Science.gov

Sample records for nervous system myelin

  1. The logistics of myelin biogenesis in the central nervous system.

    PubMed

    Snaidero, Nicolas; Simons, Mikael

    2017-02-07

    Rapid nerve conduction depends on myelin, but not all axons in the central nervous system (CNS) are myelinated to the same extent. Here, we review our current understanding of the biology of myelin biogenesis in the CNS. We focus on how the different steps of myelination are interconnected and how distinct patterns of myelin are generated. Possibly, a "basal" mode of myelination is laying the groundwork in areas devoted to basic homeostasis early in development, whereas a "targeted" mode generates myelin in regions controlling more complex tasks throughout adulthood. Such mechanisms may explain why myelination progresses in some areas according to a typical chronological and topographic sequence, while in other regions it is regulated by environmental stimuli contributing to interindividual variability of myelin structure. GLIA 2017.

  2. Signaling Mechanisms Regulating Myelination in the Central Nervous System

    PubMed Central

    AHRENDSEN, Jared T.; MACKLIN, Wendy B.

    2014-01-01

    The precise and coordinated production of myelin is essential for proper development and function of the nervous system. Diseases that disrupt myelin, including multiple sclerosis (MS), cause significant functional disability. Current treatment aims to reduce the inflammatory component of the disease, thereby preventing damage resulting from demyelination. However, therapies are not yet available to improve natural repair processes after damage has already occurred. A thorough understanding of the signaling mechanisms that regulate myelin generation will improve our ability to enhance repair. In this review, we summarize the positive and negative regulators of myelination, focusing primarily on central nervous system myelination. Axon-derived signals, extracellular signals from both diffusible factors and the extracellular matrix, and intracellular signaling pathways within myelinating oligodendrocytes are discussed. Much more is known about the positive regulators that drive myelination, while less is known about the negative regulators that shift active myelination to myelin maintenance at the appropriate time. Therefore, we also provide new data on potential negative regulators of CNS myelination. PMID:23558589

  3. Review: Glial lineages and myelination in the central nervous system

    PubMed Central

    COMPSTON, ALASTAIR; ZAJICEK, JOHN; SUSSMAN, JON; WEBB, ANNA; HALL, GILLIAN; MUIR, DAVID; SHAW, CHRISTOPHER; WOOD, ANDREW; SCOLDING, NEIL

    1997-01-01

    Oligodendrocytes, derived from stem cell precursors which arise in subventricular zones of the developing central nervous system, have as their specialist role the synthesis and maintenance of myelin. Astrocytes contribute to the cellular architecture of the central nervous system and act as a source of growth factors and cytokines; microglia are bone-marrow derived macrophages which function as primary immunocompetent cells in the central nervous system. Myelination depends on the establishment of stable relationships between each differentiated oligodendrocyte and short segments of several neighbouring axons. There is growing evidence, especially from studies of glial cell implantation, that oligodendrocyte precursors persist in the adult nervous system and provide a limited capacity for the restoration of structure and function in myelinated pathways damaged by injury or disease. PMID:9061442

  4. Progesterone Synthesis in the Nervous System: Implications for Myelination and Myelin Repair

    PubMed Central

    Schumacher, Michael; Hussain, Rashad; Gago, Nathalie; Oudinet, Jean-Paul; Mattern, Claudia; Ghoumari, Abdel M.

    2011-01-01

    Progesterone is well known as a female reproductive hormone and in particular for its role in uterine receptivity, implantation, and the maintenance of pregnancy. However, neuroendocrine research over the past decades has established that progesterone has multiple functions beyond reproduction. Within the nervous system, its neuromodulatory and neuroprotective effects are much studied. Although progesterone has been shown to also promote myelin repair, its influence and that of other steroids on myelination and remyelination is relatively neglected. Reasons for this are that hormonal influences are still not considered as a central problem by most myelin biologists, and that neuroendocrinologists are not sufficiently concerned with the importance of myelin in neuron functions and viability. The effects of progesterone in the nervous system involve a variety of signaling mechanisms. The identification of the classical intracellular progesterone receptors as therapeutic targets for myelin repair suggests new health benefits for synthetic progestins, specifically designed for contraceptive use and hormone replacement therapies. There are also major advantages to use natural progesterone in neuroprotective and myelin repair strategies, because progesterone is converted to biologically active metabolites in nervous tissues and interacts with multiple target proteins. The delivery of progesterone however represents a challenge because of its first-pass metabolism in digestive tract and liver. Recently, the intranasal route of progesterone administration has received attention for easy and efficient targeting of the brain. Progesterone in the brain is derived from the steroidogenic endocrine glands or from local synthesis by neural cells. Stimulating the formation of endogenous progesterone is currently explored as an alternative strategy for neuroprotection, axonal regeneration, and myelin repair. PMID:22347156

  5. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

    PubMed Central

    Patzig, Julia; Erwig, Michelle S; Tenzer, Stefan; Kusch, Kathrin; Dibaj, Payam; Möbius, Wiebke; Goebbels, Sandra; Schaeren-Wiemers, Nicole; Nave, Klaus-Armin; Werner, Hauke B

    2016-01-01

    Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity. DOI: http://dx.doi.org/10.7554/eLife.17119.001 PMID:27504968

  6. The Polarity Protein Scribble Regulates Myelination and Remyelination in the Central Nervous System

    PubMed Central

    Jarjour, Andrew A.; Boyd, Amanda; Dow, Lukas E.; Holloway, Rebecca K.; Goebbels, Sandra; Humbert, Patrick O.; Williams, Anna; ffrench-Constant, Charles

    2015-01-01

    The development and regeneration of myelin by oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), requires profound changes in cell shape that lead to myelin sheath initiation and formation. Here, we demonstrate a requirement for the basal polarity complex protein Scribble in CNS myelination and remyelination. Scribble is expressed throughout oligodendroglial development and is up-regulated in mature oligodendrocytes where it is localised to both developing and mature CNS myelin sheaths. Knockdown of Scribble expression in cultured oligodendroglia results in disrupted morphology and myelination initiation. When Scribble expression is conditionally eliminated in the myelinating glia of transgenic mice, myelin initiation in CNS is disrupted, both during development and following focal demyelination, and longitudinal extension of the myelin sheath is disrupted. At later stages of myelination, Scribble acts to negatively regulate myelin thickness whilst suppressing the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAP) kinase pathway, and localises to non-compact myelin flanking the node of Ranvier where it is required for paranodal axo-glial adhesion. These findings demonstrate an essential role for the evolutionarily-conserved regulators of intracellular polarity in myelination and remyelination. PMID:25807062

  7. Expression and distribution of CD9 in myelin of the central and peripheral nervous systems.

    PubMed Central

    Nakamura, Y.; Iwamoto, R.; Mekada, E.

    1996-01-01

    CD9 is a member of the newly identified tetra-membrane-spanning protein family. We show here that CD9 is a constituent of myelin in the central and peripheral nervous systems. Expression of CD9 was detected in human cerebral white matter and sciatic nerve by Northern and Western blotting. Myelin in the central and peripheral nervous systems was strongly stained with a monoclonal antibody against human CD9 antigen in paraffin-embedded sections. CD9 was detected in adult nervous tissue but not in developing brain at less than 20 weeks of gestation. Immunohistochemical studies indicated that expression of CD9 is correlated with myelination and is somewhat delayed compared with expression of myelin basic protein, a major component protein of myelin. In the central nervous system, CD9 was detected along the outermost membrane of compact myelin but not inside compact myelin or the periaxonal region. Although the membrane-anchored form of heparin-binding epidermal-growth-factor-like growth factor (proHB-EGF), which is identical to the diphtheria toxin receptor, forms a complex with CD9 in some human and monkey cell lines, proHB-EGF was not detected in myelin immunocytochemically. The distribution of CD9 in the outer surface of myelin and its relatively late developmental appearance suggest that CD9 may interact with the extracellular matrix or cell adhesion molecules and participate in the maintenance of the entire myelin sheath. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8701996

  8. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes.

    PubMed

    Xiao, Junhua; Wong, Agnes W; Willingham, Melanie M; van den Buuse, Maarten; Kilpatrick, Trevor J; Murray, Simon S

    2010-01-01

    The extracellular factors that are responsible for inducing myelination in the central nervous system (CNS) remain elusive. We investigated whether brain-derived neurotrophic factor (BDNF) is implicated, by first confirming that BDNF heterozygous mice exhibit delayed CNS myelination during early postnatal development. We next established that the influence of BDNF upon myelination was direct, by acting on oligodendrocytes, using co-cultures of dorsal root ganglia neurons and oligodendrocyte precursor cells. Importantly, we found that BDNF retains its capacity to enhance myelination of neurons or by oligodendrocytes derived from p75NTR knockout mice, indicating the expression of p75NTR is not necessary for BDNF-induced myelination. Conversely, we observed that phosphorylation of TrkB correlated with myelination, and that inhibiting TrkB signalling also inhibited the promyelinating effect of BDNF, suggesting that BDNF enhances CNS myelination via activating oligodendroglial TrkB-FL receptors. Together, our data reveal a previously unknown role for BDNF in potentiating the normal development of CNS myelination, via signalling within oligodendrocytes.

  9. GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system

    PubMed Central

    Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D.; Baba, Hiroko; Ikenaka, Kazuhiro

    2017-01-01

    Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy. PMID:28186137

  10. Neuronal ADAM10 Promotes Outgrowth of Small-Caliber Myelinated Axons in the Peripheral Nervous System.

    PubMed

    Meyer zu Horste, Gerd; Derksen, Angelika; Stassart, Ruth; Szepanowski, Fabian; Thanos, Melissa; Stettner, Mark; Boettcher, Christina; Lehmann, Helmar C; Hartung, Hans-Peter; Kieseier, Bernd C

    2015-11-01

    The regulation of myelination and axonal outgrowth in the peripheral nervous system is controlled by a complex signaling network involving various signaling pathways. Members of the A Disintegrin And Metalloproteinase (ADAM) family are membrane-anchored proteinases with both proteolytic and disintegrin characteristics that modulate the function of signaling molecules. One family member, ADAM17, is known to influence myelination by cleaving and thus regulating one of the key signals, neuregulin-1, which controls peripheral nervous system myelination. A similar function for ADAM10 had been suggested by previous in vitro studies. Here, we assessed whether ADAM10 exerts a similar function in vivo and deleted ADAM10 in a cell type-specific manner in either neurons or Schwann cells. We found that ADAM10 is not required in either Schwann cells or neurons for normal myelination during development or for remyelination after injury. Instead, ADAM10 is required specifically in neurons for the outgrowth of myelinated small-fiber axons in vitro and after injury in vivo. Thus, we report for the first time a neuron-intrinsic function of ADAM10 in axonal regeneration that is distinct from that of the related protein family member ADAM17 and that may have implications for targeting ADAM function in nervous system diseases.

  11. The Lin28/let-7 axis is critical for myelination in the peripheral nervous system

    PubMed Central

    Gökbuget, Deniz; Pereira, Jorge A.; Bachofner, Sven; Marchais, Antonin; Ciaudo, Constance; Stoffel, Markus; Schulte, Johannes H.; Suter, Ueli

    2015-01-01

    MicroRNAs (miRNAs) are crucial regulators of myelination in the peripheral nervous system (PNS). However, the miRNAs species involved and the underlying mechanisms are largely unknown. We found that let-7 miRNAs are highly abundant during PNS myelination and that their levels are inversely correlated to the expression of lin28 homolog B (Lin28B), an antagonist of let-7 accumulation. Sustained expression of Lin28B and consequently reduced levels of let-7 miRNAs results in a failure of Schwann cell myelination in transgenic mouse models and in cell culture. Subsequent analyses revealed that let-7 miRNAs promote expression of the myelination-driving master transcription factor Krox20 (also known as Egr2) through suppression of myelination inhibitory Notch signalling. We conclude that the Lin28B/let-7 axis acts as a critical driver of PNS myelination, in particular by regulating myelination onset, identifying this pathway also as a potential therapeutic target in demyelinating diseases. PMID:26466203

  12. Structure and molecular arrangement of proteolipid protein of central nervous system myelin.

    PubMed Central

    Stoffel, W; Hillen, H; Giersiefen, H

    1984-01-01

    Proteolipid protein (PLP) of central nervous system myelin is one of the most hydrophobic integral membrane proteins. It consists of a 276-residue-long polypeptide chain with five strongly hydrophobic sequences of 26, 30, 39, 12, and 36 residues, respectively, linked by highly charged hydrophilic sequences. Hyposmotically dissociated bovine myelin membranes were treated with trypsin. PLP was completely cleaved into smaller fragments, whereas basic myelin protein remained essentially unaltered. The proteins and tryptic peptides of myelin were separated after the removal of the short, water-soluble peptides into three large fragments of 11, 7.3, and 9.0 kDA, respectively. They were characterized by their molecular mass and NH2-terminal amino acid sequences, which proved that trypsin cleaved predominantly at Arg-97 yielding the 11-kDa fragment from Gly-1 through Arg-97, at Arg-126 releasing the 7.3-kDa fragment from Gly-127 through Lys-191, and at Lys-191 releasing the 9-kDa fragment from Thr-192 through Phe-276. We propose that PLP is integrated into the lipid bilayer of myelin with the NH2 terminus and three positively charged hydrophilic loops oriented toward the extracytosolic side of the membrane, whereas one strongly negative hydrophilic loop and the positively charged COOH terminus cover the cytosolic side of the lipid bilayer. Basic myelin protein remains protected against tryptic cleavage, which indicates its apposition to the cytosolic side of the membrane. These cleavage sites of trypsin support the suggested orientation of PLP in the myelin membrane and thereby extend our knowledge about the molecular arrangement of the components of this membrane. In demyelinating processes membrane desintegration could be initiated by proteolysis at the external surfaces of proteolipid protein in a similar way as described here. Images PMID:6206491

  13. Myelinated, synapsing cultures of murine spinal cord--validation as an in vitro model of the central nervous system.

    PubMed

    Thomson, C E; McCulloch, M; Sorenson, A; Barnett, S C; Seed, B V; Griffiths, I R; McLaughlin, M

    2008-10-01

    Research in central nervous system (CNS) biology and pathology requires in vitro models, which, to recapitulate the CNS in vivo, must have extensive myelin and synapse formation under serum-free (defined) conditions. However, finding such a model has proven difficult. The technique described here produces dense cultures of myelinated axons, with abundant synapses and nodes of Ranvier, that are suitable for both morphological and biochemical analysis. Cellular and molecular events were easily visualised using conventional microscopy. Ultrastructurally, myelin sheaths were of the appropriate thickness relative to axonal diameter (G-ratio). Production of myelinated axons in these cultures was consistent and repeatable, as shown by statistical analysis of multiple experimental repeats. Myelinated axons were so abundant that from one litter of embryonic mice, myelin was produced in amounts sufficient for bulk biochemical analysis. This culture method was assessed for its ability to generate an in vitro model of the CNS that could be used for both neurobiological and neuropathological research. Myelin protein kinetics were investigated using a myelin fraction isolated from the cultures. This fraction was found to be superior, quantitatively and qualitatively, to the fraction recovered from standard cultures of dissociated oligodendrocytes, or from brain slices. The model was also used to investigate the roles of specific molecules in the pathogenesis of inflammatory CNS diseases. Using the defined conditions offered by this culture system, dose-specific, inhibitory effects of inflammatory cytokines on myelin formation were demonstrated, unequivocally. The method is technically quick, easy and reliable, and should have wide application to CNS research.

  14. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system.

    PubMed

    Fyffe-Maricich, Sharyl L; Schott, Alexandra; Karl, Molly; Krasno, Janet; Miller, Robert H

    2013-11-20

    Oligodendrocytes, the myelin-forming cells of the CNS, exquisitely tailor the thickness of individual myelin sheaths to the diameter of their target axons to maximize the speed of action potential propagation, thus ensuring proper neuronal connectivity and function. Following demyelinating injuries to the adult CNS, newly formed oligodendrocytes frequently generate new myelin sheaths. Following episodes of demyelination such as those that occur in patients with multiple sclerosis, however, the matching of myelin thickness to axon diameter fails leaving remyelinated axons with thin myelin sheaths potentially compromising function and leaving axons vulnerable to damage. How oligodendrocytes determine the appropriate thickness of myelin for an axon of defined size during repair is unknown and identifying the signals that regulate myelin thickness has obvious therapeutic implications. Here, we show that sustained activation of extracellular-regulated kinases 1 and 2 (ERK1/2) in oligodendrocyte lineage cells results in accelerated myelin repair after injury, and is sufficient for the generation of thick myelin sheaths around remyelinated axons in the adult mouse spinal cord. Our findings suggest a model where ERK1/2 MAP kinase signaling acts as a myelin thickness rheostat that instructs oligodendrocytes to generate axon-appropriate quantities of myelin.

  15. Thymic stromal lymphopoietin is expressed in the intact central nervous system and upregulated in the myelin-degenerative central nervous system

    PubMed Central

    Kitic, Maja; Wimmer, Isabella; Adzemovic, Milena; Kögl, Nikolaus; Rudel, Antonia; Lassmann, Hans; Bradl, Monika

    2014-01-01

    Thymic stromal lymphopoietin (TSLP) is an epithelial cytokine expressed at barrier surfaces of the skin, gut, nose, lung, and the maternal/fetal interphase. At these sites, it is important for the generation and maintenance of non-inflammatory, tissue-resident dendritic cell responses. We show here that TSLP is also expressed in the central nervous system (CNS) where it is produced by choroid plexus epithelial cells and astrocytes in the spinal cord. Under conditions of low-grade myelin degeneration, the numbers of TSLP-expressing astrocytes increase, and microglia express transcripts for the functional TSLP receptor dimer indicating that these cells are targets for TSLP in the myelin-degenerative CNS. PMID:24668732

  16. Characterization of the M2 autoantigen of central nervous system (CNS) myelin as a glycoproteins(s) also expressed on oligodendrocyte membrane

    SciTech Connect

    Lebar, R.; Lubetzki, C.; Vincent, C.; Lombrail, P.; Boutry, J.M.

    1986-03-01

    Guinea pigs immunized with homologous brain tissue develop an acute experimental allergic encephalomyelitis and their sera contain demyelinating antibodies. These antibodies were used to characterize the target: the unidentified autoantigen M2. Using both the Dot immunobinding technique and autoradiography of immunoprecipitates formed with radiolabelled guinea-pig myelin and analyzed in SDS acrylamide gel electrophoresis, M2 was found to be a component of CNS myelin and not peripheral nervous system (PNS) myelin. In the Dot technique anti-M2 serum did not react with myelin basic protein (BP), proteolipid and galactocerebroside (GC). On electrophoresis, in reducing and non reducing conditions, M2 appeared as two CNS myelin protein bands at the 27,000 and 54,000 molecular weight levels, distinct from the CNS myelin major protein bands of proteolipid protein and BP. Affinity chromatography of CNS myelin on wheat germ agglutinin Sepharose showed that M2 bands were of glycoprotein nature. The same M2 bands were formed with guinea pig antibodies and rat, rabbit or bovine CNS myelin. The same type of anti-M2 antibodies were induced in rabbits immunized with homologous CNS tissue. As a component of myelin, M2 was present in white matter tracts of CNS tissue sections tested by immunofluorescence. Furthermore, M2 was expressed on rat oligodendrocyte membrane in one day and 8 day in vitro cultures.

  17. Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system.

    PubMed

    Weng, Qinjie; Chen, Ying; Wang, Haibo; Xu, Xiaomei; Yang, Bo; He, Qiaojun; Shou, Weinian; Chen, Yan; Higashi, Yujiro; van den Berghe, Veronique; Seuntjens, Eve; Kernie, Steven G; Bukshpun, Polina; Sherr, Elliott H; Huylebroeck, Danny; Lu, Q Richard

    2012-02-23

    Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor-activated Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP- and β-catenin-negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair.

  18. Effects of dietary sphingomyelin on central nervous system myelination in developing rats.

    PubMed

    Oshida, Kyoichi; Shimizu, Takashi; Takase, Mitsunori; Tamura, Yoshitaka; Shimizu, Toshiaki; Yamashiro, Yuichiro

    2003-04-01

    Human milk contains sphingomyelin (SM) as a major component of the phospholipid fraction. Galactosylceramide (cerebroside), a metabolite of sphingolipids, increases along with CNS myelination, and is generally considered a universal marker of myelination in all vertebrates. l-Cycloserine (LCS) is an inhibitor of serine palmitoyltransferase (SPT), a rate-limiting enzyme for sphingolipid biosynthesis that is reported to show increased activity with development of the rat CNS. The present study examined the effects of dietary SM on CNS myelination during development in LCS-treated rats. From 8 d after birth, Wistar rat pups received a daily s.c. injection (100 mg/kg) of LCS. From 17 d after birth, the animals were fed an 810 mg/100g of bovine SM-supplemented diet (SM-LCS group) or a nonsupplemented diet (LCS group). At 28 d after birth, the animals were killed and subjected to biochemical and morphometric analyses. The myelin dry weight, myelin total lipid content, and cerebroside content were significantly lower in the SM-LCS and LCS groups than in a group not treated with LCS (the non-LCS group). However, these levels were significantly higher in the SM-LCS group than in the LCS group. Morphometric analysis of the optic nerve revealed that the axon diameter, nerve fiber diameter, myelin thickness, and g value (used to compare the relative thickness of myelin sheaths around fibers of different diameter) were significantly lower in the LCS group than in the other groups, but were similar in the SM-LCS and non-LCS groups. These findings suggest that dietary SM contributes to CNS myelination in developing rats with experimental inhibition of SPT activity corrected].

  19. Morphological alterations of central nervous system (CNS) myelin in vanadium (V)-exposed adult rats.

    PubMed

    García, Graciela B; Quiroga, Ariel D; Stürtz, Nelson; Martinez, Alejandra I; Biancardi, María E

    2004-08-01

    In the present work we show morphological data of the in vivo susceptibility of CNS myelin to sodium metavanadate [V(+5)] in adult rats. The possible role of vanadium in behavioral alterations and in brain lipid peroxidation was also investigated. Animals were injected intraperitoneally (i.p.) with 3 mg/kg body weight (bw) of sodium metavanadate [1.25 V/kg bw/day] for 5 consecutive days. Open field and rotarod tests were performed the day after the last dose had been administered and then animals were sacrificed by different methods for histological and lipid peroxidation studies. The present results show that intraperitoneal administration of V(+5) to adult rats resulted in changes in locomotor activity, specific myelin stainings and lipid peroxidation in some brain areas. They support the notion that CNS myelin could be a preferential target of V(+5)-mediated lipid peroxidation in adult rats. The mechanisms underlying this action could affect the myelin sheath leading to behavioral perturbations.

  20. Major isoform of zebrafish P0 is a 23.5 kDa myelin glycoprotein expressed in selected white matter tracts of the central nervous system.

    PubMed

    Bai, Qing; Sun, Ming; Stolz, Donna B; Burton, Edward A

    2011-06-01

    The zebrafish mpz gene, encoding the ortholog of mammalian myelin protein zero, is expressed in oligodendrocytes of the zebrafish central nervous system (CNS). The putative gene product, P0, has been implicated in promoting axonal regeneration in addition to its proposed structural functions in compact myelin. We raised novel zebrafish P0-specific antibodies and established that P0 is a 23.5 kDa glycoprotein containing a 3 kDa N-linked carbohydrate moiety. P0 was localized to myelin sheaths surrounding axons, but was not detected in the cell bodies or proximal processes of oligodendrocytes. Many white matter tracts in the adult zebrafish CNS were robustly immunoreactive for P0, including afferent visual and olfactory pathways, commissural and longitudinal tracts of the brain, and selected ascending and descending tracts of the spinal cord. P0 was first detected during development in premyelinating oligodendrocytes of the ventral hindbrain at 48 hours postfertilization (hpf). By 72 hpf, short segments of longitudinally oriented P0-immunoreactive myelinating axons were seen in the hindbrain; expression in the spinal cord, optic pathways, hindbrain commissures, midbrain, and peripheral nervous system followed. The mpz transcript was found to be alternatively spliced, giving rise to P0 isoforms with alternative C-termini. The 23.5 kDa isoform was most abundant in the CNS, but other isoforms predominated in the myelin sheath surrounding the Mauthner axon. These data provide a detailed account of P0 expression and demonstrate novel P0 isoforms, which may have discrete functional properties. The restriction of P0 immunoreactivity to myelin sheaths indicates that the protein is subject to stringent intracellular compartmentalization, which likely occurs through posttranslational mechanisms.

  1. Transplantation of mesenchymal stem cells promotes the functional recovery of the central nervous system following cerebral ischemia by inhibiting myelin-associated inhibitor expression and neural apoptosis.

    PubMed

    Feng, Nianping; Hao, Guang; Yang, Fenggang; Qu, Fujun; Zheng, Haihong; Liang, Songlan; Jin, Yonghua

    2016-05-01

    Cerebral ischemia, which may lead to cerebral hypoxia and damage of the brain tissue, is a leading cause of human mortality and adult disability. Mesenchymal stem cells (MSCs) are a class of adult progenitor cells with the ability to differentiate into multiple cell types. The transplantation of bone marrow-derived MSCs is a potential therapeutic strategy for cerebral ischemia. However, the underlying mechanism has yet to be elucidated. In the present study, primary MSCs were isolated from healthy rats, labeled and transplanted into the brains of middle cerebral artery occlusion rat models. The location of the labeled MSCs in the rat brains were determined by fluorescent microscopy, and the neurological functions of the rats were scored. Immunohistochemical analyses demonstrated that the protein expression levels of myelin-associated inhibitors of regeneration, including Nogo-A, oligodendrocyte myelin glycoprotein and myelin-associated glycoprotein, were decreased following transplantation of the bone marrow-derived MSCs. Furthermore, the mRNA expression levels of Capase-3 and B-cell lymphoma 2, as determined by reverse transcription-quantitative polymerase chain reactions, were downregulated and upregulated, respectively, in the MSC-transplanted rats; thus suggesting that neural apoptosis was inhibited. The results of the present study suggested that the transplantation of bone marrow-derived MSCs was able to promote the functional recovery of the central nervous system following cerebral ischemia. Accordingly, inhibitors targeting myelin-associated inhibitors and apoptosis may be of clinical significance for cerebral ischemia in the future.

  2. Reduced BACE1 activity enhances clearance of myelin debris and regeneration of axons in the injured peripheral nervous system

    PubMed Central

    Farah, Mohamed H.; Pan, Bao Han; Hoffman, Paul N.; Ferraris, Dana; Tsukamoto, Takashi; Nguyen, Thien; Wong, Philip C.; Price, Donald L.; Slusher, Barbara S.; Griffin, John W.

    2012-01-01

    β- site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is an aspartyl protease best known for its role in generating the amyloid β peptides that are present in plaques of Alzheimer's Disease. BACE1 has been an attractive target for drug development. In cultured embryonic neurons BACE1-cleaved N-terminal APP is further processed to generate a fragment that can trigger axonal degeneration, suggesting a vital role for BACE1 in axonal health. In addition, BACE1 cleaves neuregulin 1 type III, a protein critical for myelination of peripheral axons by Schwann cells during development. Here, we asked if axonal degeneration or axonal regeneration in adult nerves might be affected by inhibition or elimination of BACE1. We report that BACE1 knockout and wild-type nerves degenerated at a similar rate after axotomy and to a similar extent in the experimental neuropathies produced by administration of paclitaxel and acrylamide. These data indicate N-APP is not the sole culprit in axonal degeneration in adult nerves. Unexpectedly, however, we observed that BACE1 knockout mice had markedly enhanced clearance of axonal and myelin debris from degenerated fibers, accelerated axonal regeneration, and earlier reinnervation of neuromuscular junctions, compared to littermate controls. These observations were reproduced in part by pharmacological inhibition of BACE1. These data suggest BACE1 inhibition as a therapeutic approach to accelerate regeneration and recovery after peripheral nerve damage. PMID:21490216

  3. Swift Entry of Myelin-Specific T Lymphocytes into the Central Nervous System in Spontaneous Autoimmune Encephalomyelitis1

    PubMed Central

    Furtado, Gláucia C.; Marcondes, Maria Cecilia G.; Latkowski, Jo-Ann; Tsai, Julia; Wensky, Allen; Lafaille, Juan J.

    2014-01-01

    Strong evidence supports that CNS-specific CD4+ T cells are central to the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Using a model of spontaneous EAE, we demonstrated that myelin basic protein (MBP)-specific CD4+ T cells up-regulate activation markers in the CNS-draining cervical lymph nodes at a time when there is no T cell activation anywhere else, including the CNS, and before the appearance of clinical signs. In spontaneous EAE, the number of MBP-specific T cell numbers does not build up gradually in the CNS; instead, a swift migration of IFN-γ-producing T cells into the CNS takes place ~24 h before the onset of neurological signs of EAE. Surgical excision of the cervical lymph nodes in healthy pre-EAE transgenic mice delayed the onset of EAE and resulted in a less severe disease. In EAE induced by immunization with MBP/CFA, a similar activation of T cells in the draining lymph nodes of the injection site precedes the disease. Taken together, our results suggest that peripheral activation of T cells in draining lymph nodes is an early event in the development of EAE, which paves the way for the initial burst of IFN-γ-producing CD4+ T cell into the CNS. PMID:18802067

  4. The human myelin basic protein gene is included within a 179-kilobase transcription unit: Expression in the immune and central nervous systems

    SciTech Connect

    Pribyl, T.M.; Campagnoni, C.W.; Kampf, K.; Kashima, T.; Handley, V.W.; Campagnoni, A.T. ); McMahon, J. )

    1993-11-15

    Two human Golli (for gene expressed in the oligodendrocyte lineage)-MBP (for myelin basic protein) cDNAs have been isolated from a human oligodendroglioma cell line. Analysis of these cDNAs has enabled the authors to determine the entire structure of the human Golli-MBP gene. The Golli-MBP gene, which encompasses the MBP transcription unit, is [approx] 179 kb in length and consists of 10 exons, seven of which constitute the MBP gene. The human Golli-MBP gene contains two transcription start sites, each of which gives rise to a family of alternatively spliced transcipts. At least two Golli-MBP transcripts, containing the first three exons of the gene and one or more MBP exons, are produced from the first transcription start site. The second family of transcripts contains only MBP exons and produces the well-known MBPs. In humans, RNA blot analysis revealed that Golli-MBP transcripts were expressed in fetal thymus, spleen, and human B-cell and macrophage cell lines, as well as in fetal spinal cord. These findings clearly link the expression of exons encoding the autoimmunogen/encephalitogen MBP in the central nervous system to cells and tissues of the immune system through normal expression of the Golli-MBP gene. They also establish that this genetic locus, which includes the MBP gene, is conserved among species, providing further evidence that the MBP transcription unit is an integral part of the Golli transcription unit and suggest that this structural arrangement is important for the genetic function and/or regulation of these genes.

  5. Autonomic Nervous System Disorders

    MedlinePlus

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  6. Transfer of Myelin-Reactive Th17 Cells Impairs Endogenous Remyelination in the Central Nervous System of Cuprizone-Fed Mice

    PubMed Central

    Baxi, Emily G.; DeBruin, Joseph; Tosi, Dominique M.; Grishkan, Inna V.; Smith, Matthew D.; Kirby, Leslie A.; Strasburger, Hayley J.; Fairchild, Amanda N.

    2015-01-01

    Multiple sclerosis (MS) is a demyelinating disease of the CNS characterized by inflammation and neurodegeneration. Animal models that enable the study of remyelination in the context of ongoing inflammation are greatly needed for the development of novel therapies that target the pathological inhibitory cues inherent to the MS plaque microenvironment. We report the development of an innovative animal model combining cuprizone-mediated demyelination with transfer of myelin-reactive CD4+ T cells. Characterization of this model reveals both Th1 and Th17 CD4+ T cells infiltrate the CNS of cuprizone-fed mice, with infiltration of Th17 cells being more efficient. Infiltration correlates with impaired spontaneous remyelination as evidenced by myelin protein expression, immunostaining, and ultrastructural analysis. Electron microscopic analysis further reveals that demyelinated axons are preserved but reduced in caliber. Examination of the immune response contributing to impaired remyelination highlights a role for peripheral monocytes with an M1 phenotype. This study demonstrates the development of a novel animal model that recapitulates elements of the microenvironment of the MS plaque and reveals an important role for T cells and peripheral monocytes in impairing endogenous remyelination in vivo. This model could be useful for testing putative MS therapies designed to enhance remyelination in the setting of active inflammation, and may also facilitate modeling the pathophysiology of denuded axons, which has been a challenge in rodents because they typically remyelinate very quickly. PMID:26041928

  7. Central nervous system

    MedlinePlus

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  8. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  9. Distinction and temporal stability of conformational epitopes on myelin oligodendrocyte glycoprotein recognized by patients with different inflammatory central nervous system diseases.

    PubMed

    Mayer, Marie C; Breithaupt, Constanze; Reindl, Markus; Schanda, Kathrin; Rostásy, Kevin; Berger, Thomas; Dale, Russell C; Brilot, Fabienne; Olsson, Tomas; Jenne, Dieter; Pröbstel, Anne-Katrin; Dornmair, Klaus; Wekerle, Hartmut; Hohlfeld, Reinhard; Banwell, Brenda; Bar-Or, Amit; Meinl, Edgar

    2013-10-01

    Autoantibodies targeting conformationally intact myelin oligodendrocyte glycoprotein (MOG) are found in different inflammatory diseases of the CNS, but their antigenic epitopes have not been mapped. We expressed mutants of MOG on human HeLa cells and analyzed sera from 111 patients (104 children, 7 adults) who recognized cell-bound human MOG, but had different diseases, including acute disseminated encephalomyelitis (ADEM), one episode of transverse myelitis or optic neuritis, multiple sclerosis (MS), anti-aquaporin-4 (AQP4)-negative neuromyelitis optica (NMO), and chronic relapsing inflammatory optic neuritis (CRION). We obtained insight into the recognition of epitopes in 98 patients. All epitopes identified were located at loops connecting the β strands of MOG. The most frequently recognized MOG epitope was revealed by the P42S mutation positioned in the CC'-loop. Overall, we distinguished seven epitope patterns, including the one mainly recognized by mouse mAbs. In half of the patients, the anti-MOG response was directed to a single epitope. The epitope specificity was not linked to certain disease entities. Longitudinal analysis of 11 patients for up to 5 y indicated constant epitope recognition without evidence for intramolecular epitope spreading. Patients who rapidly lost their anti-MOG IgG still generated a long-lasting IgG response to vaccines, indicating that their loss of anti-MOG reactivity did not reflect a general lack of capacity for long-standing IgG responses. The majority of human anti-MOG Abs did not recognize rodent MOG, which has implications for animal studies. Our findings might assist in future detection of potential mimotopes and pave the way to Ag-specific depletion.

  10. Polarization and Myelination in Myelinating Glia

    PubMed Central

    Masaki, Toshihiro

    2012-01-01

    Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed. PMID:23326681

  11. Brain and Nervous System

    MedlinePlus

    ... such as the beating of your heart, the digestion of your food, and yes, even the amount ... functions, like breathing, heart rate, blood pressure, swallowing, digestion, and blinking. previous continue How the Nervous System ...

  12. Myelination and node of Ranvier formation on sensory neurons in a defined in vitro system

    PubMed Central

    Das, Mainak; Bhalkikar, Abhijeet; Wilson, Kerry; Stancescu, Maria; Lambert, Stephen; Hickman, James J.

    2016-01-01

    One of the most important developmental modifications of the nervous system is Schwann cell myelination of axons. Schwann cells ensheath axons to create myelin segments to provide protection to the axon as well as increase the conduction of action potentials. In vitro neuronal systems provide a unique modality to study a variety of factors influencing myelination as well as diseases associated with myelin sheath degradation. This work details the development of a patterned in vitro myelinating dorsal root ganglion culture. This defined system utilized a serum-free medium in combination with a patterned substrate, utilizing the cytophobic and cytophilic molecules (poly)ethylene glycol (PEG) and N-1[3 (trimethoxysilyl) propyl] diethylenetriamine (DETA), respectively. Directional outgrowth of the neurites and subsequent myelination was controlled by surface modifications, and conformity to the pattern was measured over the duration of the experiments. The myelinated segments and nodal proteins were visualized and quantified using confocal microscopy. This tissue-engineered system provides a highly controlled, reproducible model for studying Schwann cell interactions with sensory neurons, as well as the myelination process, and its effect on neuronal plasticity and peripheral nerve regeneration. It is also compatible for use in bio-hybrid constructs to reproduce the stretch reflex arc on a chip because the media combination used is the same we have used previously for motoneurons, muscle and for neuromuscular junction (NMJ) formation. This work could have application for the study of demyelinating diseases such as diabetes induced peripheral neuropathy and could rapidly translate to a role in the discovery of drugs promoting enhanced peripheral nervous system (PNS) remyelination. PMID:23949775

  13. The Nervous System Game

    ERIC Educational Resources Information Center

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  14. LGI proteins in the nervous system.

    PubMed

    Kegel, Linde; Aunin, Eerik; Meijer, Dies; Bermingham, John R

    2013-06-25

    The development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins) play important roles in these processes. They are secreted proteins consisting of an LRR (leucine-rich repeat) domain and a so-called epilepsy-associated or EPTP (epitempin) domain. Both domains are thought to function in protein-protein interactions. The first LGI gene to be identified, LGI1, was found at a chromosomal translocation breakpoint in a glioma cell line. It was subsequently found mutated in ADLTE (autosomal dominant lateral temporal (lobe) epilepsy) also referred to as ADPEAF (autosomal dominant partial epilepsy with auditory features). LGI1 protein appears to act at synapses and antibodies against LGI1 may cause the autoimmune disorder limbic encephalitis. A similar function in synaptic remodelling has been suggested for LGI2, which is mutated in canine Benign Familial Juvenile Epilepsy. LGI4 is required for proliferation of glia in the peripheral nervous system and binds to a neuronal receptor, ADAM22, to foster ensheathment and myelination of axons by Schwann cells. Thus, LGI proteins play crucial roles in nervous system development and function and their study is highly important, both to understand their biological functions and for their therapeutic potential. Here, we review our current knowledge about this important family of proteins, and the progress made towards understanding their functions.

  15. Imaging nervous system activity.

    PubMed

    Fields, Douglas R; Shneider, Neil; Mentis, George Z; O'Donovan, Michael J

    2009-10-01

    This unit describes methods for loading ion- and voltage-sensitive dyes into neurons, with a particular focus on the spinal cord as a model system. In addition, we describe the use of these dyes to visualize neural activity. Although the protocols described here concern spinal networks in culture or an intact in vitro preparation, they can be, and have been, widely used in other parts of the nervous system.

  16. Microglia: Architects of the Developing Nervous System.

    PubMed

    Frost, Jeffrey L; Schafer, Dorothy P

    2016-08-01

    Microglia are resident macrophages of the central nervous system (CNS), representing 5-10% of total CNS cells. Recent findings reveal that microglia enter the embryonic brain, take up residence before the differentiation of other CNS cell types, and become critical regulators of CNS development. Here, we discuss exciting new work implicating microglia in a range of developmental processes, including regulation of cell number and spatial patterning of CNS cells, myelination, and formation and refinement of neural circuits. Furthermore, we review studies suggesting that these cellular functions result in the modulation of behavior, which has important implications for a variety of neurological disorders.

  17. Your Brain and Nervous System

    MedlinePlus

    ... los dientes Video: Getting an X-ray Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  18. Your Brain and Nervous System

    MedlinePlus

    ... Room? What Happens in the Operating Room? Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  19. Imaging nervous system activity.

    PubMed

    Fields, R D; O'Donovan, M J

    2001-05-01

    Optical imaging methods rely upon visualization of three types of signals: (1) intrinsic optical signals, including light scattering and reflectance, birefringence, and spectroscopic changes of intrinsic molecules, such as NADH or oxyhemoglobin; (2) changes in fluorescence or absorbance of voltage-sensitive membrane dyes; and (3) changes in fluorescence or absorbance of calcium-sensitive indicator dyes. Of these, the most widely used approach is fluorescent microscopy of calcium-sensitive dyes. This unit describes protocols for the use of calcium-sensitive dyes and voltage-dependent dyes for studies of neuronal activity in culture, tissue slices, and en-bloc preparations of the central nervous system.

  20. Three-dimensional ultra-structures of myelin and the axons in the spinal cord: application of SEM with the osmium maceration method to the central nervous system in two mouse models.

    PubMed

    Nomura, Taichi; Bando, Yoshio; Bochimoto, Hiroki; Koga, Daisuke; Watanabe, Tsuyoshi; Yoshida, Shigetaka

    2013-03-01

    Axonal injury and demyelination are observed in demyelinating diseases such as multiple sclerosis. However, pathological changes that underlie these morphologies are not fully understood. We examined in vivo morphological changes using a new histological technique, scanning electron microscopy (SEM) with osmium maceration method to observe three-dimensional structures such as myelin and axons in the spinal cord. Myelin basic protein-deficient shiverer mice and mice with experimental autoimmune encephalomyelitis (EAE) were used to visualize how morphological changes in myelin and axons are induced by dysmyelination and demyelination. SEM revealed following morphological changes during dysmyelination of shiverer mice. First, enriched mitochondria and well-developed sER in axons were observed in shiverer, but not in wild-type mice. Second, the processes from some perinodal glial cells ran parallel to internodes of axons in addition to the process that covered the nodal region of the axon in shiverer mice. Last, this technique left myelin and axonal structures undisturbed. Moreover, SEM images showed clear variations in the ultrastructural abnormalities of myelin and axons in the white matter of the EAE spinal cord. This technique will be a powerful tool for identifying the mechanisms underlying the pathogenesis in demyelination.

  1. Connexin32 expression in central and peripheral nervous systems

    SciTech Connect

    Deschenes, S.M.; Scherer, S.S.; Fischbeck, K.H.

    1994-09-01

    Mutations have been identified in the gap junction gene, connexin32 (Cx32), in patients affected with the X-linked form of the demyelinating neuropathy, Charcot-Marie-Tooth disease (CMTX). Gap junctions composed of Cx32 are present and developmentally regulated in a wide variety of tissues. In peripheral nerve, our immunohistochemical analysis localized Cx32 to the noncompacted myelin of the paranodal regions and the Schmidt-Lantermann incisures, where previous studies describe gap junctions. In contrast to the location of Cx32 in peripheral nerve and the usual restriction of clinical manifestations to the peripheral nervous system (PNS) (abstract by Paulson describes an exception), preliminary studies show that Cx32 is present in the compacted myelin of the central nervous system (CNS), as demonstrated by radial staining through the myelin sheath of oligodendrocytes in rat spinal cord. Analysis of Cx32 expression in various regions of rat CNS during development shows that the amount of Cx32 mRNA and protein increases as myelination increases, a pattern observed for other myelin genes. Studies in the PNS provide additional evidence that Cx32 and myelin genes are coordinately regulated at the transcriptional level; Cx32 and peripheral myelin gene PMP-22 mRNAs are expressed in parallel following transient or permanent nerve injury. Differences in post-translational regulation of Cx32 in the CNS and PNS may be indicated by the presence of a faster migrating form of Cs32 in cerebrum versus peripheral nerve. Studies are currently underway to determine the unique role of Cx32 in peripheral nerve.

  2. Nervous System Complexity Baffles Scientists.

    ERIC Educational Resources Information Center

    Fox, Jeffrey L.

    1982-01-01

    New research findings about how nerve cells transmit signals are forcing researchers to overhaul their simplistic ideas about the nervous system. Topics highlighted include the multiple role of peptides in the nervous system, receptor molecules, and molecules that form ion channels within membranes. (Author/JN)

  3. In vitro myelin formation using embryonic stem cells

    PubMed Central

    Kerman, Bilal E.; Kim, Hyung Joon; Padmanabhan, Krishnan; Mei, Arianna; Georges, Shereen; Joens, Matthew S.; Fitzpatrick, James A. J.; Jappelli, Roberto; Chandross, Karen J.; August, Paul; Gage, Fred H.

    2015-01-01

    Myelination in the central nervous system is the process by which oligodendrocytes form myelin sheaths around the axons of neurons. Myelination enables neurons to transmit information more quickly and more efficiently and allows for more complex brain functions; yet, remarkably, the underlying mechanism by which myelination occurs is still not fully understood. A reliable in vitro assay is essential to dissect oligodendrocyte and myelin biology. Hence, we developed a protocol to generate myelinating oligodendrocytes from mouse embryonic stem cells and established a myelin formation assay with embryonic stem cell-derived neurons in microfluidic devices. Myelin formation was quantified using a custom semi-automated method that is suitable for larger scale analysis. Finally, early myelination was followed in real time over several days and the results have led us to propose a new model for myelin formation. PMID:26015546

  4. Noise in the nervous system.

    PubMed

    Faisal, A Aldo; Selen, Luc P J; Wolpert, Daniel M

    2008-04-01

    Noise--random disturbances of signals--poses a fundamental problem for information processing and affects all aspects of nervous-system function. However, the nature, amount and impact of noise in the nervous system have only recently been addressed in a quantitative manner. Experimental and computational methods have shown that multiple noise sources contribute to cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous system, from the molecular to the behavioural level, and show how noise contributes to trial-to-trial variability. We highlight how noise affects neuronal networks and the principles the nervous system applies to counter detrimental effects of noise, and briefly discuss noise's potential benefits.

  5. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Turcotte, Raphaël; Rutledge, Danette J.; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B.; Côté, Daniel C.

    2016-08-01

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo.

  6. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy

    PubMed Central

    Turcotte, Raphaël; Rutledge, Danette J.; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B.; Côté, Daniel C.

    2016-01-01

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo. PMID:27538357

  7. RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

    PubMed Central

    Hendelman, Walter J.; Bunge, Richard P.

    1969-01-01

    This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair. PMID:5782444

  8. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons

    PubMed Central

    Wake, Hiroaki; Ortiz, Fernando C.; Woo, Dong Ho; Lee, Philip R.; Angulo, María Cecilia; Fields, R. Douglas

    2015-01-01

    The myelin sheath on vertebrate axons is critical for neural impulse transmission, but whether electrically active axons are preferentially myelinated by glial cells, and if so, whether axo-glial synapses are involved, are long-standing questions of significance to nervous system development, plasticity and disease. Here we show using an in vitro system that oligodendrocytes preferentially myelinate electrically active axons, but synapses from axons onto myelin-forming oligodendroglial cells are not required. Instead, vesicular release at nonsynaptic axo-glial junctions induces myelination. Axons releasing neurotransmitter from vesicles that accumulate in axon varicosities induces a local rise in cytoplasmic calcium in glial cell processes at these nonsynaptic functional junctions, and this signalling stimulates local translation of myelin basic protein to initiate myelination. PMID:26238238

  9. Measures of Autonomic Nervous System

    DTIC Science & Technology

    2011-04-01

    Gastro- intestinal Pupillary Response Respiratory Salivary Amylase Vascular Manipulative Body-Based/ Tension-Release Practices Trauma...Physiological Activities ANS Physiological Activities Cardiac Pupillary Response Catecholamines Respiration Cortisol Salivary Amylase Galvanic Skin...Measures of Autonomic Nervous System Regulation Salivary Amylase Measurement Most measures of salivary amylase

  10. Novel central nervous system drug delivery systems.

    PubMed

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  11. The polyvagal theory: phylogenetic substrates of a social nervous system.

    PubMed

    Porges, S W

    2001-10-01

    The evolution of the autonomic nervous system provides an organizing principle to interpret the adaptive significance of physiological responses in promoting social behavior. According to the polyvagal theory, the well-documented phylogenetic shift in neural regulation of the autonomic nervous system passes through three global stages, each with an associated behavioral strategy. The first stage is characterized by a primitive unmyelinated visceral vagus that fosters digestion and responds to threat by depressing metabolic activity. Behaviorally, the first stage is associated with immobilization behaviors. The second stage is characterized by the sympathetic nervous system that is capable of increasing metabolic output and inhibiting the visceral vagus to foster mobilization behaviors necessary for 'fight or flight'. The third stage, unique to mammals, is characterized by a myelinated vagus that can rapidly regulate cardiac output to foster engagement and disengagement with the environment. The mammalian vagus is neuroanatomically linked to the cranial nerves that regulate social engagement via facial expression and vocalization. As the autonomic nervous system changed through the process of evolution, so did the interplay between the autonomic nervous system and the other physiological systems that respond to stress, including the cortex, the hypothalamic-pituitary-adrenal axis, the neuropeptides of oxytocin and vasopressin, and the immune system. From this phylogenetic orientation, the polyvagal theory proposes a biological basis for social behavior and an intervention strategy to enhance positive social behavior.

  12. Histology of the central nervous system.

    PubMed

    Garman, Robert H

    2011-01-01

    The intent of this article is to assist pathologists inexperienced in examining central nervous system (CNS) sections to recognize normal and abnormal cell types as well as some common artifacts. Dark neurons are the most common histologic artifact but, with experience, can readily be distinguished from degenerating (eosinophilic) neurons. Neuron degeneration stains can be useful in lowering the threshold for detecting neuron degeneration as well as for revealing degeneration within populations of neurons that are too small to show the associated eosinophilic cytoplasmic alteration within H&E-stained sections. Neuron degeneration may also be identified by the presence of associated macroglial and microglial reactions. Knowledge of the distribution of astrocyte cytoplasmic processes is helpful in determining that certain patterns of treatment-related neuropil vacuolation (as well as some artifacts) represent swelling of these processes. On the other hand, vacuoles with different distribution patterns may represent alterations of the myelin sheath. Because brains are typically undersampled for microscopic evaluation, many pathologists are unfamiliar with the circumventricuar organs (CVOs) that represent normal brain structures but are often mistaken for lesions. Therefore, the six CVOs found in the brain are also illustrated in this article.

  13. Clinical implications of thyroid hormones effects on nervous system development.

    PubMed

    Carreón-Rodríguez, Alfonso; Pérez-Martínez, Leonor

    2012-03-01

    Thyroid hormones have an important role throughout prenatal and postnatal nervous system development. They are involved in several processes such as neurogenesis, gliogenesis, myelination, synaptogenesis, etc., as shown in many cases of deficiency like congenital hypothyroidism or hypothyroxinemia. Those pathologies if untreated could lead to severe damages in cognitive, motor, neudoendocrine functions among other effects. Some could be reversed after adequate supplementation of thyroid hormones at birth, however there are other cellular processes highly sensitive to low levels of thyroid hormones and lasting a limited period of time during which if thyroid hormone action is lacking or deficient, the functional and structural damages would produce permanent defects.

  14. Extracellular vesicles round off communication in the nervous system

    PubMed Central

    Budnik, Vivian; Ruiz-Cañada, Catalina; Wendler, Franz

    2016-01-01

    Functional neural competence and integrity require interactive exchanges among sensory and motor neurons, interneurons and glial cells. Recent studies have attributed some of the tasks needed for these exchanges to extracellular vesicles (such as exosomes and microvesicles), which are most prominently involved in shuttling reciprocal signals between myelinating glia and neurons, thus promoting neuronal survival, the immune response mediated by microglia, and synapse assembly and plasticity. Such vesicles have also been identified as important factors in the spread of neurodegenerative disorders and brain cancer. These extracellular vesicle functions add a previously unrecognized level of complexity to transcellular interactions within the nervous system. PMID:26891626

  15. Cdk2 loss accelerates precursor differentiation and remyelination in the adult central nervous system

    PubMed Central

    Caillava, Céline; Vandenbosch, Renaud; Jablonska, Beata; Deboux, Cyrille; Spigoni, Giulia; Gallo, Vittorio; Malgrange, Brigitte

    2011-01-01

    The specific functions of intrinsic regulators of oligodendrocyte progenitor cell (OPC) division are poorly understood. Type 2 cyclin-dependent kinase (Cdk2) controls cell cycle progression of OPCs, but whether it acts during myelination and repair of demyelinating lesions remains unexplored. Here, we took advantage of a viable Cdk2−/− mutant mouse to investigate the function of this cell cycle regulator in OPC proliferation and differentiation in normal and pathological conditions. During central nervous system (CNS) development, Cdk2 loss does not affect OPC cell cycle, oligodendrocyte cell numbers, or myelination. However, in response to CNS demyelination, it clearly alters adult OPC renewal, cell cycle exit, and differentiation. Importantly, Cdk2 loss accelerates CNS remyelination of demyelinated axons. Thus, Cdk2 is dispensable for myelination but is important for adult OPC renewal, and could be one of the underlying mechanisms that drive adult progenitors to differentiate and thus regenerate myelin. PMID:21502361

  16. Infections of the nervous system

    PubMed Central

    Parikh, Vevek; Tucci, Veronica; Galwankar, Sagar

    2012-01-01

    Glycemic control is an important aspect of patient care in the surgical Infections of the nervous system are among the most difficult infections in terms of the morbidity and mortality posed to patients, and thereby require urgent and accurate diagnosis. Although viral meningitides are more common, it is the bacterial meningitides that have the potential to cause a rapidly deteriorating condition that the physician should be familiar with. Viral encephalitis frequently accompanies viral meningitis, and can produce focal neurologic findings and cognitive difficulties that can mimic other neurologic disorders. Brain abscesses also have the potential to mimic and present like other neurologic disorders, and cause more focal deficits. Finally, other infectious diseases of the central nervous system, such as prion disease and cavernous sinus thrombosis, are explored in this review. PMID:22837896

  17. Aging changes in the nervous system

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/004023.htm Aging changes in the nervous system To use the ... spinal cord to every part of your body. AGING CHANGES AND THEIR EFFECTS ON THE NERVOUS SYSTEM ...

  18. The Nervous System and Gastrointestinal Function

    ERIC Educational Resources Information Center

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  19. CFTR-deficient pigs display peripheral nervous system defects at birth

    PubMed Central

    Reznikov, Leah R.; Dong, Qian; Chen, Jeng-Haur; Moninger, Thomas O.; Park, Jung Min; Zhang, Yuzhou; Hildebrand, Michael S.; Smith, Richard J. H.; Randak, Christoph O.; Stoltz, David A.; Welsh, Michael J.

    2013-01-01

    Peripheral nervous system abnormalities, including neuropathy, have been reported in people with cystic fibrosis. These abnormalities have largely been attributed to secondary manifestations of the disease. We tested the hypothesis that disruption of the cystic fibrosis transmembrane conductance regulator (CFTR) gene directly influences nervous system function by studying newborn CFTR−/− pigs. We discovered CFTR expression and activity in Schwann cells, and loss of CFTR caused ultrastructural myelin sheath abnormalities similar to those in known neuropathies. Consistent with neuropathic changes, we found increased transcripts for myelin protein zero, a gene that, when mutated, can cause axonal and/or demyelinating neuropathy. In addition, axon density was reduced and conduction velocities of the trigeminal and sciatic nerves were decreased. Moreover, in vivo auditory brainstem evoked potentials revealed delayed conduction of the vestibulocochlear nerve. Our data suggest that loss of CFTR directly alters Schwann cell function and that some nervous system defects in people with cystic fibrosis are likely primary. PMID:23382208

  20. Lavender and the Nervous System

    PubMed Central

    Koulivand, Peir Hossein; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2013-01-01

    Lavender is traditionally alleged to have a variety of therapeutic and curative properties, ranging from inducing relaxation to treating parasitic infections, burns, insect bites, and spasm. There is growing evidence suggesting that lavender oil may be an effective medicament in treatment of several neurological disorders. Several animal and human investigations suggest anxiolytic, mood stabilizer, sedative, analgesic, and anticonvulsive and neuroprotective properties for lavender. These studies raised the possibility of revival of lavender therapeutic efficacy in neurological disorders. In this paper, a survey on current experimental and clinical state of knowledge about the effect of lavender on the nervous system is given. PMID:23573142

  1. Cocaine and the nervous system.

    PubMed

    Prakash, A; Das, G

    1993-12-01

    Cocaine abuse today has reached greater heights than it did during the first cocaine epidemic in the late nineteenth century. It is estimated that one out of every four Americans has used cocaine and some six million people in the US use it regularly. Although cocaine affects all systems in the body, the central nervous system (CNS) is the primary target. Cocaine blocks the reuptake of neurotransmitters in the neuronal synapses. Almost all CNS effects of cocaine can be attributed to this mechanism. Euphoria, pharmacological pleasure and intense cocaine craving share basis in this system. The effects of cocaine on other organ systems, in addition to its effects on the CNS, account for the majority of the complications associated with cocaine abuse. In this paper, the CNS effects following cocaine administration and their treatment are discussed.

  2. Aquaporin Biology and Nervous System

    PubMed Central

    Barbara, Buffoli

    2010-01-01

    Our understanding of the movement of water through cell membranes has been greatly advanced by the discovery of a family of water-specific, membrane-channel proteins: the Aquaporins (AQPs). These proteins are present in organisms at all levels of life, and their unique permeability characteristics and distribution in numerous tissues indicate diverse roles in the regulation of water homeostasis. Phenotype analysis of AQP knock-out mice has confirmed the predicted role of AQPs in osmotically driven transepithelial fluid transport, as occurs in the urinary concentrating mechanism and glandular fluid secretion. Regarding their expression in nervous system, there are evidences suggesting that AQPs are differentially expressed in the peripheral versus central nervous system and that channel-mediated water transport mechanisms may be involved in cerebrospinal fluid formation, neuronal signal transduction and information processing. Moreover, a number of recent studies have revealed the importance of mammalian AQPs in both physiological and pathophysiological mechanisms and have suggested that pharmacological modulation of AQP expression and activity may provide new tools for the treatment of variety of human disorders in which water and small solute transport may be involved. For all the AQPs, new contributions to physiological functions are likely to be discovered with ongoing work in this rapidly expanding field of research. PMID:21119880

  3. IκB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-κB in the central nervous system

    PubMed Central

    Raasch, Jenni; Zeller, Nicolas; van Loo, Geert; Merkler, Doron; Mildner, Alexander; Erny, Daniel; Knobeloch, Klaus-Peter; Bethea, John R.; Waisman, Ari; Knust, Markus; Del Turco, Domenico; Deller, Thomas; Blank, Thomas; Priller, Josef; Brück, Wolfgang

    2011-01-01

    The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by conditional ablation of IκB kinase 2 resulted in strong preservation of central nervous system myelin, reduced expression of proinflammatory mediators and a significantly attenuated glial response. Importantly, IκB kinase 2 depletion in astrocytes, but not in oligodendrocytes, was sufficient to protect mice from myelin loss. Our results reveal a crucial role of glial cell-specific IκB kinase 2/nuclear factor kappa B signalling for oligodendrocyte damage during toxic demyelination. Thus, therapies targeting IκB kinase 2 function in non-neuronal cells may represent a promising strategy for the treatment of distinct demyelinating central nervous system diseases. PMID:21310728

  4. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves

    PubMed Central

    Gomez-Sanchez, Jose A.; Carty, Lucy; Iruarrizaga-Lejarreta, Marta; Palomo-Irigoyen, Marta; Varela-Rey, Marta; Griffith, Megan; Hantke, Janina; Macias-Camara, Nuria; Azkargorta, Mikel; Aurrekoetxea, Igor; De Juan, Virginia Gutiérrez; Jefferies, Harold B.J.; Aspichueta, Patricia; Elortza, Félix; Aransay, Ana M.; Martínez-Chantar, María L.; Baas, Frank; Mato, José M.; Mirsky, Rhona

    2015-01-01

    Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell–mediated myelin digestion possible have not been established. We report that Schwann cells degrade myelin after injury by a novel form of selective autophagy, myelinophagy. Autophagy was up-regulated by myelinating Schwann cells after nerve injury, myelin debris was present in autophagosomes, and pharmacological and genetic inhibition of autophagy impaired myelin clearance. Myelinophagy was positively regulated by the Schwann cell JNK/c-Jun pathway, a central regulator of the Schwann cell reprogramming induced by nerve injury. We also present evidence that myelinophagy is defective in the injured central nervous system. These results reveal an important role for inductive autophagy during Wallerian degeneration, and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease. PMID:26150392

  5. Binding of epsilon-toxin from Clostridium perfringens in the nervous system.

    PubMed

    Dorca-Arévalo, Jonatan; Soler-Jover, Alex; Gibert, Maryse; Popoff, Michel R; Martín-Satué, Mireia; Blasi, Juan

    2008-09-18

    Epsilon-toxin (epsilon-toxin), produced by Clostridium perfringens type D, is the main agent responsible for enterotoxaemia in livestock. Neurological disorders are a characteristic of the onset of toxin poisoning. Epsilon-Toxin accumulates specifically in the central nervous system, where it produces a glutamatergic-mediated excitotoxic effect. However, no detailed study of putative binding structures in the nervous tissue has been carried out to date. Here we attempt to identify specific acceptor moieties and cell targets for epsilon-toxin, not only in the mouse nervous system but also in the brains of sheep and cattle. An epsilon-toxin-GFP fusion protein was produced and used to incubate brain sections, which were then analyzed by confocal microscopy. The results clearly show specific binding of epsilon-toxin to myelin structures. epsilon-Prototoxin-GFP and epsilon-toxin-GFP, the inactive and active forms of the toxin, respectively, showed identical results. By means of pronase E treatment, we found that the binding was mainly associated to a protein component of the myelin. Myelinated peripheral nerve fibres were also stained by epsilon-toxin. Moreover, the binding to myelin was not only restricted to rodents, but was also found in humans, sheep and cattle. Curiously, in the brains of both sheep and cattle, the toxin strongly stained the vascular endothelium, a result that may explain the differences in potency and effect between species. Although the binding of epsilon-toxin to myelin does not directly explain its neurotoxic effect, this feature opens up a new line of enquiry into its mechanism of toxicity and establishes the usefulness of this toxin for the study of the mammalian nervous system.

  6. Autonomic nervous system and immune system interactions.

    PubMed

    Kenney, M J; Ganta, C K

    2014-07-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease

  7. Mammalian-Specific Central Myelin Protein Opalin Is Redundant for Normal Myelination: Structural and Behavioral Assessments

    PubMed Central

    Tohyama, Koujiro; Akagi, Takumi; Furuse, Tamio; Sadakata, Tetsushi; Tanaka, Mika; Shinoda, Yo; Hashikawa, Tsutomu; Itohara, Shigeyoshi; Sano, Yoshitake; Ghandour, M. Said; Wakana, Shigeharu

    2016-01-01

    Opalin, a central nervous system-specific myelin protein phylogenetically unique to mammals, has been suggested to play a role in mammalian-specific myelin. To elucidate the role of Opalin in mammalian myelin, we disrupted the Opalin gene in mice and analyzed the impacts on myelination and behavior. Opalin-knockout (Opalin−/−) mice were born at a Mendelian ratio and had a normal body shape and weight. Interestingly, Opalin−/− mice had no obvious abnormalities in major myelin protein compositions, expression of oligodendrocyte lineage markers, or domain organization of myelinated axons compared with WT mice (Opalin+/+) mice. Electron microscopic observation of the optic nerves did not reveal obvious differences between Opalin+/+ and Opalin−/− mice in terms of fine structures of paranodal loops, transverse bands, and multi-lamellae of myelinated axons. Moreover, sensory reflex, circadian rhythm, and locomotor activity in the home cage, as well as depression-like behavior, in the Opalin−/− mice were indistinguishable from the Opalin+/+ mice. Nevertheless, a subtle but significant impact on exploratory activity became apparent in Opalin−/− mice exposed to a novel environment. These results suggest that Opalin is not critical for central nervous system myelination or basic sensory and motor activities under conventional breeding conditions, although it might be required for fine-tuning of exploratory behavior. PMID:27855200

  8. Gross anatomy and development of the peripheral nervous system.

    PubMed

    Catala, Martin; Kubis, Nathalie

    2013-01-01

    The nervous system is divided into the central nervous system (CNS) composed of the brain, the brainstem, the cerebellum, and the spinal cord and the peripheral nervous system (PNS) made up of the different nerves arising from the CNS. The PNS is divided into the cranial nerves III to XII supplying the head and the spinal nerves that supply the upper and lower limbs. The general anatomy of the PNS is organized according to the arrangement of the fibers along the rostro-caudal axis. The control of the development of the PNS has been unravelled during the last 30 years. Motor nerves arise from the ventral neural tube. This ventralization is induced by morphogenetic molecules such as sonic hedgehog. In contrast, the sensory elements of the PNS arise from a specific population of cells originating from the roof of the neural tube, namely the neural crest. These cells give rise to the neurons of the dorsal root ganglia, the autonomic ganglia and the paraganglia including the adrenergic neurons of the adrenals. Furthermore, the supportive glial Schwann cells of the PNS originate from the neural crest cells. Growth factors as well as myelinating proteins are involved in the development of the PNS.

  9. White matter rafting--membrane microdomains in myelin.

    PubMed

    Debruin, Lillian S; Harauz, George

    2007-02-01

    The myelin membrane comprises a plethora of regions that are compositionally, ultrastructurally, and functionally distinct. Biochemical dissection of oligodendrocytes, Schwann cells, and central and peripheral nervous system myelin by means such as cold-detergent extraction and differential fractionation has led to the identification of a variety of detergent-resistant membrane assemblies, some of which represent putative signalling platforms. We review here the different microdomains that have hitherto been identified in the myelin membrane, particularly lipid rafts, caveolae, and cellular junctions such as the tight junctions that are found in the radial component of the CNS myelin sheath.

  10. Sympathetic nervous system and spaceflight

    NASA Astrophysics Data System (ADS)

    Cooke, William H.; Convertino, Victor A.

    2007-02-01

    Purpose: Orthostatic stability on Earth is maintained through sympathetic nerve activation sufficient to increase peripheral vascular resistance and defend against reductions of blood pressure. Orthostatic instability in astronauts upon return from space missions has been linked to blunted vascular resistance responses to standing, introducing the possibility that spaceflight alters normal function between sympathetic efferent traffic and vascular reactivity. Methods: We evaluated published results of spaceflight and relevant ground-based microgravity simulations in an effort to determine responses of the sympathetic nervous system and consequences for orthostatic stability. Results: Direct microneurographic recordings from humans in space revealed that sympathetic nerve activity is increased and preserved in the upright posture after return to Earth (STS-90). However, none of the astronauts studied during STS-90 presented with presyncope postflight, leaving unanswered the question of whether postflight orthostatic intolerance is associated with blunted sympathetic nerve responses or inadequate translation into vascular resistance. Conclusions: There is little evidence to support the concept that spaceflight induces fundamental sympathetic neuroplasticity. The available data seem to support the hypothesis that regardless of whether or not sympathetic traffic is altered during flight, astronauts return with reduced blood volumes and consequent heightened baseline sympathetic activity. Because of this, the ability to withstand an orthostatic challenge postflight is directly proportional to an astronaut's maximal sympathetic activation capacity and remaining sympathetic reserve.

  11. Neurogenesis in the adult peripheral nervous system.

    PubMed

    Czaja, Krzysztof; Fornaro, Michele; Geuna, Stefano

    2012-05-15

    Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system. In the peripheral nervous system, neurogenesis is thought to be active only during prenatal development, with the exception of the olfactory neuroepithelium. However, sensory ganglia in the adult peripheral nervous system have been reported to contain precursor cells that can proliferate in vitro and be induced to differentiate into neurons. The occurrence of insult-induced neurogenesis, which has been reported by several investigators in the brain, is limited to a few recent reports for the peripheral nervous system. These reports suggest that damage to the adult nervous system induces mechanisms similar to those that control the generation of new neurons during prenatal development. Understanding conditions under which neurogenesis can be induced in physiologically non-neurogenic regions in adults is one of the major challenges for developing therapeutic strategies to repair neurological damage. However, the induced neurogenesis in the peripheral nervous system is still largely unexplored. This review presents the history of research on adult neurogenesis in the peripheral nervous system, which dates back more than 100 years and reveals the evidence on the under estimated potential for generation of new neurons in the adult peripheral nervous system.

  12. Environmental Chemicals and Nervous System Dysfunction 1

    PubMed Central

    Damstra, Terri

    1978-01-01

    Selected examples of associations between nervous system diseases and exposures to occupational and environmental chemicals have been reviewed. Recent outbreaks of human neurotoxicity from both wellknown and previously unknown toxicants reemphasize the need for the medical community to give increased attention to chemical causes of nervous system dysfunction. PMID:87062

  13. Immunocytochemical Localization of Monoamine Oxidase Type B in Rat's Peripheral Nervous System.

    PubMed

    Chen, Qiang; Xu, Yang; Zhang, Hui; Tan, Xiao; Liu, Shu Hui; Yan, Fen

    2015-11-01

    Immunohistochemistry is used to investigate subcellular localization of monoamine oxidase type B (MAOB) in the axon of the rat's peripheral nervous system. Through light and electron microscopy, the presence of MAOB-immunoreactive structures in the propria lamina of tongue and on the outer membranes of mitochondria in both myelinated and unmyelinated axons can be detected. As a result, MAOB may potentially play a crucial role in the axons of the rat's peripheral nervous system and may be closely associated with both axonal transport and nerve conduction.

  14. Oligodendrocyte precursors migrate along vasculature in the developing nervous system.

    PubMed

    Tsai, Hui-Hsin; Niu, Jianqin; Munji, Roeben; Davalos, Dimitrios; Chang, Junlei; Zhang, Haijing; Tien, An-Chi; Kuo, Calvin J; Chan, Jonah R; Daneman, Richard; Fancy, Stephen P J

    2016-01-22

    Oligodendrocytes myelinate axons in the central nervous system and develop from oligodendrocyte precursor cells (OPCs) that must first migrate extensively during brain and spinal cord development. We show that OPCs require the vasculature as a physical substrate for migration. We observed that OPCs of the embryonic mouse brain and spinal cord, as well as the human cortex, emerge from progenitor domains and associate with the abluminal endothelial surface of nearby blood vessels. Migrating OPCs crawl along and jump between vessels. OPC migration in vivo was disrupted in mice with defective vascular architecture but was normal in mice lacking pericytes. Thus, physical interactions with the vascular endothelium are required for OPC migration. We identify Wnt-Cxcr4 (chemokine receptor 4) signaling in regulation of OPC-endothelial interactions and propose that this signaling coordinates OPC migration with differentiation.

  15. Autoimmune disorders affecting both the central and peripheral nervous system.

    PubMed

    Kamm, Christoph; Zettl, Uwe K

    2012-01-01

    Various case series of patients with autoimmune demyelinating disease affecting both the central and peripheral nervous system (CNS and PNS), either sequentially or simultaneously, have been reported for decades, but their frequency is considerably lower than that of the "classical" neurological autoimmune diseases affecting only either CNS or PNS, such as multiple sclerosis (MS), chronic inflammatory demyelinating polyneuropathy (CIDP) or Guillain-Barré-Syndrome (GBS), and attempts to define or even recognize the former as a clinical entity have remained elusive. Frequently, demyelination started with CNS involvement with subsequent PNS pathology, in some cases with a relapsing-remitting course. Three potential mechanisms for the autoimmune etiology of these conditions can be discussed: (I) They could be caused by a common autoimmunological reactivity against myelin antigens or epitopes present in both the central and peripheral nervous system; (II) They could be due to a higher general susceptibility to autoimmune disease, which in some cases may have been caused or exacerbated by immunomodulatory treatment, e.g. b-interferon; (III) Their co-occurrence might be coincidental. Another example of an autoimmune disease variably involving the central or peripheral nervous system or both is the overlapping and continuous clinical spectrum of Fisher syndrome (FS), as a variant of GBS, and Bickerstaff brainstem encephalitis (BBE). Recent data from larger patient cohorts with demonstration of common autoantibodies, antecedent infections, and results of detailed clinical, neuroimaging and neurophysiological investigations suggest that these three conditions are not separate disorders, but rather form a continuous spectrum with variable central and peripheral nervous system involvement. We herein review clinical and paraclinical data and therapeutic options of these disorders and discuss potential underlying common vs. divergent immunopathogenic mechanisms.

  16. Self-segregation of myelin membrane lipids in model membranes.

    PubMed

    Yurlova, Larisa; Kahya, Nicoletta; Aggarwal, Shweta; Kaiser, Hermann-Josef; Chiantia, Salvatore; Bakhti, Mostafa; Pewzner-Jung, Yael; Ben-David, Oshrit; Futerman, Anthony H; Brügger, Britta; Simons, Mikael

    2011-12-07

    Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are multilamellar, lipid-rich membranes produced by oligodendrocytes in the central nervous system. To act as an insulator, myelin has to form a stable and firm membrane structure. In this study, we have analyzed the biophysical properties of myelin membranes prepared from wild-type mice and from mouse mutants that are unable to form stable myelin. Using C-Laurdan and fluorescence correlation spectroscopy, we find that lipids are tightly organized and highly ordered in myelin isolated from wild-type mice, but not from shiverer and ceramide synthase 2 null mice. Furthermore, only myelin lipids from wild-type mice laterally segregate into physically distinct lipid phases in giant unilamellar vesicles in a process that requires very long chain glycosphingolipids. Taken together, our findings suggest that oligodendrocytes exploit the potential of lipids to self-segregate to generate a highly ordered membrane for electrical insulation of axons.

  17. Social Experience-Dependent Myelination: An Implication for Psychiatric Disorders

    PubMed Central

    Toritsuka, Michihiro; Kishimoto, Toshifumi

    2015-01-01

    Myelination is one of the strategies to promote the conduction velocity of axons in order to adjust to evolving environment in vertebrates. It has been shown that myelin formation depends on genetic programing and experience, including multiple factors, intracellular and extracellular molecules, and neuronal activities. Recently, accumulating studies have shown that myelination in the central nervous system changes more dynamically in response to neuronal activities and experience than expected. Among experiences, social experience-dependent myelination draws attention as one of the critical pathobiologies of psychiatric disorders. In this review, we summarize the mechanisms of neuronal activity-dependent and social experience-dependent myelination and discuss the contribution of social experience-dependent myelination to the pathology of psychiatric disorders. PMID:26078885

  18. Radiation injury to the nervous system

    SciTech Connect

    Gutin, P.H. ); Leibel, S.A. ); Sneline, G.E. )

    1991-01-01

    This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system.

  19. [Enteric nervous system and Parkinson's disease].

    PubMed

    Paillusson, S; Lebouvier, T; Pouclet, H; Coron, E; Bruley des Varannes, S; Damier, P; Neunlist, M; Derkinderen, P

    2012-06-01

    It has become increasingly evident over the last years that Parkinson's disease is a multicentric neurodegenerative disease that affects several neuronal structures outside the substantia nigra, among which is the enteric nervous system. The aims of the present article are to discuss the role of the enteric nervous system lesions in pathology spreading (Braak's hypothesis) and in the gastrointestinal dysfunction encountered in Parkinson's disease. Owing to its accessibility to biopsies, we further discuss the use of the enteric nervous system as an original source of biomarker in Parkinson's disease.

  20. [Functional anatomy of the central nervous system].

    PubMed

    Krainik, A; Feydy, A; Colombani, J M; Hélias, A; Menu, Y

    2003-03-01

    The central nervous system (CNS) has a particular regional functional anatomy. The morphological support of cognitive functions can now be depicted using functional imaging. Lesions of the central nervous system may be responsible of specific symptoms based on their location. Current neuroimaging techniques are able to show and locate precisely macroscopic lesions. Therefore, the knowledge of functional anatomy of the central nervous system is useful to link clinical disorders to symptomatic lesions. Using radio-clinical cases, we present the functional neuro-anatomy related to common cognitive impairments.

  1. Congenital defects of the ruminant nervous system.

    PubMed

    Washburn, Kevin E; Streeter, Robert N

    2004-07-01

    Abnormalities of the nervous system are common occurrences among congenital defects and have been reported in most ruminant species. From a clinical standpoint, the signs of such defects create difficulty in arriving at an antemortem etiology through historical and physical examination alone. By first localizing clinical signs to their point of origin in the nervous system, however, a narrower differential list can be generated so that the clinician can pursue a definitive diagnosis. This article categorizes defects of the ruminant nervous system by location of salient clinical signs into dysfunction of one of more of the following regions: cerebrum, cerebellum,and spinal cord. A brief review of some of the more recognized etiologies of these defects is also provided. It is important to make every attempt to determine the cause of nervous system defects because of the impact that an inherited condition would have on a breeding program and for prevention of defects caused by infectious or toxic teratogen exposure.

  2. [Parasitic diseases of the central nervous system].

    PubMed

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  3. Adult myelination: wrapping up neuronal plasticity

    PubMed Central

    O’Rourke, Megan; Gasperini, Robert; Young, Kaylene M.

    2014-01-01

    In this review, we outline the major neural plasticity mechanisms that have been identified in the adult central nervous system (CNS), and offer a perspective on how they regulate CNS function. In particular we examine how myelin plasticity can operate alongside neurogenesis and synaptic plasticity to influence information processing and transfer in the mature CNS. PMID:25221576

  4. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  5. Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics

    SciTech Connect

    Denninger, Andrew R.; Demé, Bruno; Cristiglio, Viviana; LeDuc, Géraldine; Feller, W. Bruce; Kirschner, Daniel A.

    2014-12-01

    The structure of internodal myelin in the rodent central and peripheral nervous systems has been determined using neutron diffraction. The kinetics of water exchange in these tissues is also described. Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, Schmidt–Lanterman incisures and the axo–glial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics.

  6. Autoantibodies to nervous system-specific proteins are elevated in sera of flight crew members: biomarkers for nervous system injury.

    PubMed

    Abou-Donia, Mohamed B; Abou-Donia, Martha M; ElMasry, Eman M; Monro, Jean A; Mulder, Michel F A

    2013-01-01

    This descriptive study reports the results of assays performed to detect circulating autoantibodies in a panel of 7 proteins associated with the nervous system (NS) in sera of 12 healthy controls and a group of 34 flight crew members including both pilots and attendants who experienced adverse effects after exposure to air emissions sourced to the ventilation system in their aircrafts and subsequently sought medical attention. The proteins selected represent various types of proteins present in nerve cells that are affected by neuronal degeneration. In the sera samples from flight crew members and healthy controls, immunoglobin (IgG) was measured using Western blotting against neurofilament triplet proteins (NFP), tubulin, microtubule-associated tau proteins (tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and glial S100B protein. Significant elevation in levels of circulating IgG-class autoantibodies in flight crew members was found. A symptom-free pilot was sampled before symptoms and then again afterward. This pilot developed clinical problems after flying for 45 h in 10 d. Significant increases in autoantibodies were noted to most of the tested proteins in the serum of this pilot after exposure to air emissions. The levels of autoantibodies rose with worsening of his condition compared to the serum sample collected prior to exposure. After cessation of flying for a year, this pilot's clinical condition improved, and eventually he recovered and his serum autoantibodies against nervous system proteins decreased. The case study with this pilot demonstrates a temporal relationship between exposure to air emissions, clinical condition, and level of serum autoantibodies to nervous system-specific proteins. Overall, these results suggest the possible development of neuronal injury and gliosis in flight crew members anecdotally exposed to cabin air emissions containing organophosphates. Thus, increased

  7. Identifying the Cellular Targets of Drug Action in the Central Nervous System Following Corticosteroid Therapy

    PubMed Central

    2013-01-01

    Corticosteroid (CS) therapy is used widely in the treatment of a range of pathologies, but can delay production of myelin, the insulating sheath around central nervous system nerve fibers. The cellular targets of CS action are not fully understood, that is, “direct” action on cells involved in myelin genesis [oligodendrocytes and their progenitors the oligodendrocyte precursor cells (OPCs)] versus “indirect” action on other neural cells. We evaluated the effects of the widely used CS dexamethasone (DEX) on purified OPCs and oligodendrocytes, employing complementary histological and transcriptional analyses. Histological assessments showed no DEX effects on OPC proliferation or oligodendrocyte genesis/maturation (key processes underpinning myelin genesis). Immunostaining and RT-PCR analyses show that both cell types express glucocorticoid receptor (GR; the target for DEX action), ruling out receptor expression as a causal factor in the lack of DEX-responsiveness. GRs function as ligand-activated transcription factors, so we simultaneously analyzed DEX-induced transcriptional responses using microarray analyses; these substantiated the histological findings, with limited gene expression changes in DEX-treated OPCs and oligodendrocytes. With identical treatment, microglial cells showed profound and global changes post-DEX addition; an unexpected finding was the identification of the transcription factor Olig1, a master regulator of myelination, as a DEX responsive gene in microglia. Our data indicate that CS-induced myelination delays are unlikely to be due to direct drug action on OPCs or oligodendrocytes, and may occur secondary to alterations in other neural cells, such as the immune component. To the best of our knowledge, this is the first comparative molecular and cellular analysis of CS effects in glial cells, to investigate the targets of this major class of anti-inflammatory drugs as a basis for myelination deficits. PMID:24147833

  8. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  9. Zebrafish as a Model to Investigate CNS Myelination

    PubMed Central

    Preston, Marnie A.; Macklin, Wendy B.

    2015-01-01

    Myelin plays a critical role in proper neuronal function by providing trophic and metabolic support to axons and facilitating energy-efficient saltatory conduction. Myelination is influenced by numerous molecules including growth factors, hormones, transmembrane receptors and extracellular molecules, which activate signaling cascades that drive cellular maturation. Key signaling molecules and downstream signaling cascades controlling myelination have been identified in cell culture systems. However, in vitro systems are not able to faithfully replicate the complex in vivo signaling environment that occurs during development or following injury. Currently, it remains time-consuming and expensive to investigate myelination in vivo in rodents, the most widely used model for studying mammalian myelination. As such, there is a need for alternative in vivo myelination models, particularly ones that can test molecular mechanisms without removing oligodendrocyte lineage cells from their native signaling environment or disrupting intercellular interactions with other cell types present during myelination. Here, we review the ever-increasing role of zebrafish in studies uncovering novel mechanisms controlling vertebrate myelination. These innovative studies range from observations of the behavior of single cells during in vivo myelination as well as mutagenesis- and pharmacology-based screens in whole animals. Additionally, we discuss recent efforts to develop novel models of demyelination and oligodendrocyte cell death in adult zebrafish for the study of cellular behavior in real time during repair and regeneration of damaged nervous systems. PMID:25263121

  10. Central nervous system complications after liver transplantation.

    PubMed

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology.

  11. The mechanical control of nervous system development.

    PubMed

    Franze, Kristian

    2013-08-01

    The development of the nervous system has so far, to a large extent, been considered in the context of biochemistry, molecular biology and genetics. However, there is growing evidence that many biological systems also integrate mechanical information when making decisions during differentiation, growth, proliferation, migration and general function. Based on recent findings, I hypothesize that several steps during nervous system development, including neural progenitor cell differentiation, neuronal migration, axon extension and the folding of the brain, rely on or are even driven by mechanical cues and forces.

  12. Novel markers identify nervous system components of the holothurian nervous system

    PubMed Central

    Díaz-Balzac, Carlos A.; Vázquez-Figueroa, Lionel D.; García-Arrarás, José E.

    2014-01-01

    Echinoderms occupy a key position in the evolution of deuterostomes. As such, the study of their nervous system can shed important information on the evolution of the vertebrate nervous system. However, the study of the echinoderm nervous system has lagged behind when compared to that of other invertebrates due to the lack of tools available. In this study, we tested three commercially available antibodies as markers of neural components in holothurians. Immunohistological experiments with antibodies made against the mammalian transcription factors Pax6 and Nurr1, and against phosphorylated histone H3 showed that these markers identified cells and fibers within the nervous system of Holothuria glaberrima. Most of the fibers recognized by these antibodies were co-labeled with the well-known neural marker, RN1. Additional experiments showed that similar immunoreactivity was found in the nervous tissue of three other holothurian species (Holothuria mexicana, Leptosynapta clarki and Sclerodactyla briareus), thus extending our findings to the three orders of Holothuroidea. Furthermore, these markers identified different subdivisions of the holothurian nervous system. Our study presents three additional markers of the holothurian nervous system, expanding the available toolkit to study the anatomy, physiology, development and evolution of the echinoderm nervous system. PMID:24740637

  13. Hydrogels for central nervous system therapeutic strategies.

    PubMed

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described.

  14. Comparative anatomy of the autonomic nervous system.

    PubMed

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves.

  15. Embryonic Development of the Central Nervous System.

    PubMed

    de Lahunta, Alexander; Glass, Eric N; Kent, Marc

    2016-03-01

    Ultimately, it is only with an understanding of normal embryologic development that there can be an understanding of why and how a specific malformation develops. Knowing from where and when a specific part of the nervous system develops and what morphogens are at play will enable us to identify undescribed malformation as well as better define causality. The following article reviews the normal embryologic development of the mammalian nervous system and is intended to serve as a foundation for the understanding of the various malformations presented in this issue.

  16. The opioid system and brain development: methadone effects on the oligodendrocyte lineage and the early stages of myelination

    PubMed Central

    Vestal-Laborde, Allison A.; Eschenroeder, Andrew C.; Bigbee, John W.; Robinson, Susan E.; Sato-Bigbee, Carmen

    2014-01-01

    Oligodendrocytes express opioid receptors throughout development but the role of the opioid system in myelination remains poorly understood. This is a significant problem as opioid use and abuse continue to increase in two particular populations: pregnant addicts where drug effects could target early myelination in the fetus and newborns; and adolescents and young adults where late myelination of “higher-order” regions takes place. Maintenance treatments for opioid addicts include the long-lasting opioids methadone and buprenorphine. Similar to our previous findings on buprenorphine effects, we now find that early myelination in the developing rat brain is also altered by perinatal exposure to therapeutic doses of methadone. Pups exposed to this drug exhibit elevated brain levels of the four major splicing variants of myelin basic proteins (MBPs), myelin proteolipid protein (PLP), and myelin-oligodendrocyte glycoprotein (MOG). Consistent with the enrichment and function of these proteins in mature myelin, analysis of the corpus callosum in these young animals also indicated elevated number of axons with already highly compacted myelin sheaths. Moreover, studies in cultured cells showed that methadone exerts direct effects at specific stages of the oligodendrocyte lineage, stimulating the proliferation of the progenitor cells while on the other hand accelerating the maturation of the more differentiated but still immature pre-oligodendrocytes. While the long-term effects of these observations remain unknown, accelerated or increased oligodendrocyte maturation and myelination could both disrupt the complex sequence of synchronized events leading to normal connectivity in the developing brain. Together with our previous observations on buprenorphine effects, the present findings further underscore a crucial function of the endogenous opioid system in the control of oligodendrocyte development and the timing of myelination. Interference with these regulatory

  17. The opioid system and brain development: effects of methadone on the oligodendrocyte lineage and the early stages of myelination.

    PubMed

    Vestal-Laborde, Allison A; Eschenroeder, Andrew C; Bigbee, John W; Robinson, Susan E; Sato-Bigbee, Carmen

    2014-01-01

    Oligodendrocytes express opioid receptors throughout development, but the role of the opioid system in myelination remains poorly understood. This is a significant problem as opioid use and abuse continue to increase in two particular populations: pregnant addicts (in whom drug effects could target early myelination in the fetus and newborn) and adolescents and young adults (in whom late myelination of 'higher-order' regions takes place). Maintenance treatments for opioid addicts include the long-lasting opioids methadone and buprenorphine. Similar to our previous findings on the effects of buprenorphine, we have now found that early myelination in the developing rat brain is also altered by perinatal exposure to therapeutic doses of methadone. Pups exposed to this drug exhibited elevated brain levels of the 4 major splicing variants of myelin basic protein, myelin proteolipid protein, and myelin-oligodendrocyte glycoprotein. Consistent with the enrichment and function of these proteins in mature myelin, analysis of the corpus callosum in these young animals also indicated an elevated number of axons with already highly compacted myelin sheaths. Moreover, studies in cultured cells showed that methadone exerts direct effects at specific stages of the oligodendrocyte lineage, stimulating the proliferation of progenitor cells while on the other hand accelerating the maturation of the more differentiated but still immature preoligodendrocytes. While the long-term effects of these observations remain unknown, accelerated or increased oligodendrocyte maturation and myelination could both disrupt the complex sequence of synchronized events leading to normal connectivity in the developing brain. Together with our previous observations on the effects of buprenorphine, the present findings further underscore a crucial function of the endogenous opioid system in the control of oligodendrocyte development and the timing of myelination. Interference with these regulatory

  18. Central nervous system and computation.

    PubMed

    Guidolin, Diego; Albertin, Giovanna; Guescini, Michele; Fuxe, Kjell; Agnati, Luigi F

    2011-12-01

    Computational systems are useful in neuroscience in many ways. For instance, they may be used to construct maps of brain structure and activation, or to describe brain processes mathematically. Furthermore, they inspired a powerful theory of brain function, in which the brain is viewed as a system characterized by intrinsic computational activities or as a "computational information processor. "Although many neuroscientists believe that neural systems really perform computations, some are more cautious about computationalism or reject it. Thus, does the brain really compute? Answering this question requires getting clear on a definition of computation that is able to draw a line between physical systems that compute and systems that do not, so that we can discern on which side of the line the brain (or parts of it) could fall. In order to shed some light on the role of computational processes in brain function, available neurobiological data will be summarized from the standpoint of a recently proposed taxonomy of notions of computation, with the aim of identifying which brain processes can be considered computational. The emerging picture shows the brain as a very peculiar system, in which genuine computational features act in concert with noncomputational dynamical processes, leading to continuous self-organization and remodeling under the action of external stimuli from the environment and from the rest of the organism.

  19. Evolving specialization of the arthropod nervous system.

    PubMed

    Jarvis, Erin; Bruce, Heather S; Patel, Nipam H

    2012-06-26

    The diverse array of body plans possessed by arthropods is created by generating variations upon a design of repeated segments formed during development, using a relatively small "toolbox" of conserved patterning genes. These attributes make the arthropod body plan a valuable model for elucidating how changes in development create diversity of form. As increasingly specialized segments and appendages evolved in arthropods, the nervous systems of these animals also evolved to control the function of these structures. Although there is a remarkable degree of conservation in neural development both between individual segments in any given species and between the nervous systems of different arthropod groups, the differences that do exist are informative for inferring general principles about the holistic evolution of body plans. This review describes developmental processes controlling neural segmentation and regionalization, highlighting segmentation mechanisms that create both ectodermal and neural segments, as well as recent studies of the role of Hox genes in generating regional specification within the central nervous system. We argue that this system generates a modular design that allows the nervous system to evolve in concert with the body segments and their associated appendages. This information will be useful in future studies of macroevolutionary changes in arthropod body plans, especially in understanding how these transformations can be made in a way that retains the function of appendages during evolutionary transitions in morphology.

  20. Calpain secreted by activated human lymphoid cells degrades myelin.

    PubMed

    Deshpande, R V; Goust, J M; Hogan, E L; Banik, N L

    1995-10-01

    Calpain secreted by lymphoid (MOLT-3, M.R.) or monocytic (U-937, THP-1) cell lines activated with PMA and A23187 degraded myelin antigens. The degradative effect of enzymes released in the extracellular medium was tested on purified myelin basic protein and rat central nervous system myelin in vitro. The extent of protein degradation was determined by SDS-PAGE and densitometric analysis. Various proteinase inhibitors were used to determine to what extent protein degradation was mediated by calpain and/or other enzymes. Lysosomal and serine proteinase inhibitors inhibited 20-40% of the myelin-degradative activity found in the incubation media of cell lines, whereas the calcium chelator (EGTA), the calpain-specific inhibitor (calpastatin), and a monoclonal antibody to m calpain blocked myelin degradation by 60-80%. Since breakdown products of MBP generated by calpain may include fragments with antigenic epitopes, this enzyme may play an important role in the initiation of immune-mediated demyelination.

  1. Peripheral nervous system manifestations in systemic autoimmune diseases.

    PubMed

    Cojocaru, Inimioara Mihaela; Cojocaru, Manole; Silosi, Isabela; Vrabie, Camelia Doina

    2014-09-01

    The peripheral nervous system refers to parts of the nervous system outside the brain and spinal cord. Systemic autoimmune diseases can affect both the central and peripheral nervous systems in a myriad of ways and through a heterogeneous number of mechanisms leading to many different clinical manifestations. As a result, neurological complications of these disorders can result in significant morbidity and mortality. The most common complication of peripheral nervous system (PNS) involvement is peripheral neuropathy, with symptoms of numbness, sensory paresthesias, weakness, or gait imbalance. The neuropathy may be multifocal and asymmetric or, less frequently, distal and symmetric.

  2. Measures of Autonomic Nervous System Regulation

    DTIC Science & Technology

    2011-04-01

    Cortisol Galvanic Skin Response (GSR) Gastro- intestinal Pupillary Response Respiratory Salivary Amylase Vascular Manipulative Body-Based...Salivary Amylase Galvanic Skin Response Vascular Gastrointestinal The ANS Measures Table in Appendix A provides a summary of over fifty tools...Measures of Autonomic Nervous System Regulation Salivary Amylase Measurement

  3. Evolution of basal deuterostome nervous systems.

    PubMed

    Holland, Linda Z

    2015-02-15

    Understanding the evolution of deuterostome nervous systems has been complicated by the by the ambiguous phylogenetic position of the Xenocoelomorpha (Xenoturbellids, acoel flat worms, nemertodermatids), which has been placed either as basal bilaterians, basal deuterostomes or as a sister group to the hemichordate/echinoderm clade (Ambulacraria), which is a sister group of the Chordata. None of these groups has a single longitudinal nerve cord and a brain. A further complication is that echinoderm nerve cords are not likely to be evolutionarily related to the chordate central nervous system. For hemichordates, opinion is divided as to whether either one or none of the two nerve cords is homologous to the chordate nerve cord. In chordates, opposition by two secreted signaling proteins, bone morphogenetic protein (BMP) and Nodal, regulates partitioning of the ectoderm into central and peripheral nervous systems. Similarly, in echinoderm larvae, opposition between BMP and Nodal positions the ciliary band and regulates its extent. The apparent loss of this opposition in hemichordates is, therefore, compatible with the scenario, suggested by Dawydoff over 65 years ago, that a true centralized nervous system was lost in hemichordates.

  4. [Neuropeptide Y and autonomic nervous system].

    PubMed

    Nozdrachev, A D; Masliukov, P M

    2011-01-01

    Neuropeptide Y (NPY) containing 36 amino acid residues belongs to peptides widely spread in the central and peripheral nervous system. NPY and its receptors play an extremely diverse role in the nervous system, including regulation of satiety, of emotional state, of vascular tone, and of gastrointestinal secretion. In mammals, NPY has been revealed in the majority of sympathetic ganglion neurons, in a high number of neurons of parasympathetic cranial ganglia as well as of intramural ganglia of the metasympathetic nervous system. At present, six types of receptors to NPY (Y1-Y6) have been identified. All receptors to NPY belong to the family of G-bound proteins. Action of NPY on peripheral organs-targets is predominantly realized through postsynaptic receptors Y1, Y3-Y5, and presynaptic receptors of the Y2 type. NPY is present in large electron-dense vesicles and is released at high-frequency stimulation. NPY affects not only vascular tone, frequency and strength of heart contractions, motorics and secretion of the gastrointestinal tract, but also has trophic effect and produces proliferation of cells of organs-targets, specifically of vessels, myocardium, and adipose tissue. In early postnatal ontogenesis the percent of the NPY-containing neurons in ganglia of the autonomic nervous system increases. In adult organisms, this parameter decreases. This seems to be connected with the trophic NPY effect on cells-targets as well as with regulation of their functional state.

  5. Plastic fantastic: Schwann cells and repair of the peripheral nervous system.

    PubMed

    Kim, Haesun A; Mindos, Thomas; Parkinson, David B

    2013-08-01

    Repair in the peripheral nervous system (PNS) depends upon the plasticity of the myelinating cells, Schwann cells, and their ability to dedifferentiate, direct axonal regrowth, remyelinate, and allow functional recovery. The ability of such an exquisitely specialized myelinating cell to revert to an immature dedifferentiated cell that can direct repair is remarkable, making Schwann cells one of the very few regenerative cell types in our bodies. However, the idea that the PNS always repairs after injury, in contrast to the central nervous system, is not true. Repair in patients after nerve trauma can be incredibly variable, depending on the site and type of injury, and only a relatively small number of axons may fully regrow and reinnervate their targets. Recent research has shown that it is an active process that drives Schwann cells back to an immature state after injury and that this requires activity of the p38 and extracellular-regulated kinase 1/2 mitogen-activated protein kinases, as well as the transcription factor cJun. Analysis of the events after peripheral nerve transection has shown how signaling from nerve fibroblasts forms Schwann cells into cords in the newly generated nerve bridge, via Sox2 induction, to allow the regenerating axons to cross the gap. Understanding these pathways and identifying additional mechanisms involved in these processes raises the possibility of both boosting repair after PNS trauma and even, possibly, blocking the inappropriate demyelination seen in some disorders of the peripheral nervous system.

  6. Iron Homeostasis in Peripheral Nervous System, Still a Black Box?

    PubMed Central

    Taveggia, Carla

    2014-01-01

    Abstract Significance: Iron is the most abundant transition metal in biology and an essential cofactor for many cellular enzymes. Iron homeostasis impairment is also a component of peripheral neuropathies. Recent Advances: During the past years, much effort has been paid to understand the molecular mechanism involved in maintaining systemic iron homeostasis in mammals. This has been stimulated by the evidence that iron dyshomeostasis is an initial cause of several disorders, including genetic and sporadic neurodegenerative disorders. Critical Issues: However, very little has been done to investigate the physiological role of iron in peripheral nervous system (PNS), despite the development of suitable cellular and animal models. Future Directions: To stimulate research on iron metabolism and peripheral neuropathy, we provide a summary of the knowledge on iron homeostasis in the PNS, on its transport across the blood–nerve barrier, its involvement in myelination, and we identify unresolved questions. Furthermore, we comment on the role of iron in iron-related disorder with peripheral component, in demyelinating and metabolic peripheral neuropathies. Antioxid. Redox Signal. 21, 634–648. PMID:24409826

  7. Pathogenesis and immunopathology of systemic and nervous canine distemper.

    PubMed

    Beineke, A; Puff, C; Seehusen, F; Baumgärtner, W

    2009-01-15

    Canine distemper is a worldwide occurring infectious disease of dogs, caused by a morbillivirus, closely related to measles and rinderpest virus. The natural host range comprises predominantly carnivores. Canine distemper virus (CDV), an enveloped, negative-sense RNA virus, infects different cell types, including epithelial, mesenchymal, neuroendocrine and hematopoietic cells of various organs and tissues. CDV infection of dogs is characterized by a systemic and/or nervous clinical course and viral persistence in selected organs including the central nervous system (CNS) and lymphoid tissue. Main manifestations include respiratory and gastrointestinal signs, immunosuppression and demyelinating leukoencephalomyelitis (DL). Impaired immune function, associated with depletion of lymphoid organs, consists of a viremia-associated loss of lymphocytes, especially of CD4+ T cells, due to lymphoid cell apoptosis in the early phase. After clearance of the virus from the peripheral blood an assumed diminished antigen presentation and altered lymphocyte maturation cause an ongoing immunosuppression despite repopulation of lymphoid organs. The early phase of DL is a sequel of a direct virus-mediated damage and infiltrating CD8+ cytotoxic T cells associated with an up-regulation of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-alpha and IL-12 and a lacking response of immunomodulatory cytokines such as IL-10 and transforming growth factor (TGF)-beta. A CD4+-mediated delayed type hypersensitivity and cytotoxic CD8+ T cells contribute to myelin loss in the chronic phase. Additionally, up-regulation of interferon-gamma and IL-1 may occur in advanced lesions. Moreover, an altered balance between matrix metalloproteinases and their inhibitors seems to play a pivotal role for the pathogenesis of DL. Summarized, DL represents a biphasic disease process consisting of an initial direct virus-mediated process and immune-mediated plaque

  8. Gravitational Study of the Central Nervous System

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.

    1983-01-01

    A series of experiments conducted at 1G are discussed with reference to the role of calcium ions in information processing by the central nervous system. A technique is described which allows thin sections of a mammalian hippocampus to be isolated while maintaining neural activity. Two experiments carried out in hypergravic fields are also addressed; one investigating altered stimulation in the auditory system, the other determining temperature regulation responses in hypergravic fields.

  9. Homarus Americanus Stomatogastric Nervous System Dissection

    PubMed Central

    Tobin, Anne-Elise; Bierman, Hilary S.

    2009-01-01

    With the goal of understanding how nervous systems produce activity and respond to the environment, neuroscientists turn to model systems that exhibit the activity of interest and are accessible and amenable to experimental methods. The stomatogastric nervous system (STNS) of the American lobster (Homarus americanus; also know was the Atlantic or Maine lobster) has been established as a model system for studying rhythm generating networks and neuromodulation of networks. The STNS consists of 3 anterior ganglia (2 commissural ganglia and an oesophageal ganglion), containing modulatory neurons that project centrally to the stomatogastric ganglion (STG). The STG contains approximately 30 neurons that comprise two central pattern generating networks, the pyloric and gastric networks that underlie feeding behaviors in crustaceans1,2. While it is possible to study this system in vivo3, the STNS continues to produce its rhythmic activity when isolated in vitro. Physical isolation of the STNS in a dish allows for easy access to the somata in the ganglia for intracellular electrophysiological recordings and to the nerves of the STNS for extracellular recordings. Isolating the STNS is a two-part process. The first part, dissecting the stomach from the animal, is described in an accompanying video article4. In this video article, fine dissection techniques are used to isolate the STNS from the stomach. This procedure results in a nervous system preparation that is available for electrophysiological recordings. PMID:19483669

  10. Autonomic nervous system dysregulation in pediatric hypertension.

    PubMed

    Feber, Janusz; Ruzicka, Marcel; Geier, Pavel; Litwin, Mieczyslaw

    2014-05-01

    Historically, primary hypertension (HTN) has been prevalent typically in adults. Recent data however, suggests an increasing number of children diagnosed with primary HTN, mainly in the setting of obesity. One of the factors considered in the etiology of HTN is the autonomous nervous system, namely its dysregulation. In the past, the sympathetic nervous system (SNS) was regarded as a system engaged mostly in buffering major acute changes in blood pressure (BP), in response to physical and emotional stressors. Recent evidence suggests that the SNS plays a much broader role in the regulation of BP, including the development and maintenance of sustained HTN by a chronically elevated central sympathetic tone in adults and children with central/visceral obesity. Consequently, attempts have been made to reduce the SNS hyperactivity, in order to intervene early in the course of the disease and prevent HTN-related complications later in life.

  11. HCV-related central and peripheral nervous system demyelinating disorders.

    PubMed

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered.

  12. Prolactin: Friend or Foe in Central Nervous System Autoimmune Inflammation?

    PubMed Central

    Costanza, Massimo; Pedotti, Rosetta

    2016-01-01

    The higher prevalence of multiple sclerosis (MS) in females, along with the modulation of disease activity observed during pregnancy and the post-partum period, has suggested a hormonal influence in MS. Even if prolactin (PRL) does not belong to the sex hormones family, its crucial role in female reproduction and lactation has prompted great efforts to understand if PRL could represent a gender factor in the pathogenesis of MS and experimental autoimmune encephalomyelitis (EAE), the animal model for this disease. Extensive literature has documented a remarkable immune-stimulating potential for this hormone, indicating PRL as a disease-promoting factor in MS and EAE. However, recent work has pointed out that PRL is endowed with important neuroprotective and remyelinating properties and has encouraged a reinterpretation of the involvement of this hormone in MS. In this review we summarize both the protective functions that PRL exerts in central nervous system tissue as well as the inflammatory activity of this hormone in the context of autoimmune responses against myelin. Last, we draw future lines of research that might help to better clarify the impact of PRL on MS pathology. PMID:27918427

  13. HCV-Related Central and Peripheral Nervous System Demyelinating Disorders

    PubMed Central

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered. PMID:25198705

  14. The Yin and Yang of YY1 in the nervous system.

    PubMed

    He, Ye; Casaccia-Bonnefil, Patrizia

    2008-08-01

    The transcription factor Yin Yang 1 (YY1) is a multifunctional protein that can activate or repress gene expression depending on the cellular context. YY1 is ubiquitously expressed and highly conserved between species. However, its role varies in diverse cell types and includes proliferation, differentiation, and apoptosis. This review will focus on the function of YY1 in the nervous system including its role in neural development, neuronal function, developmental myelination, and neurological disease. The multiple functions of YY1 in distinct cell types are reviewed and the possible mechanisms underlying the cell specificity for these functions are discussed.

  15. Direct visualization of membrane architecture of myelinating cells in transgenic mice expressing membrane-anchored EGFP.

    PubMed

    Deng, Yaqi; Kim, BongWoo; He, Xuelian; Kim, Sunja; Lu, Changqing; Wang, Haibo; Cho, Ssang-Goo; Hou, Yiping; Li, Jianrong; Zhao, Xianghui; Lu, Q Richard

    2014-04-01

    Myelinogenesis is a complex process that involves substantial and dynamic changes in plasma membrane architecture and myelin interaction with axons. Highly ramified processes of oligodendrocytes in the central nervous system (CNS) make axonal contact and then extrapolate to wrap around axons and form multilayer compact myelin sheathes. Currently, the mechanisms governing myelin sheath assembly and axon selection by myelinating cells are not fully understood. Here, we generated a transgenic mouse line expressing the membrane-anchored green fluorescent protein (mEGFP) in myelinating cells, which allow live imaging of details of myelinogenesis and cellular behaviors in the nervous systems. mEGFP expression is driven by the promoter of 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNP) that is expressed in the myelinating cell lineage. Robust mEGFP signals appear in the membrane processes of oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system (PNS), wherein mEGFP expression defines the inner layers of myelin sheaths and Schmidt-Lanterman incisures in adult sciatic nerves. In addition, mEGFP expression can be used to track the extent of remyelination after demyelinating injury in a toxin-induced demyelination animal model. Taken together, the membrane-anchored mEGFP expression in the new transgenic line would facilitate direct visualization of dynamic myelin membrane formation and assembly during development and process remodeling during remyelination after various demyelinating injuries.

  16. Regeneration in the nervous system with erythropoietin.

    PubMed

    Maiese, Kenneth

    2016-01-01

    Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system.

  17. Virus Infections in the Nervous System

    PubMed Central

    Koyuncu, Orkide O.; Hogue, Ian B.; Enquist, Lynn W.

    2013-01-01

    Virus infections usually begin in peripheral tissues and can invade the mammalian nervous system (NS), spreading into the peripheral (PNS) and more rarely the central nervous systems (CNS). The CNS is protected from most virus infections by effective immune responses and multi-layer barriers. However, some viruses enter the NS with high efficiency via the bloodstream or by directly infecting nerves that innervate peripheral tissues, resulting in debilitating direct and immune-mediated pathology. Most viruses in the NS are opportunistic or accidental pathogens, but a few, most notably the alpha herpesviruses and rabies virus, have evolved to enter the NS efficiently and exploit neuronal cell biology. Remarkably, the alpha herpesviruses can establish quiescent infections in the PNS, with rare but often fatal CNS pathology. Here we review how viruses gain access to and spread in the well-protected CNS, with particular emphasis on alpha herpesviruses, which establish and maintain persistent NS infections. PMID:23601101

  18. [Central nervous system malformations: neurosurgery correlates].

    PubMed

    Jiménez-León, Juan C; Betancourt-Fursow, Yaline M; Jiménez-Betancourt, Cristina S

    2013-09-06

    Congenital malformations of the central nervous system are related to alterations in neural tube formation, including most of the neurosurgical management entities, dysraphism and craniosynostosis; alterations of neuronal proliferation; megalencefaly and microcephaly; abnormal neuronal migration, lissencephaly, pachygyria, schizencephaly, agenesis of the corpus callosum, heterotopia and cortical dysplasia, spinal malformations and spinal dysraphism. We expose the classification of different central nervous system malformations that can be corrected by surgery in the shortest possible time and involving genesis mechanisms of these injuries getting better studied from neurogenic and neuroembryological fields, this involves connecting innovative knowledge areas where alteration mechanisms in dorsal induction (neural tube) and ventral induction (telencephalization) with the current way of correction, as well as the anomalies of cell proliferation and differentiation of neuronal migration and finally the complex malformations affecting the posterior fossa and current possibilities of correcting them.

  19. Regeneration in the nervous system with erythropoietin

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system. PMID:26549969

  20. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury

    PubMed Central

    Bombeiro, André Luis; Thomé, Rodolfo; Oliveira Nunes, Sérgio Luiz; Monteiro Moreira, Bárbara; Verinaud, Liana; de Oliveira, Alexandre Leite Rodrigues

    2016-01-01

    Major histocompatibility complex class one (MHC-I) antigen-presenting molecules participate in central nervous system (CNS) synaptic plasticity, as does the paired immunoglobulin-like receptor B (PirB), an MHC-I ligand that can inhibit immune-cells and bind to myelin axon growth inhibitors. Based on the dual roles of both molecules in the immune and nervous systems, we evaluated their expression in the central and peripheral nervous system (PNS) following sciatic nerve injury in mice. Increased PirB and MHC-I protein and gene expression is present in the spinal cord one week after nerve transection, PirB being mostly expressed in the neuropile region. In the crushed nerve, MHC-I protein levels increased 2 weeks after lesion (wal) and progressively decreased over the next eight weeks. The same kinetics were observed for infiltrating cytotoxic T lymphocytes (CTLs) but not for PirB expression, which continuously increased. Both MHC-I and PirB were found in macrophages and Schwann cells but rarely in axons. Interestingly, at 8 wal, PirB was mainly restricted to the myelin sheath. Our findings reinforce the participation of MHC-I and PirB in CNS plasticity events. In contrast, opposing expression levels of these molecules were found in the PNS, so that MHC-I and PirB seem to be mostly implicated in antigen presentation to CTLs and axon myelination, respectively. PMID:27551751

  1. Formation of compact myelin is required for maturation of the axonal cytoskeleton

    NASA Technical Reports Server (NTRS)

    Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.

    1999-01-01

    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.

  2. [Nervous system involvement in Madelung's syndrome].

    PubMed

    Tolubaev, N S; Gerasimovich, L A; Tolubaeva, N I

    1992-04-01

    Due to proliferation of the fatty tissue in the neck and depending on the degree of compression of the pharynx, larynx, vessels, nerve trunks the patients show, respiratory disorders, swallowing disturbances, dysarthria, stenocardia, neck and occipital pain, scalenus syndrome, cervicobrachialgia, posterior cervical sympathetic syndrome, disorders of the cerebral and spinal blood circulation. Involvement of both the central and peripheral nervous system are observed in Madelung's disease.

  3. Peripheral Nervous System Manifestations of Infectious Diseases

    PubMed Central

    Brizzi, Kate T.

    2014-01-01

    Infectious causes of peripheral nervous system (PNS) disease are underrecognized but potentially treatable. Heightened awareness educed by advanced understanding of the presentations and management of these infections can aid diagnosis and facilitate treatment. In this review, we discuss the clinical manifestations, diagnosis, and treatment of common bacterial, viral, and parasitic infections that affect the PNS. We additionally detail PNS side effects of some frequently used antimicrobial agents. PMID:25360209

  4. Tuberculoma of the central nervous system.

    PubMed

    DeLance, Arthur R; Safaee, Michael; Oh, Michael C; Clark, Aaron J; Kaur, Gurvinder; Sun, Matthew Z; Bollen, Andrew W; Phillips, Joanna J; Parsa, Andrew T

    2013-10-01

    Tuberculosis is among the oldest and most devastating infectious diseases worldwide. Nearly one third of the world's population has active or latent disease, resulting in 1.5 million deaths annually. Central nervous system involvement, while rare, is the most severe form of tuberculosis. Manifestations include tuberculoma and tuberculous meningitis, with the majority of cases occurring in children and immunocompromised patients. Despite advancements in imaging and laboratory diagnostics, tuberculomas of the central nervous system remain a diagnostic challenge due to their insidious nature and nonspecific findings. On imaging studies tuberculous meningitis is characterized by diffuse basal enhancement, but tuberculomas may be indistinguishable from neoplasms. Early diagnosis is imperative, since clinical outcomes are largely dependent on timely treatment. Stereotactic biopsy with histopathological analysis can provide a definitive diagnosis, but is only recommended when non-invasive methods are inconclusive. Standard medical treatment includes rifampicin, isoniazid, pyrazinamide, and streptomycin or ethambutol. In cases of drug resistance, revision of the treatment regimen with second-line agents is recommended over the addition of a single drug to the first-line regimen. Advances in genomics have identified virulent strains of tuberculosis and are improving our understanding of host susceptibility. Neurosurgical referral is advised for patients with elevated intracranial pressure, seizures, or brain or spinal cord compression. This review synthesizes pertinent findings in the literature surrounding central nervous system tuberculoma in an effort to highlight recent advances in pathophysiology, diagnosis, and treatment.

  5. Rhabdoid tumors of the central nervous system.

    PubMed

    Reinhardt, D; Behnke-Mursch, J; Weiss, E; Christen, H J; Kühl, J; Lakomek, M; Pekrun, A

    2000-04-01

    Rhabdoid tumors of the central nervous system are rare malignancies with a still almost uniformly fatal outcome. There is still no proven curative therapy available. We report our experience with nine patients with central nervous system rhabdoid tumors. Gross complete surgical removal of the tumor was achieved in six patients. Seven patients received intensive chemotherapy. Four of these were treated in addition with both neuroaxis radiotherapy and a local boost directed to the tumor region, while two patients received local radiotherapy only. The therapy was reasonably well tolerated in most cases. Despite the aggressive therapy, eight of the nine patients died from progressive tumor disease, and one patient died from hemorrhagic brain stem lesions of unknown etiology. The mean survival time was 10 months after diagnosis. Conventional treatment, although aggressive, cannot change the fatal prognosis of central nervous system rhabdoid tumors. As these neoplasms are so rare, a coordinated register would probably be a good idea, offering a means of learning more about the tumor's biology and possible strategies of treatment.

  6. Metal toxicity in the central nervous system.

    PubMed Central

    Clarkson, T W

    1987-01-01

    The nervous system is the principal target for a number of metals. Inorganic compounds of aluminum, arsenic, lead, lithium, manganese, mercury, and thallium are well known for their neurological and behavioral effects in humans. The alkyl derivatives of certain metals--lead, mercury and tin--are specially neurotoxic. Concern over human exposure and in some cases, outbreaks of poisoning, have stimulated research into the toxic action of these metals. A number of interesting hypotheses have been proposed for the mechanism of lead toxicity on the nervous system. Lead is known to be a potent inhibitor of heme synthesis. A reduction in heme-containing enzymes could compromise energy metabolism. Lead may affect brain function by interference with neurotransmitters such as gamma-amino-isobutyric acid. There is mounting evidence that lead interferes with membrane transport and binding of calcium ions. Methylmercury produces focal damage to specific areas in the adult brain. One hypothesis proposes that certain cells are susceptible because they cannot repair the initial damage to the protein sythesis machinery. The developing nervous system is especially susceptible to damage by methylmercury. It has been discovered that microtubules are destroyed by this form of mercury and this effect may explain the inhibition of cell division and cell migration, processes that occur only in the developmental stages. These and other hypotheses will stimulate considerable experimental challenges in the future. PMID:3319566

  7. Classical Neurotransmitters and their Significance within the Nervous System.

    ERIC Educational Resources Information Center

    Veca, A.; Dreisbach, J. H.

    1988-01-01

    Describes some of the chemical compounds involved in the nervous system and their roles in transmitting nerve signals. Discusses acetylcholine, dopamine, norepinephrine, serotonin, histamine, glycine, glutemate, and gamma-aminobutyric acid and their effects within the nervous system. (CW)

  8. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP.

    PubMed

    Hu, Bo; Arpag, Sezgi; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-09-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it "functional demyelination", a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP.

  9. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP

    PubMed Central

    Hu, Bo; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-01-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it “functional demyelination”, a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP. PMID:27583434

  10. Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models

    PubMed Central

    Chrast, Roman; Saher, Gesine; Nave, Klaus-Armin; Verheijen, Mark H. G.

    2011-01-01

    The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid synthesis of myelinating glial cells because of blood barriers shielding the nervous system from circulating lipids. Recent insights from analysis of inherited lipid disorders, especially those with prevailing lipid depletion and from mouse models with glia-specific disruption of lipid metabolism, shed new light on this issue. The particular lipid composition of myelin, the transport of lipid-associated myelin proteins, and the necessity for timely assembly of the myelin sheath all contribute to the observed vulnerability of myelin to perturbed lipid metabolism. Furthermore, the uptake of external lipids may also play a role in the formation of myelin membranes. In addition to an improved understanding of basic myelin biology, these data provide a foundation for future therapeutic interventions aiming at preserving glial cell integrity in metabolic disorders. PMID:21062955

  11. The BIRN Project: Imaging the Nervous System

    SciTech Connect

    Ellisman, Mark

    2006-05-22

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences and protein products. The general premise of the neuroscience goal is simple; namely that with "complete" knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their cell and tissue contexts.

  12. The BIRN Project: Imaging the Nervous System

    SciTech Connect

    Ellisman, Mark

    2006-05-22

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences and protein products. The general premise of the neuroscience goal is simple; namely that with 'complete' knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their cell and tissue contexts.

  13. Monoclonal Antibodies against the Drosophila Nervous System

    NASA Astrophysics Data System (ADS)

    Fujita, Shinobu C.; Zipursky, Stephen L.; Benzer, Seymour; Ferrus, Alberto; Shotwell, Sandra L.

    1982-12-01

    A panel of 148 monoclonal antibodies directed against Drosophila neural antigens has been prepared by using mice immunized with homogenates of Drosophila tissue. Antibodies were screened immunohistochemically on cryostat sections of fly heads. A large diversity of staining patterns was observed. Some antigens were broadly distributed among tissues; others were highly specific to nerve fibers, neuropil, muscle, the tracheal system, cell nuclei, photoreceptors, or other structures. The antigens for many of the antibodies have been identified on immunoblots. Monoclonal antibodies that identify specific molecules within the nervous system should prove useful in the study of the molecular genetics of neural development.

  14. HCV-Related Nervous System Disorders

    PubMed Central

    Monaco, Salvatore; Ferrari, Sergio; Gajofatto, Alberto; Zanusso, Gianluigi; Mariotto, Sara

    2012-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a wide spectrum of extrahepatic manifestations, affecting different organ systems. Neurological complications occur in a large number of patients and range from peripheral neuropathy to cognitive impairment. Pathogenetic mechanisms responsible for nervous system dysfunction are mainly related to the upregulation of the host immune response with production of autoantibodies, immune complexes, and cryoglobulins. Alternative mechanisms include possible extrahepatic replication of HCV in neural tissues and the effects of circulating inflammatory cytokines and chemokines. PMID:22899946

  15. Axon growth inhibition by RhoA/ROCK in the central nervous system.

    PubMed

    Fujita, Yuki; Yamashita, Toshihide

    2014-01-01

    Rho kinase (ROCK) is a serine/threonine kinase and a downstream target of the small GTPase Rho. The RhoA/ROCK pathway is associated with various neuronal functions such as migration, dendrite development, and axonal extension. Evidence from animal studies reveals that RhoA/ROCK signaling is involved in various central nervous system (CNS) diseases, including optic nerve and spinal cord injuries, stroke, and neurodegenerative diseases. Given that RhoA/ROCK plays a critical role in the pathophysiology of CNS diseases, the development of therapeutic agents targeting this pathway is expected to contribute to the treatment of CNS diseases. The RhoA/ROCK pathway mediates the effects of myelin-associated axon growth inhibitors-Nogo, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), and repulsive guidance molecule (RGM). Blocking RhoA/ROCK signaling can reverse the inhibitory effects of these molecules on axon outgrowth, and promotes axonal sprouting and functional recovery in animal models of CNS injury. To date, several RhoA/ROCK inhibitors have been under development or in clinical trials as therapeutic agents for neurological disorders. In this review, we focus on the RhoA/ROCK signaling pathway in neurological disorders. We also discuss the potential therapeutic approaches of RhoA/ROCK inhibitors for various neurological disorders.

  16. Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system

    PubMed Central

    Gonzalez, Ginez A.; Hofer, Matthias P.; Syed, Yasir A.; Amaral, Ana I.; Rundle, Jon; Rahman, Saifur; Zhao, Chao; Kotter, Mark R. N.

    2016-01-01

    Enhancing central nervous system (CNS) myelin regeneration is recognized as an important strategy to ameliorate the devastating consequences of demyelinating diseases such as multiple sclerosis. Previous findings have indicated that myelin proteins, which accumulate following demyelination, inhibit remyelination by blocking the differentiation of rat oligodendrocyte progenitor cells (OPCs) via modulation of PKCα. We therefore screened drugs for their potential to overcome this differentiation block. From our screening, tamoxifen emerges as a potent inducer of OPC differentiation in vitro. We show that the effects of tamoxifen rely on modulation of the estrogen receptors ERα, ERβ, and GPR30. Furthermore, we demonstrate that administration of tamoxifen to demyelinated rats in vivo accelerates remyelination. Tamoxifen is a well-established drug and is thus a promising candidate for a drug to regenerate myelin, as it will not require extensive safety testing. In addition, Tamoxifen plays an important role in biomedical research as an activator of inducible genetic models. Our results highlight the importance of appropriate controls when using such models. PMID:27554391

  17. Axon growth inhibition by RhoA/ROCK in the central nervous system

    PubMed Central

    Fujita, Yuki; Yamashita, Toshihide

    2014-01-01

    Rho kinase (ROCK) is a serine/threonine kinase and a downstream target of the small GTPase Rho. The RhoA/ROCK pathway is associated with various neuronal functions such as migration, dendrite development, and axonal extension. Evidence from animal studies reveals that RhoA/ROCK signaling is involved in various central nervous system (CNS) diseases, including optic nerve and spinal cord injuries, stroke, and neurodegenerative diseases. Given that RhoA/ROCK plays a critical role in the pathophysiology of CNS diseases, the development of therapeutic agents targeting this pathway is expected to contribute to the treatment of CNS diseases. The RhoA/ROCK pathway mediates the effects of myelin-associated axon growth inhibitors—Nogo, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), and repulsive guidance molecule (RGM). Blocking RhoA/ROCK signaling can reverse the inhibitory effects of these molecules on axon outgrowth, and promotes axonal sprouting and functional recovery in animal models of CNS injury. To date, several RhoA/ROCK inhibitors have been under development or in clinical trials as therapeutic agents for neurological disorders. In this review, we focus on the RhoA/ROCK signaling pathway in neurological disorders. We also discuss the potential therapeutic approaches of RhoA/ROCK inhibitors for various neurological disorders. PMID:25374504

  18. Serum antibodies against central nervous system proteins in human demyelinating disease.

    PubMed Central

    Newcombe, J; Gahan, S; Cuzner, M L

    1985-01-01

    An immunoblotting technique has been used to screen serum samples from patients with demyelinating disease for antibody directed against central nervous system proteins. Antibodies of the IgM, IgG and IgA class directed against one or more of the particulate fraction proteins tubulin, myelin basic protein, 69 K neurofilament protein, glial fibrillary acidic protein, myelin associated glycoprotein or Wolfgram protein were present in 94, 54 and 47%, respectively, of multiple sclerosis sera examined. IgM antibodies against tubulin and myelin basic protein predominated. A similar antibody spectrum was seen in a significant proportion of sera from patients with optic neuritis, subacute sclerosing panencephalitis and motor neurone disease, in which primary or secondary demyelination occurs. Antibodies of all three classes directed against the 169 K and 220 K neurofilament proteins and against some unidentified proteins of human peripheral nerve, kidney, liver, spleen and skeletal muscle were detected in sera from healthy subjects and patients with neurological disease. Images Fig. 1 Fig. 2 PMID:2579754

  19. A zinc finger protein that regulates oligodendrocyte specification, migration and myelination in zebrafish

    PubMed Central

    Sidik, Harwin; Talbot, William S.

    2015-01-01

    Precise control of oligodendrocyte migration and development is crucial for myelination of axons in the central nervous system (CNS), but important questions remain unanswered about the mechanisms controlling these processes. In a zebrafish screen for myelination mutants, we identified a mutation in zinc finger protein 16-like (znf16l). znf16l mutant larvae have reduced myelin basic protein (mbp) expression and reduced CNS myelin. Marker, time-lapse and ultrastructural studies indicated that oligodendrocyte specification, migration and myelination are disrupted in znf16l mutants. Transgenic studies indicated that znf16l acts autonomously in oligodendrocytes. Expression of Zfp488 from mouse rescued mbp expression in znf16l mutants, indicating that these homologs have overlapping functions. Our results defined the function of a new zinc finger protein with specific function in oligodendrocyte specification, migration and myelination in the developing CNS. PMID:26459222

  20. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury.

    PubMed

    Ousman, Shalina S; Frederick, Ariana; Lim, Erin-Mai F

    2017-01-01

    Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act.

  1. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury

    PubMed Central

    Ousman, Shalina S.; Frederick, Ariana; Lim, Erin-Mai F.

    2017-01-01

    Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act. PMID:28270745

  2. Central nervous system systemic lupus erythematosus mimicking progressive multifocal leucoencephalopathy.

    PubMed Central

    Kaye, B R; Neuwelt, C M; London, S S; DeArmond, S J

    1992-01-01

    The case is reported of a patient with central nervous system systemic lupus erythematosus (SLE) with features of progressive multifocal leucoencephalopathy (PML) seen clinically and by magnetic resonance imaging. A brain biopsy sample showed microinfarcts. The use of magnetic resonance imaging and IgG synthesis rates in evaluating central nervous system lupus, the co-occurrence of SLE and PML, and the differentiation of these entities by magnetic resonance imaging and by histology are considered. Images PMID:1444628

  3. Sarcoidosis of the peripheral nervous system.

    PubMed

    Said, Gérard

    2013-01-01

    Neurological manifestations of sarcoidosis are relatively rare but constitute a treatable cause of central and peripheral neurological manifestations. Regarding the peripheral nervous system, cranial nerves are predominantly affected, and peripheral facial nerve palsy, often bilateral, is the most common neurological manifestation of sarcoidosis. Multifocal peripheral neuropathy is a rare event in sarcoidosis. In some cases, however, peripheral neuropathy is the presenting manifestation and seemingly the only organ affected. Definite diagnosis of sarcoidosis rests ideally on histological demonstration of sarcoid granulomas in tissue biopsy specimens.

  4. Mold Infections of the Central Nervous System

    PubMed Central

    McCarthy, Matthew; Rosengart, Axel; Schuetz, Audrey N.; Kontoyiannis, Dimitrios P.; Walsh, Thomas J.

    2016-01-01

    The recent outbreak of exserohilum rostratum meningitis linked to epidural injections of methylprednisolone acetate has brought renewed attention to mold infections of the central nervous system (CNS).1 Although uncommon, these infections are often devastating and difficult to treat. This focused review of the epidemiologic aspects, clinical characteristics, and treatment of mold infections of the CNS covers a group of common pathogens: aspergillus, fusarium, and scedosporium species, molds in the order Mucorales, and dematiaceous molds. Infections caused by these pathogen groups have distinctive epidemiologic profiles, clinical manifestations, microbiologic characteristics, and therapeutic implications, all of which clinicians should understand. PMID:25006721

  5. Did the ctenophore nervous system evolve independently?

    PubMed

    Ryan, Joseph F

    2014-08-01

    Recent evidence supports the placement of ctenophores as the most distant relative to all other animals. This revised animal tree means that either the ancestor of all animals possessed neurons (and that sponges and placozoans apparently lost them) or that ctenophores developed them independently. Differentiating between these possibilities is important not only from a historical perspective, but also for the interpretation of a wide range of neurobiological results. In this short perspective paper, I review the evidence in support of each scenario and show that the relationship between the nervous system of ctenophores and other animals is an unsolved, yet tractable problem.

  6. Histoplasmosis of the central nervous system.

    PubMed Central

    Tan, V; Wilkins, P; Badve, S; Coppen, M; Lucas, S; Hay, R; Schon, F

    1992-01-01

    Histoplasma capsulatum infection of the central nervous system is extremely rare in the United Kingdom partly because the organism is not endemic. However, because the organism can remain quiescent in the lungs or the adrenal glands for over 40 years before dissemination, it increasingly needs to be considered in unexplained neurological disease particularly in people who lived in endemic areas as children. In this paper a rapidly progressive fatal myelopathy in an English man brought up in India was shown at necropsy to be due to histoplasmosis. The neurological features of this infection are reviewed. Images PMID:1640242

  7. Physiology of the Autonomic Nervous System

    PubMed Central

    2007-01-01

    This manuscript discusses the physiology of the autonomic nervous system (ANS). The following topics are presented: regulation of activity; efferent pathways; sympathetic and parasympathetic divisions; neurotransmitters, their receptors and the termination of their activity; functions of the ANS; and the adrenal medullae. In addition, the application of this material to the practice of pharmacy is of special interest. Two case studies regarding insecticide poisoning and pheochromocytoma are included. The ANS and the accompanying case studies are discussed over 5 lectures and 2 recitation sections during a 2-semester course in Human Physiology. The students are in the first-professional year of the doctor of pharmacy program. PMID:17786266

  8. Occurrence of nervous system involvement in SIRS.

    PubMed

    Marchiori, Paulo E; Lino, Angelina M M; Hirata, Maria T A; Carvalho, Nise B; Brotto, Mario W I; Scaff, Milberto

    2006-12-01

    Systemic inflammatory response syndrome (SIRS) is a medical condition in which the all-organ microcirculation is affected including nervous system. We describe neurological findings in 64 patients with SIRS at Hospital das Clínicas of Sao Paulo University School of Medicine; 45.3% were male and 54.7% female; their age ranged from 16 to 95 years old. SIRS was caused by infection in 68.8% of patients, trauma in 10.9%, burns in 7.8%, and elective surgery in 4.7%. The central nervous system involvement occurred in 56.3% of patients and was characterized as encephalopathy in 75%, seizures in 13.9%, non-epileptic myoclonus in 2.8%, and ischemic stroke in 8.3%. The magnetic resonance imaging, cerebrospinal fluid and electroencephalographic changes were unremarkable in encephalopathic patients. Neuromuscular disorders were diagnosed in 43.7%. Critical ill polyneuropathy was characterized in 57.1%, critical ill myopathy in 32.1%, demyelinating neuropathy in 7.2%, and pure motor neuropathy in 3.6%. Nerve and muscle pathological studies dismissed inflammatory abnormalities. The identification of these conditions has important economic implications and may change the critically ill patients' prognosis.

  9. CNS Myelination Requires Cytoplasmic Dynein Function

    PubMed Central

    Yang, Michele L.; Shin, Jimann; Kearns, Christina A.; Langworthy, Melissa M.; Snell, Heather; Walker, Macie B.; Appel, Bruce

    2014-01-01

    Background Cytoplasmic dynein provides the main motor force for minus-end-directed transport of cargo on microtubules. Within the vertebrate central nervous system (CNS), proliferation, neuronal migration and retrograde axon transport are among the cellular functions known to require dynein. Accordingly, mutations of DYNC1H1, which encodes the heavy chain subunit of cytoplasmic dynein, have been linked to developmental brain malformations and axonal pathologies. Oligodendrocytes, the myelinating glial cell type of the CNS, migrate from their origins to their target axons and subsequently extend multiple long processes that ensheath axons with specialized insulating membrane. These processes are filled with microtubules, which facilitate molecular transport of myelin components. However, whether oligodendrocytes require cytoplasmic dynein to ensheath axons with myelin is not known. Results We identified a mutation of zebrafish dync1h1 in a forward genetic screen that caused a deficit of oligodendrocytes. Using in vivo imaging and gene expression analyses, we additionally found evidence that dync1h1 promotes axon ensheathment and myelin gene expression. Conclusions In addition to its well known roles in axon transport and neuronal migration, cytoplasmic dynein contributes to neural development by promoting myelination. PMID:25488883

  10. TACE (ADAM17) inhibits Schwann cell myelination.

    PubMed

    La Marca, Rosa; Cerri, Federica; Horiuchi, Keisuke; Bachi, Angela; Feltri, M Laura; Wrabetz, Lawrence; Blobel, Carl P; Quattrini, Angelo; Salzer, James L; Taveggia, Carla

    2011-06-12

    Tumor necrosis factor-α-converting enzyme (TACE; also known as ADAM17) is a proteolytic sheddase that is responsible for the cleavage of several membrane-bound molecules. We report that TACE cleaves neuregulin-1 (NRG1) type III in the epidermal growth factor domain, probably inactivating it (as assessed by deficient activation of the phosphatidylinositol-3-OH kinase pathway), and thereby negatively regulating peripheral nervous system (PNS) myelination. Lentivirus-mediated knockdown of TACE in vitro in dorsal root ganglia neurons accelerates the onset of myelination and results in hypermyelination. In agreement, motor neurons of conditional knockout mice lacking TACE specifically in these cells are significantly hypermyelinated, and small-caliber fibers are aberrantly myelinated. Further, reduced TACE activity rescues hypomyelination in NRG1 type III haploinsufficient mice in vivo. We also show that the inhibitory effect of TACE is neuron-autonomous, as Schwann cells lacking TACE elaborate myelin of normal thickness. Thus, TACE is a modulator of NRG1 type III activity and is a negative regulator of myelination in the PNS.

  11. Erbin regulates NRG1 signaling and myelination

    PubMed Central

    Tao, Yanmei; Dai, Penggao; Liu, Yu; Marchetto, Sylvie; Xiong, Wen-Cheng; Borg, Jean-Paul; Mei, Lin

    2009-01-01

    Neuregulin 1 (NRG1) plays a critical role in myelination. However, little is known about regulatory mechanisms of NRG1 signaling. We show here that Erbin, a protein that contains leucine-rich repeats (LRR) and a PSD95-Dlg-Zol (PDZ) domain and that interacts specifically with ErbB2, is necessary for NRG1 signaling and myelination of peripheral nervous system (PNS). In Erbin null mice, myelinated axons were hypomyelinated with reduced expression of P0, a marker of mature myelinating Schwann cells (SCs), whereas unmyelinated axons were aberrantly ensheathed in Remak bundles, with increased numbers of axons in the bundles and in pockets. The morphological deficits were associated with decreased nerve conduction velocity and increased sensory threshold to mechanistic stimulation. These phenotypes were duplicated in erbinΔC/ΔC mice, in which Erbin lost the PDZ domain to interact with ErbB2. Moreover, ErbB2 was reduced at protein levels in both Erbin mutant sciatic nerves, and ErbB2 became unstable and NRG1 signaling compromised when Erbin expression was suppressed. These observations indicate a critical role of Erbin in myelination and identify a regulatory mechanism of NRG1 signaling. Our results suggest that Erbin, via the PDZ domain, binds to and stabilizes ErbB2, which is necessary for NRG1 signaling that has been implicated in tumorigenesis, heart development, and neural function. PMID:19458253

  12. Cardiac autonomic nervous system activity in obesity.

    PubMed

    Liatis, Stavros; Tentolouris, Nikolaos; Katsilambros, Nikolaos

    2004-08-01

    The development of obesity is caused by a disturbance of energy balance, with energy intake exceeding energy expenditure. As the autonomic nervous system (ANS) has a role in the regulation of both these variables, it has become a major focus of investigation in the fields of obesity pathogenesis. The enhanced cardiac sympathetic drive shown in most of the studies in obese persons might be due to an increase in their levels of circulating insulin. The role of leptin needs further investigation with studies in humans. There is a blunted response of the cardiac sympathetic nervous system (SNS) activity in obese subjects after consumption of a carbohydrate-rich meal as well as after insulin administration. This might be due to insulin resistance. It is speculated that increased SNS activity in obesity may contribute to the development of hypertension in genetically susceptible individuals. It is also speculated that the increase in cardiac SNS activity under fasting conditions in obesity may be associated with high cardiovascular morbidity and mortality.

  13. Space exploration, Mars, and the nervous system.

    PubMed

    Kalb, Robert; Solomon, David

    2007-04-01

    When human beings venture back to the moon and then on to Mars in the coming decade or so, we will be riding on the accumulated data and experience from approximately 50 years of manned space exploration. Virtually every organ system functions differently in the absence of gravity, and some of these changes are maladaptive. From a biologic perspective, long duration spaceflight beyond low Earth orbit presents many unique challenges. Astronauts traveling to Mars will live in the absence of gravity for more than 1 year en route and will have to transition between weightlessness and planetary gravitational forces at the beginning, middle, and end of the mission. We discuss some of what is known about the effects of spaceflight on nervous system function, with emphasis on the neuromuscular and vestibular systems because success of a Mars mission will depend on their proper functioning.

  14. Central nervous system toxicity of metallic nanoparticles

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667

  15. Central nervous system regeneration: from leech to opossum.

    PubMed

    Mladinic, M; Muller, K J; Nicholls, J G

    2009-06-15

    A major problem of neurobiology concerns the failure of injured mammalian spinal cord to repair itself. This review summarizes work done on two preparations in which regeneration can occur: the central nervous system of an invertebrate, the leech, and the spinal cord of an immature mammal, the opossum. The aim is to understand cellular and molecular mechanisms that promote and prevent regeneration. In the leech, an individual axon regrows successfully to re-establish connections with its synaptic target, while avoiding other neurons. Functions that were lost are thereby restored. Moreover, pairs of identified neurons become re-connected with appropriate synapses in culture. It has been shown that microglial cells and nitric oxide play key roles in leech CNS regeneration. In the opossum, the neonatal brain and spinal cord are so tiny that they survive well in culture. Fibres grow across spinal cord lesions in neonatal animals and in vitro, but axon regeneration stops abruptly between postnatal days 9 and 12. A comprehensive search has been made in spinal cords that can and cannot regenerate to identify genes and establish their locations. At 9 days, growth-promoting genes, their receptors and key transcription molecules are up-regulated. By contrast at 12 days, growth-inhibitory molecules associated with myelin are prominent. The complete sequence of the opossum genome and new methods for transfecting genes offer ways to determine which molecules promote and which inhibit spinal cord regeneration. These results lead to questions about how basic research on mechanisms of regeneration could be 'translated' into effective therapies for patients with spinal cord injuries.

  16. Central nervous system regeneration: from leech to opossum

    PubMed Central

    Mladinic, M; Muller, K J; Nicholls, J G

    2009-01-01

    A major problem of neurobiology concerns the failure of injured mammalian spinal cord to repair itself. This review summarizes work done on two preparations in which regeneration can occur: the central nervous system of an invertebrate, the leech, and the spinal cord of an immature mammal, the opossum. The aim is to understand cellular and molecular mechanisms that promote and prevent regeneration. In the leech, an individual axon regrows successfully to re-establish connections with its synaptic target, while avoiding other neurons. Functions that were lost are thereby restored. Moreover, pairs of identified neurons become re-connected with appropriate synapses in culture. It has been shown that microglial cells and nitric oxide play key roles in leech CNS regeneration. In the opossum, the neonatal brain and spinal cord are so tiny that they survive well in culture. Fibres grow across spinal cord lesions in neonatal animals and in vitro, but axon regeneration stops abruptly between postnatal days 9 and 12. A comprehensive search has been made in spinal cords that can and cannot regenerate to identify genes and establish their locations. At 9 days, growth-promoting genes, their receptors and key transcription molecules are up-regulated. By contrast at 12 days, growth-inhibitory molecules associated with myelin are prominent. The complete sequence of the opossum genome and new methods for transfecting genes offer ways to determine which molecules promote and which inhibit spinal cord regeneration. These results lead to questions about how basic research on mechanisms of regeneration could be ‘translated’ into effective therapies for patients with spinal cord injuries. PMID:19525562

  17. Gravity sensing in the central nervous system.

    PubMed

    Wiedemann, Meike; Hanke, Wolfgang

    2002-07-01

    For human based space research it is of high importance to understand the influence of gravity on the properties of the central nervous system (CNS). Until now it is not much known about how neuronal tissue can sense gravity. The aim of this study was to find out weather and how the CNS, as a complex system, can percept and react to changes in gravity. Neuronal tissue and especially the CNS fulfils all the requirements for excitable media. Consequently, self-organisation, pattern formation and propagating excitation waves as typical events of excitable media have been observed in such tissue. The spreading depression (SD), an excitation depression wave is the most obvious and best described of these phenomena in the CNS. In our experiments we showed that the properties of the SD and therefore the CNS in its properties as an excitable medium reacts very sensitive to changes in gravity.

  18. The evolution of the serotonergic nervous system.

    PubMed Central

    Hay-Schmidt, A

    2000-01-01

    The pattern of development of the serotonergic nervous system is described from the larvae of ctenophores, platyhelminths, nemerteans, entoprocts, ectoprocts (bryozoans), molluscs, polychaetes, brachiopods, phoronids, echinoderms, enteropneusts and lampreys. The larval brain (apical ganglion) of spiralian protostomes (except nermerteans) generally has three serotonergic neurons and the lateral pair always innervates the ciliary band of the prototroch. In contrast, brachiopods, phoronids, echinoderms and enteropneusts have numerous serotonergic neurons in the apical ganglion from which the ciliary band is innervated. This pattern of development is much like the pattern seen in lamprey embryos and larvae, which leads the author to conclude that the serotonergic raphe system found in vertebrates originated in the larval brain of deuterostome invertebrates. Further, the neural tube of chordates appears to be derived, at least in part, from the ciliary band of deuterostome invertebrate larvae. The evidence shows no sign of a shift in the dorsal ventral orientation within the line leading to the chordates. PMID:10885511

  19. Exercise and the autonomic nervous system.

    PubMed

    Fu, Qi; Levine, Benjamin D

    2013-01-01

    The autonomic nervous system plays a crucial role in the cardiovascular response to acute (dynamic) exercise in animals and humans. During exercise, oxygen uptake is a function of the triple-product of heart rate and stroke volume (i.e., cardiac output) and arterial-mixed venous oxygen difference (the Fick principle). The degree to which each of the variables can increase determines maximal oxygen uptake (V˙O2max). Both "central command" and "the exercise pressor reflex" are important in determining the cardiovascular response and the resetting of the arterial baroreflex during exercise to precisely match systemic oxygen delivery with metabolic demand. In general, patients with autonomic disorders have low levels of V˙O2max, indicating reduced physical fitness and exercise capacity. Moreover, the vast majority of the patients have blunted or abnormal cardiovascular response to exercise, especially during maximal exercise. There is now convincing evidence that some of the protective and therapeutic effects of chronic exercise training are related to the impact on the autonomic nervous system. Additionally, training induced improvement in vascular function, blood volume expansion, cardiac remodeling, insulin resistance and renal-adrenal function may also contribute to the protection and treatment of cardiovascular, metabolic and autonomic disorders. Exercise training also improves mental health, helps to prevent depression, and promotes or maintains positive self-esteem. Moderate-intensity exercise at least 30 minutes per day and at least 5 days per week is recommended for the vast majority of people. Supervised exercise training is preferable to maximize function capacity, and may be particularly important for patients with autonomic disorders.

  20. Environmentally related disorders of the nervous system

    SciTech Connect

    Baker, E.L.; Feldman, R.G.; French, J.G. )

    1990-03-01

    Specific physical and chemical agents found in the workplace and in the general environment are responsible for characteristic pathologic processes within the nervous system. It has been shown that many neurotoxic agents produce a dose-related spectrum of impairment ranging from mild slowing of nerve conducting velocity or prolongation in reaction time to neuropathy and frank encephalopathy. Clinical manifestations are determined by the agent involved, by the dose of exposure, the vulnerability of the cellular target, the ability of the organism to metabolize and excrete the agent, and the ability to repair damage. An occupational history, including evaluation of evidence of specific agents and job history, is a critical component in the clinical management of individuals with suspect neurotoxic disease. Environmentally-induced disorders can be prevented by appropriate environmental controls. Prevention of neurotoxic disease is a complex process requiring continuous involvement of public health agencies and strong scientific research.

  1. The autonomic nervous system and perinatal metabolism.

    PubMed

    Milner, R D; De Gasparo, M

    1981-01-01

    The development of the autonomic nervous system in relation to perinatal metabolism is reviewed with particular attention given to the adipocyte, hepatocyte and the A and B cells of the islets of Langerhans. Adrenergic receptors develop in the B cell independently of normal innervation and by the time of birth, in most species studied, the pancreas, liver and adipose tissue respond appropriately to autonomic signals. Birth is associated with a huge surge in circulating catecholamines which is probably responsible for the early postnatal rise in free fatty acids and glucagon concentrations in plasma. beta-Blocking drugs such as propranolol have an adverse effect on fetal growth and neonatal metabolism, being responsible for hypoglycemia and for impairing the thermogenic response to cold exposure. beta-Mimetic drugs are commonly used to prevent premature labour and may help the fetus in other ways, for example, by improving the placental blood supply and the delivery of nutrients by increasing maternal fat and carbohydrate mobilization.

  2. Autonomic complications following central nervous system injury.

    PubMed

    Baguley, Ian J

    2008-11-01

    Severe sympathetic overactivity occurs in several conditions that are recognized as medical emergencies. Following central nervous system injury, a small proportion of individuals develop severe paroxysmal sympathetic and motor overactivity. These individuals have a high attendant risk of unnecessary secondary morbidity. Following acquired brain injury, the syndrome is known by a number of names including dysautonomia and sympathetic storm. Dysautonomia is currently a diagnosis of exclusion and often goes unrecognized. The evidence base for management is almost entirely anecdotal in nature; there has been little structured or prospective research. In contrast, the evidence base for autonomic dysreflexia following spinal cord injury is much stronger, with level 1 evidence for many treatment interventions. This review presents a current understanding of each condition and suggests simple management protocols. With the marked disparity in the literature for the two conditions, the main focus is on the literature for dysautonomia. The similarity between these two conditions and the other autonomic emergency conditions is discussed.

  3. VIIP: Central Nervous System (CNS) Modeling

    NASA Technical Reports Server (NTRS)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  4. Paraneoplastic disorders of the peripheral nervous system.

    PubMed

    Antoine, Jean-Christophe; Camdessanché, Jean-Philippe

    2013-06-01

    Paraneoplastic neurological syndromes are rare but can affect any part of the peripheral nervous system (PNS) including motor neurons, sensory ganglia, nerve roots, plexuses, cranial and peripheral nerves, and neuromuscular junctions. The type of cancer, lymphoma or solid tumour, is a determinant factor of the underlying mechanism. With solid tumour, antibodies directed to intracellular (anti-Hu or anti-CV2/CRMP5 antibodies) or surface antigens (anti-VGCC,or LGI1 and Caspr2 antibodies) have been identified while with lymphoma, the neuropathy is usually linked to a monoclonal gammopathy. This review discusses the different etiologies and mechanisms of paraneoplastic disorders of the PNS in patients emphasising their evaluation, diagnosis and treatment.

  5. Neuroactive steroids and central nervous system disorders.

    PubMed

    Wang, M; Bäckström, T; Sundström, I; Wahlström, G; Olsson, T; Zhu, D; Johansson, I M; Björn, I; Bixo, M

    2001-01-01

    Steroid hormones are vital for the cell life and affect a number of neuroendocrine and behavioral functions. In contrast to their endocrine actions, certain steroids have been shown to rapidly alter brain excitability and to produce behavioral effects within seconds to minutes. In this article we direct attention to this issue of neuroactive steroids by outlining several aspects of current interest in the field of steroid research. Recent advances in the neurobiology of neuroactive are described along with the impact of advances on drug design for central nervous system (CNS) disorders provoked by neuroactive steriods. The theme was selected in association with the clinical aspects and therapeutical potentials of the neuroactive steroids in CNS disorders. A wide range of topics relating to the neuroactive steroids are outlined, including steroid concentrations in the brain, premenstrual syndrome, estrogen and Alzheimer's disease, side effects of oral contraceptives, mental disorder in menopause, hormone replacement therapy, Catamenial epilepsy, and neuractive steroids in epilepsy treatment.

  6. The sympathetic nervous system in obesity hypertension.

    PubMed

    Lohmeier, Thomas E; Iliescu, Radu

    2013-08-01

    Abundant evidence supports a role of the sympathetic nervous system in the pathogenesis of obesity-related hypertension. However, the nature and temporal progression of mechanisms underlying this sympathetically mediated hypertension are incompletely understood. Recent technological advances allowing direct recordings of renal sympathetic nerve activity (RSNA) in conscious animals, together with direct suppression of RSNA by renal denervation and reflex-mediated global sympathetic inhibition in experimental animals and human subjects have been especially valuable in elucidating these mechanisms. These studies strongly support the concept that increased RSNA is the critical mechanism by which increased central sympathetic outflow initiates and maintains reductions in renal excretory function, causing obesity hypertension. Potential determinants of renal sympathoexcitation and the differential mechanisms mediating the effects of renal-specific versus reflex-mediated, global sympathetic inhibition on renal hemodynamics and cardiac autonomic function are discussed. These differential mechanisms may impact the efficacy of current device-based approaches for hypertension therapy.

  7. Central nervous system nocardiosis in Queensland

    PubMed Central

    Rafiei, Nastaran; Peri, Anna Maria; Righi, Elda; Harris, Patrick; Paterson, David L.

    2016-01-01

    Abstract Nocardia infection of the central nervous system (CNS) is an uncommon but clinically important disease, often occurring in immunocompromised individuals and carrying a high mortality rate. We present 20 cases of microbiologically proven CNS nocardiosis diagnosed in Queensland from 1997 to 2015 and review the literature from 1997 to 2016. Over 50% of cases occurred in immunocompromised individuals, with corticosteroid use posing a particularly significant risk factor. Nine (45%) patients were immunocompetent and 3 had no comorbidities at time of diagnosis. Nocardia farcinica was the most frequently isolated species (8/20) and resistance to trimethoprim–sulfamethoxazole (TMP-SMX) was found in 2 isolates. Overall, 35% of our patients died within 1 year, with the majority of deaths occurring in the first month following diagnosis. Interestingly, of the 7 deaths occurring at 1 year, 6 were attributed to N farcinica with the seventh isolate being unspeciated, suggesting the virulence of the N farcinica strain. PMID:27861348

  8. Calcium pumps in the central nervous system.

    PubMed

    Mata, Ana M; Sepúlveda, M Rosario

    2005-09-01

    Two families of Ca2+ transport ATPases are involved in the maintenance of Ca2+ homeostasis in the nervous system, the plasma membrane Ca2+-ATPase that pumps Ca2+ to the extracellular medium and the intracellular sarco/endoplasmic reticulum Ca2+-ATPase that transports Ca2+ from the cytosol to the endoplasmic reticulum. Both types of calcium pumps show precise regulatory properties and they are localized in specific subcellular regions. In this review, we describe the functional and regulatory properties of both families of calcium pumps, their distribution in nerve cells, and their involvement in neurological disorders. The functional characterization of neuronal calcium pumps is very important in order to understand the biochemical processes involved in the maintenance of intracellular calcium in synaptic terminals.

  9. [Idiopathic hypersomnia of the central nervous system].

    PubMed

    Bové-Ribé, A

    Idiopathic hypersomnia of the central nervous system is a cause of excessive diurnal somnolence which affects 5-10% of the patients who attend sleep clinics for this reason. We describe three male patients who consulted for excessive diurnal somnolence. Nocturnal polysomnographic studies followed by tests for multiple latencies of sleep were done. In all cases there was confirmation of lengthening of the time of nocturnal sleep with normal phases of sleep and an increase in the number of sleep spindles in phase II. Similarly there was an average latency of sleep of less than 10 minutes and fewer than two phases of REM in the multiple latencies test. All patients improved with drugs stimulating vigil, two of them with centramine and the third with methilphenidate. We consider the clinical data the polysomnographic criteria which help to establish the diagnosis.

  10. [Viral infections of human central nervous system].

    PubMed

    Agut, Henri

    2016-01-01

    The viruses that can infect the central nervous system of humans are numerous and form a heterogeneous group with respect to their structural, functional and epidemiological properties. The pathophysiological mechanisms leading to associated neurological diseases, mainly meningitis and encephalitis, also are complex and often intertwined. Overall, neurological clinical symptoms correspond either to acute viral diseases associated with primary infections or to acute, subacute or chronic diseases associated with persistent viral infections. The frequent severity of the clinical situation requires in all cases the practice of virological diagnosis for which the PCR techniques applied to cerebrospinal fluid samples occupy a prominent place. The severity of clinical manifestations justifies the use of prophylactic vaccination when available and antiviral treatment as soon as the causative virus is identified or suspected.

  11. Adenosine receptors and the central nervous system.

    PubMed

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.

  12. Sialyltransferase regulates nervous system function in Drosophila

    PubMed Central

    Repnikova, Elena; Koles, Kate; Nakamura, Michiko; Pitts, Jared; Li, Haiwen; Ambavane, Apoorva; Zoran, Mark J.; Panin, Vladislav M.

    2012-01-01

    In vertebrates, sialylated glycans participate in a wide range of biological processes and affect nervous system’s development and function. While the complexity of glycosylation and the functional redundancy among sialyltransferases provide obstacles for revealing biological roles of sialylation in mammals, Drosophila possesses a sole vertebrate-type sialyltransferase, DSiaT, with significant homology to its mammalian counterparts, suggesting that Drosophila could be a suitable model to investigate the function of sialylation. To explore this possibility and investigate the role of sialylation in Drosophila, we inactivated DSiaT in vivo by gene targeting and analyzed phenotypes of DSiaT mutants using a combination of behavioural, immunolabeling, electrophysiological and pharmacological approaches. Our experiments demonstrated that DSiaT expression is restricted to a subset of CNS neurons throughout development. We found that DSiaT mutations result in significantly decreased life span, locomotor abnormalities, temperature-sensitive paralysis and defects of neuromuscular junctions. Our results indicate that DSiaT regulates neuronal excitability and affects the function of a voltage-gated sodium channel. Finally, we showed that sialyltransferase activity is required for DSiaT function in vivo, which suggests that DSiaT mutant phenotypes result from a defect in sialylation of N-glycans. This work provided the first evidence that sialylation has an important biological function in protostomes, while also revealing a novel, nervous system-specific function of α2,6 sialylation. Thus, our data shed light on one of the most ancient functions of sialic acids in metazoan organisms and suggest a possibility that this function is evolutionarily conserved between flies and mammals. PMID:20445073

  13. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    SciTech Connect

    Knoll, W.; Peters, J.; Kursula, P.; Gerelli, Y.; Natali, F.

    2014-11-28

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  14. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    NASA Astrophysics Data System (ADS)

    Knoll, W.; Peters, J.; Kursula, P.; Gerelli, Y.; Natali, F.

    2014-11-01

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  15. Production and Use of Lentivirus to Selectively Transduce Primary Oligodendrocyte Precursor Cells for In Vitro Myelination Assays

    PubMed Central

    Peckham, Haley M.; Ferner, Anita H.; Giuffrida, Lauren; Murray, Simon S.; Xiao, Junhua

    2015-01-01

    Myelination is a complex process that involves both neurons and the myelin forming glial cells, oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS). We use an in vitro myelination assay, an established model for studying CNS myelination in vitro. To do this, oligodendrocyte precursor cells (OPCs) are added to the purified primary rodent dorsal root ganglion (DRG) neurons to form myelinating co-cultures. In order to specifically interrogate the roles that particular proteins expressed by oligodendrocytes exert upon myelination we have developed protocols that selectively transduce OPCs using the lentivirus overexpressing wild type, constitutively active or dominant negative proteins before being seeded onto the DRG neurons. This allows us to specifically interrogate the roles of these oligodendroglial proteins in regulating myelination. The protocols can also be applied in the study of other cell types, thus providing an approach that allows selective manipulation of proteins expressed by a desired cell type, such as oligodendrocytes for the targeted study of signaling and compensation mechanisms. In conclusion, combining the in vitro myelination assay with lentiviral infected OPCs provides a strategic tool for the analysis of molecular mechanisms involved in myelination. PMID:25650722

  16. Rab27a/Slp2-a complex is involved in Schwann cell myelination

    PubMed Central

    Su, Wen-feng; Gu, Yun; Wei, Zhong-ya; Shen, Yun-tian; Jin, Zi-han; Yuan, Ying; Gu, Xiao-song; Chen, Gang

    2016-01-01

    Myelination of Schwann cells in the peripheral nervous system is an intricate process involving myelin protein trafficking. Recently, the role and mechanism of the endosomal/lysosomal system in myelin formation were emphasized. Our previous results demonstrated that a small GTPase Rab27a regulates lysosomal exocytosis and myelin protein trafficking in Schwann cells. In this present study, we established a dorsal root ganglion (DRG) neuron and Schwann cell co-culture model to identify the signals associated with Rab27a during myelination. First, Slp2-a, as the Rab27a effector, was endogenously expressed in Schwann cells. Second, Rab27a expression significantly increased during Schwann cell myelination. Finally, Rab27a and Slp2-a silencing in Schwann cells not only reduced myelin protein expression, but also impaired formation of myelin-like membranes in DRG neuron and Schwann cell co-cultures. Our findings suggest that the Rab27a/Slp2-a complex affects Schwann cell myelination in vitro. PMID:28123429

  17. Molecular Disruptions of the Panglial Syncytium Block Potassium Siphoning and Axonal Saltatory Conduction: Pertinence to Neuromyelitis Optica and other Demyelinating Diseases of the Central Nervous System

    PubMed Central

    Rash, John E.

    2009-01-01

    The panglial syncytium maintains ionic conditions required for normal neuronal electrical activity in the central nervous system (CNS). Vital among these homeostatic functions is “potassium siphoning”, a process originally proposed to explain astrocytic sequestration and long-distance disposal of K+ released from unmyelinated axons during each action potential. Fundamentally different, more efficient processes are required in myelinated axons, where axonal K+ efflux occurs exclusively beneath and enclosed within the myelin sheath, precluding direct sequestration of K+ by nearby astrocytes. Molecular mechanisms for entry of excess K+ and obligatorily-associated osmotic water from axons into innermost myelin are not well characterized, whereas at the output end, axonally-derived K+ and associated osmotic water are known to be expelled by Kir4.1 and aquaporin-4 channels concentrated in astrocyte endfeet that surround capillaries and that form the glia limitans. Between myelin (input end) and astrocyte endfeet (output end) is a vast network of astrocyte “intermediaries” that are strongly inter-linked, including with myelin, by abundant gap junctions that disperse excess K+ and water throughout the panglial syncytium, thereby greatly reducing K+-induced osmotic swelling of myelin. Here, I review original reports that established the concept of potassium siphoning in unmyelinated CNS axons, summarize recent revolutions in our understanding of K+ efflux during axonal saltatory conduction, then describe additional components required by myelinated axons for a newly-described process of voltage-augmented “dynamic” potassium siphoning. If any of several molecular components of the panglial syncytium are compromised, K+ siphoning is blocked, myelin is destroyed, and axonal saltatory conduction ceases. Thus, a common thread linking several CNS demyelinating diseases is the disruption of potassium siphoning/water transport within the panglial syncytium. Continued

  18. Central nervous system manifestations of neonatal lupus: a systematic review.

    PubMed

    Chen, C C; Lin, K-L; Chen, C-L; Wong, A May-Kuen; Huang, J-L

    2013-12-01

    Neonatal lupus is a rare and acquired autoimmune disease. Central nervous system abnormalities are potential manifestations in neonatal lupus. Through a systematic literature review, we analyzed the clinical features of previously reported neonatal lupus cases where central nervous system abnormalities had been identified. Most reported neonatal lupus patients with central nervous system involvement were neuroimaging-determined and asymptomatic. Only seven neonatal lupus cases were identified as having a symptomatic central nervous system abnormality which caused physical disability or required neurosurgery. A high percentage of these neurosymptomatic neonatal lupus patients had experienced a transient cutaneous skin rash and had no maternal history of autoimmune disease before pregnancy.

  19. Embryonic development of glial cells and myelin in the shark, Chiloscyllium punctatum

    PubMed Central

    Rotenstein, Lisa; Milanes, Anthony; Juarez, Marilyn; Reyes, Michelle; de Bellard, Maria Elena

    2009-01-01

    Glial cells are responsible for a wide range of functions in the nervous system of vertebrates. The myelinated nervous systems of extant elasmobranchs have the longest independent history of all gnathostomes. Much is known about the development of glia in other jawed vertebrates, but research in elasmobranchs is just beginning to reveal the mechanisms guiding neurodevelopment. This study examines the development of glial cells in the bamboo shark, Chiloscyllium punctatum, by identifying the expression pattern of several classic glial and myelin proteins. We show for the first time that glial development in the bamboo shark (Ch. punctamum) embryo follows closely the one observed in other vertebrates and that neural development seems to proceed at a faster rate in the PNS than in the CNS. In addition, we observed more myelinated tracts in the PNS than in the CNS, and as early as stage 32, suggesting that the ontogeny of myelin in sharks is closer to osteichthyans than agnathans. PMID:19733690

  20. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination

    PubMed Central

    Yang, Hyun-Jeong; Vainshtein, Anna; Maik-Rachline, Galia; Peles, Elior

    2016-01-01

    While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes. PMID:26961174

  1. Ex vivo and in vivo coherent Raman imaging of the peripheral and central nervous system

    NASA Astrophysics Data System (ADS)

    Huff, Terry Brandon

    A hallmark of nervous system disorders is damage or degradation of the myelin sheath. Unraveling the mechanisms underlying myelin degeneration and repair represent one of the great challenges in medicine. This thesis work details the development and utilization of advanced optical imaging methods to gain insight into the structure and function of myelin in both healthy and diseased states in the in vivo environment. This first part of this thesis discusses ex vivo studies of the effects of high-frequency stimulation of spinal tissues on the structure of the node of Ranvier as investigated by coherent anti-Stokes Raman scattering (CARS) imaging (manuscript submitted to Journal of Neurosciece). Reversible paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation, beginning minutes after the onset and continuing for up to 10 min after stimulation was ceased. A mechanistic study revealed a Ca2+ dependent pathway: high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down. Also, the construction of dual-scanning CARS microscope for large area mapping of CNS tissues is detailed (Optics Express, 2008, 16:19396-193409). A confocal scanning head equipped with a rotating polygon mirror provides high speed, high resolution imaging and is coupled with a motorized sample stage to generate high-resolution large-area images of mouse brain coronal section and guinea pig spinal cord cross section. The polygon mirror decreases the mosaic acquisition time significantly without reducing the resolution of individual images. The ex vivo studies are then extended to in vivo imaging of mouse sciatic nerve tissue by CARS and second harmonic generation (SHG) imaging (Journal of Microscopy, 2007, 225: 175-182). Following a minimally invasive surgery to open the skin, CARS imaging of myelinated axons and SHG imaging of the

  2. Primary central nervous system posttransplant lymphoproliferative disorders.

    PubMed

    Castellano-Sanchez, Amilcar A; Li, Shiyong; Qian, Jiang; Lagoo, Anand; Weir, Edward; Brat, Daniel J

    2004-02-01

    Posttransplant lymphoproliferative disorders (PTLDs) represent a spectrum ranging from Epstein-Barr virus (EBV)-driven polyclonal lymphoid proliferations to EBV+ or EBV- malignant lymphomas. Central nervous system (CNS) PTLDs have not been characterized fully. We reviewed the clinical, radiologic, and pathologic features of 12 primary CNS PTLDs to define them more precisely. Patients included 10 males and 2 females (median age, 43.4 years) who were recipients of kidney (n = 5), liver (n = 2), heart (n = 2), peripheral blood stem cells (n = 2), or bone marrow (n = 1). All received immunosuppressive therapy. CNS symptoms developed 3 to 131 months (mean, 31 months) after transplantation. By neuroimaging, most showed multiple (3 to 9) intra-axial, contrast-enhancing lesions. Histologic sections showed marked expansion of perivascular spaces by large, cytologically malignant lymphoid cells that were CD45+, CD20+, EBV+ and showed light chain restriction or immunoglobulin gene rearrangement. In distinction to PTLDs in other organ systems, CNS PTLDs were uniformly high-grade lymphomas that fulfilled the World Health Organization criteria for monomorphic PTLDs. Extremely short survival periods were noted for each CNS PTLD that followed peripheral blood stem cell transplantation. Survival of others with CNS PTLD varied; some lived more than 2 years.

  3. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells

    PubMed Central

    Liu, Xiaoyu; Zhao, Yahong; Peng, Su; Zhang, Shuqiang; Wang, Meihong; Chen, Yeyue; Zhang, Shan; Yang, Yumin; Sun, Cheng

    2016-01-01

    Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process. PMID:27491681

  4. Marchi-positive myelinoid bodies at the transition between the central and the peripheral nervous system in some vertebrates.

    PubMed Central

    Corneliuson, O; Berthold, C H; Fabricius, C; Gatzinsky, K; Carlstedt, T

    1989-01-01

    The CNS-PNS (central nervous system-peripheral nervous system) transitional region of cranial and spinal nerve roots in some vertebrate species was analysed with respect to the occurrence and the distribution of myelinoid Marchi-positive bodies. Both cranial and spinal nerve roots contained more Marchi-positive bodies in their CNS than in their PNS segments. An accumulation of Marchi-positive bodies was usually noted just central to the CNS-PNS borderline. Comparisons between calibre spectra and Marchi index in the cat revealed a particularly high number of Marchi-positive bodies in nerve roots with a high content of myelinated fibres with diameters greater than or equal to 5 microns. Marchi-positive bodies were absent in CNS tissue lacking myelinated nerve fibres. CNS borderline internodes measuring between 200 and 300 microns in length were noted in fibres as thick as 15 microns in feline S1 ventral and dorsal roots. The general picture was similar in all analysed species. Noteworthy however, was the small difference in number of Marchi-positive bodies between CNS and PNS tissue in Xenopus. The chicken contained many myelinoid bodies of similar size and texture as the Marchi-positive bodies but without the Marchi-positive staining properties. The results show that normally occurring Marchi-positive bodies in the CNS are more numerous along paranodal segments than along mid-internodal segments of myelinated nerve fibres and thus support the hypothesis that Marchi-positive bodies are preferentially derived from paranodal myelin. Images Fig. 3 Fig. 4 PMID:2558098

  5. Myelin Recovery in Multiple Sclerosis: The Challenge of Remyelination

    PubMed Central

    Podbielska, Maria; Banik, Naren L.; Kurowska, Ewa; Hogan, Edward L.

    2013-01-01

    Multiple sclerosis (MS) is the most common demyelinating and an autoimmune disease of the central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. T cell subsets (Th1, Th2, Th17, CD8+, NKT, CD4+CD25+ T regulatory cells) and B cells are involved in this disorder, thus new MS therapies seek damage prevention by resetting multiple components of the immune system. The currently approved therapies are immunoregulatory and reduce the number and rate of lesion formation but are only partially effective. This review summarizes current understanding of the processes at issue: myelination, demyelination and remyelination—with emphasis upon myelin composition/architecture and oligodendrocyte maturation and differentiation. The translational options target oligodendrocyte protection and myelin repair in animal models and assess their relevance in human. Remyelination may be enhanced by signals that promote myelin formation and repair. The crucial question of why remyelination fails is approached is several ways by examining the role in remyelination of available MS medications and avenues being actively pursued to promote remyelination including: (i) cytokine-based immune-intervention (targeting calpain inhibition), (ii) antigen-based immunomodulation (targeting glycolipid-reactive iNKT cells and sphingoid mediated inflammation) and (iii) recombinant monoclonal antibodies-induced remyelination. PMID:24961530

  6. Time Perception Mechanisms at Central Nervous System

    PubMed Central

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S.; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks. PMID:27127597

  7. Bilastine and the central nervous system.

    PubMed

    Montoro, J; Mullol, J; Dávila, I; Ferrer, M; Sastre, J; Bartra, J; Jáuregui, I; del Cuvillo, A; Valero, A

    2011-01-01

    Antihistamines have been classifed as first or second generation drugs, according to their pharmacokinetic properties, chemical structure and adverse effects. The adverse effects of antihistamines upon the central nervous system (CNS) depend upon their capacity to cross the blood-brain barrier (BBB) and bind to the central H1 receptors (RH1). This in turn depends on the lipophilicity of the drug molecule, its molecular weight (MW), and affinity for P-glycoprotein (P-gp) (CNS xenobiotic substances extractor protein). First generation antihistamines show scant affinity for P-gp, unlike the second generation molecules which are regarded as P-gp substrates. Histamine in the brain is implicated in many functions (waking-sleep cycle, attention, memory and learning, and the regulation of appetite), with numerous and complex interactions with different types of receptors in different brain areas. Bilastine is a new H1 antihistamine that proves to be effective in treating allergic rhinoconjunctivitis (seasonal and perennial) and urticaria. The imaging studies made, as well as the objective psychomotor tests and subjective assessment of drowsiness, indicate the absence of bilastine action upon the CNS. This fact, and the lack of interaction with benzodiazepines and alcohol, define bilastine as a clinically promising drug with a good safety profile as regards adverse effects upon the CNS.

  8. Central nervous system tumors in Mexican children.

    PubMed

    De la Torre Mondragón, L; Ridaura Sanz, C; Reyes Mujica, M; Rueda Franco, F

    1993-08-01

    Five hundred and seventy primary central nervous system (CNS) tumors from the Department of Pathology at the National Institute of Pediatrics in Mexico City, collected from 1970 to 1989, were histologically reclassified in order to find out their relative incidence as well as their outstanding features. With this, we could establish a frame of reference for our local population, contributing to the epidemiological analysis of these entities. All the tumors were examined independently by two pathologists (C.R. and M.R.), using the classification of Rorke et al. Histological type, patient age and sex, and tumor location were analyzed. CNS tumors were the secondmost frequently encountered solid tumors, after lymphomas, and were increasing in incidence at a rate of 2.2 annually. Children in the age group 0-9 years were most often affected, and there was a predominance of male patients. Astrocytoma and medulloblastoma were the most common tumor types. The infratentorial region was the most frequent tumor location in the 2- to 9-year age group. By contrast, in the under 2-year-olds a supratentorial location was more frequent, and the incidence of germ cell tumors was proportionally high. In general, some histological types seemed to be associated with particular age groups. Although we found primitive neuroectodermal tumors to be the fifth most common at all ages (except for medulloblastoma), many other authors do not report a similar finding.

  9. Environmental effects on the central nervous system.

    PubMed Central

    Paulson, G W

    1977-01-01

    The central nervous system (CNS) is designed to respond to the environment and is peculiarly vulnerable to many of the influences found in the environment. Utilizing an anatomical classification (cortex, cerebellum, peripheral nerves) major toxins and stresses are reviewed with selections from recent references. Selective vulnerability of certain areas to particular toxins is apparent at all levels of the CNS, although the amount of damage produced by any noxious agent depends on the age and genetic substrate of the subject. It is apparent that the effects of certain well known and long respected environmental toxins such as lead, mercury, etc., deserve continued surveillance. In addition, the overwhelming impact on the CNS of social damages such as trauma, alcohol, and tobacco cannot be ignored by environmentalists. The effect of the hospital and therapeutic environment has become apparent in view of increased awareness of iatrogenic disorders. The need for particular laboratory tests, for example, examination of CSF and nerve conduction toxicity studies, is suggested. Epidemics such as the recent solvent neuropathies suggest a need for continued animal studies that are chronic, as well as acute evaluations when predicting the potential toxic effects of industrial compounds. PMID:202447

  10. Plants and the central nervous system.

    PubMed

    Carlini, E A

    2003-06-01

    This review article draws the attention to the many species of plants possessing activity on the central nervous system (CNS). In fact, they cover the whole spectrum of central activity such as psychoanaleptic, psycholeptic and psychodysleptic effects, and several of these plants are currently used in therapeutics to treat human ailments. Among the psychoanaleptic (stimulant) plants, those utilized by human beings to reduce body weight [Ephedra spp. (Ma Huang), Paullinia spp. (guaraná), Catha edulis Forssk. (khat)] and plants used to improve general health conditions (plant adaptogens) were scrutinized. Many species of hallucinogenic (psychodysleptic) plants are used by humans throughout the world to achieve states of mind distortions; among those, a few have been used for therapeutic purposes, such as Cannabis sativa L., Tabernanthe iboga Baill. and the mixture of Psychotria viridis Ruiz and Pav. and Banisteriopsis caapi (Spruce ex Griseb.) C.V. Morton. Plants showing central psycholeptic activities, such as analgesic or anxiolytic actions (Passiflora incarnata L., Valeriana spp. and Piper methysticum G. Forst.), were also analysed.Finally, the use of crude or semipurified extracts of such plants instead of the active substances seemingly responsible for their therapeutic effect is discussed.

  11. Sympathetic nervous system behavior in human obesity.

    PubMed

    Davy, Kevin P; Orr, Jeb S

    2009-02-01

    The sympathetic nervous system (SNS) plays an essential role in the regulation of metabolic and cardiovascular homeostasis. Low SNS activity has been suggested to be a risk factor for weight gain and obesity development. In contrast, SNS activation is characteristic of a number of metabolic and cardiovascular diseases that occur more frequently in obese individuals. Until recently, the relation between obesity and SNS behavior has been controversial because previous approaches for assessing SNS activity in humans have produced inconsistent findings. Beginning in the early 1990s, many studies using state of the art neurochemical and neurophysiological techniques have provided important insight. The purpose of the present review is to provide an overview of our current understanding of the region specific alterations in SNS behavior in human obesity. We will discuss findings from our own laboratory which implicate visceral fat as an important depot linking obesity with skeletal muscle SNS activation. The influence of weight change on SNS behavior and the potential mechanisms and consequences of region specific SNS activation in obesity will also be considered.

  12. [Microbiological diagnosis of central nervous system infections].

    PubMed

    Codina, María Gema; de Cueto, Marina; Vicente, Diego; Echevarría, Juan Emilio; Prats, Guillem

    2011-02-01

    The infections of the central nervous system are associated with high morbidity and mortality. Several agents including bacteria, viruses, fungi and protozoa can invade the CNS. They are different clinical presentations of these infections: meningitis, encephalitis, brain and epidural abscesses and cerebrospinal fluid shunt infections. The clinical course could be acute, subacute or chronic depending on the infecting agent and the location of the infection. The travelling entails a risk of infection by exotic agents of meningo-encephalitis such as robovirus and arbovirus, which require new diagnostic and therapeutic methods. Despite some progress in the treatment of the CNS infections, the mortality is usually high. Rapid diagnosis and emergent interventions are necessary to improve the outcome of those patients, and early and targeted antimicrobial treatment and support measures are of paramount importance for a favourable clinical patient outcome. The antigen detection techniques and particularly those of genetic diagnosis by amplification (PCR and others) have advanced, and improved the diagnostic of those diseases. In this paper the clinical signs and symptoms and diagnostic procedures of CNS infections are presented.

  13. Early animal evolution and the origins of nervous systems.

    PubMed

    Budd, Graham E

    2015-12-19

    Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour.

  14. Early animal evolution and the origins of nervous systems

    PubMed Central

    Budd, Graham E.

    2015-01-01

    Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour. PMID:26554037

  15. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair

    PubMed Central

    Domingues, Helena S.; Portugal, Camila C.; Socodato, Renato; Relvas, João B.

    2016-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair. PMID:27551677

  16. [Primary central nervous system lymphoma: report of one case].

    PubMed

    Zhao, Peng; Su, Rong-Gang

    2002-04-01

    One case of primary central nervous system lymphoma was reported. The patient received comprehensive therapy, mainly the surgical treatment, with the survival time 12 months, and local recurrence was considered as the major cause of death. The pathology, imagine examination, diagnosis and treatment of primary central nervous system lymphoma were discussed.

  17. Extraversion, Neuroticism and Strength of the Nervous System

    ERIC Educational Resources Information Center

    Frigon, Jean-Yves

    1976-01-01

    The hypothesized identity of the dimensions of extraversion-introversion and strength of the nervous system was tested on four groups of nine subjects (neurotic extraverts, stable extraverts, neurotic introverts, stable introverts). Strength of the subjects' nervous system was estimated using the electroencephalographic (EEG) variant of extinction…

  18. A gene catalogue of the amphioxus nervous system

    PubMed Central

    Benito-Gutiérrez, Èlia

    2006-01-01

    The elaboration of extremely complex nervous systems is a major success of evolution. However, at the dawn of the post-genomic era, few data have helped yet to unravel how a nervous system develops and evolves to complexity. On the evolutionary road to vertebrates, amphioxus occupies a key position to tackle this exciting issue. Its “simple” nervous system basically consists of a dorsal nerve cord and a diffuse net of peripheral neurons, which contrasts greatly with the complexity of vertebrate nervous systems. Notwithstanding, increasing data on gene expression has faced up this simplicity by revealing a mounting level of cryptic complexity, with unexpected levels of neuronal diversity, organisation and regionalisation of the central and peripheral nervous systems. Furthermore, recent gene expression data also point to the high neurogenic potential of the epidermis of amphioxus, suggestive of a skin-brain track for the evolution of the vertebrate nervous system. Here I attempt to catalogue and synthesise current gene expression data in the amphioxus nervous system. From this global point of view, I suggest scenarios for the evolutionary origin of complex features in the vertebrate nervous system, with special emphasis on the evolutionary origin of placodes and neural crest, and postulate a pre-patterned migratory pathway of cells, which, in the epidermis, may represent an intermediate state towards the deployment of one of the most striking innovative features of vertebrates: the neural crest and its derivatives. PMID:16763675

  19. Brain iron accumulation affects myelin-related molecular systems implicated in a rare neurogenetic disease family with neuropsychiatric features

    PubMed Central

    Heidari, M; Johnstone, D M; Bassett, B; Graham, R M; Chua, A C G; House, M J; Collingwood, J F; Bettencourt, C; Houlden, H; Ryten, M; Olynyk, J K; Trinder, D; Milward, E A

    2016-01-01

    The ‘neurodegeneration with brain iron accumulation' (NBIA) disease family entails movement or cognitive impairment, often with psychiatric features. To understand how iron loading affects the brain, we studied mice with disruption of two iron regulatory genes, hemochromatosis (Hfe) and transferrin receptor 2 (Tfr2). Inductively coupled plasma atomic emission spectroscopy demonstrated increased iron in the Hfe−/− × Tfr2mut brain (P=0.002, n ≥5/group), primarily localized by Perls' staining to myelinated structures. Western immunoblotting showed increases of the iron storage protein ferritin light polypeptide and microarray and real-time reverse transcription-PCR revealed decreased transcript levels (P<0.04, n ≥5/group) for five other NBIA genes, phospholipase A2 group VI, fatty acid 2-hydroxylase, ceruloplasmin, chromosome 19 open reading frame 12 and ATPase type 13A2. Apart from the ferroxidase ceruloplasmin, all are involved in myelin homeostasis; 16 other myelin-related genes also showed reduced expression (P<0.05), although gross myelin structure and integrity appear unaffected (P>0.05). Overlap (P<0.0001) of differentially expressed genes in Hfe−/− × Tfr2mut brain with human gene co-expression networks suggests iron loading influences expression of NBIA-related and myelin-related genes co-expressed in normal human basal ganglia. There was overlap (P<0.0001) of genes differentially expressed in Hfe−/− × Tfr2mut brain and post-mortem NBIA basal ganglia. Hfe−/− × Tfr2mut mice were hyperactive (P<0.0112) without apparent cognitive impairment by IntelliCage testing (P>0.05). These results implicate myelin-related systems involved in NBIA neuropathogenesis in early responses to iron loading. This may contribute to behavioral symptoms in NBIA and hemochromatosis and is relevant to patients with abnormal iron status and psychiatric disorders involving myelin abnormalities or resistant to conventional treatments. PMID:26728570

  20. Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination

    PubMed Central

    Sheean, Maria E.; McShane, Erik; Cheret, Cyril; Walcher, Jan; Müller, Thomas; Wulf-Goldenberg, Annika; Hoelper, Soraya; Garratt, Alistair N.; Krüger, Markus; Rajewsky, Klaus; Meijer, Dies; Birchmeier, Walter; Lewin, Gary R.; Selbach, Matthias; Birchmeier, Carmen

    2014-01-01

    Myelination depends on the synthesis of large amounts of myelin transcripts and proteins and is controlled by Nrg1/ErbB/Shp2 signaling. We developed a novel pulse labeling strategy based on stable isotope labeling with amino acids in cell culture (SILAC) to measure the dynamics of myelin protein production in mice. We found that protein synthesis is dampened in the maturing postnatal peripheral nervous system, and myelination then slows down. Remarkably, sustained activation of MAPK signaling by expression of the Mek1DD allele in mice overcomes the signals that end myelination, resulting in continuous myelin growth. MAPK activation leads to minor changes in transcript levels but massively up-regulates protein production. Pharmacological interference in vivo demonstrates that the effects of activated MAPK signaling on translation are mediated by mTOR-independent mechanisms but in part also by mTOR-dependent mechanisms. Previous work demonstrated that loss of ErbB3/Shp2 signaling impairs Schwann cell development and disrupts the myelination program. We found that activated MAPK signaling strikingly compensates for the absence of ErbB3 or Shp2 during Schwann cell development and myelination. PMID:24493648

  1. Melatonin Metabolism in the Central Nervous System

    PubMed Central

    Hardeland, Rüdiger

    2010-01-01

    The metabolism of melatonin in the central nervous system is of interest for several reasons. Melatonin enters the brain either via the pineal recess or by uptake from the blood. It has been assumed to be also formed in some brain areas. Neuroprotection by melatonin has been demonstrated in numerous model systems, and various attempts have been undertaken to counteract neurodegeneration by melatonin treatment. Several concurrent pathways lead to different products. Cytochrome P450 subforms have been demonstrated in the brain. They either demethylate melatonin to N-acetylserotonin, or produce 6-hydroxymelatonin, which is mostly sulfated already in the CNS. Melatonin is deacetylated, at least in pineal gland and retina, to 5-methoxytryptamine. N1-acetyl-N2-formyl-5-methoxykynuramine is formed by pyrrole-ring cleavage, by myeloperoxidase, indoleamine 2,3-dioxygenase and various non-enzymatic oxidants. Its product, N1-acetyl-5-methoxykynuramine, is of interest as a scavenger of reactive oxygen and nitrogen species, mitochondrial modulator, downregulator of cyclooxygenase-2, inhibitor of cyclooxygenase, neuronal and inducible NO synthases. Contrary to other nitrosated aromates, the nitrosated kynuramine metabolite, 3-acetamidomethyl-6-methoxycinnolinone, does not re-donate NO. Various other products are formed from melatonin and its metabolites by interaction with reactive oxygen and nitrogen species. The relative contribution of the various pathways to melatonin catabolism seems to be influenced by microglia activation, oxidative stress and brain levels of melatonin, which may be strongly changed in experiments on neuroprotection. Many of the melatonin metabolites, which may appear in elevated concentrations after melatonin administration, possess biological or pharmacological properties, including N-acetylserotonin, 5-methoxytryptamine and some of its derivatives, and especially the 5-methoxylated kynuramines. PMID:21358968

  2. GJB1-associated X-linked Charcot-Marie-Tooth disease, a disorder affecting the central and peripheral nervous systems.

    PubMed

    Abrams, Charles K; Freidin, Mona

    2015-06-01

    Charcot-Marie-Tooth disease (CMT) is a group of inherited diseases characterized by exclusive or predominant involvement of the peripheral nervous system. Mutations in GJB1, the gene encoding Connexin 32 (Cx32), a gap-junction channel forming protein, cause the most common X-linked form of CMT, CMT1X. Cx32 is expressed in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems, respectively. Thus, patients with CMT1X have both central and peripheral nervous system manifestations. Study of the genetics of CMT1X and the phenotypes of patients with this disorder suggest that the peripheral manifestations of CMT1X are likely to be due to loss of function, while in the CNS gain of function may contribute. Mice with targeted ablation of Gjb1 develop a peripheral neuropathy similar to that seen in patients with CMT1X, supporting loss of function as a mechanism for the peripheral manifestations of this disorder. Possible roles for Cx32 include the establishment of a reflexive gap junction pathway in the peripheral and central nervous system and of a panglial syncitium in the central nervous system.

  3. Kif13b Regulates PNS and CNS Myelination through the Dlg1 Scaffold

    PubMed Central

    Noseda, Roberta; Guerrero-Valero, Marta; Alberizzi, Valeria; Previtali, Stefano C.; Sherman, Diane L.; Palmisano, Marilena; Huganir, Richard L.; Nave, Klaus-Armin; Cuenda, Ana; Feltri, Maria Laura; Brophy, Peter J.; Bolino, Alessandra

    2016-01-01

    Microtubule-based kinesin motors have many cellular functions, including the transport of a variety of cargos. However, unconventional roles have recently emerged, and kinesins have also been reported to act as scaffolding proteins and signaling molecules. In this work, we further extend the notion of unconventional functions for kinesin motor proteins, and we propose that Kif13b kinesin acts as a signaling molecule regulating peripheral nervous system (PNS) and central nervous system (CNS) myelination. In this process, positive and negative signals must be tightly coordinated in time and space to orchestrate myelin biogenesis. Here, we report that in Schwann cells Kif13b positively regulates myelination by promoting p38γ mitogen-activated protein kinase (MAPK)-mediated phosphorylation and ubiquitination of Discs large 1 (Dlg1), a known brake on myelination, which downregulates the phosphatidylinositol 3-kinase (PI3K)/v-AKT murine thymoma viral oncogene homolog (AKT) pathway. Interestingly, Kif13b also negatively regulates Dlg1 stability in oligodendrocytes, in which Dlg1, in contrast to Schwann cells, enhances AKT activation and promotes myelination. Thus, our data indicate that Kif13b is a negative regulator of CNS myelination. In summary, we propose a novel function for the Kif13b kinesin in glial cells as a key component of the PI3K/AKT signaling pathway, which controls myelination in both PNS and CNS. PMID:27070899

  4. Limited sufficiency of antigen presentation by dendritic cells in models of central nervous system autoimmunity.

    PubMed

    Wu, Gregory F; Shindler, Kenneth S; Allenspach, Eric J; Stephen, Tom L; Thomas, Hannah L; Mikesell, Robert J; Cross, Anne H; Laufer, Terri M

    2011-02-01

    Experimental autoimmune encephalomyelitis (EAE), a model for the human disease multiple sclerosis (MS), is dependent upon the activation and effector functions of autoreactive CD4 T cells. Multiple interactions between CD4 T cells and major histocompatibility class II (MHCII)+ antigen presenting cells (APCs) must occur in both the periphery and central nervous system (CNS) to elicit autoimmunity. The identity of the MHCII+ APCs involved throughout this process remains in question. We investigated which APC in the periphery and CNS mediates disease using transgenic mice with MHCII expression restricted to dendritic cells (DCs). MHCII expression restricted to DCs results in normal susceptibility to peptide-mediated EAE. Indeed, radiation-sensitive bone marrow-derived DCs were sufficient for all APC functions during peptide-induced disease. However, DCs alone were inefficient at promoting disease after immunization with the myelin protein myelin oligodendrocyte glycoprotein (MOG), even in the presence of MHCII-deficient B cells. Consistent with a defect in disease induction following protein immunization, antigen presentation by DCs alone was incapable of mediating spontaneous optic neuritis. These results indicate that DCs are capable of perpetuating CNS-targeted autoimmunity when antigens are readily available, but other APCs are required to efficiently initiate pathogenic cognate CD4 T cell responses.

  5. Robust axonal regeneration occurs in the injured CAST/Ei mouse central nervous system

    PubMed Central

    Omura, Takao; Omura, Kumiko; Tedeschi, Andrea; Riva, Priscilla; Painter, Michio W; Rojas, Leticia; Martin, Joshua; Lisi, Véronique; Huebner, Eric A; Latremoliere, Alban; Yin, Yuqin; Barrett, Lee; Singh, Bhagat; Lee, Stella; Crisman, Tom; Gao, Fuying; Li, Songlin; Kapur, Kush; Geschwind, Daniel H; Kosik, Kenneth S; Coppola, Giovanni; He, Zhigang; Carmichael, S Thomas; Benowitz, Larry I; Costigan, Michael; Woolf, Clifford J

    2015-01-01

    SUMMARY Axon regeneration in the central nervous system (CNS) requires reactivating injured neurons’ intrinsic growth state and enabling growth in an inhibitory environment. Using an inbred mouse neuronal phenotypic screen, we find that CAST/Ei mouse adult dorsal root ganglion neurons extend axons more on CNS myelin than the other eight strains tested, especially when pre-injured. Injury-primed CAST/Ei neurons also regenerate markedly in the spinal cord and optic nerve more than those from C57BL/6 mice and show greater spouting following ischemic stroke. Heritability estimates indicate that extended growth in CAST/Ei neurons on myelin is genetically determined, and two whole-genome expression screens yield the Activin transcript Inhba as most correlated with this ability. Inhibition of Activin signaling in CAST/Ei mice diminishes their CNS regenerative capacity whereas its activation in C57BL/6 animals boosts regeneration. This screen demonstrates that mammalian CNS regeneration can occur and reveals a molecular pathway that contributes to this ability. PMID:26004914

  6. Aging, the Central Nervous System, and Mobility

    PubMed Central

    2013-01-01

    Background. Mobility limitations are common and hazardous in community-dwelling older adults but are largely understudied, particularly regarding the role of the central nervous system (CNS). This has limited development of clearly defined pathophysiology, clinical terminology, and effective treatments. Understanding how changes in the CNS contribute to mobility limitations has the potential to inform future intervention studies. Methods. A conference series was launched at the 2012 conference of the Gerontological Society of America in collaboration with the National Institute on Aging and the University of Pittsburgh. The overarching goal of the conference series is to facilitate the translation of research results into interventions that improve mobility for older adults. Results. Evidence from basic, clinical, and epidemiological studies supports the CNS as an important contributor to mobility limitations in older adults without overt neurologic disease. Three main goals for future work that emerged were as follows: (a) develop models of mobility limitations in older adults that differentiate aging from disease-related processes and that fully integrate CNS with musculoskeletal contributors; (b) quantify the contribution of the CNS to mobility loss in older adults in the absence of overt neurologic diseases; (c) promote cross-disciplinary collaboration to generate new ideas and address current methodological issues and barriers, including real-world mobility measures and life-course approaches. Conclusions. In addition to greater cross-disciplinary research, there is a need for new approaches to training clinicians and investigators, which integrate concepts and methodologies from individual disciplines, focus on emerging methodologies, and prepare investigators to assess complex, multisystem associations. PMID:23843270

  7. Cancer stem cells in nervous system tumors.

    PubMed

    Singh, Sheila K; Clarke, Ian D; Hide, Takuichiro; Dirks, Peter B

    2004-09-20

    Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and more recently in solid tumors such as breast cancer suggests that the tumor cell population is heterogeneous with respect to proliferation and differentiation. Recently, several groups have described the existence of a cancer stem cell population in human brain tumors of different phenotypes from both children and adults. The finding of brain tumor stem cells (BTSCs) has been made by applying the principles for cell culture and analysis of normal neural stem cells (NSCs) to brain tumor cell populations and by identification of cell surface markers that allow for isolation of distinct tumor cell populations that can then be studied in vitro and in vivo. A population of brain tumor cells can be enriched for BTSCs by cell sorting of dissociated suspensions of tumor cells for the NSC marker CD133. These CD133+ cells, which also expressed the NSC marker nestin, but not differentiated neural lineage markers, represent a minority fraction of the entire brain tumor cell population, and exclusively generate clonal tumor spheres in suspension culture and exhibit increased self-renewal capacity. BTSCs can be induced to differentiate in vitro into tumor cells that phenotypically resembled the tumor from the patient. Here, we discuss the evidence for and implications of the discovery of a cancer stem cell in human brain tumors. The identification of a BTSC provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC. Specific genetic and molecular analyses of the BTSC will further our understanding of the mechanisms of brain tumor growth, reinforcing parallels between normal neurogenesis and brain tumorigenesis.

  8. Congenital tumors of the central nervous system.

    PubMed

    Severino, Mariasavina; Schwartz, Erin S; Thurnher, Majda M; Rydland, Jana; Nikas, Ioannis; Rossi, Andrea

    2010-06-01

    Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into "definitely congenital" (present or producing symptoms at birth), "probably congenital" (present or producing symptoms within the first week of life), and "possibly congenital" (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors, where aggressive surgical treatment leads to disease-free survival.

  9. Mechanosensitivity in the enteric nervous system

    PubMed Central

    Mazzuoli-Weber, Gemma; Schemann, Michael

    2015-01-01

    The enteric nervous system (ENS) autonomously controls gut muscle activity. Mechanosensitive enteric neurons (MEN) initiate reflex activity by responding to mechanical deformation of the gastrointestinal wall. MEN throughout the gut primarily respond to compression or stretch rather than to shear force. Some MEN are multimodal as they respond to compression and stretch. Depending on the region up to 60% of the entire ENS population responds to mechanical stress. MEN fire action potentials after mechanical stimulation of processes or soma although they are more sensitive to process deformation. There are at least two populations of MEN based on their sensitivity to different modalities of mechanical stress and on their firing pattern. (1) Rapidly, slowly and ultra-slowly adapting neurons which encode compressive forces. (2) Ultra-slowly adapting stretch-sensitive neurons encoding tensile forces. Rapid adaptation of firing is typically observed after compressive force while slow adaptation or ongoing spike discharge occurs often during tensile stress (stretch). All MEN have some common properties: they receive synaptic input, are low fidelity mechanoreceptors and are multifunctional in that some serve interneuronal others even motor functions. Consequently, MEN possess processes with mechanosensitive as well as efferent functions. This raises the intriguing hypothesis that MEN sense and control muscle activity at the same time as servo-feedback loop. The mechanosensitive channel(s) or receptor(s) expressed by the different MEN populations are unknown. Future concepts have to incorporate compressive and tensile-sensitive MEN into neural circuits that controls muscle activity. They may interact to control various forms of a particular motor pattern or regulate different motor patterns independently from each other. PMID:26528136

  10. Is There Anything "Autonomous" in the Nervous System?

    ERIC Educational Resources Information Center

    Rasia-Filho, Alberto A.

    2006-01-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…

  11. Animal–microbe interactions and the evolution of nervous systems

    PubMed Central

    2016-01-01

    Animals ubiquitously interact with environmental and symbiotic microbes, and the effects of these interactions on animal physiology are currently the subject of intense interest. Nevertheless, the influence of microbes on nervous system evolution has been largely ignored. We illustrate here how taking microbes into account might enrich our ideas about the evolution of nervous systems. For example, microbes are involved in animals' communicative, defensive, predatory and dispersal behaviours, and have likely influenced the evolution of chemo- and photosensory systems. In addition, we speculate that the need to regulate interactions with microbes at the epithelial surface may have contributed to the evolutionary internalization of the nervous system. PMID:26598731

  12. [Systemic lupus erythematosus and the central nervous system].

    PubMed

    Rojas, E; Orrea Solano, M

    1993-01-01

    The central nervous system (CNS) manifestations of the chronic autoimmune disease systemic lupus erythematous (SLE) are reviewed. SLE-CNS dysfunction is broadly divided into neurologic and psychiatric clinical categories. The distinct clinical entities within these broad categories are fully described. Diagnostic criteria employed to verify the presence of SLE-CNS dysfunction, including laboratory serum and cerebral spinal fluid analyses as well as radiologic and other multimodality diagnostic tools, are compared and contrasted with respect to sensitivity and specificity.

  13. The Human Sympathetic Nervous System Response to Spaceflight

    NASA Technical Reports Server (NTRS)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  14. Evolution of eumetazoan nervous systems: insights from cnidarians

    PubMed Central

    Kelava, Iva; Rentzsch, Fabian; Technau, Ulrich

    2015-01-01

    Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system—in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution. PMID:26554048

  15. Strategies for Enhanced Drug Delivery to the Central Nervous System

    PubMed Central

    Dwibhashyam, V. S. N. M.; Nagappa, A. N.

    2008-01-01

    Treating central nervous system diseases is very challenging because of the presence of a variety of formidable obstacles that impede drug delivery. Physiological barriers like the blood-brain barrier and blood-cerebrospinal fluid barrier as well as various efflux transporter proteins make the entry of drugs into the central nervous system very difficult. The present review provides a brief account of the blood brain barrier, the P-glycoprotein efflux and various strategies for enhancing drug delivery to the central nervous system. PMID:20046703

  16. Disseminated encephalomyelitis-like central nervous system neoplasm in childhood.

    PubMed

    Zhao, Jianhui; Bao, Xinhua; Fu, Na; Ye, Jintang; Li, Ting; Yuan, Yun; Zhang, Chunyu; Zhang, Yao; Zhang, Yuehua; Qin, Jiong; Wu, Xiru

    2014-08-01

    A malignant neoplasm in the central nervous system with diffuse white matter changes on magnetic resonance imaging (MRI) is rare in children. It could be misdiagnosed as acute disseminated encephalomyelitis. This report presents our experience based on 4 patients (3 male, 1 female; aged 7-13 years) whose MRI showed diffuse lesions in white matter and who were initially diagnosed with acute disseminated encephalomyelitis. All of the patients received corticosteroid therapy. After brain biopsy, the patients were diagnosed with gliomatosis cerebri, primitive neuroectodermal tumor and central nervous system lymphoma. We also provide literature reviews and discuss the differentiation of central nervous system neoplasm from acute disseminated encephalomyelitis.

  17. Pharmacotherapy for Adults with Tumors of the Central Nervous System

    PubMed Central

    Schor, Nina F.

    2009-01-01

    Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel approaches aimed at overcoming these challenges. PMID:19091301

  18. Reorganization of the human central nervous system.

    PubMed

    Schalow, G; Zäch, G A

    2000-10-01

    The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns

  19. Neural circuit recording from an intact cockroach nervous system.

    PubMed

    Titlow, Josh S; Majeed, Zana R; Hartman, H Bernard; Burns, Ellen; Cooper, Robin L

    2013-11-04

    The cockroach ventral nerve cord preparation is a tractable system for neuroethology experiments, neural network modeling, and testing the physiological effects of insecticides. This article describes the scope of cockroach sensory modalities that can be used to assay how an insect nervous system responds to environmental perturbations. Emphasis here is on the escape behavior mediated by cerci to giant fiber transmission in Periplaneta americana. This in situ preparation requires only moderate dissecting skill and electrophysiological expertise to generate reproducible recordings of neuronal activity. Peptides or other chemical reagents can then be applied directly to the nervous system in solution with the physiological saline. Insecticides could also be administered prior to dissection and the escape circuit can serve as a proxy for the excitable state of the central nervous system. In this context the assays described herein would also be useful to researchers interested in limb regeneration and the evolution of nervous system development for which P. americana is an established model organism.

  20. Preliminary Evidence of Increased Hippocampal Myelin Content in Veterans with Posttraumatic Stress Disorder

    PubMed Central

    Chao, Linda L.; Tosun, Duygu; Woodward, Steven H.; Kaufer, Daniela; Neylan, Thomas C.

    2015-01-01

    Recent findings suggest the formation of myelin in the central nervous system by oligodendrocytes is a continuous process that can be modified with experience. For example, a recent study showed that immobilization stress increased oligodendrogensis in the dentate gyrus of adult rat hippocampus. Because changes in myelination represents an adaptive form of brain plasticity that has a greater reach in the adult brain than other forms of plasticity (e.g., neurogenesis), the objective of this “proof of concept” study was to examine whether there are differences in myelination in the hippocampi of humans with and without post-traumatic stress disorder (PTSD). We used the ratio of T1-weighted/T2-weighted magnetic resonance image (MRI) intensity to estimate the degree of hippocampal myelination in 19 male veterans with PTSD and 19 matched trauma-exposed male veterans without PTSD (mean age: 43 ± 12 years). We found that veterans with PTSD had significantly more hippocampal myelin than trauma-exposed controls. There was also found a positive correlation between estimates of hippocampal myelination and PTSD and depressive symptom severity. To our knowledge, this is the first study to examine hippocampal myelination in humans with PTSD. These results provide preliminary evidence for stress-induced hippocampal myelin formation as a potential mechanism underlying the brain abnormalities associated with vulnerability to stress. PMID:26696852

  1. The progeroid gene BubR1 regulates axon myelination and motor function

    PubMed Central

    Choi, Chan-Il; Yoo, Ki Hyun; Qasim Hussaini, Syed Mohammed; Tak Jeon, Byeong; Welby, John; Gan, Haiyun; Scarisbrick, Isobel A.; Zhang, Zhiguo; Baker, Darren J.; van Deursen, Jan M.; Rodriguez, Moses; Jang, Mi-Hyeon

    2016-01-01

    Myelination, the process by which oligodendrocytes form the myelin sheath around axons, is key to axonal signal transduction and related motor function in the central nervous system (CNS). Aging is characterized by degenerative changes in the myelin sheath, although the molecular underpinnings of normal and aberrant myelination remain incompletely understood. Here we report that axon myelination and related motor function are dependent on BubR1, a mitotic checkpoint protein that has been linked to progeroid phenotypes when expressed at low levels and healthy lifespan when overabundant. We found that oligodendrocyte progenitor cell proliferation and oligodendrocyte density is markedly reduced in mutant mice with low amounts of BubR1 (BubR1H/H mice), causing axonal hypomyelination in both brain and spinal cord. Expression of essential myelin-related genes such as MBP and PLP1 was significantly reduced in these tissues. Consistent with defective myelination, BubR1H/H mice exhibited various motor deficits, including impaired motor strength, coordination, and balance, irregular gait patterns and reduced locomotor activity. Collectively, these data suggest that BubR1 is a key determinant of oligodendrocyte production and function and provide a molecular entry point to understand age-related degenerative changes in axon myelination. PMID:27922816

  2. Vasculitis Syndromes of the Central and Peripheral Nervous Systems

    MedlinePlus

    ... the Central and Peripheral Nervous Systems Fact Sheet Table of Contents (click to jump to sections) What ... Information Page NINDS Epilepsy Information Page NINDS Familial Periodic Paralyses Information Page NINDS Farber's Disease Information Page ...

  3. [Microglial cells and development of the embryonic central nervous system].

    PubMed

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  4. Central Nervous System Infections in Patients with Severe Burns

    DTIC Science & Technology

    2010-01-01

    both patients had bacteremia with identical microorganisms as isolated from CSF ( Acinetobacter baumannii and methicillin resistant Staphylococcus...multiresistant Acinetobacter baumannii central nervous system infections with intraventricular or intrathecal colistin: case series and literature review. J

  5. Complex Homology and the Evolution of Nervous Systems

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.; Hofmann, Hans A.

    2016-01-01

    We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. PMID:26746806

  6. The sympathetic nervous system alterations in human hypertension.

    PubMed

    Grassi, Guido; Mark, Allyn; Esler, Murray

    2015-03-13

    Several articles have dealt with the importance and mechanisms of the sympathetic nervous system alterations in experimental animal models of hypertension. This review addresses the role of the sympathetic nervous system in the pathophysiology and therapy of human hypertension. We first discuss the strengths and limitations of various techniques for assessing the sympathetic nervous system in humans, with a focus on heart rate, plasma norepinephrine, microneurographic recording of sympathetic nerve traffic, and measurements of radiolabeled norepinephrine spillover. We then examine the evidence supporting the importance of neuroadrenergic factors as promoters and amplifiers of human hypertension. We expand on the role of the sympathetic nervous system in 2 increasingly common forms of secondary hypertension, namely hypertension associated with obesity and with renal disease. With this background, we examine interventions of sympathetic deactivation as a mode of antihypertensive treatment. Particular emphasis is given to the background and results of recent therapeutic approaches based on carotid baroreceptor stimulation and radiofrequency ablation of the renal nerves.

  7. Improving and Accelerating Drug Development for Nervous System Disorders

    PubMed Central

    Pankevich, Diana E.; Altevogt, Bruce M.; Dunlop, John; Gage, Fred H.; Hyman, Steve E.

    2014-01-01

    Advances in the neurosciences have placed the field in the position where it is poised to significantly reduce the burden of nervous system disorders. However, drug discovery, development and translation for nervous system disorders still pose many unique challenges. The key scientific challenges can be summarized as follows: mechanisms of disease, target identification and validation, predictive models, biomarkers for patient stratification and as endpoints for clinical trials, clear regulatory pathways, reliability and reproducibility of published data, and data sharing and collaboration. To accelerate nervous system drug development the Institute of Medicine’s Forum on Neuroscience and Nervous System Disorders has hosted a series of public workshops that brought together representatives of industry, government (including both research funding and regulatory agencies), academia, and patient groups to discuss these challenges and offer potential strategies to improve the translational neuroscience. PMID:25442933

  8. [Fine structure of glial cells in the central nervous system of the tapeworm Grillotia erinaceus (Cestoda: Trypanorhyncha)].

    PubMed

    Biserova, N M

    2008-01-01

    The problem of glial cells existing in parasitic and free living flatworms is correlated with organization of parenchyma in platyhelmintes. In the contrary to the widespread opinion that myelin-like envelopes and glial cells do not exist in the nervous system of parasitic flatworms, it has been shown by ultrastructural researches that Amphilina foliacea (Cestoda, Amphilinidea) has well developed glial cells and myelin-like envelopes in the ganglia and main cords, which include both glial cells and intercellular components. The aim of our research was to reveal and investigate in details structural components corresponding to the concept of the glial cell in the CNS of Grillotia erinaceus (Cestoda: Trypanorhyncha). Three types of glial cells have been found. The first type is the fibroblast-like glial cells; cells locate in the cerebral ganglion, contain in cytoplasm and extract out fibrillar matrix, form desmosomes and have supporting function. The glial cells of the second type form myeline-like envelope of the giant axons and bulbar nerves in scolex and have laminar cytoplasm. These cells are numerous and exceed in number the neurons bodies into the nerve. The glial cells of the third type form multilayer envelopes in the main nerve cords; extra cellular fibers and gap-junctions take place between the layers. There are contacts between the glial cells of the third type and excretory epithelium but specialized contacts with neurons have been not found. The existing of glial cells in free living and parasitic flatworms is discussed.

  9. Source characterization of nervous system active pharmaceutical ingredients in healthcare wastewaters

    EPA Science Inventory

    Nervous system active pharmaceutical ingredients (APIs), including anti-depressants and opioids, are important clinically administered pharmaceuticals within healthcare facilities. Concentrations and mass loadings of ten nervous system APIs and three nervous system API metaboli...

  10. Introduction to 'Origin and evolution of the nervous system'.

    PubMed

    Strausfeld, Nicholas J; Hirth, Frank

    2015-12-19

    In 1665, Robert Hooke demonstrated in Micrographia the power of the microscope and comparative observations, one of which revealed similarities between the arthropod and vertebrate eyes. Utilizing comparative observations, Saint-Hilaire in 1822 was the first to propose that the ventral nervous system of arthropods corresponds to the dorsal nervous system of vertebrates. Since then, studies on the origin and evolution of the nervous system have become inseparable from studies about Metazoan origins and the origins of organ systems. The advent of genome sequence data and, in turn, phylogenomics and phylogenetics have refined cladistics and expanded our understanding of Metazoan phylogeny. However, the origin and evolution of the nervous system is still obscure and many questions and problems remain. A recurrent problem is whether and to what extent sequence data provide reliable guidance for comparisons across phyla. Are genetic data congruent with the geological fossil records? How can we reconcile evolved character loss with phylogenomic records? And how informative are genetic data in relation to the specification of nervous system morphologies? These provide some of the background and context for a Royal Society meeting to discuss new data and concepts that might achieve insights into the origin and evolution of brains and nervous systems.

  11. Uropharmacology: X. Central nervous system stimulants and depressants.

    PubMed

    Bissada, N K; Finkbeiner, A E; Welch, L T

    1979-04-01

    Several drugs that are utilized primarily for their effects on the central nervous system also affect lower urinary tract function. Most of these effects are produced by the action of these drugs on adrenergic and cholinergic receptors or by direct action of lower urinary tract musculature. Central nervous system stimulants and depressants which are known to affect the storage or evacuation role of the lower urinary tract are discussed.

  12. Sympathetic Nervous System, Hypertension, Obesity and Metabolic Syndrome.

    PubMed

    Seravalle, Gino; Grassi, Guido

    2016-09-01

    Experimental and clinical studies have clearly shown the role of the sympathetic nervous system in the pathophysiology of several cardiovascular and non-cardiovascular diseases. This short review will be aimed at focusing and discussing the new information collected on two specific clinical conditions such as obesity and metabolic syndrome. The paper will briefly describe the four main mechanisms that represent the common link between these two pathophysiological conditions and that through the sympathetic nervous system contribute to increase the cardiovascular risk.

  13. Redirecting N-acetylaspartate metabolism in the central nervous system normalizes myelination and rescues Canavan disease

    PubMed Central

    Gessler, Dominic J.; Xu, Hongxia; Su, Qin; Sanmiguel, Julio; Tuncer, Serafettin; Moore, Constance; King, Jean; Matalon, Reuben

    2017-01-01

    Canavan disease (CD) is a debilitating and lethal leukodystrophy caused by mutations in the aspartoacylase (ASPA) gene and the resulting defect in N-acetylaspartate (NAA) metabolism in the CNS and peripheral tissues. Recombinant adeno-associated virus (rAAV) has the ability to cross the blood-brain barrier and widely transduce the CNS. We developed a rAAV-based and optimized gene replacement therapy, which achieves early, complete, and sustained rescue of the lethal disease phenotype in CD mice. Our treatment results in a super-mouse phenotype, increasing motor performance of treated CD mice beyond that of WT control mice. We demonstrate that this rescue is oligodendrocyte independent, and that gene correction in astrocytes is sufficient, suggesting that the establishment of an astrocyte-based alternative metabolic sink for NAA is a key mechanism for efficacious disease rescue and the super-mouse phenotype. Importantly, the use of clinically translatable high-field imaging tools enables the noninvasive monitoring and prediction of therapeutic outcomes for CD and might enable further investigation of NAA-related cognitive function. PMID:28194442

  14. Central nervous system adaptation to exercise training

    NASA Astrophysics Data System (ADS)

    Kaminski, Lois Anne

    Exercise training causes physiological changes in skeletal muscle that results in enhanced performance in humans and animals. Despite numerous studies on exercise effects on skeletal muscle, relatively little is known about adaptive changes in the central nervous system. This study investigated whether spinal pathways that mediate locomotor activity undergo functional adaptation after 28 days of exercise training. Ventral horn spinal cord expression of calcitonin gene-related peptide (CGRP), a trophic factor at the neuromuscular junction, choline acetyltransferase (Chat), the synthetic enzyme for acetylcholine, vesicular acetylcholine transporter (Vacht), a transporter of ACh into synaptic vesicles and calcineurin (CaN), a protein phosphatase that phosphorylates ion channels and exocytosis machinery were measured to determine if changes in expression occurred in response to physical activity. Expression of these proteins was determined by western blot and immunohistochemistry (IHC). Comparisons between sedentary controls and animals that underwent either endurance training or resistance training were made. Control rats received no exercise other than normal cage activity. Endurance-trained rats were exercised 6 days/wk at 31m/min on a treadmill (8% incline) for 100 minutes. Resistance-trained rats supported their weight plus an additional load (70--80% body weight) on a 60° incline (3 x 3 min, 5 days/wk). CGRP expression was measured by radioimmunoassay (RIA). CGRP expression in the spinal dorsal and ventral horn of exercise-trained animals was not significantly different than controls. Chat expression measured by Western blot and IHC was not significantly different between runners and controls but expression in resistance-trained animals assayed by IHC was significantly less than controls and runners. Vacht and CaN immunoreactivity in motor neurons of endurance-trained rats was significantly elevated relative to control and resistance-trained animals. Ventral

  15. Differential responses of components of the autonomic nervous system.

    PubMed

    Goldstein, David S

    2013-01-01

    This chapter conveys several concepts and points of view about the scientific and medical significance of differential alterations in activities of components of the autonomic nervous system in stress and disease. The use of terms such as "the autonomic nervous system," "autonomic failure," "dysautonomia," and "autonomic dysfunction" imply the existence of a single entity; however, the autonomic nervous system has functionally and neurochemically distinctive components, which are reflected in differential responses to stressors and differential involvement in pathophysiologic states. One can conceptualize the autonomic nervous system as having at least five components: the sympathetic noradrenergic system, the sympathetic cholinergic system, the parasympathetic cholinergic system, the sympathetic adrenergic system, and the enteric nervous system. Evidence has accumulated for differential noradrenergic vs. adrenergic responses in various situations. The largest sympathetic adrenergic system responses are seen when the organism encounters stressors that pose a global or metabolic threat. Sympathetic noradrenergic system activation dominates the responses to orthostasis, moderate exercise, and exposure to cold, whereas sympathetic adrenergic system activation dominates those to glucoprivation and emotional distress. There seems to be at least as good a justification for the concept of coordinated adrenocortical-adrenomedullary responses as for coordinated adrenomedullary-sympathoneural responses in stress. Fainting reactions involve differential adrenomedullary hormonal vs. sympathetic noradrenergic activation. Parkinson disease entails relatively selective dysfunction of the sympathetic noradrenergic system, with prominent loss of noradrenergic nerves in the heart, yet normal adrenomedullary function. Allostatic load links stress with degenerative diseases, and Parkinson disease may be a disease of the elderly because of allostatic load.

  16. Aged PrP null mice show defective processing of neuregulins in the peripheral nervous system.

    PubMed

    Benvegnù, Stefano; Gasperini, Lisa; Legname, Giuseppe

    2011-05-01

    A prion, a protease-resistant conformer of the cellular prion protein (PrP(C)), is the causative agent of transmissible spongiform encephalopathies or prion diseases. While this property is well established for the aberrantly folded protein, the physiological function of PrP(C) remains elusive. Among different putative functions, the non-pathogenic protein isoform PrP(C) is involved in several cellular processes. Here, we show that PrP(C) regulates the cleavage of neuregulin-1 proteins (NRG1). Neuregulins provide key axonal signals that regulate several processes, including glial cells proliferation, survival and myelination. Interestingly, mice devoid of PrP(C) (Prnp⁰/⁰) were recently shown to have a late-onset demyelinating disease in the peripheral nervous system (PNS) but not in the central nervous system (CNS). We found that NRG1 processing is developmentally regulated in the PNS and, by comparing wildtype and Prnp⁰/⁰ mice, that PrP(C) influences NRG1 processing in old, but not in young, animals. In addition, we found that also the processing of neuregulin-3, another neuregulin family member, is altered in the PNS of Prnp⁰/⁰ mice. These differences in neuregulin proteins processing are not paralleled in the CNS, thus suggesting a different cellular function for PrP(C) between the CNS and the PNS.

  17. Localization of PPARdelta in murine central nervous system: expression in oligodendrocytes and neurons.

    PubMed

    Woods, John W; Tanen, Michael; Figueroa, David J; Biswas, Chhabi; Zycband, Emanuel; Moller, David E; Austin, Christopher P; Berger, Joel P

    2003-06-13

    The peroxisome proliferator-activated receptors (PPARs), PPARdelta, PPARgamma and PPARalpha, comprise a subclass of the supergene family of nuclear receptors. As such they are ligand-regulated transcription factors whose major effects are mediated by altering expression of target genes. PPARdelta has been shown to be ubiquitously expressed in mammals. However, its primary biological role(s) has yet to be defined. Several recent studies have demonstrated that PPARdelta is the most highly expressed PPAR isoform in the central nervous system, but ambiguity still exists as to the specific brain sub-regions and cells in which it is expressed. Here, utilizing novel, isoform-selective PPARdelta riboprobes and an anti-peptide antibody, we performed a series of in situ hybridization and immunolocalization studies to determine the distribution of PPARdelta in the central nervous system (CNS) of mice. We found that PPARdelta mRNA and protein is expressed throughout the brain, with particularly high levels in the entorhinal cortex, hypothalamus and hippocampus, and lower levels in the corpus callosum and caudate putamen. At the cellular level, PPARdelta mRNA and protein were found to be expressed in oligodendrocytes and neurons but not astrocytes. Such results suggest a role for PPARdelta in both myelination and neuronal functioning within the CNS.

  18. Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates

    PubMed Central

    Buchser, William J.; Smith, Robin P.; Pardinas, Jose R.; Haddox, Candace L.; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R.; Bixby, John L.; Lemmon, Vance P.

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons. PMID:22701605

  19. The role of repulsive guidance molecules in the embryonic and adult vertebrate central nervous system

    PubMed Central

    Mueller, Bernhard K; Yamashita, Toshihide; Schaffar, Gregor; Mueller, Reinhold

    2006-01-01

    During the development of the nervous system, outgrowing axons often have to travel long distances to reach their target neurons. In this process, outgrowing neurites tipped with motile growth cones rely on guidance cues present in their local environment. These cues are detected by specific receptors expressed on growth cones and neurites and influence the trajectory of the growing fibres. Neurite growth, guidance, target innervation and synapse formation and maturation are the processes that occur predominantly but not exclusively during embryonic or early post-natal development in vertebrates. As a result, a functional neural network is established, which is usually remarkably stable. However, the stability of the neural network in higher vertebrates comes at an expensive price, i.e. the loss of any significant ability to regenerate injured or damaged neuronal connections in their central nervous system (CNS). Most importantly, neurite growth inhibitors prevent any regenerative growth of injured nerve fibres. Some of these inhibitors are associated with CNS myelin, others are found at the lesion site and in the scar tissue. Traumatic injuries in brain and spinal cord of mammals induce upregulation of embryonic inhibitory or repulsive guidance cues and their receptors on the neurites. An example for embryonic repulsive directional cues re-expressed at lesion sites in both the rat and human CNS is provided with repulsive guidance molecules, a new family of directional guidance cues. PMID:16939972

  20. Peripheral nervous system genes expressed in central neurons induce growth on inhibitory substrates.

    PubMed

    Buchser, William J; Smith, Robin P; Pardinas, Jose R; Haddox, Candace L; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R; Bixby, John L; Lemmon, Vance P

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.

  1. Global research priorities for infections that affect the nervous system.

    PubMed

    John, Chandy C; Carabin, Hélène; Montano, Silvia M; Bangirana, Paul; Zunt, Joseph R; Peterson, Phillip K

    2015-11-19

    Infections that cause significant nervous system morbidity globally include viral (for example, HIV, rabies, Japanese encephalitis virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, dengue virus and chikungunya virus), bacterial (for example, tuberculosis, syphilis, bacterial meningitis and sepsis), fungal (for example, cryptococcal meningitis) and parasitic (for example, malaria, neurocysticercosis, neuroschistosomiasis and soil-transmitted helminths) infections. The neurological, cognitive, behavioural or mental health problems caused by the infections probably affect millions of children and adults in low- and middle-income countries. However, precise estimates of morbidity are lacking for most infections, and there is limited information on the pathogenesis of nervous system injury in these infections. Key research priorities for infection-related nervous system morbidity include accurate estimates of disease burden; point-of-care assays for infection diagnosis; improved tools for the assessment of neurological, cognitive and mental health impairment; vaccines and other interventions for preventing infections; improved understanding of the pathogenesis of nervous system disease in these infections; more effective methods to treat and prevent nervous system sequelae; operations research to implement known effective interventions; and improved methods of rehabilitation. Research in these areas, accompanied by efforts to implement promising technologies and therapies, could substantially decrease the morbidity and mortality of infections affecting the nervous system in low- and middle-income countries.

  2. The glia of the adult Drosophila nervous system

    PubMed Central

    Kremer, Malte C.; Jung, Christophe; Batelli, Sara; Rubin, Gerald M.

    2017-01-01

    Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017 GLIA 2017;65:606–638 PMID:28133822

  3. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis

    PubMed Central

    Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Vázquez-Figueroa, Lionel D.; Díaz-Balzac, Roberto J.; García-Arrarás, José E.

    2016-01-01

    The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components. PMID:26987052

  4. Global research priorities for infections that affect the nervous system

    PubMed Central

    John, Chandy C.; Carabin, Hélène; Montano, Silvia M.; Bangirana, Paul; Zunt, Joseph R.; Peterson, Phillip K.

    2015-01-01

    Infections that cause significant nervous system morbidity globally include viral (for example, HIV, rabies, Japanese encephalitis virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, dengue virus and chikungunya virus), bacterial (for example, tuberculosis, syphilis, bacterial meningitis and sepsis), fungal (for example, cryptococcal meningitis) and parasitic (for example, malaria, neurocysticercosis, neuroschistosomiasis and soil-transmitted helminths) infections. The neurological, cognitive, behavioural or mental health problems caused by the infections probably affect millions of children and adults in low- and middle-income countries. However, precise estimates of morbidity are lacking for most infections, and there is limited information on the pathogenesis of nervous system injury in these infections. Key research priorities for infection-related nervous system morbidity include accurate estimates of disease burden; point-of-care assays for infection diagnosis; improved tools for the assessment of neurological, cognitive and mental health impairment; vaccines and other interventions for preventing infections; improved understanding of the pathogenesis of nervous system disease in these infections; more effective methods to treat and prevent nervous system sequelae; operations research to implement known effective interventions; and improved methods of rehabilitation. Research in these areas, accompanied by efforts to implement promising technologies and therapies, could substantially decrease the morbidity and mortality of infections affecting the nervous system in low- and middle-income countries. PMID:26580325

  5. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis.

    PubMed

    Díaz-Balzac, Carlos A; Lázaro-Peña, María I; Vázquez-Figueroa, Lionel D; Díaz-Balzac, Roberto J; García-Arrarás, José E

    2016-01-01

    The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components.

  6. [Necrotizing systemic sarcoidosis with pulmonary and central nervous system involvement].

    PubMed

    Ríos Fernández, R; Callejas-Rubio, J L; Guerrero Fernández, M; Serrano Falcón, M M; Ortego-Centeno, N

    2008-01-01

    Sarcoidosis is a multisystemic disease which diagnosis depends on the presence of nonnecrotizing granulomas in the biopsy. However there are variants such as necrotizing sarcoidal granulomas or nodular sarcoidosis which have atypical findings and make difficult the differential diagnosis with other infectious processes. We describe a case of a man who develops granulomas with extensive necrosis in a systemic sarcoidosis that affected the lung and the central nervous system. This finding made us to make the diagnosis of tuberculosis and delay the specific treatment.

  7. Reactions of the nervous system to magnetic fields

    NASA Technical Reports Server (NTRS)

    Kholodov, Y. A.

    1974-01-01

    This magnetobiological survey considers sensory, nervous, stress and genetic effects of magnetic fields on man and animals. It is shown that the nervous system plays an important role in the reactions of the organism to magnetic fields; the final biological effect is a function of the strength of the magnetic fields, the gradient, direction of the lines of force, duration and location of the action, and the functional status of the organism.

  8. Assessment of the peripheral, central, and autonomic nervous system function in styrene workers

    SciTech Connect

    Murata, K.; Araki, S.; Yokoyama, K. )

    1991-01-01

    To investigate the effects of styrene exposure on peripheral, central, and autonomic nervous system functions in man, we measured the distribution of nerve conduction velocities (DCV), short-latency somatosensory evoked potentials (SSEP), and variability in electrocardiographic R-R interval (CVRR) as well as conventional sensory and motor median nerve conduction velocities (SCV and MCV) in eleven styrene-exposed workers. The styrene workers' urinary phenylglyoxylic acid levels ranged from 31 to 419 (mean 169) mg/g creatinine at the end of the work shift on the examination day (estimated exposure to styrene of 22 ppm in air). Control subjects, matched to each styrene worker by sex and age, were selected from healthy adults without cardiovascular, neurologic and other potentially confounding disorders. In the styrene workers, we found that the V80 velocity of the DCV, below which 80% of active nerve fibers lie, and the SCV were both significantly slowed; the CVRR was also significantly reduced. There were no significant differences in SSEP latencies, MCV, or heart rate between the exposed workers and controls. These data, despite the small sample size, suggest that styrene affects the faster myelinated fibers of the peripheral sensory nerves, and that it also affects autonomic nervous activity.

  9. Structural and functional features of central nervous system lymphatic vessels.

    PubMed

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  10. Transplantation of Glial Cells Enhances Action Potential Conduction of Amyelinated Spinal Cord Axons in the Myelin-Deficient Rat

    NASA Astrophysics Data System (ADS)

    Utzschneider, David A.; Archer, David R.; Kocsis, Jeffery D.; Waxman, Stephen G.; Duncan, Ian D.

    1994-01-01

    A central issue in transplantation research is to determine how and when transplantation of neural tissue can influence the development and function of the mammalian central nervous system. Of particular interest is whether electrophysiological function in the traumatized or diseased mammalian central nervous system can be improved by the replacement of cellular elements that are missing or damaged. Although it is known that transplantation of neural tissue can lead to functional improvement in models of neurological disease characterized by neuronal loss, less is known about results of transplantation in disorders of myelin. We report here that transplantation of glial cells into the dorsal columns of neonatal myelin-deficient rat spinal cords leads to myelination and a 3-fold increase in conduction velocity. We also show that impulses can propagate into and out of the transplant region and that axons myelinated by transplanted cells do not have impaired frequency-response properties. These results demonstrate that myelination following central nervous system glial cell transplantation enhances action potential conduction in myelin-deficient axons, with conduction velocity approaching normal values.

  11. Systemic delivery to central nervous system by engineered PLGA nanoparticles

    PubMed Central

    Cai, Qiang; Wang, Long; Deng, Gang; Liu, Junhui; Chen, Qianxue; Chen, Zhibiao

    2016-01-01

    Neurological disorders are an important global public health problem, but pharmaceutical treatments are limited due to drug access to the central nervous system being restricted by the blood-brain barrier (BBB). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are one of the most promising drug and gene delivery systems for crossing the BBB. While these systems offer great promise, PLGA NPs also have some intrinsic drawbacks and require further engineering for clinical and research applications. Multiple strategies have been developed for using PLGA NPs to deliver compounds across the BBB. We classify these strategies into three categories according to the adaptations made to the PLGA NPs (1) to facilitate travel from the injection site (pre-transcytosis strategies); (2) to enhance passage across the brain endothelial cells (BBB transcytosis strategies) and (3) to achieve targeting of the impaired nervous system cells (post-transcytosis strategies). PLGA NPs modified according to these three strategies are denoted first, second, and third generation NPs, respectively. We believe that fusing these three strategies to engineer multifunctional PLGA NPs is the only way to achieve translational applications. PMID:27158367

  12. Designing and Implementing Nervous System Simulations on LEGO Robots

    PubMed Central

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-01-01

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.1 The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum. PMID:23728477

  13. Alterations in the ultrastructure of cardiac autonomic nervous system triggered by crotoxin from rattlesnake (Crotalus durissus cumanensis) venom.

    PubMed

    Hernández, Miguelina; Scannone, Héctor; Finol, Héctor J; Pineda, Maria E; Fernández, Irma; Vargas, Alba M; Girón, María E; Aguilar, Irma; Rodríguez-Acosta, Alexis

    2007-10-01

    This study explored the toxic effects of crotoxin isolated from Crotalus durissus cumanensis venom on the ultrastructure of mice cardiac autonomic nervous system. Mice were intravenously injected with saline (control group) and crotoxin diluted in saline venom (study group) at a dose of 0.107 mg/kg mouse body weight. Samples from the inter-ventricular septum were prepared for electron microscopy after 6 h (G1), 12 h (G2), 24 h (G3) and 48 h (G4). The G1 group showed some cardiomyocyte with pleomorphic mitochondria. Capillary swollen walls, nerve cholinergic endings with depleted acetylcholine vesicles in their interior and other depletions were observed. A space completely lacking in contractile elements was noticed. The G2 group demonstrated a myelinic figure, a subsarcolemic region with few myofibrils and nervous cholinergic terminal with scarce vacuoles in their interior. The G3 group demonstrated a structure with a depleted axonic terminal, mitochondrias varying in size and enhanced electron density. In addition, muscular fibers with myofibrillar structure disorganization, a depleted nervous structure surrounded by a Schwann cell along with an abundance of natriuretic peptides, were seen. An amyelinic terminal with depleted Schwann cell and with scarce vesicles was also observed. Finally, axonic lysis with autophagic vacuoles in their interior and condensed mitochondria was observed in the G4 group. This work describes the first report of ultrastructural damage caused by crotoxin on mice cardiac autonomic nervous system.

  14. Could myelin damage from radiofrequency electromagnetic field exposure help explain the functional impairment electrohypersensitivity? A review of the evidence.

    PubMed

    Redmayne, Mary; Johansson, Olle

    2014-01-01

    Myelin provides the electrical insulation for the central and peripheral nervous system and develops rapidly in the first years of life, but continues into mid-life or later. Myelin integrity is vital to healthy nervous system development and functioning. This review outlines the development of myelin through life, and then considers the evidence for an association between myelin integrity and exposure to low-intensity radiofrequency electromagnetic fields (RF-EMFs) typical in the modern world. In RF-EMF peer-reviewed literature examining relevant impacts such as myelin sheath, multiple sclerosis, and other myelin-related diseases, cellular examination was included. There are surprisingly little data available in each area, but considered together a picture begins to emerge in RF-EMF-exposed cases: (1) significant morphological lesions in the myelin sheath of rats; (2) a greater risk of multiple sclerosis in a study subgroup; (3) effects in proteins related to myelin production; and (4) physical symptoms in individuals with functional impairment electrohypersensitivity, many of which are the same as if myelin were affected by RF-EMF exposure, giving rise to symptoms of demyelination. In the latter, there are exceptions; headache is common only in electrohypersensitivity, while ataxia is typical of demyelination but infrequently found in the former group. Overall, evidence from in vivo and in vitro and epidemiological studies suggests an association between RF-EMF exposure and either myelin deterioration or a direct impact on neuronal conduction, which may account for many electrohypersensitivity symptoms. The most vulnerable are likely to be those in utero through to at least mid-teen years, as well as ill and elderly individuals.

  15. 3D printed nervous system on a chip.

    PubMed

    Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C

    2016-04-21

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.

  16. 3D Printed Nervous System on a Chip

    PubMed Central

    Johnson, Blake N.; Lancaster, Karen Z.; Hogue, Ian B.; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W.; McAlpine, Michael C.

    2015-01-01

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology. PMID:26669842

  17. Monophyletic Origin of the Metazoan Nervous System: Characterizing

    NASA Astrophysics Data System (ADS)

    Watkins, Russell; Beckenbach, Andrew

    In the absence of additional cases to be studied, our understanding of the likelihood of intelligent life evolving elsewhere in the universe must be framed within the context of the evolution of intelligence on this planet. Towards this end a valid model of the evolution of animal life, and in particular of the nervous system, is key. Models which describe the development of complexity within the nervous system can be positively misleading if they are not grounded in an accurate model of the true relationships of the animal phyla. If fact the evolution of animal life at its earliest stages, from protists to the sponges, Cnidaria, and Ctenophora and onward to the bilateral animal phyla is poorly characterized. Recently numerous phylogenies of the early animal radiation have been published based upon DNA sequence data, with conflicting and poorly supported results. A polyphyletic origin for the animal nervous system has been implied by the results of several studies, which would lead to the conclusion that some characteristics of the nervous systems of higher and lower animals could be convergent. We show that an equally parsimonious interpretation of the molecular sequence data published thus far is that it reflects rapid speciation events early in animal evolution among the classical ``diploblast'' phyla, as well as accelerated DNA sequence divergence among the higher animals. This could be interpreted as support for a classical phylogeny of the animal kingdom, and thus of a strictly monophyletic origin for the nervous system.

  18. Evolution of flatworm central nervous systems: Insights from polyclads

    PubMed Central

    Quiroga, Sigmer Y.; Carolina Bonilla, E.; Marcela Bolaños, D.; Carbayo, Fernando; Litvaitis, Marian K.; Brown, Federico D.

    2015-01-01

    The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS) of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III) based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies. PMID:26500427

  19. Nongenomic Actions of Adrenal Steroids in the Central Nervous System

    PubMed Central

    Evanson, Nathan K.; Herman, James P.; Sakai, Randall R.; Krause, Eric G.

    2015-01-01

    Mineralocorticoids and glucocorticoids are steroid hormones that are released by the adrenal cortex in response to stress and hydromineral imbalance. Historically, adrenocorticosteroid actions are attributed to effects on gene transcription. More recently, however, it has become clear that genome-independent pathways represent an important facet of adrenal steroid actions. These hormones exert nongenomic effects throughout the body, but a significant portion of their actions are specific to the central nervous system. These actions are mediated by a variety of signalling pathways, and lead to physiologically meaningful events in vitro and in vivo. Here we review nongenomic effects of adrenal steroids in the central nervous system at the levels of behaviour, neural system activity, individual neurone activity, and subcellular signalling activity. A clearer understanding of adrenal steroid activity in the central nervous system will lead to a better ability both to treat human disease, and to reduce side-effects of steroid treatments already in use. PMID:20367759

  20. The alpha-herpesviruses: molecular pathfinders in nervous system circuits

    PubMed Central

    Ekstrand, Mats I.; Enquist, L.W.; Pomeranz, Lisa E.

    2012-01-01

    Several neuroinvasive viruses can be used to study the mammalian nervous system. In particular, infection by pseudorabies virus (PRV), an α-herpesvirus with broad host range, reveals chains of functionally connected neurons in the nervous systems of a variety of mammals. The specificity of PRV trans-neuronal spread has been established in several systems. One attenuated strain, PRV-Bartha, causes a reduced inflammatory response and also spreads only from infected post- to pre-synaptic neurons. We review the basics of PRV tracing and then discuss new developments and novel approaches that have enabled a more detailed understanding of the architecture of the nervous system. As questions and techniques evolve in the field of neuroscience, advances in PRV tracing will certainly follow. PMID:18280208

  1. Exploring the role of nerve growth factor in multiple sclerosis: implications in myelin repair.

    PubMed

    Acosta, C M R; Cortes, C; MacPhee, H; Namaka, M P

    2013-12-01

    Multiple sclerosis (MS) is a chronic disease resulting from targeted destruction of central nervous system (CNS) myelin. MS is suggested to be an autoimmune disease involving the pathogenic activation of CD4(+) T cells by a foreign antigen in the peripheral blood. The activated CD4(+) T cells liberate inflammatory cytokines that facilitate the breakdown of the blood-brain barrier (BBB) promoting their passage into the CNS. Inside the CNS, CD4(+) T cells become re-activated by myelin proteins sharing a similar structure to the foreign antigen that initially triggered the immune response. The CD4(+) T cells continue to liberate inflammatory cytokines, such as tumor necrosis factor α (TNFα), which activates macrophages and antibodies responsible for the phagocytosis of myelin. Acute CNS lesions can be re-myelinated, however, the repair of chronic demyelinating lesions is limited, leading to permanent neurological deficits. Although current MS treatments reduce severity and slow disease progression, they do not directly repair damaged myelin. Henceforth, recent treatment strategies have focused on neurotrophins, such as nerve growth factor (NGF) for myelin repair. NGF promotes axonal regeneration, survival, protection and differentiation of oligodendrocytes (OGs) and facilitates migration and proliferation of oligodendrocyte precursors (OPs) to the sites of myelin damage. NGF also directly regulates key structural proteins that comprise myelin. Interestingly, NGF also induces the production of brain-derived neurotrophic factor (BDNF), another integral neurotrophin involved in myelination. The intricate signaling between neurotrophins and cytokines that governs myelin repair supports the role of NGF as a leading therapeutic candidate in white matter disorders, such as MS.

  2. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    NASA Astrophysics Data System (ADS)

    Laulumaa, Saara; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  3. Current trends in autoimmunity and the nervous system.

    PubMed

    Selmi, Carlo; Barin, Jobert G; Rose, Noel R

    2016-12-01

    In the broad field of autoimmunity and clinical immunology, experimental evidence over the past few years have demonstrated several connections between the immune system and the nervous system, both central and peripheral, leading to the definition of neuroimmunology and of an immune-brain axis. Indeed, the central nervous system as an immune-privileged site, thanks to the blood-brain barrier, is no longer a dogma as the barrier may be altered during chronic inflammation with disruptive changes of endothelial cells and tight junctions, largely mediated by adenosine receptors and the expression of CD39/CD73. The diseases that encompass the neuroimmunology field vary from primary nervous diseases such as multiple sclerosis to systemic conditions with neuropsychiatric complications, such as systemic lupus erythematosus or vasculitidies. Despite potentially similar clinical manifestations, the pathogenesis of each condition is different, but the interaction between the ultra-specialized structure that is the nervous system and inflammation mediators are crucial. Two examples come from anti-dsDNA cross-reacting with anti-N-Methyl-d-Aspartate receptor (NMDAR) antibodies in neuropsychiatric lupus or the new family of antibody-associated neuronal autoimmune diseases including classic paraneoplastic syndromes with antibodies directed to intracellular antigens (Hu, Yo, Ri) and autoimmune encephalitis. In the case of multiple sclerosis, the T cell paradigm is now complicated by the growing evidence of a B cell involvement, particularly via aquaporin antibodies, and their influence on Th1 and Th17 lineages. Inspired by a productive AARDA-sponsored colloquium among experts we provide a critical review of the literature on the pathogenesis of different immune-mediated diseases with neurologic manifestations and we discuss the basic immunology of the central nervous system and the interaction between immune cells and the peripheral nervous system.

  4. Psychoneuroimmunology--cross-talk between the immune and nervous systems.

    PubMed

    Ziemssen, Tjalf; Kern, Simone

    2007-05-01

    Psychoneuroimmunology is a relatively new field of study that investigates interactions between behaviour and the immune system, mediated by the endocrine and nervous systems. The immune and central nervous system (CNS) maintain extensive communication. On the one hand, the brain modulates the immune system by hardwiring sympathetic and parasympathetic nerves (autonomic nervous system) to lymphoid organs. On the other hand, neuroendocrine hormones such as corticotrophin-releasing hormone or substance P regulate cytokine balance. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and immune system-mediated disease.

  5. Screening for novel central nervous system biomarkers in veterans with Gulf War Illness.

    PubMed

    Abou-Donia, Mohamed B; Conboy, Lisa A; Kokkotou, Efi; Jacobson, Eric; Elmasry, Eman M; Elkafrawy, Passent; Neely, Megan; Bass, Cameron R 'Dale'; Sullivan, Kimberly

    2017-03-09

    Gulf War illness (GWI) is primarily diagnosed by symptom report; objective biomarkers are needed that distinguish those with GWI. Prior chemical exposures during deployment have been associated in epidemiologic studies with altered central nervous system functioning in veterans with GWI. Previous studies from our group have demonstrated the presence of autoantibodies to essential neuronal and glial proteins in patients with brain injury and autoantibodies have been identified as candidate objective markers that may distinguish GWI. Here, we screened the serum of 20 veterans with GWI and 10 non-veteran symptomatic (low back pain) controls for the presence of such autoantibodies using Western blot analysis against the following proteins: neurofilament triplet proteins (NFP), tubulin, microtubule associated tau proteins (Tau), microtubule associated protein-2 (MAP-2), myelin basic protein (MBP), myelin associated glycoprotein (MAG), glial fibrillary acidic protein (GFAP), calcium-calmodulin kinase II (CaMKII) and glial S-100B protein. Serum reactivity was measured as arbitrary chemiluminescence units. As a group, veterans with GWI had statistically significantly higher levels of autoantibody reactivity in all proteins examined except S-100B. Fold increase of the cases relative to controls in descending order were: CaMKII 9.27, GFAP 6.60, Tau 4.83, Tubulin 4.41, MAG 3.60, MBP 2.50, NFP 2.45, MAP-2 2.30, S-100B 1.03. These results confirm the continuing presence of neuronal injury/gliosis in these veterans and are in agreement with the recent reports indicating that 25years after the war, the health of veterans with GWI is not improving and may be getting worse. Such serum autoantibodies may prove useful as biomarkers of GWI, upon validation of the findings using larger cohorts.

  6. Spatiotemporal development of the embryonic nervous system of Saccoglossus kowalevskii.

    PubMed

    Cunningham, Doreen; Casey, Elena Silva

    2014-02-01

    Defining the organization and temporal onset of key steps in neurogenesis in invertebrate deuterostomes is critical to understand the evolution of the bilaterian and deuterostome nervous systems. Although recent studies have revealed the organization of the nervous system in adult hemichordates, little attention has been paid to neurogenesis during embryonic development in this third major phylum of deuterostomes. We examine the early events of neural development in the enteropneust hemichordate Saccoglossus kowalevskii by analyzing the expression of 11 orthologs of key genes associated with neurogenesis in an expansive range of bilaterians. Using in situ hybridization (ISH) and RT-PCR, we follow the course of neural development to track the transition of the early embryonic diffuse nervous system to the more regionalized midline nervous system of the adult. We show that in Saccoglossus, neural progenitor markers are expressed maternally and broadly encircle the developing embryo. An increase in their expression and the onset of pan neural markers, indicate that neural specification occurs in late blastulae - early gastrulae. By mid-gastrulation, punctate expression of markers of differentiating neurons encircling the embryo indicate the presence of immature neurons, and at the end of gastrulation when the embryo begins to elongate, markers of mature neurons are expressed. At this stage, expression of a subset of neuronal markers is concentrated along the trunk ventral and dorsal midlines. These data indicate that the diffuse embryonic nervous system of Saccoglossus is transient and quickly reorganizes before hatching to resemble the adult regionalized, centralized nervous system. This regionalization occurs at a much earlier developmental stage than anticipated indicating that centralization is not linked in S. kowalevskii to a lifestyle change of a swimming larva metamorphosing to a crawling worm-like adult.

  7. Claudin-11 Tight Junctions in Myelin Are a Barrier to Diffusion and Lack Strong Adhesive Properties

    PubMed Central

    Denninger, Andrew R.; Breglio, Andrew; Maheras, Kathleen J.; LeDuc, Geraldine; Cristiglio, Viviana; Demé, Bruno; Gow, Alexander; Kirschner, Daniel A.

    2015-01-01

    The radial component is a network of interlamellar tight junctions (TJs) unique to central nervous system myelin. Ablation of claudin-11, a TJ protein, results in the absence of the radial component and compromises the passive electrical properties of myelin. Although TJs are known to regulate paracellular diffusion, this barrier function has not been directly demonstrated for the radial component, and some evidence suggests that the radial component may also mediate adhesion between myelin membranes. To investigate the physical properties of claudin-11 TJs, we compared fresh, unfixed Claudin 11-null and control nerves using x-ray and neutron diffraction. In Claudin 11-null tissue, we detected no changes in myelin structure, stability, or membrane interactions, which argues against the notion that myelin TJs exhibit significant adhesive properties. Moreover, our osmotic stressing and D2O-H2O exchange experiments demonstrate that myelin lacking claudin-11 is more permeable to water and small osmolytes. Thus, our data indicate that the radial component serves primarily as a diffusion barrier and elucidate the mechanism by which TJs govern myelin function. PMID:26445439

  8. Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination

    PubMed Central

    Chong, S. Y. Christin; Rosenberg, Sheila S.; Fancy, Stephen P. J.; Zhao, Chao; Shen, Yun-An A.; Hahn, Angela T.; McGee, Aaron W.; Xu, Xiaomei; Zheng, Binhai; Zhang, Li I.; Rowitch, David H.; Franklin, Robin J. M.; Lu, Q. Richard; Chan, Jonah R.

    2012-01-01

    A requisite component of nervous system development is the achievement of cellular recognition and spatial segregation through competition-based refinement mechanisms. Competition for available axon space by myelinating oligodendrocytes ensures that all relevant CNS axons are myelinated properly. To ascertain the nature of this competition, we generated a transgenic mouse with sparsely labeled oligodendrocytes and establish that individual oligodendrocytes occupying similar axon tracts can greatly vary the number and lengths of their myelin internodes. Here we show that intercellular interactions between competing oligodendroglia influence the number and length of myelin internodes, referred to as myelinogenic potential, and identify the amino-terminal region of Nogo-A, expressed by oligodendroglia, as necessary and sufficient to inhibit this process. Exuberant and expansive myelination/remyelination is detected in the absence of Nogo during development and after demyelination, suggesting that spatial segregation and myelin extent is limited by microenvironmental inhibition. We demonstrate a unique physiological role for Nogo-A in the precise myelination of the developing CNS. Maximizing the myelinogenic potential of oligodendrocytes may offer an effective strategy for repair in future therapies for demyelination. PMID:22160722

  9. Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination.

    PubMed

    Chong, S Y Christin; Rosenberg, Sheila S; Fancy, Stephen P J; Zhao, Chao; Shen, Yun-An A; Hahn, Angela T; McGee, Aaron W; Xu, Xiaomei; Zheng, Binhai; Zhang, Li I; Rowitch, David H; Franklin, Robin J M; Lu, Q Richard; Chan, Jonah R

    2012-01-24

    A requisite component of nervous system development is the achievement of cellular recognition and spatial segregation through competition-based refinement mechanisms. Competition for available axon space by myelinating oligodendrocytes ensures that all relevant CNS axons are myelinated properly. To ascertain the nature of this competition, we generated a transgenic mouse with sparsely labeled oligodendrocytes and establish that individual oligodendrocytes occupying similar axon tracts can greatly vary the number and lengths of their myelin internodes. Here we show that intercellular interactions between competing oligodendroglia influence the number and length of myelin internodes, referred to as myelinogenic potential, and identify the amino-terminal region of Nogo-A, expressed by oligodendroglia, as necessary and sufficient to inhibit this process. Exuberant and expansive myelination/remyelination is detected in the absence of Nogo during development and after demyelination, suggesting that spatial segregation and myelin extent is limited by microenvironmental inhibition. We demonstrate a unique physiological role for Nogo-A in the precise myelination of the developing CNS. Maximizing the myelinogenic potential of oligodendrocytes may offer an effective strategy for repair in future therapies for demyelination.

  10. Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination

    PubMed Central

    Natrajan, Muktha S.; de la Fuente, Alerie G.; Crawford, Abbe H.; Linehan, Eimear; Nuñez, Vanessa; Johnson, Kory R.; Wu, Tianxia; Fitzgerald, Denise C.; Ricote, Mercedes; Bielekova, Bibiana

    2015-01-01

    The efficiency of central nervous system remyelination declines with age. This is in part due to an age-associated decline in the phagocytic removal of myelin debris, which contains inhibitors of oligodendrocyte progenitor cell differentiation. In this study, we show that expression of genes involved in the retinoid X receptor pathway are decreased with ageing in both myelin-phagocytosing human monocytes and mouse macrophages using a combination of in vivo and in vitro approaches. Disruption of retinoid X receptor function in young macrophages, using the antagonist HX531, mimics ageing by reducing myelin debris uptake. Macrophage-specific RXRα (Rxra) knockout mice revealed that loss of function in young mice caused delayed myelin debris uptake and slowed remyelination after experimentally-induced demyelination. Alternatively, retinoid X receptor agonists partially restored myelin debris phagocytosis in aged macrophages. The agonist bexarotene, when used in concentrations achievable in human subjects, caused a reversion of the gene expression profile in multiple sclerosis patient monocytes to a more youthful profile and enhanced myelin debris phagocytosis by patient cells. These results reveal the retinoid X receptor pathway as a positive regulator of myelin debris clearance and a key player in the age-related decline in remyelination that may be targeted by available or newly-developed therapeutics. PMID:26463675

  11. Proteins in membrane mimetic systems. Insertion of myelin basic protein into microemulsion droplets.

    PubMed Central

    Chatenay, D; Urbach, W; Cazabat, A M; Vacher, M; Waks, M

    1985-01-01

    The insertion of myelin basic protein into microemulsion droplets of sodium bis (2-ethylhexyl) sulfosuccinate (AOT) has been studied by quasi-elastic light scattering. Measurements were made at both low and high molar ratios of water to surfactant, as a function of protein occupancy. The hydrodynamic radii of filled and empty droplets were experimentally evaluated. These were compared to values calculated using a water shell model of protein encapsulation, and excellent agreement was obtained. At low molar ratio of water to surfactant (w0 = 5.6), the hydrodynamic radius of filled droplets is significantly larger than the radius of empty ones. Under these conditions, about three empty (water-filled) droplets are required to build up a droplet of sufficient size to accommodate a single protein molecule. At maximum solubilization, which occurs at w0 = 5.6, a small fraction of droplets are found containing protein aggregates. In contrast, results at high values of w0 (22.4) reveal radii for empty and occupied droplets of comparable dimension, and the absence of aggregates. The results are discussed in terms of the model and the mechanism of interaction of this protein with the aqueous interfaces provided by these membrane-mimetic systems. PMID:2418890

  12. Inflammation and cutaneous nervous system involvement in hypertrophic scarring

    PubMed Central

    Li, Shao-hua; Yang, Heng-lian; Xiao, Hu; Wang, Yi-bing; Wang, De-chang; Huo, Ran

    2015-01-01

    This study aimed to use a mouse model of hypertrophic scarring by mechanical loading on the dorsum of mice to determine whether the nervous system of the skin and inflammation participates in hypertrophic scarring. Results of hematoxylin-eosin and immunohistochemical staining demonstrated that inflammation contributed to the formation of a hypertrophic scar and increased the nerve density in scar tissue.Western blot assay verified that interleukin-13 expression was increased in scar tissue. These findings suggest that inflammation and the cutaneous nervous system play a role in hypertrophic scar formation. PMID:26692869

  13. Neuroinflammation of the central and peripheral nervous system: an update.

    PubMed

    Stüve, O; Zettl, U

    2014-03-01

    Inflammatory disorders of the peripheral nervous system (PNS) and central nervous system (CNS) are common, and contribute substantially to physical and emotional disability of affected individuals. Often, the afflicted are young and in their active years. In the past, physicians and scientists often had very little to offer in terms of diagnostic precision and therapeutic effectiveness. During the past two decades, both of these relative shortcomings have clearly improved. Some of the recent developments in clinical neuroimmunology are illustrated in this special edition of Clinical and Experimental Immunology.

  14. Herpes virus infection of the peripheral nervous system.

    PubMed

    Steiner, Israel

    2013-01-01

    Among the human herpes viruses, three are neurotropic and capable of producing severe neurological abnormalities: herpes simplex virus type 1 and 2 (HSV-1 and HSV-2) and varicella-zoster virus (VZV). Both the acute, primary infection and the reactivation from the site of latent infection, the dorsal sensory ganglia, are associated with severe human morbidity and mortality. The peripheral nervous system is one of the major loci affected by these viruses. The present review details the virology and molecular biology underlying the human infection. This is followed by detailed description of the symtomatology, clinical presentation, diagnosis, course, therapy, and prognosis of disorders of the peripheral nervous system caused by these viruses.

  15. Benefits and risks of folic acid to the nervous system

    PubMed Central

    Reynolds, E

    2002-01-01

    During three decades of neurological practice I have witnessed a remarkable change in attitudes to the benefits and risks of folic acid therapy in nervous system disorders. In the 1960s all that was known and taught was that folic acid was harmful to the nervous system, especially in precipitating or exacerbating the neurological complications of vitamin B12 deficiency. So deeply held was this view that the possibility of neuropsychological benefits from this vitamin was initially viewed with considerable scepticism.1 PMID:11971038

  16. Novel RNA modifications in the nervous system: form and function.

    PubMed

    Satterlee, John S; Basanta-Sanchez, Maria; Blanco, Sandra; Li, Jin Billy; Meyer, Kate; Pollock, Jonathan; Sadri-Vakili, Ghazaleh; Rybak-Wolf, Agnieszka

    2014-11-12

    Modified RNA molecules have recently been shown to regulate nervous system functions. This mini-review and associated mini-symposium provide an overview of the types and known functions of novel modified RNAs in the nervous system, including covalently modified RNAs, edited RNAs, and circular RNAs. We discuss basic molecular mechanisms involving RNA modifications as well as the impact of modified RNAs and their regulation on neuronal processes and disorders, including neural fate specification, intellectual disability, neurodegeneration, dopamine neuron function, and substance use disorders.

  17. Brain-computer interface after nervous system injury.

    PubMed

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders.

  18. Sympathetic nervous system regulation of the tumour microenvironment

    PubMed Central

    Cole, Steven W.; Nagaraja, Archana S.; Lutgendorf, Susan K.; Green, Paige A.; Sood, Anil K.

    2016-01-01

    The peripheral autonomic nervous system (ANS) is known to regulate gene expression in primary tumours and their surrounding microenvironment. Activation of the sympathetic division of the ANS in particular modulates gene expression programs that promote metastasis of solid tumours by stimulating macrophage infiltration, inflammation, angiogenesis, epithelial-mesenchymal transition, and tumour invasion, and by inhibiting cellular immune responses and programmed cell death. Haematological cancers are modulated by sympathetic nervous system (SNS) regulation of stem cell biology and hematopoietic differentiation programs. In addition to identifying a molecular basis for physiologic stress effects on cancer, these findings have also identified new pharmacologic strategies to inhibit cancer progression in vivo. PMID:26299593

  19. Neuroinflammation of the central and peripheral nervous system: an update

    PubMed Central

    Stüve, O; Zettl, U

    2014-01-01

    Inflammatory disorders of the peripheral nervous system (PNS) and central nervous system (CNS) are common, and contribute substantially to physical and emotional disability of affected individuals. Often, the afflicted are young and in their active years. In the past, physicians and scientists often had very little to offer in terms of diagnostic precision and therapeutic effectiveness. During the past two decades, both of these relative shortcomings have clearly improved. Some of the recent developments in clinical neuroimmunology are illustrated in this special edition of Clinical and Experimental Immunology. PMID:24384012

  20. A myelin proteolipid protein-LacZ fusion protein is developmentally regulated and targeted to the myelin membrane in transgenic mice

    PubMed Central

    1993-01-01

    Transgenic mice were generated with a fusion gene carrying a portion of the murine myelin proteolipid protein (PLP) gene, including the first intron, fused to the E. coli LacZ gene. Three transgenic lines were derived and all lines expressed the transgene in central nervous system white matter as measured by a histochemical assay for the detection of beta-galactosidase activity. PLP-LacZ transgene expression was regulated in both a spatial and temporal manner, consistent with endogenous PLP expression. Moreover, the transgene was expressed specifically in oligodendrocytes from primary mixed glial cultures prepared from transgenic mouse brains and appeared to be developmentally regulated in vitro as well. Transgene expression occurred in embryos, presumably in pre- or nonmyelinating cells, rather extensively throughout the peripheral nervous system and within very discrete regions of the central nervous system. Surprisingly, beta- galactosidase activity was localized predominantly in the myelin in these transgenic animals, suggesting that the NH2-terminal 13 amino acids of PLP, which were present in the PLP-LacZ gene product, were sufficient to target the protein to the myelin membrane. Thus, the first half of the PLP gene contains sequences sufficient to direct both spatial and temporal gene regulation and to encode amino acids important in targeting the protein to the myelin membrane. PMID:8408224

  1. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    NASA Astrophysics Data System (ADS)

    Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.

    2015-11-01

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  2. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    SciTech Connect

    Shumilov, V. N. Syryamkin, V. I. Syryamkin, M. V.

    2015-11-17

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  3. Autonomic Nervous System in Viral Myocarditis: Pathophysiology and Therapy.

    PubMed

    Cheng, Zheng; Li-Sha, Ge; Yue-Chun, Li

    2016-01-01

    Myocarditis, which is caused by viral infection, can lead to heart failure, malignant arrhythmias, and even sudden cardiac death in young patients. It is also one of the most important causes of dilated cardiomyopathy worldwide. Although remarkable advances in diagnosis and understanding of pathophysiological mechanisms of viral myocarditis have been gained during recent years, no standard treatment strategies have been defined as yet. Fortunately, recent studies present some evidence that immunomodulating therapy is effective for myocarditis. The immunomodulatory effect of the autonomic nervous system has raised considerable interest over recent decades. Studying the influence on the inflammation and immune system of the sympathetic and parasympathetic nervous systems will not only increase our understanding of the mechanism of disease but could also lead to the identification of potential new therapies for viral myocarditis. Studies have shown that the immunomodulating effect of the sympathetic and parasympathetic nervous system is realized by the release of neurotransmitters to their corresponding receptors (catecholamine for α or β adrenergic receptor, acetylcholine for α7 nicotinic acetylcholinergic receptor). This review will discuss the current knowledge of the roles of both the sympathetic and parasympathetic nervous system in inflammation, with a special focus on their roles in viral myocarditis.

  4. The renin-angiotensin system and the central nervous system.

    PubMed

    Ganong, W F

    1977-04-01

    One of several factors affecting the secretion of renin by the kidneys is the sympathetic nervous system. The sympathetic input is excitatory and is mediated by beta-adrenergic receptors, which are probably located on the membranes of the juxtaglomerular cells. Stimulation of sympathetic areas in the medulla, midbrain and hypothalamus raises blood pressure and increases renin secretion, whereas stimulation of other parts of the hypothalamus decreases blood pressure and renin output. The centrally active alpha-adrenergic agonist clonidine decreases renin secretion, lowers blood pressure, inhibits ACTH and vasopressin secretion, and increases growth hormone secretion in dogs. The effects on ACTH and growth hormone are abolished by administration of phenoxybenzamine into the third ventricle, whereas the effect on blood pressure is abolished by administration of phenoxybenzamine in the fourth ventricle without any effect on the ACTH and growth hormone responses. Fourth ventricular phenoxybenzamine decreases but does not abolish the inhibitory effect of clonidine on renin secretion. Circulating angiotensin II acts on the brain via the area postrema to raise blood pressure and via the subfornical organ to increase water intake. Its effect on vasopressin secretion is debated. The brain contains a renin-like enzyme, converting enzyme, renin substrate, and angiotensin. There is debate about the nature and physiological significance of the angiotensin II-generating enzyme in the brain, and about the nature of the angiotensin I and angiotensin II that have been reported to be present in the central nervous system. However, injection of angiotensin II into the cerebral ventricles produces drinking, increased secretion of vasopressin and ACTH, and increased blood pressure. The same responses are produced by intraventricular renin. Angiotensin II also facilitates sympathetic discharge in the periphery, and the possibility that it exerts a similar action on the adrenergic neurons

  5. Immunocytochemical Detection of Acetylcholine in the Rat Central Nervous System

    NASA Astrophysics Data System (ADS)

    Geffard, M.; McRae-Degueurce, A.; Souan, Marie Laure

    1985-07-01

    A specific antibody to acetylcholine was raised and used as a marker for cholinergic neurons in the rat central nervous system. The acetylcholine conjugate was obtained by a two-step immunogen synthesis procedure. An enzyme-linked immunosorbent assay was used to test the specificity and affinity of the antibody in vitro; the results indicated high affinity. A chemical perfusion mixture of allyl alcohol and glutaraldehyde was used to fix the acetylcholine in the nervous tissue. Peroxidase-antiperoxidase immunocytochemistry showed many acetylcholine-immunoreactive cells and fibers in sections from the medial septum region.

  6. Central nervous system blastomycosis in a dog.

    PubMed

    Gaunt, M Casey; Taylor, Susan M; Kerr, Moira E

    2009-09-01

    An adult golden retriever was presented for progressive neurologic dysfunction. Clinical examination suggested brainstem disease. Blastomycosis was diagnosed based on fine-needle aspiration cytology of a normal sized lymph node and a positive blastomycosis urine antigen test. Systemic blastomycosis with neurologic involvement was confirmed at necropsy.

  7. Brain Facts: A Primer on the Brain and Nervous System.

    ERIC Educational Resources Information Center

    Carey, Joseph, Ed.

    This booklet describes only a glimpse of what is known about the nervous system, brain disorders, and the exciting avenues of research that promise new therapies for many of the most devastating neurological and psychiatric diseases. The neuron, brain development, sensation and perception, learning and memory, movement, advances and challenges in…

  8. The Role of Central Nervous System Plasticity in Tinnitus

    ERIC Educational Resources Information Center

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions.…

  9. Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.

    ERIC Educational Resources Information Center

    Wetherby, Amy Miller; And Others

    1981-01-01

    The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)

  10. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  11. THE SYMPATHETIC NERVOUS SYSTEM ALTERATIONS IN HUMAN HYPERTENSION

    PubMed Central

    Grassi, Guido; Mark, Allyn; Esler, Murray

    2015-01-01

    A number of articles have dealt with the importance and mechanisms of the sympathetic nervous system alterations in experimental animal models of hypertension. This review addresses the role of the sympathetic nervous system in the pathophysiology and therapy of human hypertension. We first discuss the strengths and limitations of various techniques for assessing the sympathetic nervous system in humans, with a focus on heart rate, plasma norepinephrine, microneurographic recording of sympathetic nerve traffic, and measurements of radiolabeled norepinephrine spillover. We then examine the evidence supporting the importance of neuroadrenergic factors as “promoters” and “amplifiers” of human hypertension. We expand on the role of the sympathetic nervous system in two increasingly common forms of secondary hypertension, namely hypertension associated with obesity and with renal disease. With this background, we examine interventions of sympathetic deactivation as a mode of antihypertensive treatment. Particular emphasis is given to the background and results of recent therapeutic approaches based on carotid baroreceptor stimulation and radiofrequency ablation of the renal nerves. PMID:25767284

  12. The Nervous System, Science (Experimental): 5363.02.

    ERIC Educational Resources Information Center

    Weiss, Alan; And Others

    This unit of instruction was designed as an intensive in-depth study of the nervous impulse, neurons, brain, spinal cord, and sensory organs. Also included is a study of the endocrine system in its role of maintaining homeostasis. The booklet lists the relevant state-adopted texts and states the performance objectives for the unit. It provides an…

  13. Aberrant nerve fibres within the central nervous system.

    PubMed

    Moffie, D

    1992-01-01

    Three cases of aberrant nerve fibres in the spinal cord and medulla oblongata are described. The literature on these fibres is discussed and their possible role in regeneration. Different views on the possibility of regeneration or functional recovery of the central nervous system are mentioned in the light of recent publications, which are more optimistic than before.

  14. Parasitic Central Nervous System Infections in Immunocompromised Hosts

    PubMed Central

    Walker, Melanie; Zunt, Joseph R.

    2009-01-01

    Immunosuppression due to therapy after transplantation or associated with HIV infection increases susceptibility to various central nervous system (CNS) infections. This article discusses how immunosuppression modifies the presentation, diagnosis, and treatment of selected parasitic CNS infections, with a focus on toxoplasmosis, Chagas disease, neurocysticercosis, schistosomiasis, and strongyloidiasis. PMID:15824993

  15. Nervous System Development and Pattern Preference in Infants.

    ERIC Educational Resources Information Center

    Woodruff, Diana S.; Gerrity, Kathleen M.

    This study examined behavioral correlates of the rapid central nervous system changes occurring in the first 4 months of life. It was hypothesized that during the early months of infancy, visual preference would occur as a function of quantitative dimensions of the stimuli (size) which could be mediated at a subcortical level. It was further…

  16. Pediatric central nervous system infections and inflammatory white matter disease.

    PubMed

    Silvia, Mary T; Licht, Daniel J

    2005-08-01

    This article reviews the immunology of the central nervous system and the clinical presentation, diagnosis, and treatment of children with viral or parainfectious encephalitis. The emphasis is on the early recognition of treatable causes of viral encephalitis (herpes simplex virus), and the diagnosis and treatment of acute disseminated encephalomyelitis are described in detail. Laboratory and imaging findings in the two conditions also are described.

  17. Nodal signalling and asymmetry of the nervous system.

    PubMed

    Signore, Iskra A; Palma, Karina; Concha, Miguel L

    2016-12-19

    The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left-right asymmetry of the nervous system.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.

  18. Altered hippocampal myelinated fiber integrity in a lithium-pilocarpine model of temporal lobe epilepsy: a histopathological and stereological investigation.

    PubMed

    Ye, Yuanzhen; Xiong, Jiajia; Hu, Jun; Kong, Min; Cheng, Li; Chen, Hengsheng; Li, Tingsong; Jiang, Li

    2013-07-19

    The damage of white matter, primarily myelinated fibers, in the central nervous system (CNS) of temporal lobe epilepsy (TLE) patients has been recently reported. However, limited data exist addressing the types of changes that occur to myelinated fibers inside the hippocampus as a result of TLE. The current study was designed to examine this issue in a lithium-pilocarpine rat model. Investigated by electroencephalography (EEG), Gallyas silver staining, immunohistochemistry, western blotting, transmission electron microscopy, and stereological methods, the results showed that hippocampal myelinated fibers of the epilepsy group were degenerated with significantly less myelin basic protein (MBP) expression relative to those of control group rats. Stereological analysis revealed that the total volumes of hippocampal formation, myelinated fibers, and myelin sheaths in the hippocampus of epilepsy group rats were decreased by 20.43%, 49.16%, and 52.60%, respectively. In addition, epilepsy group rats showed significantly greater mean diameters of myelinated fibers and axons, whereas the mean thickness of myelin sheaths was less, especially for small axons with diameters from 0.1 to 0.8µm, compared to control group rats. Finally, the total length of the myelinated fibers in the hippocampus of epilepsy group rats was significantly decreased by 56.92%, compared to that of the control group, with the decreased length most prominent for myelinated fibers with diameters from 0.4 to 0.8µm. This study is the first to provide experimental evidence that the integrity of hippocampal myelinated fibers is negatively affected by inducing epileptic seizures with pilocarpine, which may contribute to the abnormal propagation of epileptic discharge.

  19. TDP6, a brain-derived neurotrophic factor-based trkB peptide mimetic, promotes oligodendrocyte myelination.

    PubMed

    Wong, Agnes W; Giuffrida, Lauren; Wood, Rhiannon; Peckham, Haley; Gonsalvez, David; Murray, Simon S; Hughes, Richard A; Xiao, Junhua

    2014-11-01

    Brain-derived neurotrophic factor (BDNF) plays critical roles in the development and maintenance of the central (CNS) and peripheral nervous systems (PNS). BDNF exerts its biological effects via tropomyosin-related kinase B (TrkB) and the p75 neurotrophin receptor (p75NTR). We have recently identified that BDNF promotes CNS myelination via oligodendroglial TrkB receptors. In order to selectively target TrkB to promote CNS myelination, we have used a putative TrkB agonist, a small multicyclic peptide (tricyclic dimeric peptide 6, TDP6) previously described by us that structurally mimics a region of BDNF that binds TrkB. We confirmed that TDP6 acts as a TrkB agonist as it provoked autophosphorylation of TrkB and its downstream signalling effector extracellular related-kinase 1 and 2 (Erk1/2) in primary oligodendrocytes. Using an in vitro myelination assay, we show that TDP6 significantly promotes myelination by oligodendrocytes in vitro, as evidenced by enhanced myelin protein expression and an increased number of myelinated axonal segments. In contrast, a second, structurally distinct BDNF mimetic (cyclo-dPAKKR) that targets p75NTR had no effect upon oligodendrocyte myelination in vitro, despite the fact that cyclo-dPAKKR is a very effective promoter of peripheral (Schwann cell) myelination. The selectivity of TDP6 was further verified by using TrkB-deficient oligodendrocytes, in which TDP6 failed to promote myelination, indicating that the pro-myelinating effect of TDP6 is oligodendroglial TrkB-dependent. Together, our results demonstrate that TDP6 is a novel BDNF mimetic that promotes oligodendrocyte myelination in vitro via targeting TrkB.

  20. The Nervous Systems of Basally Branching Nemertea (Palaeonemertea)

    PubMed Central

    Beckers, Patrick; Loesel, Rudi; Bartolomaeus, Thomas

    2013-01-01

    In recent years, a lot of studies have been published dealing with the anatomy of the nervous system in different spiralian species. The only nemertean species investigated in this context probably shows derived characters and thus the conditions found there are not useful in inferring the relationship between nemerteans and other spiralian taxa. Ingroup relationships within Nemertea are still unclear, but there is some agreement that the palaeonemerteans form a basal, paraphyletic grade. Thus, palaeonemertean species are likely the most informative when comparing with other invertebrate groups. We therefore analyzed the nervous system of several palaeonemertean species by combining histology and immunostaining. 3D reconstructions based on the aligned slices were performed to get an overall impression of the central nervous system, and immunohistochemistry was chosen to reveal fine structures and to be able to compare the data with recently published results. The insights presented here permit a first attempt to reconstruct the primary organization of the nemertean nervous system. This comparative analysis allows substantiating homology hypotheses for nerves of the peripheral nervous system. This study also provides evidence that the nemertean brain primarily consists of two lobes connected by a strong ventral commissure and one to several dorsal commissures. During nemertean evolution, the brain underwent continuous compartmentalization into a pair of dorsal and ventral lobes interconnected by commissures and lateral tracts. Given that this conclusion can be corroborated by cladistic analyses, nemerteans should share a common ancestor with spiralians that primarily have a simple brain consisting of paired medullary, frontally commissurized and reinforced cords. Such an organization resembles the situation found in presumably basally branching annelids or mollusks. PMID:23785478

  1. [Radiation-induced tumors of the nervous system in man].

    PubMed

    Hubert, D; Bertin, M

    1993-11-01

    The risk of developing a tumor of the nervous system in humans is analysed in several studies of populations, exposed to ionising radiation for medical reasons, or exposed to military or occupational radiation. The main data come from series of patients who underwent radiotherapy during childhood: a high incidence of tumors of the nervous system is found after irradiation of one to a few grays as treatment of a benign disease (especially tinea capitis), as well as after irradiation at higher doses of a few tens of grays for the treatment of cancer (in particular cerebral irradiation in acute lymphoblastic leukaemia). The type of radiation-induced tumors is variable, but meningioma is more frequent after low doses and glioma and sarcoma after higher doses used in the treatment of neoplastic diseases. A dose-effect relationship appeared between the risk of tumor of the nervous system and the radiation dose. The risk was higher when radiation was delivered at a younger age. Much less data are available after radiotherapy in the adulthood, but an increased risk of cerebral tumor appears in the series of ankylosing spondylitis patients. As for the exposures to radiodiagnosis exams, the main problem is the risk of cerebral tumor in children whose mother has undergone abdominal or pelvic X-rays during pregnancy. No risk of neurologic tumor was found in the A-bomb survivors irradiated at Hiroshima and Nagasaki. Occupational exposure to ionising radiation has been incriminated in the first radiologists exposed to high doses. In nuclear industry workers, the results of epidemiological studies are contradictory and at the present time it is not possible to link their radiologic exposure with a risk of tumor of the nervous system. In populations living near nuclear plants, mortality due to tumors of the nervous system was not increased.

  2. The nervous systems of basally branching nemertea (palaeonemertea).

    PubMed

    Beckers, Patrick; Loesel, Rudi; Bartolomaeus, Thomas

    2013-01-01

    In recent years, a lot of studies have been published dealing with the anatomy of the nervous system in different spiralian species. The only nemertean species investigated in this context probably shows derived characters and thus the conditions found there are not useful in inferring the relationship between nemerteans and other spiralian taxa. Ingroup relationships within Nemertea are still unclear, but there is some agreement that the palaeonemerteans form a basal, paraphyletic grade. Thus, palaeonemertean species are likely the most informative when comparing with other invertebrate groups. We therefore analyzed the nervous system of several palaeonemertean species by combining histology and immunostaining. 3D reconstructions based on the aligned slices were performed to get an overall impression of the central nervous system, and immunohistochemistry was chosen to reveal fine structures and to be able to compare the data with recently published results. The insights presented here permit a first attempt to reconstruct the primary organization of the nemertean nervous system. This comparative analysis allows substantiating homology hypotheses for nerves of the peripheral nervous system. This study also provides evidence that the nemertean brain primarily consists of two lobes connected by a strong ventral commissure and one to several dorsal commissures. During nemertean evolution, the brain underwent continuous compartmentalization into a pair of dorsal and ventral lobes interconnected by commissures and lateral tracts. Given that this conclusion can be corroborated by cladistic analyses, nemerteans should share a common ancestor with spiralians that primarily have a simple brain consisting of paired medullary, frontally commissurized and reinforced cords. Such an organization resembles the situation found in presumably basally branching annelids or mollusks.

  3. Heterotopic ossification after central nervous system trauma

    PubMed Central

    Sullivan, M. P.; Torres, S. J.; Mehta, S.; Ahn, J.

    2013-01-01

    Neurogenic heterotopic ossification (NHO) is a disorder of aberrant bone formation affecting one in five patients sustaining a spinal cord injury or traumatic brain injury. Ectopic bone forms around joints in characteristic patterns, causing pain and limiting movement especially around the hip and elbow. Clinical sequelae of neurogenic heterotopic ossification include urinary tract infection, pressure injuries, pneumonia and poor hygiene, making early diagnosis and treatment clinically compelling. However, diagnosis remains difficult with more investigation needed. Our pathophysiological understanding stems from mechanisms of basic bone formation enhanced by evidence of systemic influences from circulating humor factors and perhaps neurological ones. This increasing understanding guides our implementation of current prophylaxis and treatment including the use of non-steroidal anti-inflammatory drugs, bisphosphonates, radiation therapy and surgery and, importantly, should direct future, more effective ones. PMID:23610702

  4. Oligodendrocyte-microglia cross-talk in the central nervous system.

    PubMed

    Peferoen, Laura; Kipp, Markus; van der Valk, Paul; van Noort, Johannes M; Amor, Sandra

    2014-03-01

    Communication between the immune system and the central nervous system (CNS) is exemplified by cross-talk between glia and neurons shown to be essential for maintaining homeostasis. While microglia are actively modulated by neurons in the healthy brain, little is known about the cross-talk between oligodendrocytes and microglia. Oligodendrocytes, the myelin-forming cells in the CNS, are essential for the propagation of action potentials along axons, and additionally serve to support neurons by producing neurotrophic factors. In demyelinating diseases such as multiple sclerosis, oligodendrocytes are thought to be the victims. Here, we review evidence that oligodendrocytes also have strong immune functions, express a wide variety of innate immune receptors, and produce and respond to chemokines and cytokines that modulate immune responses in the CNS. We also review evidence that during stress events in the brain, oligodendrocytes can trigger a cascade of protective and regenerative responses, in addition to responses that elicit progressive neurodegeneration. Knowledge of the cross-talk between microglia and oligodendrocytes may continue to uncover novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and degeneration.

  5. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models.

    PubMed Central

    Rice, D; Barone, S

    2000-01-01

    Vulnerable periods during the development of the nervous system are sensitive to environmental insults because they are dependent on the temporal and regional emergence of critical developmental processes (i.e., proliferation, migration, differentiation, synaptogenesis, myelination, and apoptosis). Evidence from numerous sources demonstrates that neural development extends from the embryonic period through adolescence. In general, the sequence of events is comparable among species, although the time scales are considerably different. Developmental exposure of animals or humans to numerous agents (e.g., X-ray irradiation, methylazoxymethanol, ethanol, lead, methyl mercury, or chlorpyrifos) demonstrates that interference with one or more of these developmental processes can lead to developmental neurotoxicity. Different behavioral domains (e.g., sensory, motor, and various cognitive functions) are subserved by different brain areas. Although there are important differences between the rodent and human brain, analogous structures can be identified. Moreover, the ontogeny of specific behaviors can be used to draw inferences regarding the maturation of specific brain structures or neural circuits in rodents and primates, including humans. Furthermore, various clinical disorders in humans (e.g., schizophrenia, dyslexia, epilepsy, and autism) may also be the result of interference with normal ontogeny of developmental processes in the nervous system. Of critical concern is the possibility that developmental exposure to neurotoxicants may result in an acceleration of age-related decline in function. This concern is compounded by the fact that developmental neurotoxicity that results in small effects can have a profound societal impact when amortized across the entire population and across the life span of humans. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 9 Figure 12 Figure 14 Figure 16 Figure 17 PMID:10852851

  6. Molecular clocks and the early evolution of metazoan nervous systems

    PubMed Central

    Wray, Gregory A.

    2015-01-01

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. PMID:26554040

  7. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation.

  8. Structure and stability of internodal myelin in mouse models of hereditary neuropathy.

    PubMed

    Avila, Robin L; Inouye, Hideyo; Baek, Rena C; Yin, Xinghua; Trapp, Bruce D; Feltri, M Laura; Wrabetz, Lawrence; Kirschner, Daniel A

    2005-11-01

    Peripheral neuropathies often result in abnormalities in the structure of internodal myelin, including changes in period and membrane packing, as observed by electron microscopy (EM). Mutations in the gene that encodes the major adhesive structural protein of internodal myelin in the peripheral nervous system of humans and mice--P0 glycoprotein--correlate with these defects. The mechanisms by which P0 mutations interfere with myelin packing and stability are not well understood and cannot be provided by EM studies that give static and qualitative information on fixed material. To gain insights into the pathogenesis of mutant P0, we used x-ray diffraction, which can detect more subtle and dynamic changes in native myelin, to investigate myelin structure in sciatic nerves from murine models of hereditary neuropathies. We used mice with disruption of one or both copies of the P0 gene (models of Charcot-Marie-Tooth-like neuropathy [CMT1B] or Dejerine-Sottas-like neuropathy) and mice with a CMT1B resulting from a transgene encoding P0 with an amino terminal myc-tag. To directly test the structural role of P0, we also examined a mouse that expresses P0 instead of proteolipid protein in central nervous system myelin. To link our findings on unfixed nerves with EM results, we analyzed x-ray patterns from unembedded, aldehyde-fixed nerves and from plastic-embedded nerves. From the x-ray patterns recorded from whole nerves, we assessed the amount of myelin and its quality (i.e. relative thickness and regularity). Among sciatic nerves having different levels of P0, we found that unfixed nerves and, to a lesser extent, fixed but unembedded nerves gave diffraction patterns of sufficient quality to distinguish periods, sometimes differing by a few Angstroms. Certain packing abnormalities were preserved qualitatively by aldehyde fixation, and the relative amount and structural integrity of myelin among nerves could be distinguished. Measurements from the same nerve over time

  9. Quest for the basic plan of nervous system circuitry

    PubMed Central

    Swanson, Larry W.

    2007-01-01

    The basic plan of nervous system organization has been investigated since classical antiquity. The first model centered on pneumas pumped from sensory nerves through the ventricular system and out motor nerves to muscles. It was popular well into the seventeenth century and diverted attention from the organization of brain parenchyma itself. Willis focused on gray matter production and white matter conduction of pneumas in 1664, and by the late nineteenth century a clear cellular model of nervous system organization based on sensory, motor, and association neuron classes transmitting nerve impulses was elaborated by Cajal and his contemporaries. Today, revolutionary advances in experimental pathway tracing methods, molecular genetics, and computer science inspire systems neuroscience. Seven minimal requirements are outlined for knowledge management systems capable of describing, analyzing, and modeling the basic plan of nervous system circuitry in general, and the plan evolved for vertebrates, for mammals, and ultimately for humans in particular. The goal remains a relatively simple, easy to understand model analogous to the one Harvey elaborated in 1628 for circulation in the cardiovascular system. As Cajal wrote in 1909, “To extend our understanding of neural function to the most complex human physiological and psychological activities, it is essential that we first generate a clear and accurate view of the structure of the relevant centers, and of the human brain itself, so that the basic plan—the overview—can be grasped in the blink of an eye.” PMID:17267046

  10. Quest for the basic plan of nervous system circuitry.

    PubMed

    Swanson, Larry W

    2007-10-01

    The basic plan of nervous system organization has been investigated since classical antiquity. The first model centered on pneumas pumped from sensory nerves through the ventricular system and out motor nerves to muscles. It was popular well into the 17th century and diverted attention from the organization of brain parenchyma itself. Willis focused on gray matter production and white matter conduction of pneumas in 1664, and by the late 19th century a clear cellular model of nervous system organization based on sensory, motor, and association neuron classes transmitting nerve impulses was elaborated by Cajal and his contemporaries. Today, revolutionary advances in experimental pathway tracing methods, molecular genetics, and computer science inspire systems neuroscience. Seven minimal requirements are outlined for knowledge management systems capable of describing, analyzing, and modeling the basic plan of nervous system circuitry in general, and the plan evolved for vertebrates, for mammals, and ultimately for humans in particular. The goal remains a relatively simple, easy to understand model analogous to the one Harvey elaborated in 1628 for blood circulation in the cardiovascular system. As Cajal wrote in 1909, "To extend our understanding of neural function to the most complex human physiological and psychological activities, it is essential that we first generate a clear and accurate view of the structure of the relevant centers, and of the human brain itself, so that the basic plan--the overview--can be grasped in the blink of an eye."

  11. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    PubMed

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy.

  12. Central nervous system involvement of polyarteritis nodosa: a case report.

    PubMed

    Altinok, D; Yildiz, Y T; Ruşen, E; Eryilmaz, M; Tacal, T

    2001-01-01

    Polyarteritis nodosa (PAN) is a necrotizing vasculitis involving small and medium-sized arteries and it affects multiple organ systems in the body Central nervous system (CNS) involvement appears less frequently, and usually develops after the disease is established. Although aneurysms are common in visceral arteries in PAN, intracranial aneurysms are uncommon and have been documented rarely. This case is reported to raise awareness among radiologists as it has characteristic and rare, if not specific, imaging findings of CNS involvement of PAN.

  13. Functional structure and dynamics of the human nervous system

    NASA Technical Reports Server (NTRS)

    Lawrence, J. A.

    1981-01-01

    The status of an effort to define the directions needed to take in extending pilot models is reported. These models are needed to perform closed-loop (man-in-the-loop) feedback flight control system designs and to develop cockpit display requirements. The approach taken is to develop a hypothetical working model of the human nervous system by reviewing the current literature in neurology and psychology and to develop a computer model of this hypothetical working model.

  14. Endoplasmic Reticulum Protein Quality Control Failure in Myelin Disorders

    PubMed Central

    Volpi, Vera G.; Touvier, Thierry; D'Antonio, Maurizio

    2017-01-01

    Reaching the correct three-dimensional structure is crucial for the proper function of a protein. The endoplasmic reticulum (ER) is the organelle where secreted and transmembrane proteins are synthesized and folded. To guarantee high fidelity of protein synthesis and maturation in the ER, cells have evolved ER-protein quality control (ERQC) systems, which assist protein folding and promptly degrade aberrant gene products. Only correctly folded proteins that pass ERQC checkpoints are allowed to exit the ER and reach their final destination. Misfolded glycoproteins are detected and targeted for degradation by the proteasome in a process known as endoplasmic reticulum-associated degradation (ERAD). The excess of unstructured proteins in the ER triggers an adaptive signal transduction pathway, called unfolded protein response (UPR), which in turn potentiates ERQC activities in order to reduce the levels of aberrant molecules. When the situation cannot be restored, the UPR drives cells to apoptosis. Myelin-forming cells of the central and peripheral nervous system (oligodendrocytes and Schwann cells) synthesize a large amount of myelin proteins and lipids and therefore are particularly susceptible to ERQC failure. Indeed, deficits in ERQC and activation of ER stress/UPR have been implicated in several myelin disorders, such as Pelizaeus-Merzbacher and Krabbe leucodystrophies, vanishing white matter disease and Charcot-Marie-Tooth neuropathies. Here we discuss recent evidence underlying the importance of proper ERQC functions in genetic disorders of myelinating glia. PMID:28101003

  15. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    NASA Technical Reports Server (NTRS)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  16. Enhanced Expression of Trib3 during the Development of Myelin Breakdown in dmy Myelin Mutant Rats

    PubMed Central

    Shimotsuma, Yukako; Tanaka, Miyuu; Izawa, Takeshi; Yamate, Jyoji; Kuwamura, Mitsuru

    2016-01-01

    The demyelination (dmy) rat exhibits hind limb ataxia and severe myelin breakdown in the central nervous system. The causative gene of dmy rats is the MRS2 magnesium transporter gene. Tribbles homolog 3 (Trib3) is a pseudokinase molecule that modifies certain signal pathways, and its expression is increased in response to various stresses. Here we sought to clarify the mechanism of myelin breakdown by focusing Trib3, which is remarkably up-regulated in dmy rats. The expression of Trib3 mRNA was significantly increased at 4, 5, 6, 7 and 8 weeks of age in the dmy rats, prior to the prominent myelin breakdown between 7 and 10 weeks of age. The expression level of Trib3 was increased concurrently with the progression of the clinical and pathological conditions in the dmy rats. Double immunofluorescence demonstrated that TRIB3 was mainly expressed in neurons and oligodendrocytes and localized in the Golgi apparatus. Our findings indicate that Trib3 may be associated with the pathogenic mechanism of dmy rats. PMID:27977799

  17. Introduction to 'Homology and convergence in nervous system evolution'.

    PubMed

    Strausfeld, Nicholas J; Hirth, Frank

    2016-01-05

    The origin of brains and central nervous systems (CNSs) is thought to have occurred before the Palaeozoic era 540 Ma. Yet in the absence of tangible evidence, there has been continued debate whether today's brains and nervous systems derive from one ancestral origin or whether similarities among them are due to convergent evolution. With the advent of molecular developmental genetics and genomics, it has become clear that homology is a concept that applies not only to morphologies, but also to genes, developmental processes, as well as to behaviours. Comparative studies in phyla ranging from annelids and arthropods to mammals are providing evidence that corresponding developmental genetic mechanisms act not only in dorso-ventral and anterior-posterior axis specification but also in segmentation, neurogenesis, axogenesis and eye/photoreceptor cell formation that appear to be conserved throughout the animal kingdom. These data are supported by recent studies which identified Mid-Cambrian fossils with preserved soft body parts that present segmental arrangements in brains typical of modern arthropods, and similarly organized brain centres and circuits across phyla that may reflect genealogical correspondence and control similar behavioural manifestations. Moreover, congruence between genetic and geological fossil records support the notion that by the 'Cambrian explosion' arthropods and chordates shared similarities in brain and nervous system organization. However, these similarities are strikingly absent in several sister- and outgroups of arthropods and chordates which raises several questions, foremost among them: what kind of natural laws and mechanisms underlie the convergent evolution of such similarities? And, vice versa: what are the selection pressures and genetic mechanisms underlying the possible loss or reduction of brains and CNSs in multiple lineages during the course of evolution? These questions were addressed at a Royal Society meeting to discuss

  18. Pharmacologic action of oseltamivir on the nervous system.

    PubMed

    Ishii, K; Hamamoto, H; Sasaki, T; Ikegaya, Y; Yamatsugu, K; Kanai, M; Shibasaki, M; Sekimizu, K

    2008-02-01

    Oseltamivir, an antiviral drug used for the treatment of influenza, contains the L-glutamic acid motif in its chemical structure. We focused on this structural characteristic of oseltamivir and examined the pharmacologic effects of the drug on the nervous system in invertebrate and vertebrate animal models. Injection of oseltamivir or L-glutamic acid into silkworm (Bombyx mori) larvae induced muscle relaxation. Oseltamivir and L-glutamic acid inhibited kainate-induced rapid muscle contraction, but neither drug affected insect cytokine paralytic peptide-induced slow muscle contraction. In the mammalian system, mice (Mus musculus) treated intracerebrally with oseltamivir developed convulsive seizures. Hydrolyzed oseltamivir, the active form containing a carboxylic acid, evoked epileptiform firing of hippocampal neurons in rat (Rattus norvegicus) organotypic hippocampal slice cultures. These results are the first to demonstrate that oseltamivir exerts pharmacologic effects on the nervous system in insects and mammals.

  19. [Pleasure, pain and affectivity in the nervous system].

    PubMed

    Houdart, R

    1999-01-01

    Affectivity plays an essential role in human life. It gives life its quality, and is responsible for what human beings have always considered to be main endeavor happiness. Still, looking for its description or organisation, in physiology or neurology, treatises is fruitless; there only one of its components is described pain, with no mention of pleasure. We wish to show, here, first, that pain and pleasure, depend of a same function, of which they are, of sorts, both extremities, and which in nothing but the most primitive function of the nervous system, and secondly, that this function in one of the components of an "affectivity center", which has its organisation in the limbic system. This center, integrating all the informations that arrives to the nervous system, triggers to each of them neuro-vegetative and neuro-hormonal informations that are "felt" by the organism, and thus transforms the information in a subjective feeling.

  20. Vulnerable periods and processes during central nervous system development.

    PubMed Central

    Rodier, P M

    1994-01-01

    The developing central nervous system (CNS) is the organ system most frequently observed to exhibit congenital abnormalities. While the developing CNS lacks a blood brain barrier, the characteristics of known teratogens indicate that differential doses to the developing vs mature brain are not the major factor in differential sensitivity. Instead, most agents seem to act on processes that occur only during development. Thus, it appears that the susceptibility of the developing brain compared to the mature one depends to a great extent on the presence of processes sensitive to disruption. Yet cell proliferation, migration, and differentiation characterize many other developing organs, so the difference between CNS and other organs must depend on other properties of the developing CNS. The most important of these is probably the fact that nervous system development takes much longer than development of other organs, making it subject to injury over a longer period. PMID:7925182

  1. Multigenic control of thyroid hormone functions in the nervous system

    PubMed Central

    Nunez, Jacques; Celi, Francesco S.; Ng, Lily; Forrest, Douglas

    2008-01-01

    Summary Thyroid hormone (TH) has a remarkable range of actions in the development and function of the nervous system. A multigenic picture is emerging of the mechanisms that specify these diverse functions in target tissues. Distinct responses are mediated by α and β isoforms of TH receptor which act as ligand-regulated transcription factors. Receptor activity can be regulated at several levels including that of uptake of TH ligand and the activation or inactivation of ligand by deiodinase enzymes in target tissues. Processes under the control of TH range from learning and anxiety-like behaviour to sensory function. At the cellular level, TH controls events as diverse as axonal outgrowth, hippocampal synaptic activity and the patterning of opsin photopigments necessary for colour vision. Overall, TH coordinates this variety of events in both central and sensory systems to promote the function of the nervous system as a complete entity. PMID:18448240

  2. The structure of the Lingo-1 ectodomain, a module implicated in central nervous system repair inhibition.

    PubMed

    Mosyak, Lidia; Wood, Andrew; Dwyer, Brian; Buddha, Madhavan; Johnson, Mark; Aulabaugh, Ann; Zhong, Xiaotian; Presman, Eleonora; Benard, Susan; Kelleher, Kerry; Wilhelm, James; Stahl, Mark L; Kriz, Ron; Gao, Ying; Cao, Zixuan; Ling, Huai-Ping; Pangalos, Menelas N; Walsh, Frank S; Somers, William S

    2006-11-24

    Nogo receptor (NgR)-mediated control of axon growth relies on the central nervous system-specific type I transmembrane protein Lingo-1. Interactions between Lingo-1 and NgR, along with a complementary co-receptor, result in neurite and axonal collapse. In addition, the inhibitory role of Lingo-1 is particularly important in regulation of oligodendrocyte differentiation and myelination, suggesting that pharmacological modulation of Lingo-1 function could be a novel approach for nerve repair and remyelination therapies. Here we report on the crystal structure of the ligand-binding ectodomain of human Lingo-1 and show it has a bimodular, kinked structure composed of leucine-rich repeat (LRR) and immunoglobulin (Ig)-like modules. The structure, together with biophysical analysis of its solution properties, reveals that in the crystals and in solution Lingo-1 persistently associates with itself to form a stable tetramer and that it is its LRR-Ig-composite fold that drives such assembly. Specifically, in the crystal structure protomers of Lingo-1 associate in a ring-shaped tetramer, with each LRR domain filling an open cleft in an adjacent protomer. The tetramer buries a large surface area (9,200 A2) and may serve as an efficient scaffold to simultaneously bind and assemble the NgR complex components during activation on a membrane. Potential functional binding sites that can be identified on the ectodomain surface, including the site of self-recognition, suggest a model for protein assembly on the membrane.

  3. Neuroprotective activity of thioctic acid in central nervous system lesions consequent to peripheral nerve injury.

    PubMed

    Tomassoni, Daniele; Amenta, Francesco; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Nwankwo, Innocent E; Pacini, Alessandra; Tayebati, Seyed Khosrow

    2013-01-01

    Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS) changes and if these changes are sensitive to treatment with thioctic acid. Thioctic acid is a naturally occurring antioxidant existing in two optical isomers (+)- and (-)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/-)-, (+)-, or (-)-thioctic acid. Oxidative stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of oxidative stress markers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed in SHR. This phenomenon was more pronounced after CCI. Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic acid being more active than (+/-)- or (-)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies.

  4. RNA-sequencing reveals oligodendrocyte and neuronal transcripts in microglia relevant to central nervous system disease

    PubMed Central

    Walker, Jason; Wylie, Todd; Magrini, Vincent; Apicelli, Anthony J.; Griffith, Malachi; Griffith, Obi L.; Kohsaka, Shinichi; Wu, Gregory F.; Brody, David L.; Mardis, Elaine R.; Gutmann, David H.

    2014-01-01

    Expression profiling of distinct central nervous system (CNS) cell populations has been employed to facilitate disease classification and to provide insights into the molecular basis of brain pathology. One important cell type implicated in a wide variety of CNS disease states is the resident brain macrophage (microglia). In these studies, microglia are often isolated from dissociated brain tissue by flow sorting procedures (FACS) or from postnatal glial cultures by mechanic isolation. Given the highly dynamic and state-dependent functions of these cells, the use of FACS or short-term culture methods may not accurately capture the biology of brain microglia. In the current study, we performed RNA-sequencing using Cx3cr1+/GFP labeled microglia isolated from the brainstem of 6-week old mice to compare the transcriptomes of FACS-sorted versus laser-captured (LCM) microglia. While both isolation techniques resulted in a large number of shared (common) transcripts, we identified transcripts unique to FACS-isolated and LCM-captured microglia. In particular, ~50% of these LCM-isolated microglial transcripts represented genes typically associated with neurons and glia. While these transcripts clearly localized to microglia using complementary methods, they were not translated into protein. Following the induction of murine experimental autoimmune encephalomyelitis (EAE), increased oligodendrocyte and neuronal transcripts were detected in microglia, while only the myelin basic protein oligodendrocyte transcript was increased in microglia after traumatic brain injury (TBI). Collectively, these findings have implications for the design and interpretation of microglia transcriptome-based investigations. PMID:25258010

  5. The role of the surface on microglia function: implications for central nervous system tissue engineering

    PubMed Central

    Pires, Liliana R.; Rocha, Daniela N.; Ambrosio, Luigi; Pêgo, Ana Paula

    2015-01-01

    In tissue engineering, it is well accepted that a scaffold surface has a decisive impact on cell behaviour. Here we focused on microglia—the resident immune cells of the central nervous system (CNS)—and on their response to poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) fibrous and flat surfaces obtained by electrospinning and solvent cast, respectively. This study aims to provide cues for the design of instructive surfaces that can contribute to the challenging process of CNS regeneration. Cell morphology was evidently affected by the substrate, mirroring the surface main features. Cells cultured on flat substrates presented a round shape, while cells with elongated processes were observed on the electrospun fibres. A higher concentration of the pro-inflammatory cytokine tumour necrosis factor-α was detected in culture media from microglia on fibres. Still, astrogliosis is not exacerbated when astrocytes are cultured in the presence of microglia-conditioned media obtained from cultures in contact with either substrate. Furthermore, a significant percentage of microglia was found to participate in the process of myelin phagocytosis, with the formation of multinucleated giant cells being observed only on films. Altogether, the results presented suggest that microglia in contact with the tested substrates may contribute to the regeneration process, putting forward P(TMC-CL) substrates as supporting matrices for nerve regeneration. PMID:25540243

  6. The role of the surface on microglia function: implications for central nervous system tissue engineering.

    PubMed

    Pires, Liliana R; Rocha, Daniela N; Ambrosio, Luigi; Pêgo, Ana Paula

    2015-02-06

    In tissue engineering, it is well accepted that a scaffold surface has a decisive impact on cell behaviour. Here we focused on microglia-the resident immune cells of the central nervous system (CNS)-and on their response to poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) fibrous and flat surfaces obtained by electrospinning and solvent cast, respectively. This study aims to provide cues for the design of instructive surfaces that can contribute to the challenging process of CNS regeneration. Cell morphology was evidently affected by the substrate, mirroring the surface main features. Cells cultured on flat substrates presented a round shape, while cells with elongated processes were observed on the electrospun fibres. A higher concentration of the pro-inflammatory cytokine tumour necrosis factor-α was detected in culture media from microglia on fibres. Still, astrogliosis is not exacerbated when astrocytes are cultured in the presence of microglia-conditioned media obtained from cultures in contact with either substrate. Furthermore, a significant percentage of microglia was found to participate in the process of myelin phagocytosis, with the formation of multinucleated giant cells being observed only on films. Altogether, the results presented suggest that microglia in contact with the tested substrates may contribute to the regeneration process, putting forward P(TMC-CL) substrates as supporting matrices for nerve regeneration.

  7. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation.

    PubMed

    Zolezzi, Juan M; Santos, Manuel J; Bastías-Candia, Sussy; Pinto, Claudio; Godoy, Juan A; Inestrosa, Nibaldo C

    2017-02-20

    Over 25 years have passed since peroxisome proliferators-activated receptors (PPARs), were first described. Like other members of the nuclear receptors superfamily, PPARs have been defined as critical sensors and master regulators of cellular metabolism. Recognized as ligand-activated transcription factors, they are involved in lipid, glucose and amino acid metabolism, taking part in different cellular processes, including cellular differentiation and apoptosis, inflammatory modulation and attenuation of acute and chronic neurological damage in vivo and in vitro. Interestingly, PPAR activation can simultaneously reprogram the immune response, stimulate metabolic and mitochondrial functions, promote axonal growth, induce progenitor cells to differentiate into myelinating oligodendrocytes, and improve brain clearance of toxic molecules such as β-amyloid peptide. Although the molecular mechanisms and cross-talk with different molecular pathways are still the focus of intense research, PPARs are considered potential therapeutic targets for several neuropathological conditions, including degenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. This review considers recent advances regarding PPARs, as well as new PPAR agonists. We focus on the mechanisms behind the neuroprotective effects exerted by PPARs and summarise the roles of PPARs in different pathologies of the central nervous system, especially those associated with degenerative and inflammatory mechanisms.

  8. Vitamin C transport and its role in the central nervous system

    PubMed Central

    May, James M.

    2013-01-01

    Vitamin C, or ascorbic acid, is important as an antioxidant and participates in numerous cellular functions. Although it circulates in plasma in micromolar concentrations, it reaches millimolar concentrations in most tissues. These high ascorbate cellular concentrations are thought to be generated and maintained by the SVCT2 (Slc23a2), a specific transporter for ascorbate. The vitamin is also readily recycled from its oxidized forms inside cells. Neurons in the central nervous system (CNS) contain some of the highest ascorbic acid concentrations of mammalian tissues. Intracellular ascorbate serves several functions in the CNS, including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. The importance of the SVCT2 for CNS function is supported by the finding that its targeted deletion in mice causes widespread cerebral hemorrhage and death on post-natal day one. Neuronal ascorbate content as maintained by this protein also has relevance for human disease, since ascorbate supplements decrease infarct size in ischemia-reperfusion injury models of stroke, and since ascorbate may protect neurons from the oxidant damage associated with neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis and the extent to which ascorbate affects brain function and antioxidant defenses in the CNS. PMID:22116696

  9. Neuroprotective Activity of Thioctic Acid in Central Nervous System Lesions Consequent to Peripheral Nerve Injury

    PubMed Central

    Ghelardini, Carla; Nwankwo, Innocent E.; Pacini, Alessandra

    2013-01-01

    Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS) changes and if these changes are sensitive to treatment with thioctic acid. Thioctic acid is a naturally occurring antioxidant existing in two optical isomers (+)- and (−)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/−)-, (+)-, or (−)-thioctic acid. Oxidative stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of oxidative stress markers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed in SHR. This phenomenon was more pronounced after CCI. Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic acid being more active than (+/−)- or (−)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies. PMID:24527432

  10. D-Amino Acids in the Nervous and Endocrine Systems

    PubMed Central

    Kiriyama, Yoshimitsu

    2016-01-01

    Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA) receptors are associated with learning and memory. D-Serine, D-aspartate, and D-alanine can all bind to NMDA receptors. H2S generated from D-cysteine reduces disulfide bonds in receptors and potentiates their activity. Aberrant receptor activity is related to diseases of the central nervous system (CNS), such as Alzheimer's disease, amyotrophic lateral sclerosis, and schizophrenia. Furthermore, D-amino acids are detected in parts of the endocrine system, such as the pineal gland, hypothalamus, pituitary gland, pancreas, adrenal gland, and testis. D-Aspartate is being investigated for the regulation of hormone release from various endocrine organs. Here we focused on recent findings regarding the synthesis and physiological functions of D-amino acids in the nervous and endocrine systems. PMID:28053803

  11. AAV-Mediated Gene Delivery in a Feline Model of Sandhoff Disease Corrects Lysosomal Storage in the Central Nervous System

    PubMed Central

    Rockwell, Hannah E.; McCurdy, Victoria J.; Eaton, Samuel C.; Wilson, Diane U.; Johnson, Aime K.; Randle, Ashley N.; Bradbury, Allison M.; Gray-Edwards, Heather L.; Baker, Henry J.; Hudson, Judith A.; Cox, Nancy R.; Sena-Esteves, Miguel; Seyfried, Thomas N.

    2015-01-01

    Sandhoff disease (SD) is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the β-subunit of β-N-acetylhexosaminidase (Hex), resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV) vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV) injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients. PMID:25873306

  12. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish

    PubMed Central

    Ashikawa, Yoshifumi; Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish

  13. N,N-diethyldithiocarbamate promotes oxidative stress prior to myelin structural changes and increases myelin copper content

    SciTech Connect

    Viquez, Olga M.; Lai, Barry; Ahn, Jae Hee; Does, Mark D.; Valentine, Holly L.; Valentine, William M.

    2009-08-15

    dithiocarbamate-mediated inhibition of proteasome function and inhibition of cuproenzyme activity to neurotoxicity, and also to assess the potential of dithiocarbamates to promote oxidative stress and injury within the central nervous system. These evaluations were performed using an established model for dithiocarbamate-mediated demyelination in the rat utilizing sciatic nerve, spinal cord and brain samples obtained from rats exposed to N,N-diethyldithiocarbamate (DEDC) by intra-abdominal pumps for periods of 2, 4, and 8 weeks and from non exposed controls. The data supported the ability of DEDC to increase copper within myelin and to enhance oxidative stress prior to structural changes detectable by MET{sub 2}. Evidence was also obtained that the excess copper produced by DEDC in the central nervous system is redox active and promotes oxidative injury.

  14. N,N-diethyldithiocarbamate promotes oxidative stress prior to myelin structural changes and increases myelin copper content.

    PubMed

    Viquez, Olga M; Lai, Barry; Ahn, Jae Hee; Does, Mark D; Valentine, Holly L; Valentine, William M

    2009-08-15

    -mediated inhibition of proteasome function and inhibition of cuproenzyme activity to neurotoxicity, and also to assess the potential of dithiocarbamates to promote oxidative stress and injury within the central nervous system. These evaluations were performed using an established model for dithiocarbamate-mediated demyelination in the rat utilizing sciatic nerve, spinal cord and brain samples obtained from rats exposed to N,N-diethyldithiocarbamate (DEDC) by intra-abdominal pumps for periods of 2, 4, and 8 weeks and from non exposed controls. The data supported the ability of DEDC to increase copper within myelin and to enhance oxidative stress prior to structural changes detectable by MET(2). Evidence was also obtained that the excess copper produced by DEDC in the central nervous system is redox active and promotes oxidative injury.

  15. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed Central

    Cabral, Agustina; López Soto, Eduardo J.; Epelbaum, Jacques; Perelló, Mario

    2017-01-01

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals. PMID:28294994

  16. Fiber optic in vivo imaging in the mammalian nervous system

    PubMed Central

    Mehta, Amit D; Jung, Juergen C; Flusberg, Benjamin A; Schnitzer, Mark J

    2010-01-01

    The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications. PMID:15464896

  17. Neuroimmune interactions: dendritic cell modulation by the sympathetic nervous system.

    PubMed

    Takenaka, Maisa C; Guereschi, Marcia G; Basso, Alexandre S

    2017-02-01

    Dendritic cells are of paramount importance bridging innate and adaptive immune responses. Depending on the context, after sensing environmental antigens, commensal microorganisms, pathogenic agents, or antigens from the diet, dendritic cells may drive either different effector adaptive immune responses or tolerance, avoiding tissue damage. Although the plasticity of the immune response and the capacity to regulate itself are considered essential to orchestrate appropriate physiological responses, it is known that the nervous system plays a relevant role controlling immune cell function. Dendritic cells present in the skin, the intestine, and lymphoid organs, besides expressing adrenergic receptors, can be reached by neurotransmitters released by sympathetic fibers innervating these tissues. These review focus on how neurotransmitters from the sympathetic nervous system can modulate dendritic cell function and how this may impact the immune response and immune-mediated disorders.

  18. High-throughput screening in the C. elegans nervous system.

    PubMed

    Kinser, Holly E; Pincus, Zachary

    2016-06-03

    The nematode Caenorhabditis elegans is widely used as a model organism in the field of neurobiology. The wiring of the C. elegans nervous system has been entirely mapped, and the animal's optical transparency allows for in vivo observation of neuronal activity. The nematode is also small in size, self-fertilizing, and inexpensive to cultivate and maintain, greatly lending to its utility as a whole-animal model for high-throughput screening (HTS) in the nervous system. However, the use of this organism in large-scale screens presents unique technical challenges, including reversible immobilization of the animal, parallel single-animal culture and containment, automation of laser surgery, and high-throughput image acquisition and phenotyping. These obstacles require significant modification of existing techniques and the creation of new C. elegans-based HTS platforms. In this review, we outline these challenges in detail and survey the novel technologies and methods that have been developed to address them.

  19. Nanoneuromedicines for Degenerative, Inflammatory, and Infectious Nervous System Diseases

    PubMed Central

    Gendelman, Howard E.; Anantharam, Vellareddy; Bronich, Tatiana; Ghaisas, Shivani; Jin, Huajun; Kanthasamy, Anumantha G.; Liu, Xinming; McMillan, JoEllyn; Mosley, R. Lee; Narasimhan, Balaji; Mallapragada, Surya K.

    2015-01-01

    Interest in nanoneuromedicine has grown rapidly due to the immediate need for improved biomarkers and therapies for psychiatric, developmental, traumatic, inflammatory, infectious and degenerative nervous system disorders. These, in whole or in part, are a significant societal burden due to growth in numbers of affected people and in disease severity. Lost productivity of the patient and his or her caregiver, and the emotional and financial burden cannot be overstated. The need for improved health care, treatment and diagnostics are immediate. A means to such an end is nanotechnology. Indeed, recent developments of health-care enabling nanotechnologies and nanomedicines range from biomarker discovery including neuroimaging to therapeutic applications for degenerative, inflammatory and infectious disorders of the nervous system. This review focuses on the current and future potential of the field to positively affect clinical outcomes. PMID:25645958

  20. Neurogenesis during development of the vertebrate central nervous system

    PubMed Central

    Paridaen, Judith TML; Huttner, Wieland B

    2014-01-01

    During vertebrate development, a wide variety of cell types and tissues emerge from a single fertilized oocyte. One of these tissues, the central nervous system, contains many types of neurons and glial cells that were born during the period of embryonic and post-natal neuro- and gliogenesis. As to neurogenesis, neural progenitors initially divide symmetrically to expand their pool and switch to asymmetric neurogenic divisions at the onset of neurogenesis. This process involves various mechanisms involving intrinsic as well as extrinsic factors. Here, we discuss the recent advances and insights into regulation of neurogenesis in the developing vertebrate central nervous system. Topics include mechanisms of (a)symmetric cell division, transcriptional and epigenetic regulation, and signaling pathways, using mostly examples from the developing mammalian neocortex. PMID:24639559

  1. Enrico Sereni: research on the nervous system of cephalopods.

    PubMed

    De Leo, A

    2008-01-01

    This essay focuses on a paradigmatic moment in neurobiological studies of invertebrates: the research on the nervous system of cephalopods carried out by Enrico Sereni at the Naples Zoological Station between 1925 and 1931. Although he remained unknown on the historiographic scenario, probably due to his early death, he contributed to Italian science of the first half of the twentieth century. In my paper particular attention will be given to Sereni's study on the pigmentary-effector, neurohumoral, and peripheral nervous systems, since they also accounted for the historical foundation of the experimental vein that, through the years, would lead John Zachary Young, Sereni's follower, to the most well-known discovery of the giant nerve fibers.

  2. Central nervous system histoplasmosis in an immunocompetent pediatric patient.

    PubMed

    Esteban, Ignacio; Minces, Pablo; De Cristofano, Analía M; Negroni, Ricardo

    2016-06-01

    Neurohistoplasmosis is a rare disease, most prevalent in immunosuppressed patients, secondary to disseminated disease with a high mortality rate when diagnosis and treatment are delayed. We report a previously healthy 12 year old girl, from a bat infested region of Tucuman Province, Argentine Republic, who developed meningoencephalitis due to Histoplasma capsulatum. Eighteen months prior to admission the patient started with headaches and intermittent fever. The images of the central nervous system showed meningoencephalitis suggestive of tuberculosis. She received antibiotics and tuberculostatic medications without improvement. Liposomal amphotericin B was administered for six weeks. The patient's clinical status improved remarkably. Finally the culture of cerebral spinal fluid was positive for micelial form of Histoplasma capsulatum. The difficulties surrounding the diagnosis and treatment of neurohistoplasmosis in immunocompetent patients are discussed in this manuscript, as it also intends to alert to the presence of a strain of Histoplasma capsulatum with affinity for the central nervous system.

  3. Music and Autonomic Nervous System (Dys)function

    PubMed Central

    Ellis, Robert J.; Thayer, Julian F.

    2010-01-01

    Despite a wealth of evidence for the involvement of the autonomic nervous system (ANS) in health and disease and the ability of music to affect ANS activity, few studies have systematically explored the therapeutic effects of music on ANS dysfunction. Furthermore, when ANS activity is quantified and analyzed, it is usually from a point of convenience rather than from an understanding of its physiological basis. After a review of the experimental and therapeutic literatures exploring music and the ANS, a “Neurovisceral Integration” perspective on the interplay between the central and autonomic nervous systems is introduced, and the associated implications for physiological, emotional, and cognitive health are explored. The construct of heart rate variability is discussed both as an example of this complex interplay and as a useful metric for exploring the sometimes subtle effect of music on autonomic response. Suggestions for future investigations using musical interventions are offered based on this integrative account. PMID:21197136

  4. Neurotropic Enterovirus Infections in the Central Nervous System

    PubMed Central

    Huang, Hsing-I; Shih, Shin-Ru

    2015-01-01

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells. PMID:26610549

  5. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  6. Neurotropic Enterovirus Infections in the Central Nervous System.

    PubMed

    Huang, Hsing-I; Shih, Shin-Ru

    2015-11-24

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.

  7. Measurement of autophagy flux in the nervous system in vivo

    PubMed Central

    Castillo, K; Valenzuela, V; Matus, S; Nassif, M; Oñate, M; Fuentealba, Y; Encina, G; Irrazabal, T; Parsons, G; Court, F A; Schneider, B L; Armentano, D; Hetz, C

    2013-01-01

    Accurate methods to measure autophagic activity in vivo in neurons are not available, and most of the studies are based on correlative and static measurements of autophagy markers, leading to conflicting interpretations. Autophagy is an essential homeostatic process involved in the degradation of diverse cellular components including organelles and protein aggregates. Autophagy impairment is emerging as a relevant factor driving neurodegeneration in many diseases. Moreover, strategies to modulate autophagy have been shown to provide protection against neurodegeneration. Here we describe a novel and simple strategy to express an autophagy flux reporter in the nervous system of adult animals by the intraventricular delivery of adeno-associated viruses (AAV) into newborn mice. Using this approach we efficiently expressed a monomeric tandem mCherry-GFP-LC3 construct in neurons of the peripheral and central nervous system, allowing the measurement of autophagy activity in pharmacological and disease settings. PMID:24232093

  8. Observations on the morphology at the transition between the peripheral and the central nervous system in the cat. V. A light microscopical and histochemical study of S1 dorsal rootlets in developing kittens.

    PubMed

    Berthold, C H; Carlstedt, T

    1977-01-01

    The postnatal development of the transitional region (TR) i.e. the proximal free part of a spinal rootlet that contains both PNS and CNS tissue, was studied light-microscopically in semi-thin sections and after histochemical staining according to the Marchi and OTAN methods for the demonstration of degenerating myelin and according to the Gomori method for the demonstration of acid phosphatase activity. In the newborn kitten the PNS tissue extended well up to the spinal cord surface and the rootlets lacked a transitional region. The CNS tissue entered the root during the second postnatal week, and a trasitional region was fully established at the beginning of the second month. The degree of myelination in the group of large fibres differed on the two sides of the PNS-CNS borderline: well myelinated PNS fibres were transformed into poorly myelinated or apparently unmyelinated CNS-fibres. PNS and CNS myelin sheaths of large fibres appeared to be of equal thickness in the 4 week old kitten. During the first postnatal month large amounts of Marchi positive material and a high acid phosphatase activity occurred in complex paranodes and very short internodes in the PNS compartment just distally to the PNS-CNS borderline. In the adult cat Marchi positive bodies were numerous in the CNS compartment just proximally to the PNS-CNS borderline. The results are discussed against previous studies on focal demyelination as found during the normal development of the feline peripheral nervous system.

  9. Atypical presentation of pheochromocytoma: Central nervous system pseudovasculitis

    PubMed Central

    Rupala, Ketankumar; Mittal, Varun; Gupta, Rajiv; Yadav, Rajiv

    2017-01-01

    Pheochromocytoma has atypical presentation in 9%–10% of patients. Atypical presentations include myocardial infarction, renal failure, and rarely cerebrovascular events. Various etiologies for central nervous system (CNS) involvement in pheochromocytoma have been described in the literature. A rare association of CNS vasculitis-like features has been described with pheochromocytoma. We report a rare case of pheochromocytoma detected on evaluation for CNS vasculitis-like symptoms. PMID:28197038

  10. FoxO Proteins in the Nervous System

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Acute as well as chronic disorders of the nervous system lead to significant morbidity and mortality for millions of individuals globally. Given the ability to govern stem cell proliferation and differentiated cell survival, mammalian forkhead transcription factors of the forkhead box class O (FoxO) are increasingly being identified as potential targets for disorders of the nervous system, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and auditory neuronal disease. FoxO proteins are present throughout the body, but they are selectively expressed in the nervous system and have diverse biological functions. The forkhead O class transcription factors interface with an array of signal transduction pathways that include protein kinase B (Akt), serum- and glucocorticoid-inducible protein kinase (SgK), IκB kinase (IKK), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), growth factors, and Wnt signaling that can determine the activity and integrity of FoxO proteins. Ultimately, there exists a complex interplay between FoxO proteins and their signal transduction pathways that can significantly impact programmed cell death pathways of apoptosis and autophagy as well as the development of clinical strategies for the treatment of neurodegenerative disorders. PMID:26171319

  11. Functional roles of neuropeptides in the insect central nervous system

    NASA Astrophysics Data System (ADS)

    Nässel, D. R.

    With the completion of the Drosophila genome sequencing project we can begin to appreciate the extent of the complexity in the components involved in signal transfer and modulation in the nervous system of an animal with reasonably complex behavior. Of all the different classes of signaling substances utilized by the nervous system, the neuropeptides are the most diverse structurally and functionally. Thus peptidergic mechanisms of action in the central nervous system need to be analyzed in the context of the neuronal circuits in which they act and generalized traits cannot be established. By taking advantage of Drosophila molecular genetics and the presence of identifiable neurons, it has been possible to interfere with peptidergic signaling in small populations of central neurons and monitor the consequences on behavior. These studies and experiments on other insects with large identifiable neurons, permitting cellular analysis of signaling mechanisms, have outlined important principles for temporal and spatial action of neuropeptides in outputs of the circadian clock and in orchestrating molting behavior. Considering the large number of neuropeptides available in each insect species and their diverse distribution patterns, it is to be expected that different neuropeptides play roles in most aspects of insect physiology and behavior.

  12. Centralization of the deuterostome nervous system predates chordates.

    PubMed

    Nomaksteinsky, Marc; Röttinger, Eric; Dufour, Héloïse D; Chettouh, Zoubida; Lowe, Chris J; Martindale, Mark Q; Brunet, Jean-François

    2009-08-11

    The origin of the chordate central nervous system (CNS) is unknown. One theory is that a CNS was present in the first bilaterian and that it gave rise to both the ventral cord of protostomes and the dorsal cord of deuterostomes. Another theory proposes that the chordate CNS arose by a dramatic process of dorsalization and internalization from a diffuse nerve net coextensive with the skin of the animal, such as enteropneust worms (Hemichordata, Ambulacraria) are supposed to have. We show here that juvenile and adult enteropneust worms in fact have a bona fide CNS, i.e., dense agglomerations of neurons associated with a neuropil, forming two cords, ventral and dorsal. The latter is internalized in the collar as a chordate-like neural tube. Contrary to previous assumptions, the greater part of the adult enteropneust skin is nonneural, although elements of the peripheral nervous system (PNS) are found there. We use molecular markers to show that several neuronal types are anatomically segregated in the CNS and PNS. These neuroanatomical features, whatever their homologies with the chordate CNS, imply that nervous system centralization predates the evolutionary separation of chordate and hemichordate lineages.

  13. Heterogeneity of nervous system mitochondria: location, location, location!

    PubMed

    Dubinsky, Janet M

    2009-08-01

    Mitochondrial impairments have been associated with many neurological disorders, from inborn errors of metabolism or genetic disorders to age and environmentally linked diseases of aging (DiMauro S., Schon E.A. 2008. Mitochondrial disorders in the nervous system. Annu. Rev., Neurosci. 31, 91-123.). In these disorders, specific nervous system components or brain regions appear to be initially more susceptible to the triggering event or pathological process. Such regional variation in susceptibility to multiple types of stressors raises the possibility that inherent differences in mitochondrial function may mediate some aspect of pathogenesis. Regional differences in the distribution or number of mitochondria, mitochondrial enzyme activities, enzyme expression levels, mitochondrial genes or availability of necessary metabolites become attractive explanations for selective vulnerability of a nervous system structure. While regionally selective mitochondrial vulnerability has been documented, regional variations in other cellular and tissue characteristics may also contribute to metabolic impairment. Such environmental variables include high tonic firing rates, neurotransmitter phenotype, location of mitochondria within a neuron, or the varied tissue perfusion pressure of different cerebral arterial branches. These contextual variables exert regionally distinct regulatory influences on mitochondria to tune their energy production to local demands. Thus to understand variations in mitochondrial functioning and consequent selective vulnerability to injury, the organelle must be placed within the context of its cellular, functional, developmental and neuroanatomical environment.

  14. Gangliosides in the Nervous System: Biosynthesis and Degradation

    NASA Astrophysics Data System (ADS)

    Yu, Robert K.; Ariga, Toshio; Yanagisawa, Makoto; Zeng, Guichao

    Gangliosides, abundant in the nervous system, are known to play crucial modulatory roles in cellular recognition, interaction, adhesion, and signal transduction, particularly during early developmental stages. The expression of gangliosides in the nervous system is developmentally regulated and is closely related to the differentiation state of the cell. Ganglioside biosynthesis occurs in intracellular organelles, from which gangliosides are transported to the plasma membrane. During brain development, the ganglioside composition of the nervous system undergoes remarkable changes and is strictly regulated by the activities of glycosyltransferases, which can occur at different levels of control, including glycosyltransferase gene transcription and posttranslational modification. Genes for glycosyltransferase involved in ganglioside biosynthesis have been cloned and classified into families of glycosyltransferases based on their amino acid sequence similarities. The donor and acceptor substrate specificities are determined by enzymatic analysis of the glycosyltransferase gene products. Cell-type specific regulation of these genes has also been studied. Gangliosides are degraded by lysosomal exoglycosidases. The action of these enzymes occurs frequently in cooperation with activator proteins. Several human diseases are caused by defects of degradative enzymes, resulting in massive accumulation of certain glycolipids, including gangliosides in the lysosomal compartment and other organelles in the brain and visceral organs. Some of the representative lysosomal storage diseases (LSDs) caused by the accumulation of lipids in late endosomes and lysosomes will be discussed.

  15. Effects of snake venom polypeptides on central nervous system.

    PubMed

    Osipov, Alexey; Utkin, Yuri

    2012-12-01

    The nervous system is a primary target for animal venoms as the impairment of its function results in the fast and efficient immobilization or death of a prey. There are numerous evidences about effects of crude snake venoms or isolated toxins on peripheral nervous system. However, the data on their interactions with the central nervous system (CNS) are not abundant, as the blood-brain barrier (BBB) impedes penetration of these compounds into brain. This updated review presents the data about interaction of snake venom polypeptides with CNS. Such data will be described according to three main modes of interactions: - Direct in vivo interaction of CNS with venom polypeptides either capable to penetrate BBB or injected into the brain. - In vitro interactions of cell or sub-cellular fractions of CNS with crude venoms or purified toxins. - Indirect effects of snake venoms or their components on functioning of CNS under different conditions. Although the venom components penetrating BBB are not numerous, they seem to be the most suitable candidates for the leads in drug design. The compounds with other modes of action are more abundant and better studied, but the lack of the data about their ability to penetrate BBB may substantially aggravate the potentials for their medical perspectives. Nevertheless, many such compounds are used for research of CNS in vitro. These investigations may give invaluable information for understanding the molecular basis of CNS diseases and thus lay the basis for targeted drug design. This aspect also will be outlined in the review.

  16. Structure and expression of a novel compact myelin protein – Small VCP-interacting protein (SVIP)

    SciTech Connect

    Wu, Jiawen; Peng, Dungeng; Voehler, Markus; Sanders, Charles R.; Li, Jun

    2013-10-11

    Highlights: •SVIP (small p97/VCP-interacting protein) co-localizes with myelin basic protein (MBP) in compact myelin. •We determined that SVIP is an intrinsically disordered protein (IDP). •The helical content of SVIP increases dramatically during its interaction with negatively charged lipid membrane. •This study provides structural insight into interactions between SVIP and myelin membranes. -- Abstract: SVIP (small p97/VCP-interacting protein) was initially identified as one of many cofactors regulating the valosin containing protein (VCP), an AAA+ ATPase involved in endoplasmic-reticulum-associated protein degradation (ERAD). Our previous study showed that SVIP is expressed exclusively in the nervous system. In the present study, SVIP and VCP were seen to be co-localized in neuronal cell bodies. Interestingly, we also observed that SVIP co-localizes with myelin basic protein (MBP) in compact myelin, where VCP was absent. Furthermore, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic measurements, we determined that SVIP is an intrinsically disordered protein (IDP). However, upon binding to the surface of membranes containing a net negative charge, the helical content of SVIP increases dramatically. These findings provide structural insight into interactions between SVIP and myelin membranes.

  17. Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse.

    PubMed

    Andrews, Helen; White, Kathryn; Thomson, Christine; Edgar, Julia; Bates, David; Griffiths, Ian; Turnbull, Douglass; Nichols, Philip

    2006-06-01

    Axonal pathology in multiple sclerosis (MS) has been described for over a century, but new insights into axonal loss and disability have refocused interest in this area. There is evidence of oxidative damage to mitochondrial DNA in chronic MS plaques, suggesting that mitochondrial failure may play a role in MS pathology. We propose that in the chronic absence of myelin the maintenance of conduction relies partially on an increase in mitochondria to provide energy. This increased energy requirement also promotes reactive oxygen species (ROS), because most intraaxonal ROS are generated by mitochondria. If antioxidant defenses are overwhelmed by an excess of ROS, this may result in damage to the axon. Our aim was to investigate whether a chronic lack of myelin results in adaptive changes involving mitochondria within the axon. We investigated this in the shiverer mouse. This myelin basic protein gene mutant provides a model of how adult central nervous system (CNS) axons cope with the chronic absence of a compact myelin sheath. Cytochrome c histochemistry demonstrated a twofold increase in mitochondrial activity in white matter tracts of shiverer, and electron microscopy confirmed a significantly higher number of mitochondria within the dysmyelinated axons. Our data demonstrate that there are adaptive changes involving mitochondria occurring within CNS axons in shiverer mice in response to a lack of myelin. This work contributes to our understanding of the adaptive changes occurring in response to a lack of myelin in a noninflammatory environment similar to the situation seen in chronically demyelinated MS plaques.

  18. HDAC-mediated deacetylation of NF-κB is critical for Schwann cell myelination.

    PubMed

    Chen, Ying; Wang, Haibo; Yoon, Sung Ok; Xu, Xiaomei; Hottiger, Michael O; Svaren, John; Nave, Klaus A; Kim, Haesun A; Olson, Eric N; Lu, Q Richard

    2011-04-01

    Schwann cell myelination is tightly regulated by timely expression of key transcriptional regulators that respond to specific environmental cues, but the molecular mechanisms underlying such a process are poorly understood. We found that the acetylation state of NF-κB, which is regulated by histone deacetylases (HDACs) 1 and 2, is critical for orchestrating the myelination program. Mice lacking both HDACs 1 and 2 (HDAC1/2) exhibited severe myelin deficiency with Schwann cell development arrested at the immature stage. NF-κB p65 became heavily acetylated in HDAC1/2 mutants, inhibiting the expression of positive regulators of myelination and inducing the expression of differentiation inhibitors. We observed that the NF-κB protein complex switched from associating with p300 to associating with HDAC1/2 as Schwann cells differentiated. NF-κB and HDAC1/2 acted in a coordinated fashion to regulate the transcriptionally linked chromatin state for Schwann cell myelination. Thus, our results reveal an HDAC-mediated developmental switch for controlling myelination in the peripheral nervous system.

  19. Polarization-dependent responses of fluorescent indicators partitioned into myelinated axons

    NASA Astrophysics Data System (ADS)

    Micu, Ileana; Brideau, Craig; Stys, Peter K.

    2012-02-01

    Myelination, i.e. the wrapping of axons in multiple layers of lipid-rich membrane, is a unique phenomenon in the nervous systems of both vertebrates and invertebrates, that greatly increases the speed and efficiency of signal transmission. In turn, disruption of axo-myelinic integrity underlies disability in numerous clinical disorders. The dependence of myelin physiology on nanometric organization of its lamellae makes it difficult to accurately study this structure in the living state. We expected that fluorescent probes might become highly oriented when partitioned into the myelin sheath, and in turn, this anisotropy could be interrogated by controlling the polarization state of the exciting laser field used for 2-photon excited fluorescence (TPEF). Live ex vivo myelinated rodent axons were labeled with a series of lipohilic and hydrophilic fluorescenct probes, and TPEF images acquired while laser polarization was varied at the sample over a broad range of ellipticities and orientations of the major angle [see Brideau, Micu & Stys, abstract this meeting]. We found that most probes exhibited strong dependence on both the major angle of polarization, and perhaps more surprisingly, on ellipticity as well. Lipophilic vs. hydrophilic probes exhibited distinctly different behavior. We propose that polarization-dependent TPEF microscopy represents a powerful tool for probing the nanostructural architecture of both myelin and axonal cytoskeleton in a domain far below the resolution limit of visible light microscopy. By selecting probes with different sizes and physicochemical properties, distinct aspects of cellular nanoarchitecture can be accurately interrogated in real-time in living tissue.

  20. Central nervous system dysfunction in obesity-induced hypertension.

    PubMed

    Head, Geoffrey A; Lim, Kyungjoon; Barzel, Benjamin; Burke, Sandra L; Davern, Pamela J

    2014-09-01

    The activation of the sympathetic nervous system is a major mechanism underlying both human and experimental models of obesity-related hypertension. While insulin and the adipokine leptin have long been thought to contribute to obesity-related neurogenic mechanisms, the evidence is now very strong that they play a major role, shown particularly in animal studies using selective receptor antagonists. There is not just maintenance of leptin's sympatho-excitatory actions as previously suggested but considerable amplification particularly in renal sympathetic nervous activity. Importantly, these changes are not dependent on short-term elevation or reduction in plasma leptin or insulin, but require some weeks to develop indicating a slow "neural adaptivity" within hypothalamic signalling. These effects can be carried across generations even when offspring are raised on a normal diet. A better understanding of the underlying mechanism should be a high research priority given the prevalence of obesity not just in the current population but also for future generations.

  1. Fourier domain OCT imaging of American cockroach nervous system

    NASA Astrophysics Data System (ADS)

    Wyszkowska, Joanna; Gorczynska, Iwona; Ruminski, Daniel; Karnowski, Karol; Kowalczyk, Andrzej; Stankiewicz, Maria; Wojtkowski, Maciej

    2012-01-01

    In this pilot study we demonstrate results of structural Fourier domain OCT imaging of the nervous system of Periplaneta americana L. (American cockroach). The purpose of this research is to develop an OCT apparatus enabling structural imaging of insect neural system. Secondary purpose of the presented research is to develop methods of the sample preparation and handling during the OCT imaging experiments. We have performed imaging in the abdominal nerve cord excised from the American cockroach. For this purpose we have developed a Fourier domain / spectral OCT system operating at 820 nm wavelength range.

  2. [Electroencephalography and the general physiology of the nervous system].

    PubMed

    Wyss, O A

    1974-01-01

    The contributions of electro-encephalography to the general physiology of the nervous system - studies based on 50 years of experimental and clinical research on the EEG of animals and man - have established irrefutable facts underlying present-day concepts in neurophysiology. This conclusion holds true, even if allowance must be made with regard to the alpha-rhythm, reasons having been given to suppose that this phenomenon is in reality, partially or entirely, an ocular tremor phenomenon (Lippold). The fundamental principles of neuronal activity such as (1) the electrogenesis of gray matter, i.e., the electric current and membrane potential aspects of the existence and the functioning of nerve cells and neuronal aggregates, (2) the rhythmicity and periodicity of nervous activity in single cells or networks of neurones, (3) the synchronization of such nervous activity due, at the site of its source, to electric interaction between neurones belonging together and 'beating in unison', and (4) the autonomous automaticity of nerve cells and nerve centres as being the basic feature of neuronal activity, are among the prominent topics dealt with in this report. Particular attention is paid to the autonomy-concept of nervous activity, a concept ofter forgotten, neglected or discarded from physiological thinking, although life of any kind, in any type of living system, can only be understood if spontaneous existence and activity are accepted for living matter. In this respect the EEG has contributed in a large measure to save the physiology of our period from the materialism which prevailed at the beginning of the century and which threatens once more to emerge towards its end.

  3. Epizootic vacuolar myelinopathy of the central nervous system of bald eagles (Haliaeetus leucocephalus) and American coots (Fulica americana).

    PubMed

    Thomas, N J; Meteyer, C U; Sileo, L

    1998-11-01

    Unprecedented mortality occurred in bald eagles (Haliaeetus leucocephalus) at DeGray Lake, Arkansas, during the winters of 1994-1995 and 1996-1997. The first eagles were found dead during November, soon after arrival from fall migration, and deaths continued into January during both episodes. In total, 29 eagles died at or near DeGray Lake in the winter of 1994-1995 and 26 died in the winter of 1996-1997; no eagle mortality was noted during the same months of the intervening winter or in the earlier history of the lake. During the mortality events, sick eagles were observed overflying perches or colliding with rock walls. Signs of incoordination and limb paresis were also observed in American coots (Fulica americana) during the episodes of eagle mortality, but mortality in coots was minimal. No consistent abnormalities were seen on gross necropsy of either species. No microscopic findings in organs other than the central nervous system (CNS) could explain the cause of death. By light microscopy, all 26 eagles examined and 62/77 (81%) coots had striking, diffuse, spongy degeneration of the white matter of the CNS. Vacuolation occurred in all myelinated CNS tissue, including the cerebellar folia and medulla oblongata, but was most prominent in the optic tectum. In the spinal cord, vacuoles were concentrated near the gray matter, and occasional swollen axons were seen. Vacuoles were uniformly present in optic nerves but were not evident in the retina or peripheral or autonomic nerves. Cellular inflammatory response to the lesion was distinctly lacking. Vacuoles were 8-50 microns in diameter and occurred individually, in clusters, or in rows. In sections stained by luxol fast blue/periodic acid-Schiff stain, the vacuoles were delimited and transected by myelin strands. Transmission electron microscopy revealed intramyelinic vacuoles formed in the myelin sheaths by splitting of one or more myelin lamellae at the intraperiodic line. This lesion is characteristic of

  4. Epizootic vacuolar myelinopathy of the central nervous system of bald eagles (Haliaeetus leucocephalus) and American coots (Fulica americana)

    USGS Publications Warehouse

    Thomas, N.J.; Meteyer, C.U.; Sileo, L.

    1998-01-01

    Unprecedented mortality occurred in bald eagles (Haliaeetus leucocephalus) at DeGray Lake, Arkansas, during the winters of 1994-1995 and 1996-1997. The first eagles were found dead during November, soon after arrival from fall migration, and deaths continued into January during both episodes. In total, 29 eagles died at or near DeGray Lake in the winter of 1994-1995 and 26 died in the winter of 1996-1997; no eagle mortality was noted during the same months of the intervening winter or in the earlier history of the lake. During the mortality events, sick eagles were observed overflying perches or colliding with rock walls. Signs of incoordination and limb paresis were also observed in American coots (Fulica americana) during the episodes of eagle mortality, but mortality in coots was minimal. No consistent abnormalities were seen on gross necropsy of either species. No microscopic findings in organs other than the central nervous system (CNS) could explain the cause of death. By light microscopy, all 26 eagles examined and 62/77 (81%) coots had striking, diffuse, spongy degeneration of the white matter of the CNS. Vacuolation occurred in all myelinated CNS tissue, including the cerebellar folia and medulla oblongata, but was most prominent in the optic tectum. In the spinal cord, vacuoles were concentrated near the gray matter, and occasional swollen axons were seen. Vacuoles were uniformly present in optic nerves but were not evident in the retina or peripheral or autonomic nerves. Cellular inflammatory response to the lesion was distinctly lacking. Vacuoles were 8-50 microns in diameter and occurred individually, in clusters, or in rows. In sections stained by luxol fast blue/periodic acid-Schiff stain, the vacuoles were delimited and transected by myelin strands. Transmission electron microscopy revealed intramyelinic vacuoles formed in the myelin sheaths by splitting of one or more myelin lamellae at the intraperiodic line. This lesion is characteristic of

  5. Insulin-like growth factors in the peripheral nervous system.

    PubMed

    Sakowski, Stacey A; Feldman, Eva L

    2012-06-01

    Insulin-like growth factors (IGFs) play an integral role in development, growth, and survival. This article details the current understanding of the effects of IGFs in the peripheral nervous system (PNS) during health and disease, and introduces how the IGF system regulates PNS development and impacts growth and survival of PNS cells. Also discussed are implications of IGF signaling in neurodegeneration and the status and prospects of IGF therapies for PNS conditions. There is substantial support for the application of IGF therapies in the treatment of PNS injury and disease.

  6. Hepatic Control of Energy Metabolism via the Autonomic Nervous System

    PubMed Central

    2017-01-01

    Although the human liver comprises approximately 2.8% of the body weight, it plays a central role in the control of energy metabolism. While the biochemistry of energy substrates such as glucose, fatty acids, and ketone bodies in the liver is well understood, many aspects of the overall control system for hepatic metabolism remain largely unknown. These include mechanisms underlying the ascertainment of its energy metabolism status by the liver, and the way in which this information is used to communicate and function together with adipose tissues and other organs involved in energy metabolism. This review article summarizes hepatic control of energy metabolism via the autonomic nervous system. PMID:27592630

  7. Vestigial expression in the Drosophila embryonic central nervous system.

    PubMed

    Guss, Kirsten A; Mistry, Hemlata; Skeath, James B

    2008-09-01

    The Drosophila central nervous system is an excellent model system in which to resolve the genetic and molecular control of neuronal differentiation. Here we show that the wing selector vestigial is expressed in discrete sets of neurons. We track the axonal trajectories of VESTIGIAL-expressing cells in the ventral nerve cord and show that these cells descend from neuroblasts 1-2, 5-1, and 5-6. In addition, along the midline, VESTIGIAL is expressed in ventral unpaired median motorneurons and cells that may descend from the median neuroblast. These studies form the requisite descriptive foundation for functional studies addressing the role of vestigial during interneuron differentiation.

  8. Inflammatory diseases of the central nervous system in dogs.

    PubMed

    Thomas, W B

    1998-08-01

    Inflammatory diseases of the central nervous system (CNS) are important causes of seizures in dogs. Specific diseases include canine distemper, rabies, cryptococcosis, coccidioidomycosis, toxoplasmosis, neosporosis, Rocky Mountain spotted fever, ehrlichiosis, granulomatous meningoencephalomyelitis, and pug dog encephalitis. Inflammatory disorders should be considered when a dog with seizures has persistent neurological deficits, suffers an onset of seizures at less than 1 or greater than 5 years of age, or exhibits signs of systemic illness. A thorough history, examination, and analysis of cerebrospinal fluid are important in the diagnosis of inflammatory diseases. However, even with extensive diagnostic testing, a specific etiology is identified in less than two thirds of dogs with inflammatory diseases of the CNS.

  9. Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis.

    PubMed

    Simons, Mikael; Trajkovic, Katarina

    2006-11-01

    During the development of the central nervous system the reciprocal communication between neurons and oligodendrocytes is essential for the generation of myelin, a multilamellar insulating membrane that ensheathes the axons. Neuron-derived signalling molecules regulate the proliferation, differentiation and survival of oligodendrocytes. Furthermore, neurons control the onset and timing of myelin membrane growth. In turn, signals from oligodendrocytes to neurons direct the assembly of specific subdomains in neurons at the node of Ranvier. Recent work has begun to shed light on the molecules and signaling systems used to coordinate the interaction of neurons and oligodendrocytes. For example, the neuronal signals seem to control the membrane trafficking machinery in oligodendrocytes that leads to myelination. These interconnections at multiple levels show how neurons and glia cooperate to build a complex network during development.

  10. Impulses and pressure waves cause excitement and conduction in the nervous system.

    PubMed

    Barz, Helmut; Schreiber, Almut; Barz, Ulrich

    2013-11-01

    e.g., the brain concussion and pathohistological findings in Alzheimer dementia. To verify the concept of (mechanical) impulses in the nervous system it is necessary to carry out biophysical or mechanical investigations in very small dimensions and the authors hope to give for this a sufficient stimulus.

  11. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  12. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination

    PubMed Central

    Bonin, Sawyer R.; Gibeault, Sabrina; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic

  13. The atypical Guanine-nucleotide exchange factor, dock7, negatively regulates schwann cell differentiation and myelination.

    PubMed

    Yamauchi, Junji; Miyamoto, Yuki; Hamasaki, Hajime; Sanbe, Atsushi; Kusakawa, Shinji; Nakamura, Akane; Tsumura, Hideki; Maeda, Masahiro; Nemoto, Noriko; Kawahara, Katsumasa; Torii, Tomohiro; Tanoue, Akito

    2011-08-31

    In development of the peripheral nervous system, Schwann cells proliferate, migrate, and ultimately differentiate to form myelin sheath. In all of the myelination stages, Schwann cells continuously undergo morphological changes; however, little is known about their underlying molecular mechanisms. We previously cloned the dock7 gene encoding the atypical Rho family guanine-nucleotide exchange factor (GEF) and reported the positive role of Dock7, the target Rho GTPases Rac/Cdc42, and the downstream c-Jun N-terminal kinase in Schwann cell migration (Yamauchi et al., 2008). We investigated the role of Dock7 in Schwann cell differentiation and myelination. Knockdown of Dock7 by the specific small interfering (si)RNA in primary Schwann cells promotes dibutyryl cAMP-induced morphological differentiation, indicating the negative role of Dock7 in Schwann cell differentiation. It also results in a shorter duration of activation of Rac/Cdc42 and JNK, which is the negative regulator of myelination, and the earlier activation of Rho and Rho-kinase, which is the positive regulator of myelination. To obtain the in vivo evidence, we generated Dock7 short hairpin (sh)RNA transgenic mice. They exhibited a decreased expression of Dock7 in the sciatic nerves and enhanced myelin thickness, consistent with in vitro observation. The effects of the in vivo knockdown on the signals to Rho GTPases are similar to those of the in vitro knockdown. Collectively, the signaling through Dock7 negatively regulates Schwann cell differentiation and the onset of myelination, demonstrating the unexpected role of Dock7 in the interplay between Schwann cell migration and myelination.

  14. Regulation of autonomic nervous system in space and magnetic storms

    NASA Astrophysics Data System (ADS)

    Baevsky, R. M.; Petrov, V. M.; Chernikova, A. G.

    Variations in the earth's magnetic field and magnetic storms are known to be a risk factor for the development of cardiovascular disorders. The main ``targets'' for geomagnetic perturbations are the central nervous system and the neural regulation of vascular tone and heart rate variability. This paper presents the data about effect of geomagnetic fluctuations on human body in space. As a method for research the analysis of heart rate variability was used, which allows evaluating the state of the sympathetic and parasympathetic parts of the autonomic nervous system, vasomotor center and subcortical neural centers activity. Heart rate variability data were analyzed for 30 cosmonauts at the 2-nd day of space flight on transport spaceship Soyuz (32nd orbit). There were formed three groups of cosmonauts: without magnetic storm (n=9), on a day with magnetic storm (n=12) and 1-2 days after magnetic storm (n=9). The present study was the first to demonstrate a specific impact of geomagnetic perturbations on the system of autonomic circulatory control in cosmonauts during space flight. The increasing of highest nervous centers activity was shown for group with magnetic storms, which was more significant on 1-2 days after magnetic storm. The use of discriminate analysis allowed to classify indicated three groups with 88 % precision. Canonical variables are suggested to be used as criterions for evaluation of specific and non-specific components of cardiovascular reactions to geomagnetic perturbations. The applied aspect of the findings from the present study should be emphasized. They show, in particular, the need to supplement the medical monitoring of cosmonauts with predictions of probable geomagnetic perturbations in view of the prevention of unfavorable states appearances if the adverse reactions to geomagnetic perturbations are added to the tension experienced by regulatory systems during various stresses situations (such as work in the open space).

  15. Measuring cardiac autonomic nervous system (ANS) activity in children.

    PubMed

    van Dijk, Aimée E; van Lien, René; van Eijsden, Manon; Gemke, Reinoud J B J; Vrijkotte, Tanja G M; de Geus, Eco J

    2013-04-29

    The autonomic nervous system (ANS) controls mainly automatic bodily functions that are engaged in homeostasis, like heart rate, digestion, respiratory rate, salivation, perspiration and renal function. The ANS has two main branches: the sympathetic nervous system, preparing the human body for action in times of danger and stress, and the parasympathetic nervous system, which regulates the resting state of the body. ANS activity can be measured invasively, for instance by radiotracer techniques or microelectrode recording from superficial nerves, or it can be measured non-invasively by using changes in an organ's response as a proxy for changes in ANS activity, for instance of the sweat glands or the heart. Invasive measurements have the highest validity but are very poorly feasible in large scale samples where non-invasive measures are the preferred approach. Autonomic effects on the heart can be reliably quantified by the recording of the electrocardiogram (ECG) in combination with the impedance cardiogram (ICG), which reflects the changes in thorax impedance in response to respiration and the ejection of blood from the ventricle into the aorta. From the respiration and ECG signals, respiratory sinus arrhythmia can be extracted as a measure of cardiac parasympathetic control. From the ECG and the left ventricular ejection signals, the preejection period can be extracted as a measure of cardiac sympathetic control. ECG and ICG recording is mostly done in laboratory settings. However, having the subjects report to a laboratory greatly reduces ecological validity, is not always doable in large scale epidemiological studies, and can be intimidating for young children. An ambulatory device for ECG and ICG simultaneously resolves these three problems. Here, we present a study design for a minimally invasive and rapid assessment of cardiac autonomic control in children, using a validated ambulatory device (1-5), the VU University Ambulatory Monitoring System (VU

  16. The Adverse Effects of Air Pollution on the Nervous System

    PubMed Central

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  17. Attack of the nervous system by Clostridium perfringens Epsilon toxin: from disease to mode of action on neural cells.

    PubMed

    Wioland, Laetitia; Dupont, Jean-Luc; Bossu, Jean-Louis; Popoff, Michel R; Poulain, Bernard

    2013-12-01

    Epsilon toxin (ET), produced by Clostridium perfringens types B and D, ranks among the four most potent poisonous substances known so far. ET-intoxication is responsible for enterotoxaemia in animals, mainly sheep and goats. This disease comprises several manifestations indicating the attack of the nervous system. This review aims to summarize the effects of ET on central nervous system. ET binds to endothelial cells of brain capillary vessels before passing through the blood-brain barrier. Therefore, it induces perivascular oedema and accumulates into brain. ET binding to different brain structures and to different component in the brain indicates regional susceptibility to the toxin. Histological examination has revealed nerve tissue and cellular lesions, which may be directly or indirectly caused by ET. The naturally occurring disease caused by ET-intoxication can be reproduced experimentally in rodents. In mice and rats, ET recognizes receptor at the surface of different neural cell types, including certain neurons (e.g. the granule cells in cerebellum) as well as oligodendrocytes, which are the glial cells responsible for the axons myelination. Moreover, ET induces release of glutamate and other transmitters, leading to firing of neural network. The precise mode of action of ET on neural cells remains to be determined.

  18. Effect of insulin-induced hypoglycaemia on the peripheral nervous system: focus on adaptive mechanisms, pathogenesis and histopathological changes.

    PubMed

    Jensen, V F H; Mølck, A-M; Bøgh, I B; Lykkesfeldt, J

    2014-08-01

    Insulin-induced hypoglycaemia (IIH) is a common acute side effect in type 1 and type 2 diabetic patients, especially during intensive insulin therapy. The peripheral nervous system (PNS) depends on glucose as its primary energy source during normoglycaemia and, consequently, it may be particularly susceptible to IIH damage. Possible mechanisms for adaption of the PNS to IIH include increased glucose uptake, utilisation of alternative energy substrates and the use of Schwann cell glycogen as a local glucose reserve. However, these potential adaptive mechanisms become insufficient when the hypoglycaemic state exceeds a certain level of severity and duration, resulting in a sensory-motor neuropathy with associated skeletal muscle atrophy. Large myelinated motor fibres appear to be particularly vulnerable. Thus, although the PNS is not an obligate glucose consumer, as is the brain, it appears to be more prone to IIH than the central nervous system when hypoglycaemia is not severe (blood glucose level ≤ 2 mm), possibly reflecting a preferential protection of the brain during periods of inadequate glucose availability. With a primary focus on evidence from experimental animal studies investigating nondiabetic IIH, the present review discusses the effect of IIH on the PNS with a focus on adaptive mechanisms, pathogenesis and histological changes.

  19. Applications of Nanotechnology to the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Blumling, James P., II

    Nanotechnology and nanomaterials, in general, have become prominent areas of academic research. The ability to engineer at the nano scale is critical to the advancement of the physical and medical sciences. In the realm of physical sciences, the applications are clear: smaller circuitry, more powerful computers, higher resolution intruments. However, the potential impact in the fields of biology and medicine are perhaps even grander. The implementation of novel nanodevices is of paramount importance to the advancement of drug delivery, molecular detection, and cellular manipulation. The work presented in this thesis focuses on the development of nanotechnology for applications in neuroscience. The nervous system provides unique challenges and opportunities for nanoscale research. This thesis discusses some background in nanotechnological applications to the central nervous system and details: (1) The development of a novel calcium nanosenser for use in neurons and astrocytes. We implemented the calcium responsive component of Dr. Roger Tsien's Cameleon sensor, a calmodulin-M13 fusion, in the first quantum dot-based calcium sensor. (2) The exploration of cell-penetrating peptides as a delivery mechanism for nanoparticles to cells of the nervous system. We investigated the application of polyarginine sequences to rat primary cortical astrocytes in order to assess their efficacy in a terminally differentiated neural cell line. (3) The development of a cheap, biocompatible alternative to quantum dots for nanosensor and imaging applications. We utilized a positively charged co-matrix to promote the encapsulation of free sulforhodamine B in silica nanoparticles, a departure from conventional reactive dye coupling to silica matrices. While other methods have been invoked to trap dye not directly coupled to silica, they rely on positively charged dyes that typically have a low quantum yield and are not extensively tested biologically, or they implement reactive dyes bound

  20. Enteric nervous system development: migration, differentiation, and disease.

    PubMed

    Lake, Jonathan I; Heuckeroth, Robert O

    2013-07-01

    The enteric nervous system (ENS) provides the intrinsic innervation of the bowel and is the most neurochemically diverse branch of the peripheral nervous system, consisting of two layers of ganglia and fibers encircling the gastrointestinal tract. The ENS is vital for life and is capable of autonomous regulation of motility and secretion. Developmental studies in model organisms and genetic studies of the most common congenital disease of the ENS, Hirschsprung disease, have provided a detailed understanding of ENS development. The ENS originates in the neural crest, mostly from the vagal levels of the neuraxis, which invades, proliferates, and migrates within the intestinal wall until the entire bowel is colonized with enteric neural crest-derived cells (ENCDCs). After initial migration, the ENS develops further by responding to guidance factors and morphogens that pattern the bowel concentrically, differentiating into glia and neuronal subtypes and wiring together to form a functional nervous system. Molecules controlling this process, including glial cell line-derived neurotrophic factor and its receptor RET, endothelin (ET)-3 and its receptor endothelin receptor type B, and transcription factors such as SOX10 and PHOX2B, are required for ENS development in humans. Important areas of active investigation include mechanisms that guide ENCDC migration, the role and signals downstream of endothelin receptor type B, and control of differentiation, neurochemical coding, and axonal targeting. Recent work also focuses on disease treatment by exploring the natural role of ENS stem cells and investigating potential therapeutic uses. Disease prevention may also be possible by modifying the fetal microenvironment to reduce the penetrance of Hirschsprung disease-causing mutations.

  1. Dual-mode Modulation of Smad Signaling by Smad-interacting Protein Sip1 is Required for Myelination in the CNS

    PubMed Central

    Weng, Qinjie; Chen, Ying; Wang, Haibo; Xu, Xiaomei; Yang, Bo; He, Qiaojun; Shou, Weinian; Chen, Yan; Higashi, Yujiro; van den Berghe, Veronique; Seuntjens, Eve; Kernie, Steven G.; Bukshpun, Polina; Sherr, Elliott H.; Huylebroeck, Danny; Lu, Q. Richard

    2012-01-01

    Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor activated-Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation, and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP and β-catenin negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair. PMID:22365546

  2. In vivo expression of the Arf6 Guanine-nucleotide exchange factor cytohesin-1 in mice exhibits enhanced myelin thickness in nerves.

    PubMed

    Torii, Tomohiro; Miyamoto, Yuki; Onami, Naoko; Tsumura, Hideki; Nemoto, Noriko; Kawahara, Katsumasa; Kato, Minoru; Kotera, Jun; Nakamura, Kazuaki; Tanoue, Akito; Yamauchi, Junji

    2013-10-01

    The myelin sheath consists of a unique multiple layer structure that acts as an insulator between neuronal axons to enhance the propagation of the action potential. In neuropathies such as demyelinating or dismyelinating diseases, chronic demyelination and defective remyelination occur repeatedly, leading to more severe neuropathy. As yet, little is known about the possibility of drug target-specific medicine for such diseases. In the developing peripheral nervous system (PNS), myelin sheaths form as Schwann cells wrap individual axons. It is thought that the development of a drug promoting myelination by Schwann cells would provide effective therapy against peripheral nerve disorders: to test such treatment, genetically modified mice overexpressing the drug target molecules are needed. We previously identified an Arf6 activator, the guanine-nucleotide exchange factor cytohesin-1, as the signaling molecule controlling myelination of peripheral axons by Schwann cells; yet, the important issue of whether cytohesin-1 itself promotes myelin thickness in vivo has remained unclear. Herein, we show that, in mouse PNS nerves, Schwann cell-specific expression of wild-type cytohesin-1 exhibits enhanced myelin thickness. Downstream activation of Arf6 is also seen in these transgenic mice, revealing the involvement of the cytohesin-1 and Arf6 signaling unit in promoting myelination. These results suggest that cytohesin-1 may be a candidate for the basis of a therapy for peripheral neuropathies through its enhancement of myelin thickness.

  3. [When prions use the systems of communication between the immune system and the peripheral nervous system].

    PubMed

    Dorban, Gauthier; Antoine, Nadine; Defaweux, Valérie

    2010-01-01

    Prion disease pathogenesis has been largely studied since the inter-species transmissibility of the infectious protein (PrPSc), the oral uptake as natural route of infection and the exceptional implication in a problem of public health were highlighted. Two sequential preclinical stages are observed before the development of irreversible and fatal lesions in the central nervous system: the lymphoinvasion and the neuroinvasion. The first is characterized by the accumulation of PrPSc within lymphoid tissues and the second by PrPSc scattering the peripheral nervous system towards the central nervous system. The mechanisms involved in the communication between the immune and the peripheral nervous system are still debated. Recent studies even suggest that neuroinvasion can occur through the hematogenous route, independently of the peripheral nervous system. This review analyses (i) the role of immune cells, implicated in prion pathogenesis: dendritic cells as PrPSc vehicle, follicular dendritic cells as PrPSc accumulator and nerve fibres as PrPSc driver and (ii) the respective relations they maintain with peripheral nerve fibres to migrate to the brain.

  4. Neuroactive steroids and the peripheral nervous system: An update.

    PubMed

    Giatti, Silvia; Romano, Simone; Pesaresi, Marzia; Cermenati, Gaia; Mitro, Nico; Caruso, Donatella; Tetel, Marc J; Garcia-Segura, Luis Miguel; Melcangi, Roberto C

    2015-11-01

    In the present review we summarize observations to date supporting the concept that neuroactive steroids are synthesized in the peripheral nervous system, regulate the physiology of peripheral nerves and exert notable neuroprotective actions. Indeed, neuroactive steroids have been recently proposed as therapies for different types of peripheral neuropathy, like for instance those occurring during aging, chemotherapy, physical injury and diabetes. Moreover, pharmacological tools able to increase the synthesis of neuroactive steroids might represent new interesting therapeutic strategy to be applied in case of peripheral neuropathy.

  5. Magnetic resonance imaging of the central nervous system

    SciTech Connect

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This text provides an introduction to magnetic resonance imaging (MRI) of disorders of the central nervous system, spine, neck, and nasopharynx. The book offers guidance in performing and interpreting MRI studies for specific clinical problems. Included are more than 800 images showing pathologic findings for various disorders and demonstrating how abnormalities detected in MRI scans can aid both in differential diagnosis and in clinical staging. The book summarizes the basic principles of MRI and describes the major equipment components and contrast agents. A review of the principles and potential applications of magnetic resonance spectroscopy is also included.

  6. Current and future imaging of the peripheral nervous system.

    PubMed

    Ohana, M; Moser, T; Moussaouï, A; Kremer, S; Carlier, R Y; Liverneaux, P; Dietemann, J-L

    2014-01-01

    Peripheral nervous system (PNS) imaging is usually carried out by ultrasound and MRI. Thanks to its wide availability and excellent spatial resolution, ultrasound is a mature investigation with clearly established indications, particularly in entrapment syndromes and tumors. MRI is generally a second-line examination, which provides decisive additional information thanks to its excellent contrast resolution and its multiplanar abilities. This review describes the current methods for imaging the PNS, concentrating on acquisition techniques, normal results and basic pathological semiology. Ongoing and future developments are described in order to underline the forthcoming changes in this very dynamic field of musculoskeletal radiology.

  7. Language disorders in children with central nervous system injury

    PubMed Central

    Dennis, Maureen

    2011-01-01

    Children with injury to the central nervous system (CNS) exhibit a variety of language disorders that have been described by members of different disciplines, in different journals, using different descriptors and taxonomies. This paper is an overview of language deficits in children with CNS injury, whether congenital or acquired after a period of normal development. It first reviews the principal CNS conditions associated with language disorders in childhood. It then describes a functional taxonomy of language, with examples of the phenomenology and neurobiology of clinical deficits in children with CNS insults. Finally, it attempts to situate language in the broader realm of cognition and in current theoretical accounts of embodied cognition. PMID:20397297

  8. Area 51: How do Acanthamoeba invade the central nervous system?

    PubMed

    Siddiqui, Ruqaiyyah; Emes, Richard; Elsheikha, Hany; Khan, Naveed Ahmed

    2011-05-01

    Acanthamoeba granulomatous encephalitis generally develops as a result of haematogenous spread, but it is unclear how circulating amoebae enter the central nervous system (CNS) and cause inflammation. At present, the mechanisms which Acanthamoeba use to invade this incredibly well-protected area of the CNS and produce infection are not well understood. In this paper, we propose two key virulence factors: mannose-binding protein and extracellular serine proteases as key players in Acanthamoeba traversal of the blood-brain barrier leading to neuronal injury. Both molecules should provide excellent opportunities as potential targets in the rational development of therapeutic interventions against Acanthamoeba encephalitis.

  9. [Metastasis tumors of the central nervous system: molecular biology].

    PubMed

    Bello, M Josefa; González-Gómez, P; Rey, J A

    2004-12-01

    Metastases in the nervous system represent an important and growing problem in the clinical practice, being the cause of a great mortality in the developed countries. This article reviews the few data available on the molecular mechanisms involved in the pathogenesis of these tumours, leading to oncogene activation, inactivation of tumour suppressor genes, not only by the classical mechanisms, but also by the tumour cell epigenetic balance alteration. We conclude that all this knowledge will lead in the future to a better diagnosis, treatment and clinic evolution of these patients.

  10. Feeling good: autonomic nervous system responding in five positive emotions.

    PubMed

    Shiota, Michelle N; Neufeld, Samantha L; Yeung, Wan H; Moser, Stephanie E; Perea, Elaine F

    2011-12-01

    Although dozens of studies have examined the autonomic nervous system (ANS) aspects of negative emotions, less is known about ANS responding in positive emotion. An evolutionary framework was used to define five positive emotions in terms of fitness-enhancing function, and to guide hypotheses regarding autonomic responding. In a repeated measures design, participants viewed sets of visual images eliciting these positive emotions (anticipatory enthusiasm, attachment love, nurturant love, amusement, and awe) plus an emotionally neutral state. Peripheral measures of sympathetic and vagal parasympathetic activation were assessed. Results indicated that the emotion conditions were characterized by qualitatively distinct profiles of autonomic activation, suggesting the existence of multiple, physiologically distinct positive emotions.

  11. [Extranuclear functions of protein sumoylation in the central nervous system].

    PubMed

    Martin, Stéphane

    2009-01-01

    Post-translational protein modifications play essential roles in many aspects of cellular functions and therefore in the maintenance of cell integrity. These protein modifications are involved at all stages of neuronal communication within the central nervous system. Sumoylation is a reversible post-translational protein modification that consists in the covalent labelling of a small protein called SUMO to lysine residues of selected target proteins. Sumoylation is a well characterized regulator of nuclear functions and has recently emerged as a key factor for numerous extranuclear processes. Furthermore, sumoylation has recently been shown to modulate synaptic transmission and is also implicated in a wide range of neurodegenerative diseases.

  12. [Primary central nervous system lymphoma: pathogenesis and histomorphology].

    PubMed

    Méhes, Gábor

    2017-03-08

    Lymphoproliferative diseases of the central nervous system are rare, diagnostics and treatment are accordingly challenging. Since the introduction of the 2008 WHO lymphoma classification, primary CNS DLBCL - also covering the associated primary ocular (vitreoretinal) lymphoma - is a separate entity. The special localization is related with a series of newly recognized genetic, genomic and immunologic features directing to the strong interaction between transformed lymphoma cells, neural tissue components and the local immune response. Histological differentiation is frequently disabled by the limited sampling opportunities and requires the application of all available hematopathologic technologies including immunohistochemistry, cytology, liquor serology, flow cytometry, fluorescence in situ hybridization and polymerase chain reaction with sequencing.

  13. Central nervous system tuberculosis: pathophysiology and imaging findings.

    PubMed

    Patkar, Deepak; Narang, Jayant; Yanamandala, Rama; Lawande, Malini; Shah, Gaurang V

    2012-11-01

    With the onset of the human immunodeficiency virus pandemic, the incidence of tuberculosis, including central nervous system (CNS) tuberculosis, has increased in developed countries. It is no longer a disease confined to underdeveloped and developing countries. The imaging appearance has become more complex with the onset of multidrug-resistant tuberculosis. Imaging plays an important role in the early diagnosis of CNS tuberculosis and may prevent unnecessary morbidity and mortality. This article presents an extensive review of typical and atypical imaging appearances of intracranial tuberculosis, and discusses pathogenesis, patterns of involvement, and advances in imaging of intracranial tuberculosis.

  14. BACE1 Processing of NRG1 Type III Produces a Myelin-Inducing Signal but Is Not Essential for the Stimulation of Myelination

    PubMed Central

    Velanac, Viktorija; Unterbarnscheidt, Tilmann; Hinrichs, Wilko; Gummert, Maike N; Fischer, Tobias M; Rossner, Moritz J; Trimarco, Amelia; Brivio, Veronica; Taveggia, Carla; Willem, Michael; Haass, Christian; Möbius, Wiebke; Nave, Klaus-Armin; Schwab, Markus H

    2012-01-01

    Myelin sheath thickness is precisely adjusted to axon caliber, and in the peripheral nervous system, neuregulin 1 (NRG1) type III is a key regulator of this process. It has been proposed that the protease BACE1 activates NRG1 dependent myelination. Here, we characterize the predicted product of BACE1-mediated NRG1 type III processing in transgenic mice. Neuronal overexpression of a NRG1 type III-variant, designed to mimic prior cleavage in the juxtamembrane stalk region, induces hypermyelination in vivo and is sufficient to restore myelination of NRG1 type III-deficient neurons. This observation implies that the NRG1 cytoplasmic domain is dispensable and that processed NRG1 type III is sufficient for all steps of myelination. Surprisingly, transgenic neuronal overexpression of full-length NRG1 type III promotes hypermyelination also in BACE1 null mutant mice. Moreover, NRG1 processing is impaired but not abolished in BACE1 null mutants. Thus, BACE1 is not essential for the activation of NRG1 type III to promote myelination. Taken together, these findings suggest that multiple neuronal proteases collectively regulate NRG1 processing. © 2011 Wiley Periodicals, Inc. PMID:22052506

  15. Neural Stem Cell Engraftment and Myelination in the Human Brain

    PubMed Central

    Gupta, Nalin; Henry, Roland G.; Strober, Jonathan; Kang, Sang-Mo; Lim, Daniel A.; Bucci, Monica; Caverzasi, Eduardo; Gaetano, Laura; Mandelli, Maria Luisa; Ryan, Tamara; Perry, Rachel; Farrell, Jody; Jeremy, Rita J.; Ulman, Mary; Huhn, Stephen L.; Barkovich, A. James; Rowitch, David H.

    2013-01-01

    Pelizaeus-Merzbacher disease (PMD) is a rare leukodystrophy caused by mutation of the proteolipid protein 1 gene. Defective oligodendrocytes in PMD fail to myelinate axons, causing global neurological dysfunction. Human central nervous system stem cells (HuCNS-SCs) can develop into oligodendrocytes and confer structurally normal myelin when transplanted into a hypomyelinating mouse model. A 1-year open-label phase 1 study was undertaken to evaluate safety and to detect evidence of myelin formation after HuCNS-SC transplantation. Allogeneic HuCNS-SCs were surgically implanted into the frontal lobe white matter in four male subjects with an early-onset severe form of PMD. Immunosuppression was administered for 9 months. Serial neurological evaluations, developmental assessments, and cranial magnetic resonance imaging (MRI) and MR spectroscopy, including high-angular resolution diffusion tensor imaging (DTI), were performed at baseline and after transplantation. The neurosurgical procedure, immunosuppression regimen, and HuCNS-SC transplantation were well tolerated. Modest gains in neurological function were observed in three of the four subjects. No clinical or radiological adverse effects were directly attributed to the donor cells. Reduced T1 and T2 relaxation times were observed in the regions of transplantation 9 months after the procedure in the three subjects. Normalized DTI showed increasing fractional anisotropy and reduced radial diffusivity, consistent with myelination, in the region of transplantation compared to control white matter regions remote to the transplant sites. These phase 1 findings indicate a favorable safety profile for HuCNS-SCs in subjects with PMD. The MRI results suggest durable cell engraftment and donor-derived myelin in the transplanted host white matter. PMID:23052294

  16. Structure and Expression of a Novel Compact Myelin Protein - Small VCP-Interacting Protein (SVIP)

    PubMed Central

    Wu, Jiawen; Peng, Dungeng; Voehler, Markus; Sanders, Charles R.; Li, Jun

    2013-01-01

    SVIP (small p97/VCP-interacting protein) was initially identified as one of many cofactors regulating the valosin containing protein (VCP), an AAA+ ATPase involved in endoplasmic-reticulum-associated protein degradation (ERAD). Our previous study showed that SVIP is expressed exclusively in the nervous system. In the present study, SVIP and VCP were seen to be co-localized in neuronal cell bodies. Interestingly, we also observed that SVIP co-localizes with myelin basic protein (MBP) in compact myelin, where VCP was absent. Furthermore, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic measurements, we determined that SVIP is an intrinsically disordered protein (IDP). However, upon binding to the surface of membranes containing a net negative charge, the helical content of SVIP increases dramatically. These findings provide structural insight into interactions between SVIP and myelin membranes. PMID:24055875

  17. Gut commensalism, cytokines, and central nervous system demyelination.

    PubMed

    Telesford, Kiel; Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2014-08-01

    There is increasing support for the importance of risk factors such as genetic makeup, obesity, smoking, vitamin D insufficiency, and antibiotic exposure contributing to the development of autoimmune diseases, including human multiple sclerosis (MS). Perhaps the greatest environmental risk factor associated with the development of immune-mediated conditions is the gut microbiome. Microbial and helminthic agents are active participants in shaping the immune systems of their hosts. This concept is continually reinforced by studies in the burgeoning area of commensal-mediated immunomodulation. The clinical importance of these findings for MS is suggested by both their participation in disease and, perhaps of greater clinical importance, attenuation of disease severity. Observations made in murine models of central nervous system demyelinating disease and a limited number of small studies in human MS suggest that immune homeostasis within the gut microbiome may be of paramount importance in maintaining a disease-free state. This review describes three immunological factors associated with the gut microbiome that are central to cytokine network activities in MS pathogenesis: T helper cell polarization, T regulatory cell function, and B cell activity. Comparisons are drawn between the regulatory mechanisms attributed to first-line therapies and those described in commensal-mediated amelioration of central nervous system demyelination.

  18. Gut Commensalism, Cytokines, and Central Nervous System Demyelination

    PubMed Central

    Ochoa-Repáraz, Javier; Kasper, Lloyd H.

    2014-01-01

    There is increasing support for the importance of risk factors such as genetic makeup, obesity, smoking, vitamin D insufficiency, and antibiotic exposure contributing to the development of autoimmune diseases, including human multiple sclerosis (MS). Perhaps the greatest environmental risk factor associated with the development of immune-mediated conditions is the gut microbiome. Microbial and helminthic agents are active participants in shaping the immune systems of their hosts. This concept is continually reinforced by studies in the burgeoning area of commensal-mediated immunomodulation. The clinical importance of these findings for MS is suggested by both their participation in disease and, perhaps of greater clinical importance, attenuation of disease severity. Observations made in murine models of central nervous system demyelinating disease and a limited number of small studies in human MS suggest that immune homeostasis within the gut microbiome may be of paramount importance in maintaining a disease-free state. This review describes three immunological factors associated with the gut microbiome that are central to cytokine network activities in MS pathogenesis: T helper cell polarization, T regulatory cell function, and B cell activity. Comparisons are drawn between the regulatory mechanisms attributed to first-line therapies and those described in commensal-mediated amelioration of central nervous system demyelination. PMID:25084177

  19. Current approaches for drug delivery to central nervous system.

    PubMed

    Hossain, Sharif; Akaike, Toshihiro; Chowdhury, Ezharul Hoque

    2010-12-01

    Brain, the center of the nervous system in all vertebrate, plays the most vital role in every function of human body. However, many neurodegenerative diseases, cancer and infections of the brain become more prevalent as populations become older. In spite of the major advances in neuroscience, many potential therapeutics are still unable to reach the central nervous system (CNS) due to the blood-brain barrier (BBB) which is formed by the tight junctions within the capillary endothelium of the vertebrate brain. This results in the capillary wall behaving as a continuous lipid bilayer and preventing the passage of polar and lipid insoluble substances. Several approaches for delivering drugs to the CNS have been developed to enhance the capacity of therapeutic molecules to cross the BBB by modifying the drug itself, or by coupling it to a vector for receptor-mediated, carrier mediated or adsorption-mediated transcytosis. The current challenge is to develop drug delivery systems that ensure the safe and effective passage of drugs across the BBB. This review focuses on the strategies and approaches developed to enhance drug delivery to the CNS.

  20. Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration.

    PubMed

    Sarlak, Golmaryam; Jenwitheesuk, Anorut; Chetsawang, Banthit; Govitrapong, Piyarat

    2013-09-20

    Neural aging as a progressive loss of function involves central and peripheral post-mitotic neurons and neural stem cells (NSCs). It promotes neurodegeneration, impairs neurogenesis, and can be considered a cause of cognitive impairment and sensory and motor deficits in the elderly. Age-related morphological atrophic changes and cellular alterations are addressed by neural aging mechanisms. Neurogenesis declines during aging through several mechanisms such as an increase in quiescence state, changes in lineage fate, telomerase dysfunction, the failure of the DNA repair system, increased apoptosis, and the impairment of self-renewal. The self-renewal transcriptional factor Sox2 has been correlated with retrotransposon L1 and certain cell-cycle- and epigenetic-related factors, which are sometimes considered age-related factors in NSC aging. As neurogenesis decreases, non-mitotic neurons undergo neurodegeneration by oxidative stress, sirtuin, insulin signaling and mTOR alteration, mitochondrial dysfunction, and protein misfolding and aggregation. As neurodegeneration and impaired neurogenesis promote the nervous system aging process, the identification of neuronal anti-aging is required to raise life expectancy. The role of melatonin in increasing neurogenesis and protecting against neurodegeneration has been investigated. Here, we review nervous system aging that is correlated with mechanisms of neurodegeneration and the impairment of neurogenesis and evaluate the effects of melatonin on these processes.

  1. The effect of octopamine on the locust stomatogastric nervous system.

    PubMed

    Rand, David; Knebel, Daniel; Ayali, Amir

    2012-01-01

    Octopamine (OA) is a prominent neuromodulator of invertebrate nervous systems, influencing multiple physiological processes. Among its many roles in insects are the initiation and maintenance of various rhythmic behaviors. Here, the neuromodulatory effects of OA on the components of the locust stomatogastric nervous system were studied, and one putative source of OA modulation of the system was identified. Bath application of OA was found to abolish the endogenous rhythmic output of the fully isolated frontal ganglion (FG), while stimulating motor activity of the fully isolated hypocerebral ganglion (HG). OA also induced rhythmic movements in a foregut preparation with intact HG innervation. Complex dose-dependent effects of OA on interconnected FG-HG preparations were seen: 10(-5) M OA accelerated the rhythmic activity of both the HG and FG in a synchronized manner, while 10(-4) M OA decreased both rhythms. Intracellular stimulation of an identified octopaminergic dorsal unpaired median neuron in the subesophageal ganglion was found to exert a similar effect on the FG motor output as that of OA application. Our findings suggest a mechanism of regulation of insect gut patterns and feeding-related behavior during stress and times of high energy demand.

  2. Ion Channels as Drug Targets in Central Nervous System Disorders

    PubMed Central

    Waszkielewicz, A.M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na+ channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 – for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca2+ channels are not any more divided to T, L, N, P/Q, and R, but they are described as Cav1.1-Cav3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs. PMID:23409712

  3. GABA-ergic neurons in the leach central nervous system

    SciTech Connect

    Cline, H.T.

    1985-01-01

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10/sup -5/M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by /sup 3/H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites.

  4. Mechanisms of immunological tolerance in central nervous system inflammatory demyelination.

    PubMed

    Mari, Elisabeth R; Moore, Jason N; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2015-08-01

    Multiple sclerosis is a complex autoimmune disease of the central nervous system that results in a disruption of the balance between pro-inflammatory and anti-inflammatory signals in the immune system. Given that central nervous system inflammation can be suppressed by various immunological tolerance mechanisms, immune tolerance has become a focus of research in the attempt to induce long-lasting immune suppression of pathogenic T cells. Mechanisms underlying this tolerance induction include induction of regulatory T cell populations, anergy and the induction of tolerogenic antigen-presenting cells. The intravenous administration of encephalitogenic peptides has been shown to suppress experimental autoimmune encephalomyelitis and induce tolerance by promoting the generation of regulatory T cells and inducing apoptosis of pathogenic T cells. Safe and effective methods of inducing long-lasting immune tolerance are essential for the treatment of multiple sclerosis. By exploring tolerogenic mechanisms, new strategies can be devised to strengthen the regulatory, anti-inflammatory cell populations thereby weakening the pathogenic, pro-inflammatory cell populations.

  5. Chemokines and their receptors in central nervous system disease.

    PubMed

    Biber, Knut; de Jong, Eiko K; van Weering, Hilmar R J; Boddeke, Hendrikus W G M

    2006-01-01

    Almost a decade ago, it was discovered that the human deficiency virus (HIV) makes use of chemokine receptors to infect blood cells. This appreciation of the clinical relevance of specific chemokine receptors has initiated a considerable boost in the field of chemokine research. It is clear today that chemokine signaling orchestrates the immune system and is widely involved in both physiological and pathophysiological processes. Since the chemokine system offers various targets through which pathology could be influenced, most pharmaceutical companies have chosen this system as a therapeutic target for a variety of diseases. Here recent developments concerning the role of chemokines in diseases of the central nervous system (CNS) as well as their possible therapeutic relevance are discussed.

  6. Unmyelinated visceral afferents exhibit frequency dependent action potential broadening while myelinated visceral afferents do not.

    PubMed

    Li, Bai-Yan; Feng, Bin; Tsu, Hwa Y; Schild, John H

    2007-06-21

    Sensory information arising from visceral organ systems is encoded into action potential trains that propagate along afferent fibers to target nuclei in the central nervous system. These information streams range from tight patterns of action potentials that are well synchronized with the sensory transduction event to irregular, patternless discharge with no clear correlation to the sensory input. In general terms these afferent pathways can be divided into unmyelinated and myelinated fiber types. Our laboratory has a long standing interest in the functional differences between these two types of afferents in terms of the preprocessing of sensory information into action potential trains (synchrony, frequency, duration, etc.), the reflexogenic consequences of this sensory input to the central nervous system and the ionic channels that give rise to the electrophysiological properties of these unique cell types. The aim of this study was to determine whether there were any functional differences in the somatic action potential characteristics of unmyelinated and myelinated vagal afferents in response to different rates of sensory nerve stimulation. Our results showed that activity and frequency-dependent widening of the somatic action potential was quite prominent in unmyelinated but not myelinated vagal afferents. Spike broadening often leads to increased influx of Ca(2+) ions that has been associated with a diverse range of modulatory mechanisms both at the cell body and central synaptic terminations (e.g. increased neurotransmitter release.) We conclude that our observations are indicative of fundamentally different mechanisms for neural integration of sensory information arising from unmyelinated and myelinated vagal afferents.

  7. Dietary Glutamate: Interactions With the Enteric Nervous System

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Xia, Yun

    2014-01-01

    Background/Aims Digestion of dietary protein elevates intraluminal concentrations of glutamate in the small intestine, some of which gain access to the enteric nervous system (ENS). Glutamate, in the central nervous system (CNS), is an excitatory neurotransmitter. A dogma that glutamatergic neurophysiology in the ENS recapitulates CNS glutamatergic function persists. We reassessed the premise that glutamatergic signaling in the ENS recapitulates its neurotransmitter role in the CNS. Methods Pharmacological analysis of actions of receptor agonists and antagonists in concert with immunohistochemical localization of glutamate transporters and receptors was used. Analysis focused on intracellularly-recorded electrical and synaptic behavior of ENS neurons, on stimulation of mucosal secretion by secretomotor neurons in the submucosal plexus and on muscle contractile behavior mediated by musculomotor neurons in the myenteric plexus. Results Immunoreactivity for glutamate was expressed in ENS neurons. ENS neurons expressed immunoreactivity for the EAAC-1 glutamate transporter. Neither L-glutamate nor glutamatergic receptor agonists had excitatory actions on ENS neurons. Metabotropic glutamatergic receptor agonists did not directly stimulate neurogenic mucosal chloride secretion. Neither L-glutamate nor the metabotropic glutamatergic receptor agonist, aminocyclopentane-1,3-dicarboxylic acid (ACPD), changed the mean amplitude of spontaneously occurring contractions in circular or longitudinal strips of intestinal wall from either guinea pig or human small intestinal preparations. Conclusions Early discoveries, for excitatory glutamatergic neurotransmission in the CNS, inspired enthusiasm that investigation in the ENS would yield discoveries recapitulating the CNS glutamatergic story. We found this not to be the case. PMID:24466444

  8. Golgi, Cajal, and the Fine Structure of the Nervous System

    PubMed Central

    Peters, Alan

    2012-01-01

    Towards the middle of the twentieth century, neuroanatomy was on the decline. It was revived by the development of two new methods. One was the Nauta-Gygax method, which selectively stained nerve fibers that had been caused to degenerate by experimental lesions. This allowed connections between various parts of the nervous system to be better determined. The second was electron microscopy, which allowed the structure of neurons and the synapses between them to be examined in detail, and eventually this led to a revival of the Golgi impregnation methods. This occurred in the 1970s because of the desire of electron microscopists to determine the origins of the neuronal profiles they encountered in electron micrographs of various parts of the central nervous system. Eventually this led to the development of Golgi/EM techniques, whereby individual impregnated neurons could first be characterized by light microscopy and then thin sectioned for detailed analyses. Examining the axon terminals of such impregnated neurons, especially those in the cerebral cortex, for the first time revealed details of intercellular connections and allowed neuronal circuits to be postulated. However, Golgi/EM had only a brief, but fruitful existence. It was soon superceded by intracellular filling techniques, which allowed the added dimension that the physiological properties of identified neurons could also be determined. PMID:17270274

  9. Spectral Mixing in Nervous Systems: Experimental Evidenceand Biologically Plausible Circuits

    NASA Astrophysics Data System (ADS)

    Kleinfeld, D.; Mehta, S. B.

    The ability to compute the difference frequency for two periodic signals depends on a nonlinear operation that mixes those signals. Behavioral and psychophysical evidence suggest that such mixing is likely to occur in the vertebrate nervous system as a means to compare rhythmic sensory signals, such as occurs in human audition, and as a means to lock an intrinsic rhythm to a sensory input. Electrophysiological data from electroreceptors in the immobilized electric fish and somatosensory cortex in the anesthetized rat yield direct evidence for such mixing, providing a neurological substrate for the modulation and demodulation of rhythmic neuronal signals. We consider an analytical model of spectral mixing that makes use of the threshold characteristics of neuronal firing and which has features consistent with the experimental observations. This model serves as a guide for constructing circuits that isolate given mixture components. In particular, such circuits can generate nearly pure difference tones from sinusoidal inputs without the use of band-pass filters, in analogy to an image-reject mixer in communications engineering. We speculate that such computations may play a role in coding of sensory input and feedback stabilization of motor output in nervous systems.

  10. Skin biopsies in the assessment of the autonomic nervous system.

    PubMed

    Wang, Ningshan; Gibbons, Christopher H

    2013-01-01

    Cutaneous punch biopsies are widely used to evaluate nociceptive C fibers in patients with suspected small-fiber neuropathy. Recent advances in immunohistochemical techniques and interest in cutaneous autonomic innervation has expanded the role of skin biopsy in the evaluation of the peripheral nervous system. The dermal layers of the skin provide a unique window into the structural evaluation of the autonomic nervous system. Peripheral adrenergic and cholinergic fibers innervate a number of cutaneous structures, such as sweat glands and arrector pili muscles, and can easily be seen with punch skin biopsies. Skin biopsies allow for both regional sampling, in diseases with patchy distribution, and the opportunity for repeated sampling in progressive disorders. The structural evaluation of cutaneous autonomic innervation is still in its scientific infancy, with a number of different methodologies and techniques that will require standardization and widespread acceptance before becoming a standard of care. Future studies of autonomic innervation in acquired, hereditary, neurodegenerative, or autoimmune disorders will be necessary to determine the clinical utility of skin biopsy in these disease states.

  11. The origin and evolution of chordate nervous systems

    PubMed Central

    Holland, Linda Z.

    2015-01-01

    In the past 40 years, comparisons of developmental gene expression and mechanisms of development (evodevo) joined comparative morphology as tools for reconstructing long-extinct ancestral forms. Unfortunately, both approaches typically give congruent answers only with closely related organisms. Chordate nervous systems are good examples. Classical studies alone left open whether the vertebrate brain was a new structure or evolved from the anterior end of an ancestral nerve cord like that of modern amphioxus. Evodevo plus electron microscopy showed that the amphioxus brain has a diencephalic forebrain, small midbrain, hindbrain and spinal cord with parts of the genetic mechanisms for the midbrain/hindbrain boundary, zona limitans intrathalamica and neural crest. Evodevo also showed how extra genes resulting from whole-genome duplications in vertebrates facilitated evolution of new structures like neural crest. Understanding how the chordate central nervous system (CNS) evolved from that of the ancestral deuterostome has been truly challenging. The majority view is that this ancestor had a CNS with a brain that gave rise to the chordate CNS and, with loss of a discrete brain, to one of the two hemichordate nerve cords. The minority view is that this ancestor had no nerve cord; those in chordates and hemichordates evolved independently. New techniques such as phylostratigraphy may help resolve this conundrum. PMID:26554041

  12. Engineering Biomaterial Properties for Central Nervous System Applications

    NASA Astrophysics Data System (ADS)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  13. Pediatric Hashimoto's encephalopathy with peripheral nervous system involvement.

    PubMed

    Salpietro, Vincenzo; Mankad, Kshitij; Polizzi, Agata; Sugawara, Yuji; Granata, Francesca; David, Emanuele; Ferraù, Valeria; Gallizzi, Romina; Tortorella, Gaetano; Ruggieri, Martino

    2014-06-01

    Hashimoto encephalopathy is a syndrome of encephalopathy associated with elevated concentration of circulating serum anti-thyroid antibodies usually responsive to steroid therapy. We report a 13-year-old girl with Hashimoto encephalopathy and peripheral nervous system involvement. The child had experienced high-grade pyrexia, global headache and sleeplessness. After admission she had an ileus with a distended urinary bladder, hallucinations and cognitive impairment. She had reduced deep tendon reflexes and distal sensory deficiency. Anti-thyroglobulin antibodies were raised at 2121 IU/mL (normal, 0-40) and the anti-thyroperoxidase was high at 886 IU/mL (normal, 0-50). Progressive neurological and psychiatric remission was noted after i.v. methylprednisolone. Follow-up magnetic resonance imaging showed complete resolution of the foci of signal abnormality previously yielded. This case report is the first, to the best of our knowledge, to describe peripheral nervous system involvement in a child with a diagnosis of Hashimoto's encephalopathy.

  14. Sexual dysfunction in patients with peripheral nervous system lesions.

    PubMed

    Podnar, Simon; Vodušek, David B

    2015-01-01

    Peripheral nervous system (PNS) disorders may cause sexual dysfunction (SD) in patients of both genders. These disorders include mainly polyneuropathies (particularly those affecting the autonomic nervous system (ANS)) and localized lesions affecting the innervation of genital organs. Impaired neural control may produce a malfunction of the genital response consisting of loss of genital sensitivity, erectile dysfunction, loss of vaginal lubrication, ejaculation disorder, and orgasmic disorder. In addition, there is often a loss of desire which actually has a complex pathogenesis, which goes beyond the mere loss of relevant nerve function. In patients who have no manifest health problems - particularly men with erectile dysfunction - one should always consider the possibility of an underlying polyneuropathy; in patients with SD after suspected denervation lesions of the innervation of genital organs within the lumbosacral spinal canal and in the pelvis, clinical neurophysiologic testing may clarify the PNS involvement. SD can alter self-esteem and lower patients' quality of life; opening up a discussion on sexual issues should be a part of the management of patients with PNS disorders. They may greatly benefit from counseling, education on coping strategies, and specific treatments.

  15. Glycobiology of ion transport in the nervous system.

    PubMed

    Nowycky, Martha C; Wu, Gusheng; Ledeen, Robert W

    2014-01-01

    The nervous system is richly endowed with large transmembrane proteins that mediate ion transport, including gated ion channels as well as energy-consuming pumps and transporters. Transport proteins undergo N-linked glycosylation which can affect expression, location, stability, and function. The N-linked glycans of ion channels are large, contributing between 5 and 50 % of their molecular weight. Many contain a high density of negatively charged sialic acid residues which modulate voltage-dependent gating of ion channels. Changes in the size and chemical composition of glycans are responsible for developmental and cell-specific variability in the biophysical and functional properties of many ion channels. Glycolipids, principally gangliosides, exert considerable influence on some forms of ion transport, either through direct association with ion transport proteins or indirectly through association with proteins that activate transport through appropriate signaling. Examples of both pumps and ion channels have been revealed which depend on ganglioside regulation. While some of these processes are localized in the plasma membrane, ganglioside-regulated ion transport can also occur at various loci within the cell including the nucleus. This chapter will describe ion channel and ion pump structures with a focus on the functional effects of glycosylation on ion channel availability and function, and effects of alterations in glycosylation on nervous system function. It will also summarize highlights of the research on glycolipid/ganglioside-mediated regulation of ion transport.

  16. The origin and evolution of chordate nervous systems.

    PubMed

    Holland, Linda Z

    2015-12-19

    In the past 40 years, comparisons of developmental gene expression and mechanisms of development (evodevo) joined comparative morphology as tools for reconstructing long-extinct ancestral forms. Unfortunately, both approaches typically give congruent answers only with closely related organisms. Chordate nervous systems are good examples. Classical studies alone left open whether the vertebrate brain was a new structure or evolved from the anterior end of an ancestral nerve cord like that of modern amphioxus. Evodevo plus electron microscopy showed that the amphioxus brain has a diencephalic forebrain, small midbrain, hindbrain and spinal cord with parts of the genetic mechanisms for the midbrain/hindbrain boundary, zona limitans intrathalamica and neural crest. Evodevo also showed how extra genes resulting from whole-genome duplications in vertebrates facilitated evolution of new structures like neural crest. Understanding how the chordate central nervous system (CNS) evolved from that of the ancestral deuterostome has been truly challenging. The majority view is that this ancestor had a CNS with a brain that gave rise to the chordate CNS and, with loss of a discrete brain, to one of the two hemichordate nerve cords. The minority view is that this ancestor had no nerve cord; those in chordates and hemichordates evolved independently. New techniques such as phylostratigraphy may help resolve this conundrum.

  17. Role of the autonomic nervous system in modulating cardiac arrhythmias.

    PubMed

    Shen, Mark J; Zipes, Douglas P

    2014-03-14

    The autonomic nervous system plays an important role in the modulation of cardiac electrophysiology and arrhythmogenesis. Decades of research has contributed to a better understanding of the anatomy and physiology of cardiac autonomic nervous system and provided evidence supporting the relationship of autonomic tone to clinically significant arrhythmias. The mechanisms by which autonomic activation is arrhythmogenic or antiarrhythmic are complex and different for specific arrhythmias. In atrial fibrillation, simultaneous sympathetic and parasympathetic activations are the most common trigger. In contrast, in ventricular fibrillation in the setting of cardiac ischemia, sympathetic activation is proarrhythmic, whereas parasympathetic activation is antiarrhythmic. In inherited arrhythmia syndromes, sympathetic stimulation precipitates ventricular tachyarrhythmias and sudden cardiac death except in Brugada and J-wave syndromes where it can prevent them. The identification of specific autonomic triggers in different arrhythmias has brought the idea of modulating autonomic activities for both preventing and treating these arrhythmias. This has been achieved by either neural ablation or stimulation. Neural modulation as a treatment for arrhythmias has been well established in certain diseases, such as long QT syndrome. However, in most other arrhythmia diseases, it is still an emerging modality and under investigation. Recent preliminary trials have yielded encouraging results. Further larger-scale clinical studies are necessary before widespread application can be recommended.

  18. Detection of BMAA in the human central nervous system.

    PubMed

    Berntzon, L; Ronnevi, L O; Bergman, B; Eriksson, J

    2015-04-30

    Amyotrophic lateral sclerosis (ALS) is an extremely devastating neurodegenerative disease with an obscure etiology. The amino acid β-N-methylamino-l-alanine (BMAA) produced by globally widespread phytoplankton has been implicated in the etiology of human motor neuron diseases [corrected]. BMAA was recently proven to be present in Baltic Sea food webs, ranging from plankton to larger Baltic Sea organisms, some serving as important food items (fish) for humans. To test whether exposure to BMAA in a Baltic Sea setting is reflected in humans, blood and cerebrospinal fluid (CSF) from individuals suffering from ALS were analyzed, together with sex- and age-matched individuals not inflicted with ALS. Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and multiple reaction monitoring (MRM), in conjunction with diagnostic transitions revealed BMAA in three (12%) of the totally 25 Swedish individuals tested, with no preference for those suffering from ALS. The three BMAA-positive samples were all retrieved from the CSF, while BMAA was not detected in the blood. The data show that BMAA, potentially originating from Baltic Sea phytoplankton, may reach the human central nervous system, but does not lend support to the notion that BMAA is resident specifically in ALS-patients. However, while dietary exposure to BMAA may be intermittent and, if so, difficult to detect, our data provide the first demonstration of BMAA in the central nervous system of human individuals ante mortem quantified with UHPLC-MS/MS, and therefore calls for extended research efforts.

  19. Targeted Temperature Management in Pediatric Central Nervous System Disease

    PubMed Central

    Newmyer, Robert; Mendelson, Jenny; Pang, Diana; Fink, Ericka L.

    2015-01-01

    Opinion Statement Acute central nervous system conditions due to hypoxic-ischemic encephalopathy, traumatic brain injury (TBI), status epilepticus, and central nervous system infection/inflammation, are a leading cause of death and disability in childhood. There is a critical need for effective neuroprotective therapies to improve outcome targeting distinct disease pathology. Fever, defined as patient temperature > 38°C, has been clearly shown to exacerbate brain injury. Therapeutic hypothermia (HT) is an intervention using targeted temperature management that has multiple mechanisms of action and robust evidence of efficacy in multiple experimental models of brain injury. Prospective clinical evidence for its neuroprotective efficacy exists in narrowly-defined populations with hypoxic-ischemic injury outside of the pediatric age range while trials comparing hypothermia to normothermia after TBI have failed to demonstrate a benefit on outcome but consistently demonstrate potential use in decreasing refractory intracranial pressure. Data in children from prospective, randomized controlled trials using different strategies of targeted temperature management for various outcomes are few but a large study examining HT versus controlled normothermia to improve neurological outcome in cardiac arrest is underway. PMID:26042193

  20. Probing disorders of the nervous system using reprogramming approaches

    PubMed Central

    Ichida, Justin K; Kiskinis, Evangelos

    2015-01-01

    The groundbreaking technologies of induced pluripotency and lineage conversion have generated a genuine opportunity to address fundamental aspects of the diseases that affect the nervous system. These approaches have granted us unrestricted access to the brain and spinal cord of patients and have allowed for the study of disease in the context of human cells, expressing physiological levels of proteins and under each patient's unique genetic constellation. Along with this unprecedented opportunity have come significant challenges, particularly in relation to patient variability, experimental design and data interpretation. Nevertheless, significant progress has been achieved over the past few years both in our ability to create the various neural subtypes that comprise the nervous system and in our efforts to develop cellular models of disease that recapitulate clinical findings identified in patients. In this Review, we present tables listing the various human neural cell types that can be generated and the neurological disease modeling studies that have been reported, describe the current state of the field, highlight important breakthroughs and discuss the next steps and future challenges. PMID:25925386

  1. HIV Immune Recovery Inflammatory Syndrome and Central Nervous System Paracoccidioidomycosis.

    PubMed

    de Almeida, Sérgio Monteiro; Roza, Thiago Henrique

    2017-04-01

    The immune reconstitution inflammatory syndrome (IRIS) is a deregulated inflammatory response to invading microorganisms. It is manifested when there is an abrupt change in host immunity from an anti-inflammatory and immunosuppressive state to a pro-inflammatory state as a result of rapid depletion or removal of factors that promote immune suppression or inhibition of inflammation. The aim of this paper is to discuss and re-interpret the possibility of association of paracoccidioidomycosis (PCM) with IRIS in the central nervous system (CNS) in a case from Brazil published by Silva-Vergara ML. et al. (Mycopathologia 177:137-141, 6). An AIDS patient who was not receiving medical care developed pulmonary PCM successfully treated with itraconazole. The patient developed central nervous system PCM (NPCM) after starting the ARV therapy with recovery of immunity and control of HIV viral load, although it was not interpreted as IRIS by the authors, it fulfills the criteria for CNS IRIS. This could be the first case of NPCM associated with IRIS described. Although not frequent, IRIS must be considered in PCM patients and HIV, from endemic areas or patients that traveled to endemic areas, receiving ARV treatment and with worsening symptoms.

  2. ATR maintains select progenitors during nervous system development

    PubMed Central

    Lee, Youngsoo; Shull, Erin RP; Frappart, Pierre-Olivier; Katyal, Sachin; Enriquez-Rios, Vanessa; Zhao, Jingfeng; Russell, Helen R; Brown, Eric J; McKinnon, Peter J

    2012-01-01

    The ATR (ATM (ataxia telangiectasia mutated) and rad3-related) checkpoint kinase is considered critical for signalling DNA replication stress and its dysfunction can lead to the neurodevelopmental disorder, ATR-Seckel syndrome. To understand how ATR functions during neurogenesis, we conditionally deleted Atr broadly throughout the murine nervous system, or in a restricted manner in the dorsal telencephalon. Unexpectedly, in both scenarios, Atr loss impacted neurogenesis relatively late during neural development involving only certain progenitor populations. Whereas the Atr-deficient embryonic cerebellar external germinal layer underwent p53- (and p16Ink4a/Arf)-independent proliferation arrest, other brain regions suffered apoptosis that was partially p53 dependent. In contrast to other organs, in the nervous system, p53 loss did not worsen the outcome of Atr inactivation. Coincident inactivation of Atm also did not affect the phenotype after Atr deletion, supporting non-overlapping physiological roles for these related DNA damage-response kinases in the brain. Rather than an essential general role in preventing replication stress, our data indicate that ATR functions to monitor genomic integrity in a selective spatiotemporal manner during neurogenesis. PMID:22266795

  3. Role of metallothionein-III following central nervous system damage.

    PubMed

    Carrasco, Javier; Penkowa, Milena; Giralt, Mercedes; Camats, Jordi; Molinero, Amalia; Campbell, Iain L; Palmiter, Richard D; Hidalgo, Juan

    2003-06-01

    We evaluated the physiological relevance of metallothionein-III (MT-III) in the central nervous system following damage caused by a focal cryolesion onto the cortex by studying Mt3-null mice. In normal mice, dramatic astrogliosis and microgliosis and T-cell infiltration were observed in the area surrounding the lesioned tissue, along with signs of increased oxidative stress and apoptosis. There was also significant upregulation of cytokines/growth factors such as tumor necrosis factor-alpha, interleukin (IL)-1 alpha/beta, and IL-6 as measured by ribonuclease protection assay. Mt3-null mice did not differ from control mice in these responses, in sharp contrast to results obtained in Mt1- Mt2-null mice. In contrast, Mt3-null mice showed increased expression of several neurotrophins as well as of the neuronal sprouting factor GAP-43. Thus, unlike MT-I and MT-II, MT-III does not affect the inflammatory response elicited in the central nervous system by a cryoinjury, nor does it serve an important antioxidant role, but it may influence neuronal regeneration during the recovery process.

  4. Interleukin-1β in Central Nervous System Injury and Repair

    PubMed Central

    Hewett, Sandra J.

    2015-01-01

    Summary Acute inflammation is a self-limiting, complex biological response mounted to combat pathogen invasion, to protect against tissue damage, and to promote tissue repair should it occur. However, unabated inflammation can be deleterious and contribute to injury and pathology. Interleukin-1β (IL-1β), a prototypical “pro-inflammatory” cytokine, is essential to cellular defense and tissue repair in nearly all tissues. With respect to brain, however, studies suggest that IL-1β has pleiotrophic effects. It acts as a neuromodulator in the healthy central nervous system (CNS), has been implicated in the pathogenic processes associated with a number of CNS maladies, but may also provide protection to the injured CNS. Here, we will review the physiological and pathophysiological functions of IL-1β in the central nervous system with regard to synaptic plasticity. With respect to disease, emphasis will be placed on stroke, epilepsy, Parkinson’s disease and Alzheimer’s disease where the ultimate injurious or reparative effects of IL-1β appear to depend on time, concentration and environmental milieu. PMID:26082912

  5. Experience with examination of the spinal cord and peripheral nervous system (PNS) in mice: A brief overview.

    PubMed

    Krinke, Georg J; Herrmann, Annika; Körner, Annette; Landes, Christian; Sauner, Francine

    2014-09-01

    The representative areas for examination of the mouse peripheral nervous system are the spinal cord, containing central components of the peripheral nervous system that needs to be examined at least at cervical and lumbar level, the sciatic and the tibial nerve. Skeletal muscle samples should include the soleus muscle and the quadriceps femoris or long digital extensor, as well as the medial gastrocnemius. Examination can be extended to the thoracic spinal cord, lumbar dorsal root ganglia and spinal nerve roots, as well as the plantar nerve, and other areas of interest. Perfusion fixation is considered optimal for the nervous system; however, immersion fixation allows producing microscopic sections of excellent quality as well. Paraffin-embedded, hematoxylin and eosin-stained sections can be made from all areas, save for small nerves such as the tibial or plantar nerve, which are examined with advantage in hard plastic sections. It is possible to produce hard plastic sections also of the vertebral column, including the spinal cord, dorsal root ganglia and nerve roots. For special investigations, mice can be fixed in toto, decalcified, embedded and sectioned to reveal the areas of interest. In the mouse peripheral nerves, myelination progresses until the adult age. In aging peripheral nerves there is axonal atrophy, degeneration, nerve fiber loss, increase of collagen and sporadic demyelination, especially radiculoneuropathy. The dorsal root ganglia of untreated control animals show frequent cytoplasmic vacuolation. Axonal degeneration is distally, primary demyelination proximally accentuated. Mouse is not very sensitive to peripheral neurotoxicity: to induce toxic peripheral neuropathy mostly parenteral administration and/or newborn animals are used. Naturally occurring infection affecting the spinal cord and peripheral nerves is Theiler's encephalomyelitis virus inducing acute poliomyelitis or chronic demyelination. Any experimental results are to be assessed

  6. Diverse Roles of Neurotensin Agonists in the Central Nervous System

    PubMed Central

    Boules, Mona; Li, Zhimin; Smith, Kristin; Fredrickson, Paul; Richelson, Elliott

    2013-01-01

    Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD. PMID:23526754

  7. Choroid plexus in the central nervous system: biology and physiopathology.

    PubMed

    Strazielle, N; Ghersi-Egea, J F

    2000-07-01

    Choroid plexuses (CPs) are localized in the ventricular system of the brain and form one of the interfaces between the blood and the central nervous system (CNS). They are composed of a tight epithelium responsible for cerebrospinal fluid secretion, which encloses a loose connective core containing permeable capillaries and cells of the lymphoid lineage. In accordance with its peculiar localization between 2 circulating fluid compartments, the CP epithelium is involved in numerous exchange processes that either supply the brain with nutrients and hormones, or clear deleterious compounds and metabolites from the brain. Choroid plexuses also participate in neurohumoral brain modulation and neuroimmune interactions, thereby contributing greatly in maintaining brain homeostasis. Besides these physiological functions, the implication of choroid plexuses in pathological processes is increasingly documented. In this review, we focus on some of the novel aspects of CP functions in relation to brain development, transfer of neuro-humoral information, brain/immune system interactions, brain aging, and cerebral pharmaco-toxicology.

  8. Detrimental impact of hyperlipidemia on the peripheral nervous system

    PubMed Central

    Wu, Song; Cao, Xu; He, Rongzhen; Xiong, Kun

    2012-01-01

    Recently, epidemiological studies on the etiology of peripheral neuropathies have revealed that hyperlipidemia is a novel risk factor. Plasma lipid levels were confirmed to be associated with the incidence of many peripheral neuropathies including axonal distal polyneuropathy, vision and hearing loss, motor nerve system lesions and sympathetic nerve system dysfunction. Moreover, different lipid components such as cholesterol, triacylglycerols and lipoprotein are involved in the pathogenesis of these neuropathies. This review aimed to discuss the effect of hyperlipidemia on the peripheral nervous system and its association with peripheral neuropathies. Furthermore, a detailed discussion focusing on the explicit mechanisms related to hyperlipidemia-induced peripheral neuropathies is presented here. These mechanisms, including intracellular oxidative stress, inflammatory lesions, ischemia and dysregulation of local lipid metabolism, share pathways and interact mutually. In addition, we examined current information on clinical trials to prevent and treat peripheral neuropathies caused by hyperlipidemia, with a predictive discussion regarding the orientation of future investigations. PMID:25774180

  9. [Histoplasmosis of the central nervous system in an immunocompetent patient].

    PubMed

    Osorio, Natalia; López, Yúrika; Jaramillo, Juan Camilo

    2014-01-01

    Histoplasmosis is a multifaceted condition caused by the dimorphic fungi Histoplasma capsulatum whose infective spores are inhaled and reach the lungs, the primary organ of infection. The meningeal form, considered one of the most serious manifestations of this mycosis, is usually seen in individuals with impaired cellular immunity such as patients with acquired immunodeficiency syndrome, systemic lupus erythematous or solid organ transplantation, and infants given their immunological immaturity. The most common presentation is self-limited and occurs in immunocompetent individuals who have been exposed to high concentrations of conidia and mycelia fragments of the fungi. In those people, the condition is manifested by pulmonary disorders and late dissemination to other organs and systems. We report a case of central nervous system histoplasmosis in an immunocompetent child.

  10. Clostridium perfringens Epsilon Toxin Causes Selective Death of Mature Oligodendrocytes and Central Nervous System Demyelination

    PubMed Central

    Linden, Jennifer R.; Ma, Yinghua; Zhao, Baohua; Harris, Jason Michael; Rumah, Kareem Rashid; Schaeren-Wiemers, Nicole

    2015-01-01

    ABSTRACT Clostridium perfringens epsilon toxin (ε-toxin) is responsible for a devastating multifocal central nervous system (CNS) white matter disease in ruminant animals. The mechanism by which ε-toxin causes white matter damage is poorly understood. In this study, we sought to determine the molecular and cellular mechanisms by which ε-toxin causes pathological changes to white matter. In primary CNS cultures, ε-toxin binds to and kills oligodendrocytes but not astrocytes, microglia, or neurons. In cerebellar organotypic culture, ε-toxin induces demyelination, which occurs in a time- and dose-dependent manner, while preserving neurons, astrocytes, and microglia. ε-Toxin specificity for oligodendrocytes was confirmed using enriched glial culture. Sensitivity to ε-toxin is developmentally regulated, as only mature oligodendrocytes are susceptible to ε-toxin; oligodendrocyte progenitor cells are not. ε-Toxin sensitivity is also dependent on oligodendrocyte expression of the proteolipid myelin and lymphocyte protein (MAL), as MAL-deficient oligodendrocytes are insensitive to ε-toxin. In addition, ε-toxin binding to white matter follows the spatial and temporal pattern of MAL expression. A neutralizing antibody against ε-toxin inhibits oligodendrocyte death and demyelination. This study provides several novel insights into the action of ε-toxin in the CNS. (i) ε-Toxin causes selective oligodendrocyte death while preserving all other neural elements. (ii) ε-Toxin-mediated oligodendrocyte death is a cell autonomous effect. (iii) The effects of ε-toxin on the oligodendrocyte lineage are restricted to mature oligodendrocytes. (iv) Expression of the developmentally regulated proteolipid MAL is required for the cytotoxic effects. (v) The cytotoxic effects of ε-toxin can be abrogated by an ε-toxin neutralizing antibody. PMID:26081637

  11. Nonlinear optical techniques for imaging and manipulating the mouse central nervous system

    NASA Astrophysics Data System (ADS)

    Farrar, Matthew John

    The spinal cord of vertebrates serves as the conduit for somatosensory information and motor control, as well as being the locus of neural circuits that govern fast reflexes and patterned behaviors, such as walking in mammals or swimming in fish. Consequently, pathologies of the spinal cord -such as spinal cord injury (SCI)- lead to loss of motor control and sensory perception, with accompanying decline in life expectancy and quality of life. Despite the devastating effects of these diseases, few therapies exist to substantially ameliorate patient outcome. In part, studies of spinal cord pathology have been limited by the inability to perform in vivo imaging at the level of cellular processes. The focus of this thesis is to present the underlying theory for and demonstration of novel multi-photon microscopy (MPM) and optical manipulation techniques as they apply to studies the mouse central nervous system (CNS), with an emphasis on the spinal cord. The scientific findings which have resulted from the implementation of these techniques are also presented. In particular, we have demonstrated that third harmonic generation is a dye-free method of imaging CNS myelin, a fundamental constituent of the spinal cord that is difficult to label using exogenous dyes and/or transgenic constructs. Since gaining optical access to the spinal cord is a prerequisite for spinal cord imaging, we review our development of a novel spinal cord imaging chamber and surgical procedure which allowed us to image for multiple weeks following implantation without the need for repeated surgeries. We also have used MPM to characterize spinal venous blood flow before and after point occlusions. We review a novel nonlinear microscopy technique that may serve to show optical interfaces in three dimensions inside scattering tissue. Finally, we discuss a model and show results of optoporation, a means of transfecting cells with genetic constructs. Brief reviews of MPM and SCI are also presented.

  12. Aging of myelinating glial cells predominantly affects lipid metabolism and immune response pathways.

    PubMed

    Verdier, Valérie; Csárdi, Gábor; de Preux-Charles, Anne-Sophie; Médard, Jean-Jacques; Smit, August B; Verheijen, Mark H G; Bergmann, Sven; Chrast, Roman

    2012-05-01

    Both the central and the peripheral nervous systems are prone to multiple age-dependent neurological deficits, often attributed to still unknown alterations in the function of myelinating glia. To uncover the biological processes affected in glial cells by aging, we analyzed gene expression of the Schwann cell-rich mouse sciatic nerve at 17 time points throughout life, from day of birth until senescence. By combining these data with the gene expression data of myelin mouse mutants carrying deletions of either Pmp22, SCAP, or Lpin1, we found that the majority of age-related transcripts were also affected in myelin mutants (54.4%) and were regulated during PNS development (59.5%), indicating a high level of overlap in implicated molecular pathways. The expression profiles in aging copied the direction of transcriptional changes observed in neuropathy models; however, they had the opposite direction when compared with PNS development. The most significantly altered biological processes in aging involved the inflammatory/immune response and lipid metabolism. Interestingly, both these pathways were comparably changed in the aging optic nerve, suggesting that similar biological processes are affected in aging of glia-rich parts of the central and peripheral nervous systems. Our comprehensive comparison of gene expression in three distinct biological conditions including development, aging, and myelin disease thus revealed a previously unanticipated relationship among themselves and identified lipid metabolism and inflammatory/immune response pathways as potential therapeutical targets to prevent or delay so far incurable age-related and inherited forms of neuropathies.

  13. The development of myelin in the brain of the juvenile rat.

    PubMed

    Downes, Noel; Mullins, Pamela

    2014-07-01

    The development process of myelination varies between region and species. Fully myelinated fibers are required if mammalian neural circuits are to function normally. Histology samples at staggered time points throughout the study were examined at days 4, 5, 7, 8, 10, 14, 17, 24, 37, and 44. We suggest that the development of myelin in the juvenile rodent brain can be conveniently separated into 3 phases. Evaluation of myelin basic protein-stained sections of the areas of brain that contain the elements of the developing limbic system over the sensitive period from postnatal day (PND) 14 to 34 may provide an insight into possible toxicity that may lead to cognition and learning issues in adults. We will hope to develop this notion further in the future. The precise chronology of the development of the blood-brain barrier in rats has yet to be established; thus, there is potential for significant exposure of the juvenile brain to chemicals that do not cross the blood-brain barrier in the adult. Thus, it is suggested that evaluation of myelin development should probably be extended to all new chemical entities intended for pediatric use, and not just those that are intended for central nervous system use.

  14. Convection-enhanced delivery to the central nervous system.

    PubMed

    Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H

    2015-03-01

    Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.

  15. Development-Inspired Reprogramming of the Mammalian Central Nervous System

    PubMed Central

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-01

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the exciting demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell-type into another not only turns fundamental principles of development on their head but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may impact regeneration and modeling of a system historically considered immutable and hardwired. PMID:24482482

  16. Evolution and regeneration of the planarian central nervous system.

    PubMed

    Umesono, Yoshihiko; Agata, Kiyokazu

    2009-04-01

    More than 100 years ago, early workers realized that planarians offer an excellent system for regeneration studies. Another unique aspect of planarians is that they occupy an interesting phylogenetic position with respect to the nervous system in that they possess an evolutionarily primitive brain structure and can regenerate a functional brain from almost any tiny body fragment. Recent molecular studies have revisited planarian regeneration and revealed key information about the cellular and molecular mechanisms underlying brain regeneration in planarians. One of our great advances was identification of a gene, nou-darake, which directs the formation of a proper extrinsic environment for pluripotent stem cells to differentiate into brain cells in the planarian Dugesia japonica. Our recent findings have provided mechanistic insights into stem cell biology and also evolutionary biology.

  17. Control of Prosthetic Hands via the Peripheral Nervous System

    PubMed Central

    Ciancio, Anna Lisa; Cordella, Francesca; Barone, Roberto; Romeo, Rocco Antonio; Bellingegni, Alberto Dellacasa; Sacchetti, Rinaldo; Davalli, Angelo; Di Pino, Giovanni; Ranieri, Federico; Di Lazzaro, Vincenzo; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e., PNS), and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are investigated. Special emphasis is then dedicated to the recent studies on the restoration of tactile perception in amputees through neural interfaces. The paper finally proposes a number of suggestions for designing the prosthetic system able to re-establish a bidirectional communication with the PNS and foster the prosthesis natural control. PMID:27092041

  18. Development-inspired reprogramming of the mammalian central nervous system.

    PubMed

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-31

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell type into another not only turns fundamental principles of development on their heads but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may affect regeneration and modeling of a system historically considered immutable and hardwired.

  19. Autonomic nervous system correlates in movement observation and motor imagery

    PubMed Central

    Collet, C.; Di Rienzo, F.; El Hoyek, N.; Guillot, A.

    2013-01-01

    The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding of the autonomic nervous system (ANS) correlates in motor imagery (MI) and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We will first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system (CNS). We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes. PMID:23908623

  20. Cellular changes in the enteric nervous system during ageing.

    PubMed

    Saffrey, M Jill

    2013-10-01

    The intrinsic neurons of the gut, enteric neurons, have an essential role in gastrointestinal functions. The enteric nervous system is plastic and continues to undergo changes throughout life, as the gut grows and responds to dietary and other environmental changes. Detailed analysis of changes in the ENS during ageing suggests that enteric neurons are more vulnerable to age-related degeneration and cell death than neurons in other parts of the nervous system, although there is considerable variation in the extent and time course of age-related enteric neuronal loss reported in different studies. Specific neuronal subpopulations, particularly cholinergic myenteric neurons, may be more vulnerable than others to age-associated loss or damage. Enteric degeneration and other age-related neuronal changes may contribute to gastrointestinal dysfunction that is common in the elderly population. Evidence suggests that caloric restriction protects against age-associated loss of enteric neurons, but recent advances in the understanding of the effects of the microbiota and the complex interactions between enteric ganglion cells, mucosal immune system and intestinal epithelium indicate that other factors may well influence ageing of enteric neurons. Much remains to be understood about the mechanisms of neuronal loss and damage in the gut, although there is evidence that reactive oxygen species, neurotrophic factor dysregulation and/or activation of a senescence associated phenotype may be involved. To date, there is no evidence for ongoing neurogenesis that might replace dying neurons in the ageing gut, although small local sites of neurogenesis would be difficult to detect. Finally, despite the considerable evidence for enteric neurodegeneration during ageing, and evidence for some physiological changes in animal models, the ageing gut appears to maintain its function remarkably well in animals that exhibit major neuronal loss, indicating that the ENS has considerable

  1. Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination.

    PubMed

    Kegel, Linde; Jaegle, Martine; Driegen, Siska; Aunin, Eerik; Leslie, Kris; Fukata, Yuko; Watanabe, Masahiko; Fukata, Masaki; Meijer, Dies

    2014-04-01

    The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution.

  2. Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria.

    PubMed

    Rieger, Verena; Perez, Yvan; Müller, Carsten H G; Lacalli, Thurston; Hansson, Bill S; Harzsch, Steffen

    2011-06-01

    Chaetognaths (arrow worms) play an important role as predators in planktonic food webs. Their phylogenetic position is unresolved, and among the numerous hypotheses, affinities to both protostomes and deuterostomes have been suggested. Many aspects of their life history, including ontogenesis, are poorly understood and, though some aspects of their embryonic and postembryonic development have been described, knowledge of early neural development is still limited. This study sets out to provide new insights into neurogenesis of newly hatched Spadella cephaloptera and their development during the following days, with attention to the two main nervous centers, the brain and the ventral nerve center. These were examined with immunohistological methods and confocal laser-scan microscopic analysis, using antibodies against tubulin, FMRFamide, and synapsin to trace the emergence of neuropils and the establishment of specific peptidergic subsystems. At hatching, the neuronal architecture of the ventral nerve center is already well established, whereas the brain and the associated vestibular ganglia are still rudimentary. The development of the brain proceeds rapidly over the next 6 days to a state that resembles the adult pattern. These data are discussed in relation to the larval life style and behaviors such as feeding. In addition, we compare the larval chaetognath nervous system and that of other bilaterian taxa in order to extract information with phylogenetic value. We conclude that larval neurogenesis in chaetognaths does not suggest an especially close relationship to either deuterostomes or protostomes, but instead displays many apomorphic features.

  3. Oligodendrogenesis in the normal and pathological central nervous system

    PubMed Central

    El Waly, Bilal; Macchi, Magali; Cayre, Myriam; Durbec, Pascale

    2014-01-01

    Oligodendrocytes (OLGs) are generated late in development and myelination is thus a tardive event in the brain developmental process. It is however maintained whole life long at lower rate, and myelin sheath is crucial for proper signal transmission and neuronal survival. Unfortunately, OLGs present a high susceptibility to oxidative stress, thus demyelination often takes place secondary to diverse brain lesions or pathologies. OLGs can also be the target of immune attacks, leading to primary demyelination lesions. Following oligodendrocytic death, spontaneous remyelination may occur to a certain extent. In this review, we will mainly focus on the adult brain and on the two main sources of progenitor cells that contribute to oligodendrogenesis: parenchymal oligodendrocyte precursor cells (OPCs) and subventricular zone (SVZ)-derived progenitors. We will shortly come back on the main steps of oligodendrogenesis in the postnatal and adult brain, and summarize the key factors involved in the determination of oligodendrocytic fate. We will then shed light on the main causes of demyelination in the adult brain and present the animal models that have been developed to get insight on the demyelination/remyelination process. Finally, we will synthetize the results of studies searching for factors able to modulate spontaneous myelin repair. PMID:24971048

  4. Taking Advantage of Nature’s Gift: Can Endogenous Neural Stem Cells Improve Myelin Regeneration?

    PubMed Central

    Akkermann, Rainer; Jadasz, Janusz Joachim; Azim, Kasum; Küry, Patrick

    2016-01-01

    Irreversible functional deficits in multiple sclerosis (MS) are directly correlated to axonal damage and loss. Neurodegeneration results from immune-mediated destruction of myelin sheaths and subsequent axonal demyelination. Importantly, oligodendrocytes, the myelinating glial cells of the central nervous system, can be replaced to some extent to generate new myelin sheaths. This endogenous regeneration capacity has so far mainly been attributed to the activation and recruitment of resident oligodendroglial precursor cells. As this self-repair process is limited and increasingly fails while MS progresses, much interest has evolved regarding the development of remyelination-promoting strategies and the presence of alternative cell types, which can also contribute to the restoration of myelin sheaths. The adult brain comprises at least two neurogenic niches harboring life-long adult neural stem cells (NSCs). An increasing number of investigations are beginning to shed light on these cells under pathological conditions and revealed a significant potential of NSCs to contribute to myelin repair activities. In this review, these emerging investigations are discussed with respect to the importance of stimulating endogenous repair mechanisms from germinal sources. Moreover, we present key findings of NSC-derived oligodendroglial progeny, including a comprehensive overview of factors and mechanisms involved in this process. PMID:27854261

  5. Knockdown of Lingo1b protein promotes myelination and oligodendrocyte differentiation in zebrafish.

    PubMed

    Yin, Wu; Hu, Bing

    2014-01-01

    Demyelinating diseases include multiple sclerosis, which is a neurodegenerative disease characterized by immune attacks on the central nervous system (CNS), resulting in myelin sheath damage and axonal loss. Leucine-rich repeat and immunoglobulin domain-containing neurite outgrowth inhibitory protein (Nogo) receptor-interacting protein-1 (LINGO-1) have been identified as a negative regulator of oligodendrocytes differentiation. Targeted LINGO-1 inhibition promotes neuron survival, axon regeneration, oligodendrocyte differentiation, and remyelination in diverse animal models. Although studies in rodent models have extended our understanding of LINGO-1, its roles in neural development and myelination in zebrafish (Danio rerio) are not yet clear. In this study, we cloned the zebrafish homolog of the human LINGO-1 and found that lingo1b regulated myelination and oligodendrocyte differentiation. The expression of lingo1b started 1 (mRNA) and 2 (protein) days post-fertilization (dpf) in the CNS. Morpholino oligonucleotide knockdown of lingo1b resulted in developmental abnormalities, including less dark pigment, small eyes, and a curly spinal cord. The lack of lingo1b enhanced myelination and oligodendrocyte differentiation during embryogenesis. Furthermore, immunohistochemistry and movement analysis showed that lingo1b was involved in the axon development of primary motor neurons. These results suggested that Lingo1b protein functions as a negative regulator of myelination and oligodendrocyte differentiation during zebrafish development.

  6. Structural features of the Nogo receptor signaling complexes at the neuron/myelin interface.

    PubMed

    Saha, Nayanendu; Kolev, Momchil; Nikolov, Dimitar B

    2014-10-01

    Upon spinal cord injury, the central nervous system axons are unable to regenerate, partially due to the repulsive action of myelin inhibitors, such as the myelin-associated glycoprotein (MAG), Nogo-A and the oligodendrocyte myelin glycoprotein (OMgp). These inhibitors bind and signal through a single receptor/co-receptor complex that comprises of NgR1/LINGO-1 and either p75 or TROY, triggering intracellular downstream signaling that impedes the re-growth of axons. Structure-function analysis of myelin inhibitors and their neuronal receptors, particularly the NgRs, have provided novel information regarding the molecular details of the inhibitor/receptor/co-receptor interactions. Structural and biochemical studies have revealed the architecture of many of these proteins and identified the molecular regions important for assembly of the inhibitory signaling complexes. It was also recently shown that gangliosides, such as GT1b, mediate receptor/co-receptor binding. In this review, we highlight these studies and summarize our current understanding of the multi-protein cell-surface complexes mediating inhibitory signaling events at the neuron/myelin interface.

  7. HDAC-mediated Deacetylation of NF-κB is Critical for Schwann cell Myelination

    PubMed Central

    Chen, Ying; Wang, Haibo; Yoon, Sung Ok; Xu, Xiaomei; Hottiger, Michael; Svaren, John; Nave, Klaus A.; Kim, Haesun A.; Olson, Eric N.; Lu, Q. Richard

    2011-01-01

    Schwann cell myelination is tightly regulated by timely expression of key transcriptional regulators that respond to specific environmental cues, yet molecular mechanisms underlying such a process are poorly understood. Here, we report that HDAC1/2-regulated acetylation state of NF-κB is critical in orchestrating the myelination program. Mice lacking HDAC1/2 exhibit severe dysmyelination with Schwann cell development arrested at the immature stage. We find that NF-κB p65 becomes heavily acetylated in HDAC1/2 mutants, inhibiting the expression of positive regulators of myelination, while inducing the expression of differentiation inhibitors. We observe that NF-κB protein complex switches its association with p300 to that with HDAC1/2 as Schwann cells differentiate. NF-κB and HDAC1/2 act coordinately to regulate the transcriptionally-linked chromatin state for Schwann cell myelination. Thus, our results reveal an HDAC-mediated developmental switch for controlling myelination in the peripheral nervous system. PMID:21423191

  8. Zinc in the central nervous system: From molecules to behavior

    PubMed Central

    Gower-Winter, Shannon D.; Levenson, Cathy W.

    2012-01-01

    The trace metal zinc is a biofactor that plays essential roles in the central nervous system across the lifespan from early neonatal brain development through the maintenance of brain function in adults. At the molecular level, zinc regulates gene expression through transcription factor activity and is responsible for the activity of dozens of key enzymes in neuronal metabolism. At the cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Given these key roles, it is not surprising that alterations in brain zinc status have been implicated in a wide array of neurological disorders including impaired brain development, neurodegenerative disorders such as Alzheimer’s disease, and mood disorders including depression. Zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders. PMID:22473811

  9. Antibody staining of the central nervous system in adult Drosophila.

    PubMed

    Sweeney, Sean T; Hidalgo, Alicia; de Belle, J Steven; Keshishian, Haig

    2012-02-01

    The Drosophila nervous system provides a valuable model for studying various aspects of brain development and function. The postembryonic Drosophila brain is especially useful, because specific neuron types derive from specific progenitors at specific times. Elucidating the means by which diverse neuron types derive from a limited number of progenitors can contribute significantly to our understanding of the genetic and molecular mechanisms involved in developmental neurobiology. Antibody-labeling techniques are particularly useful for examining the Drosophila brain. These methods generally use primary antibodies specific to a protein or a structure of interest and a fluorescently labeled or enzyme-coupled secondary antibody to detect the primary antibodies. Immunofluorescence methods allow for simultaneous probing for multiple antigens using different fluorophores, as well as high-resolution confocal examination of deep structures. This protocol describes general procedures for antibody labeling of neural tissue from Drosophila, as well as visualization techniques for fluorescent and enzyme-linked probes.

  10. Infiltration of central nervous system in adult acute myeloid leukaemia.

    PubMed Central

    Pippard, M J; Callender, S T; Sheldon, P W

    1979-01-01

    Out of 64 consecutive unselected patients with acute myeloid leukaemia studied during 1973-6, five developed clinical evidence of spread to the central nervous system (CNS). Neuroradiological examination showed cerebral deposits in three, in whom rapid symptomatic relief was obtained with radiotherapy. In two of these patients who developed solid intracranial deposits haematological remission could be reinduced or maintained; they were still alive 86 and 134 weeks later. When patients presented with spread to the CNS complicating generalised uncontrolled leukaemia they had short survivals. CNS infiltration may respond dramatically to appropriate treatment provided that it is not associated with generalised uncontrolled leukaemia, which has a poor prognosis. In view of this, routine "prophylaxis" of the CNS in adult acute myeloid leukaemia does not seem justified at present. Images FIG 1 FIG 2 FIG 3 PMID:283873

  11. Fractals in the nervous system: conceptual implications for theoretical neuroscience.

    PubMed

    Werner, Gerhard

    2010-01-01

    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power-law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review.

  12. Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    PubMed Central

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron–astrocyte, neuron–microglia, and neuron–neuron interaction. PMID:17952658

  13. Homeoprotein signaling in the developing and adult nervous system

    PubMed Central

    2016-01-01

    Summary Signaling classically involves the secretion of diverse molecules that bind specific cellsurface receptors and engage intracellular transduction cascades. Some exceptions, namely lipophilic agents, can cross plasma membranes to bind intracellular receptors and be carried to the nucleus to regulate transcription. Homeoprotein transcription factors are among the few proteins with such a capacity. Here, we review the signaling activities of homeoproteins in the developing and adult nervous system, with particular emphasis on axon/cell migration and postnatal critical periods of cerebral cortex plasticity. We also describe homeoprotein non-cell autonomous mechanisms and explore how this “novel” signaling pathway impacts emerging research in brain development and physiology. In this context, we explore hypotheses on the evolution of signaling, the role of homeoproteins as early morphogens, and their therapeutic potential for neurological and psychiatric diseases. PMID:25741720

  14. Building global capacity for brain and nervous system disorders research

    PubMed Central

    Cottler, Linda B.; Zunt, Joseph; Weiss, Bahr; Kamal, Ayeesha Kamran; Vaddiparti, Krishna

    2017-01-01

    The global burden of neurological, neuropsychiatric, substance-use and neurodevelopmental disorders in low- and middle-income countries is worsened, not only by the lack of targeted research funding, but also by the lack of relevant in-country research capacity. Such capacity, from the individual to the national level, is necessary to address the problems within a local context. As for many health issues in these countries, the ability to address this burden requires development of research infrastructure and a trained cadre of clinicians and scientists who can ask the right questions, and conduct, manage, apply and disseminate research for practice and policy. This Review describes some of the evolving issues, knowledge and programmes focused on building research capacity in low- and middle-income countries in general and for brain and nervous system disorders in particular. PMID:26580329

  15. Pathogen-inspired drug delivery to the central nervous system

    PubMed Central

    McCall, Rebecca L; Cacaccio, Joseph; Wrabel, Eileen; Schwartz, Mary E; Coleman, Timothy P; Sirianni, Rachael W

    2014-01-01

    For as long as the human blood-brain barrier (BBB) has been evolving to exclude bloodborne agents from the central nervous system (CNS), pathogens have adopted a multitude of strategies to bypass it. Some pathogens, notably viruses and certain bacteria, enter the CNS in whole form, achieving direct physical passage through endothelial or neuronal cells to infect the brain. Other pathogens, including bacteria and multicellular eukaryotic organisms, secrete toxins that preferentially interact with specific cell types to exert a broad range of biological effects on peripheral and central neurons. In this review, we will discuss the directed mechanisms that viruses, bacteria, and the toxins secreted by higher order organisms use to enter the CNS. Our goal is to identify ligand-mediated strategies that could be used to improve the brain-specific delivery of engineered nanocarriers, including polymers, lipids, biologically sourced materials, and imaging agents. PMID:25610755

  16. Is Bone a Target-Tissue for the Nervous System?

    PubMed Central

    García-Castellano, José M; Díaz-Herrera, Pilar; Morcuende, José A

    2000-01-01

    Bone cells respond in specific ways to various hormones and growth factors, but the biology of skeletal innervation and its physiologic significance in bone metabolism is poorly understood. With the introduction of immunohistochemical staining techniques and new molecular biology tools, the knowledge in this field has significantly improved. In this review, we update current understanding of the effects of neuropeptides on bone metabolism, specifically vasoactive intestinal peptide (VIP) and calcitonin-gene related peptide (CGRP). In addition, new information concerning the role of growth factors, such as neurotrophins, is also discussed. There is strong evidence to suggest that bone can be a target of the nervous system. Further investigations in this field will allow us to answer questions related to pre-natal development, bone growth, fracture healing, osteoporosis, osteoarthritis or neoplasias of mesoderm origin. PMID:10934625

  17. Noncongenital central nervous system infections in children: radiology review.

    PubMed

    Acosta, Jorge Humberto Davila; Rantes, Claudia Isabel Lazarte; Arbelaez, Andres; Restrepo, Feliza; Castillo, Mauricio

    2014-06-01

    Infections of the central nervous system (CNS) are a very common worldwide health problem in childhood with significant morbidity and mortality. In children, viruses are the most common cause of CNS infections, followed by bacterial etiology, and less frequent due to mycosis and other causes. Noncomplicated meningitis is easier to recognize clinically; however, complications of meningitis such as abscesses, infarcts, venous thrombosis, or extra-axial empyemas are difficult to recognize clinically, and imaging plays a very important role on this setting. In addition, it is important to keep in mind that infectious process adjacent to the CNS such as mastoiditis can develop by contiguity in an infectious process within the CNS. We display the most common causes of meningitis and their complications.

  18. Therapeutics targeting the inflammasome after central nervous system injury.

    PubMed

    de Rivero Vaccari, Juan Pablo; Dietrich, W Dalton; Keane, Robert W

    2016-01-01

    Innate immunity is part of the early response of the body to deal with tissue damage and infections. Because of the early nature of the innate immune inflammatory response, this inflammatory reaction represents an attractive option as a therapeutic target. The inflammasome is a component of the innate immune response involved in the activation of caspase 1 and the processing of pro-interleukin 1β. In this article, we discuss the therapeutic potential of the inflammasome after central nervous system (CNS) injury and stroke, as well as the basic knowledge we have gained so far regarding inflammasome activation in the CNS. In addition, we discuss some of the therapies available or under investigation for the treatment of brain injury, spinal cord injury, and stroke.

  19. MicroRNAs in central nervous system development.

    PubMed

    Díaz, Néstor F; Cruz-Reséndiz, Mónica S; Flores-Herrera, Héctor; García-López, Guadalupe; Molina-Hernández, Anayansi

    2014-01-01

    During early and late embryo neurodevelopment, a large number of molecules work together in a spatial and temporal manner to ensure the adequate formation of an organism. Diverse signals participate in embryo patterning and organization synchronized by time and space. Among the molecules that are expressed in a temporal and spatial manner, and that are considered essential in several developmental processes, are the microRNAs (miRNAs). In this review, we highlight some important aspects of the biogenesis and function of miRNAs as well as their participation in ectoderm commitment and their role in central nervous system (CNS) development. Instead of giving an extensive list of miRNAs involved in these processes, we only mention those miRNAs that are the most studied during the development of the CNS as well as the most likely mRNA targets for each miRNA and its protein functions.

  20. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    PubMed Central

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  1. Therapeutic approaches of magnetic nanoparticles for the central nervous system.

    PubMed

    Dilnawaz, Fahima; Sahoo, Sanjeeb Kumar

    2015-10-01

    The diseases of the central nervous system (CNS) represent one of the fastest growing areas of concern requiring urgent medical attention. Treatment of CNS ailments is hindered owing to different physiological barriers including the blood-brain barrier (BBB), which limits the accessibility of potential drugs. With the assistance of a nanotechnology-based drug delivery strategy, the problems could be overcome. Recently, magnetic nanoparticles (MNPs) have proven immensely useful as drug carriers for site-specific delivery and as contrast agents owing to their magnetic susceptibility and biocompatibility. By utilizing MNPs, diagnosis and treatment of CNS diseases have progressed by overcoming the hurdles of the BBB. In this review, the therapeutic aspect and the future prospects related to the theranostic approach of MNPs are discussed.

  2. Implication of coumarins towards central nervous system disorders.

    PubMed

    Skalicka-Woźniak, Krystyna; Orhan, Ilkay Erdogan; Cordell, Geoffrey A; Nabavi, Seyed Mohammad; Budzyńska, Barbara

    2016-01-01

    Coumarins are widely distributed, plant-derived, 2H-1-benzopyran-2-one derivatives which have attracted intense interest in recent years as a result of their diverse and potent pharmacological properties. Particularly, their effects on the central nervous system (CNS) have been established. The present review discusses the most important pharmacological effects of natural and synthetic coumarins on the CNS, including their interactions with benzodiazepine receptors, their dopaminergic and serotonergic affinity, and their ability to inhibit cholinesterases and monoamine oxidases. The structure-activity relationships pertaining to these effects are also discussed. This review posits that natural or synthetic coumarins have the potential for development in the therapy of psychiatric and neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, schizophrenia, anxiety, epilepsy, and depression.

  3. Zinc in the central nervous system: From molecules to behavior.

    PubMed

    Gower-Winter, Shannon D; Levenson, Cathy W

    2012-01-01

    The trace metal zinc is a biofactor that plays essential roles in the central nervous system across the lifespan from early neonatal brain development through the maintenance of brain function in adults. At the molecular level, zinc regulates gene expression through transcription factor activity and is responsible for the activity of dozens of key enzymes in neuronal metabolism. At the cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Given these key roles, it is not surprising that alterations in brain zinc status have been implicated in a wide array of neurological disorders including impaired brain development, neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression. Zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.

  4. The expression of SEIPIN in the mouse central nervous system.

    PubMed

    Liu, Xiaoyun; Xie, Beibei; Qi, Yanfei; Du, Ximing; Wang, Shaoshi; Zhang, Yumei; Paxinos, George; Yang, Hongyuan; Liang, Huazheng

    2016-11-01

    Immunohistochemical staining was used to investigate the expression pattern of SEIPIN in the mouse central nervous system. SEIPIN was found to be present in a large number of areas, including the motor and somatosensory cortex, the thalamic nuclei, the hypothalamic nuclei, the mesencephalic nuclei, some cranial motor nuclei, the reticular formation of the brainstem, and the vestibular complex. Double labeling with NeuN antibody confirmed that SEIPIN-positive cells in some nuclei were neurons. Retrograde tracer injections into the spinal cord revealed that SEIPIN-positive neurons in the motor and somatosensory cortex and other movement related nuclei project to the mouse spinal cord. The present study found more nuclei positive for SEIPIN than shown using in situ hybridization and confirmed the presence of SEIPIN in neurons projecting to the spinal cord. The results of this study help to explain the clinical manifestations of patients with Berardinelli-Seip congenital lipodystrophy (Bscl2) gene mutations.

  5. Pyrimidine derivatives as potential agents acting on central nervous system.

    PubMed

    Kumar, Sanjiv; Deep, Aakash; Narasimhan, Balasubramanian

    2015-01-01

    Pyrimidine and its derivatives are present in many of the bioactive aromatic compounds that are of wide interest because of their diverse biological and clinical applications. The utility of pyrimidines as synthon for various biologically active compounds has given impetus to these studies. The review article aims to review the work reported on pharmacological activities of central nervous system (CNS) such as anticonvulsant and antidepressant, which created interest among researchers to synthesize variety of pyrimidine and their derivatives. The present study shows, objective of the work can be summarized as pyrimidine derivative constitute an important class of compounds for new drug development. These observations have been given novel idea for the development of new pyrimidine derivative that possess varied biological activities. This article aims to review the recent works on pyrimidine moiety together with the biological potential during the past year.

  6. Role of radiology in central nervous system stimulation

    PubMed Central

    Pereira, E A C; Young, V E L; Hogarth, K M; Quaghebeur, G

    2015-01-01

    Central nervous system (CNS) stimulation is becoming increasingly prevalent. Deep brain stimulation (DBS) has been proven to be an invaluable treatment for movement disorders and is also useful in many other neurological conditions refractory to medical treatment, such as chronic pain and epilepsy. Neuroimaging plays an important role in operative planning, target localization and post-operative follow-up. The use of imaging in determining the underlying mechanisms of DBS is increasing, and the dependence on imaging is likely to expand as deep brain targeting becomes more refined. This article will address the expanding role of radiology and highlight issues, including MRI safety concerns, that radiologists may encounter when confronted with a patient with CNS stimulation equipment in situ. PMID:25715044

  7. Fungal Infections of the Central Nervous System: A Pictorial Review.

    PubMed

    Gavito-Higuera, Jose; Mullins, Carola Birgit; Ramos-Duran, Luis; Olivas Chacon, Cristina Ivette; Hakim, Nawar; Palacios, Enrique

    2016-01-01

    Fungal infections of the central nervous system (CNS) pose a threat to especially immunocompromised patients and their development is primarily determined by the immune status of the host. With an increasing number of organ transplants, chemotherapy, and human immunodeficiency virus infections, the number of immunocompromised patients as susceptible hosts is growing and fungal infections of the CNS are more frequently encountered. They may result in meningitis, cerebritis, abscess formation, cryptococcoma, and meningeal vasculitis with rapid disease progression and often overlapping symptoms. Although radiological characteristics are often nonspecific, unique imaging patterns can be identified through computer tomography as a first imaging modality and further refined by magnetic resonance imaging. A rapid diagnosis and the institution of the appropriate therapy are crucial in helping prevent an often fatal outcome.

  8. Therapeutics Targeting the Inflammasome After Central Nervous System Injury

    PubMed Central

    de Rivero Vaccari, Juan Pablo; Dietrich, W. Dalton; Keane, Robert W.

    2015-01-01

    Innate immunity is part of the early response of the body to deal with tissue damage and infections. Due to the early nature of the innate immune inflammatory response, this inflammatory reaction represents an attractive option as a therapeutic target. The inflammasome is a component of the innate immune response involved in the activation of caspase-1 and the processing of pro-interleukin-1β. In this article we discuss the therapeutic potential of the inflammasome after central nervous system (CNS) injury and stoke, as well as the basic knowledge we have gained so far regarding inflammasome activation in the CNS. In addition, we discuss some of the therapies available or under investigation for the treatment of brain injury, spinal cord injury and stroke. PMID:26024799

  9. Enterovirus Infections of the Central Nervous System Review

    PubMed Central

    Rhoades, Ross E.; Tabor-Godwin, Jenna M.; Tsueng, Ginger; Feuer, Ralph

    2011-01-01

    Enteroviruses (EV) frequently infect the central nervous system (CNS) and induce neurological diseases. Although the CNS is composed of many different cell types, the spectrum of tropism for each EV is considerable. These viruses have the ability to completely shut down host translational machinery and are considered highly cytolytic, thereby causing cytopathic effects. Hence, CNS dysfunction following EV infection of neuronal or glial cells might be expected. Perhaps unexpectedly given their cytolytic nature, EVs may establish a persistent infection within the CNS, and the lasting effects on the host might be significant with unanticipated consequences. This review will describe the clinical aspects of EV-mediated disease, mechanisms of disease, determinants of tropism, immune activation within the CNS, and potential treatment regimes. PMID:21251690

  10. Cell fate control in the developing central nervous system

    SciTech Connect

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  11. Fractals in the Nervous System: Conceptual Implications for Theoretical Neuroscience

    PubMed Central

    Werner, Gerhard

    2010-01-01

    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power-law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review. PMID:21423358

  12. Primary large-cell lymphoma of the central nervous system

    SciTech Connect

    Amendola, B.E.; McClatchey, K.D.; Amendola, M.A.; Gebarski, S.S.

    1986-06-01

    Primary non-Hodgkin's lymphoma of the central nervous system (CNS) is a rare disease. Seven patients were seen and treated at the University of Michigan Medical Center between January 1969 and December 1983. All patients had histologically proven diagnoses of large cell lymphoma with clinical and radiologic evidence of involvement limited to the CNS. Five of seven patients received postoperative radiation therapy, two of whom have had apparent local control at 1- and 2-year follow-up. The two patients without postoperative radiation died of local recurrence 2 and 3 months following subtotal resection. These poor results suggest that adjuvant therapy may be required for improved control of this type of extranodal lymphoma.

  13. Developmental and pathological angiogenesis in the central nervous system

    PubMed Central

    Vallon, Mario; Chang, Junlei; Zhang, Haijing

    2014-01-01

    Angiogenesis, the formation of new blood vessels from pre-existing vessels, in the central nervous system (CNS) is seen both as a normal physiological response as well as a pathological step in disease progression. Formation of the blood–brain barrier (BBB) is an essential step in physiological CNS angiogenesis. The BBB is regulated by a neurovascular unit (NVU) consisting of endothelial and perivascular cells as well as vascular astrocytes. The NVU plays a critical role in preventing entry of neurotoxic substances and regulation of blood flow in the CNS. In recent years, research on numerous acquired and hereditary disorders of the CNS has increasingly emphasized the role of angiogenesis in disease pathophysiology. Here, we discuss molecular mechanisms of CNS angiogenesis during embryogenesis as well as various pathological states including brain tumor formation, ischemic stroke, arteriovenous malformations, and neurodegenerative diseases. PMID:24760128

  14. [Imaging diagnosis of central nervous system malignant lymphoma].

    PubMed

    Kan, Shinichi

    2014-08-01

    With a typical case, imaging diagnosis of central nervous system malignant lymphoma is not difficult. High density on non contrast CT, periventricular location, homogenous contrast enhancement, iso- to hypointensity to gray matter on T(2) weighted MR imaging and high intensity on diffusion weighted MR imaging are characteristic findings. Hemorrhage is rare. When a patient is immunocompromised, irregular ring enhancement is noted on enhanced study. Intravascular lymphomatois is a rare type of lymphoma. A variety of imaging findings are reported. Differential diagnosis are many. Most difficult to distinguish is a tumefactive multiple sclerosis. Most of the reported cases of tumefactive multiple sclerosis are diagnosed by brain biopsy when the brain tumor, especially malignant lymphoma is suspected. CLIPPERS (chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids) has been recently identified. However, there still remains whether CLIPPERS is an actual new disease entity or represents overlapping disease.

  15. Targeting protein kinases in central nervous system disorders

    PubMed Central

    Chico, Laura K.; Van Eldik, Linda J.; Watterson, D. Martin

    2010-01-01

    Protein kinases are a growing drug target class in disorders in peripheral tissues, but the development of kinase-targeted therapies for central nervous system (CNS) diseases remains a challenge, largely owing to issues associated specifically with CNS drug discovery. However, several candidate therapeutics that target CNS protein kinases are now in various stages of preclinical and clinical development. We review candidate compounds and discuss selected CNS protein kinases that are emerging as important therapeutic targets. In addition, we analyse trends in small-molecule properties that correlate with key challenges in CNS drug discovery, such as blood–brain barrier penetrance and cytochrome P450-mediated metabolism, and discuss the potential of future approaches that will integrate molecular-fragment expansion with pharmacoinformatics to address these challenges. PMID:19876042

  16. Central nervous system infections caused by varicella-zoster virus.

    PubMed

    Chamizo, Francisco J; Gilarranz, Raúl; Hernández, Melisa; Ramos, Diana; Pena, María José

    2016-08-01

    We carried out a clinical and epidemiological study of adult patients with varicella-zoster virus central nervous system infection diagnosed by PCR in cerebrospinal fluid. Twenty-six patients were included. Twelve (46.2 %) patients were diagnosed with meningitis and fourteen (53.8 %) with meningoencephalitis. Twelve (46.2 %) had cranial nerves involvement (mainly the facial (VII) and vestibulocochlear (VIII) nerves), six (23.1 %) had cerebellar involvement, fourteen (53.8 %) had rash, and four (15.4 %) developed Ramsay Hunt syndrome. Three (11.5 %) patients had sequelae. Length of stay was significantly lower in patients diagnosed with meningitis and treatment with acyclovir was more frequent in patients diagnosed with meningoencephalitis. We believe routine detection of varicella-zoster virus, regardless of the presence of rash, is important because the patient may benefit from a different clinical management.

  17. Intranasal delivery of biologics to the central nervous system.

    PubMed

    Lochhead, Jeffrey J; Thorne, Robert G

    2012-05-15

    Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS.

  18. Outcomes of persons with blastomycosis involving the central nervous system.

    PubMed

    Bush, Jonathan W; Wuerz, Terry; Embil, John M; Del Bigio, Marc R; McDonald, Patrick J; Krawitz, Sherry

    2013-06-01

    Blastomyces dermatitidis is a dimorphic fungus which is potentially life-threatening if central nervous system (CNS) dissemination occurs. Sixteen patients with proven or probable CNS blastomycosis are presented. Median duration of symptoms was 90 days; headache and focal neurologic deficit were the most common presenting symptoms. Magnetic resonance imaging (MRI) consistently demonstrated an abnormality, compared to 58% of computed tomography scans. Tissue culture yielded the pathogen in 71% of histology-confirmed cases. All patients who completed treatment of an amphotericin B formulation and extended azole-based therapy did not relapse. Initial nonspecific symptoms lead to delayed diagnosis of CNS blastomycosis. A high index of suspicion is necessary if there is history of contact with an area where B. dermatitidis is endemic. Diagnostic tests should include MRI followed by biopsy for tissue culture and pathology. Optimal treatment utilizes a lipid-based amphotericin B preparation with an extended course of voriconazole.

  19. Tuberculous Panophthalmitis with Lymphadenitis and Central Nervous System Tuberculoma

    PubMed Central

    Srichatrapimuk, Sirawat; Wattanatranon, Duangkamon

    2016-01-01

    Tuberculosis (TB) is a serious infectious disease that spreads globally. The ocular manifestations of TB are uncommon and diverse. TB panophthalmitis has been rarely reported. Here, we described a 38-year-old Thai man presenting with panophthalmitis of the right eye. Further investigation showed that he had concurrent TB lymphadenitis and central nervous system (CNS) tuberculoma, as well as HIV infection, with a CD4 cell count of 153 cells/mm3. Despite the initial response to antituberculous agents, the disease had subsequently progressed and enucleation was required. The pathological examination revealed acute suppurative granulomatous panophthalmitis with retinal detachment. Further staining demonstrated acid-fast bacilli in the tissue. Colonies of Mycobacterium tuberculosis were obtained from tissue culture. He was treated with antiretroviral agents for HIV infection and 12 months of antituberculous agents. Clinicians should be aware of the possibility of TB in the differential diagnosis of endophthalmitis and panophthalmitis, especially in regions where TB is endemic. PMID:27051539

  20. Neuropathic Pain in Animal Models of Nervous System Autoimmune Diseases

    PubMed Central

    Tian, David H.; Perera, Chamini J.; Moalem-Taylor, Gila

    2013-01-01

    Neuropathic pain is a frequent chronic presentation in autoimmune diseases of the nervous system, such as multiple sclerosis (MS) and Guillain-Barre syndrome (GBS), causing significant individual disablement and suffering. Animal models of experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune neuritis (EAN) mimic many aspects of MS and GBS, respectively, and are well suited to study the pathophysiology of these autoimmune diseases. However, while much attention has been devoted to curative options, research into neuropathic pain mechanisms and relief has been somewhat lacking. Recent studies have demonstrated a variety of sensory abnormalities in different EAE and EAN models, which enable investigations of behavioural changes, underlying mechanisms, and potential pharmacotherapies for neuropathic pain associated with these diseases. This review examines the symptoms, mechanisms, and clinical therapeutic options in these conditions and highlights the value of EAE and EAN animal models for the study of neuropathic pain in MS and GBS. PMID:23737643

  1. Leptin sustains spontaneous remyelination in the adult central nervous system

    PubMed Central

    Matoba, Ken; Muramatsu, Rieko; Yamashita, Toshihide

    2017-01-01

    Demyelination is a common feature of many central nervous system (CNS) diseases and is associated with neurological impairment. Demyelinated axons are spontaneously remyelinated depending on oligodendrocyte development, which mainly involves molecules expressed in the CNS environment. In this study, we found that leptin, a peripheral hormone secreted from adipocytes, promoted the proliferation of oligodendrocyte precursor cells (OPCs). Leptin increased the OPC proliferation via in vitro phosphorylation of extracellular signal regulated kinase (ERK); whereas leptin neutralization inhibited OPC proliferation and remyelination in a mouse model of toxin-induced demyelination. The OPC-specific leptin receptor long isoform (LepRb) deletion in mice inhibited both OPC proliferation and remyelination in the response to demyelination. Intrathecal leptin administration increased OPC proliferation. These results demonstrated a novel molecular mechanism by which leptin sustained OPC proliferation and remyelination in a pathological CNS. PMID:28091609

  2. Central nervous system syndromes in solid organ transplant recipients.

    PubMed

    Wright, Alissa J; Fishman, Jay A

    2014-10-01

    Solid organ transplant recipients have a high incidence of central nervous system (CNS) complications, including both focal and diffuse neurologic deficits. In the immunocompromised host, the initial clinical evaluation must focus on both life-threatening CNS infections and vascular or anatomic lesions. The clinical signs and symptoms of CNS processes are modified by the immunosuppression required to prevent graft rejection. In this population, these etiologies often coexist with drug toxicities and metabolic abnormalities that complicate the development of a specific approach to clinical management. This review assesses the multiple risk factors for CNS processes in solid organ transplant recipients and establishes a timeline to assist in the evaluation and management of these complex patients.

  3. Neuroinvasion and Inflammation in Viral Central Nervous System Infections

    PubMed Central

    Schroten, Horst

    2016-01-01

    Neurotropic viruses can cause devastating central nervous system (CNS) infections, especially in young children and the elderly. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) have been described as relevant sites of entry for specific viruses as well as for leukocytes, which are recruited during the proinflammatory response in the course of CNS infection. In this review, we illustrate examples of established brain barrier models, in which the specific reaction patterns of different viral families can be analyzed. Furthermore, we highlight the pathogen specific array of cytokines and chemokines involved in immunological responses in viral CNS infections. We discuss in detail the link between specific cytokines and chemokines and leukocyte migration profiles. The thorough understanding of the complex and interrelated inflammatory mechanisms as well as identifying universal mediators promoting CNS inflammation is essential for the development of new diagnostic and treatment strategies. PMID:27313404

  4. HIV and aging: effects on the central nervous system.

    PubMed

    Cañizares, Silvia; Cherner, Mariana; Ellis, Ronald J

    2014-02-01

    With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some markers of Alzheimer's disease is presented. Current research findings emphasize multiple mechanisms related to HIV and combination antiretroviral therapy that compromise CNS structure and function with advancing age.

  5. HIV and Aging: Effects on the Central Nervous System

    PubMed Central

    Cañizares, Silvia; Cherner, Mariana; Ellis, Ronald J.

    2014-01-01

    With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some markers of Alzheimer’s disease is presented. Current research findings emphasize multiple mechanisms related to HIV and combination antiretroviral therapy that compromise CNS structure and function with advancing age. PMID:24715486

  6. Excitability tuning of axons in the central nervous system.

    PubMed

    Ohura, Shunsuke; Kamiya, Haruyuki

    2016-05-01

    The axon is a long neuronal process that originates from the soma and extends towards the presynaptic terminals. The pioneering studies on the squid giant axon or the spinal cord motoneuron established that the axon conducts action potentials faithfully to the presynaptic terminals with self-regenerative processes of membrane excitation. Recent studies challenged the notion that the fundamental understandings obtained from the study of squid giant axons are readily applicable to the axons in the mammalian central nervous system (CNS). These studies revealed that the functional and structural properties of the CNS axons are much more variable than previously thought. In this review article, we summarize the recent understandings of axon physiology in the mammalian CNS due to progress in the subcellular recording techniques which allow direct recordings from the axonal membranes, with emphasis on the hippocampal mossy fibers as a representative en passant axons typical for cortical axons.

  7. Fungal Infections of the Central Nervous System: A Pictorial Review

    PubMed Central

    Gavito-Higuera, Jose; Mullins, Carola Birgit; Ramos-Duran, Luis; Olivas Chacon, Cristina Ivette; Hakim, Nawar; Palacios, Enrique

    2016-01-01

    Fungal infections of the central nervous system (CNS) pose a threat to especially immunocompromised patients and their development is primarily determined by the immune status of the host. With an increasing number of organ transplants, chemotherapy, and human immunodeficiency virus infections, the number of immunocompromised patients as susceptible hosts is growing and fungal infections of the CNS are more frequently encountered. They may result in meningitis, cerebritis, abscess formation, cryptococcoma, and meningeal vasculitis with rapid disease progression and often overlapping symptoms. Although radiological characteristics are often nonspecific, unique imaging patterns can be identified through computer tomography as a first imaging modality and further refined by magnetic resonance imaging. A rapid diagnosis and the institution of the appropriate therapy are crucial in helping prevent an often fatal outcome. PMID:27403402

  8. Methods for Gene Transfer to the Central Nervous System

    PubMed Central

    Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.

    2015-01-01

    Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922

  9. Are astrocytes executive cells within the central nervous system?

    PubMed

    Sica, Roberto E; Caccuri, Roberto; Quarracino, Cecilia; Capani, Francisco

    2016-08-01

    Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson's disease, Alzheimer's dementia, Huntington's dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

  10. Transcriptional regulation of the peripheral nervous system in Ciona intestinalis.

    PubMed

    Joyce Tang, W; Chen, Jerry S; Zeller, Robert W

    2013-06-15

    The formation of the sensory organs and cells that make up the peripheral nervous system (PNS) relies on the activity of transcription factors encoded by proneural genes (PNGs). Although PNGs have been identified in the nervous systems of both vertebrates and invertebrates, the complexity of their interactions has complicated efforts to understand their function in the context of their underlying regulatory networks. To gain insight into the regulatory network of PNG activity in chordates, we investigated the roles played by PNG homologs in regulating PNS development of the invertebrate chordate Ciona intestinalis. We discovered that in Ciona, MyT1, Pou4, Atonal, and NeuroD-like are expressed in a sequential regulatory cascade in the developing epidermal sensory neurons (ESNs) of the PNS and act downstream of Notch signaling, which negatively regulates these genes and the number of ESNs along the tail midlines. Transgenic embryos mis-expressing any of these proneural genes in the epidermis produced ectopic midline ESNs. In transgenic embryos mis-expressing Pou4, and MyT1 to a lesser extent, numerous ESNs were produced outside of the embryonic midlines. In addition we found that the microRNA miR-124, which inhibits Notch signaling in ESNs, is activated downstream of all the proneural factors we tested, suggesting that these genes operate collectively in a regulatory network. Interestingly, these factors are encoded by the same genes that have recently been demonstrated to convert fibroblasts into neurons. Our findings suggest the ascidian PNS can serve as an in vivo model to study the underlying regulatory mechanisms that enable the conversion of cells into sensory neurons.

  11. Temozolomide and radiation for aggressive pediatric central nervous system malignancies.

    PubMed

    Loh, Kenneth C; Willert, Jennifer; Meltzer, Hal; Roberts, William; Kerlin, Bryce; Kadota, Richard; Levy, Michael; White, Greg; Geddis, Amy; Schiff, Deborah; Martin, Laura; Yu, Alice; Kung, Faith; Spear, Matthew A

    2005-05-01

    This study describes the outcomes of children treated with combinations of temozolomide and radiation therapy for various aggressive central nervous system malignancies. Their age at diagnosis range