the effect of cedrol on the autonomic nervous system in three countries.

    PubMed

    Yada, Yukihiro; Sadachi, Hidetoshi; Nagashima, Yoshinao; Suzuki, Toshiyuki

    2007-05-01

    To clarify the influences of ethnic and regional characteristics, and differences in perception on the cedrol effect on autonomic nerve activity, we compared women in their 20s-40s in Norway, Thailand, and Japan. A questionnaire survey of sense of stress and sleep conditions was performed at the same time. The degree of perceived stress, using a 30-item checklist, was highest in Japanese women. The mean stress score exceeded 5.0 in Japanese women, significantly higher than in Thai women (p<0.05) and Norwegian women (p<0.01). Sleeping time was shortest in Japanese women in all generations among the three countries. As the index of autonomic nervous activity, the miosis rate (ratio of pupil-diameter variation after light stimulus to initial pupil diameter) in pupillary light reflex was measured before and after cedrol inhalation. The miosis rate significantly increased after cedrol exposure compared to that before exposure in all three countries, suggesting that the parasympathetic nervous system became dominant. These findings suggested that cedrol produces a sedative effect in people of the three countries despite differences in the ethnic and living environments.

  13. The pharmacological effects of Salvia species on the central nervous system.

    PubMed

    Imanshahidi, Mohsen; Hosseinzadeh, Hossein

    2006-06-01

    Salvia is an important genus consisting of about 900 species in the family Lamiaceae. Some species of Salvia have been cultivated world wide for use in folk medicine and for culinary purposes. The dried root of Salvia miltiorrhiza, for example, has been used extensively for the treatment of coronary and cerebrovascular disease, sleep disorders, hepatitis, hepatocirrhosis, chronic renal failure, dysmenorrhea, amenorrhea, carbuncles and ulcers. S. officinalis, S. leriifolia, S. haematodes, S. triloba and S. divinorum are other species with important pharmacological effects. In this review, the pharmacological effects of Salvia species on the central nervous system will be reviewed. These include sedative and hypnotic, hallucinogenic, skeletal muscle relaxant, analgesic, memory enhancing, anticonvulsant, neuroprotective and antiparkinsonian activity, as well as the inhibition of ethanol and morphine withdrawal syndrome.

  14. Microwave effects on the central nervous system--a study of radar mechanics

    SciTech Connect

    Nilsson, R.; Hamnerius, Y.; Mild, K.H.; Hansson, H.A.; Hjelmqvist, E.; Olanders, S.; Persson, L.I.

    1989-05-01

    Seventeen radar mechanics and engineers and 12 unexposed referents were examined, using extensive neurological, psychometric and neuropsychiatric techniques to determine whether there were any indications of central nervous system effects of microwave exposure. Pathological neurological findings were not more common in the exposed group than among the referents. In addition, the psychometric tests and the psychiatric rating scales did not reveal any statistically significant adverse effects of microwave exposure. The frequency of the occurrence of an increased protein band with an isoelectric point of 4.5 in the cerebrospinal fluid was higher among the men exposed to microwaves than among the referents. The nature and clinical significance of this or these proteins are still unclear. The time derivative of the magnetic flux density close to some of the transmitter units was surprisingly high (up to 350 T s-1).

  15. Effect of single-dose sertraline on the hypothalamus-pituitary-adrenal system, autonomic nervous system, and platelet function.

    PubMed

    Ahrens, Thorben; Frankhauser, Pascal; Lederbogen, Florian; Deuschle, Michael

    2007-12-01

    Pharmacological treatment with selective serotonin reuptake inhibitors (SSRIs) is thought to decrease coronary risk in patients with depressive disorder. Selective serotonin reuptake inhibitor intake may (1) attenuate the hypothalamus-pituitary-adrenal (HPA) system, (2) improve disturbances of the autonomous nervous system, and (3) dampen the aggregability of platelets. There is only limited information about the influence of acute treatment with SSRIs on these systems, which is especially important for the initiation of therapy in high-risk cardiac patients. We compared the reaction of these systems to physical stress with single-dose SSRI treatment (100 mg) with that of placebo treatment. Using a double-blind, crossover, placebo-controlled design, we assessed HPA system activity via serum cortisol and corticotropin as well as sympathetic nervous system by determining serum norepinephrine and epinephrine levels at baseline and as a response to stress. Analysis of heart rate variability (HRV) provided information on sympathetic/parasympathetic balance. Platelet activity was measured via flow-cytometric determination of platelet surface activation markers along with the serotonin (5-HT) uptake of platelets. We studied 12 healthy young men under placebo and verum conditions. We found higher HPA system activity at baseline and after physical activity under sertraline when compared with placebo, no difference in sympathetic nervous system activity after physical exertion and only slightly heightened baseline epinephrine values after sertraline intake. No difference was seen between sertraline and placebo intake regarding platelet activity and 5-HT uptake, HRV, blood pressure, and HR. Initiating sertraline treatment increases HPA system activity and epinephrine concentrations. We found no clinically relevant effect of single-dose sertraline treatment on autonomous nervous function, platelet activity, or platelet 5-HT uptake. These findings may not be extrapolated to

  16. Effect of photic stimuli on rat salivary glands. Role of sympathetic nervous system.

    PubMed

    Bellavía, S; Gallará, R

    2000-01-01

    Saliva secretion during feeding facilitates chewing, swallowing and other oral functions. Between meals, a "resting saliva" is elicited to allow speaking and contribute to maintain soft and hard tissues health. Chewing is the main stimulus for "stimulated saliva" secretion. Mouth dryness and other less well known stimuli control "resting saliva". In humans the stimulus of the light increases the parotid saliva flow rate. Saliva secretion occurs in response to a reflex. Both motor branches of the autonomous nervous system drive efferent outputs to the salivary glands. Cellular bodies of sympathetic motor fibers innervating salivary glands are located in the superior cervical ganglia. A multisynaptic pathway couples the superior cervical ganglia to hypothalamic areas related to the control of autonomous and endocrine functions. Projections from suprachiasmatic nuclei involved in circadian rhythms control reach those areas. Salivary glands postsynaptic beta-adrenoceptors control synthesis and secretion of proteins. Postsynaptic alpha 2-adrenoceptors modulate salivary responses mediated by alpha 1 and beta-adrenoceptors. Parotid alpha-amylase circadian rhythm in suckling rats, suggest that the sympathetic nervous system mediates an effect of light on saliva secretion. Analysis of: 1) parotid fine structure, 2) submandibular secretory response to adrenergic agonists, and 3) submandibular 3H-clonidine binding to alpha 2-adrenoceptors, demonstrated that an increase of sympathetic reflex activity occurs in salivary glands of rats chronically exposed to constant light. Similar effects were observed in rats chronically exposed to immobilization stress. Catecholamine biosynthetic enzyme mRNA levels in adrenal glands and superior cervical ganglia suggest that changes induced by light on salivary sympathetic reflex activity are mediated by plasma catecholamines released by adrenal glands. Post and presynaptic alpha 2 adrenoceptors could play an important role in saliva

  17. The pivotal role of nitric oxide: effects on the nervous and immune systems.

    PubMed

    Banuls, Celia; Rocha, Milagros; Rovira-Llopis, Susana; Falcon, Rosa; Castello, Raquel; Herance, Jose R; Polo, Miriam; Blas-Garcia, Ana; Hernandez-Mijares, Antonio; Victor, Victor M

    2014-01-01

    Nitric oxide (NO) has an important role in physiological and pathological processes in general, and in particular plays a homeostatic role in the nervous and immune systems. The many different physiological functions of NO include those of a mediator of blood vessel dilation, neurotransmitter, neuromodulator and inductor of mitochondrial biogenesis. In addition, NO can transform into highly reactive and harmful molecules producing an impairment of the DNA, lipids or proteins, and thus altering their function. This dual action of NO, by which it plays an important role in homeostasis and aids the development of pathological processes, makes this molecule an interesting target for medical therapies, especially with respect to the nervous and immune systems. This review describes the multiple roles of NO played out in the nervous and immune systems during different physiological and pathophysiological processes.

  18. Effects of low-dose prenatal irradiation on the central nervous system

    SciTech Connect

    Not Available

    1992-04-01

    Scientists are in general agreement about the effects of prenatal irradiation, including those affecting the central nervous system (CNS). Differing concepts and research approaches have resulted in some uncertainties about some quantitative relationships, underlying interpretations, and conclusions. Examples of uncertainties include the existence of a threshold, the quantitative relationships between prenatal radiation doses and resulting physical and functional lesions, and processes by which lesions originate and develop. A workshop was convened in which scientists with varying backgrounds and viewpoints discussed these relationships and explored ways in which various disciplines could coordinate concepts and methodologies to suggest research directions for resolving uncertainties. This Workshop Report summarizes, in an extended fashion, salient features of the presentations on the current status of our knowledge about the radiobiology and neuroscience of prenatal irradiation and the relationships between them.

  19. Neuritogenesis: A model for space radiation effects on the central nervous system

    NASA Astrophysics Data System (ADS)

    Vazquez, M. E.; Broglio, T. M.; Worgul, B. V.; Benton, E. V.

    1994-10-01

    Pivotal to the astronauts' functional integrity and survival during long space flights are the strategies to deal with space radiations. The majority of the cellular studies in this area emphasize simple endpoints such as growth related events which, although useful to understand the nature of primary cell injury, have poor predictive value for extrapolation to more complex tissues such as the central nervous system (CNS). In order to assess the radiation damage on neural cell populations, we developed an in vitro model in which neuronal differentiation, neurite extension, and synaptogenesis occur under controlled conditions. The model exploits chick embryo neural explants to study the effects of radiations on neuritogenesis. In addition, neurobiological problems associated with long-term space flights are discussed.

  20. Neuritogenesis: A model for space radiation effects on the central nervous system

    NASA Technical Reports Server (NTRS)

    Vazquez, M. E.; Broglio, T. M.; Worgul, B. V.; Benton, E. V.

    1994-01-01

    Pivotal to the astronauts' functional integrity and survival during long space flights are the strategies to deal with space radiations. The majority of the cellular studies in this area emphasize simple endpoints such as growth related events which, although useful to understand the nature of primary cell injury, have poor predictive value for extrapolation to more complex tissues such as the central nervous system (CNS). In order to assess the radiation damage on neural cell populations, we developed an in vitro model in which neuronal differentiation, neurite extension, and synaptogenesis occur under controlled conditions. The model exploits chick embryo neural explants to study the effects of radiations on neuritogenesis. In addition, neurobiological problems associated with long-term space flights are discussed.

  1. Overview of the Effect and Epidemiology of Parasitic Central Nervous System Infections in African Children

    PubMed Central

    Mallewa, Macpherson; Wilmshurst, Jo M.

    2014-01-01

    Infections of the central nervous system are a significant cause of neurologic dysfunction in resource-limited countries, especially in Africa. The prevalence is not known and is most likely underestimated because of the lack of access to accurate diagnostic screens. For children, the legacy of subsequent neurodisability, which affects those who survive, is a major cause of the burden of disease in Africa. Of the parasitic infections with unique effect in Africa, cerebral malaria, neurocysticercosis, human African trypanosomiasis, toxoplasmosis, and schistosomiasis are largely preventable conditions, which are rarely seen in resource-equipped settings. This article reviews the current understandings of these parasitic and other rarer infections, highlighting the specific challenges in relation to prevention, diagnosis, treatment, and the complications of coinfection. PMID:24655400

  2. Sex differences in the effects of androgens acting in the central nervous system on metabolism.

    PubMed

    Morford, Jamie; Mauvais-Jarvis, Franck

    2016-12-01

    One of the most sexually dimorphic aspects of metabolic regulation is the bidirectional modulation of glucose and energy homeostasis by testosterone in males and females. Testosterone deficiency predisposes men to metabolic dysfunction, with excess adiposity, insulin resistance, and type 2 diabetes, whereas androgen excess predisposes women to insulin resistance, adiposity, and type 2 diabetes. This review discusses how testosterone acts in the central nervous system, and especially the hypothalamus, to promote metabolic homeostasis or dysfunction in a sexually dimorphic manner. We compare the organizational actions of testosterone, which program the hypothalamic control of metabolic homeostasis during development, and the activational actions of testosterone, which affect metabolic function after puberty. We also discuss how the metabolic effect of testosterone is centrally mediated via the androgen receptor.

  3. Effect of experimental hyperinsulinemia on sympathetic nervous system activity in the rat

    SciTech Connect

    Young, J.B.

    1988-01-01

    Since insulin acutely stimulates the sympathetic nervous system, a role for sympathetic overactivity has been hypothesized to underlie the association between chronic hyperinsulinemia and hypertension. To assess the effect of sustained hyperinsulinemia on sympathetic function, (/sup 3/H)norepinephrine (NE) turnover was measured in rats injected with insulin for 14d. NE turnover in insulin-treated animals given free access to lab chow and a 10% sucrose solution was compared with that obtained in rats fed chow alone or chow plus sucrose. Sucrose ingestion increased NE turnover in heart, brown adipose tissue, and liver, but exogenous insulin did not augment turnover beyond that seen in animals given sucrose alone. This study, therefore, provides no evidence that chronic hyperinsulinemia, sufficient to induce peripheral insulin resistance, stimulates sympathetic activity more than that produced by chronic sucrose ingestion.

  4. Sex differences in the effects of androgens acting in the central nervous system on metabolism

    PubMed Central

    Morford, Jamie; Mauvais-Jarvis, Franck

    2016-01-01

    One of the most sexually dimorphic aspects of metabolic regulation is the bidirectional modulation of glucose and energy homeostasis by testosterone in males and females. Testosterone deficiency predisposes men to metabolic dysfunction, with excess adiposity, insulin resistance, and type 2 diabetes, whereas androgen excess predisposes women to insulin resistance, adiposity, and type 2 diabetes. This review discusses how testosterone acts in the central nervous system, and especially the hypothalamus, to promote metabolic homeostasis or dysfunction in a sexually dimorphic manner. We compare the organizational actions of testosterone, which program the hypothalamic control of metabolic homeostasis during development, and the activational actions of testosterone, which affect metabolic function after puberty. We also discuss how the metabolic effect of testosterone is centrally mediated via the androgen receptor. PMID:28179813

  5. Effect of regional myocardial ischemia on sympathetic nervous system as assessed by fluorine-18-metaraminol

    SciTech Connect

    Schwaiger, M.; Guibourg, H.; Rosenspire, K.; McClanahan, T.; Gallagher, K.; Hutchins, G.; Wieland, D.M. )

    1990-08-01

    With the introduction of radiolabeled catecholamine analogues, the noninvasive evaluation of the cardiac sympathetic nervous system has become possible. This study evaluated the effect of regional ischemia on myocardial retention of the new norepinephrine analogue 6-({sup 18}F) fluorometaraminol (FMR) in the open chest dog model. Six dogs were injected intravenously with FMR following 30-min occlusion of the left anterior descending artery. Six sham animals served as control group. Regional myocardial blood flow as determined by microspheres decreased 87% during ischemia (p less than 0.01), but was not significantly different from control myocardium following reperfusion. Regional myocardial 18F activity as determined postmortem was significantly reduced in reperfused myocardium (-34%), which paralleled an 18% reduction of tissue norepinephrine concentration. Thus, short time periods of coronary occlusion affect neuronal function indicating the sensitivity of the sympathetic nerve terminals to ischemia. FMR provides a new tracer approach for the characterization of neuronal integrity in postischemic myocardium.

  6. Effects of low-dose prenatal irradiation on the central nervous system

    SciTech Connect

    Not Available

    1992-04-01

    Scientists are in general agreement about the effects of prenatal irradiation, including those affecting the central nervous system (CNS). Differing concepts and research approaches have resulted in some uncertainties about some quantitative relationships, underlying interpretations, and conclusions. Examples of uncertainties include the existence of a threshold, the quantitative relationships between prenatal radiation doses and resulting physical and functional lesions, and processes by which lesions originate and develop. A workshop was convened in which scientists with varying backgrounds and viewpoints discussed these relationships and explored ways in which various disciplines could coordinate concepts and methodologies to suggest research directions for resolving uncertainties. This Workshop Report summarizes, in an extended fashion, salient features of the presentations on the current status of our knowledge about the radiobiology and neuroscience of prenatal irradiation and the relationships between them.

  7. Neuritogenesis: A model for space radiation effects on the central nervous system

    NASA Technical Reports Server (NTRS)

    Vazquez, M. E.; Broglio, T. M.; Worgul, B. V.; Benton, E. V.

    1994-01-01

    Pivotal to the astronauts' functional integrity and survival during long space flights are the strategies to deal with space radiations. The majority of the cellular studies in this area emphasize simple endpoints such as growth related events which, although useful to understand the nature of primary cell injury, have poor predictive value for extrapolation to more complex tissues such as the central nervous system (CNS). In order to assess the radiation damage on neural cell populations, we developed an in vitro model in which neuronal differentiation, neurite extension, and synaptogenesis occur under controlled conditions. The model exploits chick embryo neural explants to study the effects of radiations on neuritogenesis. In addition, neurobiological problems associated with long-term space flights are discussed.

  8. Functional biomarkers for the acute effects of alcohol on the central nervous system in healthy volunteers

    PubMed Central

    Zoethout, Remco W M; Delgado, Wilson L; Ippel, Annelies E; Dahan, Albert; van Gerven, Joop M A

    2011-01-01

    The central nervous system (CNS) effects of acute alcohol administration have been frequently assessed. Such studies often use a wide range of methods to study each of these effects. Unfortunately, the sensitivity of these tests has not completely been ascertained. A literature search was performed to recognize the most useful tests (or biomarkers) for identifying the acute CNS effects of alcohol in healthy volunteers. All tests were grouped in clusters and functional domains. Afterwards, the effect of alcohol administration on these tests was scored as improvement, impairment or as no effect. Furthermore, dose–response relationships were established. A total number of 218 studies, describing 342 different tests (or test variants) were evaluated. Alcohol affected a wide range of CNS domains. Divided attention, focused attention, visuo-motor control and scales of feeling high and of subjective drug effects were identified as the most sensitive functional biomarkers for the acute CNS effects of alcohol. The large number of CNS tests that are used to determine the effects of alcohol interferes with the identification of the most sensitive ones and of drug–response relationships. Our results may be helpful in selecting rational biomarkers for studies investigating the acute CNS effects of alcohol or for future alcohol- interaction studies. PMID:21284693

  9. [Mitophagy and nervous system disease].

    PubMed

    Li, Ming-Xi; Mu, De-Zhi

    2017-06-01

    Mitophagy is a process during which the cell selectively removes the mitochondria via the mechanism of autophagy. It is crucial to the functional completeness of the whole mitochondrial network and determines cell survival and death. On the one hand, the damaged mitochondria releases pro-apoptotic factors which induce cell apoptosis; on the other hand, the damaged mitochondria eliminates itself via autophagy, which helps to maintain cell viability. Mitophagy is of vital importance for the development and function of the nervous system. Neural cells rely on autophagy to control protein quality and eliminate the damaged mitochondria, and under normal circumstances, mitophagy can protect the neural cells. Mutations in genes related to mitophagy may cause the development and progression of neurodegenerative diseases. An understanding of the role of mitophagy in nervous system diseases may provide new theoretical bases for clinical treatment. This article reviews the research advances in the relationship between mitophagy and different types of nervous system diseases.

  10. [The secondary effects of the antihistamine chlorpheniramine on the central nervous system].

    PubMed

    Serra-Grabulosa, J M; Sánchez-Turet, M; Grau, C

    The objective of this study is to review the main investigations into the secondary effects of the antihistamine chlorpheniramine on the central nervous system (CNS). The antagonists of the H1 receptors of histamine, usually used in the treatment of symptoms of allergy or the common cold, have many adverse effects on the CNS. They cause day time drowsiness, cause poorer performance of tasks involving visuo motor coordination and make it more difficult to detect target auditory stimuli in tasks involving sustained concentration. When using evoked potentials (EP) it has been observed that they alter the system for maintaining auditory attention. They cause increased P300 latency, an EP related to the voluntary ability to discriminate between relevant stimuli, a reduction in the amplitude of mismatch negativity (MMN), an EP which is seen as a pre attention mechanism for automatic detection of environmental acoustic changes and alters selective attention capacity, reflected by a reduction in the amplitude of processing negativity (PN). These studies show that chlorpheniramine has major adverse effects on the CNS, and the patient may not be subjectively aware of this (e.g. selective attention). This means that in certain situations it is a dangerous substance. The characteristics of these adverse effects should lead to a review of the prescription of chlorpheniramine, and stimulate the search for other substances with similar therapeutic actions but fewer side effects on the CNS.

  11. Effects on the nervous system by exposure to electromagnetic fields: experimental and clinical studies.

    PubMed

    Hansson, H A

    1988-01-01

    Exposure to electromagnetic fields may cause various types of effects on nervous tissue, in severe cases even irreversible damage. The exposure conditions, i.e. frequency including type and extent of modulation, time, intensity, wave form, as well as shape, size and position of exposed subject and possible treatment with drugs, are factors determining if damage, acute or chronic, ultimately result. Long term exposure of newborn rabbits, rats and mice to electromagnetic fields of power frequency (10-14 kV/m; 50 or 60 Hz; sinusoidal wave form; 21-24 h per day) may cause affection and even damage to the nervous system. Large nerve cells showed reactive changes such as lamellar bodies and cytoskeletal alteration to an extent varying with exposure conditions. Reactive neuroglial changes as well as increase in neuroglial marker proteins could concomitantly be demonstrated. The changes seemed to be reversible although we only have incomplete data available. Exposure in vitro of frog sciatic nerve to 16-60 Hz sinusoidal low current (50-1000 nA) for 17 h induced cytoskeletal changes. Exposure of rabbits to pulsed microwaves of moderate to high intensity (3.1 GHz; 300 Hz modulation; peak duration 1.4 usec with maximal peak intensity about 1000 times average; 55 mW/cm; SAR in the brain cortex about 20 W/kg; increase of temperature as measured by lightguide-equipped instruments in right brain hemisphere about 1-2 degrees C) during 1 h per day during three days resulted in no obvious initial changes in behaviour. Minimal acute dam- age could be demonstrated. However, after two to four months and later on both structural, immunohistochemical and biochemical changes could be documented. Radar technicians accidently and/or occupationally exposed to microwaves showed psychoneurological signs of affection as well as changes in cerebrospinal fluid protein pattern. No related changes have been noticed among matched controls. Exposure of nervous tissue to electromagnetic fields ranging

  12. [Cannabis: Effects in the Central Nervous System. Therapeutic, societal and legal consequences].

    PubMed

    Rivera-Olmos, Víctor Manuel; Parra-Bernal, Marisela C

    2016-01-01

    The consumption of marijuana extracted from Cannabis sativa and indica plants involves an important cultural impact in Mexico. Their psychological stimulatory effect is widely recognized; their biochemical and molecular components interact with CB1 and CB2 (endocannabinoid system) receptors in various central nervous system structures (CNS) and immune cells. The psychoactive element Δ-9-tetrahydrocannabinol (THC) can be reproduced synthetically. Systematic reviews show evidence of therapeutic effectiveness of therapeutic marijuana only for certain symptoms of multiple sclerosis (spasticity, spasms and pain), despite attempts for its widespread use, including refractory childhood epilepsy. Evidence indicates significant adverse effects of smoked marijuana on the structure, functioning and brain connectivity. Cannabis exposure during pregnancy affects fetal brain development, potentially leading to later behavioral problems in children. Neuropsychological tests and advanced imaging techniques show involvement in the learning process in adolescents with substance use. Also, marijuana increases the cognitive impairment in patients with multiple sclerosis. Social and ethical consequences to legally free marijuana for recreational use may be deleterious transcendentally. The medicinal or psychoactive cannabinol no addictive effect requires controlled proven efficacy and safety before regulatory approval studies.

  13. Combination antitumor effect with central nervous system depressants on rat ascites hepatomas.

    PubMed

    Koshiura, R; Miyamoto, K; Sanae, F

    1980-02-01

    Combined effect of twenty-one central nervous system depressants with several antitumor agents was studied in the in vitro and in vivo experimental systems, using rat ascites hepatoma call lines, AH13 and AH44, sensitive and insensitive to alkylating agents, respectively. Reserpine remarkably enhanced the cytotoxic effect of 1-(gamma-chloropropyl)-2-chloromethylpiperidine hydrobromide (CAP-2) both on AH13 and AH44 cells. In the in vivo combined experiments, reserpine also synergistically enhanced the life-prolonging effect of CAP-2 on AH13-bearing rats and, although CAP-2 was not potent on the prolongation of life span of AH44-bearing rats and reserpine was also ineffective at the doses examined, the life span of tumor-bearing rats receiving the combined administration was apparently prolonged compared with control groups. Thus, there was a parallelism between in vitro and in vivo experiments. These findings suggested that the antitumor-enhancing effect of reserpine might be due to the direct action on the tumor cells, and a possible mechanism that reserpine inhibited the DNA damage-repairing activity of the cells was contradictory. Other mechanisms are also discussed.

  14. Classical Neurotransmitters and their Significance within the Nervous System.

    ERIC Educational Resources Information Center

    Veca, A.; Dreisbach, J. H.

    1988-01-01

    Describes some of the chemical compounds involved in the nervous system and their roles in transmitting nerve signals. Discusses acetylcholine, dopamine, norepinephrine, serotonin, histamine, glycine, glutemate, and gamma-aminobutyric acid and their effects within the nervous system. (CW)

  15. Classical Neurotransmitters and their Significance within the Nervous System.

    ERIC Educational Resources Information Center

    Veca, A.; Dreisbach, J. H.

    1988-01-01

    Describes some of the chemical compounds involved in the nervous system and their roles in transmitting nerve signals. Discusses acetylcholine, dopamine, norepinephrine, serotonin, histamine, glycine, glutemate, and gamma-aminobutyric acid and their effects within the nervous system. (CW)

  16. Effects of Tibolone on the Central Nervous System: Clinical and Experimental Approaches

    PubMed Central

    Pinto-Almazán, Rodolfo; Farfán-García, Eunice D.

    2017-01-01

    Hormone replacement therapy (HRT) increases the risk of endometrial and breast cancer. A strategy to reduce this incidence is the use of tibolone (TIB). The aim of this paper was to address the effects of TIB on the central nervous system (CNS). For the present review, MEDLINE (via PubMed), LILACS (via BIREME), Ovid Global Health, SCOPUS, Scielo, and PsycINFO (ProQuest Research Library) electronic databases were searched for the results of controlled clinical trials on peri- and postmenopausal women published from 1990 to September 2016. Also, this paper reviews experimental studies performed to analyze neuroprotective effects, cognitive deficits, neuroplasticity, oxidative stress, and stroke using TIB. Although there are few studies on the effect of this hormone in the CNS, it has been reported that TIB decreases lipid peroxidation levels and improves memory and learning. TIB has important neuroprotective effects that could prevent the risk of neurodegenerative diseases in postmenopausal women as well as the benefits of HRT in counteracting hot flashes, improving mood, and libido. Some reports have found that TIB delays cognitive impairment in various models of neuronal damage. It also modifies brain plasticity since it acts as an endocrine modulator regulating neurotransmitters, Tau phosphorylation, and decreasing neuronal death. Finally, its antioxidant effects have also been reported in different animal models. PMID:28191467

  17. Effects of Tibolone on the Central Nervous System: Clinical and Experimental Approaches.

    PubMed

    Pinto-Almazán, Rodolfo; Segura-Uribe, Julia J; Farfán-García, Eunice D; Guerra-Araiza, Christian

    2017-01-01

    Hormone replacement therapy (HRT) increases the risk of endometrial and breast cancer. A strategy to reduce this incidence is the use of tibolone (TIB). The aim of this paper was to address the effects of TIB on the central nervous system (CNS). For the present review, MEDLINE (via PubMed), LILACS (via BIREME), Ovid Global Health, SCOPUS, Scielo, and PsycINFO (ProQuest Research Library) electronic databases were searched for the results of controlled clinical trials on peri- and postmenopausal women published from 1990 to September 2016. Also, this paper reviews experimental studies performed to analyze neuroprotective effects, cognitive deficits, neuroplasticity, oxidative stress, and stroke using TIB. Although there are few studies on the effect of this hormone in the CNS, it has been reported that TIB decreases lipid peroxidation levels and improves memory and learning. TIB has important neuroprotective effects that could prevent the risk of neurodegenerative diseases in postmenopausal women as well as the benefits of HRT in counteracting hot flashes, improving mood, and libido. Some reports have found that TIB delays cognitive impairment in various models of neuronal damage. It also modifies brain plasticity since it acts as an endocrine modulator regulating neurotransmitters, Tau phosphorylation, and decreasing neuronal death. Finally, its antioxidant effects have also been reported in different animal models.

  18. [Effects of Bioactive Substances from Citrus on the Central Nervous System and Utilization as Food Material].

    PubMed

    Okuyama, Satoshi

    2015-01-01

    We have recently shown that 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF) and auraptene (AUR) have neuroprotective effects on the central nervous system. HMF, a citrus flavonoid, altered NMDA-type glutamate receptor antagonist MK-801-induced memory dysfunction and schizophrenia-positive symptom-like behavior. HMF also showed a protective effect against ischemia-induced short-term memory dysfunction. In the ischemic brain, HMF induced the following protective effects against brain dysfunction: 1) rescue of neuronal cell death in the hippocampus; 2) increased production of brain-derived neurotrophic factor; 3) stimulation of neurogenesis in the dentate gyrus subgranular zone; 4) activation of the autophosphorylation of calcium-calmodulin-dependent protein kinase II; and 5) suppression of microglial activation. On the other hand, AUR, a citrus coumarin, ameliorated lipopolysaccharide-induced inflammation in the brain as shown by inhibition of microglial activation and inhibition of cyclooxygenase (COX)-2 expression in the hippocampus. AUR also showed antiinflammatory effects on the ischemic brain by inhibiting microglial activation, COX-2 expression, and neuronal cell death in the hippocampus. The peel of kawachibankan (Citrus kawachiensis), a noted citrus product of Ehime prefecture, Japan, contains AUR, HMF, naringin, and narirutin. The dried powder of both the peel and juice had antiinflammatory effects in the mouse hippocampus, suggesting that citrus compounds may be beneficial as neuroprotective agents in the treatment of neurological disorders.

  19. Effects on the nervous system by exposure to electromagnetic fields: experimental and clinical studies

    SciTech Connect

    Hansson, H.A.

    1988-01-01

    Exposure to electromagnetic fields may cause various types of effects on nervous tissue, in severe cases even irreversible damage. The exposure conditions, i.e. frequency including type and extent of modulation, time, intensity, wave form, as well as shape, size and position of exposed subject and possible treatment with drugs, are factors determining if damage, acute or chronic, ultimately result. Long term exposure of newborn rabbits, rats and mice to electromagnetic fields of power frequency (10-14 kV/m; 50 or 60 Hz; sinusoidal wave form; 21-24 h per day) may cause affection and even damage to the nervous system. Large nerve cells showed reactive changes such as lamellar bodies and cytoskeletal alteration to an extent varying with exposure conditions. Reactive neuroglial changes as well as increase in neuroglial marker proteins could concomitantly be demonstrated. The changes seemed to be reversible although we only have incomplete data available. Exposure in vitro of frog sciatic nerve to 16-60 Hz sinusoidal low current (50-1000 nA) for 17 h induced cytoskeletal changes. Exposure of rabbits to pulsed microwaves of moderate to high intensity during 1 h per day during three days resulted in no obvious initial changes in behavior. Minimal acute damage could be demonstrated. However, after two to four months and later on both structural, immunohistochemical and biochemical changes could be documented. Radar technicians accidently and/or occupationally exposed to microwaves showed psychoneurological signs of affection as well as changes in cerebrospinal fluid protein pattern. No related changes have been noticed among matched controls.

  20. Evaluation of the acute cardiac and central nervous system effects of the fluorocarbon trifluoromethane in baboons

    SciTech Connect

    Branch, C.A.; Goldberg, D.A.; Ewing, J.R.; Butt, S.S.; Gayner, J.; Fagan, S.C.

    1994-12-31

    The gaseous fluorocarbon trifluoromethane has recently been investigated for its potential as an in vivo gaseous indicator for nuclear magnetic resonance studies of brain perfusion. Trifluoromethane may also have significant value as a replacement for chlorofluorocarbon fire retardants. Because of possible species-specific cardiotoxic and anesthetic properties, the toxicological evaluation of trifluoromethane in primates (Papio anubis) is necessary prior to its evaluation in humans. We report the acute cardiac and central nervous system effects of trifluoromethane in eight anesthetized baboons. A dose-response effect was established for respiratory rate, electroencephalogram, and cardiac sinus rate, which exhibited a stepwise decrease from 10% trifluoromethane. No spontaneous arrhythmias were noted, and arterial blood pressure remained unchanged at any inspired level. Intravenous epinephrine infusions (1 {mu}g/kg) induced transient cardiac arrhythmia in 1 animal only at 70% FC-23 (v/v) trifluoromethane. Trifluoromethane appears to induce mild dose-related physiological changes at inspired levels of 30% or more, indicative of an anesthetic effect. These data suggest that trifluoromethane may be safe to use in humans, without significant adverse acute effects, at an inspired level of 30%. 23 refs., 3 figs., 3 tabs.

  1. Central nervous system depressant effects of N3-substituted derivatives of deoxyuridine in mice.

    PubMed

    Kimura, T; Kuze, J; Teraoka, S; Watanabe, K; Tateoka, Y; Kondo, S; Ho, I K; Yamamoto, I

    1996-01-01

    N3-Substituted derivatives of deoxyuridine (1) were synthesized and their pharmacological effects were evaluated by intracerebroventricular (i.c.v.) injection in mice. Eleven derivatives, including the methyl (2), ethyl (3), propyl (4), allyl (5), butyl (6), benzyl (7), o, m and p-xylyls (8, 9, 10), alpha-phenylethyl (11) and phenacyl (12) derivatives, of 1 were prepared and their pharmacological effects were evaluated by using hypnotic activity, pentobarbital-induced sleep prolongation, spontaneous activity and motor incoordination as indices of central nervous system (CNS) depressant effects. At a dose of 2.0 mumol/mouse, the values of mean sleeping time induced by 7, 8, 9 and 10 were 23, 35, 29 and 30 min, respectively. Although the alkyl (2-6) derivatives did not cause any hypnotic activity, some derivatives tested (3, 5, 6, 8-12) significantly prolonged the pentobarbital-induced sleeping time. When the CNS depressant effects of phenacyl substituted 1 were compared to that of other oxopyrimidine nucleosides, N3-phenacyluridine (13), N3-phenacylthymidine (14), N3-phenacyl-6-azauridine (15), compounds 12, 13 and 14 (1.0 mumol/mouse, i.c.v.) significantly decreased mouse spontaneous activity. Furthermore, 12-15 (1.0 mumol/mouse, i.c.v.) caused mouse motor incoordination. These results indicate that deoxyuridine derivatives have generally central depressant activity, and the benzyl and xylyl derivatives, but not alkyl derivatives, possess hypnotic activity.

  2. [Effects of electromagnetic field from cellular phones on selected central nervous system functions: a literature review].

    PubMed

    Bak, Marek; Zmyślony, Marek

    2010-01-01

    In the opinion of some experts, a growing emission of man-made electromagnetic fields (EMF), also known as electromagnetic is a source of continuously increasing health hazards to the general population. Due to their large number and very close proximity to the user's head, mobile phones deserve special attention. This work is intended to give a systematic review of objective studies, assessing the effects of mobile phone EMF on the functions of the central nervous system (CNS) structures. Our review shows that short exposures to mobile phone EMF, experienced by telephone users during receiving calls, do not affect the cochlear function. Effects of GSM mobile phone EMF on the conduction of neural impulses from the inner car neurons to the brainstem auditory centres have not been detected either. If Picton's principle, saying that P300 amplitude varies with the improbability of the targets and its latency varies with difficulty of discriminating the target stimulus from standard stimuli, is true, EMF changes the improbability of the targets without hindering their discrimination. Experiments with use of indirect methods do not enable unequivocal verification of EMF effects on the cognitive functions due to the CNS anatomical and functional complexity. Thus, it seems advisable to develop a model of EMF effects on the excitable brain structures at the cellular level.

  3. Time, touch, and compassion: effects on autonomic nervous system and well-being.

    PubMed

    Shaltout, Hossam A; Tooze, Janet A; Rosenberger, Erica; Kemper, Kathi J

    2012-01-01

    Compassion is critical for complementary and conventional care, but little is known about its direct physiologic effects. This study tested the feasibility of delivering two lengths of time (10 and 20 minutes) and two strategies (tactile and nontactile) for a practitioner to nonverbally communicate compassion to subjects who were blind to the interventions. Healthy volunteers were informed that we were testing the effects of time and touch on the autonomic nervous system. Each subject underwent five sequential study periods in one study session: (1) warm-up; (2) control-with the practitioner while both read neutral material; (3) rest; (4) intervention-with practitioner meditating on loving-kindness toward the subject; and (5) rest. Subjects were randomized to receive one of four interventions: (1) 10 minutes tactile; (2) 20 minutes tactile; (3) 10 minutes nontactile; or (4) 20 minutes nontactile. During all interventions, the practitioner meditated on loving-kindness toward the subject. For tactile interventions, the practitioner touched subjects on arms, legs, and hands; for nontactile interventions, the practitioner pretended to read. Subjects' autonomic activity, including heart rate, was measured continuously. Subjects completed visual analog scales for well-being, including relaxation and peacefulness, at warm-up; postcontrol; immediately postintervention; and after the postintervention rest and were asked about what they and the practitioner had done during each study period. The 20 subjects' mean age was 24.3 ± 4 years; 16 were women. The practitioner maintained a meditative state during all interventions as reflected in lower respiratory rate, and subjects remained blind to the practitioner's meditative activity. Overall, interventions significantly decreased heart rate (P < .01), and although other changes did not reach statistical significance, they were in the expected direction, with generally greater effects for the tactile than nontactile strategies

  4. Effects of Low-Level Blast Exposure on the Nervous System: Is There Really a Controversy?

    PubMed Central

    Elder, Gregory A.; Stone, James R.; Ahlers, Stephen T.

    2014-01-01

    High-pressure blast waves can cause extensive CNS injury in human beings. However, in combat settings, such as Iraq and Afghanistan, lower level exposures associated with mild traumatic brain injury (mTBI) or subclinical exposure have been much more common. Yet controversy exists concerning what traits can be attributed to low-level blast, in large part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress disorder (PTSD). We describe how TBI is defined in human beings and the problems posed in using current definitions to recognize blast-related mTBI. We next consider the problem of applying definitions of human mTBI to animal models, in particular that TBI severity in human beings is defined in relation to alteration of consciousness at the time of injury, which typically cannot be assessed in animals. However, based on outcome assessments, a condition of “low-level” blast exposure can be defined in animals that likely approximates human mTBI or subclinical exposure. We review blast injury modeling in animals noting that inconsistencies in experimental approach have contributed to uncertainty over the effects of low-level blast. Yet, animal studies show that low-level blast pressure waves are transmitted to the brain. In brain, low-level blast exposures cause behavioral, biochemical, pathological, and physiological effects on the nervous system including the induction of PTSD-related behavioral traits in the absence of a psychological stressor. We review the relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical lowering of Abeta by blast, which along with other observations suggest that blast-related TBI is pathophysiologically distinct from non-blast TBI. Human neuroimaging studies show that blast-related mTBI is associated with a variety of chronic effects that are unlikely to be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level blast as having long

  5. Facilitation of breathing by leptin effects in the central nervous system.

    PubMed

    Bassi, M; Furuya, W I; Zoccal, D B; Menani, J V; Colombari, D S A; Mulkey, D K; Colombari, E

    2016-03-15

    With the global epidemic of obesity, breathing disorders associated with excess body weight have markedly increased. Respiratory dysfunctions caused by obesity were originally attributed to mechanical factors; however, recent studies have suggested a pathophysiological component that involves the central nervous system (CNS) and hormones such as leptin produced by adipocytes as well as other cells. Leptin is suggested to stimulate breathing and leptin deficiency causes an impairment of the chemoreflex, which can be reverted by leptin therapy. This facilitation of the chemoreflex may depend on the action of leptin in the hindbrain areas involved in the respiratory control such as the nucleus of the solitary tract (NTS), a site that receives chemosensory afferents, and the ventral surface of the medulla that includes the retrotrapezoid nucleus (RTN), a central chemosensitive area, and the rostral ventrolateral medulla (RVLM). Although the mechanisms and pathways activated by leptin to facilitate breathing are still not completely clear, evidence suggests that the facilitatory effects of leptin on breathing require the brain melanocortin system, including the POMC-MC4R pathway, a mechanism also activated by leptin to modulate blood pressure. The results of all the studies that have investigated the effect of leptin on breathing suggest that disruption of leptin signalling as caused by obesity-induced reduction of central leptin function (leptin resistance) is a relevant mechanism that may contribute to respiratory dysfunctions associated with obesity.

  6. Facilitation of breathing by leptin effects in the central nervous system

    PubMed Central

    Furuya, W. I.; Zoccal, D. B.; Menani, J. V.; Colombari, D. S. A.; Mulkey, D. K.

    2015-01-01

    Abstract With the global epidemic of obesity, breathing disorders associated with excess body weight have markedly increased. Respiratory dysfunctions caused by obesity were originally attributed to mechanical factors; however, recent studies have suggested a pathophysiological component that involves the central nervous system (CNS) and hormones such as leptin produced by adipocytes as well as other cells. Leptin is suggested to stimulate breathing and leptin deficiency causes an impairment of the chemoreflex, which can be reverted by leptin therapy. This facilitation of the chemoreflex may depend on the action of leptin in the hindbrain areas involved in the respiratory control such as the nucleus of the solitary tract (NTS), a site that receives chemosensory afferents, and the ventral surface of the medulla that includes the retrotrapezoid nucleus (RTN), a central chemosensitive area, and the rostral ventrolateral medulla (RVLM). Although the mechanisms and pathways activated by leptin to facilitate breathing are still not completely clear, evidence suggests that the facilitatory effects of leptin on breathing require the brain melanocortin system, including the POMC–MC4R pathway, a mechanism also activated by leptin to modulate blood pressure. The results of all the studies that have investigated the effect of leptin on breathing suggest that disruption of leptin signalling as caused by obesity‐induced reduction of central leptin function (leptin resistance) is a relevant mechanism that may contribute to respiratory dysfunctions associated with obesity. PMID:26095748

  7. Central nervous system stimulants.

    PubMed

    George, A J

    2000-03-01

    Three major types of CNS stimulant are currently abused in sport: amphetamine, cocaine and caffeine. Each drug type has its own characteristic mechanism of action on CNS neurones and their associated receptors and nerve terminals. Amphetamine is widely abused in sports requiring intense anaerobic exercise where it prolongs the tolerance to anaerobic metabolism. It is addictive, and chronic abuse causes marked behavioural change and sometimes psychosis. Major sports abusing amphetamine are cycling, American football, ice-hockey and baseball. Cocaine increases tolerance to intense exercise, yet most of its chronic effects on energy metabolism are negative. Its greatest effects seem to be as a central stimulant and the enhancement of short-term anaerobic exercise. It is highly addictive and can cause cerebral and cardiovascular fatalities. Caffeine enhances fatty acid metabolism leading to glucose conservation, which appears to benefit long-distance endurance events such as skiing. Caffeine is also addictive, and chronic abuse can lead to cardiac damage. Social abuse of each of the three drugs is often difficult to distinguish from their abuse in sport.

  8. Clinical effects of air pollution on the central nervous system; a review.

    PubMed

    Babadjouni, Robin M; Hodis, Drew M; Radwanski, Ryan; Durazo, Ramon; Patel, Arati; Liu, Qinghai; Mack, William J

    2017-09-01

    The purpose of this review is to describe recent clinical and epidemiological studies examining the adverse effects of urban air pollution on the central nervous system (CNS). Air pollution and particulate matter (PM) are associated with neuroinflammation and reactive oxygen species (ROS). These processes affect multiple CNS pathways. The conceptual framework of this review focuses on adverse effects of air pollution with respect to neurocognition, white matter disease, stroke, and carotid artery disease. Both children and older individuals exposed to air pollution exhibit signs of cognitive dysfunction. However, evidence on middle-aged cohorts is lacking. White matter injury secondary to air pollution exposure is a putative mechanism for neurocognitive decline. Air pollution is associated with exacerbations of neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. Increases in stroke incidences and mortalities are seen in the setting of air pollution exposure and CNS pathology is robust. Large populations living in highly polluted environments are at risk. This review aims to outline current knowledge of air pollution exposure effects on neurological health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Effects of radio- and microwaves emitted by wireless communication devices on the functions of the nervous system selected elements].

    PubMed

    Politański, Piotr; Bortkiewicz, Alicja; Zmyślony, Marek

    Nervous system is the most "electric" system in the human body. The research of the effects of electromagnetic fields (EMFs) of different frequencies on its functioning have been carried out for years. This paper presents the results of the scientific literature review on the EMF influence on the functioning of the human nervous system with a particular emphasis on the recent studies of the modern wireless communication and data transmission systems. In the majority of the analyzed areas the published research results do not show EMF effects on the nervous system, except for the influence of GSM telephony signal on resting EEG and EEG during patients' sleep and the influence of radiofrequency EMF on the cardiovascular regulation. In other analyzed areas (EMF impact on sleep, the evoked potentials and cognitive processes), there are no consistent results supporting any influence of electromagnetic fields. Neurophysiological studies of the effect of radio- and microwaves on the brain functions in humans are still considered inconclusive. This is among others due to, different exposure conditions, a large number of variables tested, deficiencies in repeatability of research and statistical uncertainties. However, methodological guidelines are already available giving a chance of unifying research that definitely needs to be continued in order to identify biophysical mechanisms of interaction between EMFs and the nervous system. One of the EMF research aspects, on which more and more attention is paid, are inter-individual differences. Med Pr 2016;67(3):411-421.

  10. Effect of Muslim Prayer (Salat) on α Electroencephalography and Its Relationship with Autonomic Nervous System Activity

    PubMed Central

    Doufesh, Hazem; Ismail, Noor Azina; Wan Ahmad, Wan Azman

    2014-01-01

    Abstract Objectives: This study investigated the effect of Muslim prayer (salat) on the α relative power (RPα) of electroencephalography (EEG) and autonomic nervous activity and the relationship between them by using spectral analysis of EEG and heart rate variability (HRV). Methods: Thirty healthy Muslim men participated in the study. Their electrocardiograms and EEGs were continuously recorded before, during, and after salat practice with a computer-based data acquisition system (MP150, BIOPAC Systems Inc., Camino Goleta, California). Power spectral analysis was conducted to extract the RPα and HRV components. Results: During salat, a significant increase (p<.05) was observed in the mean RPα in the occipital and parietal regions and in the normalized unit of high-frequency (nuHF) power of HRV (as a parasympathetic index). Meanwhile, the normalized unit of low-frequency (nuLF) power and LF/HF of HRV (as sympathetic indices) decreased according to HRV analyses. RPα showed a significant positive correlation in the occipital and parietal electrodes with nuHF and significant negative correlations with nuLF and LF/HF. Conclusions: During salat, parasympathetic activity increased and sympathetic activity decreased. Therefore, regular salat practices may help promote relaxation, minimize anxiety, and reduce cardiovascular risk. PMID:24827587

  11. Effects of ischaemia and hypoxia on the development of the nervous system in acardiac foetus.

    PubMed

    Laure-Kamionowska, Milena; Maślińska, Danuta; Deregowski, Krzysztof; Piekarski, Paweł; Raczkowska, Barbara

    2004-01-01

    The twin-reversed arterial perfusion (TRAP) sequence and development of an acardius are rare and severe complications in monozygotic twin pregnancy. Haemodynamic disturbances in placental perfusion via abnormal vascular anastomoses allow inter-twin transfusion to occur. Because of blood perfusion, one of the twins is poorly oxygenated and contains metabolic waste products. Retrograde placental perfusion leads to the formation of a non-viable malformed acardiac foetus. We studied the effects of haemodynamic disturbances in acardiac foetus on the development of the nervous system. The acardius was a product of a 32-weeks pregnancy. Caesarean section yielded a skin covered ovoid mass (size, 10 x 8 cm; weight, 220 g). The dissection of the acardiac twin showed a skin with hair and appendages, rudimentary lower limbs, vertebral column and brain mass. The rudimentary brain tissue was considerably disorganised structurally. We distinguished two main morphological forms of various appearances. In the centre, we observed a scarcely vascularised mass of tissue containing mature and immature neurones, glial cells and randomly distributed fibres. The mass of tissue appeared poorly differentiated, although there were some arrangements reminiscent of cerebral structures. Clusters of neurones provided a slight suggestion of nuclear or fibre structure. The cerebellar cortex was the only well recognisable structure. In the other fragment of the tissue, we found a slit cavity with ependymal outline and well-developed choroid plexus, which seemed to represent the 3rd ventricle. The scarcely vascularised disorganised tissue was surrounded by the highly vascularised one. It included many thin-walled sinusoid vessels. In some places, they were so concentrated that they resembled cavernous haemangioma. The spinal cord appeared comparatively well organised with a slightly dilated central canal. The morphological picture of the rudimentary brain tissue was similar to the picture of the

  12. Human nervous system function emulator.

    PubMed

    Frenger, P

    2000-01-01

    This paper describes a modular, extensible, open-systems design for a multiprocessor network which emulates the major functions of the human nervous system. Interchangeable hardware/software components, a socketed software bus with plug-and-play capability and self diagnostics are included. The computer hardware is based on IEEE P996.1 bus cards. Its operating system utilizes IEEE 1275 standard software. Object oriented design techniques and programming are featured. A machine-independent high level script-based command language was created for this project. Neural anatomical structures which were emulated include the cortex, brainstem, cerebellum, spinal cord, autonomic and peripheral nervous systems. Motor, sensory, autoregulatory, and higher cognitive artificial intelligence, behavioral and emotional functions are provided. The author discusses how he has interfaced this emulator to machine vision, speech recognition/speech synthesis, an artificial neural network and a dexterous hand to form an android robotic platform.

  13. Effects of caffeine on the electrophysiological, cognitive and motor responses of the central nervous system.

    PubMed

    Deslandes, A C; Veiga, H; Cagy, M; Piedade, R; Pompeu, F; Ribeiro, P

    2005-07-01

    Caffeine is the most consumed psychoactive substance in the world. The effects of caffeine have been studied using cognitive and motor measures, quantitative electroencephalography (qEEG) and event-related potentials. However, these methods are not usually employed in combination, a fact that impairs the interpretation of the results. The objective of the present study was to analyze changes in electrophysiological, cognitive and motor variables with the ingestion of caffeine, and to relate central to peripheral responses. For this purpose we recorded event-related potentials and eyes-closed, resting EEG, applied the Stroop test, and measured reaction time. Fifteen volunteers took caffeine (400 mg) or placebo in a randomized, crossover, double-blind design. A significant reduction of alpha absolute power over the entire scalp and of P300 latency at the Fz electrode were observed after caffeine ingestion. These results are consistent with a stimulatory effect of caffeine, although there was no change in the attention (Stroop) test or in reaction time. The qEEG seems to be the most sensitive index of the changes produced by caffeine in the central nervous system since it proved to be capable of detecting changes that were not evident in the tests of cognitive or motor performance.

  14. Effect of dehydrocostus lactone and costunolide from Saussurea root on the central nervous system in mice.

    PubMed

    Okugawa, H; Ueda, R; Matsumoto, K; Kawanishi, K; Kato, A

    1996-09-01

    Saussurea root (Mokko in Japanese; root of Saussurea lappa, Compositae) is an aromatic stomachic and sedative in Oriental medicine. Four extracts of saussurea root were obtained by successively extracting with benzene, chloroform, methanol and water. Each of these extracts was tested for effects on the central nervous system (CNS) of mice by intraperitoneal administration, i. e. potentiation of hexobarbital sleeping time, body temperature alterations, antinociceptive effects, and spontaneous locomotor activity changes. The benzene extract was the most active and was then separated further into five fractions, 1,2,3,4, and 5 by column chromatography. Fraction 2 was shown to be the most active in the aforementioned assays. From this fraction dehydrocostus lactone and costunolide were isolated as the CNS active constituents. They were both active by the intraperitoneal, intragastric and intracerebroventricular routes of administration. They decreased both methamphetamine- and apomorphine-induced spontaneous motility. The level of homovanillic acid in the brain was increased following their administration, while the levels of monoamines and other metabolites were unchanged. Similar results were seen in chlorpromazine-treated mice. These results show that dehydrocostus lactone and costunolide can be considered as neuroleptics by resemblance of their pharmacological activities to chlorpromazine.

  15. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations.

    PubMed

    Morgan, Julie A; Corrigan, Frances; Baune, Bernhard T

    2015-01-01

    Pathologies of central nervous system (CNS) functions are involved in prevalent conditions such as Alzheimer's disease, depression, and Parkinson's disease. Notable pathologies include dysfunctions of circadian rhythm, central metabolism, cardiovascular function, central stress responses, and movement mediated by the basal ganglia. Although evidence suggests exercise may benefit these conditions, the neurobiological mechanisms of exercise in specific brain regions involved in these important CNS functions have yet to be clarified. Here we review murine evidence about the effects of exercise on discrete brain regions involved in important CNS functions. Exercise effects on circadian rhythm, central metabolism, cardiovascular function, stress responses in the brain stem and hypothalamic pituitary axis, and movement are examined. The databases Pubmed, Web of Science, and Embase were searched for articles investigating regional brain adaptations to exercise. Brain regions examined included the brain stem, hypothalamus, and basal ganglia. We found evidence of multiple regional adaptations to both forced and voluntary exercise. Exercise can induce molecular adaptations in neuronal function in many instances. Taken together, these findings suggest that the regional physiological adaptations that occur with exercise could constitute a promising field for elucidating molecular and cellular mechanisms of recovery in psychiatric and neurological health conditions.

  16. Neuropsychological assessment for detecting adverse effects of volatile organic compounds on the central nervous system

    SciTech Connect

    Bolla, K.I. )

    1991-11-01

    Because there are no direct biological markers for the substances implicated in indoor air exposure, it is impossible to directly measure if an individual or group of individuals has been exposed to a potentially neurotoxic substance in the workplace. Behavioral changes may be the earliest and only manifestation of central nervous system (CNS) effects and are often too subtle to be revealed by routine physical or neurological examination. Neuropsychological techniques are sensitive to subtle behavioral/cognitive changes that can results from exposure to neurotoxins. These techniques consist of oral and written tests that are administered by a trained examiner on a on-to-one basis. In general, a wide variety of cognitive domains are evaluated. The typical battery generally includes assessing orientation, attention, intelligence, language, visual memory, verbal memory, perception, visuoconstruction, simple motor speed, psychomotor speed, and mood. As with most assessment techniques, the neuropsychological methods have limitations. One major drawback is the availability of appropriate norms that are used to compare the results of a specific individual. Although neuropsychological tests are sensitive to the presence of CNS involvement, they are not specific. Patterns of performance seen with specific instances of neurotoxic exposure may also be seen with a number of other diseases of the CNS such as dementia, cerebrovascular disease, hydrocephalus, or normal aging. Some of the more sensitive neuropsychological tests are presented. Interpretations of test performance as they relate to toxic effects on the CNS are discussed.

  17. Pharmacological evaluation of Potentilla alba L. in mice: adaptogenic and central nervous system effects.

    PubMed

    Shikov, Alexander N; Lazukina, Maria A; Pozharitskaya, Olga N; Makarova, Marina N; Golubeva, Olga V; Makarov, Valery G; Djachuk, Georgy I

    2011-10-01

    Potentilla alba L. (Rosaceae) rhizomes have anti-inflammatory, antioxidant, and adaptogenic effects and are used for the treatment of diarrhea and intestinal colic. However, the data concerning the adaptogenic and central nervous system activities of P. alba are fragmentary. To determine the effect of oral administration of dried P. alba extract on the swimming endurance, light/dark exploration, and open-field tests for mice. The mice were orally administered Rhodiola rosea extract (RR group); dry extract of P. alba at doses of 12, 36, or 72 mg/kg (groups: PA12, PA36, and PA72); or distilled water (control group) for 7 consecutive days. The swimming times of the RR, PA36, and PA72 groups were significantly longer than those of the control group. The administration of P. alba significantly increased the light time, latency time, and the number of rearings in a dose-dependent manner. In the open-field test, the P. alba extract at a dose of 12 mg/kg produced a significant increase in the frequency of head dipping and the number of squares crossed and a significant decrease in grooming compared with the control treatment. The current findings demonstrate that P. alba extracts significantly increased swimming endurance time and have anxiolytic-like action with a predominant locomotor component.

  18. Effects of normal blood pressure, prehypertension, and hypertension on autonomic nervous system function.

    PubMed

    Erdogan, Dogan; Gonul, Emel; Icli, Atilla; Yucel, Habil; Arslan, Akif; Akcay, Salaheddin; Ozaydin, Mehmet

    2011-08-18

    Autonomic nervous system plays an important role in blood pressure (BP) regulation, and large proportion of patients with hypertension have increased sympathetic and decreased parasympathetic activity. Heart rate recovery (HRR) is a simple non-invasive measurement for investigating autonomic nervous system influence on the cardiovascular system; however, this methodology has not been used to evaluate autonomic nervous system in subjects with prehypertension (PHT). Accordingly, the present study was designed to evaluate HRR in subjects with PHT. We measured HRR of 91 subjects with PHT, 44 patients with hypertension, and 53 normotensive healthy volunteers. HRR was significantly lower in the HT and PHT groups as compared to the control group (24.4 ± 5.7, 26.0 ± 8.4, 30.0 ± 8.7; hypertension, PHT, and control groups, respectively), but it did not significantly differ between HT and PHT groups. HRR was significantly and inversely correlated with age, systolic and diastolic BP, fasting and postprandial glucose level, waist circumference, total cholesterol, LDL cholesterol and non-HDL cholesterol, whereas exercise duration and METs were positively correlated with HRR. In multivariable analysis, we found that systolic BP, postprandial glucose level and exercise duration were independent predictors of lower HRR. HRR, a non-invasive measurement analyzing the dysfunction in autonomic nervous system, was reduced in subjects with PHT as compared to normotensives, and the subjects with PHT had HRR as lower as patients with HT did. Our findings are supportive for the hypothesis that autonomic dysregulation is present in an early stage of essential hypertension. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Effect of centrally administered endothelin agonists on systemic and regional blood circulation in the rat: role of sympathetic nervous system.

    PubMed

    Gulati, A; Kumar, A; Morrison, S; Shahani, B T

    1997-08-01

    The aims of the present study were to determine (1) the hypotensive and regional circulatory effects of centrally administered endothelin (ET) ETA and ETB agonists, and (2) the role of the sympathetic nervous system in the mediation of hypotensive effects due to centrally administered ET-1. The systemic haemodynamics and regional blood circulation in urethane anaesthetized rats following intracerebroventricular (i.c.v.) administration of ET-1, ET-2, SRT6b, ET-3 and SRT6c (10, 30 and 90 ng) were determined by a radioactive microsphere technique. The effect of centrally administered ET-1 on sympathetic nerve activity was also analysed. Systemic haemodynamics and regional blood circulation were determined before (baseline) and 30 min after administration of ET agonists. Cumulative administration of three doses of saline (5 microliters, i.c.v. at 30 min intervals) did not produce any significant cardiovascular effects. ET-1, ET-2 and SRT6b produced a decrease in blood pressure (51%, 47% and 41%, respectively) along with a decrease in cardiac output (58%, 60% and 45%, respectively) and stroke volume. Heart rate and total peripheral resistance were not affected. ET-1, ET-2 and SRT6b also produced a significant reduction in blood flow to the brain, kidneys, heart, portal, mesentery and pancreas, gastrointestinal tract (GIT) and musculoskeletal system. The effect of ET-2 on the cardiovascular system was less intense in comparison with ET-1 and SRT6b. Centrally administered specific ETB receptor agonists ET-3 and SRT6c did not produce any change in systemic haemodynamics and regional blood flow. Centrally administered ET-1 (90 ng) produced a significant decrease (61%) in sympathetic nerve activity 30 min after drug administration, along with a fall in blood pressure. It is concluded that centrally administered ETA agonists produce significant cardiovascular effects mediating through the sympathetic nervous system.

  20. Depressant effects of Clinopodium mexicanum Benth. Govaerts (Lamiaceae) on the central nervous system.

    PubMed

    Estrada-Reyes, R; Martínez-Vázquez, M; Gallegos-Solís, A; Heinze, G; Moreno, J

    2010-07-06

    The decoction of leaves of Clinopodium mexicanum Benth. Goaverts (Lamiaceae), commonly known as "Toronjil de Monte", is used in the Mexican traditional medicine to induce sleep, as well as sedative and analgesic remedy. To evaluate the putative depressant effects of an aqueous extract of the medicinal plant Clinopodium mexicanum on the central nervous system (CNS). The effects of the extract (AECM) on mice were tested in several animal paradigms, including sodium pentobarbital-induced sleep, open field tests, and hole-board tests. The effects of AECM on pentylenetetrazole- and picrotoxin-induced convulsions in mice and on the antithermonociceptive response in the hot-plate paradigm were also tested. Additionally, the active extract (AECM) was analyzed with HPLC-ESI-MS techniques. Mice acutely treated with AECM at 100, 200, 500 and 1000mg/kg doses prolonged the sleeping time induced by sodium pentobarbital (42mg/kg). This extract, at 100 and 200mg/kg doses, showed a sedative effect in the hole-board paradigm and decreased spontaneous activity in mice. AECM at 10, 100 and 200mg/kg prolonged the onset of seizures induced by pentylenetetrazole (90mg/kg) and antagonized tonic convulsions induced by picrotoxin (10mg/kg). Additionally, AECM inhibited the response to a thermonociceptive stimulus. The intraperitoneal AECM treatment produced mortality with an LD(50)=2154mg/kg. Chemical analysis showed that the flavanone glycosides neoponcirin, poncirin, and isonaringenin are the main compounds of the active extract. This study demonstrates that an acutely administered single dose of an aqueous extract of Clinopodium mexicanum can exert depressant effects on the CNS. These findings are in agreement with the traditional use of Clinopodium mexicanum to induce sleep as well as sedative and analgesic remedy. The chemical analysis of AECM revealed the presence of the flavanone glycosides neoponcirin, poncirin, and isonaringin. Copyright (c) 2010 Elsevier Ireland Ltd. All rights

  1. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2016-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  2. [Effect of Viewing a Long Stereoscopic Film on Equilibrium Function and Autonomic Nervous System].

    PubMed

    Kinoshita, Fumiya; Mori, Yuki; Sugiura, Akihiro; Yamakawa, Tatsuya; Matsuura, Yasuyuki; Takada, Hiroki; Miyao, Masaru

    2016-01-01

    Owing to the recent rapid advancements in image processing and three-dimensional (3-D) technologies, stereoscopic images can now be viewed on television as well as in theaters and on gaming consoles among others. However, with these advancements, there have also been reports on motion sickness and asthenopia induced by viewing stereoscopic films. Human equilibrium function deteriorates when viewing stereoscopic films, which may lead to motion sickness; however, the exact cause of such motion sickness remains unknown. Therefore, as part of hygiene research that contributes to society, it is important to consider the safety of viewing virtual 3D contents. In this study, we investigated the effects of viewing 2-D/3-D video clips on the human body by stabilometry, electrogastrography (EGG), and subjective assessments. Seven subjects aged 22 to 24 viewed 2-D/3-D video clips for 60 min. A comparison of time series data obtained at rest shows a significant change in the EGG patterns 20 min after the start of viewing the video clips. Furthermore, sway values while viewing the 3-D video clips were considerably higher than those while viewing the 2-D video clips 60 min after the start of viewing. These findings show that the autonomic nervous system is affected first by long-term viewing of stereoscopic films, and the equilibrium function deteriorates gradually over the course of the exposure.

  3. Effects of seasonal variation on the central nervous system activity of Ocimum gratissimum L. essential oil.

    PubMed

    Freire, Cristiana M Murbach; Marques, Márcia Ortiz M; Costa, Mirtes

    2006-04-21

    Ocimum gratissimum L. (Lamiaceae) and other species of the same genus are used as medicines to treat central nervous system (CNS) diseases, commonly encountered in warm regions of the world. The chemical composition of Ocimum gratissimum essential oil varies according to their chemotypes: timol, eugenol or geraniol. In this study, the essential oil type eugenol was extracted by hydrodistillation in each of the four seasons of the year. Activity upon CNS was evaluated in the open-field and rota-rod tests; sleeping time induced by sodium pentobarbital (PBS, 40 mg/kg, intra-peritoneally, i.p.) and anticonvulsant activity against seizures induced by both pentylenetetrazole (PTZ; 85 mg/kg, s.c.) and maximal electroshock (MES, 50 mA, 0.11 s) were determined. Essential oils obtained in each season were effective in increasing the sleeping duration and a preparation obtained in Spring was able to protect animals against tonic seizures induced by electroshock. In each season, eugenol and 1,8-cineole were the most abundant compounds, and in Spring the essential oil presented the greatest relative percentage of sesquiterpenes, suggesting that these compounds could explain the differences observed in the biological activity in essential oils obtained in different seasons of the year.

  4. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2015-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are a documented concern for human exploration of space. Acute CNS risks include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  5. Evoked potential studies of the effects of impact acceleration on the motor nervous system.

    PubMed

    Saltzberg, B; Burton, W D; Burch, N R; Ewing, C L; Thomas, D J; Weiss, M; Berger, M D; Jessop, E; Sances, A; Walsh, P R

    1983-12-01

    The initial results of a continuing investigation into the effects of various levels of impact acceleration on the functional integrity of the motor nervous system are summarized. The results are based on the measurement of alterations in neural transmission along the motor pathway of the Rhesus monkey as revealed by latency and amplitude changes in the motor pathway evoked potential (EP) following the delivery of various levels of impact acceleration to a test vehicle. The EPs were produced by electrical stimulation of and recording from the motor pathway of experimental animals subjected to -Y (lateral impact) acceleration and animals subjected to -X (frontal impact) acceleration. High resolution latency and amplitude measures of the EP recorded from these animals before and after impact were tracked so that the time course of recovery of nerve propagation following impact could be accurately assessed. Analysis of these EP measures revealed that the time course of recovery to preimpact values is directly related to the intensity of the acceleration impulse delivered to the test vehicle.

  6. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes.

    PubMed

    Xiao, Junhua; Wong, Agnes W; Willingham, Melanie M; van den Buuse, Maarten; Kilpatrick, Trevor J; Murray, Simon S

    2010-01-01

    The extracellular factors that are responsible for inducing myelination in the central nervous system (CNS) remain elusive. We investigated whether brain-derived neurotrophic factor (BDNF) is implicated, by first confirming that BDNF heterozygous mice exhibit delayed CNS myelination during early postnatal development. We next established that the influence of BDNF upon myelination was direct, by acting on oligodendrocytes, using co-cultures of dorsal root ganglia neurons and oligodendrocyte precursor cells. Importantly, we found that BDNF retains its capacity to enhance myelination of neurons or by oligodendrocytes derived from p75NTR knockout mice, indicating the expression of p75NTR is not necessary for BDNF-induced myelination. Conversely, we observed that phosphorylation of TrkB correlated with myelination, and that inhibiting TrkB signalling also inhibited the promyelinating effect of BDNF, suggesting that BDNF enhances CNS myelination via activating oligodendroglial TrkB-FL receptors. Together, our data reveal a previously unknown role for BDNF in potentiating the normal development of CNS myelination, via signalling within oligodendrocytes.

  7. Localization of the neuropeptide NGIWYamide in the holothurian nervous system and its effects on muscular contraction

    PubMed Central

    Inoue, M.; Birenheide, R.; Koizumi, O.; Kobayakawa, Y.; Muneoka, Y.; Motokawa, T.

    1999-01-01

    NGIWYamide is a peptide recently isolated from the sea cucumber Apostichopus japonicus. It stiffens the connective tissue of the holothurian body wall. Localization of NGIWYamide was investigated by immunohistochemical staining with antiserum raised against NGIWYamide. In holothurian nervous systems NGIWYamide-like immunoreactivity (NGIWYa-LI) was observed in the hyponeural and ectoneural regions of the radial nerve cord, as well as in the circumoral nerve ring, podial nerves, tentacular nerves, the basiepithelial nerve plexus of the intestine and in cellular processes running through the body wall dermis. Labelled nerve fibres from the hyponeural part of the radial nerve running towards the circular muscle and from the podial nerve into the body wall dermis suggest that NGIWYamide controls both muscle and connective tissue. We examined the effect on muscle activity of the sea cucumber. NGIWYamide (10-7 to 10-4 M) caused contraction of the longitudinal body wall muscle. Tentacles showed contraction only at a higher dose (10-4 M). NGIWYamide (10-4 M) inhibited spontaneous contraction of the intestine.

  8. The effect of chronic stress on prenatal development of the central nervous system.

    PubMed

    Giordana, L N; Bozzo, A A; Cots, D S; Monedero Cobeta, I; Rolando, A; Borghi, D; Diaz, T; Gauna, H F; Romanini, M C

    2015-02-01

    The survival of developing embryos depends on the control and maintenance of homeostasis. Stress caused by chronic immobilization during pregnancy in rats may alter the normal development of the nervous system and increase susceptibility to psychiatric disorders. We investigated the effects of chronic stress on cell proliferation in the forebrains of embryos at 12 days of gestation, and in the hippocampus, dentate gyrus and cortex in embryos at 17 and 21 days of gestation. We examined serial sections of the embryonic brains of control and stressed rats at days 12, 17 and 21 of gestation. Brain sections were immunolabeled with anti-PCNA and stereological analysis was performed on 540 images. The results showed no statistical differences on days 12 and 17 of gestation in the proliferation area of the structures studied, whereas on day 21 of gestation, proliferation decreased in the cortex and dentate gyrus of embryos of the stressed group. These changes were related to decreased prolactin and increased corticosterone concentrations in the plasma.

  9. Assessment of adverse effects of neurotropic drugs in monkeys with the "drug effects on the nervous system" (DENS) scale.

    PubMed

    Uthayathas, Subramaniam; Shaffer, Christopher L; Menniti, Frank S; Schmidt, Christopher J; Papa, Stella M

    2013-04-30

    Research into therapeutics for neuropsychiatric disorders is increasingly focusing on drugs with new mechanisms of action, and such agents are often assessed in preclinical studies using nonhuman primates. However, researchers lack a standardised method to compare different drugs for common adverse effects on the nervous system. We have developed a new scale for this purpose, named "Drug Effects on the Nervous System" (DENS), and tested its utility in an analysis of the second-generation antipsychotic risperidone in monkeys. The behavioural effects of risperidone over a ten-fold clinically relevant exposure range were rated with the DENS scale and compared with a standard motor disability scale for primates. The ratings were correlated with projected D2 and 5-HT2A receptor occupancies over time. The DENS scale detected dose-dependent side effects of risperidone in addition to the motor effects detected with the motor disability scale, including cognitive, sensorimotor and autonomic functions. A consistent temporal association between the DENS scale changes and the projected D2 receptor occupancy was observed, and the DENS scale ratings demonstrated high inter-rater reliability. These results demonstrate the usefulness of the DENS scale as a highly sensitive, reliable and accurate method to identify common adverse effects of risperidone and potentially other neurotropics for translational studies in primates.

  10. Infections of the nervous system

    PubMed Central

    Parikh, Vevek; Tucci, Veronica; Galwankar, Sagar

    2012-01-01

    Glycemic control is an important aspect of patient care in the surgical Infections of the nervous system are among the most difficult infections in terms of the morbidity and mortality posed to patients, and thereby require urgent and accurate diagnosis. Although viral meningitides are more common, it is the bacterial meningitides that have the potential to cause a rapidly deteriorating condition that the physician should be familiar with. Viral encephalitis frequently accompanies viral meningitis, and can produce focal neurologic findings and cognitive difficulties that can mimic other neurologic disorders. Brain abscesses also have the potential to mimic and present like other neurologic disorders, and cause more focal deficits. Finally, other infectious diseases of the central nervous system, such as prion disease and cavernous sinus thrombosis, are explored in this review. PMID:22837896

  11. Neuroprotective effects of Nigella sativa extracts during germination on central nervous system.

    PubMed

    Islam, Mohammad Hayatul; Ahmad, Iffat Zareen; Salman, Mohammad Tariq

    2015-05-01

    Nigella sativa Linn. which has many acclaimed medicinal properties is an indigenous herbaceous plant and belongs to the Ranunculaceae family, which grows in countries bordering the Mediterranean Sea, Pakistan and India. This study was designed to investigate the effects of N. sativa seed extracts of different germination phases on the central nervous system (CNS) responses in experimental animals. Anxiolytic, locomotor activity of extracts (1 g/kg of body weight) was evaluated in both stressed and unstressed animal models and antiepileptic effect was evaluated by maximal electroshock seizure model keeping diazepam (20 mg/kg) as a positive control. Antidepressant effect was evaluated by forced swim test and tail suspension test keeping imipramine (15 mg/kg) as a positive control. All tested extracts of N. sativa during different phases of germination (especially 5(th) day germination phase) showed significant (P < 0.001) anxiolytic effect in comparison to control. Diazepam reduced locomotor activity in control (unstressed) rats but did not show affect in stressed rats while N. sativa extracts from germination phases significantly (P < 0.001) reduced locomotor activity in unstressed as well as stressed animals. All the extracts of N. sativa from different germination phases exhibited significant (P < 0.001) reduction in various phases of epileptic seizure on comparison with the reference standard (diazepam). During antidepressant test, N. sativa extracts exhibited a slight reduction in the immobility of rats. During germination, especially in 5(th) day germination extract, N. sativa showed significant CNS depressant activity as compared to whole seeds that possibly may be due higher content of secondary metabolites produced during germination.

  12. Neuroprotective effects of Nigella sativa extracts during germination on central nervous system

    PubMed Central

    Islam, Mohammad Hayatul; Ahmad, Iffat Zareen; Salman, Mohammad Tariq

    2015-01-01

    Background: Nigella sativa Linn. which has many acclaimed medicinal properties is an indigenous herbaceous plant and belongs to the Ranunculaceae family, which grows in countries bordering the Mediterranean Sea, Pakistan and India. Objective: This study was designed to investigate the effects of N. sativa seed extracts of different germination phases on the central nervous system (CNS) responses in experimental animals. Materials and Methods: Anxiolytic, locomotor activity of extracts (1 g/kg of body weight) was evaluated in both stressed and unstressed animal models and antiepileptic effect was evaluated by maximal electroshock seizure model keeping diazepam (20 mg/kg) as a positive control. Antidepressant effect was evaluated by forced swim test and tail suspension test keeping imipramine (15 mg/kg) as a positive control. Results: All tested extracts of N. sativa during different phases of germination (especially 5th day germination phase) showed significant (P < 0.001) anxiolytic effect in comparison to control. Diazepam reduced locomotor activity in control (unstressed) rats but did not show affect in stressed rats while N. sativa extracts from germination phases significantly (P < 0.001) reduced locomotor activity in unstressed as well as stressed animals. All the extracts of N. sativa from different germination phases exhibited significant (P < 0.001) reduction in various phases of epileptic seizure on comparison with the reference standard (diazepam). During antidepressant test, N. sativa extracts exhibited a slight reduction in the immobility of rats. Conclusion: During germination, especially in 5th day germination extract, N. sativa showed significant CNS depressant activity as compared to whole seeds that possibly may be due higher content of secondary metabolites produced during germination. PMID:26109765

  13. Pleiotropic effect of histamine H4 receptor modulation in the central nervous system.

    PubMed

    Galeotti, Nicoletta; Sanna, Maria Domenica; Ghelardini, Carla

    2013-08-01

    The histamine H4 receptor (H4R) is expressed primarily on cells involved in inflammation and immune responses. Recently, it has been reported the functional expression of H4R within neurons of the central nervous system, but their role has been poorly understood. The present study aimed to elucidate the physiopathological role of cerebral H4R in animal models by the intracerebroventricular administration of the H4R agonist VUF 8430 (20-40 μg per mouse). Selectivity of results was confirmed by the prevention of the effects produced by the H4R antagonist JNJ 10191584 (3-9 mg/kg p.o.). Neuronal H4R activation induced acute thermal antinociception, indicating that neuronal histamine H4R might be involved in the production of antinociception in the absence of an inflammatory process. An anxiolytic-like effect of intensity comparable to that exerted by diazepam, used as reference drug, was produced in the light-dark box test. VUF 8430 reversed the scopolamine-induced amnesia in the passive avoidance test and showed anorexant activity in food deprived mice. Conversely, the H4R activation did not modify the immobility time in the tail suspension test. Rotarod performance test was employed to demonstrate that the effects observed following the administration of VUF 8430 and JNJ 10191584 were not due to impaired motor function of animals. Furthermore, both compounds did not alter spontaneous mobility and exploratory activity in the hole board test. These results show the antinociceptive, antiamnesic, anxiolytic and anorexant effects induced by neuronal H4R agonism, suggesting that H4 modulators may have broader utility further the control of inflammatory and immune processes.

  14. Effects of hypergravity exposure on the developing central nervous system: possible involvement of thyroid hormone

    NASA Technical Reports Server (NTRS)

    Sajdel-Sulkowska, E. M.; Li, G. H.; Ronca, A. E.; Baer, L. A.; Sulkowski, G. M.; Koibuchi, N.; Wade, C. E.

    2001-01-01

    The present study examined the effects of hypergravity exposure on the developing brain and specifically explored the possibility that these effects are mediated by altered thyroid status. Thirty-four timed-pregnant Sprague-Dawley rats were exposed to continuous centrifugation at 1.5 G (HG) from gestational Day 11 until one of three key developmental points: postnatal Day (P) 6, P15, or P21 (10 pups/dam: 5 males/5 females). During the 32-day centrifugation, stationary controls (SC, n = 25 dams) were housed in the same room as HG animals. Neonatal body, forebrain, and cerebellum mass and neonatal and maternal thyroid status were assessed at each time point. The body mass of centrifuged neonates was comparatively lower at each time point. The mass of the forebrain and the mass of the cerebellum were maximally reduced in hypergravity-exposed neonates at P6 by 15.9% and 25.6%, respectively. Analysis of neonatal plasma suggested a transient hypothyroid status, as indicated by increased thyroid stimulating hormone (TSH) level (38.6%) at P6, while maternal plasma TSH levels were maximally elevated at P15 (38.9%). Neither neonatal nor maternal plasma TH levels were altered, suggesting a moderate hypothyroid condition. Thus, continuous exposure of the developing rats to hypergravity during the embryonic and neonatal periods has a highly significant effect on the developing forebrain and cerebellum and neonatal thyroid status (P < 0.05, Bonferroni corrected). These data are consistent with the hypothesized role of the thyroid hormone in mediating the effect of hypergravity in the developing central nervous system and begin to define the role of TH in the overall response of the developing organism to altered gravity.

  15. Effects of chiral fragrances on human autonomic nervous system parameters and self-evaluation.

    PubMed

    Heuberger, E; Hongratanaworakit, T; Böhm, C; Weber, R; Buchbauer, G

    2001-03-01

    The effects of chiral fragrances (enantiomers of limonene and carvone) on the human autonomic nervous system (ANS) and on self-evaluation were studied in 20 healthy volunteers. Each fragrance was administered to each subject by inhalation using an A-A-B design. Individuals were tested in four separate sessions; in one session one fragrance was administered. ANS parameters recorded were skin temperature, skin conductance, breathing rate, pulse rate, blood oxygen saturation and systolic as well as diastolic blood pressure. Subjective experience was assessed in terms of mood, calmness and alertness on visual analog scales. In addition, fragrances were rated in terms of pleasantness, intensity and stimulating property. Inhalation of (+)-limonene led to increased systolic blood pressure, subjective alertness and restlessness. Inhalation of (-)-limonene caused an increase in systolic blood pressure but had no effects on psychological parameters. Inhalation of (-)-carvone caused increases in pulse rate, diastolic blood pressure and subjective restlessness. After inhalation of (+)-carvone increased levels of systolic as well as diastolic blood pressure were observed. Correlational analyses revealed that changes in both ANS parameters and self-evaluation were in part related to subjective evaluation of the odor and suggest that both pharmacological and psychological mechanisms are involved in the observed effects. In conclusion, the present study indicates that: (i) prolonged inhalation of fragrances influences ANS parameters as well as mental and emotional conditions; (ii) effects of fragrances are in part based on subjective evaluation of odor; (iii) chirality of odor molecules seems to be a central factor with respect to the biological activity of fragrances.

  16. Effects of hypergravity exposure on the developing central nervous system: possible involvement of thyroid hormone

    NASA Technical Reports Server (NTRS)

    Sajdel-Sulkowska, E. M.; Li, G. H.; Ronca, A. E.; Baer, L. A.; Sulkowski, G. M.; Koibuchi, N.; Wade, C. E.

    2001-01-01

    The present study examined the effects of hypergravity exposure on the developing brain and specifically explored the possibility that these effects are mediated by altered thyroid status. Thirty-four timed-pregnant Sprague-Dawley rats were exposed to continuous centrifugation at 1.5 G (HG) from gestational Day 11 until one of three key developmental points: postnatal Day (P) 6, P15, or P21 (10 pups/dam: 5 males/5 females). During the 32-day centrifugation, stationary controls (SC, n = 25 dams) were housed in the same room as HG animals. Neonatal body, forebrain, and cerebellum mass and neonatal and maternal thyroid status were assessed at each time point. The body mass of centrifuged neonates was comparatively lower at each time point. The mass of the forebrain and the mass of the cerebellum were maximally reduced in hypergravity-exposed neonates at P6 by 15.9% and 25.6%, respectively. Analysis of neonatal plasma suggested a transient hypothyroid status, as indicated by increased thyroid stimulating hormone (TSH) level (38.6%) at P6, while maternal plasma TSH levels were maximally elevated at P15 (38.9%). Neither neonatal nor maternal plasma TH levels were altered, suggesting a moderate hypothyroid condition. Thus, continuous exposure of the developing rats to hypergravity during the embryonic and neonatal periods has a highly significant effect on the developing forebrain and cerebellum and neonatal thyroid status (P < 0.05, Bonferroni corrected). These data are consistent with the hypothesized role of the thyroid hormone in mediating the effect of hypergravity in the developing central nervous system and begin to define the role of TH in the overall response of the developing organism to altered gravity.

  17. Use of pupil size to determine the effect of electromagnetic acupuncture on activation level of the autonomic nervous system.

    PubMed

    Kim, Soo-Byeong; Choi, Woo-Hyuk; Liu, Wen-Xue; Lee, Na-Ra; Shin, Tae-Min; Lee, Yong-Heum

    2014-06-01

    Magnetic fields are widely considered as a method of treatment to increase the therapeutic effect when applied to acupoints. Hence, this study proposes a new method which creates significant stimulation of acupoints by using weak magnetic fields. We conducted this experiment in order to confirm the effect on the activation level of the autonomic nervous system by measuring pupil sizes in cases of stimulation by using manual acupuncture and electromagnetic acupuncture (EMA) at BL15. We selected 30 Hz of biphasic wave form with 570.1 Gauss. To confirm the biopotential by the magnetic flux density occurring in EMA that affected the activation of the autonomic nervous system, we observed the biopotential induced at the upper and the mid left and right trapezius. We observed a significant decrease in pupil size only in the EMA group (p < 0.05), thus confirming that EMA decreased the pupil size through activation of the parasympathetic nerve in the autonomic nervous system. Moreover, we confirmed that the amplitude of the biopotential which was caused by 570.1 Gauss was higher than ±20 μA. Thus, we can conclude that EMA treatment successfully activates the parasympathetic nerve in the autonomic nervous system by inducing a biotransformation by the induced biopotential. Copyright © 2014. Published by Elsevier B.V.

  18. Effects of gender and game type on autonomic nervous system physiological parameters in long-hour online game players.

    PubMed

    Lin, Tung-Cheng

    2013-11-01

    Online game playing may induce physiological effects. However, the physical mechanisms that cause these effects remain unclear. The purpose of this study was to examine the physiological effects of long-hour online gaming from an autonomic nervous system (ANS) perspective. Heart rate variability (HRV), a valid and noninvasive electrocardiographic method widely used to investigate ANS balance, was used to measure physiological effect parameters. This study used a five-time, repeated measures, mixed factorial design. Results found that playing violent games causes significantly higher sympathetic activity and diastolic blood pressure than playing nonviolent games. Long-hour online game playing resulted in the gradual dominance of the parasympathetic nervous system due to physical exhaustion. Gaming workload was found to modulate the gender effects, with males registering significantly higher sympathetic activity and females significantly higher parasympathetic activity in the higher gaming workload group.

  19. Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease.

    PubMed

    Wang, Yan; Xiong, Lilin; Tang, Meng

    2017-03-16

    Particulate matter (PM) combined with meteorological factors cause the haze, which brings inconvenience to people's daily life and deeply endanger people's health. Accumulating literature, to date, reported that PM are closely related to cardiopulmonary disease. Outpatient visits and admissions as a result of asthma and heart attacks gradually increase with an elevated concentration of PM. Owing to its special physicochemical property, the brain could be a potential target beyond the cardiopulmonary system. Possible routes of PM to the brain via a direct route or stimulation of pro-inflammatory cytokines have been reported in several documents concerning toxicity of engineered nanoparticles in rodents. Recent studies have demonstrated that PM have implications in oxidative stress, inflammation, dysfunction of cellular organelles, as well as the disturbance of protein homeostasis, promoting neuron loss and exaggerating the burden of central nervous system (CNS). Moreover, the smallest particles (nano-sized particles), which were involved in inflammation, reactive oxygen species (ROS), microglial activation and neuron loss, may accelerate the process of the neurodevelopmental disorder and neurodegenerative disease. Potential or other undiscovered mechanisms are not mutually exclusive but complementary aspects of each other. Epidemiology studies have shown that exposure to PM could bring about neurotoxicity and play a significant role in the etiology of CNS disease, which has been gradually corroborated by in vivo and in vitro studies. This review highlights research advances on the health effects of PM with an emphasis on neurotoxicity. With the hope of enhancing awareness in the public and calling for prevention and protective measures, it is a critical topic that requires proceeding exploration. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Effects of adenosine metabolism in astrocytes on central nervous system oxygen toxicity.

    PubMed

    Chen, Yu-liang; Zhang, Ya-nan; Wang, Zhong-zhuang; Xu, Wei-gang; Li, Run-ping; Zhang, Jun-dong

    2016-03-15

    Hyperbaric oxygen (HBO) is widely used in military operations, especially underwater missions. However, prolonged and continuous inhalation of HBO can cause central nervous system oxygen toxicity (CNS-OT), which greatly limits HBO's application. The regulation of astrocytes to the metabolism of adenosine is involved in epilepsy. In our study, we aimed to observe the effects of HBO exposure on the metabolism of adenosine in the brain. Furthermore, we aimed to confirm the possible mechanism underlying adenosine's mediation of the CNS-OT. Firstly, anesthetized rats exposed to 5 atm absolute HBO for 80 min. The concentrations of extracellular adenosine, ATP, ADP, and AMP were detected. Secondly, free-moving rats were exposed to HBO at the same pressure for 20 min, and the activities of 5'-nucleotidase and ADK in brain tissues were measured. For the mechanism studies, we observed the effects of a series of different doses of drugs related to adenosine metabolism on the latency of CNS-OT. Results showed HBO exposure could increase adenosine content by inhibiting ADK activity and improving 5'-nucleotidase activity. And adenosine metabolism during HBO exposure may be a protective response against HBO-induced CNS-OT. Moreover, the improvement of adenosine concentration, activation of adenosine A1R, or suppression of ADK and adenosine A2AR, which are involved in the prevention of HBO-induced CNS-OT. This is the first study to demonstrate HBO exposure regulated adenosine metabolism in the brain. Adenosine metabolism and adenosine receptors are related to HBO-induced CNS-OT development. These results will provide new potential targets for the termination or the attenuation of CNS-OT.

  1. The Nervous System and Gastrointestinal Function

    ERIC Educational Resources Information Center

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  2. The Nervous System and Gastrointestinal Function

    ERIC Educational Resources Information Center

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  3. The effects of desflurane on the nervous system: from spinal cord to muscles.

    PubMed

    Péréon, Y; Bernard, J M; Nguyen The Tich, S; Genet, R; Petitfaux, F; Guihéneuc, P

    1999-08-01

    Monitoring of motor pathways via muscle contraction recording is sensitive to anesthetics, particularly volatile anesthetics. However, the specific action sites of these anesthetics on the spinal cord and the peripheral nervous system are not well known in humans. Therefore, we studied proximal and distal motor and sensory nerve conduction, neuromuscular junction transmission, and spinal cord excitability (H/M amplitude ratio and F-wave amplitude and persistency) using standard neurophysiological techniques in 10 patients who underwent orthopedic surgery. Muscle potentials evoked by spinal cord stimulation were recorded in five additional patients. Desflurane was introduced to achieve end-tidal concentration of 3.7% and 7.4%, in 50% O2/N2O and in 100% O2. Measurements were obtained before desflurane administration and 20 min after obtaining a stable level of each concentration. Peripheral nerve conduction and neuromuscular function were not significantly affected by desflurane. However, spinal cord excitability was significantly decreased by desflurane administration (H/M ratio 37% +/- 9%, 12% +/- 5%, 7% +/- 4% at desflurane concentration 0.0%, 3.7%, and 7.4% in 100% O2, respectively). Muscle potentials evoked by spinal cord stimulation were abolished by desflurane. These data rule out the possibility that desflurane specifically alters peripheral nerve conduction or synapse transmission at the neuromuscular junction. They demonstrate that desflurane acts preferentially at the level of the spinal motoneuron. We used neurophysiological techniques to assess the effects of desflurane on spinal cord conduction and excitability, motor and sensory peripheral nerve conduction, and neuromuscular transmission. Our data demonstrate that desflurane acts preferentially at the level of the spinal motoneuron, providing useful information for neurophysiological monitoring and immobilization during surgery and for minimum alveolar anesthetic concentration definition.

  4. Evaluation of the Effectiveness of Compression Garments on Autonomic Nervous System Recovery After Exercise.

    PubMed

    Piras, Alessandro; Gatta, Giorgio

    2017-06-01

    The aim of this investigation was to evaluate the recovery pattern of a whole-body compression garment on hemodynamic parameters and on autonomic nervous system (ANS) activity after a swimming performance. Ten young male athletes were recruited and tested in 2 different days, with and without wearing the garment during the recovery phase. After a warm-up of 15 minutes, athletes were instructed to perform a maximal 400-m freestyle swimming event, and then time series of beat-to-beat intervals for heart rate variability (HRV), baroreflex sensitivity (BRS), and hemodynamic parameters were recorded for 90 minutes of recovery. The vagally mediated high frequency (HF) power of R-R intervals, NN50, and pNN50 showed a faster recovery due to the costume; meanwhile, the low frequency (LF) spectral component of HRV (LFRR) index of sympathetic modulation of the heart and the LF:HF ratio and BRS alpha index (αLF) were augmented in control than in garment condition. When athletes wore the swimsuit, cardiac output was increased and the returning of the blood to the heart, investigated as stroke volume, was kept constant because of the reduction of the total peripheral resistances. During control condition, heart rate (HR) was restored back to baseline value 20 minutes later with respect to garment condition, confirming that the swimsuit recover faster. The effectiveness of the swimsuit on ANS activity after a maximal aerobic performance has been shown with a greater recovery in terms of HRV and hemodynamic parameters. Baroreflex sensitivity was reduced in both conditions, maybe due to prolonged vasodilatation that may have also influenced the postexercise hypotension.

  5. Electrophysiological studies of the nervous system

    NASA Technical Reports Server (NTRS)

    Galambos, R.

    1972-01-01

    The electrophysiology of the nervous system is studied using cats and human subjects. Data cover effects of chlorolose on evoked potential, the evoked resistance shift that accompanies evoked potentials, and the relationship of eye movements to potentials aroused by visual stimulation.

  6. [The effects of protein-energy malnutrition on the central nervous system in children].

    PubMed

    Cornelio-Nieto, J O

    2007-03-02

    Protein-energy malnutrition continues to affect millions of human beings in developing countries. Children suffer most from the shortage of nutrients because at early ages malnutrition has an important impact on the central nervous system. The changes that malnutrition triggers in the brains of these children will have severe consequences on their development and learning abilities. Reports of important alterations in the head circumference and brain growth of malnourished children have been published in the literature, together with accounts of changes in both the dendritic arborisation and the morphology of the dendritic spines, as well as in myelination. Computerised tomography brain scans and magnetic resonance imaging in children suffering from malnutrition show images that are compatible with cerebral atrophy. The lack of environmental stimulation associated with malnutrition worsens the damage to the central nervous system. All the alterations that are observed in such cases give rise to important compromise of the child's higher brain functions, which may well lead to permanent neuropsychological damage. Protein-energy malnutrition produces notable morphological changes in the brains of children in the developing world. These changes damage the intellectual potential of those who survive and limit their capacity to become part of the competitive world. Paediatric neurologists working in these areas of the world must make greater efforts to disseminate this problem and to make public institutions aware of the issue so that they do not desist in the fight against child malnutrition.

  7. Effect of sympathetic nervous system activation on the tonic vibration reflex in rabbit jaw closing muscles.

    PubMed Central

    Grassi, C; Deriu, F; Passatore, M

    1993-01-01

    the afferent input from those receptors, potentially affected by CSN stimulation, which can elicit either a jaw opening reflex or a decrease in the activity of the jaw elevator muscle motoneurons. 6. These data suggest that, when the sympathetic nervous system is activated under physiological conditions, there is a marked depression of the stretch reflex which is independent of vasomotor changes and is probably due to a decrease in sensitivity of muscle spindle afferents. PMID:8271218

  8. Effect of a botanical composition, UP446, on respiratory, cardiovascular and central nervous systems in beagle dogs and rats.

    PubMed

    Yimam, Mesfin; Lee, Young Chul; Jia, Qi

    2016-06-01

    Extensive safety evaluation of UP446, a botanical composition comprised of standardized extracts from roots of Scutellaria baicalensis and heartwoods of Acacia catechu, has been reported previously. Here we carried out additional studies to assess the effect of UP446 on respiratory, cardiovascular and central nervous (CNS) systems. A Functional observational battery (FOB) and whole body plethysmography system in rats and implanted telemetry in dogs were utilized to evaluate the potential CNS, respiratory and cardiovascular toxicity, respectively. UP446 was administered orally at dose levels of 800, 2000 and 5000 mg/kg to SpragueDawley rats and at 4 ascending dose levels (0, 250, 500 and 1000 mg/kg) to beagle dogs. No abnormal effects were observed on the cage side, open field, hand held, and sensori-motor observations suggestive of toxicity in respiratory, cardiovascular and central nervous (CNS) systems. Rectal temperatures were comparable for each treatment groups. Similarly, respiratory rate, tidal volume and minute volume were unaffected by any of the treatment groups. No UP446 related changes were observed on blood pressure, heart rate and electrocardiogram in beagle dogs at dose levels of 250, 500 and 1000 mg/kg. Some minor incidental, non-dose correlated changes were observed in the FOB assessment. These data suggest that UP446 has minimal or no pharmaco-toxicological effect on the respiratory, cardiovascular and central nervous systems.

  9. NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.

    2013-01-01

    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential

  10. Enhancement of the white matter following prophylactic therapy of the central nervous system for leukemia: radiation effects and methotrexate leukoencephalopathy

    SciTech Connect

    Shalen, P.R.; Ostrow, P.T.; Glass, P.J.

    1981-08-01

    The authors report a case of fatal necrotizing leukoencephalopathy following prophylactic therapy of the central nervous system for acute lymphoblastic leukemia. The clinical, CT, and neuropathological findings are described. The CT scan demonstrated symmetrical white-matter enhancement. Histological analysis was consistent with the effects of irradiation and methotrexate. The differential diagnosis of the clinical and CT findings is discussed. Brain biopsy is the diagnostic procedure of choice.

  11. [Neuropeptide Y and autonomic nervous system].

    PubMed

    Nozdrachev, A D; Masliukov, P M

    2011-01-01

    Neuropeptide Y (NPY) containing 36 amino acid residues belongs to peptides widely spread in the central and peripheral nervous system. NPY and its receptors play an extremely diverse role in the nervous system, including regulation of satiety, of emotional state, of vascular tone, and of gastrointestinal secretion. In mammals, NPY has been revealed in the majority of sympathetic ganglion neurons, in a high number of neurons of parasympathetic cranial ganglia as well as of intramural ganglia of the metasympathetic nervous system. At present, six types of receptors to NPY (Y1-Y6) have been identified. All receptors to NPY belong to the family of G-bound proteins. Action of NPY on peripheral organs-targets is predominantly realized through postsynaptic receptors Y1, Y3-Y5, and presynaptic receptors of the Y2 type. NPY is present in large electron-dense vesicles and is released at high-frequency stimulation. NPY affects not only vascular tone, frequency and strength of heart contractions, motorics and secretion of the gastrointestinal tract, but also has trophic effect and produces proliferation of cells of organs-targets, specifically of vessels, myocardium, and adipose tissue. In early postnatal ontogenesis the percent of the NPY-containing neurons in ganglia of the autonomic nervous system increases. In adult organisms, this parameter decreases. This seems to be connected with the trophic NPY effect on cells-targets as well as with regulation of their functional state.

  12. Gene-Chemical Interactions in the Developing Mammalian Nervous System: Effects on Proliferation, Neurogenesis and Differentiation

    PubMed Central

    Fox, Donald A.; Opanashuk, Lisa; Zharkovsky, Aleksander; Weiss, Bernie

    2010-01-01

    The orderly formation of the nervous system requires a multitude of complex, integrated and simultaneously occurring processes. Neural progenitor cells expand through proliferation, commit to different cell fates, exit the cell cycle, generate different neuronal and glial cell types, and new neurons migrate to specified areas and establish synaptic connections. Gestational and perinatal exposure to environmental toxicants, pharmacological agents and drugs of abuse produce immediate, persistent or late-onset alterations in behavioral, cognitive, sensory and/or motor functions. These alterations reflect the disruption of the underlying processes of CNS formation and development. To determine the neurotoxic mechanisms that underlie these deficits it is necessary to analyze and dissect the complex molecular processes that occur during the proliferation, neurogenesis and differentiation of cells. This symposium will provide a framework for understanding the orchestrated events of neurogenesis, the coordination of proliferation and cell fate specification by selected genes, and the effects of well-known neurotoxicants on neurogenesis in the retina, hippocampus and cerebellum. These three tissues share common developmental profiles, mediate diverse neuronal activities and function, and thus provide important substrates for analysis. This paper summarizes four invited talks that were presented at the 12th International Neurotoxicology Association meeting held in Jerusalem, Israel during the summer of 2009. Donald A. Fox described the structural and functional alterations following low-level gestational lead exposure in children and rodents that produced a supernormal electroretinogram and selective increases in neurogenesis and cell proliferation of late-born retinal neurons (rod photoreceptors and bipolar cells), but not Müller glia cells, in mice. Lisa Opanashuk discussed how dioxin [TCDD] binding to the arylhydrocarbon receptor [AhR], a transcription factor that

  13. Effect of 100 Hz electroacupuncture on salivary immunoglobulin A and the autonomic nervous system

    PubMed Central

    Hideaki, Waki; Tatsuya, Hisajima; Shogo, Miyazaki; Naruto, Yoshida; Hideaki, Tamai; Yoichi, Minakawa; Yoshihiro, Okuma; Kazuo, Uebaba; Hidenori, Takahashi

    2015-01-01

    Background A previous study has reported that low-frequency (LF) electroacupuncture (EA) influences salivary secretory immunoglobulin A (sIgA) and the autonomic nervous system (ANS). The ANS is known to control the secretion volume of sIgA; however, the effect of high-frequency (HF) EA on salivary sIgA has not been determined. We investigated whether HF EA affects salivary sIgA levels and the ANS. Method Sixteen healthy subjects were randomly classified into two groups: a control group and an EA group. After a 5 min rest, subjects in the EA group received EA at 100 Hz bilaterally at LI4 and LI11 for 15 min before resting for a further 40 min post-stimulation. Subjects in the control group rested for a total of 60 min. Measurements of the ANS and sIgA levels in both groups were made before, immediately after, 20 min after, and 40 min after rest or 15 min EA treatment. HF and LF components of heart rate variability were analysed as markers of ANS function. LF/HF ratio and HF were taken as indices of sympathetic and parasympathetic nerve activity, respectively. Salivary protein concentrations and sIgA levels were determined by Bradford protein assay and ELISA, respectively. Results LF/HF ratio was significantly increased immediately after EA. HF was significantly increased at 20 min after EA and sIgA level was significantly increased at 40 min after EA. In addition, HF and salivary sIgA level were positively correlated with each another. Conclusions HF EA exerted sequential positive effects on sympathetic nerve activity, parasympathetic nerve activity, and salivary sIgA level (immediately and after 20 and 40 min, respectively). HF EA may increase salivary sIgA levels by influencing parasympathetic nerve activity. PMID:26449884

  14. Effect of 100 Hz electroacupuncture on salivary immunoglobulin A and the autonomic nervous system.

    PubMed

    Hideaki, Waki; Tatsuya, Hisajima; Shogo, Miyazaki; Naruto, Yoshida; Hideaki, Tamai; Yoichi, Minakawa; Yoshihiro, Okuma; Kazuo, Uebaba; Hidenori, Takahashi

    2015-12-01

    A previous study has reported that low-frequency (LF) electroacupuncture (EA) influences salivary secretory immunoglobulin A (sIgA) and the autonomic nervous system (ANS). The ANS is known to control the secretion volume of sIgA; however, the effect of high-frequency (HF) EA on salivary sIgA has not been determined. We investigated whether HF EA affects salivary sIgA levels and the ANS. Sixteen healthy subjects were randomly classified into two groups: a control group and an EA group. After a 5 min rest, subjects in the EA group received EA at 100 Hz bilaterally at LI4 and LI11 for 15 min before resting for a further 40 min post-stimulation. Subjects in the control group rested for a total of 60 min. Measurements of the ANS and sIgA levels in both groups were made before, immediately after, 20 min after, and 40 min after rest or 15 min EA treatment. HF and LF components of heart rate variability were analysed as markers of ANS function. LF/HF ratio and HF were taken as indices of sympathetic and parasympathetic nerve activity, respectively. Salivary protein concentrations and sIgA levels were determined by Bradford protein assay and ELISA, respectively. LF/HF ratio was significantly increased immediately after EA. HF was significantly increased at 20 min after EA and sIgA level was significantly increased at 40 min after EA. In addition, HF and salivary sIgA level were positively correlated with each another. HF EA exerted sequential positive effects on sympathetic nerve activity, parasympathetic nerve activity, and salivary sIgA level (immediately and after 20 and 40 min, respectively). HF EA may increase salivary sIgA levels by influencing parasympathetic nerve activity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Detrimental effect of deltamethrin on the central nervous system (synganglion) of Rhipicephalus sanguineus ticks.

    PubMed

    Pereira, Melissa Carolina; Gasparotto, Ana Elisa; Jurgilas, Juliana Paneczko; da Silva, Letícia Aurora Coelho; Pereira, Mayara Cristina; Silveira, Samantha Santos; Silva, Thays Neigri; Arnosti, André; Camargo-Mathias, Maria Izabel

    2017-02-01

    Ticks are ectoparasites of medical and veterinary importance, which transmit many infectious agents, causing significant damage to the hosts. The "dog tick" Rhipicephalus sanguineus is responsible for transmitting several pathogens to dogs, motivating researchers to investigate efficient and sustainable control methods. Currently, chemical acaricides currently in use target the central nervous system (synganglion), which is responsible for controlling all the systemic functions of the ticks. Here, the neurotoxic potential of deltamethrin on the synganglion of unfed R. sanguineus female ticks was investigated. The results showed that the synganglion of the females belonging to the control group presented intact morphological characteristics; however, the ones from the treatment group (exposed to 1.5, 3.12 and 6.25 ppm of deltamethrin) displayed alterations, which were increasingly intense as the concentration increased. Observed alterations were mainly in the cortex region and in the neuropile, indicating that the deltamethrin is neurotoxic.

  16. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

    PubMed Central

    Fernandes Azevedo, Bruna; Barros Furieri, Lorena; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra; Frizera Vassallo, Paula; Ronacher Simões, Maylla; Fiorim, Jonaina; Rossi de Batista, Priscila; Fioresi, Mirian; Rossoni, Luciana; Stefanon, Ivanita; Alonso, María Jesus; Salaices, Mercedes; Valentim Vassallo, Dalton

    2012-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced. PMID:22811600

  17. Aquaporin Biology and Nervous System

    PubMed Central

    Barbara, Buffoli

    2010-01-01

    Our understanding of the movement of water through cell membranes has been greatly advanced by the discovery of a family of water-specific, membrane-channel proteins: the Aquaporins (AQPs). These proteins are present in organisms at all levels of life, and their unique permeability characteristics and distribution in numerous tissues indicate diverse roles in the regulation of water homeostasis. Phenotype analysis of AQP knock-out mice has confirmed the predicted role of AQPs in osmotically driven transepithelial fluid transport, as occurs in the urinary concentrating mechanism and glandular fluid secretion. Regarding their expression in nervous system, there are evidences suggesting that AQPs are differentially expressed in the peripheral versus central nervous system and that channel-mediated water transport mechanisms may be involved in cerebrospinal fluid formation, neuronal signal transduction and information processing. Moreover, a number of recent studies have revealed the importance of mammalian AQPs in both physiological and pathophysiological mechanisms and have suggested that pharmacological modulation of AQP expression and activity may provide new tools for the treatment of variety of human disorders in which water and small solute transport may be involved. For all the AQPs, new contributions to physiological functions are likely to be discovered with ongoing work in this rapidly expanding field of research. PMID:21119880

  18. Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds, and burns

    SciTech Connect

    Rochkind, S.; Rousso, M.; Nissan, M.; Villarreal, M.; Barr-Nea, L.; Rees, D.G.

    1989-01-01

    In this paper, we direct attention to the systemic effect of low-power helium-neon (HeNe) laser irradiation on the recovery of the injured peripheral and central nervous system, as well as healing of cutaneous wounds and burns. Laser irradiation on only the right side in bilaterally inflicted cutaneous wounds enhanced recovery in both sides compared to the nonirradiated control group (P less than .01). Similar results were obtained in bilateral burns: irradiating one of the burned sites also caused accelerated healing in the nonirradiated site (P less than .01). However, in the nonirradiated control group, all rats suffered advanced necrosis of the feet and bilateral gangrene. Low-power HeNe laser irradiation applied to a crushed injured sciatic nerve in the right leg in a bilaterally inflicted crush injury, significantly increased the compound action potential in the left nonirradiated leg as well. The statistical analysis shows a highly significant difference between the laser-treated group and the control nonirradiated group (P less than .001). Finally, the systemic effect was found in the spinal cord segments corresponding to the crushed sciatic nerves. The bilateral retrograde degeneration of the motor neurons of the spinal cord expected after the bilateral crush injury of the peripheral nerves was greatly reduced in the laser treated group. The systemic effects reported here are relevant in terms of the clinical application of low-power laser irradiation as well as for basic research into the possible mechanisms involved.

  19. Lycopersicon esculentum lectin: an effective and versatile endothelial marker of normal and tumoral blood vessels in the central nervous system.

    PubMed

    Mazzetti, S; Frigerio, S; Gelati, M; Salmaggi, A; Vitellaro-Zuccarello, L

    2004-01-01

    The binding of Lycopersicon esculentum lectin (LEA) to the vascular endothelium was studied in the central nervous system of rat, mouse and guinea pig at different developmental ages, and in a gliosarcoma model. Our observations showed that LEA consistently stained the entire vascular tree in the spinal cord and in the brain of all animal species at all developmental ages investigated. In the tumor model, the staining of the vascular network was very reproducible, enabled an easy identification of vascular profiles and displayed a higher efficiency when compared to two other commonly used vascular marker (EHS laminin and PECAM-1). Moreover, our results showed that LEA staining was comparable in both vibratome and paraffin sections and could be easily combined with other markers in double labeling experiments. These observations indicate that LEA staining may represent an effective and versatile endothelial marker for the study of the vasculature of the central nervous system in different animal species and experimental conditions.

  20. Proposal of a dose-response relationship between aluminium welding fume exposure and effect on the central nervous system.

    PubMed

    Sjögren, B; Elinder, C G

    1992-01-01

    Exposure to high levels of aluminium can affect the human central nervous system. Abnormalities of psychomotor function have been observed among haemodialysis patients with mean aluminium concentrations in serum of about 60 micrograms/l. According to our own data this corresponds to a urinary level of about 330 micrograms Al/l in aluminium-exposed welders without kidney failure. This post-shift urinary level of aluminium is estimated to be attained after 40 years of exposure to a welding fumes at an environmental concentration of approximately 1.6 mg/m3 of aluminium. An increased prevalence of effects on the nervous system was observed among welders exposed to aluminium fumes for more than 13 years. This finding supports the concept of cumulative toxicity due to aluminium exposure. On the basis of these observation, we suggest that the level of aluminium in welding fumes should not exceed 1 mg/m3.

  1. The nervous system effects of occupational exposure on workers in a South African manganese smelter.

    PubMed

    Myers, Jonathan E; Thompson, Mary Lou; Ramushu, Suzan; Young, Taryn; Jeebhay, Mohamed F; London, Leslie; Esswein, Eric; Renton, Kevin; Spies, Adri; Boulle, Andrew; Naik, Inakshi; Iregren, Anders; Rees, David J

    2003-12-01

    Five hundred and nine production workers at a manganese (Mn) smelting works comprising eight production facilities and 67 external controls were studied cross-sectionally for Mn related neuroehavioural effects. Exposure measures from personal sampling included Mn in inhalable dust as cumulative exposure indices (CEI) and average intensity (INT). Biological exposure and biological effect measures included blood (MnB), urine (MnU) manganese and serum prolactin. Endpoints included items from the Swedish nervous system questionnaire (Q16), World Health Organisation neurobehavioural core test battery (WHO NCTB), Swedish performance evaluation system (SPES), Luria-Nebraska (LN), and Danish product development (DPD) test batteries, and a brief clinical examination. Potential confounders and effect modifiers included age, educational level, alcohol and tobacco consumption, neurotoxic exposures in previous work, past medical history, previous head injury and home language. Associations were evaluated by multiple linear and logistic regression modelling. Modelling assumptions were tested. Average exposure intensity across all jobs ranged from near 0 (0.06 microg/m3) for external controls to 5.08 mg/m3 for inhalable Mn, and was greater than the ACGIH TLV for 69% of subjects. Results from the large number of tests performed resolved into three groups. Group 1 shows differences between external unexposed referents and all the exposed and/or differences between internal low exposed referents and the rest of the exposed but no further exposure-response relationships. It includes the Santa Ana, Benton and digit-span tests from the WHO NCTB; the hand tapping and endurance tapping tests from the SPES; Luria-Nebraska item 2L; questionnaire items tired, depressed, irritated, having to take notes in order to remember things, and subjects' perception that they had sex less often than normal; a test of clinical abnormality; and increased sway under two conditions (eyes open without foot

  2. Role of Lead in the Central Nervous System: Effect on Electroencephlography, Evoked Potentials, Electroretinography, and Nerve Conduction.

    PubMed

    Sindhu, Kunal K; Sutherling, William W

    2015-06-01

    The toxic effects of lead on the brain are well known, but its effects on EEG and evoked potentials (EPs) are not generally known in the neurodiagnostic community. Despite public health efforts, lead is still widely present at low levels in the environment. Even at low concentrations, lead is known to cause biochemical and physiological dysfunction. The present article reviews the effects of lead exposure on the central nervous system, with a special emphasis on the developing brain. Additionally, it describes the effects of lead on EEG, EPs, electroretinography, and nerve conduction studies.

  3. What Are the Parts of the Nervous System?

    MedlinePlus

    ... and Publications What are the parts of the nervous system? Skip sharing on social media links Share this: ... the central nervous system and the peripheral nervous system: The central nervous system is made up of the brain and ...

  4. Influence of thyroid in nervous system growth.

    PubMed

    Mussa, G C; Mussa, F; Bretto, R; Zambelli, M C; Silvestro, L

    2001-08-01

    are nervous cell specific, genes coding neurotropins or proteins involved in synaptic excitation. The use of new PMRS and MRI non-invasive techniques has enabled identification of metabolic and biochemical markers for alterations in the encephalon of untreated hypothyroid children. Even an excess of thyroid hormones during early nervous system development can cause permanent effects. Hyperthyroidism in fact initially induces accelerated maturation process including cell migration and differentiation, extension of dendritic processes and synaptogenesis but a later excess of thyroid hormones causes reduction of the total number of dendritic spikes, due to early interruption of neuron proliferation. Experimental studies and clinical research have clarified not only the correlation between nervous system maturation and thyroid function during early development stages and the certain finding from this research is that both excess and deficient thyroid hormones can cause permanent anatomo-functional alterations to the nervous system.

  5. Autonomic nervous system and immune system interactions.

    PubMed

    Kenney, M J; Ganta, C K

    2014-07-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease

  6. Autonomic Nervous System and Immune System Interactions

    PubMed Central

    Kenney, MJ; Ganta, CK

    2015-01-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease development

  7. Building a scientific framework for studying hormonal effects on behavior and on the development of the sexually dimorphic nervous system.

    PubMed

    Li, Abby A; Baum, Michael J; McIntosh, Laura J; Day, Mark; Liu, Feng; Gray, L Earl

    2008-05-01

    There has been increasing concern that low-dose exposure to hormonally active chemicals disrupts sexual differentiation of the brain and peripheral nervous system. There also has been active drug development research on the therapeutic potential of hormone therapy on behaviors. These different research goals have in common the need to develop reliable animal models to study the effect of hormones on brain function and behaviors that are predictive of effects in humans. This paper summarizes presentations given at the June 2007 11th International Neurotoxicology Association (INA-11) meeting, which addressed these issues. Using a few examples from the bisphenol A neurobehavioral literature for illustrative purposes, Dr. Abby Li discussed some of the methodological issues that should be considered in designing developmental neurobehavioral animal studies so they can be useful for human health risk assessment. Dr. Earl Gray provided an overview of research on the role of androgens and estrogens in the development of the brain and peripheral nervous system and behavior. Based on this scientific foundation, Dr. Gray proposed a rational framework for the study of the effects of developmental exposures to chemicals on the organization of the sexually dimorphic nervous system, including specific recommendations for experimental design and statistical analyses that can increase the utility of the research for regulatory decision-making. Dr. Michael Baum and by Dr. Feng Liu presented basic research on the hormonal mechanisms underlying sexual preference and estrogenic effects of cognition, respectively. These behaviors are among those studied in adult animals following in utero exposure to hormonally active chemicals, to evaluate their potential effects on sexual differentiation of the brain. Understanding of the hormonal mechanisms of these behaviors, and of relevance to humans, is needed to develop biologically plausible hypotheses regarding the potential effects of

  8. Regeneration in the nervous system with erythropoietin

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system. PMID:26549969

  9. Regeneration in the nervous system with erythropoietin.

    PubMed

    Maiese, Kenneth

    2016-01-01

    Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system.

  10. Effects of a Passive Online Software Application on Heart Rate Variability and Autonomic Nervous System Balance

    PubMed Central

    2017-01-01

    Abstract Objective: This study investigated whether short-term exposure to a passive online software application of purported subtle energy technology would affect heart rate variability (HRV) and associated autonomic nervous system measures. Methods: This was a randomized, double-blinded, sham-controlled clinical trial (RCT). The study took place in a nonprofit laboratory in Emeryville, California. Twenty healthy, nonsmoking subjects (16 females), aged 40–75 years, participated. Quantum Code Technology™ (QCT), a purported subtle energy technology, was delivered through a passive software application (Heart+ App) on a smartphone placed <1 m from subjects who were seated and reading a catalog. HRV was measured for 5 min in triplicate for each condition via finger plethysmography using a Food and Drug Administration medically approved HRV measurement device. Measurements were made at baseline and 35 min following exposure to the software applications. The following parameters were calculated and analyzed: heart rate, total power, standard deviation node-to-node, root mean square sequential difference, low frequency to high frequency ratio (LF/HF), low frequency (LF), and high frequency (HF). Results: Paired samples t-tests showed that for the Heart+ App, mean LF/HF decreased (p = 9.5 × 10–4), while mean LF decreased in a trend (p = 0.06), indicating reduced sympathetic dominance. Root mean square sequential difference increased for the Heart+ App, showing a possible trend (p = 0.09). Post–pre differences in LF/HF for sham compared with the Heart+ App were also significant (p < 0.008) by independent t-test, indicating clinical relevance. Conclusions: Significant beneficial changes in mean LF/HF, along with possible trends in mean LF and root mean square sequential difference, were observed in subjects following 35 min exposure to the Heart+ App that was working in the background on an active smartphone untouched by the subjects

  11. Effects of a Passive Online Software Application on Heart Rate Variability and Autonomic Nervous System Balance.

    PubMed

    Rubik, Beverly

    2017-01-01

    This study investigated whether short-term exposure to a passive online software application of purported subtle energy technology would affect heart rate variability (HRV) and associated autonomic nervous system measures. This was a randomized, double-blinded, sham-controlled clinical trial (RCT). The study took place in a nonprofit laboratory in Emeryville, California. Twenty healthy, nonsmoking subjects (16 females), aged 40-75 years, participated. Quantum Code Technology(™) (QCT), a purported subtle energy technology, was delivered through a passive software application (Heart+ App) on a smartphone placed <1 m from subjects who were seated and reading a catalog. HRV was measured for 5 min in triplicate for each condition via finger plethysmography using a Food and Drug Administration medically approved HRV measurement device. Measurements were made at baseline and 35 min following exposure to the software applications. The following parameters were calculated and analyzed: heart rate, total power, standard deviation node-to-node, root mean square sequential difference, low frequency to high frequency ratio (LF/HF), low frequency (LF), and high frequency (HF). Paired samples t-tests showed that for the Heart+ App, mean LF/HF decreased (p = 9.5 × 10(-4)), while mean LF decreased in a trend (p = 0.06), indicating reduced sympathetic dominance. Root mean square sequential difference increased for the Heart+ App, showing a possible trend (p = 0.09). Post-pre differences in LF/HF for sham compared with the Heart+ App were also significant (p < 0.008) by independent t-test, indicating clinical relevance. Significant beneficial changes in mean LF/HF, along with possible trends in mean LF and root mean square sequential difference, were observed in subjects following 35 min exposure to the Heart+ App that was working in the background on an active smartphone untouched by the subjects. This may be the first RCT to show that specific

  12. Peripheral Nervous System Manifestations of Infectious Diseases

    PubMed Central

    Brizzi, Kate T.

    2014-01-01

    Infectious causes of peripheral nervous system (PNS) disease are underrecognized but potentially treatable. Heightened awareness educed by advanced understanding of the presentations and management of these infections can aid diagnosis and facilitate treatment. In this review, we discuss the clinical manifestations, diagnosis, and treatment of common bacterial, viral, and parasitic infections that affect the PNS. We additionally detail PNS side effects of some frequently used antimicrobial agents. PMID:25360209

  13. Effects of dehydroepiandrosterone (DHEA) and lactate on glucose uptake in the central nervous system.

    PubMed

    de Souza, Danielle Kaiser; Ribeiro, Maria Flávia Marques; Kucharski, Luiz Carlos Rios

    2012-01-17

    Dehydroepiandrosterone (DHEA) prevents brain aging, enhances the cerebral metabolism and interacts with energy substrates. The interaction between lactate and DHEA on glucose uptake and lactate oxidation by various nervous structures was investigated and results demonstrate that the 2-(14)C-deoxiglucose (2-(14)C-Dglucose) uptake was stimulated by 10mM lactate in the hypothalamus and olfactory bulb, inhibited in the cerebral cortex and cerebellum, and unaffected in the hippocampus. We also show that, in both the cerebral cortex and hypothalamus, (14)C-lactate oxidation was higher than (14)C-glucose oxidation (p≤0.001), demonstrating a relevant role for lactate as energy substrate. The interaction of lactate and 10(-8)M DHEA was tested and, although DHEA had no significant effect on uptake in the cerebellum, hippocampus, or hypothalamus, 10(-8)M DHEA increased the 2-(14)C-Dglucose uptake in the cerebral cortex in the presence of lactate (p≤0.001), and in the olfactory bulb in the absence of lactate (p<0.05). However, DHEA had no significant effect on (14)C-lactate oxidation. We suggest that DHEA improves glucose uptake in specific conditions. Thus, DHEA may affect CNS metabolism and interact with lactate, which is the most important neuronal energy substrate, on glucose uptake. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Vitamin C Transporters, Recycling and the Bystander Effect in the Nervous System: SVCT2 versus Gluts

    PubMed Central

    Nualart, Francisco; Mack, Lauren; García, Andrea; Cisternas, Pedro; Bongarzone, Ernesto R.; Heitzer, Marjet; Jara, Nery; Martínez, Fernando; Ferrada, Luciano; Espinoza, Francisca; Baeza, Victor; Salazar, Katterine

    2014-01-01

    Vitamin C is an essential micronutrient in the human diet; its deficiency leads to a number of symptoms and ultimately death. After entry into cells within the central nervous system (CNS) through sodium vitamin C transporters (SVCTs) and facilitative glucose transporters (GLUTs), vitamin C functions as a neuromodulator, enzymatic cofactor, and reactive oxygen species (ROS) scavenger; it also stimulates differentiation. In this review, we will compare the molecular and structural aspects of vitamin C and glucose transporters and their expression in endothelial or choroid plexus cells, which form part of the blood-brain barrier and blood-cerebrospinal fluid (CSF) barrier, respectively. Additionally, we will describe SVCT and GLUT expression in different cells of the brain as well as SVCT2 distribution in tanycytes and astrocytes of the hypothalamic region. Finally, we will describe vitamin C recycling in the brain, which is mediated by a metabolic interaction between astrocytes and neurons, and the role of the “bystander effect” in the recycling mechanism of vitamin C in both normal and pathological conditions. PMID:25110615

  15. Effect of insulin-induced hypoglycaemia on the central nervous system: evidence from experimental studies.

    PubMed

    Jensen, V F H; Bøgh, I B; Lykkesfeldt, J

    2014-03-01

    Insulin-induced hypoglycaemia (IIH) is a major acute complication in type 1 as well as in type 2 diabetes, particularly during intensive insulin therapy. The brain plays a central role in the counter-regulatory response by eliciting parasympathetic and sympathetic hormone responses to restore normoglycaemia. Brain glucose concentrations, being approximately 15-20% of the blood glucose concentration in humans, are rigorously maintained during hypoglycaemia through adaptions such as increased cerebral glucose transport, decreased cerebral glucose utilisation and, possibly, by using central nervous system glycogen as a glucose reserve. However, during sustained hypoglycaemia, the brain cannot maintain a sufficient glucose influx and, as the cerebral hypoglycaemia becomes severe, electroencephalogram changes, oxidative stress and regional neuronal death ensues. With particular focus on evidence from experimental studies on nondiabetic IIH, this review outlines the central mechanisms behind the counter-regulatory response to IIH, as well as cerebral adaption to avoid sequelae of cerebral neuroglycopaenia, including seizures and coma. © 2014 British Society for Neuroendocrinology.

  16. Anti-diabetic and neuroprotective effects of pancreatic islet transplantation into the central nervous system.

    PubMed

    Lazard, Daniel; Vardi, Pnina; Bloch, Konstantin

    2016-01-01

    During the last decades, the central nervous system (CNS) was intensively tested as a site for islet transplantation in different animal models of diabetes. Immunoprivilege properties of intracranial and intrathecal sites were found to delay and reduce rejection of transplanted allo-islets and xeno-islets, especially in the form of dispersed single cells. Insulin released from islets grafted in CNS was shown to cross the blood-brain barrier and to act as a regulator of peripheral glucose metabolism. In diabetic animals, sufficient nutrition and oxygen supply to islets grafted in the CNS provide adequate insulin response to increase glucose level resulting in rapid normoglycemia. In addition to insulin, pancreatic islets produce and secrete several other hormones, as well as neurotrophic and angiogenic factors with potential neuroprotective properties. Recent experimental studies and clinical trials provide a strong support for delivery of islet-derived macromolecules to CNS as a promising strategy to treat various brain disorders. This review article focuses mainly on analysis of current status of intracranial and intrathecal islet transplantations for treatment of experimental diabetes and discusses the possible neuroprotective properties of grafted islets into CNS as a novel therapeutic approach to brain disorders with cognitive dysfunctions characterized by impaired brain insulin signalling. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Effects of energy restriction and exercise on the sympathetic nervous system.

    PubMed

    Saris, W H

    1995-12-01

    Thermogenesis or facultative heat production is a fundamental process of the human body to respond to overnutrition and undernutrition in an attempt to maintain a constant lean body mass. In this process the sympathetic nervous system (SNS) is an important regulator of metabolic processes. Variations in energy intake and energy expenditure through exercise cause changes in SNS aimed to maintain energy homeostasis. Studies have shown that acute energy restriction leads to a reduction of the sympathoadrenal drive, resulting in a reduced thermogenic response. Overfeeding increases SNS activity, expending the surplus energy by accelerating metabolism. When the SNS is stimulated, all types of adrenoreceptors are activated, but thermogenesis is primarily mediated by both beta 1-adrenoreceptors and beta 2-adrenoreceptors. Response to energy restriction also results in modulation of the adrenergic receptor number and sensitivity. Comparing lean and obese individuals there is increasing evidence that in the obese the adaptive responsiveness of the SNS to changing energy status is blunted. The increased activation of SNS to respond adequately on the altered substrate demands during acute and prolonged physical exercise (training) is accompanied with an increase of resting metabolic rate (RMR) and lipid oxidation. The higher level of lipid oxidation at the same relative intensity of exercise is probably fueled by increased lipolysis of muscle triglycerides. Therefore, exercise may play an important role to overcome the impaired lipid oxidation in muscle of obese individuals, as was demonstrated in a number of studies.

  18. Effects of diving and oxygen on autonomic nervous system and cerebral blood flow.

    PubMed

    Winklewski, Pawel J; Kot, Jacek; Frydrychowski, Andrzej F; Nuckowska, Magdalena K; Tkachenko, Yurii

    2013-09-01

    Recreational scuba diving is a popular leisure activity with the number of divers reaching several millions worldwide. Scuba diving represents a huge challenge for integrative physiology. In mammalian evolution, physiological reflexes developed to deal with lack of oxygen, rather than with an excess, which makes adaptations to scuba diving more difficult to describe and understand than those associated with breath-hold diving. The underwater environment significantly limits the use of equipment to register the organism's functions, so, in most instances, scientific theories are built on experiments that model real diving to some extent, like hyperbaric exposures, dive reflexes or water immersion. The aim of this review is to summarise the current knowledge related to the influence exerted by physiological conditions specific to diving on the autonomic nervous system and cerebral blood flow. The main factors regulating cerebral blood flow during scuba diving are discussed as follows: 1) increased oxygen partial pressure; 2) immersion-related trigemino-cardiac reflexes and 3) exposure to cold, exercise and stress. Also discussed are the potential mechanisms associated with immersion pulmonary oedema.

  19. Effects of age and amyloid deposition on Aβ dynamics in the human central nervous system.

    PubMed

    Huang, Yafei; Potter, Rachel; Sigurdson, Wendy; Santacruz, Anna; Shih, Shirley; Ju, Yo-El; Kasten, Tom; Morris, John C; Mintun, Mark; Duntley, Stephen; Bateman, Randall J

    2012-01-01

    The amyloid hypothesis predicts that increased production or decreased clearance of β-amyloid (Aβ) leads to amyloidosis, which ultimately culminates in Alzheimer disease (AD). To investigate whether dynamic changes in Aβ levels in the human central nervous system may be altered by aging or by the pathology of AD and thus contribute to the risk of AD. Repeated-measures case-control study. Washington University School of Medicine in St Louis, Missouri. Participants with amyloid deposition, participants without amyloid deposition, and younger normal control participants. In this study, hourly cerebrospinal fluid (CSF) Aβ concentrations were compared with age, status of amyloid deposition, electroencephalography, and video recording data. Linear increases were observed over time in the Aβ levels in CSF samples obtained from the younger normal control participants and the older participants without amyloid deposition, but not from the older participants with amyloid deposition. Significant circadian patterns were observed in the Aβ levels in CSF samples obtained from the younger control participants; however, circadian amplitudes decreased in both older participants without amyloid deposition and older participants with amyloid deposition. Aβ diurnal concentrations were correlated with the amount of sleep but not with the various activities that the participants participated in while awake. A reduction in the linear increase in the Aβ levels in CSF samples that is associated with amyloid deposition and a decreased CSF Aβ diurnal pattern associated with increasing age disrupt the normal physiology of Aβ dynamics and may contribute to AD.

  20. Space life sciences: search for signatures of life, and space flight environmental effects on the nervous system.

    PubMed

    2004-01-01

    This volume contains selected papers of the Joint COSPAR-IAC event "Search for signatures of life in the solar system, terrestrial analogues and simulation experiments" held during the World Space Congress 2002 in Houston, Texas, USA. The first section of the volume reports on the rich variety of terrestrial microbial communities adapted to extreme environments, such as microbial life at very low temperatures in permafrost and ice layers, at high salt concentrations, as inhabitants of rocks and the microbial recolonization of impact-shocked rocks. These communities are suggested to serve as analogues for extraterrestrial habitats, which are also described in this section. The second section deals with the detection of biomarkers and signatures from extinct life on Earth, which might provide clues for detection of potential extraterrestrial biomarkers. This section is followed by reports of experiments in space and in the laboratory simulating space conditions, such as the prebiotic organic chemistry, the chemistry of dust particles to be detected during the Cassini mission to Saturn, as well as the photochemistry of biological systems exposed to space or planetary surface conditions. The second part of the issue contains papers from the session "The nervous system: space flight environmental factors effects--present results and new perspectives." The presentations in this session explored various aspects of the effects of exposure to protons and heavy particles on central nervous system function and on behavior. The second series of papers examines the effects of exposure to heavy particles and protons on neurochemistry and on behavior.

  1. Virus Infections in the Nervous System

    PubMed Central

    Koyuncu, Orkide O.; Hogue, Ian B.; Enquist, Lynn W.

    2013-01-01

    Virus infections usually begin in peripheral tissues and can invade the mammalian nervous system (NS), spreading into the peripheral (PNS) and more rarely the central nervous systems (CNS). The CNS is protected from most virus infections by effective immune responses and multi-layer barriers. However, some viruses enter the NS with high efficiency via the bloodstream or by directly infecting nerves that innervate peripheral tissues, resulting in debilitating direct and immune-mediated pathology. Most viruses in the NS are opportunistic or accidental pathogens, but a few, most notably the alpha herpesviruses and rabies virus, have evolved to enter the NS efficiently and exploit neuronal cell biology. Remarkably, the alpha herpesviruses can establish quiescent infections in the PNS, with rare but often fatal CNS pathology. Here we review how viruses gain access to and spread in the well-protected CNS, with particular emphasis on alpha herpesviruses, which establish and maintain persistent NS infections. PMID:23601101

  2. Acupuncture and Moxibustion have Different Effects on Fatigue by Regulating the Autonomic Nervous System: A Pilot Controlled Clinical Trial

    PubMed Central

    Shu, Qing; Wang, Hua; Litscher, Daniela; Wu, Song; Chen, Li; Gaischek, Ingrid; Wang, Lu; He, Wenjuan; Zhou, Huanjiao; Litscher, Gerhard; Liang, Fengxia

    2016-01-01

    In order to investigate the different effects of acupuncture and moxibustion on chronic fatigue syndrome (CFS) and alterations in the autonomic nervous system by measuring heart rate variability (HRV). Forty-five participants were recruited and randomly divided into 3 groups using a randomization schedule. The control group (CG, n = 15) and the acupuncture group (AG, n = 15) were treated by manipulation acupuncture, and the moxibustion group (MG, n = 15) was treated by indirect moxibustion. Primary outcomes were the scores of the Fatigue Assessment Instrument (FAI). Secondary outcomes were the HRV parameters which can reflect activity of the autonomic nervous system. This trial considered both instantaneous changes and long-term effectiveness. FAI scores decreased after the 4th and 10th treatments in the 3 groups. The decrease in FAI in the MG was greater than that in the AG. Acupuncture was more effective in instantaneous changes of HRV and moxibustion in long-term aspects. Both acupuncture and moxibustion improved fatigue in CFS patients, but moxibustion was more effective. The possible mechanism of the intervention may be through activation of the vagus nerve. Moxibustion was more effective than acupuncture in long-term treatment of CFS. PMID:27886247

  3. Metal toxicity in the central nervous system.

    PubMed Central

    Clarkson, T W

    1987-01-01

    The nervous system is the principal target for a number of metals. Inorganic compounds of aluminum, arsenic, lead, lithium, manganese, mercury, and thallium are well known for their neurological and behavioral effects in humans. The alkyl derivatives of certain metals--lead, mercury and tin--are specially neurotoxic. Concern over human exposure and in some cases, outbreaks of poisoning, have stimulated research into the toxic action of these metals. A number of interesting hypotheses have been proposed for the mechanism of lead toxicity on the nervous system. Lead is known to be a potent inhibitor of heme synthesis. A reduction in heme-containing enzymes could compromise energy metabolism. Lead may affect brain function by interference with neurotransmitters such as gamma-amino-isobutyric acid. There is mounting evidence that lead interferes with membrane transport and binding of calcium ions. Methylmercury produces focal damage to specific areas in the adult brain. One hypothesis proposes that certain cells are susceptible because they cannot repair the initial damage to the protein sythesis machinery. The developing nervous system is especially susceptible to damage by methylmercury. It has been discovered that microtubules are destroyed by this form of mercury and this effect may explain the inhibition of cell division and cell migration, processes that occur only in the developmental stages. These and other hypotheses will stimulate considerable experimental challenges in the future. PMID:3319566

  4. Primary central nervous system lymphoma.

    PubMed

    Pels, Hendrik; Schlegel, Uwe

    2006-07-01

    There is no class I evidence for any therapeutic option in primary central nervous system lymphoma (PCNSL). When possible, patients should be included in clinical trials. The role of surgery is restricted to stereotactic biopsy in order to gain material for histopathologic diagnosis. Radiotherapy alone is associated with a median survival of no more than 1.5 years; cure is exceptional. However, in patients aged younger than 60 years, cure is the therapeutic aim. Polychemotherapy based on high-dose methotrexate with deferred radiation results in long-term survival in most of these patients and possibly cure in a substantial fraction of these patients. With regard to chemotherapy in PCNSL, the following must be considered: 1) the most efficient drug in PCNSL is methotrexate at a dosage of at least 1.5 g/m(2) per single dose; 2) methotrexate alone will lead to complete remission in only some patients, whereas the combination of methotrexate with other drugs is more efficient; and 3) the value of additional intraventricular chemotherapy and the necessity of "consolidation" radiotherapy after response to chemotherapy are not yet defined. For patients aged older than 60 years, no curative regimen with acceptable toxicity has yet been established. The combination of radiotherapy with methotrexate-based chemotherapy leads to severe long-term neurotoxic sequelae, ie, cognitive dysfunction, in most older patients and in some patients aged younger than 60 years.

  5. Sympathetic nervous system and spaceflight

    NASA Astrophysics Data System (ADS)

    Cooke, William H.; Convertino, Victor A.

    2007-02-01

    Purpose: Orthostatic stability on Earth is maintained through sympathetic nerve activation sufficient to increase peripheral vascular resistance and defend against reductions of blood pressure. Orthostatic instability in astronauts upon return from space missions has been linked to blunted vascular resistance responses to standing, introducing the possibility that spaceflight alters normal function between sympathetic efferent traffic and vascular reactivity. Methods: We evaluated published results of spaceflight and relevant ground-based microgravity simulations in an effort to determine responses of the sympathetic nervous system and consequences for orthostatic stability. Results: Direct microneurographic recordings from humans in space revealed that sympathetic nerve activity is increased and preserved in the upright posture after return to Earth (STS-90). However, none of the astronauts studied during STS-90 presented with presyncope postflight, leaving unanswered the question of whether postflight orthostatic intolerance is associated with blunted sympathetic nerve responses or inadequate translation into vascular resistance. Conclusions: There is little evidence to support the concept that spaceflight induces fundamental sympathetic neuroplasticity. The available data seem to support the hypothesis that regardless of whether or not sympathetic traffic is altered during flight, astronauts return with reduced blood volumes and consequent heightened baseline sympathetic activity. Because of this, the ability to withstand an orthostatic challenge postflight is directly proportional to an astronaut's maximal sympathetic activation capacity and remaining sympathetic reserve.

  6. Evaluation of the effect of heat exposure on the autonomic nervous system by heart rate variability and urinary catecholamines.

    PubMed

    Yamamoto, Shinji; Iwamoto, Mieko; Inoue, Masaiwa; Harada, Noriaki

    2007-05-01

    The aim of this study was to investigate the usefulness of heart rate variability (HRV) and urinary catecholamines (CA) as objective indices of heat stress effect. We examined physiological responses, subjective symptoms, HRV and urinary CA to evaluate the effect of heat exposure on the autonomic nervous system. Six healthy male students volunteered for this study. They were exposed on different days to either a thermoneutral condition at wet bulb globe temperature (WBGT) 21 degrees C, or a heated condition at WBGT 35 degrees C for 30 min, while seated on a chair. In the thermoneutral condition, differences of all parameters between the values before and after 30 min exposure were not statistically significant. In the heated condition, heart rate, body temperature and scores for subjective symptoms (feverishness, sweating, mood, and face flushing) significantly increased after 30 min exposure (p<0.05). Also, the high frequency component (HF%) of HRV significantly decreased and the low frequency/high frequency (LF/HF) ratio of HRV significantly increased after 30 min exposure to the heated condition (p<0.05). There were no significant differences between the amounts of urinary CA before and after the 30 min exposures; however, the norepinephrine amount after 30 min exposure to the heated condition was significantly greater than that of the thermoneutral condition (p<0.05). The heat exposure (WBGT 35 degrees C) induced activation of the sympathetic nervous system and a withdrawal of the parasympathetic nervous system. These findings coincide with observed changes of heart rate, body temperature and subjective symptoms. It is suggested that HRV (HF% and LF/HF ratio) and urinary norepinephrine may be useful objective indices of heat stress; HRV seems to be more sensitive to heat stress than urinary CA.

  7. The Effect of Head Massage on the Regulation of the Cardiac Autonomic Nervous System: A Pilot Randomized Crossover Trial.

    PubMed

    Fazeli, Mir Sohail; Pourrahmat, Mir-Masoud; Liu, Mailan; Guan, Ling; Collet, Jean-Paul

    2016-01-01

    To evaluate the effect of a single 10-minute session of Chinese head massage on the activity of the cardiac autonomic nervous system via measurement of heart rate variability (HRV). In this pilot randomized crossover trial, each participant received both head massage and the control intervention in a randomized fashion. The study was conducted at Children's & Women's Health Centre of British Columbia between June and November 2014. Ten otherwise healthy adults (6 men and 4 women) were enrolled in this study. The intervention comprised 10 minutes of head massage therapy (HMT) in a seated position compared with a control intervention of sitting quietly on the same chair with eyes closed for an equal amount of time (no HMT). The primary outcome measures were the main parameters of HRV, including total power (TP), high frequency (HF), HF as a normalized unit, pre-ejection period, and heart rate (HR). A single short session (10 minutes) of head massage demonstrated an increase in TP continuing up to 20 minutes after massage and reaching statistical significance at 10 minutes after massage (relative change from baseline, 66% for HMT versus -6.6% for no HMT; p = 0.017). The effect on HF also peaked up to 10 minutes after massage (59.4% for HMT versus 4% for no HMT; p = 0.139). Receiving head massage also decreased HR by more than three-fold compared to the control intervention. This study shows the potential benefits of head massage by modulating the cardiac autonomic nervous system through an increase in the total variability and a shift toward higher parasympathetic nervous system activity. Randomized controlled trials with larger sample size and multiple sessions of massage are needed to substantiate these findings.

  8. Environmental Chemicals and Nervous System Dysfunction 1

    PubMed Central

    Damstra, Terri

    1978-01-01

    Selected examples of associations between nervous system diseases and exposures to occupational and environmental chemicals have been reviewed. Recent outbreaks of human neurotoxicity from both wellknown and previously unknown toxicants reemphasize the need for the medical community to give increased attention to chemical causes of nervous system dysfunction. PMID:87062

  9. Neurogenesis in the adult peripheral nervous system.

    PubMed

    Czaja, Krzysztof; Fornaro, Michele; Geuna, Stefano

    2012-05-15

    Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system. In the peripheral nervous system, neurogenesis is thought to be active only during prenatal development, with the exception of the olfactory neuroepithelium. However, sensory ganglia in the adult peripheral nervous system have been reported to contain precursor cells that can proliferate in vitro and be induced to differentiate into neurons. The occurrence of insult-induced neurogenesis, which has been reported by several investigators in the brain, is limited to a few recent reports for the peripheral nervous system. These reports suggest that damage to the adult nervous system induces mechanisms similar to those that control the generation of new neurons during prenatal development. Understanding conditions under which neurogenesis can be induced in physiologically non-neurogenic regions in adults is one of the major challenges for developing therapeutic strategies to repair neurological damage. However, the induced neurogenesis in the peripheral nervous system is still largely unexplored. This review presents the history of research on adult neurogenesis in the peripheral nervous system, which dates back more than 100 years and reveals the evidence on the under estimated potential for generation of new neurons in the adult peripheral nervous system.

  10. Cystic Fibrosis and the Nervous System.

    PubMed

    Reznikov, Leah R

    2017-05-01

    Cystic fibrosis (CF) is a life-shortening autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an anion channel that conducts bicarbonate and chloride across cell membranes. Although defective anion transport across epithelial cells is accepted as the basic defect in CF, many of the features observed in people with CF and organs affected by CF are modulated by the nervous system. This is of interest because CFTR expression has been reported in both the peripheral and central nervous systems, and it is well known that the transport of anions, such as chloride, greatly modulates neuronal excitability. Thus it is predicted that in CF, lack of CFTR in the nervous system affects neuronal function. Consistent with this prediction, several nervous system abnormalities and nervous system disorders have been described in people with CF and in animal models of CF. The goal of this special feature article is to highlight the expression and function of CFTR in the nervous system. Special emphasis is placed on nervous system abnormalities described in people with CF and in animal models of CF. Finally, features of CF that may be modulated by or attributed to faulty nervous system function are discussed. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  11. Delayed Effects of Whole Brain Radiotherapy in Germ Cell Tumor Patients With Central Nervous System Metastases

    SciTech Connect

    Doyle, Danielle M. Einhorn, Lawrence H.

    2008-04-01

    Purpose: Central nervous system (CNS) metastases are uncommon in patients with germ cell tumors, with an incidence of 2-3%. CNS metastases have been managed with whole brain radiotherapy (WBRT) and concomitant cisplatin-based combination chemotherapy. Our previous study did not observe serious CNS toxicity (Int J Radiat Oncol Biol Phys 1991;22:17-22). We now report on 5 patients who developed delayed significant CNS toxicity. Patients and Methods: We observed 5 patients with delayed CNS toxicity. The initial diagnosis was between 1981 and 2003. All patients had poor-risk disease according to the International Germ Cell Consensus Collaborative Group criteria. Of the 5 patients, 3 had CNS metastases at diagnosis and 2 developed relapses with CNS metastases. These 5 patients underwent WBRT to 4,000-5,000 cGy in 18-28 fractions concurrently with cisplatin-based chemotherapy. Results: All 5 patients developed delayed symptoms consistent with progressive multifocal leukoencephalopathy. The symptoms included seizures, hemiparesis, cranial neuropathy, headaches, blindness, dementia, and ataxia. The median time from WBRT to CNS symptoms was 72 months (range, 9-228). Head imaging revealed multiple abnormalities consistent with gliosis and diffuse cerebral atrophy. Of the 5 patients, 3 had progressive and 2 stable symptoms. Treatment with surgery and/or steroids had modest benefit. The progressive multifocal leukoencephalopathy resulted in significant debility in all 5 patients, resulting in death (3 patients), loss of work, steroid-induced morbidity, and recurrent hospitalizations. Conclusion: Whole brain radiotherapy is not innocuous in young patients with germ cell tumors and can cause late CNS toxicity.

  12. Comparative effects of alcohol and thiamine deficiency on the developing central nervous system.

    PubMed

    Bâ, Abdoulaye

    2011-11-20

    The present study addresses the still unresolved issue of the character of alcohol-thiamine metabolic interferences in the developing central nervous system (CNS). Investigations compare developmental neurotoxicity evoked by three patterns of maternal thiamine deficiency (pre, peri and postnatal), with two patterns of maternal chronic alcohol intake (alcohol alone and alcohol+thiamine cotreatment), on seven neurodevelopmental abilities in the offspring. The three patterns of thiamine deficiency, pair-compared with controls, highlight four sequences of development: (1) embryonic-perinatal sequence; (2) perinatal-postnatal sequence; (3) "ontogeny in ontogeny out" sequence; (4) "off and on" developing sequence. The results suggest a temporally- and regionally emergence of structures and centers underlying functional maturation during CNS ontogenesis. Furthermore, both developmental thiamine deficiencies and ethanol exposure produce two waves of neurofunctional alterations, peaking at P15 (postnatal day 15) and P25, respectively. The first peak of vulnerability is a prenatal event; it may interfere with the periods of intense cellular proliferation and migration. The second peak represents both perinatal and postnatal events; it may interfere with the periods of cellular differentiation, synaptogenesis, axonogenesis and myelinogenesis. Alcohol+thiamine cotreatment fails to reduce the first peak, but neutralizes essentially the second peak. The results suggest that alcohol interferes with thiamine during cellular differentiation and membrane developmental processes mainly. Indeed, among the three conditions of thiamine-deficient diet, only perinatal thiamine deficiency exhibits a closer relationship with developmental alcohol exposure. Together, these observations suggest that the critical period for alcohol-thiamine antagonism occurs perinatally and affects primarily cellular differentiation. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Effects of bacteria on the enteric nervous system: implications for the irritable bowel syndrome.

    PubMed

    Wood, Jackie D

    2007-01-01

    A unified scenario emerges when it is considered that a major impact of stress on the intestinal tract is reflected by symptoms reminiscent of the diarrhea-predominant form of irritable bowel syndrome. Cramping abdominal pain, fecal urgency, and explosive watery diarrhea are hallmarks not only of diarrhea-predominant irritable bowel syndrome, but also of infectious enteritis, radiation-induced enteritis, and food allergy. The scenario starts with stress-induced compromise of the intestinal mucosal barrier and continues with microorganisms or other sensitizing agents crossing the barrier and being intercepted by enteric mast cells. Mast cells signal the presence of the agent to the enteric nervous system (ie, the brain-in-the-gut), which uses one of the specialized programs from its library of programs to remove the "threat." This is accomplished by stimulating mucosal secretion, which flushes the threatening agent into the lumen and maintains it in suspension. The secretory response then becomes linked to powerful propulsive motility, which propels the secretions together with the offending agent rapidly in the anal direction. Cramping abdominal pain accompanies the strong propulsive contractions. Urgency is experienced when arrival of the large bolus of liquid distends the recto-sigmoid region and reflexly opens the internal anal sphincter, with continence protection now provided only by central reflexes that contract the puborectalis and external anal sphincter muscles. Sensory information arriving in the brain from receptors in the rapidly distending recto-sigmoid accounts for the conscious sensation of urgency and might exacerbate the individual's emotional stress. The symptom of explosive watery diarrhea becomes self-explanatory in this scenario.

  14. Autonomic nervous system-mediated effects of galanin-like peptide on lipid metabolism in liver and adipose tissue

    PubMed Central

    Hirako, Satoshi; Wada, Nobuhiro; Kageyama, Haruaki; Takenoya, Fumiko; Izumida, Yoshihiko; Kim, Hyounju; Iizuka, Yuzuru; Matsumoto, Akiyo; Okabe, Mai; Kimura, Ai; Suzuki, Mamiko; Yamanaka, Satoru; Shioda, Seiji

    2016-01-01

    Galanin-like peptide (GALP) is a neuropeptide involved in the regulation of feeding behavior and energy metabolism in mammals. While a weight loss effect of GALP has been reported, its effects on lipid metabolism have not been investigated. The aim of this study was to determine if GALP regulates lipid metabolism in liver and adipose tissue via an action on the sympathetic nervous system. The respiratory exchange ratio of mice administered GALP intracerebroventricularly was lower than that of saline-treated animals, and fatty acid oxidation-related gene mRNA levels were increased in the liver. Even though the respiratory exchange ratio was reduced by GALP, this change was not significant when mice were treated with the sympatholytic drug, guanethidine. Lipolysis-related gene mRNA levels were increased in the adipose tissue of GALP-treated mice compared with saline-treated animals. These results show that GALP stimulates fatty acid β-oxidation in liver and lipolysis in adipose tissue, and suggest that the anti-obesity effect of GALP may be due to anorexigenic actions and improvement of lipid metabolism in peripheral tissues via the sympathetic nervous system. PMID:26892462

  15. Cardiovascular effects of the essential oil of Croton nepetaefolius in rats: role of the autonomic nervous system.

    PubMed

    Lahlou, S; Leal-Cardoso, J H; Magalhães, P J; Coelho-de-Souza, A N; Duarte, G P

    1999-08-01

    Cardiovascular effects of intravenous (i.v.) treatment with the essential oil of Croton nepetaefolius (EOCN) were investigated in rats. Additionally, this study examined the importance of the autonomic nervous system in mediation of the EOCN-induced changes in mean aortic pressure (MAP) and heart rate (HR). In both pentobarbitone-anaesthetised and conscious rats, i.v. bolus injections of EOCN (1 to 50 mg/kg) elicited dose-dependent decreases in MAP and HR. Both decreases were of the same order of magnitude or duration, irrespective of whether the animal was under general anaesthesia. Pretreatment of anaesthetised rats with bilateral vagotomy reduced the magnitude of EOCN-induced bradycardia without affecting hypotension. Likewise, i.v. pretreatment of conscious rats with either methylatropine (1 mg/kg) or hexamethonium (30 mg/kg) significantly decreased the bradycardic effects of EOCN by the same order of magnitude. Neither compound influenced the hypotensive effects elicited by EOCN. This is the first physiological evidence that i.v. treatment with EOCN in either anaesthetised or conscious rats elicits hypotension and bradycardia. EOCN-induced bradycardia appears dependent upon the presence of an intact and functional parasympathetic nerve drive to the heart. However, EOCN-induced hypotension appears independent of the presence of an operational sympathetic nervous system. This suggests that EOCN may be a direct vasorelaxant agent.

  16. Adverse effects of pain on the nervous systems of newborns and young children: a review of the literature.

    PubMed

    Mitchell, Anita; Boss, Barbara J

    2002-10-01

    There are immediate and long-lasting harmful consequences to the nervous system when infants experience severe or repetitive pain. These effects are especially significant in preterm infants, who are vulnerable to neurological damage during this critical time of neurodevelopment. Painful experiences may cause structural and physiological changes within the nervous system. Repeated painful procedures may result in decreased pain thresholds and hypersensitivity to pain. Immediate harmful effects of pain include physiologic instability and increased incidence of serious complications such as intraventricular hemorrhage. Painful stressors may lead to sleep disturbances, feeding problems, and inability to self-regulate. Long-term effects of pain may include altered pain perception, chronic pain syndromes, and somatic complaints. Repetitive pain in the preterm infant may be associated with attention deficit disorders, learning disorders, and behavioral problems in later childhood. Nursing involvement with pain management is crucial to achieve positive health outcomes for high-risk infants and older children and adults who have experienced repetitive or severe pain as infants.

  17. Differential effects of sympathetic nervous system and hypothalamic-pituitary-adrenal axis on systemic immune cells after severe experimental stroke.

    PubMed

    Mracsko, Eva; Liesz, Arthur; Karcher, Simone; Zorn, Markus; Bari, Ferenc; Veltkamp, Roland

    2014-10-01

    Infectious complications are the leading cause of death in the post-acute phase of stroke. Post-stroke immunodeficiency is believed to result from neurohormonal dysregulation of the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis. However, the differential effects of these neuroendocrine systems on the peripheral immune cells are only partially understood. Here, we determined the impact of the hormones of the SNS and HPA on distinct immune cell populations and characterized their interactions after stroke. At various time points after cortical or extensive hemispheric cerebral ischemia, plasma cortisone, corticosterone, metanephrine and adrenocorticotropic hormone (ACTH) levels were measured in mice. Leukocyte subpopulations were flow cytometrically analyzed in spleen and blood. To investigate their differential sensitivity to stress hormones, splenocytes were incubated in vitro with prednisolone, epinephrine and their respective receptor blockers. Glucocorticoid receptor (GCR) and beta2-adrenergic receptor (β2-AR) on leukocyte subpopulations were quantified by flow cytometry. In vivo effects of GCR and selective β2-AR blockade, respectively, were defined on serum hormone concentrations, lymphopenia and interferon-γ production after severe ischemia. We found elevated cortisone, corticosterone and metanephrine levels and associated lymphocytopenia only after extensive brain infarction. Prednisolone resulted in a 5 times higher cell death rate of splenocytes than epinephrine in vitro. Prednisolone and epinephrine-induced leukocyte cell death was prevented by GCR and β2-AR blockade, respectively. In vivo, only GCR blockade prevented post ischemic lymphopenia whereas β2-AR preserved interferon-γ secretion by lymphocytes. GCR blockade increased metanephrine levels in vivo and prednisolone, in turn, decreased β2-AR expression on lymphocytes. In conclusion, mediators of the SNS and the HPA axis differentially affect the systemic

  18. Effect of insulin-induced hypoglycaemia on the peripheral nervous system: focus on adaptive mechanisms, pathogenesis and histopathological changes.

    PubMed

    Jensen, V F H; Mølck, A-M; Bøgh, I B; Lykkesfeldt, J

    2014-08-01

    Insulin-induced hypoglycaemia (IIH) is a common acute side effect in type 1 and type 2 diabetic patients, especially during intensive insulin therapy. The peripheral nervous system (PNS) depends on glucose as its primary energy source during normoglycaemia and, consequently, it may be particularly susceptible to IIH damage. Possible mechanisms for adaption of the PNS to IIH include increased glucose uptake, utilisation of alternative energy substrates and the use of Schwann cell glycogen as a local glucose reserve. However, these potential adaptive mechanisms become insufficient when the hypoglycaemic state exceeds a certain level of severity and duration, resulting in a sensory-motor neuropathy with associated skeletal muscle atrophy. Large myelinated motor fibres appear to be particularly vulnerable. Thus, although the PNS is not an obligate glucose consumer, as is the brain, it appears to be more prone to IIH than the central nervous system when hypoglycaemia is not severe (blood glucose level ≤ 2 mm), possibly reflecting a preferential protection of the brain during periods of inadequate glucose availability. With a primary focus on evidence from experimental animal studies investigating nondiabetic IIH, the present review discusses the effect of IIH on the PNS with a focus on adaptive mechanisms, pathogenesis and histological changes.

  19. An investigation of the effects of antiretroviral central nervous system penetration effectiveness on procedural learning in HIV+ drug users.

    PubMed

    Wilson, Michael J; Martin-Engel, Lindsay; Vassileva, Jasmin; Gonzalez, Raul; Martin, Eileen M

    2013-01-01

    Treatment with combination antiretroviral therapy (cART) regimens with a high capacity to penetrate the blood-brain barrier has been associated with lower levels of human immunodeficiency virus (HIV) in the central nervous system (CNS). This study examined neurocognitive performance among a sample of 118 HIV+ substance-dependent individuals (SDIs) and 310 HIV- SDIs. HIV+ participants were prescribed cART regimens with varying capacity to penetrate the CNS as indexed by the revised CNS Penetration Effectiveness (CPE) scale. Participants completed the Rotary Pursuit Task (RPT) and the Weather Prediction Task (WPT)-two measures of procedural learning (PL) with known sensitivity to HIV infection-and a control task of sustained attention. HIV+ SDIs prescribed cART with relatively high CNS penetrance performed significantly more poorly on both tasks than HIV- controls. Task performance of HIV+ SDIs prescribed cART with relatively low CNS penetrance did not differ significantly from either HIV- controls or the HIV+/high CPE group, although a trend toward lower RPT performance than that of HIV- participants was observed. Between-group differences were not seen on a control task of motor impulsivity (Immediate Memory Task), indicating that the observed deficits among HIV+/high CPE SDIs may have some specificity.

  20. An animal model to study toxicity of central nervous system therapy for childhood acute lymphoblastic leukemia: Effects on behavior

    SciTech Connect

    Mullenix, P.J.; Kernan, W.J.; Tassinari, M.S.; Schunior, A.; Waber, D.P.; Howes, A.; Tarbell, N.J. )

    1990-10-15

    Central nervous system prophylactic therapy used in the treatment of acute lymphoblastic leukemia can reduce intelligence quotient scores and impair memory and attention in children. Cranial irradiation, intrathecal methotrexate, and steroids are commonly utilized in acute lymphoblastic leukemia therapy. How they induce neurotoxicity is unknown. This study employs an animal model to explore the induction of neurotoxicity. Male and female Sprague-Dawley rats at 17 and 18 days of age were administered 18 mg/kg prednisolone, 2 mg/kg methotrexate, and 1000 cGy cranial irradiation. Another 18-day-old group was administered 1000 cGy cranial irradiation but no drugs. Matching controls received saline and/or a sham exposure to radiation. All animals at 6 weeks and 4 months of age were tested for alterations in spontaneous behavior. A computer pattern recognition system automatically recorded and classified individual behavioral acts displayed during exploration of a novel environment. Measures of behavioral initiations, total time, and time structure were used to compare treated and control animals. A permanent sex-specific change in the time structure of behavior was induced by the prednisolone, methotrexate, and radiation treatment but not by radiation alone. Unlike hyperactivity, the effect consisted of abnormal clustering and dispersion of acts in a pattern indicative of disrupted development of sexually dimorphic behavior. This study demonstrates the feasibility of an animal model delineating the agent/agents responsible for the neurotoxicity of central nervous system prophylactic therapy.

  1. HCV-Related Nervous System Disorders

    PubMed Central

    Monaco, Salvatore; Ferrari, Sergio; Gajofatto, Alberto; Zanusso, Gianluigi; Mariotto, Sara

    2012-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a wide spectrum of extrahepatic manifestations, affecting different organ systems. Neurological complications occur in a large number of patients and range from peripheral neuropathy to cognitive impairment. Pathogenetic mechanisms responsible for nervous system dysfunction are mainly related to the upregulation of the host immune response with production of autoantibodies, immune complexes, and cryoglobulins. Alternative mechanisms include possible extrahepatic replication of HCV in neural tissues and the effects of circulating inflammatory cytokines and chemokines. PMID:22899946

  2. Effect of high fat diets on the NTPDase, 5'-nucleotidase and acetylcholinesterase activities in the central nervous system.

    PubMed

    Kaizer, Rosilene Rodrigues; Spanevello, Rosélia Maria; Costa, Eduarda; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2017-03-01

    High fat diets are associated with the promotion of neurological diseases, such as Alzheimer disease (AD). This study aim investigate the high fat diets role to promotion of AD using as biochemistry parameter of status of central nervous system through the NTPDase, 5'-nucleotidase and acetylcholinesterase (AChE) activities in brain of young rats. The intake of high fat diets promotes an inhibition of purinergic and cholinergic functions, mainly in the long-term exposure to saturated and saturated/unsaturated diets. The AChE activity was decreased to supernatant and synaptosomes tissues preparations obtained from cerebral cortex in average of 20%, to both groups exposed to saturated and saturated/unsaturated diets, when compared to the control group. Very similar results were found in hippocampus and cerebellum brain areas. At same time, the adenine nucleotides hydrolysis in synaptosomes of cerebral cortex were decreased to ATP, ADP and AMP after the long-term exposure to high fat diets, as saturated and saturated/unsaturated. The inhibition of ATP hydrolysis was of 26% and 39% to saturated and saturated/unsaturated diets, respectively. ADP hydrolysis was decreased in 20% to saturated diet, and AMP hydrolysis was decreased in 25% and 33% to saturated and saturated/unsaturated diets, respectively, all in comparison to the control. Thus, we can suggest that the effects of high diets on the purinergic and cholinergic nervous system may contribute to accelerate the progressive memory loss, to decline in language and other cognitive disruptions, such as AD patients presents.

  3. Radiation injury to the nervous system

    SciTech Connect

    Gutin, P.H. ); Leibel, S.A. ); Sneline, G.E. )

    1991-01-01

    This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system.

  4. [Functional anatomy of the central nervous system].

    PubMed

    Krainik, A; Feydy, A; Colombani, J M; Hélias, A; Menu, Y

    2003-03-01

    The central nervous system (CNS) has a particular regional functional anatomy. The morphological support of cognitive functions can now be depicted using functional imaging. Lesions of the central nervous system may be responsible of specific symptoms based on their location. Current neuroimaging techniques are able to show and locate precisely macroscopic lesions. Therefore, the knowledge of functional anatomy of the central nervous system is useful to link clinical disorders to symptomatic lesions. Using radio-clinical cases, we present the functional neuro-anatomy related to common cognitive impairments.

  5. [Enteric nervous system and Parkinson's disease].

    PubMed

    Paillusson, S; Lebouvier, T; Pouclet, H; Coron, E; Bruley des Varannes, S; Damier, P; Neunlist, M; Derkinderen, P

    2012-06-01

    It has become increasingly evident over the last years that Parkinson's disease is a multicentric neurodegenerative disease that affects several neuronal structures outside the substantia nigra, among which is the enteric nervous system. The aims of the present article are to discuss the role of the enteric nervous system lesions in pathology spreading (Braak's hypothesis) and in the gastrointestinal dysfunction encountered in Parkinson's disease. Owing to its accessibility to biopsies, we further discuss the use of the enteric nervous system as an original source of biomarker in Parkinson's disease.

  6. Extracellular Matrix: Functions in the Nervous System

    PubMed Central

    Barros, Claudia S.; Franco, Santos J.; Müller, Ulrich

    2011-01-01

    An astonishing number of extracellular matrix glycoproteins are expressed in dynamic patterns in the developing and adult nervous system. Neural stem cells, neurons, and glia express receptors that mediate interactions with specific extracellular matrix molecules. Functional studies in vitro and genetic studies in mice have provided evidence that the extracellular matrix affects virtually all aspects of nervous system development and function. Here we will summarize recent findings that have shed light on the specific functions of defined extracellular matrix molecules on such diverse processes as neural stem cell differentiation, neuronal migration, the formation of axonal tracts, and the maturation and function of synapses in the peripheral and central nervous system. PMID:21123393

  7. Aging changes in the nervous system

    MedlinePlus

    ... article/004023.htm Aging changes in the nervous system To use the sharing features on this page, ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  8. Congenital defects of the ruminant nervous system.

    PubMed

    Washburn, Kevin E; Streeter, Robert N

    2004-07-01

    Abnormalities of the nervous system are common occurrences among congenital defects and have been reported in most ruminant species. From a clinical standpoint, the signs of such defects create difficulty in arriving at an antemortem etiology through historical and physical examination alone. By first localizing clinical signs to their point of origin in the nervous system, however, a narrower differential list can be generated so that the clinician can pursue a definitive diagnosis. This article categorizes defects of the ruminant nervous system by location of salient clinical signs into dysfunction of one of more of the following regions: cerebrum, cerebellum,and spinal cord. A brief review of some of the more recognized etiologies of these defects is also provided. It is important to make every attempt to determine the cause of nervous system defects because of the impact that an inherited condition would have on a breeding program and for prevention of defects caused by infectious or toxic teratogen exposure.

  9. Effects of whole body vibration on muscle spasticity for people with central nervous system disorders: a systematic review.

    PubMed

    Huang, Meizhen; Liao, Lin-Rong; Pang, Marco Yc

    2017-01-01

    To examine the effects of whole-body vibration on spasticity among people with central nervous system disorders. Electronic searches were conducted using CINAHL, Cochrane Library, MEDLINE, Physiotherapy Evidence Database, PubMed, PsycINFO, SPORTDiscus and Scopus to identify randomized controlled trials that investigated the effect of whole-body vibration on spasticity among people with central nervous system disorders (last search in August 2015). The methodological quality and level of evidence were rated using the PEDro scale and guidelines set by the Oxford Centre for Evidence-Based Medicine. Nine trials with totally 266 subjects (three in cerebral palsy, one in multiple sclerosis, one in spinocerebellar ataxia, and four in stroke) fulfilled all selection criteria. One study was level 1b (PEDro⩾6 and sample size>50) and eight were level 2b (PEDro<6 or sample size ⩽50). All three cerebral palsy trials (level 2b) reported some beneficial effects of whole-body vibration on reducing leg muscle spasticity. Otherwise, the results revealed no consistent benefits on spasticity in other neurological conditions studied. There is little evidence that change in spasticity was related to change in functional performance. The optimal protocol could not be identified. Many reviewed studies were limited by weak methodological and reporting quality. Adverse events were minor and rare. Whole-body vibration may be useful in reducing leg muscle spasticity in cerebral palsy but this needs to be verified by future high quality trials. There is insufficient evidence to support or refute the notion that whole-body vibration can reduce spasticity in stroke, spinocerebellar ataxia or multiple sclerosis.

  10. [Drug allergy and nervous system disorders].

    PubMed

    Gerasimova, M M

    2005-01-01

    The article presents data on involvement of the nervous system of patients with medicamentous allergy characterized by allergic lesions of body vessels. Cerebral allergic vasculitis is often masked by other vascular conditions such as the following: atherosclerosis, high blood pressure, rheumatism and vegetovascular dystonia. The use of the reaction of a specific injury of basophilic leukocytes exposed to penicillin, streptomycin may be a diagnostic test in the determination of the damage of the nervous system in patients with medicamentous allergy.

  11. The effect of a high fat diet on pyruvate decarboxylase deficiency without central nervous system involvement.

    PubMed

    Kodama, S; Yagi, R; Ninomiya, M; Goji, K; Takahashi, T; Morishita, Y; Matsuo, T

    1983-01-01

    A nine-year-old Japanese boy with low pyruvate decarboxylase activity in fibroblasts showed no central nervous symptoms except for muscle fatigue. The pyruvate decarboxylase activities in fibroblasts of the patient and two control subjects were 0.407 +/- 0.083, 1.029 +/- 0.137 and 1.607 +/- 0.096 mumoles/g protein/30 min, respectively. The Michaelis-Menten constant (Km) was the same in the patient and controls. There was no inhibitor of pyruvate decarboxylase in the patient's fibroblasts. A high fat diet has been given to the patient for five years. At present he does not complain of any kind of muscle fatigue, except after severe exercise. Mental and physiological development of the patient are within the normal ranges. However, trials of orally administered thiamine hydrochloride or thiamine hydrochloride combined with lipoamide did not improve his muscle fatigue.

  12. Degenerative disease affecting the nervous system.

    PubMed

    Eadie, M J

    1974-03-01

    The term "degenerative disease" is one which is rather widely used in relation to the nervous system and yet one which is rarely formally and carefully defined. The term appears to be applied to disorders of the nervous system which often occur in later life and which are of uncertain cause. In the Shorter Oxford Dictionary the word degeneration is defined as "a change of structure by which an organism, or an organ, assumes the form of a lower type". However this is not quite the sense in which the word is applied in human neuropathology, where it is conventional to restrict the use of the word to those organic disorders which are of uncertain or poorly understood cause and in which there is a deterioration or regression in the level of functioning of the nervous system. The concept of degenerative disorder is applied to other organs as well as to the brain, and as disease elsewhere in the body may affect the nervous system, it seems reasonable to include within the topic of degenerative disorder affecting the nervous system those conditions in which the nervous system is involved as a result of primary degenerations in other parts of the body. Copyright © 1974 Australian Physiotherapy Association. Published by . All rights reserved.

  13. [Parasitic diseases of the central nervous system].

    PubMed

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  14. Animal–microbe interactions and the evolution of nervous systems

    PubMed Central

    2016-01-01

    Animals ubiquitously interact with environmental and symbiotic microbes, and the effects of these interactions on animal physiology are currently the subject of intense interest. Nevertheless, the influence of microbes on nervous system evolution has been largely ignored. We illustrate here how taking microbes into account might enrich our ideas about the evolution of nervous systems. For example, microbes are involved in animals' communicative, defensive, predatory and dispersal behaviours, and have likely influenced the evolution of chemo- and photosensory systems. In addition, we speculate that the need to regulate interactions with microbes at the epithelial surface may have contributed to the evolutionary internalization of the nervous system. PMID:26598731

  15. A comparative study of the effects of sparteine, lupanine and lupin extract on the central nervous system of the mouse.

    PubMed

    Pothier, J; Cheav, S L; Galand, N; Dormeau, C; Viel, C

    1998-08-01

    Lupin is toxic because of its alkaloid content, sparteine and lupanine in particular. Although the pharmacological properties of sparteine are well known those of lupanine have not been much studied. This paper reports procedures for extraction, purification and crystallization of lupanine, and methods for the preparation of an extract for injection of Lupinus mutabilis Sweet, and for the determination of the acute toxicity and maximum non-lethal dose (DL0) of lupanine, sparteine and lupin extract in the mouse. The three substances were tested on the central nervous system (CNS) for locomotor activity, for interaction with specific drugs used for treatment of the CNS (the stimulant drugs amphetamine and pentetrazol and the depressant drugs pentobarbital and chlorpromazine) and for analgesic activity. The results indicate that lupanine and lupin extract are less toxic than sparteine and that at the doses studied the three products have a weak sedative effect on the CNS.

  16. [Recent progress of potential effects and mechanisms of chlorogenic acid and its intestinal metabolites on central nervous system diseases].

    PubMed

    Xing, Li-na; Zhou, Ming-mei; Li, Yun; Shi, Xiao-wen; Jia, Wei

    2015-03-01

    Chlorogenic acid displays several important roles in the therapeutic properties of many herbs, such as antioxidant activity, antibacterial, antiviral, scavenging free radicals and exciting central nervous system. Only about one-third of chlorogenic acid was absorbed in its prototype, therefore, its gut metabolites play a more important role in the therapeutic properties of chlorogenic acid. It is necessary to consider not only the bioactivities of chlorogenic acid but also its gut metabolites. This review focuses on the potential activities and mechanisms of chlorogenic acid and its gut metabolites on central nervous system diseases.

  17. Statins and the autonomic nervous system.

    PubMed

    Millar, Philip J; Floras, John S

    2014-03-01

    Statins (3-hydroxy-3-methylglutaryl-CoA reductase inhibitors) reduce plasma cholesterol and improve endothelium-dependent vasodilation, inflammation and oxidative stress. A 'pleiotropic' property of statins receiving less attention is their effect on the autonomic nervous system. Increased central sympathetic outflow and diminished cardiac vagal tone are disturbances characteristic of a range of cardiovascular conditions for which statins are now prescribed routinely to reduce cardiovascular events: following myocardial infarction, and in hypertension, chronic kidney disease, heart failure and diabetes. The purpose of the present review is to synthesize contemporary evidence that statins can improve autonomic circulatory regulation. In experimental preparations, high-dose lipophilic statins have been shown to reduce adrenergic outflow by attenuating oxidative stress in central brain regions involved in sympathetic and parasympathetic discharge induction and modulation. In patients with hypertension, chronic kidney disease and heart failure, lipophilic statins, such as simvastatin or atorvastatin, have been shown to reduce MNSA (muscle sympathetic nerve activity) by 12-30%. Reports concerning the effect of statin therapy on HRV (heart rate variability) are less consistent. Because of their implications for BP (blood pressure) control, insulin sensitivity, arrhythmogenesis and sudden cardiac death, these autonomic nervous system actions should be considered additional mechanisms by which statins lower cardiovascular risk.

  18. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  19. Central nervous system effects and chemical composition of two subspecies of Agastache mexicana; an ethnomedicine of Mexico.

    PubMed

    Estrada-Reyes, Rosa; López-Rubalcava, C; Ferreyra-Cruz, Octavio Alberto; Dorantes-Barrón, Ana María; Heinze, G; Moreno Aguilar, Julia; Martínez-Vázquez, Mariano

    2014-04-11

    Agastache mexicana subspecies mexicana (Amm) and xolocotziana (Amx) are used in Mexican traditional medicine to relief cultural affiliation syndromes known as "susto" or "espanto", for "nervous" condition, and as a sleep aid. Despite its intensive use, neuropharmacological studies are scarce, and the chemical composition of the aqueous extracts has not been described. Aims of the study are: (1) To analyze the chemical composition of aqueous extracts from aerial parts of Amm and Amx. (2) To evaluate the anxiolytic-like, sedative, antidepressant-like effects. (3) Analyze the general toxic effects of different doses. Anxiolytic-like and sedative effects were measured in the avoidance exploratory behavior, burying behavior and the hole-board tests. The antidepressant-like actions were studied in the forced swimming and tail suspension tests. Finally, general activity and motor coordination disturbances were evaluated in the open field, inverted screen and rota-rod tests. The acute toxicity of Amm and Amx was determined by calculating their LD50 (mean lethal dose). The chemical analyses were performed employing chromatographic, photometric and HPLC-ESI-MS techniques. Low doses of Amm and Amx (0.1σ1.0mg/kg) induced anxiolytic-like actions; while higher doses (over 10mg/kg) induced sedation and reduced the locomotor activity, exerting a general inhibition in the central nervous system (CNS). Results support the use of Amm and Amx in traditional medicine as tranquilizers and sleep inducers. Additionally, this paper contributes to the knowledge of the chemical composition of the aqueous extracts of these plants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Central nervous system toxicity of metallic nanoparticles

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667

  1. Space exploration, Mars, and the nervous system.

    PubMed

    Kalb, Robert; Solomon, David

    2007-04-01

    When human beings venture back to the moon and then on to Mars in the coming decade or so, we will be riding on the accumulated data and experience from approximately 50 years of manned space exploration. Virtually every organ system functions differently in the absence of gravity, and some of these changes are maladaptive. From a biologic perspective, long duration spaceflight beyond low Earth orbit presents many unique challenges. Astronauts traveling to Mars will live in the absence of gravity for more than 1 year en route and will have to transition between weightlessness and planetary gravitational forces at the beginning, middle, and end of the mission. We discuss some of what is known about the effects of spaceflight on nervous system function, with emphasis on the neuromuscular and vestibular systems because success of a Mars mission will depend on their proper functioning.

  2. Uropharmacology: X. Central nervous system stimulants and depressants.

    PubMed

    Bissada, N K; Finkbeiner, A E; Welch, L T

    1979-04-01

    Several drugs that are utilized primarily for their effects on the central nervous system also affect lower urinary tract function. Most of these effects are produced by the action of these drugs on adrenergic and cholinergic receptors or by direct action of lower urinary tract musculature. Central nervous system stimulants and depressants which are known to affect the storage or evacuation role of the lower urinary tract are discussed.

  3. Central Nervous System Injury – A Newly Observed Bystander Effect of Radiation

    PubMed Central

    Feiock, Caitlin; Yagi, Masashi; Maidman, Adam; Rendahl, Aaron; Hui, Susanta; Seelig, Davis

    2016-01-01

    The unintended side effects of cancer treatment are increasing recognized. Among these is a syndrome of long-term neurocognitive dysfunction called cancer/chemotherapy related cognitive impairment. To date, all studies examining the cognitive impact of cancer treatment have emphasized chemotherapy. Radiation-induced bystander effects have been described in cell culture and, to a limited extent, in rodent model systems. The purpose of this study was to examine, for the first time, the impact of non-brain directed radiation therapy on the brain in order to elucidate its potential relationship with cancer/chemotherapy related cognitive impairment. To address this objective, female BALB/c mice received either a single 16 gray fraction of ionizing radiation to the right hind limb or three doses of methotrexate, once per week for three consecutive weeks. Mice were sacrificed either 3 or 30 days post-treatment and brain injury was determined via quantification of activated astrocytes and microglia. To characterize the effects of non-brain directed radiation on brain glucose metabolism, mice were evaluated by fluorodeoxygluocose positron emission tomography. A single fraction of 16 gray radiation resulted in global decreases in brain glucose metabolism, a significant increase in the number of activated astrocytes and microglia, and increased TNF-α expression, all of which lasted up to 30 days post-treatment. This inflammatory response following radiation therapy was statistically indistinguishable from the neuroinflammation observed following methotrexate administration. In conclusion, non-brain directed radiation was sufficient to cause significant brain bystander injury as reflected by multifocal hypometabolism and persistent neuroinflammation. These findings suggest that radiation induces significant brain bystander effects distant from the irradiated cells and tissues. These effects may contribute to the development of cognitive dysfunction in treated human cancer

  4. Distinct or shared actions of peptide family isoforms: II. Multiple pyrokinins exert similar effects in the lobster stomatogastric nervous system.

    PubMed

    Dickinson, Patsy S; Kurland, Sienna C; Qu, Xuan; Parker, Brett O; Sreekrishnan, Anirudh; Kwiatkowski, Molly A; Williams, Alex H; Ysasi, Alexandra B; Christie, Andrew E

    2015-09-01

    Many neuropeptides are members of peptide families, with multiple structurally similar isoforms frequently found even within a single species. This raises the question of whether the individual peptides serve common or distinct functions. In the accompanying paper, we found high isoform specificity in the responses of the lobster (Homarus americanus) cardiac neuromuscular system to members of the pyrokinin peptide family: only one of five crustacean isoforms showed any bioactivity in the cardiac system. Because previous studies in other species had found little isoform specificity in pyrokinin actions, we examined the effects of the same five crustacean pyrokinins on the lobster stomatogastric nervous system (STNS). In contrast to our findings in the cardiac system, the effects of the five pyrokinin isoforms on the STNS were indistinguishable: they all activated or enhanced the gastric mill motor pattern, but did not alter the pyloric pattern. These results, in combination with those from the cardiac ganglion, suggest that members of a peptide family in the same species can be both isoform specific and highly promiscuous in their modulatory capacity. The mechanisms that underlie these differences in specificity have not yet been elucidated; one possible explanation, which has yet to be tested, is the presence and differential distribution of multiple receptors for members of this peptide family.

  5. Distinct or shared actions of peptide family isoforms: II. Multiple pyrokinins exert similar effects in the lobster stomatogastric nervous system

    PubMed Central

    Dickinson, Patsy S.; Kurland, Sienna C.; Qu, Xuan; Parker, Brett O.; Sreekrishnan, Anirudh; Kwiatkowski, Molly A.; Williams, Alex H.; Ysasi, Alexandra B.; Christie, Andrew E.

    2015-01-01

    ABSTRACT Many neuropeptides are members of peptide families, with multiple structurally similar isoforms frequently found even within a single species. This raises the question of whether the individual peptides serve common or distinct functions. In the accompanying paper, we found high isoform specificity in the responses of the lobster (Homarus americanus) cardiac neuromuscular system to members of the pyrokinin peptide family: only one of five crustacean isoforms showed any bioactivity in the cardiac system. Because previous studies in other species had found little isoform specificity in pyrokinin actions, we examined the effects of the same five crustacean pyrokinins on the lobster stomatogastric nervous system (STNS). In contrast to our findings in the cardiac system, the effects of the five pyrokinin isoforms on the STNS were indistinguishable: they all activated or enhanced the gastric mill motor pattern, but did not alter the pyloric pattern. These results, in combination with those from the cardiac ganglion, suggest that members of a peptide family in the same species can be both isoform specific and highly promiscuous in their modulatory capacity. The mechanisms that underlie these differences in specificity have not yet been elucidated; one possible explanation, which has yet to be tested, is the presence and differential distribution of multiple receptors for members of this peptide family. PMID:26206359

  6. Cardiovascular and behavioral effects produced by administration of liposome-entrapped GABA into the rat central nervous system.

    PubMed

    Vaz, G C; Bahia, A P C O; de Figueiredo Müller-Ribeiro, F C; Xavier, C H; Patel, K P; Santos, R A S; Moreira, F A; Frézard, F; Fontes, M A P

    2015-01-29

    Liposomes are nanosystems that allow a sustained release of entrapped substances. Gamma-aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter of the central nervous system (CNS). We developed a liposomal formulation of GABA for application in long-term CNS functional studies. Two days after liposome-entrapped GABA was injected intracerebroventricularly (ICV), Wistar rats were submitted to the following evaluations: (1) changes in mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) to ICV injection of bicuculline methiodide (BMI) in anesthetized rats; (2) changes in cardiovascular reactivity to air jet stress in conscious rats; and (3) anxiety-like behavior in conscious rats. GABA and saline-containing pegylated liposomes were prepared with a mean diameter of 200 nm. Rats with implanted cannulas targeted to lateral cerebral ventricle (n = 5-8/group) received either GABA solution (GS), empty liposomes (EL) or GABA-containing liposomes (GL). Following (48 h) central microinjection (2 μL, 0.09 M and 99 g/L) of liposomes, animals were submitted to the different protocols. Animals that received GL demonstrated attenuated response of RSNA to BMI microinjection (GS 48 ± 9, EL 43 ± 9, GL 11 ± 8%; P < 0.05), blunted tachycardia in the stress trial (ΔHR: GS 115 ± 14, EL 117 ± 10, GL 74 ± 9 bpm; P<0.05) and spent more time in the open arms of elevated plus maze (EL 6 ± 2 vs. GL 18 ± 5%; P = 0.028) compared with GS and EL groups. These results indicate that liposome-entrapped GABA can be a potential tool for exploring the chronic effects of GABA in specific regions and pathways of the central nervous system. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Parasympathetic nervous system activity and children's sleep.

    PubMed

    El-Sheikh, Mona; Erath, Stephen A; Bagley, Erika J

    2013-06-01

    We examined indices of children's parasympathetic nervous system activity (PNS), including respiratory sinus arrhythmia during baseline (RSAB) and RSA reactivity (RSAR), to a laboratory challenge, and importantly the interaction between RSAB and RSAR as predictors of multiple parameters of children's sleep. Lower RSAR denotes increased vagal withdrawal (reductions in RSA between baseline and task) and higher RSAR represents decreased vagal withdrawal or augmentation (increases in RSA between baseline and task). A community sample of school-attending children (121 boys and 103 girls) participated [mean age = 10.41 years; standard deviation (SD) = 0.67]. Children's sleep parameters were examined through actigraphy for 7 consecutive nights. Findings demonstrate that RSAB and RSAR interact to predict multiple sleep quality parameters (activity, minutes awake after sleep onset and long wake episodes). The overall pattern of effects illustrates that children who exhibit more disrupted sleep (increased activity, more minutes awake after sleep onset and more frequent long wake episodes) are those with lower RSAB in conjunction with lower RSAR. This combination of low RSAB and low RSAR probably reflects increased autonomic nervous system arousal, which interferes with sleep. Results illustrate the importance of individual differences in physiological regulation indexed by interactions between PNS baseline activity and PNS reactivity for a better understanding of children's sleep quality.

  8. The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System.

    PubMed

    Obata, Yuuki; Pachnis, Vassilis

    2016-11-01

    The gastrointestinal (GI) tract is essential for the absorption of nutrients, induction of mucosal and systemic immune responses, and maintenance of a healthy gut microbiota. Key aspects of gastrointestinal physiology are controlled by the enteric nervous system (ENS), which is composed of neurons and glial cells. The ENS is exposed to and interacts with the outer (microbiota, metabolites, and nutrients) and inner (immune cells and stromal cells) microenvironment of the gut. Although the cellular blueprint of the ENS is mostly in place by birth, the functional maturation of intestinal neural networks is completed within the microenvironment of the postnatal gut, under the influence of gut microbiota and the mucosal immune system. Recent studies have shown the importance of molecular interactions among microbiota, enteric neurons, and immune cells for GI homeostasis. In addition to its role in GI physiology, the ENS has been associated with the pathogenesis of neurodegenerative disorders, such as Parkinson's disease, raising the possibility that microbiota-ENS interactions could offer a viable strategy for influencing the course of brain diseases. Here, we discuss recent advances on the role of microbiota and the immune system on the development and homeostasis of the ENS, a key relay station along the gut-brain axis. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. A Comparison of the Anorexic Effects of Chicken, Porcine, Human and Bovine Insulin on the Central Nervous System of Chicks

    USDA-ARS?s Scientific Manuscript database

    The aim of the present study was to determine if some naturally-occurring substitutions of amino acid residues of insulin could act differentially within the central nervous system (CNS) of neonatal chicks to control ingestive behavior. Intracerebroventricular (ICV) administration of chicken insuli...

  10. Building a scientific framework for studying hormonal effects on behavior and on the development of the sexually dimorphic nervous system

    EPA Science Inventory

    There has been increasing concern that low-dose exposure to hormonally active chemicals disrupts sexual differentiation of the brain and peripheral nervous system. There also has been active drug development research on the therapeutic potential of hormone therapy on behaviors. T...

  11. Building a scientific framework for studying hormonal effects on behavior and on the development of the sexually dimorphic nervous system

    EPA Science Inventory

    There has been increasing concern that low-dose exposure to hormonally active chemicals disrupts sexual differentiation of the brain and peripheral nervous system. There also has been active drug development research on the therapeutic potential of hormone therapy on behaviors. T...

  12. Central nervous system sites of the sleep promoting effects of eszopiclone in rats.

    PubMed

    Kumar, S; Alam, M N; Rai, S; Bashir, T; McGinty, D; Szymusiak, R

    2011-05-05

    We examined the effects of eszopiclone (ESZ), a GABA-A receptor agonist in current clinical use as a hypnotic medication, on the activity of subcortical wake- and sleep-active neuronal populations in the rat brain. Sleep-wake states were quantified after i.p. injections of ESZ (3 and 10 mg/kg) or vehicle administered early in the dark phase, when rats are spontaneously awake. Rats were euthanized 2 h post-injection and brain tissue was processed for c-Fos protein immunoreactivity (IR) and for neurotransmitter markers. ESZ at 3 and 10 mg/kg increased time spent in non-rapid-eye-movement (nonREM) sleep, but had no significant effect on Fos-IR in GABAergic neurons in the preoptic hypothalamus that normally express c-Fos during sleep. Among wake-active cell types examined, Fos-IR in hypocretin (HCRT) neurons in the perifornical lateral hypothalamus (LH) was reduced following 3 and 10 mg/kg ESZ. At 10 mg/kg, ESZ suppressed Fos-IR in cholinergic and noncholinergic neurons in the basal forebrain and in serotonergic and nonserotonegic neurons in the dorsal raphe. Having determined that HCRT neurons were responsive to the low dose of systemic ESZ, we unilaterally perfused ESZ directly into the LH of awake rats, using reverse microdialysis. Perfusion of ESZ at 50 μM into the LH for 2 h suppressed waking-related Fos-IR in HCRT neurons, but not in nonHCRT neurons ipsilateral to the dialysis probe. Bilateral LH perfusion of ESZ at 50 μM for 2 h early in the dark phase significantly increased sleep. These findings demonstrate that sleep induction by ESZ does not require activation of GABAergic sleep-regulatory neurons in the preoptic hypothalamus, and identify suppression of HCRT neurons in the LH and suppression of basal forebrain and dorsal raphe neurons as potential mechanisms underlying the sleep-promoting effects of ESZ.

  13. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system

    PubMed Central

    Kim, Hee Jin; Kim, Pitna; Shin, Chan Young

    2013-01-01

    Ginseng is one of the most widely used herbal medicines in human. Central nervous system (CNS) diseases are most widely investigated diseases among all others in respect to the ginseng’s therapeutic effects. These include Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, depression, and many other neurological disorders including neurodevelopmental disorders. Not only the various types of diseases but also the diverse array of target pathways or molecules ginseng exerts its effect on. These range, for example, from neuroprotection to the regulation of synaptic plasticity and from regulation of neuroinflammatory processes to the regulation of neurotransmitter release, too many to mention. In general, ginseng and even a single compound of ginsenoside produce its effects on multiple sites of action, which make it an ideal candidate to develop multi-target drugs. This is most important in CNS diseases where multiple of etiological and pathological targets working together to regulate the final pathophysiology of diseases. In this review, we tried to provide comprehensive information on the pharmacological and therapeutic effects of ginseng and ginsenosides on neurodegenerative and other neurological diseases. Side by side comparison of the therapeutic effects in various neurological disorders may widen our understanding of the therapeutic potential of ginseng in CNS diseases and the possibility to develop not only symptomatic drugs but also disease modifying reagents based on ginseng. PMID:23717153

  14. African trypanosome infections of the nervous system: parasite entry and effects on sleep and synaptic functions.

    PubMed

    Kristensson, Krister; Nygård, Mikael; Bertini, Giuseppe; Bentivoglio, Marina

    2010-06-01

    The extracellular parasite Trypanosoma brucei causes human African trypanosomiasis (HAT), also known as sleeping sickness. Trypanosomes are transmitted by tsetse flies and HAT occurs in foci in sub-Saharan Africa. The disease, which is invariably lethal if untreated, evolves in a first hemo-lymphatic stage, progressing to a second meningo-encephalitic stage when the parasites cross the blood-brain barrier. At first, trypanosomes are restricted to circumventricular organs and choroid plexus in the brain outside the blood-brain barrier, and to dorsal root ganglia. Later, parasites cross the blood-brain barrier at post-capillary venules, through a multi-step process similar to that of lymphocytes. Accumulation of parasites in the brain is regulated by cytokines and chemokines. Trypanosomes can alter neuronal function and the most prominent manifestation is represented by sleep alterations. These are characterized, in HAT and experimental rodent infections, by disruption of the sleep-wake 24h cycle and internal sleep structure. Trypanosome infections alter also some, but not all, other endogenous biological rhythms. A number of neural pathways and molecules may be involved in such effects. Trypanosomes secrete prostaglandins including the somnogenic PGD2, and they interact with the host's immune system to cause release of pro-inflammatory cytokines. From the sites of early localization of parasites in the brain and meninges, such molecules could affect adjacent brain areas implicated in sleep-wakefulness regulation, including the suprachiasmatic nucleus and its downstream targets, to cause the changes characteristic of the disease. This raises challenging issues on the effects of cytokines on synaptic functions potentially involved in sleep-wakefulness alterations. (c) 2009 Elsevier Ltd. All rights reserved.

  15. The Human Sympathetic Nervous System Response to Spaceflight

    NASA Technical Reports Server (NTRS)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  16. Neuroactive steroids and central nervous system disorders.

    PubMed

    Wang, M; Bäckström, T; Sundström, I; Wahlström, G; Olsson, T; Zhu, D; Johansson, I M; Björn, I; Bixo, M

    2001-01-01

    Steroid hormones are vital for the cell life and affect a number of neuroendocrine and behavioral functions. In contrast to their endocrine actions, certain steroids have been shown to rapidly alter brain excitability and to produce behavioral effects within seconds to minutes. In this article we direct attention to this issue of neuroactive steroids by outlining several aspects of current interest in the field of steroid research. Recent advances in the neurobiology of neuroactive are described along with the impact of advances on drug design for central nervous system (CNS) disorders provoked by neuroactive steriods. The theme was selected in association with the clinical aspects and therapeutical potentials of the neuroactive steroids in CNS disorders. A wide range of topics relating to the neuroactive steroids are outlined, including steroid concentrations in the brain, premenstrual syndrome, estrogen and Alzheimer's disease, side effects of oral contraceptives, mental disorder in menopause, hormone replacement therapy, Catamenial epilepsy, and neuractive steroids in epilepsy treatment.

  17. Central nervous system complications after liver transplantation.

    PubMed

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology.

  18. Neural circuit recording from an intact cockroach nervous system.

    PubMed

    Titlow, Josh S; Majeed, Zana R; Hartman, H Bernard; Burns, Ellen; Cooper, Robin L

    2013-11-04

    The cockroach ventral nerve cord preparation is a tractable system for neuroethology experiments, neural network modeling, and testing the physiological effects of insecticides. This article describes the scope of cockroach sensory modalities that can be used to assay how an insect nervous system responds to environmental perturbations. Emphasis here is on the escape behavior mediated by cerci to giant fiber transmission in Periplaneta americana. This in situ preparation requires only moderate dissecting skill and electrophysiological expertise to generate reproducible recordings of neuronal activity. Peptides or other chemical reagents can then be applied directly to the nervous system in solution with the physiological saline. Insecticides could also be administered prior to dissection and the escape circuit can serve as a proxy for the excitable state of the central nervous system. In this context the assays described herein would also be useful to researchers interested in limb regeneration and the evolution of nervous system development for which P. americana is an established model organism.

  19. A comparison of the gastric and central nervous system effects of two substituted benzamides in normal volunteers.

    PubMed Central

    McClelland, G R; Sutton, J A

    1986-01-01

    Eight healthy male volunteers participated in a single-blind, random allocation, crossover, comparison of intravenous metoclopramide (10 mg), the peripherally acting, gastrointestinal stimulant BRL 20627 (10 mg) and saline. The central nervous system effects were assessed by quantitative electroencephalography (EEG) and by visual analogue scales. Gastric motility and emptying were assessed by epigastric impedance. Metoclopramide increased the EEG amplitude by 10.4% (a statistically significant, P less than 0.05, effect) and increased frequencies above 22 Hz, whereas both BRL 20627 and placebo had only minor effect on the EEG frequencies and slightly decreased the EEG amplitude. Ratings on visual analogue scales showed that metoclopramide caused statistically significant (P less than 0.01 difference from placebo) restlessness and slight but significantly less (P less than 0.05 difference from placebo) feeling of happiness. Epigastic impedance changes indicated that both metoclopramide and BRL 20627 increased gastric contractile activity, but the rate of gastric emptying was not significantly altered by either drug although it tended to be shortened following metoclopramide but not BRL 20627 treatment. It is concluded that since the published animal data show that BRL 20627 has only weak dopamine antagonistic properties this study further implicates dopamine receptor blockade in the akathisia but not in the gastric effect of metoclopramide. PMID:3755051

  20. Immediate effects of a thoracic spine thrust manipulation on the autonomic nervous system: a randomized clinical trial

    PubMed Central

    Sillevis, Rob; Cleland, Joshua; Hellman, Madeleine; Beekhuizen, Kristina

    2010-01-01

    Thoracic spine manipulation has been shown to be effective for the management of neck pain. The purpose of this study was to investigate the immediate effect of a T3–T4 spinal thrust manipulation on autonomic nervous system activity in subjects with chronic cervical pain. An additional aim was to determine if the manipulation resulted in an immediate pain relief in patients with chronic neck pain when compared to a placebo intervention. One hundred subjects with chronic neck pain were randomly assigned to receive either a thoracic thrust manipulation or a placebo intervention. The Friedman’s test was used to evaluate the change in pupil diameter within both groups. The Wilcoxen signed-ranks test was used to explore pupil changes over time and to make paired comparisons of the pupil change between the groups. The Mann–Whitney U test was used to compare the change in pain perception for the chronic cervical pain group subjects receiving either the thrust manipulation or the placebo intervention. The results demonstrated that manipulation did not result in a change in sympathetic activity. Additionally, there was no significant difference in the subject’s pain perception (P = 0.961) when comparing the effects of the thrust manipulation to the placebo intervention within this group of subjects with chronic neck pain. The clinical impression of this study is that manipulation of the thoracic spine may not be effective in immediately reducing pain in patients with chronic neck pain. PMID:22131791

  1. Effect of Forest Walking on Autonomic Nervous System Activity in Middle-Aged Hypertensive Individuals: A Pilot Study

    PubMed Central

    Song, Chorong; Ikei, Harumi; Kobayashi, Maiko; Miura, Takashi; Taue, Masao; Kagawa, Takahide; Li, Qing; Kumeda, Shigeyoshi; Imai, Michiko; Miyazaki, Yoshifumi

    2015-01-01

    There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0 ± 10.6 years) were instructed to walk predetermined courses in forest and urban environments (as control). Course length (17-min walk), walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV) and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased “comfortable”, “relaxed”, “natural” and “vigorous” feelings and decreased “tension-anxiety,” “depression,” “anxiety-hostility,” “fatigue” and “confusion”. A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals. PMID:25739004

  2. Pharmacodynamic interaction of the sedative effects of Ternstroemia pringlei (Rose) Standl. with six central nervous system depressant drugs in mice.

    PubMed

    Balderas, José Luis; Reza, Victoria; Ugalde, Martha; Guzmán, Laura; Serrano, Miriam Isabel; Aguilar, Abigail; Navarrete, Andrés

    2008-09-02

    The decoction of dried fruits of Ternstroemia pringlei (Rose) Standl. (Theaceae), commonly known as "Flor de Tila", is used in the Mexican traditional medicine to diminish insomnia and fear. To examine the sedative effects of the dried fruits of Ternstroemia pringlei and investigate a possible synergistic pharmacodynamic interaction between the sedative effect of aqueous extract of this plant and six central nervous system (CNS) depressant drugs. The sedative effect was performed using the exploratory cylinder test in ICR mice. The extracts and drugs were intraperitoneally administered 30 min before testing in different doses, with exception of ethanol and buspirone which were administered 5 and 20 min before testing, respectively. An isobolographic analysis was used to characterize the interaction between Ternstroemia pringlei extract and six CNS depressant drugs. The intraperitoneal administration of the hexane, dichloromethane, methanol and aqueous extracts of Ternstroemia pringlei showed a dose-dependent sedative effect. Ternstroemia pringlei aqueous extract combined with buspirone, diazepam, diphenhydramine, haloperidol or pentobarbital exerted a super-additive (synergistic) sedative interaction. Whereas the combination Ternstroemia pringlei extract plus ethanol resulted in a sub-additive (attenuate) sedative interaction. These findings are in agreement with the traditional use of Ternstroemia pringlei in the treatment of insomnia, however it is a plant that interacts in a complex form with CNS depressant drugs. It may represent an advertence on the use of this plant concomitantly with other neuroactive drugs.

  3. Neuroimaging and Neuromonitoring Effects of Electro and Manual Acupuncture on the Central Nervous System: A Literature Review and Analysis

    PubMed Central

    2015-01-01

    The aim of this review is to provide an overview of the different effects of manual and electroacupuncture on the central nervous system in studies with different neuroimaging interventions. The Database PubMed was searched from 1/1/2000 to 1/6/2014 with restriction to human studies in English language. Data collection for functional magnetic resonance (fMRI) studies was restricted to the period from 1/1/2010 to 1/6/2014 due to a recently published review which included all published randomized and nonrandomized controlled clinical studies as well as observational studies with control groups, no blinding required. Only studies comparing manual or electroacupuncture with sham acupuncture were eligible. All participants were healthy adult men and women. A majority of 25 studies compared manual versus sham, a minority of 7 trials compared electro versus sham and only 1 study compared electro versus manual acupuncture. In 29 out of 33 studies verum acupuncture results were found to present either more or different modulation effects on neurological components measured by neuroimaging and neuromonitoring methods than sham acupuncture. Only four studies reported no effects of verum in comparison to sham acupuncture. Evaluation of the very heterogeneous results shows evidence that verum acupuncture elicits more modulation effects on neurological components than sham acupuncture. PMID:26339269

  4. Pharmacological effects of primaquine ureas and semicarbazides on the central nervous system in mice and antimalarial activity in vitro.

    PubMed

    Kedzierska, Ewa; Orzelska, Jolanta; Perković, Ivana; Knežević, Danijel; Fidecka, Sylwia; Kaiser, Marcel; Zorc, Branka

    2016-02-01

    New primaquine (PQ) urea and semicarbazide derivatives 1-4 were screened for the first time for central nervous system (CNS) and antimalarial activity. Behavioural tests were performed on mice. In vitro cytotoxicity on L-6 cells and activity against erythrocytic stages of Plasmodium falciparum was determined. Compound 4 inhibited 'head-twitch' responses and decreased body temperature of mice, which suggests some involvement of the serotonergic system. Compound 4 protected mice against clonic seizures and was superior in the antimalarial test. A hybrid of two PQ urea 2 showed a strong antimalarial activity, confirming the previous findings of the high activity of bis(8-aminoquinolines) and other bisantimalarial drugs. All the compounds decreased the locomotor activity of mice, what suggests their weak depressive effects on the CNS, while PQ derivatives 1 and 2 increased amphetamine-induced hyperactivity. None of the compounds impaired coordination, what suggests a lack of their neurotoxicity. All the tested compounds presented an antinociceptive activity in the 'writhing' test. Compounds 3 and 4 were active in nociceptive tests, and those effects were reversed by naloxone. Compound 4 could be a useful lead compound in the development of CNS active agents and antimalarials, whereas compound 3 may be considered as the most promising lead for new antinociceptive agents. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  5. The mechanical control of nervous system development.

    PubMed

    Franze, Kristian

    2013-08-01

    The development of the nervous system has so far, to a large extent, been considered in the context of biochemistry, molecular biology and genetics. However, there is growing evidence that many biological systems also integrate mechanical information when making decisions during differentiation, growth, proliferation, migration and general function. Based on recent findings, I hypothesize that several steps during nervous system development, including neural progenitor cell differentiation, neuronal migration, axon extension and the folding of the brain, rely on or are even driven by mechanical cues and forces.

  6. Reactions of the nervous system to magnetic fields

    NASA Technical Reports Server (NTRS)

    Kholodov, Y. A.

    1974-01-01

    This magnetobiological survey considers sensory, nervous, stress and genetic effects of magnetic fields on man and animals. It is shown that the nervous system plays an important role in the reactions of the organism to magnetic fields; the final biological effect is a function of the strength of the magnetic fields, the gradient, direction of the lines of force, duration and location of the action, and the functional status of the organism.

  7. Hydrogels for central nervous system therapeutic strategies.

    PubMed

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described.

  8. Comparative anatomy of the autonomic nervous system.

    PubMed

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves.

  9. Effect of environmental exposure to hydrogen sulfide on central nervous system and respiratory function: a systematic review of human studies

    PubMed Central

    Lim, Eunjung; Mbowe, Omar; Lee, Angela S. W.; Davis, James

    2016-01-01

    Background Assessment of the health effects of low-level exposure to hydrogen sulfide (H2S) on humans through experiments, industrial, and community studies has shown inconsistent results. Objective To critically appraise available studies investigating the effect of H2S on the central nervous system (CNS) and on respiratory function. Methods A search was conducted in 16 databases for articles published between January 1980 and July 2014. Two researchers independently evaluated potentially relevant papers based on a set of inclusion/exclusion criteria. Results Twenty-seven articles met the inclusion criteria: 6 experimental, 12 industry-based studies, and 10 community-based studies (one article included both experimental and industry-based studies). The results of the systematic review varied by study setting and quality. Several community-based studies reported associations between day-to-day variations in H2S levels and health outcomes among patients with chronic respiratory conditions. However, evidence from the largest and better-designed community-based studies did not support that chronic, ambient H2S exposure has health effects on the CNS or respiratory function. Results from industry-based studies varied, reflecting the diversity of settings and the broad range of H2S exposures. Most studies did not have individual measurements of H2S exposure. Discussion The results across studies were inconsistent, justifying the need for further research. PMID:27128692

  10. Sex-specific effects of intranasal oxytocin on autonomic nervous system and emotional responses to couple conflict.

    PubMed

    Ditzen, Beate; Nater, Urs M; Schaer, Marcel; La Marca, Roberto; Bodenmann, Guy; Ehlert, Ulrike; Heinrichs, Markus

    2013-12-01

    Unhappy couple relationships are associated with impaired individual health, an effect thought to be mediated through ongoing couple conflicts. Little is known, however, about the underlying mechanisms regulating psychobiological stress, and particularly autonomic nervous system (ANS) reactivity, during negative couple interaction. In this study, we tested the effects of the neuropeptide oxytocin on ANS reactivity during couple conflict in a standardized laboratory paradigm. In a double-blind, placebo-controlled design, 47 heterosexual couples (total n = 94) received oxytocin or placebo intranasally prior to instructed couple conflict. Participants' behavior was videotaped and salivary alpha-amylase (sAA), a measure of sympathetic activity, and emotional arousal were repeatedly measured during the experiment. Oxytocin significantly reduced sAA during couple conflict in women, whereas men showed increases in sAA levels (sex × group interaction: B = -49.36, t = -2.68, P = 0.009). In men, these increases were related to augmented emotional arousal (r = 0.286, P = 0.028) and more positive behavior (r = 0.291, P = 0.026), whereas there was no such association in women. Our results imply sex-specific effects of oxytocin on sympathetic activity, to negative couple interaction, with the neuropeptide reducing sAA responses and emotional arousal in women while increasing them in men.

  11. Toxic effects of arsenic (III) on some hematopoietic and central nervous system variables in rats and guinea pigs.

    PubMed

    Kannan, G M; Tripathi, N; Dube, S N; Gupta, M; Flora, S J

    2001-01-01

    To evaluate the effects of arsenic (III) exposure on porphyrin metabolism and the central nervous system supplemented with data on the effect of hepatic and renal tissues of rats and guinea pigs. Rats and guinea pigs were exposed to 10 or 25 ppm arsenic in drinking water for 16 weeks. Following chronic arsenic (III) exposure, delta-aminolevulinic acid dehydratase activity in blood showed a significant reduction as did the total cell counts (RBC and WBC) and reduced glutathione with increased urinary delta-aminolevulinic acid. Zinc protoporphyrin, a sensitive indicator of iron deficiency and impairment of heme biosynthesis, showed a significant increase in arsenic exposure. The hepatic delta-aminolevulinic acid dehydratase and delta-aminolevulinic acid synthetase activity increased in chronic arsenic (III) exposure in rats and guinea pigs. Significant changes in the steady-state level of three major neurotransmitters, dopamine, norepinephrine, and 5-hydroxytryptamine, and monoamine oxidase were observed following chronic arsenic (III) exposure. At low doses (10 and 25 ppm in drinking water), the effects of arsenic on hematopoietic indices and whole-brain neurotransmitter concentrations were more prominent in guinea pigs than in rats with some variability in the dose response.

  12. Sex-specific effects of intranasal oxytocin on autonomic nervous system and emotional responses to couple conflict

    PubMed Central

    Nater, Urs M.; Schaer, Marcel; La Marca, Roberto; Bodenmann, Guy; Ehlert, Ulrike; Heinrichs, Markus

    2013-01-01

    Unhappy couple relationships are associated with impaired individual health, an effect thought to be mediated through ongoing couple conflicts. Little is known, however, about the underlying mechanisms regulating psychobiological stress, and particularly autonomic nervous system (ANS) reactivity, during negative couple interaction. In this study, we tested the effects of the neuropeptide oxytocin on ANS reactivity during couple conflict in a standardized laboratory paradigm. In a double-blind, placebo-controlled design, 47 heterosexual couples (total n = 94) received oxytocin or placebo intranasally prior to instructed couple conflict. Participants’ behavior was videotaped and salivary alpha-amylase (sAA), a measure of sympathetic activity, and emotional arousal were repeatedly measured during the experiment. Oxytocin significantly reduced sAA during couple conflict in women, whereas men showed increases in sAA levels (sex × group interaction: B = −49.36, t = −2.68, P = 0.009). In men, these increases were related to augmented emotional arousal (r = 0.286, P = 0.028) and more positive behavior (r = 0.291, P = 0.026), whereas there was no such association in women. Our results imply sex-specific effects of oxytocin on sympathetic activity, to negative couple interaction, with the neuropeptide reducing sAA responses and emotional arousal in women while increasing them in men. PMID:22842905

  13. The Effect of the Human Peptide GHK on Gene Expression Relevant to Nervous System Function and Cognitive Decline.

    PubMed

    Pickart, Loren; Vasquez-Soltero, Jessica Michelle; Margolina, Anna

    2017-02-15

    Neurodegeneration, the progressive death of neurons, loss of brain function, and cognitive decline is an increasing problem for senior populations. Its causes are poorly understood and therapies are largely ineffective. Neurons, with high energy and oxygen requirements, are especially vulnerable to detrimental factors, including age-related dysregulation of biochemical pathways caused by altered expression of multiple genes. GHK (glycyl-l-histidyl-l-lysine) is a human copper-binding peptide with biological actions that appear to counter aging-associated diseases and conditions. GHK, which declines with age, has health promoting effects on many tissues such as chondrocytes, liver cells and human fibroblasts, improves wound healing and tissue regeneration (skin, hair follicles, stomach and intestinal linings, boney tissue), increases collagen, decorin, angiogenesis, and nerve outgrowth, possesses anti-oxidant, anti-inflammatory, anti-pain and anti-anxiety effects, increases cellular stemness and the secretion of trophic factors by mesenchymal stem cells. Studies using the Broad Institute Connectivity Map show that GHK peptide modulates expression of multiple genes, resetting pathological gene expression patterns back to health. GHK has been recommended as a treatment for metastatic cancer, Chronic Obstructive Lung Disease, inflammation, acute lung injury, activating stem cells, pain, and anxiety. Here, we present GHK's effects on gene expression relevant to the nervous system health and function.

  14. Synthesis and central nervous system depressant effects of N3-substituted 2',3'-O-isopropylideneuridines.

    PubMed

    Yao, C S; Kimura, T; Watanabe, K; Kondo, S; Ho, I K; Yamamoto, I

    1999-12-01

    N3-Substituted derivatives of 2',3'-O-isopropylideneuridine (1) were synthesized and their pharmacological effects on the central nervous system (CNS) examined using mice. Methyl (2), ethyl (3), propyl (4), butyl (5), allyl (6), benzyl (7), o-, m-, p-xylyls (8, 9, 10), and alpha-phenylethyl (11) derivatives of 1 were administered to mice by intracerebroventricular (i.c.v.) injection for evaluating hypnotic activity, pentobarbital-induced sleep prolongation, and spontaneous activity as indices. Only 3 possessed hypnotic activity by i.c.v. injection at the dose of 2.0 mumol/mouse. Compounds 3, 4, and 10 significantly showed synergism with a barbiturate, indicating that the derivatives have some CNS depressant effects. Moreover, 3 and 4 caused decrease in the spontaneous activity of mice, even at low doses. The present study indicated that substitution by ethyl, propyl, and p-xylyl groups at the N3-position of 2',3'-O-isopropylideneuridine imparted the CNS depressant effects.

  15. The Effect of the Human Peptide GHK on Gene Expression Relevant to Nervous System Function and Cognitive Decline

    PubMed Central

    Pickart, Loren; Vasquez-Soltero, Jessica Michelle; Margolina, Anna

    2017-01-01

    Neurodegeneration, the progressive death of neurons, loss of brain function, and cognitive decline is an increasing problem for senior populations. Its causes are poorly understood and therapies are largely ineffective. Neurons, with high energy and oxygen requirements, are especially vulnerable to detrimental factors, including age-related dysregulation of biochemical pathways caused by altered expression of multiple genes. GHK (glycyl-l-histidyl-l-lysine) is a human copper-binding peptide with biological actions that appear to counter aging-associated diseases and conditions. GHK, which declines with age, has health promoting effects on many tissues such as chondrocytes, liver cells and human fibroblasts, improves wound healing and tissue regeneration (skin, hair follicles, stomach and intestinal linings, boney tissue), increases collagen, decorin, angiogenesis, and nerve outgrowth, possesses anti-oxidant, anti-inflammatory, anti-pain and anti-anxiety effects, increases cellular stemness and the secretion of trophic factors by mesenchymal stem cells. Studies using the Broad Institute Connectivity Map show that GHK peptide modulates expression of multiple genes, resetting pathological gene expression patterns back to health. GHK has been recommended as a treatment for metastatic cancer, Chronic Obstructive Lung Disease, inflammation, acute lung injury, activating stem cells, pain, and anxiety. Here, we present GHK’s effects on gene expression relevant to the nervous system health and function. PMID:28212278

  16. Effect of environmental exposure to hydrogen sulfide on central nervous system and respiratory function: a systematic review of human studies.

    PubMed

    Lim, Eunjung; Mbowe, Omar; Lee, Angela S W; Davis, James

    2016-01-01

    Assessment of the health effects of low-level exposure to hydrogen sulfide (H2S) on humans through experiments, industrial, and community studies has shown inconsistent results. To critically appraise available studies investigating the effect of H2S on the central nervous system (CNS) and on respiratory function. A search was conducted in 16 databases for articles published between January 1980 and July 2014. Two researchers independently evaluated potentially relevant papers based on a set of inclusion/exclusion criteria. Twenty-seven articles met the inclusion criteria: 6 experimental, 12 industry-based studies, and 10 community-based studies (one article included both experimental and industry-based studies). The results of the systematic review varied by study setting and quality. Several community-based studies reported associations between day-to-day variations in H2S levels and health outcomes among patients with chronic respiratory conditions. However, evidence from the largest and better-designed community-based studies did not support that chronic, ambient H2S exposure has health effects on the CNS or respiratory function. Results from industry-based studies varied, reflecting the diversity of settings and the broad range of H2S exposures. Most studies did not have individual measurements of H2S exposure. The results across studies were inconsistent, justifying the need for further research.

  17. Novel markers identify nervous system components of the holothurian nervous system

    PubMed Central

    Díaz-Balzac, Carlos A.; Vázquez-Figueroa, Lionel D.; García-Arrarás, José E.

    2014-01-01

    Echinoderms occupy a key position in the evolution of deuterostomes. As such, the study of their nervous system can shed important information on the evolution of the vertebrate nervous system. However, the study of the echinoderm nervous system has lagged behind when compared to that of other invertebrates due to the lack of tools available. In this study, we tested three commercially available antibodies as markers of neural components in holothurians. Immunohistological experiments with antibodies made against the mammalian transcription factors Pax6 and Nurr1, and against phosphorylated histone H3 showed that these markers identified cells and fibers within the nervous system of Holothuria glaberrima. Most of the fibers recognized by these antibodies were co-labeled with the well-known neural marker, RN1. Additional experiments showed that similar immunoreactivity was found in the nervous tissue of three other holothurian species (Holothuria mexicana, Leptosynapta clarki and Sclerodactyla briareus), thus extending our findings to the three orders of Holothuroidea. Furthermore, these markers identified different subdivisions of the holothurian nervous system. Our study presents three additional markers of the holothurian nervous system, expanding the available toolkit to study the anatomy, physiology, development and evolution of the echinoderm nervous system. PMID:24740637

  18. The sympathetic nervous system in obesity hypertension.

    PubMed

    Lohmeier, Thomas E; Iliescu, Radu

    2013-08-01

    Abundant evidence supports a role of the sympathetic nervous system in the pathogenesis of obesity-related hypertension. However, the nature and temporal progression of mechanisms underlying this sympathetically mediated hypertension are incompletely understood. Recent technological advances allowing direct recordings of renal sympathetic nerve activity (RSNA) in conscious animals, together with direct suppression of RSNA by renal denervation and reflex-mediated global sympathetic inhibition in experimental animals and human subjects have been especially valuable in elucidating these mechanisms. These studies strongly support the concept that increased RSNA is the critical mechanism by which increased central sympathetic outflow initiates and maintains reductions in renal excretory function, causing obesity hypertension. Potential determinants of renal sympathoexcitation and the differential mechanisms mediating the effects of renal-specific versus reflex-mediated, global sympathetic inhibition on renal hemodynamics and cardiac autonomic function are discussed. These differential mechanisms may impact the efficacy of current device-based approaches for hypertension therapy.

  19. The autonomic nervous system and perinatal metabolism.

    PubMed

    Milner, R D; De Gasparo, M

    1981-01-01

    The development of the autonomic nervous system in relation to perinatal metabolism is reviewed with particular attention given to the adipocyte, hepatocyte and the A and B cells of the islets of Langerhans. Adrenergic receptors develop in the B cell independently of normal innervation and by the time of birth, in most species studied, the pancreas, liver and adipose tissue respond appropriately to autonomic signals. Birth is associated with a huge surge in circulating catecholamines which is probably responsible for the early postnatal rise in free fatty acids and glucagon concentrations in plasma. beta-Blocking drugs such as propranolol have an adverse effect on fetal growth and neonatal metabolism, being responsible for hypoglycemia and for impairing the thermogenic response to cold exposure. beta-Mimetic drugs are commonly used to prevent premature labour and may help the fetus in other ways, for example, by improving the placental blood supply and the delivery of nutrients by increasing maternal fat and carbohydrate mobilization.

  20. Effects of methylmercuric chloride of low concentration on the rat nervous system

    SciTech Connect

    Yamamura, K.; Maehara, N.; Ohno, H.; Ueno, N.; Kohyama, A.; Satoh, T.; Shimoda, A.; Kishi, R.

    1987-06-01

    In an earlier study the authors reported the effects of 20 ..mu..g/g of MeHg on the rat. After 2-week exposure to 20 ..mu..g/g MeHg, effects on behavior, pathological changes of brain and prolongation of EEP (early potential of evoked potential) latency were observed. So, in this experiment, they planned to expose rats to lower concentrations of MeHg. They therefore investigated the effects of MeHg exposure at a low concentration on behavioral indices, neurological signs, the circadian rhythm of behaviors, EEP, and pathology of the visual cortex and the sciatic nerve in rats.

  1. Embryonic Development of the Central Nervous System.

    PubMed

    de Lahunta, Alexander; Glass, Eric N; Kent, Marc

    2016-03-01

    Ultimately, it is only with an understanding of normal embryologic development that there can be an understanding of why and how a specific malformation develops. Knowing from where and when a specific part of the nervous system develops and what morphogens are at play will enable us to identify undescribed malformation as well as better define causality. The following article reviews the normal embryologic development of the mammalian nervous system and is intended to serve as a foundation for the understanding of the various malformations presented in this issue.

  2. The combined effects of capsaicin, green tea extract and chicken essence tablets on human autonomic nervous system activity.

    PubMed

    Shin, Ki Ok; Moritani, Toshio

    2007-04-01

    The purpose of this study was to investigate whether combined capsaicin, green tea, and chicken essence tablets (CCGC) enhance human autonomic nervous activities (ANS) associated with thermogenic sympathetic activity without any adverse effect on the cardiac depolarization-repolarization period. Six healthy males (25.2 +/-1.7 y) volunteered for this experiment. Autonomic nervous activities were examined 5-min at rest per 30-min for total 1.5 h after consuming chicken or CCGC or placebo tablets at random on separate days. Using heart rate variability power spectral analysis, we assessed human autonomic nervous activities. In comparison to chicken essence or placebo tablets, it was observed that the consumption of CCGC significantly increased human autonomic nervous activities [Total power representing over-all ANS activity; CCGC trial 160.2 (50.0) vs. placebo 92.8 (53.3)%, p < 0.05; VLF, very low-frequency power associated with thermogenic sympathetic activity: CCGC trial 235.5 (101.7) vs. chicken 130.5 (52.9)%, p < 0.05; LF, low frequency power representing combined sympatho-vagal activity: CCGC trial 199.8 (59.8) vs. placebo 120.6 (49.2)%, p < 0.05] at 60-min and 90-min. There were no significant differences in heart rate corrected cardiac recovery time (RTc) or QT interval (QTc). In conclusion, the consumption of CCGC enhances thermogenic sympathetic activity compared to that of chicken essence or placebo tablets. Therefore, these results suggest that combined capsaicin, green tea, and chicken essence tablets may be a beneficial food ingredient improving human autonomic nervous activities, particularly thermogenic sympathetic activity as a modulator of energy metabolism without any adverse effects on cardiac electrical stability.

  3. Exercise and the autonomic nervous system.

    PubMed

    Fu, Qi; Levine, Benjamin D

    2013-01-01

    The autonomic nervous system plays a crucial role in the cardiovascular response to acute (dynamic) exercise in animals and humans. During exercise, oxygen uptake is a function of the triple-product of heart rate and stroke volume (i.e., cardiac output) and arterial-mixed venous oxygen difference (the Fick principle). The degree to which each of the variables can increase determines maximal oxygen uptake (V˙O2max). Both "central command" and "the exercise pressor reflex" are important in determining the cardiovascular response and the resetting of the arterial baroreflex during exercise to precisely match systemic oxygen delivery with metabolic demand. In general, patients with autonomic disorders have low levels of V˙O2max, indicating reduced physical fitness and exercise capacity. Moreover, the vast majority of the patients have blunted or abnormal cardiovascular response to exercise, especially during maximal exercise. There is now convincing evidence that some of the protective and therapeutic effects of chronic exercise training are related to the impact on the autonomic nervous system. Additionally, training induced improvement in vascular function, blood volume expansion, cardiac remodeling, insulin resistance and renal-adrenal function may also contribute to the protection and treatment of cardiovascular, metabolic and autonomic disorders. Exercise training also improves mental health, helps to prevent depression, and promotes or maintains positive self-esteem. Moderate-intensity exercise at least 30 minutes per day and at least 5 days per week is recommended for the vast majority of people. Supervised exercise training is preferable to maximize function capacity, and may be particularly important for patients with autonomic disorders.

  4. Global research priorities for infections that affect the nervous system

    PubMed Central

    John, Chandy C.; Carabin, Hélène; Montano, Silvia M.; Bangirana, Paul; Zunt, Joseph R.; Peterson, Phillip K.

    2015-01-01

    Infections that cause significant nervous system morbidity globally include viral (for example, HIV, rabies, Japanese encephalitis virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, dengue virus and chikungunya virus), bacterial (for example, tuberculosis, syphilis, bacterial meningitis and sepsis), fungal (for example, cryptococcal meningitis) and parasitic (for example, malaria, neurocysticercosis, neuroschistosomiasis and soil-transmitted helminths) infections. The neurological, cognitive, behavioural or mental health problems caused by the infections probably affect millions of children and adults in low- and middle-income countries. However, precise estimates of morbidity are lacking for most infections, and there is limited information on the pathogenesis of nervous system injury in these infections. Key research priorities for infection-related nervous system morbidity include accurate estimates of disease burden; point-of-care assays for infection diagnosis; improved tools for the assessment of neurological, cognitive and mental health impairment; vaccines and other interventions for preventing infections; improved understanding of the pathogenesis of nervous system disease in these infections; more effective methods to treat and prevent nervous system sequelae; operations research to implement known effective interventions; and improved methods of rehabilitation. Research in these areas, accompanied by efforts to implement promising technologies and therapies, could substantially decrease the morbidity and mortality of infections affecting the nervous system in low- and middle-income countries. PMID:26580325

  5. Global research priorities for infections that affect the nervous system.

    PubMed

    John, Chandy C; Carabin, Hélène; Montano, Silvia M; Bangirana, Paul; Zunt, Joseph R; Peterson, Phillip K

    2015-11-19

    Infections that cause significant nervous system morbidity globally include viral (for example, HIV, rabies, Japanese encephalitis virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, dengue virus and chikungunya virus), bacterial (for example, tuberculosis, syphilis, bacterial meningitis and sepsis), fungal (for example, cryptococcal meningitis) and parasitic (for example, malaria, neurocysticercosis, neuroschistosomiasis and soil-transmitted helminths) infections. The neurological, cognitive, behavioural or mental health problems caused by the infections probably affect millions of children and adults in low- and middle-income countries. However, precise estimates of morbidity are lacking for most infections, and there is limited information on the pathogenesis of nervous system injury in these infections. Key research priorities for infection-related nervous system morbidity include accurate estimates of disease burden; point-of-care assays for infection diagnosis; improved tools for the assessment of neurological, cognitive and mental health impairment; vaccines and other interventions for preventing infections; improved understanding of the pathogenesis of nervous system disease in these infections; more effective methods to treat and prevent nervous system sequelae; operations research to implement known effective interventions; and improved methods of rehabilitation. Research in these areas, accompanied by efforts to implement promising technologies and therapies, could substantially decrease the morbidity and mortality of infections affecting the nervous system in low- and middle-income countries.

  6. [The effect of thiamine deficiency on the actions of drugs affecting the central nervous system in rats (author's transl)].

    PubMed

    Onodera, K; Sakurada, S; Ando, R; Takahashi, N; Tadano, T; Kisara, K; Ogura, Y

    1980-03-01

    Male Wistar rats, 35-days-old, maintained on a thiamine deficient diet for 30 days showed marked growth inhibition and a heart rate less than 70% of that of control rats. We examined the effect of thiamine deficiency on the action of drugs effecting the central nervous system at this period. In thiamine deficient rats treated with chloral hydrate 200 mg/kg, ketamine 100 mg/kg sodium pentobarbital 50 mg/kg, and hexobarbital 100 mg/kg, the sleeping time increased. Pretreatment with 15 mg/kg of the metabolic enzymes inhibitor, SKF-525A, 30 min prior to the hexobarbital administration resulted in prolongation of sleeping time in all groups. The thiamine deficient rats slept almost 3.5 times longer than did the control group. Pretreatment with 100 mg/kg of the metabolic enzyme inducer, sodium phenobarbital, 48 hours prior to hexobarbital treatment resulted in decreased sleeping time in all groups, as compared with only hexobarbital treatment. In the thiamine deficient rats the catalepsy and ptosis induced by the i.p. administration of tetrabenazine 50 mg/kg was reduced even when the control and pair-fed groups responded to this drug at the drug peak time. The spontaneous neuronal activity of lateral hypothalamus was most sensitive to the administration of 5-hydroxytryptophan in thiamine deficient rats.

  7. Effects of interactive instructional techniques in a web-based peripheral nervous system component for human anatomy.

    PubMed

    Allen, Edwin B; Walls, Richard T; Reilly, Frank D

    2008-02-01

    This study investigated the effects of interactive instructional techniques in a web-based peripheral nervous system (PNS) component of a first year medical school human anatomy course. Existing data from 9 years of instruction involving 856 students were used to determine (1) the effect of web-based interactive instructional techniques on written exam item performance and (2) differences between student opinions of the benefit level of five different types of interactive learning objects used. The interactive learning objects included Patient Case studies, review Games, Simulated Interactive Patients (SIP), Flashcards, and unit Quizzes. Exam item analysis scores were found to be significantly higher (p < 0.05) for students receiving the instructional treatment incorporating the web-based interactive learning objects than for students not receiving this treatment. Questionnaires using a five-point Likert scale were analysed to determine student opinion ratings of the interactive learning objects. Students reported favorably on the benefit level of all learning objects. Students rated the benefit level of the Simulated Interactive Patients (SIP) highest, and this rating was significantly higher (p < 0.05) than all other learning objects. This study suggests that web-based interactive instructional techniques improve student exam performance. Students indicated a strong acceptance of Simulated Interactive Patient learning objects.

  8. Effects of electromagnetic radiation of mobile phones on the central nervous system.

    PubMed

    Hossmann, K-A; Hermann, D M

    2003-01-01

    With the increasing use of mobile communication, concerns have been expressed about the possible interactions of electromagnetic radiation with the human organism and, in particular, the brain. The effects on neuronal electrical activity, energy metabolism, genomic responses, neurotransmitter balance, blood-brain barrier permeability, cognitive function, sleep, and various brain diseases including brain tumors are reviewed. Most of the reported effects are small as long as the radiation intensity remains in the nonthermal range, and none of the research reviewed gives an indication of the mechanisms involved at this range. However, health risks may evolve from indirect consequences of mobile telephony, such as the sharply increased incidence rate of traffic accidents caused by telephony during driving, and possibly also by stress reactions which annoyed bystanders may experience when cellular phones are used in public places. These indirect health effects presumably outweigh the direct biological perturbations and should be investigated in more detail in the future. Copyright 2002 Wiley-Liss, Inc.

  9. The analgesic effects of oxytocin in the peripheral and central nervous system.

    PubMed

    Xin, Qing; Bai, Bo; Liu, Wenyan

    2017-02-01

    Pain is a ubiquitously unpleasant feeling among humans as well as many animal species often caused by actual and potential tissue damage. However, it is absolutely crucial for our survival in many ways. Acute pain can signal the presence of danger or life-threatenting events, which help escape noxious stimuli. By contrast, when pain becomes chronic or persistent, it becomes an encumbrance and exerts deleterious effects to the body and mind, often co-occured with anxiety and depression. Additionaly, chronic pain is more or less an economic burden for the patients because it requires immediate medical treatments and seriously hinders pepople in their work. To date, there has been a lack of breakthrough progress in the pain field, despite huge gains in basic science knowledge obtained using animal models, it is still difficult to develop many new clinically effective analgesic drugs to control pain with long-term effectiveness. Opioids and nonsteroidal anti-inflammatory drugs were introduced for pain management more than a century ago. Those drugs do have proven efficacy in the treatment of pain but the use of them are also significantly limited due to the multiple serious adverse effects (e.g., drug resistance, addiction and gastrointestinal bleeding). In the field of pain relief and treatment, there is a strong impetus to develop and establish novel analgesics that must be safer and more effective to offer significant pain relief for a wide variety of painful conditions. Preliminary evidence suggests that oxytocin might be the ideal candidate as a target for reducing the severity of pain. In this review, we present a summary of the total literature related to the effects of oxytocin on pain modulation in both animals and humans. Better understanding the fundamental physiopharmacology of the actions of oxytocin in pain may highlight novel mechanisms associated with analgesia.

  10. Central Nervous System Delivery of Intranasal Insulin: Mechanisms of Uptake and Effects on Cognition.

    PubMed

    Salameh, Therese S; Bullock, Kristin M; Hujoel, Isabel A; Niehoff, Michael L; Wolden-Hanson, Tami; Kim, Junghyun; Morley, John E; Farr, Susan A; Banks, William A

    2015-01-01

    Intranasal insulin has shown efficacy in patients with Alzheimer's disease (AD), but there are no preclinical studies determining whether or how it reaches the brain. Here, we showed that insulin applied at the level of the cribriform plate via the nasal route quickly distributed throughout the brain and reversed learning and memory deficits in an AD mouse model. Intranasal insulin entered the blood stream poorly and had no peripheral metabolic effects. Uptake into the brain from the cribriform plate was saturable, stimulated by PKC inhibition, and responded differently to cellular pathway inhibitors than did insulin transport at the blood-brain barrier. In summary, these results show intranasal delivery to be an effective way to deliver insulin to the brain.

  11. Characterization of the Effects of Fatigue on the Central Nervous System (CNS) and Drug Therapies

    DTIC Science & Technology

    2007-11-01

    of sleep disruption was used to induce fatigue. This study utilized hippocampal dependant tasks, the radial arm maze and the Barnes maze , to...sleep disruption tended to improve performance in the radial arm maze . Orexin receptor antagonist SB 344867 was administered at the same time points as...modafinil for a total dose of 30 mg/kg in a 12 hour sleep disruption time period. SB 344867 had an effect on Barnes maze performance. In this

  12. The Potential Therapeutic Effects of Artesunate on Stroke and Other Central Nervous System Diseases

    PubMed Central

    Zuo, Shilun; Li, Qiang; Liu, Xin

    2016-01-01

    Artesunate is an important agent for cerebral malaria and all kinds of other severe malaria because it is highly efficient, lowly toxic, and well-tolerated. Loads of research pointed out that it had widespread pharmacological activities such as antiparasites, antitumor, anti-inflammation, antimicrobes activities. As we know, the occurrence and development of neurological disorders usually refer to intricate pathophysiologic mechanisms and multiple etiopathogenesis. Recent progress has also demonstrated that drugs with single mechanism and serious side-effects are not likely the candidates for treatment of the neurological disorders. Therefore, the pluripotent action of artesunate may result in it playing an important role in the prevention and treatment of these neurological disorders. This review provides an overview of primary pharmacological mechanism of artesunate and its potential therapeutic effects on neurological disorders. Meanwhile, we also briefly summarize the primary mechanisms of artemisinin and its derivatives. We hope that, with the evidence presented in this review, the effect of artesunate in prevention and curing for neurological disorders can be further explored and studied in the foreseeable future. PMID:28116289

  13. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions.

    PubMed

    Suganthy, Natarajan; Devi, Kasi Pandima; Nabavi, Seyed Fazel; Braidy, Nady; Nabavi, Seyed Mohammad

    2016-12-01

    Quercetin, a ubiquitous flavonoid that is widely distributed in plants is classified as a cognitive enhancer in traditional and oriental medicine. The protective effects of quercetin for the treatment of neurodegenerative disorders and cerebrovascular diseases have been demonstrated in both in vitro and in vivo studies. The free radical scavenging activity of quercetin has been well-documented, wherein quercetin has been observed to exhibit protective effects against oxidative stress mediated neuronal damage by modulating the expression of NRF-2 dependent antioxidant responsive elements, and attenuation of neuroinflammation by suppressing NF-κB signal transducer and activator of transcription-1 (STAT-1). Several in vitro and in vivo studies have also shown that quercetin destabilizes and enhances the clearance of abnormal protein such as beta- amyloid peptide and hyperphosphorlyated tau, the key pathological hallmarks of Alzheimer's disease. Quercetin enhances neurogenesis and neuronal longevity by modulating a broad number of kinase signaling cascades such as phophoinositide 3- kinase (P13-kinase), AKT/PKB tyrosine kinase and Protein kinase C (PKC). Quercetin has also been well reported for its ability to reverse cognitive impairment and memory enhancement during aging. The current review focuses on summarizing the recent findings on the neuroprotective effect of quercetin, its mechanism of action and its possible roles in the prevention of neurological disorders.

  14. Central nervous system and computation.

    PubMed

    Guidolin, Diego; Albertin, Giovanna; Guescini, Michele; Fuxe, Kjell; Agnati, Luigi F

    2011-12-01

    Computational systems are useful in neuroscience in many ways. For instance, they may be used to construct maps of brain structure and activation, or to describe brain processes mathematically. Furthermore, they inspired a powerful theory of brain function, in which the brain is viewed as a system characterized by intrinsic computational activities or as a "computational information processor. "Although many neuroscientists believe that neural systems really perform computations, some are more cautious about computationalism or reject it. Thus, does the brain really compute? Answering this question requires getting clear on a definition of computation that is able to draw a line between physical systems that compute and systems that do not, so that we can discern on which side of the line the brain (or parts of it) could fall. In order to shed some light on the role of computational processes in brain function, available neurobiological data will be summarized from the standpoint of a recently proposed taxonomy of notions of computation, with the aim of identifying which brain processes can be considered computational. The emerging picture shows the brain as a very peculiar system, in which genuine computational features act in concert with noncomputational dynamical processes, leading to continuous self-organization and remodeling under the action of external stimuli from the environment and from the rest of the organism.

  15. Adenine nucleotide effect on intraocular pressure: Involvement of the parasympathetic nervous system.

    PubMed

    Peral, Assumpta; Gallar, Juana; Pintor, Jesús

    2009-06-15

    Nucleotides are present in the aqueous humor possibly exerting physiological effects on intraocular pressure (IOP). To determine the effect of nucleotides such as ATP and its related derivatives on IOP, New Zealand white rabbits were used. IOP was measured in rabbits treated topically either with saline (control) or with a single dose (10 microg/microL) of adenine nucleotides (ATP, 2-meS-ATP, ATP-gamma-S, alpha,beta-meADP, alpha,beta-meATP and beta,gamma-meATP). Those nucleotides reducing IOP (alpha,beta-meATP and beta,gamma-meATP) were then tested in concentrations ranging from 1 to 100 microg/microL to obtain the IC(50) value. Several antagonists for the P2 and adenosine A1 receptors (all at 10 microg/microL) were assayed 30 min before the application of the hypotensive nucleotide beta,gamma-meATP. To see whether the nucleotide was acting directly on the structures involved in aqueous humor dynamics or on the autonomic nerves controlling IOP, animal denervation and sympathetic (yohimbine and ICI-118,551 at 10 microg/microL) and parasympathetic (atropine and hexametonium at 10 microg/microL) receptors' antagonists were used 30 min before the instillation of beta,gamma-meATP. alpha,beta-meATP and beta,gamma-meATP decreased IOP to 60% of control value (basal IOP=23.2+/-1.3 mmHg), with IC(50) of 1.59+/-0.21 microg/microLand 0.56+/-0.62 microg/microL, which corresponds to 3mM and 1mM respectively. Denervation completely abolished the effect of beta,gamma-meATP. Sympathetic antagonists did not modify the hypotensive effect of beta,gamma-meATP, but parasympathetic antagonists were able to abolish it. Among the series of adenine nucleotide tested, alpha,beta-meATP and beta,gamma-meATP presented hypotensive actions on IOP. beta,gamma-meATP seems to stimulate cholinergic terminals being its final effect the IOP reduction. Therefore, these two nucleotides are interesting pharmacological tools for those pathologies related with high intraocular pressure.

  16. Lack of effect of central nervous system-active doses of nabilone on capsaicin-induced pain and hyperalgesia.

    PubMed

    Kalliomäki, Jarkko; Philipp, Andrew; Baxendale, Jane; Annas, Peter; Karlsten, Rolf; Segerdahl, Märta

    2012-04-01

    The aim of the present study was to investigate the effects of nabilone on capsaicin-induced pain and hyperalgesia, as well as on biomarkers of cannabinoid central nervous system (CNS) effects. A randomized, double-blind, placebo-controlled, crossover study was conducted in 30 healthy male volunteers receiving single doses of nabilone (1, 2 or 3 mg). Pain intensity after intradermal capsaicin injections in the forearm was assessed by continuous visual analogue scale (0-100 mm). Capsaicin cream was applied to the calf to induce hyperalgesia. Primary hyperalgesia was assessed by measuring heat pain thresholds, whereas secondary hyperalgesia was assessed by measuring the area where light tactile stimulation was felt to be painful. Pain and hyperalgesia were measured at baseline and 2-3.5 h after dosing. The CNS effects were assessed at baseline and up to 24 h after dosing using visual analogue mood scales for feeling 'stimulated', 'anxious', 'sedated' and 'down'. Plasma samples for pharmacokinetic analysis were obtained up to 24 h after drug administration. Nabilone did not significantly attenuate either ongoing pain or primary or secondary hyperalgesia, whereas dose-dependent CNS effects were observed from 1.5 to 6 h after dosing, being maximal at 4-6 h. Plasma concentrations of nabilone and its metabolite carbinol were maximal 1-2 h after dosing. Adverse events (AE) were common on nabilone treatment. Four subjects withdrew due to pronounced CNS AE (anxiety, agitation, altered perception, impaired consciousness). Although nabilone had marked CNS effects, no analgesic or antihyperalgesic effects were observed.

  17. Late effects of 2.2 GeV protons on the central nervous system.

    NASA Technical Reports Server (NTRS)

    Lippincott, S. W.; Calvo, W.

    1971-01-01

    Investigation of late pathological effects of high-energy (2.2 GeV) protons on the brain of rabbits, in a postirradiation period of up to 16 months following exposure at fluxes of 30, 100, and 1000 billion protons per sq cm. At the latter two irradiation-intensity levels, the kinds of brain lesions inflicted include large venous dilatation, thickening of vessel walls with deposit of amorphous PAS positive substance, thrombosis, perivascular infiltration of leukocytes and macrophages, mobilization of microglia cells, gliosis, demyelinization, and multiple small pseudocyst formation.

  18. DELAYED EFFECTS OF RADIATION ON THE HUMAN CENTRAL NERVOUS SYSTEM. EARLY AND LATE DELAYED REACTIONS,

    DTIC Science & Technology

    multiple sclerosis and are not associated with degenerative vascular changes. This patient probably represents an extreme of the early delayed reaction reported by Scholz in dogs. There is clinical evidence suggesting that some degree of damage of this type occurs more frequently than has been suspected. The other patient had the late delayed reaction in which there are marked degenerative vascular alternations and severe destruction of the white matter with little cortical involvement. This patient is an extreme example of the well-documented late delayed effects of

  19. Effects of fish oil on the central nervous system: a new potential antidepressant?

    PubMed

    Naliwaiko, K; Araújo, R L E; da Fonseca, R V; Castilho, J C; Andreatini, R; Bellissimo, M I; Oliveira, B H; Martins, E F; Curi, R; Fernandes, L C; Ferraz, A C

    2004-04-01

    In the last 100 years major depression has increased worldwide. In this study we provided coconut fat (CF, rich in saturated fatty acids) or fish oil (FO, rich in n-3 polyunsaturated fatty acids) to female rats throughout pregnancy and lactation and then to their offspring post-weaning and examined lipid brain profile and the possible effect of FO as antidepressant agent in the offspring in adulthood (F1). Rats were submitted to forced swimming test, elevated plus maze, Morris water maze and open field. Peroxidation rate in the cerebral cortex and hippocampus were measured. Docosahexaenoic acid (DHA) concentration in dam's milk, eicosapentaenoic acid (EPA) and DHA concentration in hippocampus and cerebral cortex from F1 rats FO supplemented increased significantly when compared to control (C) and CF rats. Arachidonic acid/EPA ratio in the cerebral cortex and hippocampus decreased in rats submitted to forced swimming test. Peroxidation rate were not different between the groups. Immobility time in the forced swimming test in FO group was reduced (p < 0.01) when compared to C and CF rats. We conclude that lifelong intake of FO was able to induce an antidepressant effect with EPA and DHA concentration increased in the cerebral cortex and hippocampus.

  20. Mechanism of low-level microwave radiation effect on nervous system.

    PubMed

    Hinrikus, Hiie; Bachmann, Maie; Karai, Denis; Lass, Jaanus

    2017-01-01

    The aim of this study is to explain the mechanism of the effect of low-level modulated microwave radiation on brain bioelectrical oscillations. The proposed model of excitation by low-level microwave radiation bases on the influence of water polarization on hydrogen bonding forces between water molecules, caused by this the enhancement of diffusion and consequences on neurotransmitters transit time and neuron resting potential. Modulated microwave radiation causes periodic alteration of the neurophysiologic parameters and parametric excitation of brain bioelectric oscillations. The experiments to detect logical outcome of the mechanism on physiological level were carried out on 15 human volunteers. The 450-MHz microwave radiation modulated at 7, 40 and 1000 Hz frequencies was applied at the field power density of 0.16 mW/cm(2). A relative change in the EEG power with and without radiation during 10 cycles was used as a quantitative measure. Experimental data demonstrated that modulated at 40 Hz microwave radiation enhanced EEG power in EEG alpha and beta frequency bands. No significant alterations were detected at 7 and 1000 Hz modulation frequencies. These results are in good agreement with the theory of parametric excitation of the brain bioelectric oscillations caused by the periodic alteration of neurophysiologic parameters and support the proposed mechanism. The proposed theoretical framework has been shown to predict the results of experimental study. The suggested mechanism, free of the restrictions related to field strength or time constant, is the first one providing explanation of low-level microwave radiation effects.

  1. A comparison of the central nervous system effects of caffeine and theophylline in elderly subjects.

    PubMed Central

    Yu, G; Maskray, V; Jackson, S H; Swift, C G; Tiplady, B

    1991-01-01

    1. The effects of oral administration of 250 mg caffeine or theophylline and placebo on subjective ratings and psychological test performance were studied in a double-blind crossover experiment in 20 healthy elderly subjects. 2. Performance on the continuous attention task showed a significant improvement compared with placebo with both active treatments. Performance with caffeine was significantly better than with theophylline. Mean error index scores (normalised AUCs) were: placebo--0.130; caffeine--0.083; theophylline--0.093. No other objective measure shows significant treatment effects. 3. Subjective ratings showed that subjects felt significantly more alert on caffeine than on either theophylline or placebo. Subjects also rated themselves as more energetic and interested on caffeine than on placebo. 4. Plasma concentrations of caffeine were lower than those of theophylline (mean 5.76 and 8.72 mg l-1 respectively at 2 h post-drug. 5. These results suggest that caffeine is a more potent CNS stimulant than theophylline. PMID:1777371

  2. [Medicinal cannabis for diseases of the nervous system: no convincing evidence of effectiveness].

    PubMed

    Killestein, J; Bet, P M; van Loenen, A C; Polman, C H

    2004-11-27

    --In 1996, the Netherlands Health Council issued a negative recommendation regarding the use of medication on the basis of cannabis (marihuana). However, interest in medicinal cannabis has certainly not waned since. --The neurological diseases for which cannabis could presently be used therapeutically are: multiple sclerosis, chronic (neuropathic) pain and the syndrome of Gilles de la Tourette. --Since September 2003, the Dutch Ministry of Health, Welfare and Sport delivers medicinal cannabis to Dutch pharmacies, so that now for the first time, medicinal cannabis can be given to patients on a prescription basis within the framework of the Opium Law. The result of this is that doctors and patients now assume that this is a medication for which the efficacy and safety have been established. --The question arises whether new scientific data have become available since 1996 that provide scientific support for the current Governmental policy. --In a recent clinical trial that has aroused much discussion, patients with multiple sclerosis and problematic spasticity were treated with oral cannabis or a placebo. There was no significant effect of treatment on the primary outcome measure, i.e. objectively determined spasticity. Nevertheless, it was concluded that the mobility was improved and that the pain was subjectively decreased. --Until now, convincing scientific evidence that cannabinoids are effective in neurological conditions is still lacking. --However, it is also not possible to conclude definitely that cannabinoids are ineffective; still, this is no basis for official stimulation of their use.

  3. Serotonin release from the neuronal cell body and its long-lasting effects on the nervous system.

    PubMed

    De-Miguel, Francisco F; Leon-Pinzon, Carolina; Noguez, Paula; Mendez, Bruno

    2015-07-05

    Serotonin, a modulator of multiple functions in the nervous system, is released predominantly extrasynaptically from neuronal cell bodies, axons and dendrites. This paper describes how serotonin is released from cell bodies of Retzius neurons in the central nervous system (CNS) of the leech, and how it affects neighbouring glia and neurons. The large Retzius neurons contain serotonin packed in electrodense vesicles. Electrical stimulation with 10 impulses at 1 Hz fails to evoke exocytosis from the cell body, but the same number of impulses at 20 Hz promotes exocytosis via a multistep process. Calcium entry into the neuron triggers calcium-induced calcium release, which activates the transport of vesicle clusters to the plasma membrane. Exocytosis occurs there for several minutes. Serotonin that has been released activates autoreceptors that induce an inositol trisphosphate-dependent calcium increase, which produces further exocytosis. This positive feedback loop subsides when the last vesicles in the cluster fuse and calcium returns to basal levels. Serotonin released from the cell body is taken up by glia and released elsewhere in the CNS. Synchronous bursts of neuronal electrical activity appear minutes later and continue for hours. In this way, a brief train of impulses is translated into a long-term modulation in the nervous system.

  4. Evolving specialization of the arthropod nervous system.

    PubMed

    Jarvis, Erin; Bruce, Heather S; Patel, Nipam H

    2012-06-26

    The diverse array of body plans possessed by arthropods is created by generating variations upon a design of repeated segments formed during development, using a relatively small "toolbox" of conserved patterning genes. These attributes make the arthropod body plan a valuable model for elucidating how changes in development create diversity of form. As increasingly specialized segments and appendages evolved in arthropods, the nervous systems of these animals also evolved to control the function of these structures. Although there is a remarkable degree of conservation in neural development both between individual segments in any given species and between the nervous systems of different arthropod groups, the differences that do exist are informative for inferring general principles about the holistic evolution of body plans. This review describes developmental processes controlling neural segmentation and regionalization, highlighting segmentation mechanisms that create both ectodermal and neural segments, as well as recent studies of the role of Hox genes in generating regional specification within the central nervous system. We argue that this system generates a modular design that allows the nervous system to evolve in concert with the body segments and their associated appendages. This information will be useful in future studies of macroevolutionary changes in arthropod body plans, especially in understanding how these transformations can be made in a way that retains the function of appendages during evolutionary transitions in morphology.

  5. Cardiovascular effects of CDP-choline and its metabolites: involvement of peripheral autonomic nervous system.

    PubMed

    Cansev, Mehmet; Yilmaz, Mustafa Sertac; Ilcol, Yesim Ozarda; Hamurtekin, Emre; Ulus, Ismail Hakki

    2007-12-22

    Intraperitoneal administration of CDP-choline (200-900 micromol/kg) increased blood pressure and decreased heart rate of rats in a dose- and time-dependent manner. These responses were accompanied by elevated serum concentrations of CDP-choline and its metabolites phosphocholine, choline, cytidine monophosphate and cytidine. Blood pressure increased by intraperitoneal phosphocholine (200-900 micromol/kg), while it decreased by choline (200-600 micromol/kg) administration; phosphocholine or choline administration (up to 600 micromol/kg) decreased heart rate. Intraperitoneal cytidine monophosphate (200-600 micromol/kg) or cytidine (200-600 micromol/kg) increased blood pressure without affecting heart rate. Pressor responses to CDP-choline, phosphocholine, cytidine monophosphate or cytidine were not altered by pretreatment with atropine methyl nitrate or hexamethonium while hypotensive effect of choline was reversed to pressor effect by these pretreatments. Pretreatment with atropine plus hexamethonium attenuated or blocked pressor response to CDP-choline or phosphocholine, respectively. Heart rate responses to CDP-choline, phosphocholine and choline were blocked by atropine and reversed by hexamethonium. Cardiovascular responses to CDP-choline, phosphocholine and choline, but not cytidine monophosphate or cytidine, were associated with elevated plasma catecholamines concentrations. Blockade of alpha-adrenoceptors by prazosin or yohimbine attenuated pressor response to CDP-choline while these antagonists blocked pressor responses to phosphocholine or choline. Neither bilateral adrenalectomy nor chemical sympathectomy altered cardiovascular responses to CDP-choline, choline, cytidine monophosphate or cytidine. Sympathectomy attenuated pressor response to phosphocholine. Results show that intraperitoneal administration of CDP-choline and its metabolites alter cardiovascular parameters and suggest that peripheral cholinergic and adrenergic receptors are involved in these

  6. A comparison of the central nervous system effects of haloperidol, chlorpromazine and sulpiride in normal volunteers.

    PubMed Central

    McClelland, G R; Cooper, S M; Pilgrim, A J

    1990-01-01

    1. Twelve healthy male volunteers participated in four experimental occasions during each of which they were dosed with one of the following anti-psychotic drugs: chlorpromazine (50 mg), haloperidol (3 mg), sulpiride (400 mg) and placebo. Drugs were allocated to subjects in a double-blind, crossover fashion. 2. The subject's mood state, psychometric performance and electroencephalogram (EEG) were assessed pre-dose, and at 2, 4, 6, 8, 24 and 48 h post-dose. Mood states were assessed using 16 visual analogue scales and psychomotor performance was measured using the following tests: elapsed time estimation, tapping rate, choice reaction times, a rapid information processing task, flash fusion threshold, a manipulative motor task, digit span, body sway and tremor. 3. Chlorpromazine and haloperidol significantly reduced subjective ratings of 'alertness' and 'contentedness', and haloperidol significantly reduced feelings of 'calmness'. Sulpiride did not significantly affect any of the visual analogue scales. 4. All three anti-psychotic drugs had similar EEG effects with peak effect 2 to 4 h postdose. The profile was characterised by an increase in the proportion of slow wave activity (delta and theta) as well as decreased alpha (8-14 Hz) and faster (beta) wave activity. 5. Chlorpromazine reduced tapping rate and increased choice reaction movement times. Haloperidol reduced the flash fusion threshold frequency at 6 h post-dose. Sulpiride prolonged the duration of the manipulative motor task, particularly at 48 h post-dose. 6. All three anti-psychotic drugs impaired performance on the rapid information processing task. Chlorpromazine significantly reduced the number of correct letter pair identifications at 2, 4 and 6 h post-dose, haloperidol at 4, 6, 8, 24 and 48 h post-dose, and sulpiride at 24 h post-dose.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2288826

  7. The influence of essential oil of aniseed (Pimpinella anisum, L.) on drug effects on the central nervous system.

    PubMed

    Samojlik, Isidora; Mijatović, Vesna; Petković, Stojan; Skrbić, Biljana; Božin, Biljana

    2012-12-01

    Anise (Pimpinella anisum L.; Apiaceae) and its essential oil have been widely used in folk medicine, pharmacy and food industry. Since there are some data about the impact of anise on functions of central nervous system (CNS), the issue of possible interactions with drugs acting in CNS should be considered. This survey aimed to examine the influence of aniseed essential oil (EO) intake on the effects of drugs that act in CNS. The chemical profile of essential oil determined by GC-MS revealed as the main components: trans-anethole (88.49%), γ-himachalene (3.13%), cis-isoeugenol (1.99%), and linalool (1.79%). The effects of codeine, diazepam, midazolam, pentobarbital, imipramine and fluoxetine were tested in mice after 5days of peroral pretreatment with human equivalent dose of aniseed EO (0.3mg/kg). The intake of EO led to significant increase of analgesic effect of codeine. The motor impairment caused by midazolam was enhanced in the group treated by EO. The application of diazepam decreased the number and percentage of entries in open arm in elevated maze plus test in the group pretreated with EO indicating augmented effect of drug on motor activity. EO pretreatment caused significant shortage of pentobarbital induced sleeping time when compared to control. The decrease in antidepressant effect of imipramine and fluoxetine was diminished by the pretreatment with aniseed EO. Based on the results of this study we conclude that concomitant intake of aniseed EO preparations and drugs that act on CNS should be avoided due to potential herb-drug interactions, which also need further clinical confirmation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Stimulatory Effect of Insulin on Glucose Uptake by Muscle Involves the Central Nervous System in Insulin-Sensitive Mice

    PubMed Central

    Coomans, Claudia P.; Biermasz, Nienke R.; Geerling, Janine J.; Guigas, Bruno; Rensen, Patrick C.N.; Havekes, Louis M.; Romijn, Johannes A.

    2011-01-01

    OBJECTIVE Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin–stimulated tissue-specific glucose uptake. RESEARCH DESIGN AND METHODS Tolbutamide, an inhibitor of ATP-sensitive K+ channels (KATP channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[14C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[3H]glucose uptake. RESULTS During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. CONCLUSIONS Insulin stimulates glucose uptake in muscle in part through effects via KATP channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet–induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance. PMID:22028182

  9. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    PubMed

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  10. Effect of repetitive SCUBA diving on humoral markers of endothelial and central nervous system integrity.

    PubMed

    Bilopavlovic, Nada; Marinovic, Jasna; Ljubkovic, Marko; Obad, Ante; Zanchi, Jaksa; Pollock, Neal W; Denoble, Petar; Dujic, Zeljko

    2013-07-01

    During SCUBA diving decompression, there is a significant gas bubble production in systemic veins, with rather frequent bubble crossover to arterial side even in asymptomatic divers. The aim of the current study was to investigate potential changes in humoral markers of endothelial and brain damage (endothelin-1, neuron-specific enolase and S-100β) after repetitive SCUBA diving with concomitant assessment of venous gas bubble production and subsequent arterialization. Sixteen male divers performed four open-water no-decompression dives to 18 msw (meters of sea water) lasting 49 min in consecutive days during which they performed moderate-level exercise. Before and after dives 1 and 4 blood was drawn, and bubble production and potential arterialization were echocardiographically evaluated. In addition, a control dive to 5 msw was performed with same duration, water temperature and exercise load. SCUBA diving to 18 msw caused significant bubble production with arterializations in six divers after dive 1 and in four divers after dive 4. Blood levels of endothelin-1 and neuron-specific enolase did not change after diving, but levels of S-100β were significantly elevated after both dives to 18 msw and a control dive. Creatine kinase activity following a control dive was also significantly increased. Although serum S-100β levels were increased after diving, concomitant increase of creatine kinase during control, almost bubble-free, dive suggests the extracranial release of S-100β, most likely from skeletal muscles. Therefore, despite the significant bubble production and sporadic arterialization after open-water dives to 18 msw, the current study found no signs of damage to neurons or the blood-brain barrier.

  11. Delayed effects of neutron irradiation on central nervous system microvasculature in the rat

    SciTech Connect

    Goodman, J.H.; McGregor, J.M.; Clendenon, N.R.; Gordon, W.A.; Yates, A.J.; Gahbauer, R.A.; Barth, R.F.; Fairchild, R.G.

    1988-01-01

    Pathologic examination of a series of 14 patients with malignant gliomas treated with BNCT showed well demarcated zones of radiation damage characterized by coagulation necrosis. Beam attenuation was correlated with edema, loss of parenchymal elements, demyelination, leukocytosis, and peripheral gliosis. Vascular disturbances consisted of endothelial swelling, medial and adventitial proliferation, fibrin impregnation, frequent thrombosis, and perivascular inflammation. Radiation changes appeared to be acute and delayed. The outcome of the patients in this series was not significantly different from the natural course of the disease, even though two of the patients had no residual tumor detected at the time of autopsy. The intensity of the vascular changes raised a suspicion that boron may have sequestered in vessel walls, resulting in selectively high doses of radiation to these structures (Asbury et al., 1972), or that there may have been high blood concentrations of boron at the time of treatment. The potential limiting effects of a vascular ischemic reaction in Boron Neutron Capture Therapy (BNCT) prompted the following study to investigate the delayed response of microvascular structures in a rat model currently being used for pre-clinical investigations. 8 refs., 3 figs., 1 tab.

  12. Effects of different "relaxing" music styles on the autonomic nervous system.

    PubMed

    Perez-Lloret, Santiago; Diez, Joaquín; Domé, María Natalia; Delvenne, Andrea Alvarez; Braidot, Nestor; Cardinali, Daniel P; Vigo, Daniel Eduardo

    2014-01-01

    The objective of this study was to assess the effects on heart rate variability (HRV) of exposure to different styles of "relaxing" music. Autonomic responses to musical stimuli were correlated with subjective preferences regarding the relaxing properties of each music style. Linear and nonlinear HRV analysis was conducted in 25 healthy subjects exposed to silence or to classical, new age or romantic melodies in a random fashion. At the end of the study, subjects were asked to choose the melody that they would use to relax. The low-to-high-frequency ratio was significantly higher when subjects were exposed to "new age" music when compared with silence (3.4 ± 0.3 vs. 2.6 ± 0.3, respectively, P < 0.02), while no differences were found with "classical" or "romantic" melodies (2.1 ± 0.4 and 2.2 ± 0.3). These results were related to a reduction in the high frequency component with "new age" compared to silence (17.4 ± 1.9 vs. 23.1 ± 1.1, respectively P < 0.004). Significant differences across melodies were also found for nonlinear HRV indexes. Subjects' preferences did not correlate with autonomic responses to melodies. The results suggest that "new age" music induced a shift in HRV from higher to lower frequencies, independently on the music preference of the listener.

  13. Effects of hypernatraemia in the central nervous system and its therapy in rats and rabbits.

    PubMed Central

    Ayus, J C; Armstrong, D L; Arieff, A I

    1996-01-01

    1. We studied the effects of acute (1 or 4 h) and chronic (1 week) hypernatraemia (plasma [Na+], 170-190 mM) on brain histology, and brain water and solute contents in rats and rabbits. 2. In rabbits with acute hypernatraemia, there was significant loss of intracellular brain water, with increases in brain [Na+ + K+], amino acid concentration, and undetermined solute (idiogenic osmole). After 1 week of recovery, brain intracellular water content had returned to normal. 3. In hypernatraemic rats there was myelinolysis of brain white matter, with karyorrhexis and necrosis of neurons. 4. Hypernatraemic rabbits were treated with 77 mM NaCl (i.v.) to normalize plasma [Na+] over 4-24 h intervals. Therapy of either acute or chronic hypernatraemia resulted in significant brain oedema because brain osmolality failed to decrease at the same rate as plasma osmolality. 5. It is concluded that: (a) untreated hypernatraemia results in brain lesions demonstrating myelinolysis and cellular necrosis; (b) normalization of hypernatraemia over 4-24 h results in cerebral oedema, due primarily to failure of brain amino acids and idiogenic osmoles to dissipate as plasma [Na+] is decreased to normal. Images Figure 5 PMID:8730599

  14. Investigation of radiofrequency/microwave effects upon the central nervous system. Final report

    SciTech Connect

    Shelton, W.W.

    1980-06-26

    A study to determine the effect of pulsed electromagnetic energy upon brain calcium behavior was undertaken. An innovative approach for loading the cerebral tissues with radiocalcium was introduced. Intraventricular injections through the skull placed Ca-45 solution directly into the right lateral ventricle. Two hours later, companion frontal lobe samples were placed in separate glass breakers containing physiologic solution for a 20-min exposure to pulsed electromagnetic energy. An efflux value was calculated for each sample. A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mW/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analysed for radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set are still being evaluated.

  15. Effects of different forms of central nervous system prophylaxis on neuropsychologic function in childhood leukemia

    SciTech Connect

    Rowland, J.H.; Glidewell, O.J.; Sibley, R.F.; Holland, J.C.; Tull, R.; Berman, A.; Brecher, M.L.; Harris, M.; Glicksman, A.S.; Forman, E.

    1984-12-01

    A comparison of the late effects on intellectual and neuropsychologic function of three different CNS prophylaxis regimens was conducted in 104 patients treated for childhood acute lymphocytic leukemia. Of the children studied, 33 were randomized to treatment with intrathecal (IT) methotrexate alone, 36 to IT methotrexate plus 2,400 rad cranial irradiation, and 35 to IT methotrexate plus intravenous intermediate dose methotrexate. All patients were in their first (complete) continuous remission, were a minimum of one year post-CNS prophylaxis and had no evidence of CNS disease at the time of evaluation. In contrast to the other two treatment groups, children whose CNS prophylaxis included cranial irradiation attained significantly lower mean Full Scale IQs, performed more poorly on the Wide Range Achievement Test, a measure of school abilities, and exhibited a greater number of difficulties on a variety of other neuropsychologic measures. The poorer performance of the irradiated group was independent of sex of the patient, time since treatment and age at diagnosis. These data suggest that the addition of 2,400 rad cranial irradiation to CNS prophylaxis in ALL puts these children at greater risk for mild global loss in intellectual and neuropsychologic ability.

  16. The teratogenic effects of salicylic acid on the developing nervous system in rats in vitro.

    PubMed

    Joschko, M A; Dreosti, I E; Tulsi, R S

    1993-08-01

    Aspirin ingestion in humans and animals has been reported to lead to a range of undesirable outcomes, including fetal death, growth retardation, and congenital abnormalities. Rat embryos were cultured for 48 h in 100-300 micrograms/ml of salicylic acid, a metabolite of aspirin, days 9.5-11.5 of gestation. When compared to growth in control embryos, a significant dose-dependent decrease in crown-rump lengths, somite numbers, and yolk sac diameters was observed. There was also a significant increase in overall dysmorphology, including eye, brachial arch, and heart anomalies, and an absence of forelimb buds. The neural tube was especially vulnerable and had frequently failed to close. Cellular and ultrastructural examination revealed extensive cell death in the neuroepithelium, with a lesser effect on the mesenchymal cells. Large condensed blebs projected into the ventricular lumen, and cell membranes as well as the basal lamina were severely disrupted, with all cytoplasmic organelles affected in dying cells. It is likely that the extensive cell necrosis and blebbing in the developing neuroepithelium at the site of neural tube fusion may be involved in failed neurulation, while necrosis at other sites in the cranial neuroepithelium may be linked with previously reported intellectual and behavioural abnormalities.

  17. Central Nervous System Effects of Iso-6-spectaline Isolated from Senna Spectabilis var. Excelsa (Schrad) in Mice.

    PubMed

    Silva, Fo; Silva, Mgv; Cerqueira, Gs; Sabino, Eb; Almeida, Aac; Costa, Jp; Freitas, Rm

    2011-07-01

    The central nervous system (CNS) depressant and anticonvulsant activities of iso-6-spectaline (SPEC) were investigated in animal models. The SPEC from Senna spectabilis var. excelsa (Schrad) (0.1, 0.5 and 1.0 mg/ kg) injected by oral route (p.o.) in mice caused a significant decrease in the motor activity up to 30 days after the administration and in the dose of 1.0 mg/kg significantly reduced the remaining time on the Rota-rod apparatus. Additionally, SPEC (0.1, 0.5 and 1.0 mg/kg, p.o.) was also capable of promoting increase of latency for development of convulsions induced by pentylenetetrazole. This SPEC was also capable of promoting an increase of latency for development of convulsions induced by picrotoxin at highest dose. In the same way, the anticonvulsant effect of SPEC was affected by pretreatment with flumazenil, a selective antagonist of the benzodiazepine site of the GABA(A) receptor. These results suggest possible CNS depressant and anticonvulsant activities in mice that needs further investigation.

  18. Schedule-dependent synergistic effect of rituximab on methotrexate chemotherapy against lymphoma of the central nervous system

    PubMed Central

    JIN, JUYOUN; JOO, KYEUNG MIN; NAM, YOONHEE; KIM, DAE HYUN; LEE, SE JEONG; JO, MI-YOUNG; JIN, YOUNGGEON; KIM, HYEONG-SEOK; SEO, SOO WON; KIM, SEOK JIN; NAM, DO-HYUN; KIM, WON SEOG

    2010-01-01

    We hypothesized that methotrexate (MTX) normalizes the increased permeability of the blood-tumor barrier and thus reduces the accessibility of rituximab (RTX) to central nervous system (CNS) lymphoma. Here, we evaluated the combinational treatment capability of RTX and MTX using an alternative treatment schedule against CNS lymphoma. We developed a CNS lymphoma animal model that closely mimics the morphological and molecular characteristics of human CNS lymphoma by injecting Raji human Burkitt lymphoma cells into the brains of immune-compromised mice and tested a novel combinational treatment schedule by which penetration of RTX was not influenced by MTX administration. RTX was conjugated with Alexa Fluor 680, and its distribution in the brain was analyzed by in vivo imaging. When MTX treatment was followed by a 3-day post RTX administration, RTX was scarcely distributed in the brain, and there were only modest statistically insignificant therapeutic effects compared with the control mice which received sham injections. In contrast, RTX administration followed by a 3-day post MTX treatment showed significantly increased distribution of RTX and significantly reduced tumor volume in the brain. Collectively, our data demonstrate that RTX can be successfully combined with MTX using an alternative treatment schedule that allows increased distribution of RTX in CNS lymphoma. PMID:22993623

  19. Central Nervous System Effects of Iso-6-spectaline Isolated from Senna Spectabilis var. Excelsa (Schrad) in Mice

    PubMed Central

    Silva, FO; Silva, MGV; Cerqueira, GS; Sabino, EB; Almeida, AAC; Costa, JP; Freitas, RM

    2011-01-01

    The central nervous system (CNS) depressant and anticonvulsant activities of iso-6-spectaline (SPEC) were investigated in animal models. The SPEC from Senna spectabilis var. excelsa (Schrad) (0.1, 0.5 and 1.0 mg/ kg) injected by oral route (p.o.) in mice caused a significant decrease in the motor activity up to 30 days after the administration and in the dose of 1.0 mg/kg significantly reduced the remaining time on the Rota-rod apparatus. Additionally, SPEC (0.1, 0.5 and 1.0 mg/kg, p.o.) was also capable of promoting increase of latency for development of convulsions induced by pentylenetetrazole. This SPEC was also capable of promoting an increase of latency for development of convulsions induced by picrotoxin at highest dose. In the same way, the anticonvulsant effect of SPEC was affected by pretreatment with flumazenil, a selective antagonist of the benzodiazepine site of the GABAA receptor. These results suggest possible CNS depressant and anticonvulsant activities in mice that needs further investigation. PMID:21897664

  20. Neurotoxic effects of n-hexane on the human central nervous system: evoked potential abnormalities in n-hexane polyneuropathy.

    PubMed Central

    Chang, Y C

    1987-01-01

    An outbreak of n-hexane polyneuropathy as a result of industrial exposure occurred in printing factories in Taipei area from December 1983 to February 1985. Multimodality evoked potentials study was performed on 22 of the polyneuropathy cases, five of the subclinical cases, and seven of the unaffected workers. The absolute and interpeak latencies of patterned visual evoked potential (pVEP) in both the polyneuropathy and subclinical groups were longer than in the normal controls. The pVEP interpeak amplitude was also decreased in the polyneuropathy cases. Brainstem auditory evoked potentials (BAEP), showed no difference of wave I latency between factory workers and normal controls, but prolongation of the wave I-V interpeak latencies was noted, corresponding with the severity of the polyneuropathy. In somatosensory evoked potentials (SEPs), both the absolute latencies and central conduction time (CCT) were longer in subclinical and polyneuropathy cases than in the unaffected workers and normal controls. From this evoked potentials study, chronic toxic effects of n-hexane on the central nervous system were shown. PMID:3031221

  1. Peripheral nervous system manifestations in systemic autoimmune diseases.

    PubMed

    Cojocaru, Inimioara Mihaela; Cojocaru, Manole; Silosi, Isabela; Vrabie, Camelia Doina

    2014-09-01

    The peripheral nervous system refers to parts of the nervous system outside the brain and spinal cord. Systemic autoimmune diseases can affect both the central and peripheral nervous systems in a myriad of ways and through a heterogeneous number of mechanisms leading to many different clinical manifestations. As a result, neurological complications of these disorders can result in significant morbidity and mortality. The most common complication of peripheral nervous system (PNS) involvement is peripheral neuropathy, with symptoms of numbness, sensory paresthesias, weakness, or gait imbalance. The neuropathy may be multifocal and asymmetric or, less frequently, distal and symmetric.

  2. Nervous system examination on YouTube.

    PubMed

    Azer, Samy A; Aleshaiwi, Sarah M; Algrain, Hala A; Alkhelaif, Rana A

    2012-12-22

    Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words "nervous system examination", "nervous system clinical examination", "cranial nerves examination", "CNS examination", "examination of cerebellum", "balance and coordination examination". Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Currently, YouTube provides an adequate resource for learning nervous system examination, which can be used by medical students

  3. Nervous system examination on YouTube

    PubMed Central

    2012-01-01

    Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Conclusions Currently, YouTube provides an adequate resource for learning

  4. Effects of dietary sphingomyelin on central nervous system myelination in developing rats.

    PubMed

    Oshida, Kyoichi; Shimizu, Takashi; Takase, Mitsunori; Tamura, Yoshitaka; Shimizu, Toshiaki; Yamashiro, Yuichiro

    2003-04-01

    Human milk contains sphingomyelin (SM) as a major component of the phospholipid fraction. Galactosylceramide (cerebroside), a metabolite of sphingolipids, increases along with CNS myelination, and is generally considered a universal marker of myelination in all vertebrates. l-Cycloserine (LCS) is an inhibitor of serine palmitoyltransferase (SPT), a rate-limiting enzyme for sphingolipid biosynthesis that is reported to show increased activity with development of the rat CNS. The present study examined the effects of dietary SM on CNS myelination during development in LCS-treated rats. From 8 d after birth, Wistar rat pups received a daily s.c. injection (100 mg/kg) of LCS. From 17 d after birth, the animals were fed an 810 mg/100g of bovine SM-supplemented diet (SM-LCS group) or a nonsupplemented diet (LCS group). At 28 d after birth, the animals were killed and subjected to biochemical and morphometric analyses. The myelin dry weight, myelin total lipid content, and cerebroside content were significantly lower in the SM-LCS and LCS groups than in a group not treated with LCS (the non-LCS group). However, these levels were significantly higher in the SM-LCS group than in the LCS group. Morphometric analysis of the optic nerve revealed that the axon diameter, nerve fiber diameter, myelin thickness, and g value (used to compare the relative thickness of myelin sheaths around fibers of different diameter) were significantly lower in the LCS group than in the other groups, but were similar in the SM-LCS and non-LCS groups. These findings suggest that dietary SM contributes to CNS myelination in developing rats with experimental inhibition of SPT activity corrected].

  5. Evaluation of the effectiveness of compression garments on autonomic nervous system recovery following exercise.

    PubMed

    Piras, Alessandro; Gatta, Giorgio

    2016-08-19

    The aim of this investigation was to evaluate the recovery pattern of a whole body compression garment on hemodynamic parameters and on ANS activity following a swimming performance. Ten young male athletes were recruited and tested in two different days, with and without wearing the garment during the recovery phase. After a warm-up of 15 minutes, athletes were instructed to perform a maximal 400m freestyle swimming event, and then time series of beat-to-beat intervals for heart rate variability (HRV), baroreflex sensitivity (BRS), and hemodynamic parameters were recorded for 90 minutes of recovery. The vagally mediated HF power of R-R intervals, NN50, and pNN50 showed a faster recovery due to the costume, meanwhile, the LFRR index of sympathetic modulation of the heart, as well as LF:HF ratio and BRS alpha index (αLF) were augmented in control than in garment condition. When athletes wore the swimsuit, cardiac output was increased and the returning of the blood to the heart, investigated as stroke volume, was kept constant due to the reduction of the total peripheral resistances. During control condition, HR was restored back to baseline value 20 minutes later with respect to garment condition, confirming that the swimsuit recover faster. The effectiveness of the swimsuit on ANS activity after a maximal aerobic performance has been shown with a greater recovery in terms of HRV and hemodynamic parameters. BRS was reduced in both conditions, maybe due to prolonged vasodilatation that may have also influenced the post-exercise hypotension.

  6. Measures of Autonomic Nervous System

    DTIC Science & Technology

    2011-04-01

    optimal level of the individual’s lung function is measured by using three color-coded peak flow zones. The individual monitoring and peak flow monitor... monoamine oxidase inhibitors, which may interfere with accurate measurements of catecholamine metabolites. Three tools for measuring catecholamine...monitoring system for patient transport . IEEE Trans Inf Technol Biomed. 2004;8(4):439. 25. Blank JM, Altman DG. Statistical methods for assessing

  7. Evolution of basal deuterostome nervous systems.

    PubMed

    Holland, Linda Z

    2015-02-15

    Understanding the evolution of deuterostome nervous systems has been complicated by the by the ambiguous phylogenetic position of the Xenocoelomorpha (Xenoturbellids, acoel flat worms, nemertodermatids), which has been placed either as basal bilaterians, basal deuterostomes or as a sister group to the hemichordate/echinoderm clade (Ambulacraria), which is a sister group of the Chordata. None of these groups has a single longitudinal nerve cord and a brain. A further complication is that echinoderm nerve cords are not likely to be evolutionarily related to the chordate central nervous system. For hemichordates, opinion is divided as to whether either one or none of the two nerve cords is homologous to the chordate nerve cord. In chordates, opposition by two secreted signaling proteins, bone morphogenetic protein (BMP) and Nodal, regulates partitioning of the ectoderm into central and peripheral nervous systems. Similarly, in echinoderm larvae, opposition between BMP and Nodal positions the ciliary band and regulates its extent. The apparent loss of this opposition in hemichordates is, therefore, compatible with the scenario, suggested by Dawydoff over 65 years ago, that a true centralized nervous system was lost in hemichordates.

  8. Results of a United States and Soviet Union joint project on nervous system effects of microwave radiation

    SciTech Connect

    Mitchell, C.L.; McRee, D.I.; Peterson, N.J.; Tilson, H.A.; Shandala, M.G.; Rudnev, M.I.; Varetskii, V.V.; Navakatikyan, M.I. )

    1989-05-01

    During the course of a formal program of cooperation between the United States and the Soviet Union concerning the biological effects of physical factors in the environment, it was concluded that duplicate projects should be initiated with the general goal of determining the most sensitive and valid test procedures for evaluating the effects of microwave radiation on the central nervous system. This report details an initial step in this direction. Male rats of the Fischer 344 strain were exposed or sham exposed to 10 mW/cm2 continuous wave microwave radiation at 2.45 GHz for a period of 7 hr. Animals were subjected to behavioral, biochemical, or electrophysiological measurements during and/or immediately after exposure. Behavioral tests used were passive avoidance and activity in an open field. Biochemical measurements were ATPase (Na+, K+; Mg2+, Ca2+) and K+ alkaline phosphatase activities. Electrophysiological measurements consisted of EEG frequency analysis. Neither group observed a significant effect of microwave irradiation on open field activity. Both groups observed changes in variability of the data obtained using the passive avoidance procedure, but not in the same parameters. The U.S. group, but not the USSR group, found significantly less Na+,K+-ATPase activity in the microwave-exposed animals compared to the sham exposed animals. Both groups found incidences of statistically significant effects in the power spectral analysis of EEG frequency, but not at the same frequency. The failure of both groups to substantiate the results of the other reinforces our contention that such duplicate projects are important and necessary.

  9. Mergeable nervous systems for robots.

    PubMed

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  10. General Pharmacology of Artesunate, a Commonly used Antimalarial Drug:Effects on Central Nervous, Cardiovascular, and Respiratory System.

    PubMed

    Lee, Hyang-Ae; Kim, Ki-Suk; Kim, Eun-Joo

    2010-09-01

    Artesunate, a semi-synthetic derivative of artemisinin, is used primarily as a treatment for malaria. Its effects on the central nervous system, general behavior, and cardiovascular, respiratory, and other organ systems were studied using mice, rats, guinea pigs, and dogs. Artesunate was administered orally to mice at doses of 125, 250, and 500 mg/kg and to rats and guinea pigs at 100, 200, and 400 mg/kg. In dogs, test drugs were administered orally in gelatin capsules at doses of 50, 100, and 150 mg/kg. Artesunate induced insignificant changes in general pharmacological studies, including general behavior, motor coordination, body temperature, analgesia, convulsion modulation, blood pressure, heart rate (HR) , and electrocardiogram (ECG) in dogs in vivo; respiration in guinea pigs; and gut motility or direct effects on isolated guinea pig ileum, contractile responses, and renal function. On the other hand, artesunate decreased the HR and coronary flow rate (CFR) in the rat in vitro; however, the extent of the changes was small and they were not confirmed in in vivo studies in the dog. Artesunate increased hexobarbital-induced sleeping time in a dose-related manner. Artesunate induced dose-related decreases in the volume of gastric secretions and the total acidity of gastric contents, and induced increases in pH at a dose of 400 mg/kg. However, all of these changes were observed at doses much greater than clinical therapeutic doses (2.4 mg/kg in humans, when used as an anti-malarial) . Thus, it can be concluded that artesunate is safe at clinical therapeutic doses.

  11. The Effect of a Single Session of Whole-Body Vibration Training in Recreationally Active Men on the Excitability of the Central and Peripheral Nervous System

    PubMed Central

    Chmielewska, Daria; Piecha, Magdalena; Błaszczak, Edward; Król, Piotr; Smykla, Agnieszka; Juras, Grzegorz

    2014-01-01

    Vibration training has become a popular method used in professional sports and recreation. In this study, we examined the effect of whole-body vibration training on the central nervous system and muscle excitability in a group of 28 active men. Subjects were assigned randomly to one of two experimental groups with different variables of vibrations. The chronaximetry method was used to evaluate the effect of a single session of whole-body vibration training on the excitability of the rectus femoris and brachioradialis muscles. The examination of the fusing and flickering frequencies of the light stimulus was performed. An increase in the excitability of the quadriceps femoris muscle due to low intensity vibrations (20 Hz frequency, 2 mm amplitude) was noted, and a return to the initial values was observed 30 min after the application of vibration. High intensity vibrations (60 Hz frequency, 4 mm amplitude) caused elongations of the chronaxy time; however, these differences were not statistically significant. Neither a low intensity vibration amplitude of 2 mm (frequency of 20 Hz) nor a high intensity vibration amplitude of 4 mm (frequency of 60 Hz) caused a change in the excitability of the central nervous system, as revealed by the average frequency of the fusing and flickering of the light stimulus. A single session of high intensity whole-body vibration did not significantly decrease the excitability of the peripheral nervous system while the central nervous system did not seem to be affected. PMID:25114735

  12. The effect of central nervous system depressant, stimulant and hallucinogenic drugs on injury severity in patients admitted for trauma.

    PubMed

    Cordovilla-Guardia, Sergio; Lardelli-Claret, Pablo; Vilar-López, Raquel; López-Espuela, Fidel; Guerrero-López, Francisco; Fernández-Mondéjar, Enrique

    2017-08-04

    The effect of drugs other than alcohol on severity of trauma remains unclear. Pooled data analyses in previous studies that grouped substances with opposite effects on the central nervous system (CNS) may have masked the influence of substances on injury severity. The aim was to analyze the effect of stimulant, hallucinogenic and depressant drugs other than alcohol on injury severity in trauma patients. The presence of alcohol, stimulant drugs (cocaine, amphetamines and methamphetamines), depressant drugs (benzodiazepines, opiates, methadone and barbiturates) and hallucinogenic drugs (THC and PCP) was analyzed in 1187 patients between 16 and 70 years old admitted to a trauma hospital between November 2012 and June 2015. Injury severity was determined prospectively as the Injury Severity Score. A multivariate analysis was used to quantify the strength of association between exposure to substances and trauma severity, using the presence of alcohol as a stratification variable. Drugs other than alcohol were found in 371 patients (31.3%): 32 (2.7%) stimulants, 186 (15.3%) depressants, 78 (6.6%) hallucinogenics and 75 (5.6%) polydrug use. The presence of CNS depressant substances was associated with increased injury severity only in patients also exposed to alcohol, with an adjusted odds ratio of 4.63 (1.37-15.60) for moderate injuries and 7.83 (2.53-24.21) for severe. CNS depressant drugs had a strong influence on injury severity in patients who screened positive for alcohol consumption. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Bilastine and the central nervous system.

    PubMed

    Montoro, J; Mullol, J; Dávila, I; Ferrer, M; Sastre, J; Bartra, J; Jáuregui, I; del Cuvillo, A; Valero, A

    2011-01-01

    Antihistamines have been classifed as first or second generation drugs, according to their pharmacokinetic properties, chemical structure and adverse effects. The adverse effects of antihistamines upon the central nervous system (CNS) depend upon their capacity to cross the blood-brain barrier (BBB) and bind to the central H1 receptors (RH1). This in turn depends on the lipophilicity of the drug molecule, its molecular weight (MW), and affinity for P-glycoprotein (P-gp) (CNS xenobiotic substances extractor protein). First generation antihistamines show scant affinity for P-gp, unlike the second generation molecules which are regarded as P-gp substrates. Histamine in the brain is implicated in many functions (waking-sleep cycle, attention, memory and learning, and the regulation of appetite), with numerous and complex interactions with different types of receptors in different brain areas. Bilastine is a new H1 antihistamine that proves to be effective in treating allergic rhinoconjunctivitis (seasonal and perennial) and urticaria. The imaging studies made, as well as the objective psychomotor tests and subjective assessment of drowsiness, indicate the absence of bilastine action upon the CNS. This fact, and the lack of interaction with benzodiazepines and alcohol, define bilastine as a clinically promising drug with a good safety profile as regards adverse effects upon the CNS.

  14. Illuminating viral infections in the nervous system

    PubMed Central

    McGavern, Dorian B.; Kang, Silvia S.

    2016-01-01

    Viral infections are a major cause of human disease. Although most viruses replicate in peripheral tissues, some have developed unique strategies to move into the nervous system, where they establish acute or persistent infections. Viral infections in the central nervous system (CNS) can alter homeostasis, induce neurological dysfunction and result in serious, potentially life-threatening inflammatory diseases. This Review focuses on the strategies used by neurotropic viruses to cross the barrier systems of the CNS and on how the immune system detects and responds to viral infections in the CNS. A special emphasis is placed on immune surveillance of persistent and latent viral infections and on recent insights gained from imaging both protective and pathogenic antiviral immune responses. PMID:21508982

  15. 5-aminocoumarans: dual inhibitors of lipid peroxidation and dopamine release with protective effects against central nervous system trauma and ischemia.

    PubMed

    Ohkawa, S; Fukatsu, K; Miki, S; Hashimoto, T; Sakamoto, J; Doi, T; Nagai, Y; Aono, T

    1997-02-14

    A series of 2,3-dihydro-5-benzofuranamines (5-aminocoumarans) were developed for the treatment of traumatic and ischemic central nervous system (CNS) injury. Compounds within this class were extremely effective inhibitors of lipid peroxidation in vitro and antagonized excitatory behavior coupled with peroxidative injury induced by spinal intrathecal injection of FeCl2 (mouse-FeCl2-it assay) in vivo. Selected compounds were tested for antagonistic activity on methamphetamine (MAP)-induced hypermotility resulting from dopamine release in the mouse brain. Among the compounds synthesized, compound 26n (2,3-dihydro-2,4,6,7-tetramethyl-2-[(4-phenyl-1-piperidinyl) methyl]-5-benzofuranamine) exhibited potent effects in these assays (inhibition of lipid peroxidation, IC50 = 0.07 microM; mouse-FeCl2-it assay, ID50 = 10.4 mg/ kg, po; MAP-induced hypermotility, 98% inhibition, 10 mg/kg, ip). The S-(+)-form of compound 26n dihydrochloride (TAK-218), which has 30 times more potent antagonistic activity on MAP-induced hypermotility than the R-(-)-form, improved more significantly the survival rate in the cerebral ischemia model (rat, 1-3 mg/kg, ip) during the period of 1-14 days after ischemia and decreased functional disorders in the traumatic brain injury model (rat, 0.1-1 mg/kg, ip) 3-14 days after injury. These results imply a role for dopamine in deterioration of CNS function after ischemic and traumatic injury. TAK-218 is a promising compound for the treatment of stroke and CNS trauma and is now under clinical investigation.

  16. Validation of the CNS Penetration-Effectiveness Rank for Quantifying Antiretroviral Penetration Into the Central Nervous System

    PubMed Central

    Letendre, Scott; Marquie-Beck, Jennifer; Capparelli, Edmund; Best, Brookie; Clifford, David; Collier, Ann C.; Gelman, Benjamin B.; McArthur, Justin C.; McCutchan, J. Allen; Morgello, Susan; Simpson, David; Grant, Igor; Ellis, Ronald J.

    2009-01-01

    Objective To evaluate whether penetration of a combination regimen into the central nervous system (CNS), as estimated by the CNS Penetration-Effectiveness (CPE) rank, is associated with lower cerebrospinal fluid (CSF) viral load. Design Data were analyzed from 467 participants who were human immunodeficiency virus (HIV) seropositive and who reported antiretroviral (ARV) drug use. Individual ARV drugs were assigned a penetration rank of 0 (low), 0.5 (intermediate), or 1 (high) based on their chemical properties, concentrations in CSF, and/or effectiveness in the CNS in clinical studies. The CPE rank was calculated by summing the individual penetration ranks for each ARV in the regimen. Results The median CPE rank was 1.5 (interquartile range, 1–2). Lower CPE ranks correlated with higher CSF viral loads. Ranks less than 2 were associated with an 88% increase in the odds of detectable CSF viral load. In multivariate regression, lower CPE ranks were associated with detectable CSF viral loads even after adjusting for total number of ARV drugs, ARV drug adherence, plasma viral load, duration and type of the current regimen, and CD4 count. Conclusions Poorer penetration of ARV drugs into the CNS appears to allow continued HIV replication in the CNS as indicated by higher CSF HIV viral loads. Because inhibition of HIV replication in the CNS is probably critical in treating patients who have HIV-associated neurocognitive disorders, ARV treatment strategies that account for CNS penetration should be considered in consensus treatment guidelines and validated in clinical studies. PMID:18195140

  17. Gravitational Study of the Central Nervous System

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.

    1983-01-01

    A series of experiments conducted at 1G are discussed with reference to the role of calcium ions in information processing by the central nervous system. A technique is described which allows thin sections of a mammalian hippocampus to be isolated while maintaining neural activity. Two experiments carried out in hypergravic fields are also addressed; one investigating altered stimulation in the auditory system, the other determining temperature regulation responses in hypergravic fields.

  18. Gravitational Study of the Central Nervous System

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.

    1983-01-01

    A series of experiments conducted at 1G are discussed with reference to the role of calcium ions in information processing by the central nervous system. A technique is described which allows thin sections of a mammalian hippocampus to be isolated while maintaining neural activity. Two experiments carried out in hypergravic fields are also addressed; one investigating altered stimulation in the auditory system, the other determining temperature regulation responses in hypergravic fields.

  19. CENTRAL NERVOUS SYSTEM INFECTION DURING IMMUNOSUPPRESSION

    PubMed Central

    Zunt, Joseph R.

    2009-01-01

    The central nervous system (CNS) is susceptible to bacterial, viral, and fungal infections. Suppression of the immune system by human immunodeficiency virus (HIV) infection or immunosuppressive therapy after transplantation increases susceptibility to CNS infection and modifies the presentation, diagnosis, and recommended treatment of various CNS infections. This chapter discusses how suppression of the host immune status modifies the presentation, diagnosis, and treatment of selected CNS infections. PMID:11754299

  20. Homarus Americanus Stomatogastric Nervous System Dissection

    PubMed Central

    Tobin, Anne-Elise; Bierman, Hilary S.

    2009-01-01

    With the goal of understanding how nervous systems produce activity and respond to the environment, neuroscientists turn to model systems that exhibit the activity of interest and are accessible and amenable to experimental methods. The stomatogastric nervous system (STNS) of the American lobster (Homarus americanus; also know was the Atlantic or Maine lobster) has been established as a model system for studying rhythm generating networks and neuromodulation of networks. The STNS consists of 3 anterior ganglia (2 commissural ganglia and an oesophageal ganglion), containing modulatory neurons that project centrally to the stomatogastric ganglion (STG). The STG contains approximately 30 neurons that comprise two central pattern generating networks, the pyloric and gastric networks that underlie feeding behaviors in crustaceans1,2. While it is possible to study this system in vivo3, the STNS continues to produce its rhythmic activity when isolated in vitro. Physical isolation of the STNS in a dish allows for easy access to the somata in the ganglia for intracellular electrophysiological recordings and to the nerves of the STNS for extracellular recordings. Isolating the STNS is a two-part process. The first part, dissecting the stomach from the animal, is described in an accompanying video article4. In this video article, fine dissection techniques are used to isolate the STNS from the stomach. This procedure results in a nervous system preparation that is available for electrophysiological recordings. PMID:19483669

  1. Autonomic nervous system dysregulation in pediatric hypertension.

    PubMed

    Feber, Janusz; Ruzicka, Marcel; Geier, Pavel; Litwin, Mieczyslaw

    2014-05-01

    Historically, primary hypertension (HTN) has been prevalent typically in adults. Recent data however, suggests an increasing number of children diagnosed with primary HTN, mainly in the setting of obesity. One of the factors considered in the etiology of HTN is the autonomous nervous system, namely its dysregulation. In the past, the sympathetic nervous system (SNS) was regarded as a system engaged mostly in buffering major acute changes in blood pressure (BP), in response to physical and emotional stressors. Recent evidence suggests that the SNS plays a much broader role in the regulation of BP, including the development and maintenance of sustained HTN by a chronically elevated central sympathetic tone in adults and children with central/visceral obesity. Consequently, attempts have been made to reduce the SNS hyperactivity, in order to intervene early in the course of the disease and prevent HTN-related complications later in life.

  2. Intranasal administration of milnacipran in rats: evaluation of the transport of drugs to the systemic circulation and central nervous system and the pharmacological effect.

    PubMed

    Uchida, Masaki; Katoh, Takuya; Mori, Mutsuhiro; Maeno, Takuya; Ohtake, Kazuo; Kobayashi, Jun; Morimoto, Yasunori; Natsume, Hideshi

    2011-01-01

    Recently, transnasal drug delivery has attracted a great deal of attention as an administration route to deliver drugs directly to the central nervous systems (CNS) and drug targeting of the CNS is expected to increase. In the present study, we investigated the possibility of using a transnasal delivery system for milnacipran, a serotonin-noradrenaline reuptake inhibitor (SNRI), by evaluating the transport to the systemic circulation and cerebrospinal fluid (CSF) and the pharmacological effect after intranasal (i.n.) administration. Moreover, the effect of chitosan as a bioadhesive material on the transport to the systemic circulation and CSF and the pharmacological effect after i.n. administration were evaluated. As a result, i.n. administration of milnacipran was found to produce a higher direct delivery to the CNS as well as to the systemic circulation, suggesting that this is a promising route of administration and an alternative to peroral (p.o.) administration. Furthermore, the i.n. co-administration with chitosan led to increased plasma and CSF concentrations and an enhanced pharmacological effect, evaluated by means of the forced swimming test. The results suggested that chitosan produced a long residence time of milnacipran in the nasal cavity due to its bioadhesive effect, leading to the enhanced transport of milnacipran from the systemic circulation to the CNS via the blood-brain barrier by an increase in systemic absorption as well as direct transport to the CNS, resulting in a higher antidepressant effect compared to that with p.o. administration.

  3. Plants and the central nervous system.

    PubMed

    Carlini, E A

    2003-06-01

    This review article draws the attention to the many species of plants possessing activity on the central nervous system (CNS). In fact, they cover the whole spectrum of central activity such as psychoanaleptic, psycholeptic and psychodysleptic effects, and several of these plants are currently used in therapeutics to treat human ailments. Among the psychoanaleptic (stimulant) plants, those utilized by human beings to reduce body weight [Ephedra spp. (Ma Huang), Paullinia spp. (guaraná), Catha edulis Forssk. (khat)] and plants used to improve general health conditions (plant adaptogens) were scrutinized. Many species of hallucinogenic (psychodysleptic) plants are used by humans throughout the world to achieve states of mind distortions; among those, a few have been used for therapeutic purposes, such as Cannabis sativa L., Tabernanthe iboga Baill. and the mixture of Psychotria viridis Ruiz and Pav. and Banisteriopsis caapi (Spruce ex Griseb.) C.V. Morton. Plants showing central psycholeptic activities, such as analgesic or anxiolytic actions (Passiflora incarnata L., Valeriana spp. and Piper methysticum G. Forst.), were also analysed.Finally, the use of crude or semipurified extracts of such plants instead of the active substances seemingly responsible for their therapeutic effect is discussed.

  4. Atypical nervous system manifestations of HIV.

    PubMed

    Lyons, Jennifer; Venna, Nagagopal; Cho, Tracey A

    2011-07-01

    Despite the widespread success of combination antiretroviral therapy (cART) in reducing morbidity and mortality in human immunodeficiency virus 1 (HIV-1) infection, HIV-associated neurologic disease remains prevalent. Although the virus is unable to infect neurons or muscle fibers directly, it can still injure these structures by a variety of mechanisms, many of which are yet to be elucidated. Additionally, antiretroviral medications used to treat HIV infection can cause damage to the nervous system both by direct toxicity and via modulation of host-virus interactions. Some neurologic complications of HIV infection are rarely seen and are poorly understood; nevertheless, they are important to recognize. In this review article, the authors focus on the uncommon neurologic manifestations of HIV infection, including mononeuropathies, inflammatory demyelinating polyneuropathies, motor neuron disease, polymyositis, diffuse infiltrative lymphocytosis syndrome, mononeuritis multiplex, HIV-associated neuromuscular weakness syndrome, immune reconstitution inflammatory syndrome, and central nervous system HIV-escape meningoencephalomyelitis and myelitis. © Thieme Medical Publishers.

  5. Maintaining Genome Stability in the Nervous System

    PubMed Central

    McKinnon, Peter J.

    2014-01-01

    Active maintenance of genome stability is a prerequisite for the development and function of the nervous system. The high replication index during neurogenesis and the long life of mature neurons highlight the need for efficient cellular programs to safeguard genetic fidelity. Multiple DNA damage response pathways ensure that replication stress and other types of DNA lesions such as oxidative damage do not impact neural homeostasis. Numerous human neurologic syndromes result from defective DNA damage signaling and compromised genome integrity. These syndromes can involve different neuropathology, which highlights the diverse maintenance roles required for genome stability in the nervous system. Understanding how DNA damage signaling pathways promote neural development and preserve homeostasis is essential for understanding fundamental brain function. PMID:24165679

  6. [Central nervous system malformations: neurosurgery correlates].

    PubMed

    Jiménez-León, Juan C; Betancourt-Fursow, Yaline M; Jiménez-Betancourt, Cristina S

    2013-09-06

    Congenital malformations of the central nervous system are related to alterations in neural tube formation, including most of the neurosurgical management entities, dysraphism and craniosynostosis; alterations of neuronal proliferation; megalencefaly and microcephaly; abnormal neuronal migration, lissencephaly, pachygyria, schizencephaly, agenesis of the corpus callosum, heterotopia and cortical dysplasia, spinal malformations and spinal dysraphism. We expose the classification of different central nervous system malformations that can be corrected by surgery in the shortest possible time and involving genesis mechanisms of these injuries getting better studied from neurogenic and neuroembryological fields, this involves connecting innovative knowledge areas where alteration mechanisms in dorsal induction (neural tube) and ventral induction (telencephalization) with the current way of correction, as well as the anomalies of cell proliferation and differentiation of neuronal migration and finally the complex malformations affecting the posterior fossa and current possibilities of correcting them.

  7. [Nervous system involvement in Madelung's syndrome].

    PubMed

    Tolubaev, N S; Gerasimovich, L A; Tolubaeva, N I

    1992-04-01

    Due to proliferation of the fatty tissue in the neck and depending on the degree of compression of the pharynx, larynx, vessels, nerve trunks the patients show, respiratory disorders, swallowing disturbances, dysarthria, stenocardia, neck and occipital pain, scalenus syndrome, cervicobrachialgia, posterior cervical sympathetic syndrome, disorders of the cerebral and spinal blood circulation. Involvement of both the central and peripheral nervous system are observed in Madelung's disease.

  8. Development of Central Nervous System Radioprotectors.

    DTIC Science & Technology

    1982-05-01

    accompanied ionizing radiation exposure of the central nervous system (CNS). Implicit in this objective is the requirement that this.. drug be...CNS injury either 27?’ concentrate on the late consequences of radio therapeutic exposures , or involve large mammals which would not lend themselves to...assays in which the rats are anesthetized with ketamine at the time of exposure and assayed for sensitivity to anesthesia induced by sodium

  9. Rhabdoid tumors of the central nervous system.

    PubMed

    Reinhardt, D; Behnke-Mursch, J; Weiss, E; Christen, H J; Kühl, J; Lakomek, M; Pekrun, A

    2000-04-01

    Rhabdoid tumors of the central nervous system are rare malignancies with a still almost uniformly fatal outcome. There is still no proven curative therapy available. We report our experience with nine patients with central nervous system rhabdoid tumors. Gross complete surgical removal of the tumor was achieved in six patients. Seven patients received intensive chemotherapy. Four of these were treated in addition with both neuroaxis radiotherapy and a local boost directed to the tumor region, while two patients received local radiotherapy only. The therapy was reasonably well tolerated in most cases. Despite the aggressive therapy, eight of the nine patients died from progressive tumor disease, and one patient died from hemorrhagic brain stem lesions of unknown etiology. The mean survival time was 10 months after diagnosis. Conventional treatment, although aggressive, cannot change the fatal prognosis of central nervous system rhabdoid tumors. As these neoplasms are so rare, a coordinated register would probably be a good idea, offering a means of learning more about the tumor's biology and possible strategies of treatment.

  10. LGI proteins in the nervous system.

    PubMed

    Kegel, Linde; Aunin, Eerik; Meijer, Dies; Bermingham, John R

    2013-06-25

    The development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins) play important roles in these processes. They are secreted proteins consisting of an LRR (leucine-rich repeat) domain and a so-called epilepsy-associated or EPTP (epitempin) domain. Both domains are thought to function in protein-protein interactions. The first LGI gene to be identified, LGI1, was found at a chromosomal translocation breakpoint in a glioma cell line. It was subsequently found mutated in ADLTE (autosomal dominant lateral temporal (lobe) epilepsy) also referred to as ADPEAF (autosomal dominant partial epilepsy with auditory features). LGI1 protein appears to act at synapses and antibodies against LGI1 may cause the autoimmune disorder limbic encephalitis. A similar function in synaptic remodelling has been suggested for LGI2, which is mutated in canine Benign Familial Juvenile Epilepsy. LGI4 is required for proliferation of glia in the peripheral nervous system and binds to a neuronal receptor, ADAM22, to foster ensheathment and myelination of axons by Schwann cells. Thus, LGI proteins play crucial roles in nervous system development and function and their study is highly important, both to understand their biological functions and for their therapeutic potential. Here, we review our current knowledge about this important family of proteins, and the progress made towards understanding their functions.

  11. Tuberculoma of the central nervous system.

    PubMed

    DeLance, Arthur R; Safaee, Michael; Oh, Michael C; Clark, Aaron J; Kaur, Gurvinder; Sun, Matthew Z; Bollen, Andrew W; Phillips, Joanna J; Parsa, Andrew T

    2013-10-01

    Tuberculosis is among the oldest and most devastating infectious diseases worldwide. Nearly one third of the world's population has active or latent disease, resulting in 1.5 million deaths annually. Central nervous system involvement, while rare, is the most severe form of tuberculosis. Manifestations include tuberculoma and tuberculous meningitis, with the majority of cases occurring in children and immunocompromised patients. Despite advancements in imaging and laboratory diagnostics, tuberculomas of the central nervous system remain a diagnostic challenge due to their insidious nature and nonspecific findings. On imaging studies tuberculous meningitis is characterized by diffuse basal enhancement, but tuberculomas may be indistinguishable from neoplasms. Early diagnosis is imperative, since clinical outcomes are largely dependent on timely treatment. Stereotactic biopsy with histopathological analysis can provide a definitive diagnosis, but is only recommended when non-invasive methods are inconclusive. Standard medical treatment includes rifampicin, isoniazid, pyrazinamide, and streptomycin or ethambutol. In cases of drug resistance, revision of the treatment regimen with second-line agents is recommended over the addition of a single drug to the first-line regimen. Advances in genomics have identified virulent strains of tuberculosis and are improving our understanding of host susceptibility. Neurosurgical referral is advised for patients with elevated intracranial pressure, seizures, or brain or spinal cord compression. This review synthesizes pertinent findings in the literature surrounding central nervous system tuberculoma in an effort to highlight recent advances in pathophysiology, diagnosis, and treatment.

  12. Effects of TRP channel agonist ingestion on metabolism and autonomic nervous system in a randomized clinical trial of healthy subjects

    PubMed Central

    Michlig, Stéphanie; Merlini, Jenny Meylan; Beaumont, Maurice; Ledda, Mirko; Tavenard, Aude; Mukherjee, Rajat; Camacho, Susana; le Coutre, Johannes

    2016-01-01

    Various lines of published evidence have already demonstrated the impact of TRPV1 agonists on energetic metabolism through the stimulation of the sympathetic nervous system (SNS). This study presents a trial investigating if stimulation of the two related sensory receptors TRPA1 and TRPM8 could also stimulate the SNS and impact the energetic metabolism of healthy subjects. The trial was designed to be double-blinded, randomized, cross-over, placebo-controlled with healthy subjects and the impact on the energetic metabolism and the autonomic nervous system (ANS) of cinnamaldehyde, capsaicin and a cooling flavor was measured during the 90 min after ingestion. Energy expenditure and substrate oxidation were measured by indirect calorimetry. An exploratory method to measure ANS activity was by facial thermography and power spectral analysis of heart rate variability using ECG was also used. Following cinnamaldehyde ingestion, energy expenditure was increased as compared to placebo. Furthermore, postprandial fat oxidation was maintained higher compared to placebo after cinnamaldehyde and capsaicin ingestion. Similar peripheral thermoregulation was observed after capsaicin and cinnamaldehyde ingestion. Unlike capsaicin, the dose of cinnamaldehyde was not judged to be sensorially ‘too intense’ by participants suggesting that Cinnamaldehyde would be a more tolerable solution to improve thermogenesis via spicy ingredients as compared to capsaicin. PMID:26883089

  13. Effects of TRP channel agonist ingestion on metabolism and autonomic nervous system in a randomized clinical trial of healthy subjects.

    PubMed

    Michlig, Stéphanie; Merlini, Jenny Meylan; Beaumont, Maurice; Ledda, Mirko; Tavenard, Aude; Mukherjee, Rajat; Camacho, Susana; le Coutre, Johannes

    2016-02-17

    Various lines of published evidence have already demonstrated the impact of TRPV1 agonists on energetic metabolism through the stimulation of the sympathetic nervous system (SNS). This study presents a trial investigating if stimulation of the two related sensory receptors TRPA1 and TRPM8 could also stimulate the SNS and impact the energetic metabolism of healthy subjects. The trial was designed to be double-blinded, randomized, cross-over, placebo-controlled with healthy subjects and the impact on the energetic metabolism and the autonomic nervous system (ANS) of cinnamaldehyde, capsaicin and a cooling flavor was measured during the 90 min after ingestion. Energy expenditure and substrate oxidation were measured by indirect calorimetry. An exploratory method to measure ANS activity was by facial thermography and power spectral analysis of heart rate variability using ECG was also used. Following cinnamaldehyde ingestion, energy expenditure was increased as compared to placebo. Furthermore, postprandial fat oxidation was maintained higher compared to placebo after cinnamaldehyde and capsaicin ingestion. Similar peripheral thermoregulation was observed after capsaicin and cinnamaldehyde ingestion. Unlike capsaicin, the dose of cinnamaldehyde was not judged to be sensorially 'too intense' by participants suggesting that Cinnamaldehyde would be a more tolerable solution to improve thermogenesis via spicy ingredients as compared to capsaicin.

  14. Effects of Spider Venom Toxin PWTX-I (6-Hydroxytrypargine) on the Central Nervous System of Rats

    PubMed Central

    Cesar-Tognoli, Lilian M. M.; Salamoni, Simone D.; Tavares, Andrea A.; Elias, Carol F.; Costa, Jaderson C. Da; Bittencourt, Jackson C.; Palma, Mario S.

    2011-01-01

    The 6-hydroxytrypargine (6-HT) is an alkaloidal toxin of the group of tetrahydro-β-carbolines (THβC) isolated from the venom of the colonial spider Parawixia bistriata. These alkaloids are reversible inhibitors of the monoamine-oxidase enzyme (MAO), with hallucinogenic, tremorigenic and anxiolytic properties. The toxin 6-HT was the first THβC chemically reported in the venom of spiders; however, it was not functionally well characterized up to now. The action of 6-HT was investigated by intracerebroventricular (i.c.v.) and intravenous (i.v.) applications of the toxin in adult male Wistar rats, followed by the monitoring of the expression of fos-protein, combined with the use of double labeling immunehistochemistry protocols for the detection of some nervous receptors and enzymes related to the metabolism of neurotransmitters in the central nervous system (CNS). We also investigated the epileptiform activity in presence of this toxin. The assays were carried out in normal hippocampal neurons and also in a model of chronic epilepsy obtained by the use of neurons incubated in free-magnesium artificial cerebro-spinal fluid (ACSF). Trypargine, a well known THβC toxin, was used as standard compound for comparative purposes. Fos-immunoreactive cells (fos-ir) were observed in hypothalamic and thalamic areas, while the double-labeling identified nervous receptors of the sub-types rGlu2/3 and NMR1, and orexinergic neurons. The 6-HT was administrated by perfusion and ejection in “brain slices” of hippocampus, inducing epileptic activity after its administration; the toxin was not able to block the epileptogenic crisis observed in the chronic model of the epilepsy, suggesting that 6-HT did not block the overactive GluRs responsible for this epileptic activity. PMID:22069702

  15. 3D printed nervous system on a chip.

    PubMed

    Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C

    2016-04-21

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.

  16. 3D Printed Nervous System on a Chip

    PubMed Central

    Johnson, Blake N.; Lancaster, Karen Z.; Hogue, Ian B.; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W.; McAlpine, Michael C.

    2015-01-01

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology. PMID:26669842

  17. The BIRN Project: Imaging the Nervous System

    SciTech Connect

    Ellisman, Mark

    2006-05-22

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences and protein products. The general premise of the neuroscience goal is simple; namely that with "complete" knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their cell and tissue contexts.

  18. The BIRN Project: Imaging the Nervous System

    SciTech Connect

    Ellisman, Mark

    2006-05-22

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences and protein products. The general premise of the neuroscience goal is simple; namely that with 'complete' knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their cell and tissue contexts.

  19. Childhood Central Nervous System Germ Cell Tumors Treatment

    MedlinePlus

    ... Ependymoma Treatment Research Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Childhood Central Nervous System (CNS) Germ Cell Tumors Go to Health Professional Version Key Points ...

  20. Assessment of the Effects of Combination Therapy with Ciprofloxacin and Fenbufen on the Central Nervous Systems of Healthy Volunteers by Quantitative Electroencephalography

    PubMed Central

    Kamali, F.; Ashton, C. H.; Marsh, V. R.; Cox, J.

    1998-01-01

    The potential effects of concurrent administration of fenbufen and ciprofloxacin on central nervous system activity in healthy young subjects were investigated by electroencephalography (EEG). Visual analog scales (VAS) were used to assess subjective measures of concentration, vigilance, tension, and irritability. When ciprofloxacin was administered in combination with fenbufen, none of the EEG parameters or VAS ratings measured were significantly different from those measured when the drugs were administered alone. PMID:9593161

  1. Neuroinflammation of the central and peripheral nervous system: an update.

    PubMed

    Stüve, O; Zettl, U

    2014-03-01

    Inflammatory disorders of the peripheral nervous system (PNS) and central nervous system (CNS) are common, and contribute substantially to physical and emotional disability of affected individuals. Often, the afflicted are young and in their active years. In the past, physicians and scientists often had very little to offer in terms of diagnostic precision and therapeutic effectiveness. During the past two decades, both of these relative shortcomings have clearly improved. Some of the recent developments in clinical neuroimmunology are illustrated in this special edition of Clinical and Experimental Immunology.

  2. Sympathetic nervous system regulation of the tumour microenvironment

    PubMed Central

    Cole, Steven W.; Nagaraja, Archana S.; Lutgendorf, Susan K.; Green, Paige A.; Sood, Anil K.

    2016-01-01

    The peripheral autonomic nervous system (ANS) is known to regulate gene expression in primary tumours and their surrounding microenvironment. Activation of the sympathetic division of the ANS in particular modulates gene expression programs that promote metastasis of solid tumours by stimulating macrophage infiltration, inflammation, angiogenesis, epithelial-mesenchymal transition, and tumour invasion, and by inhibiting cellular immune responses and programmed cell death. Haematological cancers are modulated by sympathetic nervous system (SNS) regulation of stem cell biology and hematopoietic differentiation programs. In addition to identifying a molecular basis for physiologic stress effects on cancer, these findings have also identified new pharmacologic strategies to inhibit cancer progression in vivo. PMID:26299593

  3. Neuroinflammation of the central and peripheral nervous system: an update

    PubMed Central

    Stüve, O; Zettl, U

    2014-01-01

    Inflammatory disorders of the peripheral nervous system (PNS) and central nervous system (CNS) are common, and contribute substantially to physical and emotional disability of affected individuals. Often, the afflicted are young and in their active years. In the past, physicians and scientists often had very little to offer in terms of diagnostic precision and therapeutic effectiveness. During the past two decades, both of these relative shortcomings have clearly improved. Some of the recent developments in clinical neuroimmunology are illustrated in this special edition of Clinical and Experimental Immunology. PMID:24384012

  4. Monoclonal Antibodies against the Drosophila Nervous System

    NASA Astrophysics Data System (ADS)

    Fujita, Shinobu C.; Zipursky, Stephen L.; Benzer, Seymour; Ferrus, Alberto; Shotwell, Sandra L.

    1982-12-01

    A panel of 148 monoclonal antibodies directed against Drosophila neural antigens has been prepared by using mice immunized with homogenates of Drosophila tissue. Antibodies were screened immunohistochemically on cryostat sections of fly heads. A large diversity of staining patterns was observed. Some antigens were broadly distributed among tissues; others were highly specific to nerve fibers, neuropil, muscle, the tracheal system, cell nuclei, photoreceptors, or other structures. The antigens for many of the antibodies have been identified on immunoblots. Monoclonal antibodies that identify specific molecules within the nervous system should prove useful in the study of the molecular genetics of neural development.

  5. Autonomic Nervous System in Viral Myocarditis: Pathophysiology and Therapy.

    PubMed

    Cheng, Zheng; Li-Sha, Ge; Yue-Chun, Li

    2016-01-01

    Myocarditis, which is caused by viral infection, can lead to heart failure, malignant arrhythmias, and even sudden cardiac death in young patients. It is also one of the most important causes of dilated cardiomyopathy worldwide. Although remarkable advances in diagnosis and understanding of pathophysiological mechanisms of viral myocarditis have been gained during recent years, no standard treatment strategies have been defined as yet. Fortunately, recent studies present some evidence that immunomodulating therapy is effective for myocarditis. The immunomodulatory effect of the autonomic nervous system has raised considerable interest over recent decades. Studying the influence on the inflammation and immune system of the sympathetic and parasympathetic nervous systems will not only increase our understanding of the mechanism of disease but could also lead to the identification of potential new therapies for viral myocarditis. Studies have shown that the immunomodulating effect of the sympathetic and parasympathetic nervous system is realized by the release of neurotransmitters to their corresponding receptors (catecholamine for α or β adrenergic receptor, acetylcholine for α7 nicotinic acetylcholinergic receptor). This review will discuss the current knowledge of the roles of both the sympathetic and parasympathetic nervous system in inflammation, with a special focus on their roles in viral myocarditis.

  6. Negative effects of chlorthalidone on sympathetic nervous system and insulin resistance in hypertensive patients may be avoided with spironolactone: further studies are still needed.

    PubMed

    Castro-Torres, Y; Fleites-Pérez, A; Carmona-Puerta, R; Jiménez-Garrido, R G

    2015-12-01

    Chlorthalidone is commonly used for blood pressure control in hypertensive patients. However, it increases sympathetic nervous system activity and insulin resistance. Both conditions are related with an elevated number of complications and worsen patients' prognosis. Recently has been demonstrated that these adverse effects are avoided with spironolactone administration. Mechanisms to explain increasing sympathetic nervous activity and insulin resistance with chlorthalidone, but not with spironolactone are unclear and under investigation. It should be necessary to continue medical investigation on this field with long-term studies, a larger number of patients and associated comorbidities. The aim should be to establish whether the association of both drugs could be an effective and safety choice to be implemented extensively in clinical practice. That possibility could represent a new alternative for patients' management.

  7. Neuroscience. Stout guards of the central nervous system.

    PubMed

    Mechoulam, R; Lichtman, A H

    2003-10-03

    Endocannabinoids have paradoxical effects on the mammalian nervous system: Sometimes they block neuronal excitability and other times they augment it. In their Perspective, Mechoulam and Lichtman discuss new work (Marsicano et al.) showing that activation of the cannabinoid receptor CB1 by the endocannabinoid anandamide protects against excitotoxic damage in a mouse model of kainic acid-induced epilepsy.

  8. Effects of feeding schedule changes on the circadian phase of the cardiac autonomic nervous system and serum lipid levels.

    PubMed

    Yoshizaki, Takahiro; Tada, Yuki; Hida, Azumi; Sunami, Ayaka; Yokoyama, Yuri; Yasuda, Jun; Nakai, Ayumi; Togo, Fumiharu; Kawano, Yukari

    2013-10-01

    The purpose of this study was to investigate whether scheduling meals earlier in the day affects the circadian phase of the cardiac autonomic nervous system as assessed by heart rate variability (HRV) and serum lipid levels. Healthy men aged 21.4 ± 0.5 years (n = 14) with a habit of regularly skipping breakfast participated in this parallel trial involving altered feeding schedules. Participants in the early mealtime group (EM group, n = 8) were asked to eat three meals at 8:00, 13:00, and 18:00, and the control group (n = 6) ate at 13:00, 18:00, and 23:00 for 2 weeks. On the measurement day before and after intervention, fasting blood samples and 24-h electrocardiograph recordings were collected. Spectral analysis was used for approximate 10-min HRV segments. Low frequency (LF) power, high frequency (HF) power, and the ratio of HF to total power (%HF) were calculated to assess sympathovagal balance. Acrophases of the circadian rhythm of HRV variables were obtained by nonlinear least squares regression. Triglyceride and total and LDL cholesterol levels were significantly decreased in the EM group when compared with the control group (p = 0.035, 0.008, and 0.004, respectively). Acrophases for HRV variables were advanced in the EM group and their difference between before and after the intervention in LF power (-3.2 ± 1.2 h) and %HF (-1.2 ± 0.5 h) reached significant level, respectively (p < 0.05). Timing of meals was a key factor in regulating circadian phases of the cardiac autonomic nervous system and lipid metabolism.

  9. Rationale for the Use of Anticholinergic Agents in Overactive Bladder With Regard to Central Nervous System and Cardiovascular System Side Effects

    PubMed Central

    Onal, Bulent

    2013-01-01

    Purpose Central nervous system (CNS) and cardiovascular system (CVS) side effects of anticholinergic agents used to treat overactive bladder (OAB) are underreported. Hence, this review aimed to focus on the mechanisms of CNS and CVS side effects of anticholinergic drugs used in OAB treatment, which may help urologists in planning the rationale for OAB treatment. Materials and Methods PubMed/MEDLINE was searched for the key words "OAB," "anticholinergics," "muscarinic receptor selectivity," "blood-brain barrier," "CNS," and "CVS side effects." Additional relevant literature was determined by examining the reference lists of articles identified through the search. Results CNS and CVS side effects, pharmacodynamic and pharmacokinetic properties, the metabolism of these drugs, and the clinical implications for their use in OAB are presented and discussed in this review. Conclusions Trospium, 5-hydroxymethyl tolterodine, darifenacin, and solifenacin seem to have favorable pharmacodynamic and pharmacokinetic properties with regard to CNS side effects, whereas the pharmacodynamic features of darifenacin, solifenacin, and oxybutynin appear to have an advantage over the other anticholinergic agents (tolterodine, fesoterodine, propiverine, and trospium) with regard to CVS side effects. To determine the real-life situation, head-to-head studies focusing especially on CNS and CVS side effects of OAB anticholinergic agents are urgently needed. PMID:24363860

  10. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury

    PubMed Central

    Ousman, Shalina S.; Frederick, Ariana; Lim, Erin-Mai F.

    2017-01-01

    Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act. PMID:28270745

  11. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury.

    PubMed

    Ousman, Shalina S; Frederick, Ariana; Lim, Erin-Mai F

    2017-01-01

    Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act.

  12. Central nervous system systemic lupus erythematosus mimicking progressive multifocal leucoencephalopathy.

    PubMed Central

    Kaye, B R; Neuwelt, C M; London, S S; DeArmond, S J

    1992-01-01

    The case is reported of a patient with central nervous system systemic lupus erythematosus (SLE) with features of progressive multifocal leucoencephalopathy (PML) seen clinically and by magnetic resonance imaging. A brain biopsy sample showed microinfarcts. The use of magnetic resonance imaging and IgG synthesis rates in evaluating central nervous system lupus, the co-occurrence of SLE and PML, and the differentiation of these entities by magnetic resonance imaging and by histology are considered. Images PMID:1444628

  13. Microglia: Architects of the Developing Nervous System.

    PubMed

    Frost, Jeffrey L; Schafer, Dorothy P

    2016-08-01

    Microglia are resident macrophages of the central nervous system (CNS), representing 5-10% of total CNS cells. Recent findings reveal that microglia enter the embryonic brain, take up residence before the differentiation of other CNS cell types, and become critical regulators of CNS development. Here, we discuss exciting new work implicating microglia in a range of developmental processes, including regulation of cell number and spatial patterning of CNS cells, myelination, and formation and refinement of neural circuits. Furthermore, we review studies suggesting that these cellular functions result in the modulation of behavior, which has important implications for a variety of neurological disorders.

  14. Physiology of the Autonomic Nervous System

    PubMed Central

    2007-01-01

    This manuscript discusses the physiology of the autonomic nervous system (ANS). The following topics are presented: regulation of activity; efferent pathways; sympathetic and parasympathetic divisions; neurotransmitters, their receptors and the termination of their activity; functions of the ANS; and the adrenal medullae. In addition, the application of this material to the practice of pharmacy is of special interest. Two case studies regarding insecticide poisoning and pheochromocytoma are included. The ANS and the accompanying case studies are discussed over 5 lectures and 2 recitation sections during a 2-semester course in Human Physiology. The students are in the first-professional year of the doctor of pharmacy program. PMID:17786266

  15. Did the ctenophore nervous system evolve independently?

    PubMed

    Ryan, Joseph F

    2014-08-01

    Recent evidence supports the placement of ctenophores as the most distant relative to all other animals. This revised animal tree means that either the ancestor of all animals possessed neurons (and that sponges and placozoans apparently lost them) or that ctenophores developed them independently. Differentiating between these possibilities is important not only from a historical perspective, but also for the interpretation of a wide range of neurobiological results. In this short perspective paper, I review the evidence in support of each scenario and show that the relationship between the nervous system of ctenophores and other animals is an unsolved, yet tractable problem. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Mold Infections of the Central Nervous System

    PubMed Central

    McCarthy, Matthew; Rosengart, Axel; Schuetz, Audrey N.; Kontoyiannis, Dimitrios P.; Walsh, Thomas J.

    2016-01-01

    The recent outbreak of exserohilum rostratum meningitis linked to epidural injections of methylprednisolone acetate has brought renewed attention to mold infections of the central nervous system (CNS).1 Although uncommon, these infections are often devastating and difficult to treat. This focused review of the epidemiologic aspects, clinical characteristics, and treatment of mold infections of the CNS covers a group of common pathogens: aspergillus, fusarium, and scedosporium species, molds in the order Mucorales, and dematiaceous molds. Infections caused by these pathogen groups have distinctive epidemiologic profiles, clinical manifestations, microbiologic characteristics, and therapeutic implications, all of which clinicians should understand. PMID:25006721

  17. Histoplasmosis of the central nervous system.

    PubMed Central

    Tan, V; Wilkins, P; Badve, S; Coppen, M; Lucas, S; Hay, R; Schon, F

    1992-01-01

    Histoplasma capsulatum infection of the central nervous system is extremely rare in the United Kingdom partly because the organism is not endemic. However, because the organism can remain quiescent in the lungs or the adrenal glands for over 40 years before dissemination, it increasingly needs to be considered in unexplained neurological disease particularly in people who lived in endemic areas as children. In this paper a rapidly progressive fatal myelopathy in an English man brought up in India was shown at necropsy to be due to histoplasmosis. The neurological features of this infection are reviewed. Images PMID:1640242

  18. Sarcoidosis of the peripheral nervous system.

    PubMed

    Said, Gérard

    2013-01-01

    Neurological manifestations of sarcoidosis are relatively rare but constitute a treatable cause of central and peripheral neurological manifestations. Regarding the peripheral nervous system, cranial nerves are predominantly affected, and peripheral facial nerve palsy, often bilateral, is the most common neurological manifestation of sarcoidosis. Multifocal peripheral neuropathy is a rare event in sarcoidosis. In some cases, however, peripheral neuropathy is the presenting manifestation and seemingly the only organ affected. Definite diagnosis of sarcoidosis rests ideally on histological demonstration of sarcoid granulomas in tissue biopsy specimens.

  19. Whipple's disease confined to the nervous system.

    PubMed Central

    Pollock, S; Lewis, P D; Kendall, B

    1981-01-01

    Whipple's disease confined to the nervous system occurred in a 36-year old woman who presented with grand mal seizures and dementia. There was no evidence of extracerebral involvement and the jejunal biopsy was negative before treatment. Multiple enhancing lesions on CT scan progressed despite therapy with minocycline and prednisone, but resolved on treatment with tetracycline. The dementia did not progress while she was on antibiotic therapy. Whipple's disease should be considered as a treatable cause of progressive dementia even in the absence of an abnormal jejunal biopsy. Images PMID:6174699

  20. Aging, the Central Nervous System, and Mobility

    PubMed Central

    2013-01-01

    Background. Mobility limitations are common and hazardous in community-dwelling older adults but are largely understudied, particularly regarding the role of the central nervous system (CNS). This has limited development of clearly defined pathophysiology, clinical terminology, and effective treatments. Understanding how changes in the CNS contribute to mobility limitations has the potential to inform future intervention studies. Methods. A conference series was launched at the 2012 conference of the Gerontological Society of America in collaboration with the National Institute on Aging and the University of Pittsburgh. The overarching goal of the conference series is to facilitate the translation of research results into interventions that improve mobility for older adults. Results. Evidence from basic, clinical, and epidemiological studies supports the CNS as an important contributor to mobility limitations in older adults without overt neurologic disease. Three main goals for future work that emerged were as follows: (a) develop models of mobility limitations in older adults that differentiate aging from disease-related processes and that fully integrate CNS with musculoskeletal contributors; (b) quantify the contribution of the CNS to mobility loss in older adults in the absence of overt neurologic diseases; (c) promote cross-disciplinary collaboration to generate new ideas and address current methodological issues and barriers, including real-world mobility measures and life-course approaches. Conclusions. In addition to greater cross-disciplinary research, there is a need for new approaches to training clinicians and investigators, which integrate concepts and methodologies from individual disciplines, focus on emerging methodologies, and prepare investigators to assess complex, multisystem associations. PMID:23843270

  1. A Role of the Parasympathetic Nervous System in Cognitive Training.

    PubMed

    Lin, Feng; Heffner, Kathi L; Ren, Ping; Tadin, Duje

    2017-01-01

    Vision-based speed of processing (VSOP) training can result in broad cognitive improvements in older adults with amnestic mild cognitive impairment (aMCI). What remains unknown, however, is what neurophysiological mechanisms account for the observed training effect. Much of the work in this area has focused on the central nervous system, neglecting the fact that the peripheral system can contributes to changes of the central nervous system and vice versa. We examined the prospective relationship between an adaptive parasympathetic nervous system response to cognitive stimuli and VSOP training-induced plasticity. Twenty-one participants with aMCI (10 for VSOP training, and 11 for mental leisure activities (MLA) control) were enrolled. We assessed high-frequency heart rate variability (HF-HRV) during training sessions, and striatum-related neural networks and cognition at baseline and post-training. Compared to MLA, the VSOP group showed a significant U-shaped pattern of HF-HRV response during training, as well as decreases in connectivity strength between bilateral striatal and prefrontal regions. These two effects were associated with training-induced improvements in both the trained (attention and processing speed) and transferred (working memory) cognitive domains. This work provides novel support for interactions between the central and the peripheral nervous systems in relation to cognitive training, and motivates further studies to elucidate the causality of the observed link. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Occurrence of nervous system involvement in SIRS.

    PubMed

    Marchiori, Paulo E; Lino, Angelina M M; Hirata, Maria T A; Carvalho, Nise B; Brotto, Mario W I; Scaff, Milberto

    2006-12-01

    Systemic inflammatory response syndrome (SIRS) is a medical condition in which the all-organ microcirculation is affected including nervous system. We describe neurological findings in 64 patients with SIRS at Hospital das Clínicas of Sao Paulo University School of Medicine; 45.3% were male and 54.7% female; their age ranged from 16 to 95 years old. SIRS was caused by infection in 68.8% of patients, trauma in 10.9%, burns in 7.8%, and elective surgery in 4.7%. The central nervous system involvement occurred in 56.3% of patients and was characterized as encephalopathy in 75%, seizures in 13.9%, non-epileptic myoclonus in 2.8%, and ischemic stroke in 8.3%. The magnetic resonance imaging, cerebrospinal fluid and electroencephalographic changes were unremarkable in encephalopathic patients. Neuromuscular disorders were diagnosed in 43.7%. Critical ill polyneuropathy was characterized in 57.1%, critical ill myopathy in 32.1%, demyelinating neuropathy in 7.2%, and pure motor neuropathy in 3.6%. Nerve and muscle pathological studies dismissed inflammatory abnormalities. The identification of these conditions has important economic implications and may change the critically ill patients' prognosis.

  3. Effectiveness of a Retrospective Drug Utilization Review on Potentially Unsafe Opioid and Central Nervous System Combination Therapy.

    PubMed

    Qureshi, Nabeel; Wesolowicz, Laurie A; Liu, Chi-Mei; Tungol Lin, Alexandra

    2015-10-01

    Drug overdose deaths are the leading cause of unintentional death in the United States, and opioid-related mortality is the primary contributor (75.2%). Among opioid-related mortalities, opioids are most commonly taken with benzodiazepines (30.1%) and antidepressants (13.4%). The utility of a retrospective drug utilization review (DUR) program initiated by a commercial health plan for members taking potentially unsafe opioid and central nervous system (CNS) combination therapy is currently unknown. To determine the effectiveness of a retrospective DUR program on potentially unsafe opioid and CNS combination therapy. This research is a pre-post study utilizing pharmacy claims data from 2.6 million commercially insured members enrolled in a health plan in the Midwest. Members were required to be at least aged 18 years as of August 30, 2013, and continuously enrolled from May 2, 2013, through February 15, 2014. Members with 1 or more paid claims for an opioid at least 200 morphine equivalent dose (MED) daily and a concur- rent supply of another opioid, benzodiazepine, or antidepressant from May 2, 2013, through August 30, 2013 (120-day preintervention period) were targeted for the retrospective DUR program. These exclusion criteria were applied: members belonging to commercial groups requiring permission on claims data analyses, missing or invalid prescriber information, or presence of pharmacy claims indicating human immunodeficiency virus or acquired immunodeficiency syndrome during the 2 years prior to the pre-intervention period. Prescribers of high-dose opioids received a mailing (intervention) containing a member-specific letter, medication profile, and satisfaction survey to determine the prescriber-perceived clinical value of the program. To assess the effectiveness of the retrospective DUR program, criteria was reapplied to identify members still meeting criteria 120 days postintervention (February 15, 2014). Paired samples t-test was used to compare pre

  4. Cardiac autonomic nervous system activity in obesity.

    PubMed

    Liatis, Stavros; Tentolouris, Nikolaos; Katsilambros, Nikolaos

    2004-08-01

    The development of obesity is caused by a disturbance of energy balance, with energy intake exceeding energy expenditure. As the autonomic nervous system (ANS) has a role in the regulation of both these variables, it has become a major focus of investigation in the fields of obesity pathogenesis. The enhanced cardiac sympathetic drive shown in most of the studies in obese persons might be due to an increase in their levels of circulating insulin. The role of leptin needs further investigation with studies in humans. There is a blunted response of the cardiac sympathetic nervous system (SNS) activity in obese subjects after consumption of a carbohydrate-rich meal as well as after insulin administration. This might be due to insulin resistance. It is speculated that increased SNS activity in obesity may contribute to the development of hypertension in genetically susceptible individuals. It is also speculated that the increase in cardiac SNS activity under fasting conditions in obesity may be associated with high cardiovascular morbidity and mortality.

  5. Progress in Central Nervous System Lymphomas

    PubMed Central

    Wang, Chia-Ching; Carnevale, Julia; Rubenstein, James L.

    2014-01-01

    Until recently, primary central nervous system lymphoma (PCNSL) was associated with a uniformly dismal prognosis. It is now reasonable to anticipate long-term survival and possibly cure for a significant proportion of patients diagnosed with PCNSL. Accumulated data generated over the past ten years has provided evidence that long-term progression-free survival (PFS) can reproducibly be attained in a significant fraction of PCNSL patients that receive dose-intensive chemotherapy consolidation, without whole brain radiotherapy. One consolidative regimen that has reproducibly demonstrated promise is the combination of infusional etoposide plus high-dose cytarabine (EA), administered in first complete remission after methotrexate, temozolomide and rituximab-based induction. Given evolving principles of management and the mounting evidence for reproducible improvements in survival rates in prospective clinical series, our goal in this review is to highlight and update principles in diagnosis, staging and management as well as to review data regarding the pathogenesis of central nervous system lymphomas, information that is likely to constitute a basis for the implementation of novel therapies that are requisite for further progress in this unique phenotype of non-Hodgkin lymphoma. PMID:24837460

  6. Redox Signaling Mechanisms in Nervous System Development.

    PubMed

    Olguín-Albuerne, Mauricio; Morán, Julio

    2017-09-21

    Numerous studies have demonstrated the actions of reactive oxygen species (ROS) as regulators of several physiological processes. In this study, we discuss how redox signaling mechanisms operate to control different processes such as neuronal differentiation, oligodendrocyte differentiation, dendritic growth, and axonal growth. Recent Advances: Redox homeostasis regulates the physiology of neural stem cells (NSCs). Notably, the neuronal differentiation process of NSCs is determined by a change toward oxidative metabolism, increased levels of mitochondrial ROS, increased activity of NADPH oxidase (NOX) enzymes, decreased levels of Nrf2, and differential regulation of different redoxins. Furthermore, during the neuronal maturation processes, NOX and MICAL produce ROS to regulate cytoskeletal dynamics, which control the dendritic and axonal growth, as well as the axonal guidance. The redox homeostasis changes are, in part, attributed to cell metabolism and compartmentalized production of ROS, which is regulated, sensed, and transduced by different molecules such as thioredoxins, glutaredoxins, peroxiredoxins, and nucleoredoxin to control different signaling pathways in different subcellular regions. The study of how these elements cooperatively act is essential for the understanding of nervous system development, as well as the application of regenerative therapies that recapitulate these processes. The information about these topics in the last two decades leads us to the conclusion that the role of ROS signaling in development of the nervous system is more important than it was previously believed and makes clear the importance of exploring in more detail the mechanisms of redox signaling. Antioxid. Redox Signal. 00, 000-000.

  7. Central nervous system vasculitis in children.

    PubMed

    Cellucci, Tania; Benseler, Susanne M

    2010-09-01

    To review the current literature of childhood primary and secondary central nervous system (CNS) vasculitis and to evaluate the growing differential diagnosis of inflammatory and noninflammatory brain diseases. Primary angiitis of the central nervous system in children (cPACNS) is a reversible cause of severe neurological deficits and/or psychiatric symptoms. This disease is classified into subtypes based on distinct clinical and radiological features, treatment strategies, and disease trajectories. Also, the increased diagnostic yield from elective brain biopsies in children has improved our ability to diagnose angiography-negative cPACNS. Over the past few years, the differential diagnosis for cPACNS has rapidly expanded due to the characterization of novel inflammatory and noninflammatory brain diseases. Specifically, vasoconstrictive disorders and neuronal antibody-associated conditions have now been described in children and have overlapping clinical features with cPACNS. This review summarizes the recent data on diagnosis, treatment, and prognosis of cPACNS. It also addresses the evolving differential diagnosis for CNS vasculitis. Our improved understanding of these disorders allows a tailored diagnostic approach leading to rapid diagnosis and initiation of therapy in these potentially reversible conditions.

  8. Diagnosing central nervous system vasculitis in children.

    PubMed

    Cellucci, Tania; Benseler, Susanne M

    2010-12-01

    To review the current literature of childhood central nervous system vasculitis, and to discuss a tailored approach to diagnosis and treatment based on recent evidence. Primary angiitis of the central nervous system in children (cPACNS) is an increasingly recognized inflammatory brain disease with potentially devastating neurological consequences. The diagnostic approach should be tailored to the clinical presentation of the child with suspected cPACNS and should address the expanding spectrum of inflammatory and noninflammatory brain diseases with overlapping clinical features. New evidence has confirmed that elective brain biopsies in children have a higher diagnostic yield than in adults and improve our ability to diagnose angiography-negative cPACNS. Finally, observational studies have shown that early diagnosis and aggressive treatment lead to improved neurological outcomes and lower mortality rates in patients with cPACNS. This review summarizes the recent data on diagnosis, classification, treatment, and outcomes in cPACNS. Our improved understanding of cPACNS facilitates a tailored diagnostic approach that results in earlier diagnosis and initiation of therapy for this potentially reversible condition.

  9. Autoimmune channelopathies of the nervous system.

    PubMed

    Kleopa, Kleopas A

    2011-09-01

    Ion channels are complex transmembrane proteins that orchestrate the electrical signals necessary for normal function of excitable tissues, including the central nervous system, peripheral nerve, and both skeletal and cardiac muscle. Progress in molecular biology has allowed cloning and expression of genes that encode channel proteins, while comparable advances in biophysics, including patch-clamp electrophysiology and related techniques, have made the functional assessment of expressed proteins at the level of single channel molecules possible. The role of ion channel defects in the pathogenesis of numerous disorders has become increasingly apparent over the last two decades. Neurological channelopathies are frequently genetically determined but may also be acquired through autoimmune mechanisms. All of these autoimmune conditions can arise as paraneoplastic syndromes or independent from malignancies. The pathogenicity of autoantibodies to ion channels has been demonstrated in most of these conditions, and patients may respond well to immunotherapies that reduce the levels of the pathogenic autoantibodies. Autoimmune channelopathies may have a good prognosis, especially if diagnosed and treated early, and if they are non-paraneoplastic. This review focuses on clinical, pathophysiologic and therapeutic aspects of autoimmune ion channel disorders of the nervous system.

  10. Novel nervous system mechanisms in visceral pain.

    PubMed

    De Winter, B Y; Deiteren, A; De Man, J G

    2016-03-01

    Visceral hypersensitivity is an important factor underlying abdominal pain in functional gastrointestinal disorders such as irritable bowel syndrome (IBS) and can result from aberrant signaling from the gut to the brain or vice versa. Over the last two decades, research has identified several selective, intertwining pathways that underlie IBS-related visceral nociception, including specific receptors on afferent and efferent nerve fibers such as transient receptor potential channels (TRP) channels, opioid, and cannabinoid receptors. In this issue of Neurogastroenterology and Motility Gil et al. demonstrate that in an animal model with reduced descending inhibitory control, the sympathetic nervous system outflow is enhanced, contributing to visceral and somatic hypersensitivity. They also provide evidence that interfering with the activation of adrenergic receptors on sensory nerves can be an interesting new strategy to treat visceral pain in IBS. This mini-review places these findings in a broader perspective by providing an overview of promising novel mechanisms to alter the nervous control of visceral pain interfering with afferent or efferent neuronal signaling. © 2016 John Wiley & Sons Ltd.

  11. The evolution of the serotonergic nervous system.

    PubMed Central

    Hay-Schmidt, A

    2000-01-01

    The pattern of development of the serotonergic nervous system is described from the larvae of ctenophores, platyhelminths, nemerteans, entoprocts, ectoprocts (bryozoans), molluscs, polychaetes, brachiopods, phoronids, echinoderms, enteropneusts and lampreys. The larval brain (apical ganglion) of spiralian protostomes (except nermerteans) generally has three serotonergic neurons and the lateral pair always innervates the ciliary band of the prototroch. In contrast, brachiopods, phoronids, echinoderms and enteropneusts have numerous serotonergic neurons in the apical ganglion from which the ciliary band is innervated. This pattern of development is much like the pattern seen in lamprey embryos and larvae, which leads the author to conclude that the serotonergic raphe system found in vertebrates originated in the larval brain of deuterostome invertebrates. Further, the neural tube of chordates appears to be derived, at least in part, from the ciliary band of deuterostome invertebrate larvae. The evidence shows no sign of a shift in the dorsal ventral orientation within the line leading to the chordates. PMID:10885511

  12. Gravity sensing in the central nervous system.

    PubMed

    Wiedemann, Meike; Hanke, Wolfgang

    2002-07-01

    For human based space research it is of high importance to understand the influence of gravity on the properties of the central nervous system (CNS). Until now it is not much known about how neuronal tissue can sense gravity. The aim of this study was to find out weather and how the CNS, as a complex system, can percept and react to changes in gravity. Neuronal tissue and especially the CNS fulfils all the requirements for excitable media. Consequently, self-organisation, pattern formation and propagating excitation waves as typical events of excitable media have been observed in such tissue. The spreading depression (SD), an excitation depression wave is the most obvious and best described of these phenomena in the CNS. In our experiments we showed that the properties of the SD and therefore the CNS in its properties as an excitable medium reacts very sensitive to changes in gravity.

  13. [Tumors of the central nervous system].

    PubMed

    Alegría-Loyola, Marco Antonio; Galnares-Olalde, Javier Andrés; Mercado, Moisés

    2017-01-01

    Central nervous system (CNS) tumors constitute a heterogeneous group of neoplasms that share a considerable morbidity and mortality rate. Recent advances in the underlying oncogenic mechanisms of these tumors have led to new classification systems, which, in turn, allow for a better diagnostic approach and therapeutic planning. Most of these neoplasms occur sporadically and several risk factors have been found to be associated with their development, such as exposure to ionizing radiation or electromagnetic fields and the concomitant presence of conditions like diabetes, hypertension and Parkinson's disease. A relatively minor proportion of primary CNS tumors occur in the context of hereditary syndromes. The purpose of this review is to analyze the etiopathogenesis, clinical presentation, diagnosis and therapy of CNS tumors with particular emphasis in the putative risk factors mentioned above.

  14. Effects of age on binding sites for calcitonin gene-related peptide in the rat central nervous system.

    PubMed

    Guidobono, F; Netti, C; Bettica, P; Sibilia, V; Pagani, F; Cazzamalli, E; Pecile, A

    1989-07-17

    The binding site distribution of calcitonin gene-related peptide (CGRP) was studied in the central nervous system of aged rats (22 months old) and compared with that of young rats (2 months). The regional distribution of [125I]Tyr-rat CGRP binding in coronal sections of young and old rat CNS was examined by an in vitro autoradiographic technique. The results, showed that in aged rats there was a marked reduction in CGRP binding, without any change in binding affinity, in the hippocampus, the nucleus rhomboideus, the nucleus arcuatus, the colliculus superior, the substantia grisea centralis and the spinal cord. In the cortical areas, the amygdala, the caudatus putamen and the accumbens binding was not modified. In the cortex cerebellaris CGRP binding was strikingly greater in the aged rats. The increase in binding might be a consequence of an adaptive process due to a decline of the peptide synthesis with age and is suggestive of a role for CGRP in the cerebellum functions.

  15. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    PubMed

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy.

  16. [The effects of intra-cerebroventricular administered rocuronium on the central nervous system of rats and determination of its epileptic seizure-inducing dose].

    PubMed

    Baykal, Mehmet; Gökmen, Necati; Doğan, Alper; Erbayraktar, Serhat; Yılmaz, Osman; Ocmen, Elvan; Erdost, Hale Aksu; Arkan, Atalay

    The aim of this study was to investigate the effects of intracerebroventricularly administered rocuronium bromide on the central nervous system, determine the seizure threshold dose of rocuronium bromide in rats, and investigate the effects of rocuronium on the central nervous system at 1/5, 1/10, and 1/100 dilutions of the determined seizure threshold dose. A permanent cannula was placed in the lateral cerebral ventricle of the animals. The study was designed in two phases. In the first phase, the seizure threshold dose of rocuronium bromide was determined. In the second phase, Group R 1/5 (n=6), Group 1/10 (n=6), and Group 1/100 (n=6) were formed using doses of 1/5, 1/10, and 1/100, respectively, of the obtained rocuronium bromide seizure threshold dose. The rocuronium bromide seizure threshold value was found to be 0.056±0.009μmoL. The seizure threshold, as a function of the body weight of rats, was calculated as 0.286μmoL/kg(-1). A dose of 1/5 of the seizure threshold dose primarily caused splayed limbs, posturing, and tremors of the entire body, whereas the dose of 1/10 of the seizure threshold dose caused agitation and shivering. A dose of 1/100 of the seizure threshold dose was associated with decreased locomotor activity. This study showed that rocuronium bromide has dose-related deleterious effects on the central nervous system and can produce dose-dependent excitatory effects and seizures. Publicado por Elsevier Editora Ltda.

  17. Effect on cardiovascular system and autonomic nervous system in healthy adults with different body types while performing movements simulating washing of the lower limbs for cardiac rehabilitation.

    PubMed

    Murakami, Reiko; Matsuda, Tamiko; Koitabashi, Kikuyo

    2012-12-01

    To clarify the effects on the cardiovascular system and autonomic nervous system of activities simulating washing of the lower limbs in subjects with different body types (underweight body mass index [BMI] < 18.5, normal weight BMI 18.5-24.9, overweight BMI ≥ 25). Systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), skin blood flow (BF), and HR variability were measured in 15 healthy adults while performing movements similar to washing the lower limbs. Changes in SBP, DBP, HR, BF, double product (DP), low-frequency values (LF), high-frequency values (HF) and the ratio between the powers of LF and HF (LF/HF) during activities performed from the supine position (ΔSBP, ΔDBP, ΔHR, ΔBF, ΔDP, ΔLF, ΔHF and ΔLF/HF) were compared among subjects grouped according to body type. ΔHR and ΔDP in the overweight group were significantly lower than in underweight and normal weight groups (ΔHR, underweight P < 0.05 and normal weight P < 0.05; ΔDP, underweight P < 0.05 and normal weight P < 0.001). Moreover, ΔDP in the underweight group was significantly lower than in the normal weight group (normal weight P < 0.05). ΔBF and ΔLF/HF in the normal weight group were significantly lower than in underweight and overweight groups (ΔBF, underweight P < 0.05 and overweight group P < 0.05; ΔLF/HF, underweight P < 0.05 and overweight P < 0.01). ΔHF in the overweight group was significantly lower than in the normal weight group (normal weight P < 0.05). The effect on the cardiovascular and autonomic nervous systems by movements simulating washing of the lower limbs differed according to body type. © 2011 The Authors. Japan Journal of Nursing Science © 2011 Japan Academy of Nursing Science.

  18. [Radiation-induced tumors of the nervous system in man].

    PubMed

    Hubert, D; Bertin, M

    1993-11-01

    The risk of developing a tumor of the nervous system in humans is analysed in several studies of populations, exposed to ionising radiation for medical reasons, or exposed to military or occupational radiation. The main data come from series of patients who underwent radiotherapy during childhood: a high incidence of tumors of the nervous system is found after irradiation of one to a few grays as treatment of a benign disease (especially tinea capitis), as well as after irradiation at higher doses of a few tens of grays for the treatment of cancer (in particular cerebral irradiation in acute lymphoblastic leukaemia). The type of radiation-induced tumors is variable, but meningioma is more frequent after low doses and glioma and sarcoma after higher doses used in the treatment of neoplastic diseases. A dose-effect relationship appeared between the risk of tumor of the nervous system and the radiation dose. The risk was higher when radiation was delivered at a younger age. Much less data are available after radiotherapy in the adulthood, but an increased risk of cerebral tumor appears in the series of ankylosing spondylitis patients. As for the exposures to radiodiagnosis exams, the main problem is the risk of cerebral tumor in children whose mother has undergone abdominal or pelvic X-rays during pregnancy. No risk of neurologic tumor was found in the A-bomb survivors irradiated at Hiroshima and Nagasaki. Occupational exposure to ionising radiation has been incriminated in the first radiologists exposed to high doses. In nuclear industry workers, the results of epidemiological studies are contradictory and at the present time it is not possible to link their radiologic exposure with a risk of tumor of the nervous system. In populations living near nuclear plants, mortality due to tumors of the nervous system was not increased.

  19. Pharmacologic action of oseltamivir on the nervous system.

    PubMed

    Ishii, K; Hamamoto, H; Sasaki, T; Ikegaya, Y; Yamatsugu, K; Kanai, M; Shibasaki, M; Sekimizu, K

    2008-02-01

    Oseltamivir, an antiviral drug used for the treatment of influenza, contains the L-glutamic acid motif in its chemical structure. We focused on this structural characteristic of oseltamivir and examined the pharmacologic effects of the drug on the nervous system in invertebrate and vertebrate animal models. Injection of oseltamivir or L-glutamic acid into silkworm (Bombyx mori) larvae induced muscle relaxation. Oseltamivir and L-glutamic acid inhibited kainate-induced rapid muscle contraction, but neither drug affected insect cytokine paralytic peptide-induced slow muscle contraction. In the mammalian system, mice (Mus musculus) treated intracerebrally with oseltamivir developed convulsive seizures. Hydrolyzed oseltamivir, the active form containing a carboxylic acid, evoked epileptiform firing of hippocampal neurons in rat (Rattus norvegicus) organotypic hippocampal slice cultures. These results are the first to demonstrate that oseltamivir exerts pharmacologic effects on the nervous system in insects and mammals.

  20. Autonomic nervous system and cardiovascular disease.

    PubMed

    Deschamps, Alain; Denault, André

    2009-06-01

    Because anesthesia affects the integrity of the autonomic nervous system, anesthesiologists use vital signs to maintain respiratory and circulatory homeostasis. However, patients with genetic predispositions or with autonomic dysfunctions are at risk of severe complications from anesthesia. For these patients, the monitoring of vital signs may not give sufficient warning to avoid complications. The development of methods to measure autonomic tone could be of interest to anesthesiologists because they could warn of changes in autonomic tone before vital signs are affected. New noninvasive methods are being developed to obtain measurements of parasympathetic and sympathetic output allowing for the monitoring of perioperative autonomic tone. These measurements are based on analysis of heart rate and blood pressure variability. In this report, the principals of the analysis of heart rate and blood pressure variability will be explained and the usefulness of these methods to anesthesiologists will be discussed.

  1. Scaffolds for central nervous system tissue engineering

    NASA Astrophysics Data System (ADS)

    He, Jin; Wang, Xiu-Mei; Spector, Myron; Cui, Fu-Zhai

    2012-03-01

    Traumatic injuries to the brain and spinal cord of the central nervous system (CNS) lead to severe and permanent neurological deficits and to date there is no universally accepted treatment. Owing to the profound impact, extensive studies have been carried out aiming at reducing inflammatory responses and overcoming the inhibitory environment in the CNS after injury so as to enhance regeneration. Artificial scaffolds may provide a suitable environment for axonal regeneration and functional recovery, and are of particular importance in cases in which the injury has resulted in a cavitary defect. In this review we discuss development of scaffolds for CNS tissue engineering, focusing on mechanism of CNS injuries, various biomaterials that have been used in studies, and current strategies for designing and fabricating scaffolds.

  2. [Idiopathic hypersomnia of the central nervous system].

    PubMed

    Bové-Ribé, A

    Idiopathic hypersomnia of the central nervous system is a cause of excessive diurnal somnolence which affects 5-10% of the patients who attend sleep clinics for this reason. We describe three male patients who consulted for excessive diurnal somnolence. Nocturnal polysomnographic studies followed by tests for multiple latencies of sleep were done. In all cases there was confirmation of lengthening of the time of nocturnal sleep with normal phases of sleep and an increase in the number of sleep spindles in phase II. Similarly there was an average latency of sleep of less than 10 minutes and fewer than two phases of REM in the multiple latencies test. All patients improved with drugs stimulating vigil, two of them with centramine and the third with methilphenidate. We consider the clinical data the polysomnographic criteria which help to establish the diagnosis.

  3. Environmentally related disorders of the nervous system

    SciTech Connect

    Baker, E.L.; Feldman, R.G.; French, J.G. )

    1990-03-01

    Specific physical and chemical agents found in the workplace and in the general environment are responsible for characteristic pathologic processes within the nervous system. It has been shown that many neurotoxic agents produce a dose-related spectrum of impairment ranging from mild slowing of nerve conducting velocity or prolongation in reaction time to neuropathy and frank encephalopathy. Clinical manifestations are determined by the agent involved, by the dose of exposure, the vulnerability of the cellular target, the ability of the organism to metabolize and excrete the agent, and the ability to repair damage. An occupational history, including evaluation of evidence of specific agents and job history, is a critical component in the clinical management of individuals with suspect neurotoxic disease. Environmentally-induced disorders can be prevented by appropriate environmental controls. Prevention of neurotoxic disease is a complex process requiring continuous involvement of public health agencies and strong scientific research.

  4. Central nervous system nocardiosis in Queensland

    PubMed Central

    Rafiei, Nastaran; Peri, Anna Maria; Righi, Elda; Harris, Patrick; Paterson, David L.

    2016-01-01

    Abstract Nocardia infection of the central nervous system (CNS) is an uncommon but clinically important disease, often occurring in immunocompromised individuals and carrying a high mortality rate. We present 20 cases of microbiologically proven CNS nocardiosis diagnosed in Queensland from 1997 to 2015 and review the literature from 1997 to 2016. Over 50% of cases occurred in immunocompromised individuals, with corticosteroid use posing a particularly significant risk factor. Nine (45%) patients were immunocompetent and 3 had no comorbidities at time of diagnosis. Nocardia farcinica was the most frequently isolated species (8/20) and resistance to trimethoprim–sulfamethoxazole (TMP-SMX) was found in 2 isolates. Overall, 35% of our patients died within 1 year, with the majority of deaths occurring in the first month following diagnosis. Interestingly, of the 7 deaths occurring at 1 year, 6 were attributed to N farcinica with the seventh isolate being unspeciated, suggesting the virulence of the N farcinica strain. PMID:27861348

  5. BK Channels in the Central Nervous System

    PubMed Central

    Contet, C.; Goulding, S. P.; Kuljis, D. A.; Barth, A. L.

    2016-01-01

    Large conductance Ca2+- and voltage-activated K+ (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca2+ concentrations. In neurons, they regulate the timing and duration of K+ influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction. PMID:27238267

  6. VIIP: Central Nervous System (CNS) Modeling

    NASA Technical Reports Server (NTRS)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  7. Paraneoplastic disorders of the peripheral nervous system.

    PubMed

    Antoine, Jean-Christophe; Camdessanché, Jean-Philippe

    2013-06-01

    Paraneoplastic neurological syndromes are rare but can affect any part of the peripheral nervous system (PNS) including motor neurons, sensory ganglia, nerve roots, plexuses, cranial and peripheral nerves, and neuromuscular junctions. The type of cancer, lymphoma or solid tumour, is a determinant factor of the underlying mechanism. With solid tumour, antibodies directed to intracellular (anti-Hu or anti-CV2/CRMP5 antibodies) or surface antigens (anti-VGCC,or LGI1 and Caspr2 antibodies) have been identified while with lymphoma, the neuropathy is usually linked to a monoclonal gammopathy. This review discusses the different etiologies and mechanisms of paraneoplastic disorders of the PNS in patients emphasising their evaluation, diagnosis and treatment.

  8. Calcium pumps in the central nervous system.

    PubMed

    Mata, Ana M; Sepúlveda, M Rosario

    2005-09-01

    Two families of Ca2+ transport ATPases are involved in the maintenance of Ca2+ homeostasis in the nervous system, the plasma membrane Ca2+-ATPase that pumps Ca2+ to the extracellular medium and the intracellular sarco/endoplasmic reticulum Ca2+-ATPase that transports Ca2+ from the cytosol to the endoplasmic reticulum. Both types of calcium pumps show precise regulatory properties and they are localized in specific subcellular regions. In this review, we describe the functional and regulatory properties of both families of calcium pumps, their distribution in nerve cells, and their involvement in neurological disorders. The functional characterization of neuronal calcium pumps is very important in order to understand the biochemical processes involved in the maintenance of intracellular calcium in synaptic terminals.

  9. Autonomic complications following central nervous system injury.

    PubMed

    Baguley, Ian J

    2008-11-01

    Severe sympathetic overactivity occurs in several conditions that are recognized as medical emergencies. Following central nervous system injury, a small proportion of individuals develop severe paroxysmal sympathetic and motor overactivity. These individuals have a high attendant risk of unnecessary secondary morbidity. Following acquired brain injury, the syndrome is known by a number of names including dysautonomia and sympathetic storm. Dysautonomia is currently a diagnosis of exclusion and often goes unrecognized. The evidence base for management is almost entirely anecdotal in nature; there has been little structured or prospective research. In contrast, the evidence base for autonomic dysreflexia following spinal cord injury is much stronger, with level 1 evidence for many treatment interventions. This review presents a current understanding of each condition and suggests simple management protocols. With the marked disparity in the literature for the two conditions, the main focus is on the literature for dysautonomia. The similarity between these two conditions and the other autonomic emergency conditions is discussed.

  10. Navigating Intermediate Targets: The Nervous System Midline

    PubMed Central

    Dickson, Barry J.; Zou, Yimin

    2010-01-01

    In a bilaterally symmetric animal, the midline plays a key role in directing axon growth during wiring of the nervous system. Midline cells provide a variety of guidance cues for growing axons, to which different types of axons respond in different ways and at different times. For some axons, the midline is an intermediate target. They first seek it out, but then move on towards their final targets on the opposite side. For others, the midline is a repulsive barrier that keeps them on their own side of the midline. And for many of these axons the midline provides signals that guide them along specific lateral pathways or up and down the longitudinal axis. PMID:20534708

  11. Subcortical cytoskeleton periodicity throughout the nervous system.

    PubMed

    D'Este, Elisa; Kamin, Dirk; Velte, Caroline; Göttfert, Fabian; Simons, Mikael; Hell, Stefan W

    2016-03-07

    Superresolution fluorescence microscopy recently revealed a ~190 nm periodic cytoskeleton lattice consisting of actin, spectrin, and other proteins underneath the membrane of cultured hippocampal neurons. Whether the periodic cytoskeleton lattice is a structural feature of all neurons and how it is modified when axons are ensheathed by myelin forming glial cells is not known. Here, STED nanoscopy is used to demonstrate that this structure is a commonplace of virtually all neuron types in vitro. To check how the subcortical meshwork is modified during myelination, we studied sciatic nerve fibers from adult mice. Periodicity of both actin and spectrin was uncovered at the internodes, indicating no substantial differences between unmyelinated and myelinated axons. Remarkably, the actin/spectrin pattern was also detected in glial cells such as cultured oligodendrocyte precursor cells. Altogether our work shows that the periodic subcortical cytoskeletal meshwork is a fundamental characteristic of cells in the nervous system and is not a distinctive feature of neurons, as previously thought.

  12. Varicella Zoster Virus in the Nervous System

    PubMed Central

    Gilden, Don; Nagel, Maria; Cohrs, Randall; Mahalingam, Ravi; Baird, Nicholas

    2015-01-01

    Varicella zoster virus (VZV) is a ubiquitous, exclusively human alphaherpesvirus. Primary infection usually results in varicella (chickenpox), after which VZV becomes latent in ganglionic neurons along the entire neuraxis. As VZV-specific cell-mediated immunity declines in elderly and immunocompromised individuals, VZV reactivates and causes herpes zoster (shingles), frequently complicated by postherpetic neuralgia. VZV reactivation also produces multiple serious neurological and ocular diseases, such as cranial nerve palsies, meningoencephalitis, myelopathy, and VZV vasculopathy, including giant cell arteritis, with or without associated rash. Herein, we review the clinical, laboratory, imaging, and pathological features of neurological complications of VZV reactivation as well as diagnostic tests to verify VZV infection of the nervous system. Updates on the physical state of VZV DNA and viral gene expression in latently infected ganglia, neuronal, and primate models to study varicella pathogenesis and immunity are presented along with innovations in the immunization of elderly individuals to prevent VZV reactivation. PMID:26918131

  13. [Viral infections of human central nervous system].

    PubMed

    Agut, Henri

    2016-01-01

    The viruses that can infect the central nervous system of humans are numerous and form a heterogeneous group with respect to their structural, functional and epidemiological properties. The pathophysiological mechanisms leading to associated neurological diseases, mainly meningitis and encephalitis, also are complex and often intertwined. Overall, neurological clinical symptoms correspond either to acute viral diseases associated with primary infections or to acute, subacute or chronic diseases associated with persistent viral infections. The frequent severity of the clinical situation requires in all cases the practice of virological diagnosis for which the PCR techniques applied to cerebrospinal fluid samples occupy a prominent place. The severity of clinical manifestations justifies the use of prophylactic vaccination when available and antiviral treatment as soon as the causative virus is identified or suspected.

  14. Adenosine receptors and the central nervous system.

    PubMed

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.

  15. Gangliosides of the Vertebrate Nervous System.

    PubMed

    Schnaar, Ronald L

    2016-08-14

    Gangliosides, sialylated glycosphingolipids, found on all vertebrate cells and tissues, are major molecular determinants on the surfaces of vertebrate nerve cells. Composed of a sialylated glycan attached to a ceramide lipid, the same four structures-GM1, GD1a, GD1b, and GT1b-represent the vast majority (>90%) of gangliosides in the brains of all mammals and birds. Primarily found on the outer surface of the plasma membrane with their glycans facing outward, gangliosides associate laterally with each other, sphingomyelin, cholesterol, and select proteins in lipid rafts-the dynamic functional subdomains of the plasma membrane. The functions of gangliosides in the human nervous system are revealed by congenital mutations in ganglioside biosynthetic genes. Mutations in ST3GAL5, which codes for an enzyme early in brain ganglioside biosynthesis, result in an early-onset seizure disorder with profound motor and cognitive decay, whereas mutations in B4GALNT1, a gene encoding a later step, result in hereditary spastic paraplegia accompanied by intellectual deficits. The molecular functions of brain gangliosides include regulation of receptors in the same membrane via lateral (cis) associations and regulation of cell-cell recognition by trans interaction with ganglioside binding proteins on apposing cells. Gangliosides also affect the aggregation of Aβ (Alzheimer's disease) and α-synuclein (Parkinson's Disease). As analytical, biochemical, and genetic tools advance, research on gangliosides promises to reveal mechanisms of molecular control related to nerve and glial cell differentiation, neuronal excitability, axon outgrowth after nervous system injury, and protein folding in neurodegenerative diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. [Functions and mechanisms of dehydroepiandrosterone in nervous system].

    PubMed

    Xie, Li; Sun, Hui-Ying; Gao, Jing; Liao, Hong

    2006-10-01

    Dehydroepiandrosterone is the precursor of sex hormone, and can be synthesized in the brain de novo, which means it is a kind of neurosteroid. Animal experiments and clinical researches have proved that DHEA exhibits a variety of functional activities in the nervous system, including neurotrophic, neuroprotective effects and enhancement' of learning and memory, which suggests that it may be useful in preventing and treating some neural diseases such as neurodegenerative diseases, cerebral ischemia, trauma, psychosis and so on. The mechanisms of the effect of DHEA on protection against oxidative stress, excitotoxicity, apoptosis etc. were found to be through both genomic and nongenomic way. These effects and mechanisms in nervous system were summarized in the present paper.

  17. [Polymerase chain reaction in diagnosis of toxoplasmosis of the central nervous system: effect of methods for isolating DNA from samples of cerebrospinal fluid on results of the reaction].

    PubMed

    Gołab, Elzbieta; Waloch, Maria

    2002-01-01

    We examined influence of the method of isolation of DNA from cerebrospinal fluid samples on results of PCR in the diagnosis of toxoplasmosis of the central nervous system. Three different protocols of DNA isolation were used for DNA extraction from 360 samples made of cerebrospinal fluid spiked with tachyzoites of Toxoplasma gondii: thermic, enzymatic and enzymatic-filtering. Purified DNA samples were tested by PCR with primers T15 and T16 designed for the B1 gene of the parasite. Enzymatic method of DNA isolation appeared most effective allowing detection of T. gondii DNA in 50% of samples containing single parasite cell.

  18. Effects of Electroacupuncture on Pain Threshold of Laboring Rats and the Expression of Norepinephrine Transporter and α2 Adrenergic Receptor in the Central Nervous System

    PubMed Central

    Lin, Shike; Feng, Yuanyuan; Zhang, Qi; Wang, Meili; Wang, Yu

    2016-01-01

    To observe the effects of electroacupuncture on pain threshold of laboring rats and the expression of norepinephrine transporter and α2 adrenergic receptor in the central nervous system to determine the mechanism of the analgesic effect of labor. 120 pregnant rats were divided into 6 groups: a control group, 4 electroacupuncture groups, and a meperidine group. After interventions, the warm water tail-flick test was used to observe pain threshold. NE levels in serum, NET, and α2AR mRNA and protein expression levels in the central nervous system were measured. No difference in pain threshold was observed between the 6 groups before intervention. After intervention, increased pain thresholds were observed in all groups except the control group with a higher threshold seen in the electroacupuncture groups. Serum NE levels decreased in the electroacupuncture and MP groups. Increases in NET and α2AR expression in the cerebral cortex and decreases in enlarged segments of the spinal cord were seen. Acupuncture increases uptake of NE via cerebral NET and decreases its uptake by spinal NET. The levels of α2AR are also increased and decreased, respectively, in both tissues. This results in a decrease in systemic NE levels and may be the mechanism for its analgesic effects. PMID:27547232

  19. [The present state of knowledge concerning the effect of electromagnetic fields of 50/60 Hz on the circulatory system and the autonomic nervous system].

    PubMed

    Indulski, J A; Bortkiewicz, A; Zmyślony, M

    1997-01-01

    Diseases of the circulatory system together with neoplastic diseases are recognised as the major health problem in the contemporary world. Their origin and aggravation may be related to the exposure to electromagnetic fields (EMFs) since theoretically, disorders in the functioning of the circulatory system are most likely due to electric impulses generated in it by external magnetic fields. The nervous system, including its autonomic part which regulates, among others, the functioning of the circulatory system, because of its electric nature is another system which may be disturbed by EMFs. From the 1960s, biological studies on the effects of power-line frequency EMFs have been carried out in many countries. In view of the applied study model, four main directions of these studies can be identified: in vitro and in vivo animal experiments, experimental studies on humans, clinical and epidemiological studies. Experimental studies on animals and humans have yielded ambiguous and very often contradictory results. Some of them indicate that EMF contributes to slowing down the cardiac rhythm and the stroke volume of the left ventricle, other results suggest their acceleration, and still other show no differences. The results of clinical studies performed in many countries in different groups of workers exposed to power-line frequency EMFs have not produced the evidence for drawing unequivocal conclusions. Again some studies reveal that those exposed show disorders in neurovegetative and blood pressure regulations (hypotension or hypertension) as well as in cardiac rhythm (bradycardia or tachycardia). Other studies do not confirm harmful effect of EMF on the circulatory system. Therefore, it is not feasible to find out, on the basis of these studies, whether and how chronic exposure to power-line frequency EMFs influences the functioning of the circulatory system, the more so as ECG standard recording has been to date the only diagnostic method, and according to the

  20. The renin-angiotensin system and the central nervous system.

    PubMed

    Ganong, W F

    1977-04-01

    One of several factors affecting the secretion of renin by the kidneys is the sympathetic nervous system. The sympathetic input is excitatory and is mediated by beta-adrenergic receptors, which are probably located on the membranes of the juxtaglomerular cells. Stimulation of sympathetic areas in the medulla, midbrain and hypothalamus raises blood pressure and increases renin secretion, whereas stimulation of other parts of the hypothalamus decreases blood pressure and renin output. The centrally active alpha-adrenergic agonist clonidine decreases renin secretion, lowers blood pressure, inhibits ACTH and vasopressin secretion, and increases growth hormone secretion in dogs. The effects on ACTH and growth hormone are abolished by administration of phenoxybenzamine into the third ventricle, whereas the effect on blood pressure is abolished by administration of phenoxybenzamine in the fourth ventricle without any effect on the ACTH and growth hormone responses. Fourth ventricular phenoxybenzamine decreases but does not abolish the inhibitory effect of clonidine on renin secretion. Circulating angiotensin II acts on the brain via the area postrema to raise blood pressure and via the subfornical organ to increase water intake. Its effect on vasopressin secretion is debated. The brain contains a renin-like enzyme, converting enzyme, renin substrate, and angiotensin. There is debate about the nature and physiological significance of the angiotensin II-generating enzyme in the brain, and about the nature of the angiotensin I and angiotensin II that have been reported to be present in the central nervous system. However, injection of angiotensin II into the cerebral ventricles produces drinking, increased secretion of vasopressin and ACTH, and increased blood pressure. The same responses are produced by intraventricular renin. Angiotensin II also facilitates sympathetic discharge in the periphery, and the possibility that it exerts a similar action on the adrenergic neurons

  1. A comparison of the central nervous system effects of alcohol at pseudo-steady state in Caucasian and expatriate Japanese healthy male volunteers.

    PubMed

    Zoethout, Remco W M; de Kam, Marieke L; Dahan, Albert; Cohen, Adam F; van Gerven, Joop M A

    2012-11-01

    In general, Japanese and Caucasians differ in their response to alcohol. To investigate these differences the alcohol clamping method can be used. This strictly controlled infusion regimen provides a reliable tool to study contrasts in central nervous system (CNS) effects and/or alcohol disposition. In this study, twelve Japanese and twelve Caucasian healthy volunteers received two concentrations of intravenous alcohol or placebo using the alcohol clamp. Infusion rates during the steady state phase were used to compare alcohol clearance between the subgroups. Central nervous system (CNS) effects were frequently measured throughout the clamp. On average, significantly lower amounts of alcohol were needed to maintain similar stable concentrations in the Japanese group. However, these differences disappeared when values were corrected for lean body mass. The most pronounced pharmacodynamic differences between the groups were observed on body sway and on the visual analogue scale for subjective alcohol effects, mainly at the highest dose level. The alcohol clamp seems a useful method to compare differences in alcohol metabolism between groups. Some CNS effects of alcohol differed clearly between Japanese and Caucasians, but others did not, even though alcohol levels were stable and similar between the two groups.

  2. Cnidarians and the evolutionary origin of the nervous system.

    PubMed

    Watanabe, Hiroshi; Fujisawa, Toshitaka; Holstein, Thomas W

    2009-04-01

    Cnidarians are widely regarded as one of the first organisms in animal evolution possessing a nervous system. Conventional histological and electrophysiological studies have revealed a considerable degree of complexity of the cnidarian nervous system. Thanks to expressed sequence tags and genome projects and the availability of functional assay systems in cnidarians, this simple nervous system is now genetically accessible and becomes particularly valuable for understanding the origin and evolution of the genetic control mechanisms underlying its development. In the present review, the anatomical and physiological features of the cnidarian nervous system and the interesting parallels in neurodevelopmental mechanisms between Cnidaria and Bilateria are discussed.

  3. Distribution of carnosine-like peptides in the nervous system of developing and adult zebrafish (Danio rerio) and embryonic effects of chronic carnosine exposure

    PubMed Central

    Azher, Seema; Margolis, Frank L.; Patel, Kamakshi; Mousa, Ahmad; Majid, Arshad

    2013-01-01

    Carnosine-like peptides (carnosine-LP) are a family of histidine derivatives that are present in the nervous system of various species and that exhibit antioxidant, anti-matrix-metalloproteinase, anti-excitotoxic, and free-radical scavenging properties. They are also neuroprotective in animal models of cerebral ischemia. Although the function of carnosine-LP is largely unknown, the hypothesis has been advanced that they play a role in the developing nervous system. Since the zebrafish is an excellent vertebrate model for studying development and disease, we have examined the distribution pattern of carnosine-LP in the adult and developing zebrafish. In the adult, immunoreactivity for carnosine-LP is specifically concentrated in sensory neurons and non-sensory cells of the olfactory epithelium, the olfactory nerve, and the olfactory bulb. Robust staining has also been observed in the retinal outer nuclear layer and the corneal epithelium. Developmental studies have revealed immunostaining for carnosine-LP as early as 18 h, 24 h, and 7 days post-fertilization in, respectively, the olfactory, corneal, and retinal primordia. These data suggest that carnosine-LP are involved in olfactory and visual function. We have also investigated the effects of chronic (7 days) exposure to carnosine on embryonic development and show that 0.01 μM to 10 mM concentrations of carnosine do not elicit significant deleterious effects. Conversely, treatment with 100 mM carnosine results in developmental delay and compromised larval survival. These results indicate that, at lower concentrations, exogenously administered carnosine can be used to explore the role of carnosine in development and developmental disorders of the nervous system. PMID:19440736

  4. Nasal administration of an angiotensin antagonist in the rat model: effect of bioadhesive formulations on the distribution of drugs to the systemic and central nervous systems.

    PubMed

    Charlton, S T; Davis, S S; Illum, L

    2007-06-29

    The effect of bioadhesive formulations on the direct transport of an angiotensin antagonist drug ((14)C-GR138950) from the nasal cavity to the central nervous system was evaluated in a rat model. Three different bioadhesive polymer formulations (3% pectin LM-5, 1.0% pectin LM-12 and 0.5% chitosan G210) containing the drug were administered nasally to rats by inserting a dosing cannula 7mm into the nasal cavity after which the plasma and brain tissue levels were measured. It was found that the polymer formulations provided significantly higher plasma levels and significantly lower brain tissue levels of drug than a control, in the form of a simple drug solution. Changing the depth of insertion of the cannula from 7 to 15mm, in order to reach the olfactory region in the nasal cavity significantly decreased plasma levels and significantly increased brain tissue levels of drug for the two formulations studied (1.0% pectin LM-12 and a simple drug solution). There was no significant difference between the drug availability for the bioadhesive formulation and the control in the brain when the longer cannula was used for administration. It is suggested that the conventional rat model is not suitable for evaluation of the effects of bioadhesive formulations in nose-to-brain delivery.

  5. Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection

    PubMed Central

    2012-01-01

    Although IL-17A (commonly referred to as IL-17) has been implicated in the pathogenesis of central nervous system (CNS) autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R) knockout (KO) mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25). In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT) cell and gamma-delta (γδ) T cell infiltrates during Staphylococcus aureus-induced brain abscess formation. Specifically, when compared with wild-type (WT) animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following S. aureus infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1high infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection. PMID:22704602

  6. Sialyltransferase regulates nervous system function in Drosophila

    PubMed Central

    Repnikova, Elena; Koles, Kate; Nakamura, Michiko; Pitts, Jared; Li, Haiwen; Ambavane, Apoorva; Zoran, Mark J.; Panin, Vladislav M.

    2012-01-01

    In vertebrates, sialylated glycans participate in a wide range of biological processes and affect nervous system’s development and function. While the complexity of glycosylation and the functional redundancy among sialyltransferases provide obstacles for revealing biological roles of sialylation in mammals, Drosophila possesses a sole vertebrate-type sialyltransferase, DSiaT, with significant homology to its mammalian counterparts, suggesting that Drosophila could be a suitable model to investigate the function of sialylation. To explore this possibility and investigate the role of sialylation in Drosophila, we inactivated DSiaT in vivo by gene targeting and analyzed phenotypes of DSiaT mutants using a combination of behavioural, immunolabeling, electrophysiological and pharmacological approaches. Our experiments demonstrated that DSiaT expression is restricted to a subset of CNS neurons throughout development. We found that DSiaT mutations result in significantly decreased life span, locomotor abnormalities, temperature-sensitive paralysis and defects of neuromuscular junctions. Our results indicate that DSiaT regulates neuronal excitability and affects the function of a voltage-gated sodium channel. Finally, we showed that sialyltransferase activity is required for DSiaT function in vivo, which suggests that DSiaT mutant phenotypes result from a defect in sialylation of N-glycans. This work provided the first evidence that sialylation has an important biological function in protostomes, while also revealing a novel, nervous system-specific function of α2,6 sialylation. Thus, our data shed light on one of the most ancient functions of sialic acids in metazoan organisms and suggest a possibility that this function is evolutionarily conserved between flies and mammals. PMID:20445073

  7. Music and Autonomic Nervous System (Dys)function

    PubMed Central

    Ellis, Robert J.; Thayer, Julian F.

    2010-01-01

    Despite a wealth of evidence for the involvement of the autonomic nervous system (ANS) in health and disease and the ability of music to affect ANS activity, few studies have systematically explored the therapeutic effects of music on ANS dysfunction. Furthermore, when ANS activity is quantified and analyzed, it is usually from a point of convenience rather than from an understanding of its physiological basis. After a review of the experimental and therapeutic literatures exploring music and the ANS, a “Neurovisceral Integration” perspective on the interplay between the central and autonomic nervous systems is introduced, and the associated implications for physiological, emotional, and cognitive health are explored. The construct of heart rate variability is discussed both as an example of this complex interplay and as a useful metric for exploring the sometimes subtle effect of music on autonomic response. Suggestions for future investigations using musical interventions are offered based on this integrative account. PMID:21197136

  8. Central nervous system manifestations of neonatal lupus: a systematic review.

    PubMed

    Chen, C C; Lin, K-L; Chen, C-L; Wong, A May-Kuen; Huang, J-L

    2013-12-01

    Neonatal lupus is a rare and acquired autoimmune disease. Central nervous system abnormalities are potential manifestations in neonatal lupus. Through a systematic literature review, we analyzed the clinical features of previously reported neonatal lupus cases where central nervous system abnormalities had been identified. Most reported neonatal lupus patients with central nervous system involvement were neuroimaging-determined and asymptomatic. Only seven neonatal lupus cases were identified as having a symptomatic central nervous system abnormality which caused physical disability or required neurosurgery. A high percentage of these neurosymptomatic neonatal lupus patients had experienced a transient cutaneous skin rash and had no maternal history of autoimmune disease before pregnancy.

  9. Silicon-Containing GABA Derivatives, Silagaba Compounds, as Orally Effective Agents for Treating Neuropathic Pain without Central-Nervous-System-Related Side Effects

    PubMed Central

    2014-01-01

    Neuropathic pain is a chronic condition resulting from neuronal damage. Pregabalin, the (S)-isomer of 3-isobutyl-γ-aminobutyric acid (GABA), is widely used to treat neuropathic pain, despite the occurrence of central nervous system (CNS)-related side effects such as dizziness and somnolence. Here we describe the pharmacology of novel GABA derivatives containing silicon–carbon bonds, silagaba compounds. Silagaba131, 132, and 161 showed pregabalin-like analgesic activities in animal models of neuropathic pain, but in contrast to pregabalin they did not impair neuromuscular coordination in rotarod tests. Pharmacokinetic studies showed that brain exposure to silagaba compounds was lower than that to pregabalin. Surprisingly, despite their potent analgesic action in vivo, silagaba compounds showed only weak binding to α2-δ protein. These compounds may be useful to study mechanisms of neuropathic pain. Our results also indicate that silagaba132 and 161 are candidates for orally effective treatment of neuropathic pain without CNS-related side effects. PMID:24738473

  10. Distribution and physiological effects of B-type allatostatins (myoinhibitory peptides, MIPs) in the stomatogastric nervous system of the crab, Cancer borealis

    PubMed Central

    Szabo, Theresa M.; Chen, Ruibing; Goeritz, Marie L.; Maloney, Ryan T.; Tang, Lamont S.; Li, Lingjun; Marder, Eve

    2011-01-01

    The crustacean stomatogastric ganglion (STG) is modulated by a large number of amines and neuropeptides that are found in descending pathways from anterior ganglia or reach the STG via the hemolymph. Among these are the allatostatin (AST) – B types also known as myoinhibitory peptides (MIPs). We used mass spectrometry to determine the sequences of nine members of the AST-B family of peptides that were found in the stomatogastric nervous system of the crab, Cancer borealis. We raised an antibody against Cancer borealis Allatostatin-B1 (CbAST-B1) (VPNDWAHFRGSWa) and used it to map the distribution of CbAST-B1-like immunoreactivity (-LI) in the stomatogastric nervous system. CbAST-B1-LI was found in neurons and neuropil in the commissural ganglia (CoGs), in somata in the esophageal ganglion (OG), in fibers in the stomatogastric nerve (stn), and in neuropilar processes in the STG. CbAST-B1-LI was blocked by preincubation with 10-6 M CbAST-B1, and partially blocked by lower concentrations. Electrophysiological recordings of the effects of CbAST-B1, CbAST-B2, and CbAST-B3 on the pyloric rhythm of the STG showed that all three peptides inhibited the pyloric rhythm in a state-dependent manner. Specifically, all three peptides at 10-8 M significantly decreased the frequency of the pyloric rhythm when the initial frequency of the pyloric rhythm was below 0.6 Hz. These data suggest important neuromodulatory roles for the CbAST-B family in the stomatogastric nervous system. PMID:21491432

  11. Distribution and physiological effects of B-type allatostatins (myoinhibitory peptides, MIPs) in the stomatogastric nervous system of the crab Cancer borealis.

    PubMed

    Szabo, Theresa M; Chen, Ruibing; Goeritz, Marie L; Maloney, Ryan T; Tang, Lamont S; Li, Lingjun; Marder, Eve

    2011-09-01

    The crustacean stomatogastric ganglion (STG) is modulated by a large number of amines and neuropeptides that are found in descending pathways from anterior ganglia or reach the STG via the hemolymph. Among these are the allatostatin (AST) B types, also known as myoinhibitory peptides (MIPs). We used mass spectrometry to determine the sequences of nine members of the AST-B family of peptides that were found in the stomatogastric nervous system of the crab Cancer borealis. We raised an antibody against Cancer borealis allatostatin-B1 (CbAST-B1; VPNDWAHFRGSWa) and used it to map the distribution of CbAST-B1-like immunoreactivity (-LI) in the stomatogastric nervous system. CbAST-B1-LI was found in neurons and neuropil in the commissural ganglia (CoGs), in somata in the esophageal ganglion (OG), in fibers in the stomatogastric nerve (stn), and in neuropilar processes in the STG. CbAST-B1-LI was blocked by preincubation with 10(-6) M CbAST-B1 and was partially blocked by lower concentrations. Electrophysiological recordings of the effects of CbAST-B1, CbAST-B2, and CbAST-B3 on the pyloric rhythm of the STG showed that all three peptides inhibited the pyloric rhythm in a state-dependent manner. Specifically, all three peptides at 10(-8) M significantly decreased the frequency of the pyloric rhythm when the initial frequency of the pyloric rhythm was below 0.6 Hz. These data suggest important neuromodulatory roles for the CbAST-B family in the stomatogastric nervous system.

  12. Experimental study of the mechanism and indices of harmful effects of certain chemical substances on the central nervous system

    PubMed Central

    Bokina, A. I.; Merkur'yeva, R. V.; Eksler, N. D.; Oleynik, A. A.; Pinigina, I. I.

    1979-01-01

    The task of the second stage of Soviet-American cooperation on the problem of environmental health science was to explain the question of the comparative sensitivity of methods used in both countries, as well as the indices of harmful effects for the same toxic substance (carbon disulfide), with the purpose of determining the most informative methods of assessing the influence of atmospheric pollutants on organisms. The application of neurophysiological research methods (recording total electrical activity of the cortex and cortical structures of the brain, studying amplitude-time characteristics of averaged evoked potentials of the optical cortex, investigating sensory and convulsive thresholds) has made it possible to explain the neurophysiological basis of the effect of carbon disulfide on the central nervous system—the perturbation of cortical inhibition processes and the increase of excitation in amygdalate structures, both of which play an important role in the fixation process of temporary connection. The compilation of data from neurophysiological and neurochemical investigations show that neurophysiological changes are associated primarily with a decrease in enzymic breakdown of free neuraminic acid. The study of the average evoked potentials in humans during exposure to carbon disulfide concentrations of 0.09 mg/m3 revealed a tendency to decrease the short latent amplitude components and increase the long latent amplitude components of the averaged evoked potentials. The study of operant behavior in rats revealed a characteristic change in the instrumental alimentary reactions under long-term (3 months) exposure of carbon disulfide to a concentration of 16 mg/m3. In this manner, the following were developed in experiments with animals and research on humans: indices of the harmful effects of neurotropic toxic substances, a change in operant behavior, a decrease in the amplitude of total electrical activity, a change in time-amplitude parameters of

  13. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    NASA Technical Reports Server (NTRS)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  14. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    NASA Technical Reports Server (NTRS)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  15. Effects of pesticides on the peripheral and central nervous system in tobacco farmers in Malaysia: studies on peripheral nerve conduction, brain-evoked potentials and computerized posturography.

    PubMed

    Kimura, Kaoru; Yokoyama, Kazuhito; Sato, Hajime; Nordin, Rusli Bin; Naing, Lin; Kimura, Satoshi; Okabe, Shingo; Maeno, Takashi; Kobayashi, Yasuki; Kitamura, Fumihiko; Araki, Shunichi

    2005-04-01

    We examined the effects of pesticides on the central and peripheral nervous system in the setting of a tobacco farm at a developing country. Maximal motor and sensory nerve conduction velocities (MCV and SCV, respectively) in the median, sural and tibial nerves, postural sway, and brain-evoked potentials (auditory event-related and visual-evoked potentials) were measured in 80 male tobacco farmers and age- and sex-matched 40 controls in Kelantan, Malaysia. Median SCV (finger-wrist) in farmers using Delsen (mancozeb, dithiocarbamate fungicide), who showed significant decrease of serum cholinesterase activities, were significantly lower compared with the controls. Sural SCV in farmers using Fastac (alpha-cypermethrin, pyrethroid insecticide) and median MCV (elbow-wrist) in farmers using Tamex (butralin, dinitroaniline herbicide) were significantly slowed compared with their respective controls. In Delsen (mancozeb, dithiocarbamate) users, the power of postural sway of 0-1 Hz was significantly larger than that in the controls both in the anterior-posterior direction with eyes open and in the right-left direction with eyes closed. The former type of sway was also significantly increased in Tamaron (methamidophos, organophosphorus insecticide) users. In conclusion, nerve conduction velocities and postural sway seem to be sensitive indicators of the effects of pesticides on the central and peripheral nervous system.

  16. [General pharmacology of T-3761, a new oral quinolone antibacterial agent (2). Effect on the respiratory and cardiovascular systems, autonomic nervous system and other functions].

    PubMed

    Furuhata, K; Hiraiwa, T; Terashima, N; Arai, H; Ono, S; Hashiba, K; Maekawa, M; Kitamura, K; Nakada, Y; Mori, Y

    1995-05-01

    General pharmacological effects of T-3761, a new oral quinolone antibacterial agent, on the respiratory and cardiovascular systems, autonomic nervous system and other functions were investigated in laboratory animals. The results obtained are summarized as follows. 1. Respiratory and cardiovascular systems: Oral administration of T-3761 at doses of 100-1,000 mg/kg did not affect in conscious rats. But intravenous administration of T-3761 at doses of 10-100 mg/kg caused an increase in respiratory rate, induced hypotension, caused increase or decrease in heart rate and altered ECG patterns (elevation of T waves and reduction of voltage of QRS complexes, etc.) in anesthetized dogs. Intravenous administration of T-3761 at doses of 10-100 mg/kg showed respiratory rate increase or decrease, hypertension, heart rate decrease and ECG patterns changes (T waves elevation and extrasystole) in anesthetized rabbits. 2. Autonomic nervous system and smooth muscle organs: T-3761 increased the epinephrine-induced contraction of the isolated guinea pig vas deferens at concentration of 10(-5)-10(-4) g/ml. T-3761 decreased the acetylcholine-induced contraction of the isolated guinea pig ileum and epinephrine-induced relaxation of the isolated guinea pig trachea-chain at concentration of 10(-4) g/ml. T-3761 increased the norepinephrine-induced contraction of the isolated rabbit thoracic aorta at concentration of 10(-4) g/ml. Oral administration of T-3761 at a dose of 1,000 mg/kg exerted slight mydriasis in mice. 3. Digestive system: T-3761 decreased the spontaneous motilities of isolated ileum and colon at concentration of 10(-4) g/ml. Oral administration of T-3761 at a dose of 1,000 mg/kg inhibited gastric output and intestinal transit time in rats or mice. 4. Renal functions: Oral administration of T-3761 at a dose of 300 mg/kg increased Na+ excretion but did not affect PSP excretion in rats. 5. Hematological examinations: T-3761 showed no effects on resistance to hemolysis, blood

  17. Differential effects of methylmercury, thiols, and vitamins on galactosidases of nervous and non-nervous tissues

    SciTech Connect

    Vijayalakshmi, K.; Bapu, C.; Sood, P.P.

    1992-07-01

    A rational pharmacological attack on heavy metal poisoning has only been possible with the advent of non-toxic binding of chelating agents. In the recent past, a number of chelators have been used to detoxicate the mercury content from the body. When all the well known chelators were subjected for their therapeutic capacities in the central nervous system, most of the findings were discouraging. In a recent study we have demonstrated the superiority of vitamins over thiol compounds in methylmercury mobilization, which otherwise has been considered difficult and often an impossible task for clinicians as well as toxicologists. Biochemical lesions are considered to be the most primary effects of methylmercury toxication, and lysosomes are the critical cellular organelles which are easily ruptured and release enzymes. In the present study, the biochemical analyses of two lysosomal enzymes (alpha and beta-galactosidases) in various nervous and non-nervous tissues of mice during methylmercury toxication as well as detoxication with vitamins and thiols have been studied in the light of previous investigation related to methylmercury mobilization with these agents. 11 refs., 2 figs.

  18. Primary central nervous system posttransplant lymphoproliferative disorders.

    PubMed

    Castellano-Sanchez, Amilcar A; Li, Shiyong; Qian, Jiang; Lagoo, Anand; Weir, Edward; Brat, Daniel J

    2004-02-01

    Posttransplant lymphoproliferative disorders (PTLDs) represent a spectrum ranging from Epstein-Barr virus (EBV)-driven polyclonal lymphoid proliferations to EBV+ or EBV- malignant lymphomas. Central nervous system (CNS) PTLDs have not been characterized fully. We reviewed the clinical, radiologic, and pathologic features of 12 primary CNS PTLDs to define them more precisely. Patients included 10 males and 2 females (median age, 43.4 years) who were recipients of kidney (n = 5), liver (n = 2), heart (n = 2), peripheral blood stem cells (n = 2), or bone marrow (n = 1). All received immunosuppressive therapy. CNS symptoms developed 3 to 131 months (mean, 31 months) after transplantation. By neuroimaging, most showed multiple (3 to 9) intra-axial, contrast-enhancing lesions. Histologic sections showed marked expansion of perivascular spaces by large, cytologically malignant lymphoid cells that were CD45+, CD20+, EBV+ and showed light chain restriction or immunoglobulin gene rearrangement. In distinction to PTLDs in other organ systems, CNS PTLDs were uniformly high-grade lymphomas that fulfilled the World Health Organization criteria for monomorphic PTLDs. Extremely short survival periods were noted for each CNS PTLD that followed peripheral blood stem cell transplantation. Survival of others with CNS PTLD varied; some lived more than 2 years.

  19. Central nervous system adaptation to exercise training

    NASA Astrophysics Data System (ADS)

    Kaminski, Lois Anne

    Exercise training causes physiological changes in skeletal muscle that results in enhanced performance in humans and animals. Despite numerous studies on exercise effects on skeletal muscle, relatively little is known about adaptive changes in the central nervous system. This study investigated whether spinal pathways that mediate locomotor activity undergo functional adaptation after 28 days of exercise training. Ventral horn spinal cord expression of calcitonin gene-related peptide (CGRP), a trophic factor at the neuromuscular junction, choline acetyltransferase (Chat), the synthetic enzyme for acetylcholine, vesicular acetylcholine transporter (Vacht), a transporter of ACh into synaptic vesicles and calcineurin (CaN), a protein phosphatase that phosphorylates ion channels and exocytosis machinery were measured to determine if changes in expression occurred in response to physical activity. Expression of these proteins was determined by western blot and immunohistochemistry (IHC). Comparisons between sedentary controls and animals that underwent either endurance training or resistance training were made. Control rats received no exercise other than normal cage activity. Endurance-trained rats were exercised 6 days/wk at 31m/min on a treadmill (8% incline) for 100 minutes. Resistance-trained rats supported their weight plus an additional load (70--80% body weight) on a 60° incline (3 x 3 min, 5 days/wk). CGRP expression was measured by radioimmunoassay (RIA). CGRP expression in the spinal dorsal and ventral horn of exercise-trained animals was not significantly different than controls. Chat expression measured by Western blot and IHC was not significantly different between runners and controls but expression in resistance-trained animals assayed by IHC was significantly less than controls and runners. Vacht and CaN immunoreactivity in motor neurons of endurance-trained rats was significantly elevated relative to control and resistance-trained animals. Ventral

  20. SYSTEMIC BUT NOT CENTRAL NERVOUS SYSTEM NITRIC OXIDE SYNTHASE INHIBITION EXACERBATES THE HYPERTENSIVE EFFECTS OF CHRONIC MELANOCORTIN-3/4 RECEPTOR ACTIVATION

    PubMed Central

    do Carmo, Jussara M.; Bassi, Mirian; da Silva, Alexandre A.; Hall, John E.

    2011-01-01

    We examined whether systemic or central nervous system (CNS) inhibition of nitric oxide (NO) synthase exacerbates the cardiovascular responses of chronic CNS melanocortin 3/4 receptor (MC3/4R) activation. Sprague-Dawley rats implanted with telemetry probes, venous catheters and intracerebroventricular (ICV) cannulae were divided in 3 groups. After control measurements, the NO synthase inhibitor L-NAME was infused (10 μg/kg/min, IV) for 17 days and starting on day 7 of L-NAME infusion the MC3/4R agonist MTII (10 ng/hr, Group 1) or saline vehicle (Group 2) was infused ICV for 10 days. A third group not treated with L-NAME also received MTII ICV. MC3/4R activation caused a greater increase in mean arterial pressure (MAP) and heart rate (HR) in rats treated with IV L-NAME (35±6 mmHg and 56±8 bpm) than L-NAME + vehicle or MTII alone (22±5 and 9±2 mmHg, and 26±14 and 27±5 bpm) despite a 58 and 50% reduction in food intake during the first 6 days of MTII infusion. To test if the amplified pressor response to MTII after L-NAME was due to a reduction in NO availability in the brain, we also infused L-NAME directly into the CNS alone or in combination with MTII. ICV infusion of L-NAME + MTII caused only ~10 mmHg increase in MAP with no change in HR, similar to the effects of ICV infusion of MTII alone, while ICV infusion of L-NAME alone had no effect on MAP. These results suggest that reduction in peripheral, but not CNS, NO production augments MAP sensitivity to CNS MC3/4R activation. PMID:21263126

  1. Neurotropic Enterovirus Infections in the Central Nervous System.

    PubMed

    Huang, Hsing-I; Shih, Shin-Ru

    2015-11-24

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.

  2. Neurotropic Enterovirus Infections in the Central Nervous System

    PubMed Central

    Huang, Hsing-I; Shih, Shin-Ru

    2015-01-01

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells. PMID:26610549

  3. [Effect of artificial mountain climate on the functional state of higher regions of the central nervous system in man].

    PubMed

    Berezovskiĭ, V A; Levashov, M I

    2009-01-01

    The study included 97 patients with vegetative vascular dystonia and chronic non-specific pulmonary diseases exposed to artificial high-altitude climate in an Orotron climatic chamber during 2 weeks. Atmospheric conditions maintained in the chamber had the following parameters: partial pressure of oxygen--147-160 gPa, relative humidity--60-70%, air temperature--16-18 degrees C, light aeroion content--up to 6000 cub.cm. It was shown that the exposure to artificial mountain climatic conditions enhanced functional mobility of nervous processes and decreased the length of the sensorimotor reactions of the patients. Individual differences in the change of parameters being measured depended on the degree of initial functional flexibility of nervous processes.

  4. [Microbiological diagnosis of central nervous system infections].

    PubMed

    Codina, María Gema; de Cueto, Marina; Vicente, Diego; Echevarría, Juan Emilio; Prats, Guillem

    2011-02-01

    The infections of the central nervous system are associated with high morbidity and mortality. Several agents including bacteria, viruses, fungi and protozoa can invade the CNS. They are different clinical presentations of these infections: meningitis, encephalitis, brain and epidural abscesses and cerebrospinal fluid shunt infections. The clinical course could be acute, subacute or chronic depending on the infecting agent and the location of the infection. The travelling entails a risk of infection by exotic agents of meningo-encephalitis such as robovirus and arbovirus, which require new diagnostic and therapeutic methods. Despite some progress in the treatment of the CNS infections, the mortality is usually high. Rapid diagnosis and emergent interventions are necessary to improve the outcome of those patients, and early and targeted antimicrobial treatment and support measures are of paramount importance for a favourable clinical patient outcome. The antigen detection techniques and particularly those of genetic diagnosis by amplification (PCR and others) have advanced, and improved the diagnostic of those diseases. In this paper the clinical signs and symptoms and diagnostic procedures of CNS infections are presented.

  5. The autonomic nervous system and hypertension.

    PubMed

    Mancia, Giuseppe; Grassi, Guido

    2014-05-23

    Physiological studies have long documented the key role played by the autonomic nervous system in modulating cardiovascular functions and in controlling blood pressure values, both at rest and in response to environmental stimuli. Experimental and clinical investigations have tested the hypothesis that the origin, progression, and outcome of human hypertension are related to dysfunctional autonomic cardiovascular control and especially to abnormal activation of the sympathetic division. Here, we review the recent literature on the adrenergic and vagal abnormalities that have been reported in essential hypertension, with emphasis on their role as promoters and as amplifiers of the high blood pressure state. We also discuss the possible mechanisms underlying these abnormalities and their importance in the development and progression of the structural and functional cardiovascular damage that characterizes hypertension. Finally, we examine the modifications of sympathetic and vagal cardiovascular influences induced by current nonpharmacological and pharmacological interventions aimed at correcting elevations in blood pressure and restoring the normotensive state. © 2014 American Heart Association, Inc.

  6. Histology of the central nervous system.

    PubMed

    Garman, Robert H

    2011-01-01

    The intent of this article is to assist pathologists inexperienced in examining central nervous system (CNS) sections to recognize normal and abnormal cell types as well as some common artifacts. Dark neurons are the most common histologic artifact but, with experience, can readily be distinguished from degenerating (eosinophilic) neurons. Neuron degeneration stains can be useful in lowering the threshold for detecting neuron degeneration as well as for revealing degeneration within populations of neurons that are too small to show the associated eosinophilic cytoplasmic alteration within H&E-stained sections. Neuron degeneration may also be identified by the presence of associated macroglial and microglial reactions. Knowledge of the distribution of astrocyte cytoplasmic processes is helpful in determining that certain patterns of treatment-related neuropil vacuolation (as well as some artifacts) represent swelling of these processes. On the other hand, vacuoles with different distribution patterns may represent alterations of the myelin sheath. Because brains are typically undersampled for microscopic evaluation, many pathologists are unfamiliar with the circumventricuar organs (CVOs) that represent normal brain structures but are often mistaken for lesions. Therefore, the six CVOs found in the brain are also illustrated in this article.

  7. Sympathetic nervous system behavior in human obesity.

    PubMed

    Davy, Kevin P; Orr, Jeb S

    2009-02-01

    The sympathetic nervous system (SNS) plays an essential role in the regulation of metabolic and cardiovascular homeostasis. Low SNS activity has been suggested to be a risk factor for weight gain and obesity development. In contrast, SNS activation is characteristic of a number of metabolic and cardiovascular diseases that occur more frequently in obese individuals. Until recently, the relation between obesity and SNS behavior has been controversial because previous approaches for assessing SNS activity in humans have produced inconsistent findings. Beginning in the early 1990s, many studies using state of the art neurochemical and neurophysiological techniques have provided important insight. The purpose of the present review is to provide an overview of our current understanding of the region specific alterations in SNS behavior in human obesity. We will discuss findings from our own laboratory which implicate visceral fat as an important depot linking obesity with skeletal muscle SNS activation. The influence of weight change on SNS behavior and the potential mechanisms and consequences of region specific SNS activation in obesity will also be considered.

  8. Time Perception Mechanisms at Central Nervous System

    PubMed Central

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S.; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks. PMID:27127597

  9. Central nervous system tumors in Mexican children.

    PubMed

    De la Torre Mondragón, L; Ridaura Sanz, C; Reyes Mujica, M; Rueda Franco, F

    1993-08-01

    Five hundred and seventy primary central nervous system (CNS) tumors from the Department of Pathology at the National Institute of Pediatrics in Mexico City, collected from 1970 to 1989, were histologically reclassified in order to find out their relative incidence as well as their outstanding features. With this, we could establish a frame of reference for our local population, contributing to the epidemiological analysis of these entities. All the tumors were examined independently by two pathologists (C.R. and M.R.), using the classification of Rorke et al. Histological type, patient age and sex, and tumor location were analyzed. CNS tumors were the secondmost frequently encountered solid tumors, after lymphomas, and were increasing in incidence at a rate of 2.2 annually. Children in the age group 0-9 years were most often affected, and there was a predominance of male patients. Astrocytoma and medulloblastoma were the most common tumor types. The infratentorial region was the most frequent tumor location in the 2- to 9-year age group. By contrast, in the under 2-year-olds a supratentorial location was more frequent, and the incidence of germ cell tumors was proportionally high. In general, some histological types seemed to be associated with particular age groups. Although we found primitive neuroectodermal tumors to be the fifth most common at all ages (except for medulloblastoma), many other authors do not report a similar finding.

  10. Time Perception Mechanisms at Central Nervous System.

    PubMed

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-04-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson's disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  11. [Acute and chronic effects of organic solvents on the central nervous system. Use of psychobehavioral performance tests in the assessment of toxicity].

    PubMed

    Kishi, R; Miyake, H

    1990-01-01

    Neurotoxicity of organic solvents is one of the most important emerging issues in the field of occupational health. Psychological testing has been proven useful not only in clinical diagnosis but also in experimental and epidemiological studies. Although various psychobehavioral performance test batteries have been applied in the study of neurotoxicity of organic solvents during these last two decades among European countries and America, only few studies have been made on these in Japan. It is therefore considered very important to review the major papers published to date, clarify the issues being currently discussed, and propose important studies for future. The present paper provides a review of the results obtained by the application of behavioral performance tests in the study of solvent toxicity. The studies reviewed are classified into the following five parts: 1. psychological test batteries developed to date, 2. human experimental studies and experimental field studies on the acute toxicity of organic solvents, 3. epidemiological studies on industrial workers, 4. characteristics of the central nervous system dysfunction caused by organic solvents, and 5. prognosis of workers diagnosed as chronic organic solvent intoxication. The paper also discusses the applicability of psychobehavioral techniques and addresses issues in data collection in the study of the effects of solvent exposure on the nervous system.

  12. Early animal evolution and the origins of nervous systems

    PubMed Central

    Budd, Graham E.

    2015-01-01

    Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour. PMID:26554037

  13. Early animal evolution and the origins of nervous systems.

    PubMed

    Budd, Graham E

    2015-12-19

    Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour. © 2015 The Authors.

  14. Extraversion, Neuroticism and Strength of the Nervous System

    ERIC Educational Resources Information Center

    Frigon, Jean-Yves

    1976-01-01

    The hypothesized identity of the dimensions of extraversion-introversion and strength of the nervous system was tested on four groups of nine subjects (neurotic extraverts, stable extraverts, neurotic introverts, stable introverts). Strength of the subjects' nervous system was estimated using the electroencephalographic (EEG) variant of extinction…

  15. [Primary central nervous system lymphoma: report of one case].

    PubMed

    Zhao, Peng; Su, Rong-Gang

    2002-04-01

    One case of primary central nervous system lymphoma was reported. The patient received comprehensive therapy, mainly the surgical treatment, with the survival time 12 months, and local recurrence was considered as the major cause of death. The pathology, imagine examination, diagnosis and treatment of primary central nervous system lymphoma were discussed.

  16. A gene catalogue of the amphioxus nervous system

    PubMed Central

    Benito-Gutiérrez, Èlia

    2006-01-01

    The elaboration of extremely complex nervous systems is a major success of evolution. However, at the dawn of the post-genomic era, few data have helped yet to unravel how a nervous system develops and evolves to complexity. On the evolutionary road to vertebrates, amphioxus occupies a key position to tackle this exciting issue. Its “simple” nervous system basically consists of a dorsal nerve cord and a diffuse net of peripheral neurons, which contrasts greatly with the complexity of vertebrate nervous systems. Notwithstanding, increasing data on gene expression has faced up this simplicity by revealing a mounting level of cryptic complexity, with unexpected levels of neuronal diversity, organisation and regionalisation of the central and peripheral nervous systems. Furthermore, recent gene expression data also point to the high neurogenic potential of the epidermis of amphioxus, suggestive of a skin-brain track for the evolution of the vertebrate nervous system. Here I attempt to catalogue and synthesise current gene expression data in the amphioxus nervous system. From this global point of view, I suggest scenarios for the evolutionary origin of complex features in the vertebrate nervous system, with special emphasis on the evolutionary origin of placodes and neural crest, and postulate a pre-patterned migratory pathway of cells, which, in the epidermis, may represent an intermediate state towards the deployment of one of the most striking innovative features of vertebrates: the neural crest and its derivatives. PMID:16763675

  17. Cardiovascular effects of the essential oil of Mentha x villosa and its main constituent, piperitenone oxide, in normotensive anaesthetised rats: role of the autonomic nervous system.

    PubMed

    Lahlou, S; Carneiro-Leão, R F; Leal-Cardoso, J H; Toscano, C F

    2001-10-01

    Cardiovascular effects of intravenous (i. v.) treatment with the essential oil of Mentha x villosa (EOMV) were investigated in pentobarbitone-anaesthetised rats. Additionally this study examines whether the major constituent of EOMV, piperitenone oxide (PO), is the active principle mediating EOMV-induced changes in mean aortic pressure (MAP) and heart rate (HR) and whether the autonomic nervous system is involved in the mediation of these cardiovascular effects. Two samples of EOMV have been tested: one contained 62.32% of PO (sample 1) and the other contained a higher percent (95.87%) of PO (sample 2). Intravenous injections of bolus doses (1 to 20 mg/kg) of both samples of EOMV elicited immediate and dose-dependent decreases in MAP and HR. These cardiovascular responses were also observed following i. v. injections of PO (1 to 20 mg/kg). However, maximal percent decreases in MAP and HR elicited by sample 2 of EOMV were significantly greater than those evoked by sample 1 of EOMV, while they were of the same order of magnitude as those elicited by PO. Pretreatment of rats with either bilateral vagotomy or i. v. methylatropine (1 mg/kg) did not modify significantly the hypotensive and bradycardic responses to EOMV. In contrast, pretreatment with i. v. hexamethonium (30 mg/kg) partially, but significantly, reduced the bradycardic effects of EOMV without affecting hypotension. The present study shows for the first time that i. v. treatment with EOMV in pentobarbitone-anaesthetised rats induces hypotensive and bradycardic effects, which appear mostly attributed to the actions of the major constituent of EOMV, PO. These cardiovascular effects appear to be independent since EOMV-induced bradycardia appears dependent upon the presence of an intact and functional sympathetic nerve drive to the heart, while EOMV-induced hypotension appears independent of the presence of an operational sympathetic nervous system. This suggests that hypotensive activity of EOMV may result

  18. Radon exposure and tumors of the central nervous system.

    PubMed

    Ruano-Ravina, Alberto; Dacosta-Urbieta, Ana; Barros-Dios, Juan Miguel; Kelsey, Karl T

    2017-03-15

    To review the published evidence of links between radon exposure and central nervous system tumors through a systematic review of the scientific literature. We performed a thorough bibliographic search in Medline (PubMed) and EMBASE. We combined MeSH (Medical Subject Heading) terms and free text. We developed a purpose-designed scale to assess the quality of the included manuscripts. We have included 18 studies, 8 performed on miners, 3 on the general population and 7 on children, and the results have been structured using this classification. The results are inconclusive. An association between radon exposure and central nervous system tumors has been observed in some studies on miners, but not in others. The results observed in the general adult population and in children are also mixed, with some research evincing a statistically significant association and others showing no effect. We cannot conclude that there is a relationship between radon exposure and central nervous system tumors. The available studies are extremely heterogeneous in terms of design and populations studied. Further research is needed in this topic, particularly in the general population residing in areas with high levels of radon. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Melatonin Metabolism in the Central Nervous System

    PubMed Central

    Hardeland, Rüdiger

    2010-01-01

    The metabolism of melatonin in the central nervous system is of interest for several reasons. Melatonin enters the brain either via the pineal recess or by uptake from the blood. It has been assumed to be also formed in some brain areas. Neuroprotection by melatonin has been demonstrated in numerous model systems, and various attempts have been undertaken to counteract neurodegeneration by melatonin treatment. Several concurrent pathways lead to different products. Cytochrome P450 subforms have been demonstrated in the brain. They either demethylate melatonin to N-acetylserotonin, or produce 6-hydroxymelatonin, which is mostly sulfated already in the CNS. Melatonin is deacetylated, at least in pineal gland and retina, to 5-methoxytryptamine. N1-acetyl-N2-formyl-5-methoxykynuramine is formed by pyrrole-ring cleavage, by myeloperoxidase, indoleamine 2,3-dioxygenase and various non-enzymatic oxidants. Its product, N1-acetyl-5-methoxykynuramine, is of interest as a scavenger of reactive oxygen and nitrogen species, mitochondrial modulator, downregulator of cyclooxygenase-2, inhibitor of cyclooxygenase, neuronal and inducible NO synthases. Contrary to other nitrosated aromates, the nitrosated kynuramine metabolite, 3-acetamidomethyl-6-methoxycinnolinone, does not re-donate NO. Various other products are formed from melatonin and its metabolites by interaction with reactive oxygen and nitrogen species. The relative contribution of the various pathways to melatonin catabolism seems to be influenced by microglia activation, oxidative stress and brain levels of melatonin, which may be strongly changed in experiments on neuroprotection. Many of the melatonin metabolites, which may appear in elevated concentrations after melatonin administration, possess biological or pharmacological properties, including N-acetylserotonin, 5-methoxytryptamine and some of its derivatives, and especially the 5-methoxylated kynuramines. PMID:21358968

  20. Extraversion, neuroticism and strength of the nervous system.

    PubMed

    Frigon, J Y

    1976-11-01

    The hypothesized identity of the dimensions of extraversion-introversion and strength of the nervous system was tested on four groups of nine subjects (neurotic extraverts, stable extraverts, neurotic introverts, stable introverts). Strength of the subjects' nervous system was estimated using the electroencephalographic (EEG) variant of extinction with reinforcement. Introverted subjects were found to have weak nervous systems, according to the EEG index, while extraverted subjects had strong nervous systems, thus confirming the hypothesis. It was also found that the dimension of strength of the nervous system was unrelated to differences in neuroticism. The results are interpreted as adding support to Eysenck's theory relating differences in extraversion-introversion to differences in cortical arousal.

  1. Screening for medical disease--nervous system disorders.

    PubMed

    Cameron, Michelle H; Klein, Eve L

    2010-01-01

    NARRATIVE REVIEW: In general, nervous system disorders present with changes in sensation, strength, and cognitive function that must be recognized early for the timely referral often needed for optimal outcome. This article summarizes screening for nervous system disorders in patients who present to the hand therapist and the typical findings associated with common neurologic disorders. Recommendations for referral by the hand therapist of patients with a screening examination consistent with a nervous system disorder are also presented. Central nervous system (CNS) disorders discussed in this article include stroke, traumatic brain and spinal cord injury, CNS tumors, Parkinson disease, dementia, epilepsy, and multiple sclerosis. This is followed by a discussion of the peripheral nervous system (PNS) disorders of acquired and hereditary polyneuropathies, Guillain-Barré syndrome and myasthenia gravis. Lastly, there is a brief discussion of amyotrophic lateral sclerosis, a disorder affecting both the CNS and PNS. 5. Copyright 2010 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  2. Compassionate intention as a therapeutic intervention by partners of cancer patients: effects of distant intention on the patients' autonomic nervous system.

    PubMed

    Radin, Dean; Stone, Jerome; Levine, Ellen; Eskandarnejad, Shahram; Schlitz, Marilyn; Kozak, Leila; Mandel, Dorothy; Hayssen, Gail

    2008-01-01

    This double-blind study investigated the effects of intention on the autonomic nervous system of a human "sender" and distant "receiver" of those intentions, and it explored the roles that motivation and training might have in modulating these effects. Skin conductance level was measured in each member of a couple, both of whom were asked to feel the presence of the other. While the receiving person relaxed in a distant shielded room for 30 minutes, the sending person directed intention toward the receiver during repeated 10-second epochs separated by random interepoch periods. Thirty-six couples participated in 38 test sessions. In 22 couples, one of the pair was a cancer patient. In 12 of those couples, the healthy person was trained to direct intention toward the patient and asked to practice that intention daily for three months prior to the experiment (trained group). In the other 10 couples, the pair was tested before the partner was trained (wait group). Fourteen healthy couples received no training (control group). Using nonparametric bootstrap procedures, normalized skin conductance means recorded during the intention epochs were compared with the same measures recorded during randomly selected interepoch periods, used as controls. The preplanned difference examined the intention versus control means at the end of the intention epoch. Overall, receivers' skin conductance increased during the intention epochs (z = 3.9; P = .00009, two-tailed). Planned differences in skin conductance among the three groups were not significant, but a post hoc analysis showed that peak deviations were largest and most sustained in the trained group, followed by more moderate effects in the wait group, and still smaller effects in the control group. Directing intention toward a distant person is correlated with activation of that person's autonomic nervous system. Strong motivation to heal and to be healed, and training on how to cultivate and direct compassionate intention

  3. Central nervous system dysfunction in obesity-induced hypertension.

    PubMed

    Head, Geoffrey A; Lim, Kyungjoon; Barzel, Benjamin; Burke, Sandra L; Davern, Pamela J

    2014-09-01

    The activation of the sympathetic nervous system is a major mechanism underlying both human and experimental models of obesity-related hypertension. While insulin and the adipokine leptin have long been thought to contribute to obesity-related neurogenic mechanisms, the evidence is now very strong that they play a major role, shown particularly in animal studies using selective receptor antagonists. There is not just maintenance of leptin's sympatho-excitatory actions as previously suggested but considerable amplification particularly in renal sympathetic nervous activity. Importantly, these changes are not dependent on short-term elevation or reduction in plasma leptin or insulin, but require some weeks to develop indicating a slow "neural adaptivity" within hypothalamic signalling. These effects can be carried across generations even when offspring are raised on a normal diet. A better understanding of the underlying mechanism should be a high research priority given the prevalence of obesity not just in the current population but also for future generations.

  4. Effects of Saiko-ka-ryukotsu-borei-to, a Japanese Kampo medicine, on tachycardia and central nervous system stimulation induced by theophylline in rats and mice.

    PubMed

    Sanae, F; Hayashi, H; Chisaki, K; Komatsu, Y

    1999-03-01

    Effects of Saiko-ka-ryukotsu-borei-to (SRBT) on theophylline-induced tachycardia in anesthetized rats and theophylline-induced locomotion and convulsions in mice were examined. An intraduodenal administration of SRBT (1 g/kg) prevented theophylline (5 mg/kg, i.v.)-induced tachycardia in rats. SRBT also attenuated an increase in arterial blood pressure with a slow reduction in heart rate of rats treated with theophylline, with no influence on the plasma level of theophylline. However, SRBT did not change the beating rate of right atrium isolated from rats in the absence or presence of theophylline or isoproterenol. The locomotor activity of theophylline in mice was reduced by the treatment with SRBT. Furthermore, the latency of convulsions in mice induced by administration of theophylline at a higher dose (240 mg/kg, i.p.) was prolonged by treatment with SRBT (1 g/kg, p.o.) and seven out of fifteen mice were saved from death due to convulsions. These results suggest that theophylline-induced tachycardia and central nervous stimulation are suppressed by SRBT and that SRBT may reduce the undesirable actions of theophylline on the cardiovascular and central nervous systems.

  5. The Biphasic Effects of Moderate Alcohol Consumption with a Meal on Ambiance-Induced Mood and Autonomic Nervous System Balance: A Randomized Crossover Trial

    PubMed Central

    Schrieks, Ilse C.; Stafleu, Annette; Kallen, Victor L.; Grootjen, Marc; Witkamp, Renger F.; Hendriks, Henk F. J.

    2014-01-01

    Background The pre-drinking mood state has been indicated to be an important factor in the mood effects of alcohol. However, for moderate alcohol consumption there are no controlled studies showing this association. Also, the mood effects of consuming alcohol combined with food are largely unknown. The aim of this study was to investigate the effects of moderate alcohol combined with a meal on ambiance-induced mood states. Furthermore effects on autonomic nervous system activity were measured to explore physiological mechanisms that may be involved in changes of mood state. Methods In a crossover design 28 women (age 18–45 y, BMI 18.5–27 kg/m2) were randomly allocated to 4 conditions in which they received 3 glasses of sparkling white wine (30 g alcohol) or alcohol-free sparkling white wine while having dinner in a room with either a pleasant or unpleasant created ambiance. Subjects filled out questionnaires (B-BAES, POMS and postprandial wellness questionnaire) at different times. Skin conductance and heart rate variability were measured continuously. Results Moderate alcohol consumption increased happiness scores in the unpleasant, but not in the pleasant ambiance. Alcohol consumption increased happiness and stimulation feelings within 1 hour and increased sedative feelings and sleepiness for 2.5 hour. Skin conductance was increased after alcohol within 1 hour and was related to happiness and stimulation scores. Heart rate variability was decreased after alcohol for 2 hours and was related to mental alertness. Conclusion Mood inductions and autonomic nervous system parameters may be useful to evaluate mood changes by nutritional interventions. Moderate alcohol consumption elevates happiness scores in an unpleasant ambiance. However, drinking alcohol during a pleasant mood results in an equally positive mood state. Trial Registration Clinicaltrials.gov NCT01426022. PMID:24465955

  6. Cardiovascular effects of the essential oil of Alpinia zerumbet leaves and its main constituent, Terpinen-4-ol, in rats: role of the autonomic nervous system.

    PubMed

    Lahlou, Saad; Galindo, Charles Antonio Barros; Leal-Cardoso, José Henrique; Fonteles, Manassés Claudino; Duarte, Gloria Pinto

    2002-12-01

    Cardiovascular effects of intravenous ( i. v.) treatment with the essential oil of Alpinia zerumbet (EOAZ) were investigated in rats. Additionally this study examined (I) whether the autonomic nervous system is involved in the mediation of EOAZ-induced changes in mean aortic pressure (MAP) and heart rate (HR), and (II) whether these changes could be, at least in part, attributed to the actions of terpinen-4-ol (Trp-4-ol), the major constituent of EOAZ. In both pentobarbitone-anaesthetised and conscious rats, i. v. bolus injections of EOAZ (1 to 20 mg/kg) elicited immediate and dose-dependent decreases in MAP. In anaesthetised rats, EOAZ decreased HR only at higher doses (10 and 20 mg/kg), while changes of this parameter were not uniform in conscious rats. Hypotensive responses to EOAZ were of the same order of magnitude or duration, irrespective of whether the animal was under general anaesthesia. Pretreatment of anaesthetised rats with bilateral vagotomy did not modify significantly the hypotensive and bradycardic responses to EOAZ. In conscious rats, i. v. injections of bolus doses (1 to 10 mg/kg) of Trp-4-ol also elicited immediate and dose-dependent decreases in MAP. However, these hypotensive effects were significantly greater than those evoked by the same doses of EOAZ (1 to 10 mg/kg). Intravenous pretreatment of conscious rats with either methylatropine (1 mg/kg) or hexamethonium (30 mg/kg) had no significant effects on the EOAZ-induced hypotension. These data show that i. v. treatment with the EOAZ in either anaesthetised or conscious rats induced an immediate and significant hypotension, an effect that could be partially attributed to the actions of Trp-4-ol. The hypotension appears independent of the presence of an operational sympathetic nervous system, suggesting that the EOAZ may be a direct vasorelaxant agent.

  7. Congenital tumors of the central nervous system.

    PubMed

    Severino, Mariasavina; Schwartz, Erin S; Thurnher, Majda M; Rydland, Jana; Nikas, Ioannis; Rossi, Andrea

    2010-06-01

    Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into "definitely congenital" (present or producing symptoms at birth), "probably congenital" (present or producing symptoms within the first week of life), and "possibly congenital" (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors, where aggressive surgical treatment leads to disease-free survival.

  8. Cancer stem cells in nervous system tumors.

    PubMed

    Singh, Sheila K; Clarke, Ian D; Hide, Takuichiro; Dirks, Peter B

    2004-09-20

    Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and more recently in solid tumors such as breast cancer suggests that the tumor cell population is heterogeneous with respect to proliferation and differentiation. Recently, several groups have described the existence of a cancer stem cell population in human brain tumors of different phenotypes from both children and adults. The finding of brain tumor stem cells (BTSCs) has been made by applying the principles for cell culture and analysis of normal neural stem cells (NSCs) to brain tumor cell populations and by identification of cell surface markers that allow for isolation of distinct tumor cell populations that can then be studied in vitro and in vivo. A population of brain tumor cells can be enriched for BTSCs by cell sorting of dissociated suspensions of tumor cells for the NSC marker CD133. These CD133+ cells, which also expressed the NSC marker nestin, but not differentiated neural lineage markers, represent a minority fraction of the entire brain tumor cell population, and exclusively generate clonal tumor spheres in suspension culture and exhibit increased self-renewal capacity. BTSCs can be induced to differentiate in vitro into tumor cells that phenotypically resembled the tumor from the patient. Here, we discuss the evidence for and implications of the discovery of a cancer stem cell in human brain tumors. The identification of a BTSC provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC. Specific genetic and molecular analyses of the BTSC will further our understanding of the mechanisms of brain tumor growth, reinforcing parallels between normal neurogenesis and brain tumorigenesis.

  9. Mechanosensitivity in the enteric nervous system

    PubMed Central

    Mazzuoli-Weber, Gemma; Schemann, Michael

    2015-01-01

    The enteric nervous system (ENS) autonomously controls gut muscle activity. Mechanosensitive enteric neurons (MEN) initiate reflex activity by responding to mechanical deformation of the gastrointestinal wall. MEN throughout the gut primarily respond to compression or stretch rather than to shear force. Some MEN are multimodal as they respond to compression and stretch. Depending on the region up to 60% of the entire ENS population responds to mechanical stress. MEN fire action potentials after mechanical stimulation of processes or soma although they are more sensitive to process deformation. There are at least two populations of MEN based on their sensitivity to different modalities of mechanical stress and on their firing pattern. (1) Rapidly, slowly and ultra-slowly adapting neurons which encode compressive forces. (2) Ultra-slowly adapting stretch-sensitive neurons encoding tensile forces. Rapid adaptation of firing is typically observed after compressive force while slow adaptation or ongoing spike discharge occurs often during tensile stress (stretch). All MEN have some common properties: they receive synaptic input, are low fidelity mechanoreceptors and are multifunctional in that some serve interneuronal others even motor functions. Consequently, MEN possess processes with mechanosensitive as well as efferent functions. This raises the intriguing hypothesis that MEN sense and control muscle activity at the same time as servo-feedback loop. The mechanosensitive channel(s) or receptor(s) expressed by the different MEN populations are unknown. Future concepts have to incorporate compressive and tensile-sensitive MEN into neural circuits that controls muscle activity. They may interact to control various forms of a particular motor pattern or regulate different motor patterns independently from each other. PMID:26528136

  10. Insulin-like growth factors in the peripheral nervous system.

    PubMed

    Sakowski, Stacey A; Feldman, Eva L

    2012-06-01

    Insulin-like growth factors (IGFs) play an integral role in development, growth, and survival. This article details the current understanding of the effects of IGFs in the peripheral nervous system (PNS) during health and disease, and introduces how the IGF system regulates PNS development and impacts growth and survival of PNS cells. Also discussed are implications of IGF signaling in neurodegeneration and the status and prospects of IGF therapies for PNS conditions. There is substantial support for the application of IGF therapies in the treatment of PNS injury and disease.

  11. Is There Anything "Autonomous" in the Nervous System?

    ERIC Educational Resources Information Center

    Rasia-Filho, Alberto A.

    2006-01-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…

  12. Is There Anything "Autonomous" in the Nervous System?

    ERIC Educational Resources Information Center

    Rasia-Filho, Alberto A.

    2006-01-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…

  13. [Systemic lupus erythematosus and the central nervous system].

    PubMed

    Rojas, E; Orrea Solano, M

    1993-01-01

    The central nervous system (CNS) manifestations of the chronic autoimmune disease systemic lupus erythematous (SLE) are reviewed. SLE-CNS dysfunction is broadly divided into neurologic and psychiatric clinical categories. The distinct clinical entities within these broad categories are fully described. Diagnostic criteria employed to verify the presence of SLE-CNS dysfunction, including laboratory serum and cerebral spinal fluid analyses as well as radiologic and other multimodality diagnostic tools, are compared and contrasted with respect to sensitivity and specificity.

  14. Evaluation of the effects of plant-derived essential oils on central nervous system function using discrete shuttle-type conditioned avoidance response in mice.

    PubMed

    Umezu, Toyoshi

    2012-06-01

    Although plant-derived essential oils (EOs) have been used to treat various mental disorders, their central nervous system (CNS) acting effects have not been clarified. The present study compared the effects of 20 kinds of EOs with the effects of already-known CNS acting drugs to examine whether the EOs exhibited CNS stimulant-like effects, CNS depressant-like effects, or neither. All agents were tested using a discrete shuttle-type conditioned avoidance task in mice. Essential oils of peppermint and chamomile exhibited CNS stimulant-like effects; that is, they increased the response rate (number of shuttlings/min) of the avoidance response. Linden also increased the response rate, however, the effect was not dose-dependent. In contrast, EOs of orange, grapefruit, and cypress exhibited CNS depressant-like effects; that is, they decreased the response rate of the avoidance response. Essential oils of eucalyptus and rose decreased the avoidance rate (number of avoidance responses/number of avoidance trials) without affecting the response rate, indicating that they may exhibit some CNS acting effects. Essential oils of 12 other plants, including juniper, patchouli, geranium, jasmine, clary sage, neroli, lavender, lemon, ylang-ylang, niaouli, vetivert and frankincense had no effect on the avoidance response in mice. Copyright © 2011 John Wiley & Sons, Ltd.

  15. [The effect of the vibration and noise factor on the physical work capacity and autonomic nervous system function of workers in vibration-hazardous jobs].

    PubMed

    Sova, S H; Shapovalova, V A; Korshak, V M

    1999-03-01

    An unexampled study was made of the peripheral vegetative incompetence syndrome developing in vibration disease. It is shown that chronic occupational exposure to vibration and noise results in damage to the segmentary apparatus of the vegetative nervous system. Vegetative inadequacies are manifested by impairement of cardiovascular functions. With exposure to vibration and noise, it is the sympathetic portion of the vegetative nervous system that is first affected. The service duration-related progression of the pathological process results in increase of the share of parasympathetic pathology. A change in vegetative regulation adversely affects physical performance in those workers who have come to be exposed to a vibronoise factor over long periods of time.

  16. Calretinin in the peripheral nervous system of the adult zebrafish

    PubMed Central

    Levanti, M B; Montalbano, G; Laurà, R; Ciriaco, E; Cobo, T; García-Suarez, O; Germanà, A; Vega, J A

    2008-01-01

    Calretinin is a calcium-binding protein found widely distributed in the central nervous system and chemosensory cells of the teleosts, but its presence in the peripheral nervous system of fishes is unknown. In this study we used Western blot analysis and immunohistochemistry to investigate the occurrence and distribution of calretinin in the cranial nerve ganglia, dorsal root ganglia, sympathetic ganglia, and enteric nervous system of the adult zebrafish. By Western blotting a unique and specific protein band with an estimated molecular weight of around 30 kDa was detected, and it was identified as calretinin. Immunohistochemistry revealed that calretinin is selectively present in the cytoplasm of the neurons and never in the satellite glial cells. In both sensory and sympathetic ganglia the density of neurons that were immunolabelled, their size and morphology, as well as the intensity of immunostaining developed within the cytoplasm, were heterogeneous. In the enteric nervous system calretinin immunoreactivity was detected in a subset of enteric neurons as well as in a nerve fibre plexus localized inside the muscular layers. The present results demonstrate that in addition to the central nervous system, calretinin is also present in the peripheral nervous system of zebrafish, and contribute to completing the map of the distribution of this protein in the nervous system of teleosts. PMID:18173770

  17. Evolution of eumetazoan nervous systems: insights from cnidarians.

    PubMed

    Kelava, Iva; Rentzsch, Fabian; Technau, Ulrich

    2015-12-19

    Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system-in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution. © 2015 The Authors.

  18. The effects of combined epidural and general anesthesia on the autonomic nervous system and bioavailability of nitric oxide in patients undergoing laparoscopic pelvic surgery.

    PubMed

    Shin, Seokyung; Bai, Sun Joon; Rha, Koon Ho; So, Yun; Oh, Young Jun

    2013-03-01

    Pneumoperitoneum during laparoscopic surgery is known to affect visceral blood flow and result in oxidative stress. Whether epidural anesthesia will effectively reduce visceral ischemia and oxidative stress by blocking the sympathetic nervous system (SNS) during laparoscopic surgery has not been proven. Forty-five patients who were to undergo robot-assisted laparoscopic prostatectomy were randomly assigned to the combined general-epidural anesthesia group (group GE, n = 22) or to the general anesthesia group (group G, n = 23). Blood pressure, heart rate, and the balance between sympathetic and parasympathetic nervous system activity as measured by heart rate variability were recorded at 10 min after induction of anesthesia (T1), 60 (T2) and 120 (T3) min after intra-abdominal CO(2) insufflation, and 10 min after returning the patient to the supine position following CO(2) exsufflation (T4). Arterial blood gas analysis and blood sampling for measurements of nitrite (NO(2-)) and malondialdehyde (MDA) were performed at all time points. Intraoperative mean blood pressure was significantly lower in group GE compared with group G. The low-frequency to high-frequency ratio was significantly increased after induction of pneumoperitoneum in group G but was unchanged in group GE. Plasma levels of nitrite decreased after pneumoperitoneum induction in group G while there was no change in group GE. A significant increase in MDA levels was seen in group G after pneumoperitoneum induction and were higher than group GE at T3 and T4. The 24-h urine output was higher in group GE than in group G on POD 1. The 24-h CrCl was higher in group GE on POD 1 but was not different between groups on POD 2. Combined epidural and general anesthesia effectively blocks SNS stimulation during laparoscopic surgery and reduces NO inactivation and oxidative stress.

  19. Changes in the relative risk and sites of central nervous system metastasis with effective combined chemotherapy and radiation therapy for small cell carcinoma of the lung

    SciTech Connect

    Komaki, R.; Cox, J.D.; Holoye, P.Y.; Byhardt, R.W.

    1983-10-01

    Prolongation of survival of patients with small cell carcinoma of the lung with current effective systemic therapy has been accompanied by a marked increase in the frequency of relapse in the central nervous system (CNS). Prophylactic cranial irradiation (PCI) was shown to reduce the frequency of brain metastasis, but there was no increased short-term survival. Therefore, the necessity for PCI early in the course of treatment has been questioned, especially for patients with extensive disease. From January 1974 through March 1982, 205 patients with small cell carcinoma of the lung were treated at the Medical College of Wisconsin Affiliated Hospitals. None had clinical, radioisotopic, or computed tomographic evidence of brain metastasis. Eighty-two patients received radiotherapy and chemotherapy, but no PCI; 123 patients received combination chemotherapy and radiation therapy with PCI. The cumulative probability of brain metastasis without PCI was 36% at 12 months and 47% at 24 months; the probabilities were 6 and 10%, respectively with PCI. The 24-month probability of brain metastasis in patients with limited disease and no PCI was 45%; for those with extensive disease, it was 47%. No patient presented with extracranial central nervous system (ECNS) metastasis and no one without PCI developed it. Twelve patients who received PCI developed ECNS metastasis; the cumulative probabilities rose to 14% at 12 months and 22% at 24 months. The increased frequency of ECNS involvement has led to a phase I trial of PCI followed by six cycles of combination chemotherapy, without maintenance chemotherapy, followed by irradiation of the chest and spinal cord for patients with complete response.

  20. Effect of electroacupuncture on P2X3 receptor regulation in the peripheral and central nervous systems of rats with visceral pain caused by irritable bowel syndrome.

    PubMed

    Weng, Z J; Wu, L Y; Zhou, C L; Dou, C Z; Shi, Y; Liu, H R; Wu, H G

    2015-09-01

    The aim of this study is to investigate the role of the purinergic receptor P2X3 in the peripheral and central nervous systems during acupuncture treatment for the visceral pain of irritable bowel syndrome (IBS). A total of 24 8-day-old Sprague-Dawley (SD) neonatal male rats (SPF grade) were stimulated using colorectal distention (CRD) when the rats were awake. The modeling lasted for 2 weeks with one stimulation per day. After 6 weeks, the rats were randomly divided into three groups of eight each: (1) the normal group (NG, n = 8); (2) the model group (MG, n = 8); and (3) the model + electroacupuncture group (EA, n = 8) that received electroacupuncture at a needling depth of 5 mm at the Shangjuxu (ST37, bilateral) and Tianshu (ST25, bilateral) acupoints. The parameters of the Han's acupoint nerve stimulator (HANS) were as follows: sparse-dense wave with a frequency of 2/100 Hz, current of 2 mA, 20 min/stimulation, and one stimulation per day; the treatment was provided for seven consecutive days. At the sixth week after the treatment, the abdominal withdrawal reflex (AWR) score was determined; immunofluorescence and immunohistochemistry were used to measure the expression of the P2X3 receptor in myenteric plexus neurons, prefrontal cortex, and anterior cingulate cortex; and, a real-time PCR assay was performed to measure the expression of P2X3 messenger RNA (mRNA) in the dorsal root ganglion (DRG) and spinal cord. After stimulation with CRD, the expression levels of the P2X3 receptor in the inter-colonic myenteric plexus, DRG, spinal cord, prefrontal cortex, and anterior cingulate cortex were upregulated, and the sensitivity of the rats to IBS visceral pain was increased. Electroacupuncture (EA) could downregulate the expression of the P2X3 receptor and ease the sensitivity to visceral pain. The P2X3 receptor plays an important role in IBS visceral pain. The different levels of P2X3 in the peripheral enteric nervous system and central nervous system mediate the

  1. Evolution of eumetazoan nervous systems: insights from cnidarians

    PubMed Central

    Kelava, Iva; Rentzsch, Fabian; Technau, Ulrich

    2015-01-01

    Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system—in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution. PMID:26554048

  2. Interactions between taurine and ethanol in the central nervous system.

    PubMed

    Olive, M F

    2002-01-01

    This purpose of this review will be to summarize the interactions between the endogenous amino acid taurine and ethyl alcohol (ethanol) in the central nervous system (CNS). Taurine is one of the most abundant amino acids in the CNS and plays an integral role in physiological processes such as osmoregulation, neuroprotection and neuromodulation. Both taurine and ethanol exert positive allosteric modulatory effects on neuronal ligand-gated chloride channels (i.e., GABA(A) and glycine receptors) as well as inhibitory effects on other ligand- and voltage-gated cation channels (i.e., NMDA and Ca(2+) channels). Behavioral evidence suggests that taurine can alter the locomotor stimulatory, sedating, and motivational effects of ethanol in a strongly dose-dependent manner. Microdialysis studies have revealed that ethanol elevates extracellular levels of taurine in numerous brain regions, although the functional consequences of this phenomenon are currently unknown. Finally, taurine and several related molecules including the homotaurine derivative acamprosate (calcium acetylhomotaurinate) can reduce ethanol self-administration and relapse to drinking in both animals and humans. Taken together, these data suggest that the endogenous taurine system may be an important modulator of effects of ethanol on the nervous system, and may represent a novel therapeutic avenue for the development of medications to treat alcohol abuse and alcoholism.

  3. Negative effects of submandibular botulinum neurotoxin A injections on oral motor function in children with drooling due to central nervous system disorders.

    PubMed

    van Hulst, Karen; Kouwenberg, Carlyn V; Jongerius, Pieter H; Feuth, Ton; van den Hoogen, Franciscus J A; Geurts, Alexander C H; Erasmus, Corrie E

    2017-05-01

    The aims of this study were: (1) to determine the incidence and nature of adverse effects on oral motor function after first injections of botulinum neurotoxin A (BoNT-A) in submandibular glands for excessive drooling in children with central nervous system disorders; and (2) to identify independent predictors of these adverse effects. A cohort study involved 209 children (123 males, 86 females, aged 4-27y, median 8y 4mo), who received submandibular BoNT-A injections for drooling. Adverse effects were categorized into swallowing, eating, drinking, articulation, and other problems. Univariable logistic regression was used to study differences in patients with and without adverse effects. Possible predictors were identified using multivariable logistic regression. Transient adverse effects occurred in 33% of the 209 BoNT-A treatments. Almost 80% of these were mild, versus 8.7% severe. Approximately 54% of the adverse effects spontaneously resolved within 4 weeks; 3% still existed after 32 weeks. A diagnosis of cerebral palsy, higher range of BoNT-A dosage, and a pre-treatment drooling quotient <18% were found to be independent predictors of adverse effects. Before using submandibular BoNT-A injections for drooling, potential adverse effects should be discussed. Oral motor function needs to be monitored, because existing dysphagia may be worsened. The identified clinical predictors could be helpful to optimize patient selection. © 2016 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

  4. Depressive effects on the central nervous system and underlying mechanism of the enzymatic extract and its phlorotannin-rich fraction from Ecklonia cava edible brown seaweed.

    PubMed

    Cho, Suengmok; Han, Daeseok; Kim, Seon-Bong; Yoon, Minseok; Yang, Hyejin; Jin, Young-Ho; Jo, Jinho; Yong, Hyeim; Lee, Sang-Hoon; Jeon, You-Jin; Shimizu, Makoto

    2012-01-01

    Marine plants have been reported to possess various pharmacological properties; however, there have been few reports on their neuropharmacological effects. Terrestrial plants have depressive effects on the central nervous system (CNS) because of their polyphenols which make them effective as anticonvulsants and sleep inducers. We investigated in this study the depressive effects of the polyphenol-rich brown seaweed, Ecklonia cava (EC), on CNS. An EC enzymatic extract (ECEE) showed significant anticonvulsive (>500 mg/kg) and sleep-inducing (>500 mg/kg) effects on the respective mice seizure induced by picrotoxin and on the mice sleep induced by pentobarbital. The phlorotannin-rich fraction (PTRF) from ECEE significantly potentiated the pentobarbital-induced sleep at >50 mg/kg. PTRF had binding activity to the gamma aminobutyric acid type A (GABA(A))-benzodiazepine (BZD) receptors. The sleep-inducing effects of diazepam (DZP, a well-known GABA(A)-BZD agonist), ECEE, and PTRF were completely blocked by flumazenil, a well-known antagonist of GABA(A)-BZD receptors. These results imply that ECEE produced depressive effects on CNS by positive allosteric modulation of its phlorotannins on GABA(A)-BZD receptors like DZP. Our study proposes EC as a candidate for the effective treatment of neuropsychiatric disorders such as anxiety and insomnia.

  5. Pharmacotherapy for Adults with Tumors of the Central Nervous System

    PubMed Central

    Schor, Nina F.

    2009-01-01

    Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel approaches aimed at overcoming these challenges. PMID:19091301

  6. Disseminated encephalomyelitis-like central nervous system neoplasm in childhood.

    PubMed

    Zhao, Jianhui; Bao, Xinhua; Fu, Na; Ye, Jintang; Li, Ting; Yuan, Yun; Zhang, Chunyu; Zhang, Yao; Zhang, Yuehua; Qin, Jiong; Wu, Xiru

    2014-08-01

    A malignant neoplasm in the central nervous system with diffuse white matter changes on magnetic resonance imaging (MRI) is rare in children. It could be misdiagnosed as acute disseminated encephalomyelitis. This report presents our experience based on 4 patients (3 male, 1 female; aged 7-13 years) whose MRI showed diffuse lesions in white matter and who were initially diagnosed with acute disseminated encephalomyelitis. All of the patients received corticosteroid therapy. After brain biopsy, the patients were diagnosed with gliomatosis cerebri, primitive neuroectodermal tumor and central nervous system lymphoma. We also provide literature reviews and discuss the differentiation of central nervous system neoplasm from acute disseminated encephalomyelitis.

  7. Strategies for Enhanced Drug Delivery to the Central Nervous System

    PubMed Central

    Dwibhashyam, V. S. N. M.; Nagappa, A. N.

    2008-01-01

    Treating central nervous system diseases is very challenging because of the presence of a variety of formidable obstacles that impede drug delivery. Physiological barriers like the blood-brain barrier and blood-cerebrospinal fluid barrier as well as various efflux transporter proteins make the entry of drugs into the central nervous system very difficult. The present review provides a brief account of the blood brain barrier, the P-glycoprotein efflux and various strategies for enhancing drug delivery to the central nervous system. PMID:20046703

  8. Reorganization of the human central nervous system.

    PubMed

    Schalow, G; Zäch, G A

    2000-10-01

    The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns

  9. Genomic scale profiling of autoimmune inflammation in the central nervous system: the nervous response to inflammation.

    PubMed

    Carmody, Ruaidhrí J; Hilliard, Brendan; Maguschak, Kimberly; Chodosh, Lewis A; Chen, Youhai H

    2002-12-01

    Using gene microarray technology, we found that inflammation in the central nervous system (CNS) not only induced the expression of many immune-related genes, but also significantly altered the gene expression profile of neural cells. Two unique groups of CNS genes were identified. The first group includes genes encoding ion channels, neural transmitters and growth factors. The second group includes genes that are important for nervous tissue regeneration. Additionally, a distinct pattern of gene expression was also identified in recovering animals. Thus, during autoimmune inflammation, the CNS actively responds to immune attacks by activating its own defense and repair genes.

  10. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases

    PubMed Central

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-01-01

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms. PMID:27032544

  11. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    PubMed

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  12. Electricity in the treatment of nervous system disease.

    PubMed

    Fodstad, H; Hariz, M

    2007-01-01

    Electricity has been used in medicine for almost two millenniums beginning with electrical chocks from the torpedo fish and ending with the implantation of neuromodulators and neuroprostheses. These implantable stimulators aim to improve functional independence and quality of life in various groups of disabled people. New indications for neuromodulation are still evolving and the field is rapidly advancing. Thanks to modern science and computer technology, electrotherapy has reached a degree of sophistication where it can be applied relatively safely and effectively in a variety of nervous system diseases, including pain, movement disorders, epilepsy, Tourette syndrome, psychiatric disease, addiction, coma, urinary incontinence, impotence, infertility, respiratory paralysis, tinnitus and blindness.

  13. Combination Treatment with Progesterone and Vitamin D Hormone May Be More Effective than Monotherapy for Nervous System Injury and Disease

    PubMed Central

    Cekic, Milos; Sayeed, Iqbal; Stein, Donald G.

    2010-01-01

    More than two decades of pre-clinical research and two recent clinical trials have shown that progesterone (PROG) and its metabolites exert beneficial effects after traumatic brain injury (TBI) through a number of metabolic and physiological pathways that can reduce damage in many different tissues and organ systems. Emerging data on 1,25-dihydroxyvitamin D3 (VDH), itself a steroid hormone, have begun to provide evidence that, like PROG, it too is neuroprotective, although some of its actions may involve different pathways. Both agents have high safety profiles, act on many different injury and pathological mechanisms, and are clinically relevant, easy to administer, and inexpensive. Furthermore, vitamin D deficiency is prevalent in a large segment of the population, especially the elderly and institutionalized, and can significantly affect recovery after CNS injury. The combination of PROG and VDH in pre-clinical and clinical studies is a novel and compelling approach to TBI treatment. PMID:19394357

  14. Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress—Protective Activity

    PubMed Central

    Panossian, Alexander; Wikman, Georg

    2010-01-01

    Adaptogens were initially defined as substances that enhance the “state of non-specific resistance” in stress, a physiological condition that is linked with various disorders of the neuroendocrine-immune system. Studies on animals and isolated neuronal cells have revealed that adaptogens exhibit neuroprotective, anti-fatigue, antidepressive, anxiolytic, nootropic and CNS stimulating activity. In addition, a number of clinical trials demonstrate that adaptogens exert an anti-fatigue effect that increases mental work capacity against a background of stress and fatigue, particularly in tolerance to mental exhaustion and enhanced attention. Indeed, recent pharmacological studies of a number of adaptogens have provided a rationale for these effects also at the molecular level. It was discovered that the stress—protective activity of adaptogens was associated with regulation of homeostasis via several mechanisms of action, which was linked with the hypothalamic-pituitary-adrenal axis and the regulation of key mediators of stress response, such as molecular chaperons (e.g., HSP70), stress-activated c-Jun N-terminal protein kinase 1 (JNK1), Forkhead box O (FOXO) transcription factor DAF-16, cortisol and nitric oxide. PMID:27713248

  15. Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress-Protective Activity.

    PubMed

    Panossian, Alexander; Wikman, Georg

    2010-01-19

    Adaptogens were initially defined as substances that enhance the "state of nonspecific resistance" in stress, a physiological condition that is linked with various disorders of the neuroendocrine-immune system. Studies on animals and isolated neuronal cells have revealed that adaptogens exhibit neuroprotective, anti-fatigue, antidepressive, anxiolytic, nootropic and CNS stimulating activity. In addition, a number of clinical trials demonstrate that adaptogens exert an anti-fatigue effect that increases mental work capacity against a background of stress and fatigue, particularly in tolerance to mental exhaustion and enhanced attention. Indeed, recent pharmacological studies of a number of adaptogens have provided a rationale for these effects also at the molecular level. It was discovered that the stress-protective activity of adaptogens was associated with regulation of homeostasis via several mechanisms of action, which was linked with the hypothalamic-pituitary-adrenal axis and the regulation of key mediators of stress response, such as molecular chaperons (e.g., HSP70), stress-activated c-Jun N-terminal protein kinase 1 (JNK1), Forkhead box O (FOXO) transcription factor DAF-16, cortisol and nitric oxide.

  16. Immunohistochemical analysis of the effects of cysteamine on somatostatin-like immunoreactivity in the rat central nervous system.

    PubMed

    Ceccatelli, S; Hökfelt, T; Hallman, H; Nylander, I; Terenius, L; Elde, R; Brownstein, M

    1987-01-01

    The brain and spinal cord of untreated and cysteamine-treated rats were analyzed with immunohistochemistry using antisera raised against somatostatin (SOM)-28(1-14) and SOM-28(15-28). Sections incubated with increasing dilutions of antiserum were evaluated subjectively on coded slides and with computer-assisted image analysis. For control experiments, antisera raised against methionine-enkephalin, neuropeptide Y (NPY) and dynorphin (DYN)(1-13) were used. The latter antiserum does not visualize the conventional DYN systems in the brain, but reacts with an unknown epitope, which here could be shown to be present in SOM neurons. In cysteamine-treated rats a marked decrease in SOM-28(15-28)-like immunoreactivity (1.1) could be recorded subjectively at all antibody concentrations in fibers in several brain areas, including nucleus accumbens, tuberculum olfactorium and the hypothalamic ventromedial and arcuate nuclei. In these areas SOM-LI is fairly weak in untreated rats. In SOM-rich regions such as the median eminence and the dorsal horn of the spinal cord, the depleting effect of cysteamine could be recorded subjectively only when diluted antisera were used. Image analysis confirmed the subjective analysis, and, in addition, differences between controls and cysteamine-treated rats could be shown also at high antiserum concentrations. SOM-28(15-28)-immunoreactive cell bodies could be seen in the brains of either control or drug-treated rats. No effect of cysteamine could be observed when antiserum raised to SOM-28(1-14) was used. Cysteamine did not seem to affect enkephalin-LI, NPY-LI or an epitope in SOM neurons reacting with DYN(1-13) antiserum. After preabsorption of SOM-28(15-28) antiserum with SOM-28(15-28) peptide, the staining patterns described above disappeared completely. However, if the SOM-28(15-28) peptide was pretreated with a high concentration (1 M) of cysteamine before being used for absorption with SOM antiserum, no blocking effect could be observed

  17. Measuring cardiac autonomic nervous system (ANS) activity in children.

    PubMed

    van Dijk, Aimée E; van Lien, René; van Eijsden, Manon; Gemke, Reinoud J B J; Vrijkotte, Tanja G M; de Geus, Eco J

    2013-04-29

    The autonomic nervous system (ANS) controls mainly automatic bodily functions that are engaged in homeostasis, like heart rate, digestion, respiratory rate, salivation, perspiration and renal function. The ANS has two main branches: the sympathetic nervous system, preparing the human body for action in times of danger and stress, and the parasympathetic nervous system, which regulates the resting state of the body. ANS activity can be measured invasively, for instance by radiotracer techniques or microelectrode recording from superficial nerves, or it can be measured non-invasively by using changes in an organ's response as a proxy for changes in ANS activity, for instance of the sweat glands or the heart. Invasive measurements have the highest validity but are very poorly feasible in large scale samples where non-invasive measures are the preferred approach. Autonomic effects on the heart can be reliably quantified by the recording of the electrocardiogram (ECG) in combination with the impedance cardiogram (ICG), which reflects the changes in thorax impedance in response to respiration and the ejection of blood from the ventricle into the aorta. From the respiration and ECG signals, respiratory sinus arrhythmia can be extracted as a measure of cardiac parasympathetic control. From the ECG and the left ventricular ejection signals, the preejection period can be extracted as a measure of cardiac sympathetic control. ECG and ICG recording is mostly done in laboratory settings. However, having the subjects report to a laboratory greatly reduces ecological validity, is not always doable in large scale epidemiological studies, and can be intimidating for young children. An ambulatory device for ECG and ICG simultaneously resolves these three problems. Here, we present a study design for a minimally invasive and rapid assessment of cardiac autonomic control in children, using a validated ambulatory device (1-5), the VU University Ambulatory Monitoring System (VU

  18. Regulation of autonomic nervous system in space and magnetic storms

    NASA Astrophysics Data System (ADS)

    Baevsky, R. M.; Petrov, V. M.; Chernikova, A. G.

    Variations in the earth's magnetic field and magnetic storms are known to be a risk factor for the development of cardiovascular disorders. The main ``targets'' for geomagnetic perturbations are the central nervous system and the neural regulation of vascular tone and heart rate variability. This paper presents the data about effect of geomagnetic fluctuations on human body in space. As a method for research the analysis of heart rate variability was used, which allows evaluating the state of the sympathetic and parasympathetic parts of the autonomic nervous system, vasomotor center and subcortical neural centers activity. Heart rate variability data were analyzed for 30 cosmonauts at the 2-nd day of space flight on transport spaceship Soyuz (32nd orbit). There were formed three groups of cosmonauts: without magnetic storm (n=9), on a day with magnetic storm (n=12) and 1-2 days after magnetic storm (n=9). The present study was the first to demonstrate a specific impact of geomagnetic perturbations on the system of autonomic circulatory control in cosmonauts during space flight. The increasing of highest nervous centers activity was shown for group with magnetic storms, which was more significant on 1-2 days after magnetic storm. The use of discriminate analysis allowed to classify indicated three groups with 88 % precision. Canonical variables are suggested to be used as criterions for evaluation of specific and non-specific components of cardiovascular reactions to geomagnetic perturbations. The applied aspect of the findings from the present study should be emphasized. They show, in particular, the need to supplement the medical monitoring of cosmonauts with predictions of probable geomagnetic perturbations in view of the prevention of unfavorable states appearances if the adverse reactions to geomagnetic perturbations are added to the tension experienced by regulatory systems during various stresses situations (such as work in the open space).

  19. Regulation of autonomic nervous system in space and magnetic storms.