Szczecinski, Nicholas S.; Hunt, Alexander J.; Quinn, Roger D.
2017-01-01
A dynamical model of an animal’s nervous system, or synthetic nervous system (SNS), is a potentially transformational control method. Due to increasingly detailed data on the connectivity and dynamics of both mammalian and insect nervous systems, controlling a legged robot with an SNS is largely a problem of parameter tuning. Our approach to this problem is to design functional subnetworks that perform specific operations, and then assemble them into larger models of the nervous system. In this paper, we present networks that perform addition, subtraction, multiplication, division, differentiation, and integration of incoming signals. Parameters are set within each subnetwork to produce the desired output by utilizing the operating range of neural activity, R, the gain of the operation, k, and bounds based on biological values. The assembly of large networks from functional subnetworks underpins our recent results with MantisBot. PMID:28848419
Liu, Mengmeng; Cheng, Xinran; Li, Kaikai; Xu, Mingrui; Wu, Yongji; Wang, Mengli; Zhang, Qianru; Yan, Wenyong; Luo, Chang; Zhao, Shanting
2018-05-25
Stem cell research has become a frontier in the field of life sciences, and provides an ideal model for exploring developmental biology problems such as embryogenesis, histiocytosis, and gene expression regulation, as well as opens up new doors for clinical tissue defective and inheritance diseases. Among them, menstrual blood-derived stem cells (MenSCs) are characterized by wide source, multi-directional differentiation potential, low immune rejection characteristics. Thus, MenSCs can achieve individual treatment and have the most advantage of the clinical application. The central nervous system, including brain and spinal cord, is susceptible to injury. And lethality and morbidity of them tops the list of all types of trauma. Compared to peripheral nervous system, recovery of central nervous system after damage remains extremely hard. However, the treatment of stem cells, especially MenSCs, is expected to solve this problem. Therefore, biological characteristics of MenSCs and their treatment in the respect of central nervous system diseases have been reviewed at home and abroad in recent years, so as to provide reference for the treatment of central nervous system diseases.
Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring
2016-10-01
AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL...Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER W81XWH-14-1-0586 5b. GRANT NUMBER W81XWH- 14-1-0586 5c...barriers that prevent the optimal delivery of biologics and cells to the injured nervous system . A significant problem is the formation of scar tissue
Radiation injury to the nervous system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutin, P.H.; Leibel, S.A.; Sneline, G.E.
1991-01-01
This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system.
The Human Sympathetic Nervous System Response to Spaceflight
NASA Technical Reports Server (NTRS)
Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David
2003-01-01
The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
This instructor's lesson plan guide on the central nervous system is one of fifteen modules designed for use in the training of emergency medical technicians. Four units of study are presented: (1) anatomy and physiology; (2) assessment of patients with neurological problems; (3) pathophysiology and management of neurological problems; (4)…
... Rapid heartbeat NERVOUS SYSTEM Burning sensations Convulsions Dizziness Loss of alertness Memory problems Nervousness Numbness in arms and legs SKIN Burns Irritation Necrosis (holes) in the skin or underlying tissues
ERIC Educational Resources Information Center
El-Sheikh, Mona; Kouros, Chrystyna D.; Erath, Stephen; Cummings, E. Mark; Keller, Peggy; Staton, Lori
2009-01-01
Toward greater specificity in the prediction of externalizing problems in the context of interparental conflict, interactions between children's parasympathetic and sympathetic nervous system (PNS and SNS) activity were examined as moderators. PNS activity was indexed by respiratory sinus arrhythmia (RSA) and RSA reactivity (RSA-R) to lab…
Need for multi-diagnostic approaches before considering treatment in obstructive sleep apnea.
Guilleminault, C; Mondini, S
1983-01-01
To choose an appropriate therapeutic treatment for obstructive sleep apnea syndrome (OSAS) depends on accurately diagnosing the underlying problems that lead to the disease. Evaluating local anatomical problems is critical. New techniques, such as imaging, permit us to do this more effectively. Appreciating the involvement of the central nervous system (CNS) in a fully developed syndrome is also important. Abnormal stimulation of the autonomic nervous system can be evaluated easily with a Holter ECG. Recognizing that OSAS is a multi-faceted problem whose various symptoms interact and aggravate one another helps to explain why treatments may not be immediately effective.
ERIC Educational Resources Information Center
Chen, Su-Ru; Chiu, Hung-Wen; Lee, Yann-Jinn; Sheen, Tzong-Chi; Jeng, Chii
2012-01-01
Child obesity is frequently associated with dysfunction of autonomic nervous system. Children in pubertal development were suggested to be vulnerable to autonomic nervous system problems such as decrease of heart rate variability from dysregulation of metabolic control. This study explored the influence of pubertal development on autonomic nervous…
Hydrogels for central nervous system therapeutic strategies.
Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi
2015-12-01
The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described. © IMechE 2015.
... larger than normal spleen Anemia Burning, itchy, or dry eyes Fainting Heart palpitations Joint pain Muscle weakness Problems ... problems with the nervous system; burning, itching, or dry eyes; swollen salivary glands; swollen lymph nodes in the ...
What Are Intellectual and Developmental Disabilities (IDDs)?
... characterized by problems with both: Intellectual functioning or intelligence, which include the ability to learn, reason, problem ... cord, and nervous system function, which can affect intelligence and learning. These conditions can also cause other ...
[Inflammatory granulomas in the pathology of the nervous system. General remarks].
Tommasi, M
1976-01-01
The "gliogenic" participation in the edification of granulomas may produce peculiar morphological features especially in the central nervous system, and perhaps more than elsewhere, pseudotumoral features. Moreover, the concept of "granuloma" is perhaps not as well defined as in the other tissues. There are also some still unsolved problems concerning the histogenesis of the cells of the "granuloma". Some examples taken among the different etiologies illustrate these notions.
75 FR 75761 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-06
... widespread, persistent, and growing problem. Nitrogen/phosphorus pollution in fresh water systems can... Florida's regulated drinking water systems and a 10 mg/L criteria for nitrate in Class I waters. FDEP..., kidney, and central nervous system problems. 44 45 \\44\\ USEPA. 2009. National Primary Drinking Water...
Márquez, Manlio F; Gómez-Flores, Jorge Rafael; González-Hermosillo, Jesús A; Ruíz-Siller, Teresita de Jesús; Cárdenas, Manuel
2016-12-29
Vasovagal or neurocardiogenic syncope is a common clinical situation and, as with other entities associated with orthostatic intolerance, the underlying condition is a dysfunction of the autonomic nervous system. This article reviews various aspects of vasovagal syncope, including its relationship with orthostatic intolerance and the role of the autonomic nervous system in it. A brief history of the problem is given, as well as a description of how the names and associated concepts have evolved. The response of the sympathetic system to orthostatic stress, the physiology of the baroreflex system and the neurohumoral changes that occur with standing are analyzed. Evidence is presented of the involvement of the autonomic nervous system, including studies of heart rate variability, microneurography, cardiac innervation, and molecular genetic studies. Finally, we describe different studies on the use of beta-blockers and norepinephrine transporter inhibitors (sibutramine, reboxetine) and the rationality of their use to prevent this type of syncope. Creative Commons
Neilson, Peter D; Neilson, Megan D
2005-09-01
Adaptive model theory (AMT) is a computational theory that addresses the difficult control problem posed by the musculoskeletal system in interaction with the environment. It proposes that the nervous system creates motor maps and task-dependent synergies to solve the problems of redundancy and limited central resources. These lead to the adaptive formation of task-dependent feedback/feedforward controllers able to generate stable, noninteractive control and render nonlinear interactions unobservable in sensory-motor relationships. AMT offers a unified account of how the nervous system might achieve these solutions by forming internal models. This is presented as the design of a simulator consisting of neural adaptive filters based on cerebellar circuitry. It incorporates a new network module that adaptively models (in real time) nonlinear relationships between inputs with changing and uncertain spectral and amplitude probability density functions as is the case for sensory and motor signals.
Sex Differences in Autonomic Correlates of Conduct Problems and Aggression
ERIC Educational Resources Information Center
Beauchaine, Theodore P.; Hong, James; Marsh, Penny
2008-01-01
The study aims to evaluate group differences in autonomic nervous system (ANS) responding between males and females with conduct problems and determine whether aggression accounts for variance in ANS responding over the effects of conduct problems. The results indicated marked differences in psycho-physiological responses between males and females.
Sex Differences in Health Care Requirements Aboard U.S. Navy Ships
1990-03-20
nervous system symptoms (almost entirely headache), and then psychological symptoms (tension, nervousness). After that point, genitourinary problems...variable in accordance with procedures described by Lilienfeld and Lilienfeld .6 In those occupational specialties in which the confidence intervals do not...services such as inoculation, physical examination (e.g., check in, check out, reenlistment), pregnancy test , birth control prescription, Pap test
NASA Astrophysics Data System (ADS)
Adhikary, Ramkrishna; Bose, Sayantan; Casey, Thomas A.; Gapsch, Al; Rasmussen, Mark A.; Petrich, Jacob W.
2010-02-01
Applications of fluorescence spectroscopy that enable the real-time or rapid detection of fecal contamination on beef carcasses and the presence of central nervous system tissue in meat products are discussed. The former is achieved by employing spectroscopic signatures of chlorophyll metabolites; the latter, by exploiting the characteristic structure and intensity of lipofuscin in central nervous system tissue. The success of these techniques has led us to investigate the possibility of diagnosing scrapie in sheep by obtaining fluorescence spectra of the retina. Crucial to this diagnosis is the ability to obtain baseline correlations of lipofuscin fluorescence with age. A murine model was employed as a proof of principle of this correlation.
Sex Differences in Autonomic Correlates of Conduct Problems and Aggression
BEAUCHAINE, THEODORE P.; HONG, JAMES; MARSH, PENNY
2009-01-01
Objective To examine sex differences in autonomic nervous system functioning in children and adolescents with conduct problems and to evaluate the role of aggression in predicting autonomic nervous system functioning, over and above the effects of disruptive behavior. Although deficiencies in autonomic responding among boys with oppositional defiant disorder and/or conduct disorder are well documented, it remains unclear whether such findings extend to girls or apply only to children with aggressive forms of conduct problems. Method Electrodermal responding, cardiac pre-ejection period, and respiratory sinus arrhythmia were recorded while boys (n = 110; 53 with conduct problems, 57 controls) and girls (n = 65; 33 with conduct problems, 32 controls) between the ages of 8 and 12 sat for an extended baseline, then played a game with conditions of reward and frustrative nonreward. Results Both sex effects and aggression effects were found. Aggressive boys with conduct problems demonstrated reduced autonomic functioning, consistent with previous research. In contrast, aggressive girls with conduct problems exhibited greater electrodermal responding than controls, with no differences in cardiovascular reactivity to incentives. Conclusions Observed sex differences in the autonomic correlates of conduct problems and aggression may suggest different etiological mechanisms of externalizing psychopathology for girls compared with boys. PMID:18520959
Beauchaine, Theodore P.; Gatzke-Kopp, Lisa; Mead, Hilary K.
2007-01-01
In science, theories lend coherence to vast amounts of descriptive information. However, current diagnostic approaches in psychopathology are primarily atheoretical, emphasizing description over etiological mechanisms. We describe the importance of Polyvagal Theory toward understanding the etiology of emotion dysregulation, a hallmark of psychopathology. When combined with theories of social reinforcement and motivation, Polyvagal Theory specifies etiological mechanisms through which distinct patterns of psychopathology emerge. In this paper, we summarize three studies evaluating autonomic nervous system functioning in children with conduct problems, ages 4-18. At all age ranges, these children exhibit attenuated sympathetic nervous system responses to reward, suggesting deficiencies in approach motivation. By middle school, this reward insensitivity is met with inadequate vagal modulation of cardiac output, suggesting additional deficiencies in emotion regulation. We propose a biosocial developmental model of conduct problems in which inherited impulsivity is amplified through social reinforcement of emotional lability. Implications for early intervention are discussed. PMID:17045726
Beauchaine, Theodore P; Gatzke-Kopp, Lisa; Mead, Hilary K
2007-02-01
In science, theories lend coherence to vast amounts of descriptive information. However, current diagnostic approaches in psychopathology are primarily atheoretical, emphasizing description over etiological mechanisms. We describe the importance of Polyvagal Theory toward understanding the etiology of emotion dysregulation, a hallmark of psychopathology. When combined with theories of social reinforcement and motivation, Polyvagal Theory specifies etiological mechanisms through which distinct patterns of psychopathology emerge. In this paper, we summarize three studies evaluating autonomic nervous system functioning in children with conduct problems, ages 4-18. At all age ranges, these children exhibit attenuated sympathetic nervous system responses to reward, suggesting deficiencies in approach motivation. By middle school, this reward insensitivity is met with inadequate vagal modulation of cardiac output, suggesting additional deficiencies in emotion regulation. We propose a biosocial developmental model of conduct problems in which inherited impulsivity is amplified through social reinforcement of emotional lability. Implications for early intervention are discussed.
Fifth Symposium on the Role of the Vestibular Organs in Space Exploration
NASA Technical Reports Server (NTRS)
1973-01-01
Vestibular problems of manned space flight are investigated for weightlessness and reduced gravity conditions with emphasis on space station development. Intensive morphological studies on the vestibular system and its central nervous system connections are included.
... cannot digest the nutrients needed for good health); human immunodeficiency virus (HIV) infection; porphyria (an inherited blood disease that may cause skin or nervous system problems); thyroid disease; or glucose-6-phosphate dehydrogenase ( ...
[Metastasis tumors of the central nervous system: molecular biology].
Bello, M Josefa; González-Gómez, P; Rey, J A
2004-12-01
Metastases in the nervous system represent an important and growing problem in the clinical practice, being the cause of a great mortality in the developed countries. This article reviews the few data available on the molecular mechanisms involved in the pathogenesis of these tumours, leading to oncogene activation, inactivation of tumour suppressor genes, not only by the classical mechanisms, but also by the tumour cell epigenetic balance alteration. We conclude that all this knowledge will lead in the future to a better diagnosis, treatment and clinic evolution of these patients.
Lower catecholamine activity is associated with greater levels of anger in adults.
Schwartz, Joseph A; Portnoy, Jill
2017-10-01
Previous research has revealed a consistent association between heart rate at rest and during stress and behavioral problems, potentially implicating autonomic nervous system (ANS) functioning in the etiological development of antisocial behavior. A complementary line of research has focused on the potential independent and interactive role of the two subsystems that comprise the ANS, the parasympathetic nervous system (PNS) and the sympathetic nervous system (SNS), on behavioral problems. The current study aims to contribute to the existing literature by examining the influence of heart rate (HR) reactivity, high-frequency heart rate variability (HF-HRV) reactivity, and catecholamine activity on a comprehensive measure of anger in a large, nationally-representative sample of adults from the United States. Results from a series of structural equation models (SEMs) revealed that catecholamine activity was most consistently linked to anger, while associations involving HR and HF-HRV reactivity were nonsignificant. Additional analyses revealed that HF-HRV did not significantly moderate the association between catecholamine activity and anger. These findings highlight the importance of SNS activity in the development of more reactive forms of aggression such as anger. Copyright © 2017 Elsevier B.V. All rights reserved.
... neurosurgeons, who treat diseases of the nervous system. Orthopedic surgeons, who treat problems with the bones, joints, ... and Musculoskeletal and Skin Diseases is to support research into the causes, treatment, and prevention of arthritis ...
Causes of Deafness: Retrospection and Omens.
ERIC Educational Resources Information Center
Champie, Joan
1996-01-01
This study reviewed records of several American schools for the deaf in the 19th century concerning the stated causes of deafness given by parents. The high rate of adventitious deafness is noted. Stated causes are categorized into: fevers, inflammations, medicines/poisons, trauma, heat/cold, ear problems, nervous system problems, head/neck…
Rett syndrome is a rare genetic disease that causes developmental and nervous system problems, mostly in girls. It's related to autism spectrum disorder. Babies with Rett syndrome seem to grow and develop normally at first. ...
Meningococcal ACWY Vaccines (MenACWY and MPSV4)
... disabilities such as hearing loss, brain damage, kidney damage, amputations, nervous system problems, or severe scars from skin grafts.Meningococcal ACWY vaccines can help prevent meningococcal disease caused by serogroups ...
Physiological problems of weightlessness
NASA Technical Reports Server (NTRS)
Vasilyev, P. V.; Kasyan, I. I.
1975-01-01
A brief review of the compensatory-adjusting body changes observed during and after human exposure to prolonged spaceflight is given. Pathological disturbances caused by increased functional hypokinesia and weightlessness loads affect the cardiovascular system, the nervous and hormonal systems, and the state of the skeletal musculo apparatus.
ROLE OF SYMPATHETIC NERVOUS SYSTEM IN OBESITY RELATED HYPERTENSION
da Silva, Alexandre; doCarmo, Jussara; Dubinion, John; Hall, John E.
2010-01-01
Obesity is recognized as a major, worldwide, health problem. Excess weight is a major cause of increased blood pressure in most patients with essential hypertension, and greatly increases the risk for diabetes, cardiovascular diseases, and end stage renal disease. Although the mechanisms by which obesity raises blood pressure are not completely understood, increased renal sodium reabsorption, impaired pressure natriuresis, and volume expansion appear to play important roles. Several potential mechanisms have been suggested to contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system (SNS) and the renin-angiotensin-aldosterone system (RAAS), and physical compression of the kidneys, especially when visceral obesity is present. Activation of the SNS in obesity may be due, in part, to hyperleptinemia and other factors secreted by adipocytes and the gastrointestinal tract, activation of the central nervous melanocortin pathway, and baroreceptor dysfunction. PMID:19442330
... using your cerebrum. You need it to solve math problems, figure out a video game, and draw ... said to be more analytical, helping you with math, logic, and speech. Scientists do know for sure ...
Alkon, Abbey; Boyce, W Thomas; Neilands, Torsten B; Eskenazi, Brenda
2017-01-01
Sleep problems are common for young children especially if they live in adverse home environments. Some studies investigate if young children may also be at a higher risk of sleep problems if they have a specific biological sensitivity to adversity. This paper addresses the research question, does the relations between children's exposure to family adversities and their sleep problems differ depending on their autonomic nervous system's sensitivity to challenges? As part of a larger cohort study of Latino, low-income families, we assessed the cross-sectional relations among family demographics (education, marital status), adversities [routines, major life events (MLE)], and biological sensitivity as measured by autonomic nervous system (ANS) reactivity associated with parent-rated sleep problems when the children were 5 years old. Mothers were interviewed in English or Spanish and completed demographic, family, and child measures. The children completed a 15-min standardized protocol while continuous cardiac measures of the ANS [respiratory sinus arrhythmia (RSA), preejection period (PEP)] were collected during resting and four challenge conditions. Reactivity was defined as the mean of the responses to the four challenge conditions minus the first resting condition. Four ANS profiles, co-activation, co-inhibition, reciprocal low RSA and PEP reactivity, and reciprocal high RSA and PEP reactivity, were created by dichotomizing the reactivity scores as high or low reactivity. Logistic regression models showed there were significant main effects for children living in families with fewer daily routines having more sleep problems than for children living in families with daily routines. There were significant interactions for children with low PEP reactivity and for children with the reciprocal, low reactivity profiles who experienced major family life events in predicting children's sleep problems. Children who had a reciprocal, low reactivity ANS profile had more sleep problems if they also experienced MLE than children who experienced fewer MLE. These findings suggest that children who experience family adversities have different risks for developing sleep problems depending on their biological sensitivity. Interventions are needed for young Latino children that support family routines and reduce the impact of family adversities to help them develop healthy sleep practices.
Warning Signs of Vision Problems in Children
... Life Family Life Family Life Medical Home Family Dynamics Media Work & Play Getting Involved in Your Community ... and Urinary Tract Glands & Growth Head Neck & Nervous System Heart Infections Learning Disabilities Obesity Orthopedic Prevention Sexually ...
Common Childhood Orthopedic Conditions
... might be linked to other conditions, such as cerebral palsy, muscle weakness disorders, autism, or other nervous system ... be related to existing medical problems such as cerebral palsy. Doctors rarely have to treat pigeon-toed feet. ...
Meningococcal ACWY Vaccines - MenACWY and MPSV4: What You Need to Know
... disabilities such as hearing loss, brain damage, kidney damage, amputations, nervous system problems, or severe scars from skin grafts. Meningococcal ACWY vaccines can help prevent meningococcal disease caused by serogroups ...
Meningococcal Disease: Information for Teens and College Students
... Life Family Life Family Life Medical Home Family Dynamics Media Work & Play Getting Involved in Your Community ... limb amputation, or lifelong problems with the nervous system. How is meningococcal disease treated? Meningococcal disease is ...
... to nourish your body. Anyone can have a swallowing disorder, but it is more likely in the elderly. It often happens because of other conditions, including Nervous system disorders, such as Parkinson's disease and cerebral palsy Problems with your esophagus, ...
Nerve supply to the pelvis (image)
The nerves that branch off the central nervous system (CNS) provide messages to the muscles and organs for normal ... be compromised. In multiple sclerosis, the demyelinization of nerve cells may lead to bowel incontinence, bladder problems ...
ERIC Educational Resources Information Center
Kalita, Jumi; Sarmah, Pranita
2012-01-01
It is estimated that of approximately 150-250 million children with disabilities across the world, a large number have difficulties related to problems in the central nervous system (CNS). This paper considers school dropout rates of children with special educational needs associated with CNS problems from a study of educational institutions in…
Mental health and health-care use of detainees in police custody.
Dorn, Tina; Ceelen, Manon; Buster, Marcel; Stirbu, Irina; Donker, Gé; Das, Kees
2014-08-01
In many countries, forensic physicians function as primary care providers for detainees in police custody. Their task is comparable to the tasks of general practitioners. Nevertheless, problems presented by both patient populations may differ. We therefore aimed to systematically compare presented problems and medication use in a population of police detainees to those of regular patients in general practice. Health problems and prescription medications of 3232 detainees seen by the Amsterdam Forensic Medical Service were compared to those of general practice patients (n = 78,975) adjusted for age and gender during a 12-month period. Among those obtaining medical attention (28% of all detainees), almost 50% were diagnosed with mental health problems, with substance abuse as the leading reason for consultation. Forty-two percent received at least one prescription affecting the nervous system. In general practice, 17% (P < 0.001) of patients consulting their GP were diagnosed with mental health problems and 22% (P < 0.001) were prescribed medications affecting the nervous system. The magnitude of mental health problems among police detainees has significant implications for the qualifications of police health staff and those who provide health care in the police setting especially concerning substance abuse. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Sunitinib in Treating Young Patients With Refractory Solid Tumors
2014-01-27
Central Nervous System Metastases; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
Ko, Yong Jae; Lee, Yang Gyun; Park, Ji Woong; Ahn, Sung Ho; Kwak, Jin Myoung; Choi, Yoon-Hee
2016-08-01
Neuropsychiatric systemic lupus erythematosus (NPSLE) involves the central and peripheral nervous system in patients with systemic lupus erythematosus (SLE). It is essential to specify the problems faced by patients with NPSLE because it causes diverse disabilities and impairs quality of life. After performing a comprehensive evaluation, tailored management should be provided for the patient's specific problems. We report here the case of a 30-year-old female with SLE who experienced serious neuropsychiatric symptoms cerebral infarction followed by posterior reversible encephalopathy syndrome and peripheral polyneuropathy. We systemically assessed the patient using the International Classification of Functioning, Disability and Health model as a clinical problem-solving tool and provided comprehensive rehabilitation by focusing on her problems.
Serogroup B Meningococcal vaccine (MenB) - What you need to know
... disabilities such as hearing loss, brain damage, kidney damage, amputations, nervous system problems, or severe scars from skin grafts. Serogroup B meningococcal (MenB) vaccines can help prevent meningococcal disease caused by serogroup ...
ERIC Educational Resources Information Center
Surwit, Richard S.; And Others
1983-01-01
Suggests that the problem of effective care of diabetes mellitus presents an opportunity for the emerging field of health psychology. Discusses behavioral interventions that aid in treatment of this disease by reducing its energy mobilizing effects on the nervous system. (Author/AOS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raine, C.S.
1988-01-01
This volume presents the proceedings of the Second International Congress of Neuroimmunology. It brought together basic researchers and clinicians involved in the application of immunologic methodologies to the elucidation of problems related to nervous system development and disease. Neuroimmunology as a discipline is still in its infancy although its roots date back more than 50 years when it was realized that certain neurologic disorders were related to allergic reactions. Since then, it has been shown that immunological mechanisms are involved not only in a growing number of disease processes of the nervous system, but also in the development of nervousmore » tissue. It is now widely accepted that the nervous system shares a unique relationship with the immune system, sometimes through shared receptors, and possesses a large repertoire of specific antigens. Thus, with the continuing and intensive application of immunologic techniques to the neurologic sciences, the specialty of neuroimmunology has evolved. The major diseases that now fall into its realm include multiple sclerosis, myasthenia gravis, peripheral neuropathy, systemic lupus erythematosus, AIDS, leprosy, narcolepsy, tumors, viral encephalitis, and their experimental counterparts.« less
Combination Chemotherapy in Treating Young Patients With Advanced Solid Tumors
2013-05-01
Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
Littlewood, Chris; Malliaras, Peter; Bateman, Marcus; Stace, Richmond; May, Stephen; Walters, Stephen
2013-12-01
Tendinopathy is a term used to describe a painful tendon disorder but despite being a well-recognised clinical presentation, a definitive understanding of the pathoaetiology of rotator cuff tendinopathy remains elusive. Current explanatory models, which relate to peripherally driven nocioceptive mechanisms secondary to structural abnormality, or failed healing, appear inadequate on their own in the context of current literature. In light of these limitations this paper presents an extension to current models that incorporates the integral role of the central nervous system in the pain experience. The role of the central nervous system (CNS) is described and justified along with a potential rationale to explain the favourable response to loaded therapeutic exercises demonstrated by previous studies. This additional consideration has the potential to offer a useful way to explain pain to patients, for clinicians to prescribe appropriate therapeutic management strategies and for researchers to advance knowledge in relation to this clinically challenging problem. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comparative Effectiveness of Family Problem-Solving Therapy (F-PST) for Adolescent TBI
2018-01-25
Tbi; Intracranial Edema; Brain Edema; Craniocerebral Trauma; Head Injury; Brain Hemorrhage, Traumatic; Subdural Hematoma; Brain Concussion; Head Injuries, Closed; Epidural Hematoma; Cortical Contusion; Wounds and Injuries; Disorders of Environmental Origin; Trauma, Nervous System; Brain Injuries
Screening Checklist for Contraindications to Vaccines for Adults
... or other nervous system problem? □□□ 8. During the past year, have you received a transfusion of blood or ... risk for severe influenza complications. 8.During the past year, have you received a transfusion of blood or ...
The Spleen: A Hub Connecting Nervous and Immune Systems in Cardiovascular and Metabolic Diseases
Lori, Andrea; Perrotta, Marialuisa; Lembo, Giuseppe; Carnevale, Daniela
2017-01-01
Metabolic disorders have been identified as major health problems affecting a large portion of the world population. In addition, obesity and insulin resistance are principal risk factors for the development of cardiovascular diseases. Altered immune responses are common features of both hypertension and obesity and, moreover, the involvement of the nervous system in the modulation of immune system is gaining even more attention in both pathophysiological contexts. For these reasons, during the last decades, researches focused their efforts on the comprehension of the molecular mechanisms connecting immune system to cardiovascular and metabolic diseases. On the other hand, it has been reported that in these pathological conditions, central neural pathways modulate the activity of the peripheral nervous system, which is strongly involved in onset and progression of the disease. It is interesting to notice that neural reflex can also participate in the modulation of immune functions. In this scenario, the spleen becomes the crucial hub allowing the interaction of different systems differently involved in metabolic and cardiovascular diseases. Here, we summarize the major findings that dissect the role of the immune system in disorders related to metabolic and cardiovascular dysfunctions, and how this could also be influenced by neural reflexes. PMID:28590409
2013-09-27
Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Metastatic Childhood Soft Tissue Sarcoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Childhood Visual Pathway Glioma; Unspecified Childhood Solid Tumor, Protocol Specific
Strategies for drug delivery to the central nervous system by systemic route.
Kasinathan, Narayanan; Jagani, Hitesh V; Alex, Angel Treasa; Volety, Subrahmanyam M; Rao, J Venkata
2015-05-01
Delivery of a drug into the central nervous system (CNS) is considered difficult. Most of the drugs discovered over the past decade are biological, which are high in molecular weight and polar in nature. The delivery of such drugs across the blood-brain barrier presents problems. This review discusses some of the options available to reach the CNS by systemic route. The focus is mainly on the recent developments in systemic delivery of a drug to the CNS. Databases such as Scopus, Google scholar, Science Direct, SciFinder and online journals were referred for preparing this article including 89 references. There are at least nine strategies that could be adopted to achieve the required drug concentration in the CNS. The recent developments in drug delivery are very promising to deliver biologicals into the CNS.
Dosha brain-types: A neural model of individual differences.
Travis, Frederick T; Wallace, Robert Keith
2015-01-01
This paper explores brain patterns associated with the three categories of regulatory principles of the body, mind, and behavior in Ayurveda, called Vata, Pitta, and Kapha dosha. A growing body of research has reported patterns of blood chemistry, genetic expression, physiological states, and chronic diseases associated with each dosha type. Since metabolic and growth factors are controlled by the nervous system, each dosha type should be associated with patterns of functioning of six major areas of the nervous system: The prefrontal cortex, the reticular activating system, the autonomic nervous system, the enteric nervous system, the limbic system, and the hypothalamus. For instance, the prefrontal cortex, which includes the anterior cingulate, ventral medial, and the dorsal lateral cortices, would exhibit a high range of functioning in the Vata brain-type leading to the possibility of being easily overstimulated. The Vata brain-type performs activity quickly. Learns quickly and forgets quickly. Their fast mind gives them an edge in creative problem solving. The Pitta brain-type reacts strongly to all challenges leading to purposeful and resolute actions. They never give up and are very dynamic and goal oriented. The Kapha brain-type is slow and steady leading to methodical thinking and action. They prefer routine and needs stimulation to get going. A model of dosha brain-types could provide a physiological foundation to understand individual differences. This model could help individualize treatment modalities to address different mental and physical dysfunctions. It also could explain differences in behavior seen in clinical as well as in normal populations.
Alzheimer's Disease under Scrutiny: Short Newspaper Articles as a Case Study Tool.
ERIC Educational Resources Information Center
Hudecki, Michael S.
2001-01-01
After reading a newspaper article on Alzheimer disease, an incurable medical problem involving gradual and debilitating loss of memory, students examine the key elements of the scientific method as conveyed in the story. During their analysis students explore the workings of the nervous system and consider the role of animal model systems in…
Childhood Central Nervous System Germ Cell Tumors Treatment
... very tired. Having problems with school work. Imaging studies and tests are used to detect (find) and diagnose childhood ... or after starting their cancer treatment. Follow-up tests may be needed. ... trial is a research study meant to help improve current treatments or obtain ...
Harrison, Tondi M
2013-01-01
Explore relationships among autonomic nervous system (ANS) function, child behavior, and maternal sensitivity in three-year-old children with surgically corrected transposition of the great arteries (TGA) and in children healthy at birth. Children surviving complex congenital heart defects are at risk for behavior problems. ANS function is associated with behavior and with maternal sensitivity. Child ANS function (heart rate variability) and maternal sensitivity (Parent-Child Early Relational Assessment) were measured during a challenging task. Mother completed the Child Behavior Checklist. Data were analyzed descriptively and graphically. Children with TGA had less responsive autonomic function and more behavior problems than healthy children. Autonomic function improved with more maternal sensitivity. Alterations in ANS function may continue years after surgical correction in children with TGA, potentially impacting behavioral regulation. Maternal sensitivity may be associated with ANS function in this population. Continued research on relationships among ANS function, child behavior, and maternal sensitivity is warranted. Copyright © 2013 Elsevier Inc. All rights reserved.
Overview of the Autonomic Nervous System
... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...
Application and preventive maintenance of neurology medical equipment in isfahan alzahra hospital.
Alikhani, Parivash; Vesal, Sahar; Kashefi, Parviz; Pour, Ramin Etamadi; Khorvash, Fariborz; Askari, Gholamreza; Meamar, Rokhsareh
2013-05-01
Nowadays Medical equipment plays an important role in the treatment and in the medical education. Using outdated preventive maintenance (PM) system may cause problems in the cutting edge medical equipment, Nervous system disease's equipment (In diagnosis and treatment) which are crucial for every medical center. Based on above facts we focused on nervous system treat units' equipment and informed the supervisors and their colleagues about the latest equipment maintenance status and promoted methodical and correct method to be used for medical equipment maintenance. This research is an analytical descriptive and has been done on the base information from a particular time to past. We gathered our required information of 2009 from Alzahra Medical Center. We divided this research info 2 main phases. In the first phase, we picked out Neurosurgery and Neourology diseases medical equipment (diagnosis and therapy equipment) and in the second phase, we need to implement a methodical PM for every equipment. Research has shown that there are 19nervous system equipment in Alzahra Medical center, categorized in diagnostic (13 pcs), therapeutic (4 pcs) and diagnostic-therapeutic (2 pcs). As we declare in methods part of this research, we categorized medical equipment in Food and Drug Administration (FDA) segmentation. Capital-scarce equipment: Magnetic resonance imaging, Eco Doppler, Kamalaarak ultrasonic surgical aspirator, Stereotactic, computed tomography-scan, euroendoscope/vital-scarce equipment: Coblation, Sonoco, vaterjet/scarce equipment: Transcranial color Doppler, electroencephalogram, electromyography, surgical microscope. Survey of application and preventive maintenance of neurology medical equipment in Isfahan Alzahra hospital show there is no P.M system. Implementing a complete P.M system for this medical center is crucial to preventing cause problems for these medical equipment and decreasing maintenance costs and gaining uptime. Researchers of this article have tried to provide PM, use of texts, web and experts.
The Side Effects of the Most Commonly Used Group of Antibiotics in Periodontal Treatments
Heta, Saimir; Robo, Ilma
2018-01-01
Antibiotic combinations are preferred for the treatment of periodontal diseases, with the aim of hitting the bacterial flora, according to its characteristics—aerobic, anaerobic, gram-negative, and gram-positive—with certain antibiotics that act on certain bacteria. The aim of this study is to analyze the side effects of the antibiotics used. Data on the side effects (preferably expressed in percentages) of some antibiotics, the favorites in periodontal recipes, are gathered from the literature. These data are listed according to the antibiotic used. In the case of providing a periodontal prescription, the patient is at risk of allergy (5%), nephritis (3%), hematological problems (2–2.5%), gastrointestinal problems (5.5%), disturbance in the nervous system (2%), allergic signs on the skin (5.5%), and problems with electrolytes displayed in lower percentages. Interaction with different medications is present in almost all cases. The influence on the body systems is 4% in total, the maximum value of which is expressed on the skin, and the minimum value is expressed in the nervous system. Cross allergies are at a high value because of the expressed structural similarity of antibiotics. Given a recipe, we have a balance of the percentage of side effects, the percentage of bacterial resistance, and the percentage of the success of the recommended dose of antibiotics.
Visual control of prey-capture flight in dragonflies.
Olberg, Robert M
2012-04-01
Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects. Copyright © 2011 Elsevier Ltd. All rights reserved.
Charge and energy minimization in electrical/magnetic stimulation of nervous tissue
NASA Astrophysics Data System (ADS)
Jezernik, Sašo; Sinkjaer, Thomas; Morari, Manfred
2010-08-01
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.
Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred
2010-08-01
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
Rudd, Kristen L; Alkon, Abbey; Yates, Tuppett M
2017-10-15
This study examined children's parasympathetic nervous system (PNS) regulation, which was indexed by respiratory sinus arrhythmia (RSA) during rest, reactivity, and recovery episodes, and sex as moderators of predicted relations between observed intrusive parenting and later observer-rated child behavior problems. Child-caregiver dyads (N=250; 50% girls; 46% Latino/a) completed a series of laboratory assessments yielding independent measures of intrusive parenting at age 4, PNS regulation at age 6, and child behavior problems at age 8. Results indicated that intrusive parenting was related to more internalizing problems among boys who showed low RSA reactivity (i.e., PNS withdrawal from pre-startle to startle challenge), but RSA reactivity did not moderate this relation among girls. Interestingly, RSA recovery (i.e., PNS activation from startle challenge to post-startle) moderated these relations differently for boys and girls. For girls with relatively low RSA post-startle (i.e., less recovery), intrusive parenting was positively related to both internalizing and externalizing problems. However, the reverse was true for boys, such that there was a significant positive relation between intrusive parenting and later externalizing problems among boys who evidenced relatively high RSA post-startle (i.e., more recovery). Findings provide evidence for the moderation of intrusive caregiving effects by children's PNS regulation while highlighting the differential patterning of these relations across distinct phases of the regulatory response and as a function of child sex. Copyright © 2017 Elsevier Inc. All rights reserved.
Noncongenital central nervous system infections in children: radiology review.
Acosta, Jorge Humberto Davila; Rantes, Claudia Isabel Lazarte; Arbelaez, Andres; Restrepo, Feliza; Castillo, Mauricio
2014-06-01
Infections of the central nervous system (CNS) are a very common worldwide health problem in childhood with significant morbidity and mortality. In children, viruses are the most common cause of CNS infections, followed by bacterial etiology, and less frequent due to mycosis and other causes. Noncomplicated meningitis is easier to recognize clinically; however, complications of meningitis such as abscesses, infarcts, venous thrombosis, or extra-axial empyemas are difficult to recognize clinically, and imaging plays a very important role on this setting. In addition, it is important to keep in mind that infectious process adjacent to the CNS such as mastoiditis can develop by contiguity in an infectious process within the CNS. We display the most common causes of meningitis and their complications.
Neuritogenesis: A model for space radiation effects on the central nervous system
NASA Technical Reports Server (NTRS)
Vazquez, M. E.; Broglio, T. M.; Worgul, B. V.; Benton, E. V.
1994-01-01
Pivotal to the astronauts' functional integrity and survival during long space flights are the strategies to deal with space radiations. The majority of the cellular studies in this area emphasize simple endpoints such as growth related events which, although useful to understand the nature of primary cell injury, have poor predictive value for extrapolation to more complex tissues such as the central nervous system (CNS). In order to assess the radiation damage on neural cell populations, we developed an in vitro model in which neuronal differentiation, neurite extension, and synaptogenesis occur under controlled conditions. The model exploits chick embryo neural explants to study the effects of radiations on neuritogenesis. In addition, neurobiological problems associated with long-term space flights are discussed.
Urbanovich, P P
1975-01-01
Data are presented on the main problems of epizootology, pathological anatomy and pathogenesis of listeriosis of agricultural animals. It was shown that under natural conditions all species of agricultural animals are susceptible to the condition but ship are affected most often. Various clinico-anatomic forms of the disease are considered: nervous, septicemic, metrogenic, mixed, subclinical and latent. Domestic animals were observed to suffer predominantly from the nervous form of the disease. Basing on literature reports and his own findings, the author elucidates with greater detail problems of pathomorphology and pathogenesis of the nervous form of listeriosis and shows the importance of the neurogenic pathway in the development of listerious encephalomyelitis.
... They are also more likely to develop gastric cancer and gastric carcinoid tumors. Brain and nervous system problems may continue or be permanent if treatment is delayed. A woman with a low B12 level may have a false positive Pap ... MD, Hematology/Oncology, Florida Cancer Specialists & Research Institute, Wellington, FL. Review provided by ...
Ewing, Graham E.
2009-01-01
There is a compelling argument that the occurrence of regressive autism is attributable to genetic and chromosomal abnormalities, arising from the overuse of vaccines, which subsequently affects the stability and function of the autonomic nervous system and physiological systems. That sense perception is linked to the autonomic nervous system and the function of the physiological systems enables us to examine the significance of autistic symptoms from a systemic perspective. Failure of the excretory system influences elimination of heavy metals and facilitates their accumulation and subsequent manifestation as neurotoxins: the long-term consequences of which would lead to neurodegeneration, cognitive and developmental problems. It may also influence regulation of neural hyperthermia. This article explores the issues and concludes that sensory dysfunction and systemic failure, manifested as autism, is the inevitable consequence arising from subtle DNA alteration and consequently from the overuse of vaccines. PMID:22666668
Effects of Alcohol on the Endocrine System
Rachdaoui, Nadia; Sarkar, Dipak K.
2013-01-01
Synopsis The endocrine system ensures a proper communication between various organs of the body to maintain a constant internal environment. The endocrine system also plays an essential role in enabling the body to respond and appropriately cope with changes in the internal or external environments, such as respond to stress and injury. These functions of the endocrine system to maintain body homeostasis are aided by its communication with the nervous system, immune system and body’s circadian mechanism. Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiological and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. PMID:24011889
Alkon, Abbey; Boyce, W. Thomas; Neilands, Torsten B.; Eskenazi, Brenda
2017-01-01
Sleep problems are common for young children especially if they live in adverse home environments. Some studies investigate if young children may also be at a higher risk of sleep problems if they have a specific biological sensitivity to adversity. This paper addresses the research question, does the relations between children’s exposure to family adversities and their sleep problems differ depending on their autonomic nervous system’s sensitivity to challenges? As part of a larger cohort study of Latino, low-income families, we assessed the cross-sectional relations among family demographics (education, marital status), adversities [routines, major life events (MLE)], and biological sensitivity as measured by autonomic nervous system (ANS) reactivity associated with parent-rated sleep problems when the children were 5 years old. Mothers were interviewed in English or Spanish and completed demographic, family, and child measures. The children completed a 15-min standardized protocol while continuous cardiac measures of the ANS [respiratory sinus arrhythmia (RSA), preejection period (PEP)] were collected during resting and four challenge conditions. Reactivity was defined as the mean of the responses to the four challenge conditions minus the first resting condition. Four ANS profiles, co-activation, co-inhibition, reciprocal low RSA and PEP reactivity, and reciprocal high RSA and PEP reactivity, were created by dichotomizing the reactivity scores as high or low reactivity. Logistic regression models showed there were significant main effects for children living in families with fewer daily routines having more sleep problems than for children living in families with daily routines. There were significant interactions for children with low PEP reactivity and for children with the reciprocal, low reactivity profiles who experienced major family life events in predicting children’s sleep problems. Children who had a reciprocal, low reactivity ANS profile had more sleep problems if they also experienced MLE than children who experienced fewer MLE. These findings suggest that children who experience family adversities have different risks for developing sleep problems depending on their biological sensitivity. Interventions are needed for young Latino children that support family routines and reduce the impact of family adversities to help them develop healthy sleep practices. PMID:28713808
Kang, Ting; Gao, Xiaoling; Chen, Jun
2014-01-01
The existence of blood-brain barrier (BBB) represents the most formidable challenge for drug delivery to the central nervous system (CNS). Modern breakthrough in biology offers multiple choices for overcoming this barrier but yields modest outcomes for clinical application due to various problems such as safety concerns, insufficient delivery efficiency and poor penetration. Cell penetrating peptides (CPPs) possessing powerful transmembrane capacity have been shown to be effective transport vectors for bioactive molecules and an attractive alternative to traditional active targeting approaches. However, the non-specificity of CPPs has hindered them from targeting a desired site of action. Promisingly, design of novel CPP-mediated nanoparticulate delivery systems with specific targeting property may extricate CPPs from the dilemma. In this review, both the traditional and novel applications of CPPs-based strategies for CNS drug delivery will be discussed.
77 FR 56133 - Dinotefuran; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... is the nervous system but effects on the nervous system were only observed at high doses. Nervous... cholinergic nervous system seen after repeated dosing. Typically, low to moderate levels of neonicotinoids... peripheral nervous system (PNS). High levels of neonicotinoids can over stimulate the PNS, maintaining cation...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
Abou-Donia, Mohamed B; Abou-Donia, Martha M; ElMasry, Eman M; Monro, Jean A; Mulder, Michel F A
2013-01-01
This descriptive study reports the results of assays performed to detect circulating autoantibodies in a panel of 7 proteins associated with the nervous system (NS) in sera of 12 healthy controls and a group of 34 flight crew members including both pilots and attendants who experienced adverse effects after exposure to air emissions sourced to the ventilation system in their aircrafts and subsequently sought medical attention. The proteins selected represent various types of proteins present in nerve cells that are affected by neuronal degeneration. In the sera samples from flight crew members and healthy controls, immunoglobin (IgG) was measured using Western blotting against neurofilament triplet proteins (NFP), tubulin, microtubule-associated tau proteins (tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and glial S100B protein. Significant elevation in levels of circulating IgG-class autoantibodies in flight crew members was found. A symptom-free pilot was sampled before symptoms and then again afterward. This pilot developed clinical problems after flying for 45 h in 10 d. Significant increases in autoantibodies were noted to most of the tested proteins in the serum of this pilot after exposure to air emissions. The levels of autoantibodies rose with worsening of his condition compared to the serum sample collected prior to exposure. After cessation of flying for a year, this pilot's clinical condition improved, and eventually he recovered and his serum autoantibodies against nervous system proteins decreased. The case study with this pilot demonstrates a temporal relationship between exposure to air emissions, clinical condition, and level of serum autoantibodies to nervous system-specific proteins. Overall, these results suggest the possible development of neuronal injury and gliosis in flight crew members anecdotally exposed to cabin air emissions containing organophosphates. Thus, increased circulating serum autoantibodies resulting from neuronal damage may be used as biomarkers for chemical-induced CNS injury.
Central Nervous System Vasculitis
... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...
Subacute combined degeneration
... SCD Images Central nervous system and peripheral nervous system Central nervous system References Pytel P, Anthony DC. Peripheral nerves and ... chap 27. So YT. Deficiency diseases of the nervous system. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...
Tick-borne encephalitis carries a high risk of incomplete recovery in children.
Fowler, Åsa; Forsman, Lea; Eriksson, Margareta; Wickström, Ronny
2013-08-01
To examine long-term outcome after tick-borne encephalitis (TBE) in children. In this population-based cohort, 55 children with TBE with central nervous system involvement infected during 2004-2008 were evaluated 2-7 years later using the Rivermead post-concussion symptoms questionnaire (n = 42) and the Behavior Rating Inventory of Executive Functioning for parents and teachers (n = 32, n = 22, respectively). General cognitive ability was investigated in a subgroup (n = 20) using the Wechsler Intelligence Scale for Children, 4th edition. At long-term follow-up, two-thirds of the children experienced residual problems, the main complaints being cognitive problems, headache, fatigue, and irritability. More than one-third of the children were reported by parents or teachers to have problems with executive functioning on the Behavior Rating Inventory of Executive Functioning, mainly in areas involving initiating and organizing activities and working memory. Children who underwent Wechsler Intelligence Scale for Children, 4th edition testing had a significantly lower working memory index compared with reference norms. A large proportion of children experience an incomplete recovery after TBE with central nervous system involvement. Cognitive problems in areas of executive function and working memory are the most prevalent. Even if mortality and severe sequelae are low in children after TBE, all children should be followed after TBE to detect cognitive deficits. Copyright © 2013 Mosby, Inc. All rights reserved.
Psychophysiological Associations with Gastrointestinal Symptomatology in Autism Spectrum Disorder
Ferguson, Bradley J.; Marler, Sarah; Altstein, Lily L.; Lee, Evon Batey; Akers, Jill; Sohl, Kristin; McLaughlin, Aaron; Hartnett, Kaitlyn; Kille, Briana; Mazurek, Micah; Macklin, Eric A.; McDonnell, Erin; Barstow, Mariah; Bauman, Margaret L.; Margolis, Kara Gross; Veenstra-VanderWeele, Jeremy; Beversdorf, David Q.
2017-01-01
Autism spectrum disorder (ASD) is often accompanied by gastrointestinal disturbances, which also may impact behavior. Alterations in autonomic nervous system functioning are also frequently observed in ASD. The relationship between these findings in ASD is not known. We examined the relationship between gastrointestinal symptomatology, examining upper and lower gastrointestinal tract symptomatology separately, and autonomic nervous system functioning, as assessed by heart rate variability and skin conductance level, in a sample of 120 individuals with ASD. Relationships with co-occurring medical and psychiatric symptoms were also examined. While the number of participants with significant upper gastrointestinal tract problems was small in this sample, 42.5% of participants met criteria for functional constipation, a disorder of the lower gastrointestinal tract. Heart rate variability, a measure of parasympathetic modulation of cardiac activity, was found to be positively associated with lower gastrointestinal tract symptomatology at baseline. This relationship was particularly strong for participants with co-occurring diagnoses of anxiety disorder and for those with a history of regressive ASD or loss of previously acquired skills. These findings suggest that autonomic function and gastrointestinal problems are intertwined in children with ASD; although it is not possible to assess causality in this data set. Future work should examine the impact of treatment of gastrointestinal problems on autonomic function and anxiety, as well as the impact of anxiety treatment on gastrointestinal problems. Clinicians should be aware that gastrointestinal problems, anxiety, and autonomic dysfunction may cluster in children with ASD and should be addressed in a multidisciplinary treatment plan. PMID:27321113
Optimized optical clearing method for imaging central nervous system
NASA Astrophysics Data System (ADS)
Yu, Tingting; Qi, Yisong; Gong, Hui; Luo, Qingming; Zhu, Dan
2015-03-01
The development of various optical clearing methods provides a great potential for imaging entire central nervous system by combining with multiple-labelling and microscopic imaging techniques. These methods had made certain clearing contributions with respective weaknesses, including tissue deformation, fluorescence quenching, execution complexity and antibody penetration limitation that makes immunostaining of tissue blocks difficult. The passive clarity technique (PACT) bypasses those problems and clears the samples with simple implementation, excellent transparency with fine fluorescence retention, but the passive tissue clearing method needs too long time. In this study, we not only accelerate the clearing speed of brain blocks but also preserve GFP fluorescence well by screening an optimal clearing temperature. The selection of proper temperature will make PACT more applicable, which evidently broaden the application range of this method.
Living with Lowe's Syndrome. A Guide for Families, Friends, and Professionals.
ERIC Educational Resources Information Center
Lowe's Syndrome Association, Inc., West Lafayette, IN.
The document describes Lowe's syndrome, a hereditary condition that affects only males and is typically diagnosed during the first year of life. Effects of Lowe's syndrome on the eyes (cataracts, glaucoma, corneal degeneration, and strabismus) are discussed, as well as related problems with the central nervous system, muscles, kidneys, bones, and…
ERIC Educational Resources Information Center
Litus, Tonyia J.
Two sixth-grade, hearing-impaired students were studied to determine the effectiveness of stress management techniques using biofeedback instruments to monitor their nervous and cardiovascular systems. The male student had behavior problems, exhibiting explosive behavior without warning. The female student experienced excessive audible inhalations…
Facts on Nicotine and Tobacco. Clearinghouse Fact Sheet.
ERIC Educational Resources Information Center
Slade, John
Nicotine, the most abused drug in the United States, is the psychoactive drug in tobacco. It exerts diverse, often subtle effects on the central nervous system and can stimulate or relax, or do both simultaneously. Tolerance to this drug develops easily and addiction is common among people with other drug problems, especially alcoholism. Most…
[Characteristics of pain syndrome in patients with upper limbs occupational polyneuropathies].
Kochetova, O A; Mal'kova, N Yu
2015-01-01
Pain syndrome accompanies various diseases of central and peripheral nervous system--that is one of the most important problems in contemporary neurology. Many scientists are in search for effective diagnostic and therapeutic tools. The article covers characteristics of the pain syndrome and its mechanisms in patients with upper limbs occupational polyneuropathies.
Autonomic Nervous System Disorders
Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...
Nervous system active pharmaceutical ingredients (APIs), including anti-depressants and opioids, are important clinically administered pharmaceuticals within healthcare facilities. Concentrations and mass loadings of ten nervous system APIs and three nervous system API metaboli...
PROBLEMS OF CYBERNETICS AND SPACE MEDICINE (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parin, V.V.; Baevskii, R.M.
1963-01-01
Problems of cybernetics are discussed with reference to space medicine. The information theory is widely used for solving the problems relevant to radiotelemetric transmission of biological data. Construction of devices for automatic medical control of the condition of the crew of the space ship has a direct bearing to electron diagnostic machines. Mathematical methods and the computing technic are used for analyzing experimental evidence. The theory of automatic regulation was applied for modeling physiological reactions, for developing closed ecological systems, and for solving the problems of driving space ships. The problems bearing on the modifications undergone by the information inmore » the brain are of primary importance for the study of the effect of the space flight conditions upon the efficiency of man, the activity of his nervous system and of his analyzers. (P.C.H.)« less
What Health-Related Functions Are Regulated by the Nervous System?
... What health-related functions are regulated by the nervous system? The nervous system plays a role in nearly every aspect of ... feeling emotions. Functions that are regulated by the nervous system include (but are not limited to): Brain growth ...
An option space for early neural evolution.
Jékely, Gáspár; Keijzer, Fred; Godfrey-Smith, Peter
2015-12-19
The origin of nervous systems has traditionally been discussed within two conceptual frameworks. Input-output models stress the sensory-motor aspects of nervous systems, while internal coordination models emphasize the role of nervous systems in coordinating multicellular activity, especially muscle-based motility. Here we consider both frameworks and apply them to describe aspects of each of three main groups of phenomena that nervous systems control: behaviour, physiology and development. We argue that both frameworks and all three aspects of nervous system function need to be considered for a comprehensive discussion of nervous system origins. This broad mapping of the option space enables an overview of the many influences and constraints that may have played a role in the evolution of the first nervous systems. © 2015 The Author(s).
78 FR 9311 - Hazard Communication; Corrections and Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
... Column for Standard No. 1910.1051. ``Cancer; eye and respiratory tract irritation; center nervous system... irritation; central nervous system effects; and flammability.'' The following table contains a summary of the... (l)(1)(ii) ``center nervous system effects'' is paragraph. corrected to ``central nervous system...
The Nervous System and Gastrointestinal Function
ERIC Educational Resources Information Center
Altaf, Muhammad A.; Sood, Manu R.
2008-01-01
The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…
Development of a stained cell nuclei counting system
NASA Astrophysics Data System (ADS)
Timilsina, Niranjan; Moffatt, Christopher; Okada, Kazunori
2011-03-01
This paper presents a novel cell counting system which exploits the Fast Radial Symmetry Transformation (FRST) algorithm [1]. The driving force behind our system is a research on neurogenesis in the intact nervous system of Manduca Sexta or the Tobacco Hornworm, which was being studied to assess the impact of age, food and environment on neurogenesis. The varying thickness of the intact nervous system in this species often yields images with inhomogeneous background and inconsistencies such as varying illumination, variable contrast, and irregular cell size. For automated counting, such inhomogeneity and inconsistencies must be addressed, which no existing work has done successfully. Thus, our goal is to devise a new cell counting algorithm for the images with non-uniform background. Our solution adapts FRST: a computer vision algorithm which is designed to detect points of interest on circular regions such as human eyes. This algorithm enhances the occurrences of the stained-cell nuclei in 2D digital images and negates the problems caused by their inhomogeneity. Besides FRST, our algorithm employs standard image processing methods, such as mathematical morphology and connected component analysis. We have evaluated the developed cell counting system with fourteen digital images of Tobacco Hornworm's nervous system collected for this study with ground-truth cell counts by biology experts. Experimental results show that our system has a minimum error of 1.41% and mean error of 16.68% which is at least forty-four percent better than the algorithm without FRST.
77 FR 70908 - Dinotefuran; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-28
... level of skin irritation. The main target of toxicity is the nervous system but effects on the nervous system were only observed at high doses. Nervous system toxicity was manifested as clinical signs and... motor activity which are consistent with effects on the nicotinic cholinergic nervous system seen after...
78 FR 21267 - Dinotefuran; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... causes a low level of skin irritation. The main target of toxicity is the nervous system, but effects on the nervous system were only observed at high doses. Nervous system toxicity was manifested as... in motor activity which are consistent with effects on the nicotinic cholinergic nervous system seen...
ERIC Educational Resources Information Center
Wodrich, David L.; Cunningham, Melissa M.
2007-01-01
Approximately 15% of children experience a significant illness prior to age 18 years. For many of them, school absenteeism, substandard academic performance, and social problems ensue. When disorders affect the central nervous system, some suffer global developmental delays or selective neuropsychological deficits. As health service providers,…
The Prevalence of Motor Delay among HIV Infected Children Living in Cape Town, South Africa
ERIC Educational Resources Information Center
Ferguson, Gillian; Jelsma, Jennifer
2009-01-01
Children living with HIV often display delayed motor performance owing to HIV infection of the central nervous system, the effects of opportunistic infections and, indirectly, owing to their social environments. Although these problems have been well documented, the impact of the virus on the development of South African children is less well…
THE DIAGNOSIS AND TREATMENT OF SPEECH AND READING PROBLEMS.
ERIC Educational Resources Information Center
DELACATO, CARL H.
THE BASIC THESIS OF THE AUTHOR IS THAT THE NERVOUS SYSTEM OF MAN HAS EVOLVED FROM A VERY SIMPLE TO A VERY COMPLEX MECHANISM. MAN HAS ACHIEVED CORTICAL DOMINANCE WHEREIN ONE SIDE OF THE CORTEX CONTROLS THE SKILLS WHICH SEPARATE MAN FROM OTHER ANIMALS. THIS EVOLUTIONARY PROCESS MUST BE RECAPITULATED ONTOGENETICALLY OR MOBILITY AND COMMUNICATION…
Molecular Regulation of Alternative Polyadenylation (APA) within the Drosophila Nervous System.
Vallejos Baier, Raul; Picao-Osorio, Joao; Alonso, Claudio R
2017-10-27
Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3'-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3'UTRs, suggesting that such extensions might be important for neural development and function. Despite this, the mechanisms underlying neural APA are not well understood. Here, we investigate this problem within the Drosophila nervous system, focusing on the roles played by general cleavage and polyadenylation factors (CPA factors). In particular, we examine the model that modulations in CPA factor concentration may affect APA during development. For this, we first analyse the expression of the Drosophila orthologues of all mammalian CPA factors and note that their expression decreases during embryogenesis. In contrast to this global developmental decrease in CPA factor expression, we see that cleavage factor I (CFI) expression is actually elevated in the late embryonic central nervous system, suggesting that CFI might play a special role in neural tissues. To test this, we use the UAS/Gal4 system to deplete CFI proteins from neural tissue and observe that in this condition, multiple genes switch their APA patterns, demonstrating a role of CFI in APA control during Drosophila neural development. Furthermore, analysis of genes with 3'UTR extensions of different length leads us to suggest a novel relation between 3'UTR length and sensitivity to CPA factor expression. Our work thus contributes to the understanding of the mechanisms of APA control within the developing central nervous system. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bush, Nicole R; Caron, Zoe K; Blackburn, Katherine S; Alkon, Abbey
2016-02-25
The autonomic nervous system (ANS) consists of two branches, the parasympathetic and sympathetic nervous systems, and controls the function of internal organs (e.g., heart rate, respiration, digestion) and responds to everyday and adverse experiences (1). ANS measures in children have been found to be related to behavior problems, emotion regulation, and health (2-7). Therefore, understanding the factors that affect ANS development during early childhood is important. Both branches of the ANS affect young children's cardiovascular responses to stimuli and have been measured noninvasively, via external monitoring equipment, using valid and reliable measures of physiological change (8-11). However, there are few studies of very young children with simultaneous measures of the parasympathetic and sympathetic nervous systems, which limits understanding of the integrated functioning of the two systems. In addition, the majority of existing studies of young children report on infants' resting ANS measures or their reactivity to commonly used mother-child interaction paradigms, and less is known about ANS reactivity to other challenging conditions. We present a study design and standardized protocol for a non-invasive and rapid assessment of cardiac autonomic control in 18 month old children. We describe methods for continuous monitoring of the parasympathetic and sympathetic branches of the ANS under resting and challenge conditions during a home or laboratory visit and provide descriptive findings from our sample of 140 ethnically diverse toddlers using validated equipment and scoring software. Results revealed that this protocol can produce a range of physiological responses to both resting and developmentally challenging conditions, as indicated by changes in heart rate and indices of parasympathetic and sympathetic activity. Individuals demonstrated variability in resting levels, responses to challenges, and challenge reactivity, which provides additional evidence that this protocol is useful for the examination of ANS individual differences for toddlers.
Effect of heavy oil on the development of the nervous system of floating and sinking teleost eggs.
Irie, Kouta; Kawaguchi, Masahumi; Mizuno, Kaori; Song, Jun-Young; Nakayama, Kei; Kitamura, Shin-Ichi; Murakami, Yasunori
2011-01-01
Heavy oil (HO) on the sea surface penetrates into fish eggs and prevents the normal morphogenesis. To identify the toxicological effects of HO in the context of the egg types, we performed exposure experiments using floating eggs and sinking eggs. In the course of development, HO-exposed embryos of floating eggs showed abnormal morphology, whereas early larva of the sinking eggs had almost normal morphology. However, the developing peripheral nervous system of sinking eggs showed abnormal projections. These findings suggest that HO exposed fishes have problems in the developing neurons, although they have no morphological malformations. Through these observations, we conclude that HO is strongly toxic to floating eggs in the morphogenesis, and also affect the neuron development in both floating and sinking eggs. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
David, Samuel; Aguayo, Albert J.
1981-11-01
The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.
Makarowski, Ryszard; Piotrowski, Andrzej
2017-07-26
Over the years it has been assumed, that the greater the number of pilot flight hours, the better the development of problem-solving skills among pilots. Research suggests, however, that the problem is more complex than that. Not only one's experience is of importance - temperament, aggression and risk may also affect the decision-making process under stressful conditions. We examined 97 male pilots of passenger planes, who had flew ATRs, Boeings, Airbuses, Embraers, and Saabs. The comparative group was made up of 127 graduates of technical studies (not connected with aviation). In our study, we used the following methods: the PTS (Pavlovian Temperament Survey) Temperament Questionnaire by Strelau, the Aggression Questionnaire by Buss and Perry, and the Stimulating-Instrumental Risk Inventory (SIRI) by Zaleśkiewicz. Following the analyses we could categorize the pilots into 3 distinct groups: group 1 - strong type of nervous system with a tendency to avoid risk; group 2 - strong type of nervous system with a tendency to take risks; group 3 - the relatively weakest type of nervous system with a tendency toward aggressive behavior. Members of each group were analyzed to assess how they function in a task situation, i.e., whilst piloting a passenger plane. The study showed that individuals with high need for stimulation may - consciously or not - seek situations of excessive or unnecessary risks, and this is done in order to reach the right level of stimulation. A constellation of the following variables: temperament, risk, and aggression could be - we argue - useful in psychological examinations, and should be taken into account in training procedures for pilots. Med Pr 2017;68(5):639-651. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Neuroethology of Decision-making
Adams, Geoffrey K.; Watson, Karli K.; Pearson, John; Platt, Michael L.
2012-01-01
A neuroethological approach to decision-making considers the effect of evolutionary pressures on neural circuits mediating choice. In this view, decision systems are expected to enhance fitness with respect to the local environment, and particularly efficient solutions to specific problems should be conserved, expanded, and repurposed to solve other problems. Here, we discuss basic prerequisites for a variety of decision systems from this viewpoint. We focus on two of the best-studied and most widely represented decision problems. First, we examine patch leaving, a prototype of environmentally based switching between action patterns. Second, we consider social information seeking, a process resembling foraging with search costs. We argue that while the specific neural solutions to these problems sometimes differ across species, both the problems themselves and the algorithms instantiated by biological hardware are repeated widely throughout nature. The behavioral and mathematical study of ubiquitous decision processes like patch leaving and social information seeking thus provides a powerful new approach to uncovering the fundamental design structure of nervous systems. PMID:22902613
NASA Technical Reports Server (NTRS)
Lange, K. A.
1980-01-01
Research in the field of animal and human physiology is reviewed. The following topics on problems of physiological science and related fields of knowledge are discussed: neurophysiology and higher nervous activity, physiology of sensory systems, physiology of visceral systems, evolutionary and ecological physiology, physiological cybernetics, computer application in physiology, information support of physiological research, history and theory of development of physiology. Also discussed were: artificial intelligence, physiological problems of reflex therapy, correlation of structure and function of the brain, adaptation and activity, microcirculation, and physiological studies in nerve and mental diseases.
2013-07-01
Childhood Burkitt Lymphoma; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Medulloepithelioma; Childhood Meningioma; Childhood Mixed Glioma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Oligodendroglioma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific
Cystic Fibrosis and the Nervous System.
Reznikov, Leah R
2017-05-01
Cystic fibrosis (CF) is a life-shortening autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an anion channel that conducts bicarbonate and chloride across cell membranes. Although defective anion transport across epithelial cells is accepted as the basic defect in CF, many of the features observed in people with CF and organs affected by CF are modulated by the nervous system. This is of interest because CFTR expression has been reported in both the peripheral and central nervous systems, and it is well known that the transport of anions, such as chloride, greatly modulates neuronal excitability. Thus it is predicted that in CF, lack of CFTR in the nervous system affects neuronal function. Consistent with this prediction, several nervous system abnormalities and nervous system disorders have been described in people with CF and in animal models of CF. The goal of this special feature article is to highlight the expression and function of CFTR in the nervous system. Special emphasis is placed on nervous system abnormalities described in people with CF and in animal models of CF. Finally, features of CF that may be modulated by or attributed to faulty nervous system function are discussed. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites.
Maurer, Laura L; Philbert, Martin A
2015-01-01
The spatial heterogeneity of the structure, function, and cellular composition of the nervous system confers extraordinary complexity and a multiplicity of mechanisms of chemical neurotoxicity. Because of its relatively high metabolic demands and functional dependence on postmitotic neurons, the nervous system is vulnerable to a variety of xenobiotics that affect essential homeostatic mechanisms that support function. Despite protection from the neuroglia and blood-brain barrier, the central nervous system is prone to attack from lipophilic toxicants and those that hijack endogenous transport, receptor, metabolic, and other biochemical systems. The inherent predilection of chemicals for highly conserved biochemical systems confers selective vulnerability of the nervous system to neurotoxicants. This chapter discusses selective vulnerability of the nervous system in the context of neuron-specific decrements (axonopathy, myelinopathy, disruption of neurotransmission), and the degree to which neuronal damage is facilitated or ameliorated by surrounding nonneural cells in both the central and peripheral nervous systems. © 2015 Elsevier B.V. All rights reserved.
Stoll, Elizabeth A
2014-01-01
Over recent years, there has been a great deal of interest in the prospects of stem cell-based therapies for the treatment of nervous system disorders. The eagerness of scientists, clinicians, and spin-out companies to develop new therapies led to premature clinical trials in human patients, and now the initial excitement has largely turned to skepticism. Rather than embracing a defeatist attitude or pressing blindly ahead, I argue it is time to evaluate the challenges encountered by regenerative medicine in the central nervous system and the progress that is being made to solve these problems. In the twenty years since the adult brain was discovered to have an endogenous regenerative capacity, much basic research has been done to elucidate mechanisms controlling proliferation and cellular identity; how stem cells may be directed into neuronal lineages; genetic, pharmacological, and behavioral interventions that modulate neurogenic activity; and the exact nature of limitations to regeneration in the adult, aged, diseased and injured CNS. These findings should prove valuable in designing realistic clinical strategies to improve the prospects of stem cell-based therapies. In this review, I discuss how basic research continues to play a critical role in identifying both barriers and potential routes to regenerative therapy in the CNS.
Effects of the fluoride on the central nervous system.
Valdez-Jiménez, L; Soria Fregozo, C; Miranda Beltrán, M L; Gutiérrez Coronado, O; Pérez Vega, M I
2011-06-01
Fluoride (F) is a toxic and reactive element, and exposure to it passes almost unnoticed, with the consumption of tea, fish, meat, fruits, etcetera and articles of common use such as: toothpaste additives; dental gels, non-stick pans and razor blades as Teflon. It has also been used with the intention of reducing the dental cares. Fluoride can accumulate in the body, and it has been shown that continuous exposure to it causes damaging effects on body tissues, particularly the nervous system directly without any previous physical malformations. Several clinical and experimental studies have reported that the F induces changes in cerebral morphology and biochemistry that affect the neurological development of individuals as well as cognitive processes, such as learning and memory. F can be toxic by ingesting one part per million (ppm), and the effects they are not immediate, as they can take 20 years or more to become evident. The prolonged ingestion of F may cause significant damage to health and particularly to the nervous system. Therefore, it is important to be aware of this serious problem and avoid the use of toothpaste and items that contain F, particularly in children as they are more susceptible to the toxic effects of F. Copyright © 2010 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Testosterone Plus Finasteride Treatment After Spinal Cord Injury
2018-05-16
Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male
Circulatory response and autonomic nervous activity during gum chewing.
Hasegawa, Yoko; Sakagami, Joe; Ono, Takahiro; Hori, Kazuhiro; Zhang, Min; Maeda, Yoshinobu
2009-08-01
Mastication has been proven to enhance the systemic circulation, with circulatory responses seeming to be largely regulated by autonomic nervous activity via a more complex regulatory system than those of other activities. However, few studies have examined the relationships between changes in autonomic nervous activity and the systemic circulation that are induced by masticatory movement. We investigated changes in the systemic circulation and autonomic nervous activity during gum chewing to clarify the influence of mastication. Electrocardiograms, arterial blood pressure, and masseter electromyograms were taken while chewing gum continuously as indicators of systemic circulation in 10 healthy subjects with normal dentition. Cardiac sympathetic activity and vagus nervous activity, as well as vasomotor sympathetic nervous activity, were evaluated by fluctuation analysis of heart rate and blood pressure. Repeated analysis of variance and multiple comparisons were performed to determine chronological changes in each indicator during gum chewing. Gum chewing increased the heart rate and the mean arterial pressure. Although cardiac sympathetic activity and vagus nervous activity showed significant changes, vasomotor sympathetic nervous activity did not. These results suggest that changes in the autonomic nervous activity of the heart are mainly involved in the enhancement of systemic circulation with gum chewing. This explains some characteristics of autonomic nervous regulation in masticatory movement.
ERIC Educational Resources Information Center
Heckel, Leila; Clarke, Adam; Barry, Robert; McCarthy, Rory; Selikowitz, Mark
2009-01-01
It is generally accepted that Attention-Deficit/Hyperactivity Disorder (ADHD) results from a dysfunction of the central nervous system, which has led to a commonly held belief that environmental factors play little role in the behavioural problems of children identified as having ADHD. Therefore, the two studies reported in this article…
Renovate Right: Important Lead Hazard Information for Families, Child Care Providers and Schools
ERIC Educational Resources Information Center
US Environmental Protection Agency, 2008
2008-01-01
Lead can affect children's brains and developing nervous systems, causing reduced IQ, learning disabilities, and behavioral problems. Lead is also harmful to adults. Lead in dust is the most common way people are exposed to lead. People can also get lead in their bodies from lead in soil or paint chips. Lead dust is often invisible. Lead-based…
NASA Technical Reports Server (NTRS)
Sekiguchi, Chiharu
1993-01-01
In addition to health monitoring of the Japanese Payload Specialists (PS) during the flight, this investigation also focuses on the changes of cardiovascular hemodynamics during flight which will be conducted under the science collaboration with the Lower Body Negative Pressure (LBNP) Experiment of NASA. For the Japanese, this is an opportunity to examine firsthand the effects of microgravity of human physiology. We are particularly interested in the adaption process and how it relates to space motion sickness and cardiovascular deconditioning. By comparing data from our own experiment to data collected by others, we hope to understand the processes involved and find ways to avoid these problems for future Japanese astronauts onboard Space Station Freedom and other Japanese space ventures. The primary objective of this experiment is to monitor the health condition of Japanese Payload Specialists to maintain a good health status during and after space flight. The second purpose is to investigate the autonomic nervous system's response to space motion sickness. To achieve this, the function of the autonomic nervous system will be monitored using non-invasive techniques. Data obtained will be employed to evaluate the role of autonomic nervous system in space motion sickness and to predict susceptibility to space motion sickness. The third objective is evaluation of the adaption process of the cardiovascular system to microgravity. By observation of the hemodynamics using an echocardiogram we will gain insight on cardiovascular deconditioning. The last objective is to create a data base for use in the health care of Japanese astronauts by obtaining control data in experiment L-O in the SL-J mission.
Gastrointestinal and nutritional problems in neurologically impaired children.
Quitadamo, Paolo; Thapar, Nikhil; Staiano, Annamaria; Borrelli, Osvaldo
2016-11-01
The current increasing survival of children with severe central nervous system damage has created a major challenge for medical care. Gastrointestinal and nutritional problems in neurologically impaired children have been recently recognized as an integral part of their disease, often leading to growth failure and worsened quality of life for both children and caregivers. Nutritional support is essential for the optimal care of these children. Undernourished handicapped children might not respond properly to intercurrent diseases and suffer unnecessarily. On the other hand, restoring a normal nutritional status results in a better quality of life in many. The easiest and least invasive method to increase energy intake is to improve oral intake. However, oral intake can be maintained as long as there is no risk of aspiration, the child is growing well and the time required to feed the child remains within acceptable limits. When oral intake is unsafe, insufficient or too time consuming, enteral nutrition should be initiated. Damage to the developing central nervous system may result in significant dysfunction in the gastrointestinal tract and is reflected in impairment in oral-motor function, rumination, gastro-oesophageal reflux (GER), with or without aspiration, delayed gastric emptying and constipation. These problems can all potentially contribute to feeding difficulty in disabled children, carrying further challenging long-term management issues. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Lee, Soon Il; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon
2016-11-01
Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4-29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448.
Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Il Lee, Soon; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon
2016-01-01
Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4–29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448. PMID:27713132
Gengo, F M; Gabos, C
1988-07-01
The most common mild side effects occurring with use of beta-blockers, thiazide diuretics, and angiotensin-converting enzyme inhibitors for blood pressure control are central nervous system symptoms, specifically lethargy, sedation, and fatigue. These symptoms affect 5% to 10% of patients taking these drugs. The mechanism by which beta-blockers may induce central nervous system effects is uncertain. Relative lipophilicity as a factor affecting penetrance of the blood-brain barrier has not proved to be a reliable predictor of whether the drug will cause such disturbances. Comparisons of atenolol (hydrophilic) and metoprolol (lipophilic) have shown no differences between these drugs with respect to side effects of the central nervous system. The incidence of central nervous system effects with angiotensin-converting enzyme inhibitors is similar to that for most beta-blockers. The precise role of the angiotensin-converting enzyme in the central nervous system is not well defined. Most thiazide diuretics are not associated with major complications of the central nervous system, although electrolyte imbalance may occasionally lead to complaints of neurologic symptoms. Because the incidence of central nervous system effects with these three classes of drugs is so low, concern for the side effects of the central nervous system is not a prime consideration in the choice of an initial antihypertensive agent.
2013-05-01
Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Extra-adrenal Paraganglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma
Shumskikh, D S; Rakhmanov, R S; Orlov, A L
2015-01-01
There was developed the PC software, which demonstrates the type of nervous system, allows us to differentiate people according to the empirical coefficient within groups with the same type of nervous system, provides information on the severity of the asymmetry of the hemispheres of the brain and shows the results of performance of the work It does not require additional calculations. With its use there were examined 1 and 2 courses students of the institution. Ehpyky was performed the comparative analysis of the progress of students with different types of nervous system. The academic performance in the examinees with a strong type of nervous system was significantly higher than in those with a weak type. In order to improve professional training the assessment of the type of the nervous system can be used in the educational process for the identification and correction of students with a weak nervous system.
Opioids in Pregnancy and Neonatal Abstinence Syndrome
Stover, Megan W.; Davis, Jonathan M.
2015-01-01
Opiate use in pregnancy has increased dramatically over the past decade and now represents a major public health problem. More women are using prescription opioids, illegal opioids, and opioid substitution therapy. These drugs are associated with numerous obstetrical complications including intrauterine growth restriction, placental abruption, preterm delivery, oligohydramnios, stillbirth, and maternal death. Neonatal complications are also significant, such as an increased risk of mortality as well as neonatal abstinence syndrome (NAS). NAS is a serious and highly variable condition characterized by central nervous system hyperirritability and autonomic nervous system dysfunction. The present review seeks to define current practices regarding the management of opiate dependence in pregnancy and care of the neonate with prenatal opiate exposure. Since genetic factors appear to be associated with the incidence and severity of NAS, opportunities for “personalized genomic medicine” and unique therapeutic interventions could be developed in the future. PMID:26452318
Tallberg, Thomas; Dabek, Jan; Hallamaa, Raija; Atroshi, Faik
2011-01-01
The central role performed by billions of vital central nervous system (CNS) lipids "lipidomics" in medical physiology is usually overlooked. A metabolic deficiency embracing these vital lipids can form the aetiology for a variety of diseases. CNS lipids regulate embryogenesis, cell induction, mental balance by preventing autism spectrum disorders, depression, burn-out syndromes like posttraumatic stress disease PTSD, by guarding normal immunity, treating sterile inflammatory diatheses with a titanium containing lymphopoietic CNS lipid component. The propaganda driving for unphysiological fat-free diets is dangerous and can cause serious health problems for a whole generation. This article presents a broad list of various mental and motor bodily functions of which the healthy function depends on these vital CNS lipids. A rigorous fat-free diet can provoke these metabolic lipid deficiencies but they can fortunately be compensated by dietary supplementation, but not by pharmacologic treatment.
The pathogenesis of Hirschsprung's disease-associated enterocolitis.
Austin, Kelly Miller
2012-11-01
Hirschsprung's disease-associated enterocolitis (HAEC) remains the most life-threatening complication in Hirschsprung disease (HD) patients. The pathogenesis of HAEC has not been determined and many hypotheses regarding the etiology of HAEC have been proposed. These include a possible causal relationship between the abnormal enteric nervous system development in HD and the development of enterocolitis. Based on the complex genetic causes of HD that have been discovered and the resultant heterogeneous group of patients that exists, the causes of HAEC are likely multiple. New insights regarding the relationship of the role of the enteric nervous system and its interaction between intestinal barrier function, innate host immunity, and commensal microflora have been discovered, which may shed light on this perplexing problem. This review presents current known risk factors of HAEC and the proposed theories and supporting evidence for the potential etiologies of HAEC. Copyright © 2012. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Gordon, Tessa; Gordon, Karen
2010-01-01
Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…
The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.
Takada, Shigeki; Hojo, Masato; Takebe, Noriyoshi; Tanigaki, Kenji; Miyamoto, Susumu
2018-06-07
Hemangioblastomas (HBs) are benign vascular tumors of the central nervous system and histologically contain abundant microvessels. Therefore, they clinically exhibit vascular malformation-like characteristics. It has been described that endothelial-to-mesenchymal transition (EndMT) contributes to the pathogenesis of cerebral cavernous malformations. However, it remains unknown whether EndMT contributes to the pathogenesis of central nervous system HBs. The aim of our study was to investigate whether EndMT occurs in central nervous system HBs. Ten central nervous system HBs were immunohistochemically investigated. CD31 (an endothelial marker) and EndMT markers, such as α-smooth muscle actin (a mesenchymal marker) and CD44 (a mesenchymal stem cell marker), were expressed in the endothelial layer of microvessels in all cases. These findings suggest that endothelial cells (ECs) of microvessels in central nervous system HBs have acquired mesenchymal and stem-cell-like characteristics and undergone EndMT. In all cases, both ephrin-B2 and EphB4, which are not detected in adult normal brain vessels, were expressed in the endothelial layer of microvessels. These data suggest that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. This is the first report showing the possibility that EndMT contributes to the pathogenesis of central nervous system HBs. It is likely that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. EndMT is expected to be a new therapeutic target in central nervous system HBs. Copyright © 2018 Elsevier Inc. All rights reserved.
Stages of Childhood Soft Tissue Sarcoma
... lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...
Treatment Options for Childhood Soft Tissue Sarcoma
... lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...
Biomechanics as a window into the neural control of movement
2016-01-01
Abstract Biomechanics and motor control are discussed as parts of a more general science, physics of living systems. Major problems of biomechanics deal with exact definition of variables and their experimental measurement. In motor control, major problems are associated with formulating currently unknown laws of nature specific for movements by biological objects. Mechanics-based hypotheses in motor control, such as those originating from notions of a generalized motor program and internal models, are non-physical. The famous problem of motor redundancy is wrongly formulated; it has to be replaced by the principle of abundance, which does not pose computational problems for the central nervous system. Biomechanical methods play a central role in motor control studies. This is illustrated with studies with the reconstruction of hypothetical control variables and those exploring motor synergies within the framework of the uncontrolled manifold hypothesis. Biomechanics and motor control have to merge into physics of living systems, and the earlier this process starts the better. PMID:28149390
[Difficulties with diagnosis of fibromyalgia: case report].
Atarowska, Magdalena; Samborski, Włodzimierz
2006-01-01
We present a case of a 33-year-old woman with nonspecific systemic symptoms (fatigue, weakness), widespread pains, sleep disorders, morning stiffness, accompanied by symptoms from the autonomic nervous system (chest pain, digestive tract disorders, hyperesthesia of the skin, dizziness, paresthesia with a feeling of coldness in hands and feet, excessive sweating, breath problems, palpitations). The diagnostic process was difficult and it took a long time to establish the diagnosis partly because of problems in cooperating with this patient. During several years, the woman was hospitalized at several specialist departments, underwent many consultations, laboratory tests, and imaging studies. Finally, fibromyalgia was diagnosed. Treatment was implemented with good results improving the quality of life of this patient.
A history of the autonomic nervous system: part II: from Reil to the modern era.
Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane
2016-12-01
The history of the study of the autonomic nervous system is rich. At the beginning of the nineteenth century, scientists were beginning to more firmly grasp the reality of this part of the human nervous system. The evolution of our understanding of the autonomic nervous system has a rich history. Our current understanding is based on centuries of research and trial and error.
Evolution of eumetazoan nervous systems: insights from cnidarians.
Kelava, Iva; Rentzsch, Fabian; Technau, Ulrich
2015-12-19
Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system-in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution. © 2015 The Authors.
ERIC Educational Resources Information Center
Reichurdt, Konrad W.; Wilson, John A. R.
This study was undertaken to measure emotional expression as mediated by the automatic nervous system during reading and during other tasks related to school work. Subjects for this research were eight normal readers, reading above the 46th percentile on the Davis Reading Test Form 1-A, used as a control group and sixteen abnormal readers drawn…
75 FR 69005 - Flumioxazin; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
... reproduction studies indicated an effect on the nervous systems. Based on the lack of evidence of... flumioxazin does not directly impact the nervous system or directly target the immune system. The Agency does... to indicate that flumioxazin targets the nervous system or the immune system. Further, EPA has...
[Psychophysiological aspects of the problem of narcotic dependency].
Tursunkhodzhaev, M Kh; Tursunkhodzhaeva, L A
2002-01-01
An attempt has been made at analyzing mechanisms of formation of addiction to narcotics from the standpoint of a systemic approach to a functional organization of psychic activity. A model is proposed of the pathological functional system as the basis of narcodependence, which combines processes of two adjoining levels--those of psychic activity and of higher nervous activity. It is suggested that pathological hyperactivity of the functional structure maintaining the need for a change in the emotional state might be the basis of addiction to narcotic drugs.
Perspectives on the neuroscience of cognition and consciousness.
Werner, Gerhard
2007-01-01
The origin and current use of the concepts of computation, representation and information in Neuroscience are examined and conceptual flaws are identified which vitiate their usefulness for addressing the problem of the neural basis of Cognition and Consciousness. In contrast, a convergence of views is presented to support the characterization of the Nervous System as a complex dynamical system operating in a metastable regime, and capable of evolving to configurations and transitions in phase space with potential relevance for Cognition and Consciousness.
Treatment Option Overview (Childhood Soft Tissue Sarcoma)
... nearby lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... therapy , and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...
... will include a detailed examination of the nervous system and muscle function. In most cases, a neurologist (specialist in ... require ongoing care and support. Alternative Names Decreased muscle tone; Floppy infant ... Central nervous system and peripheral nervous system References Burnette WB. Hypotonic ( ...
... the autonomic nervous system. This is the part of the nervous system that is not under your control. Sweating is ... Skin layers References Chelimsky T, Chelimsky G. Disorders of the autonomic nervous system. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...
A visually guided collision warning system with a neuromorphic architecture.
Okuno, Hirotsugu; Yagi, Tetsuya
2008-12-01
We have designed a visually guided collision warning system with a neuromorphic architecture, employing an algorithm inspired by the visual nervous system of locusts. The system was implemented with mixed analog-digital integrated circuits consisting of an analog resistive network and field-programmable gate array (FPGA) circuits. The resistive network processes the interaction between the laterally spreading excitatory and inhibitory signals instantaneously, which is essential for real-time computation of collision avoidance with a low power consumption and a compact hardware. The system responded selectively to approaching objects of simulated movie images at close range. The system was, however, confronted with serious noise problems due to the vibratory ego-motion, when it was installed in a mobile miniature car. To overcome this problem, we developed the algorithm, which is also installable in FPGA circuits, in order for the system to respond robustly during the ego-motion.
Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F
2014-03-01
We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.
Akaeda, H; Nagai, K; Okuda, Y; Shinoto, M; Okuda, H
1981-06-01
In usual medical consultation, we have been met a lot of female patients suffering from disturbances of autonomic nervous system such as headache, shoulder-ache and so on. Experiments were designed to elucidate whether or not these disturbances of autonomic nervous system were induced by inflammation and accelerated by stimulant diets. Functions of autonomic nervous system were examined by lipolysis in rat epididymal adipose tissue which was partly controlled by sympathetic nervous system. It was found that free fatty acid release from the epididymal adipose tissue was considerably elevated by inflammation which was formed in abdominal wall or in abdominal cavity or oral administration of stimulant diets such as red pepper and white pepper, and that such elevation of lipolysis was significantly reduced by resection of the autonomic nerve. These results indicated that the inflammation and the stimulant diets induced excitement of sympathetic nerve which controlled the epididymal adipose tissue. Experiments were now in progress to clarify relationship between such excitement of sympathetic nervous system induced by the inflammation or by the stimulant diet and irregular complaints due to disturbances of autonomic nervous system.
Kradin, R L
1995-01-01
In this paper, I have briefly explored metaphors shared by the immune and nervous systems and shown that this exercise can lead to the elucidation of common principles of organization, as well as to predictions concerning how the immune system functions. Metaphor itself undoubtedly reflects the way in which we categorize and retrieve information 44], so it is not surprising that the deep processes of language tend to sample information from related data categories. Although the nervous and immune systems are obviously not the same and metaphors are indeed just that, my primary goal has been to suggest that by virtue of their having evolved in parallel over millions of years, the nervous and immune systems currently use the same archetypal principles and strategies to address related challenges in information processing and retrieval. Ultimately, nature is conservative. One need only look at a tree, a river, the airways, or the vascular bed in order to see how a fractal pattern of repetitive dichotomous branching has been used by each, in order to optimize the transport of fluids over large distances [45]. While each system has had to adopt different materials in order to solve the problem, the shape of their solutions is remarkably alike. In the immune and nervous systems, the elements used to produce optimal functional responses are also quite different, but again the solutions have been achieved by comparable strategies. I am certain that these two great systems of information processing, each responding with vastly different kinetics, will prove to be far more integrally interdependent than has been previously recognized. For example, should a swift response by the immune system be required in an overwhelming invasion by microbial pathogens, the immune system may be able to cooperate with the rapidly reacting nervous system to rid the host of the invaders. In this regard, we have shown that the beta-adrenergic hormone epinephrine rapidly increases the traffic of memory T-cells to mucosal sites, presumably representing an immune component of the fight-or-flight response [46]. Neural evolution appears to have as its goal the development of more efficient information processing systems that lead to higher levels of consciousness. However, in modern times, technologic advances in information processing have rapidly outstripped the slower adaptations that can be made by evolution. In order to satisfy his compulsive quest for information, man has recently developed and recruited the aid of computers.(ABSTRACT TRUNCATED AT 400 WORDS)
Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring
2016-10-01
AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL INVESTIGATOR...Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 14-1-0586 5c. PROGRAM ELEMENT...cavitations that are not spontaneously repaired. Early after injury, blood enters the central nervous system (CNS) and directly kills brain cells but also
Immunostaining to visualize murine enteric nervous system development.
Barlow-Anacker, Amanda J; Erickson, Christopher S; Epstein, Miles L; Gosain, Ankush
2015-04-29
The enteric nervous system is formed by neural crest cells that proliferate, migrate and colonize the gut. Following colonization, neural crest cells must then differentiate into neurons with markers specific for their neurotransmitter phenotype. Cholinergic neurons, a major neurotransmitter phenotype in the enteric nervous system, are identified by staining for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Historical efforts to visualize cholinergic neurons have been hampered by antibodies with differing specificities to central nervous system versus peripheral nervous system ChAT. We and others have overcome this limitation by using an antibody against placental ChAT, which recognizes both central and peripheral ChAT, to successfully visualize embryonic enteric cholinergic neurons. Additionally, we have compared this antibody to genetic reporters for ChAT and shown that the antibody is more reliable during embryogenesis. This protocol describes a technique for dissecting, fixing and immunostaining of the murine embryonic gastrointestinal tract to visualize enteric nervous system neurotransmitter expression.
Mravec, Boris; Gidron, Yori; Kukanova, Barbara; Bizik, Jozef; Kiss, Alexander; Hulin, Ivan
2006-11-01
For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.
Govender, Thiresen; Choonara, Yahya E; Kumar, Pradeep; Bijukumar, Divya; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Pillay, Viness
2017-06-01
The complexity of the brain and the membranous blood-brain barrier (BBB) has proved to be a significant limitation to the systemic delivery of pharmaceuticals to the brain rendering them sub-therapeutic and ineffective in the treatment of neurological diseases. Apart from this, lack of innovation in product development to counteract the problem is also a major contributing factor to a poor therapeutic outcome. Various innovative strategies show potential in treating some of the neurological disorders; however, drug delivery remains the most popular. To attain therapeutic drug levels in the central nervous system, large, intolerable systemic doses are generally administered. The major factors responsible for the success maintenance therapy of neurological diseases included controlled and sustained release of neurotherapeutics, reduced frequency of administration, higher bioavailability, and patient compliances. Conventional oral or injectable formulations cannot satisfy all the requirements in many circumstances. This article reviews the therapeutic implantable polymeric and transdermal devices employed in an attempt to effectively achieve therapeutic quantities of drug across the BBB over a prolonged period, to improve patient disease prognosis.
Classical Neurotransmitters and their Significance within the Nervous System.
ERIC Educational Resources Information Center
Veca, A.; Dreisbach, J. H.
1988-01-01
Describes some of the chemical compounds involved in the nervous system and their roles in transmitting nerve signals. Discusses acetylcholine, dopamine, norepinephrine, serotonin, histamine, glycine, glutemate, and gamma-aminobutyric acid and their effects within the nervous system. (CW)
Complex Homology and the Evolution of Nervous Systems
Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.; Hofmann, Hans A.
2016-01-01
We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. PMID:26746806
The role of mTOR signalling in neurogenesis, insights from tuberous sclerosis complex.
Tee, Andrew R; Sampson, Julian R; Pal, Deb K; Bateman, Joseph M
2016-04-01
Understanding the development and function of the nervous system is one of the foremost aims of current biomedical research. The nervous system is generated during a relatively short period of intense neurogenesis that is orchestrated by a number of key molecular signalling pathways. Even subtle defects in the activity of these molecules can have serious repercussions resulting in neurological, neurodevelopmental and neurocognitive problems including epilepsy, intellectual disability and autism. Tuberous sclerosis complex (TSC) is a monogenic disease characterised by these problems and by the formation of benign tumours in multiple organs, including the brain. TSC is caused by mutations in the TSC1 or TSC2 gene leading to activation of the mechanistic target of rapamycin (mTOR) signalling pathway. A desire to understand the neurological manifestations of TSC has stimulated research into the role of the mTOR pathway in neurogenesis. In this review we describe TSC neurobiology and how the use of animal model systems has provided insights into the roles of mTOR signalling in neuronal differentiation and migration. Recent progress in this field has identified novel mTOR pathway components regulating neuronal differentiation. The roles of mTOR signalling and aberrant neurogenesis in epilepsy are also discussed. Continuing efforts to understand mTOR neurobiology will help to identify new therapeutic targets for TSC and other neurological diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smouha, Eric
2013-01-01
To present a framework for the diagnosis and treatment of inner ear disorders, with an emphasis on problems common to neuro-rehabilitation. Disorders of the inner ear can cause hearing loss, tinnitus, vertigo and imbalance. Hearing loss can be conductive, sensorineural, or mixed; conductive hearing loss arises from the ear canal or middle ear, while sensorineural hearing loss arises from the inner ear or auditory nerve. Vertigo is a hallucination of motion, and is the cardinal symptom of vestibular system disease. It should be differentiated from other causes of dizziness: gait imbalance, disequilibrium, lightheadedness (pre-syncope). Vertigo can be caused by problems in the inner ear or central nervous system. The diagnosis of inner ear disorders begins with a targeted physical examination. The initial work-up of hearing loss is made by audiometry, and vertigo by electronystagmography (ENG). Supplemental tests and MRI are obtained when clinically indicated. The clinical pattern and duration of vertigo are the most important clinical features in the diagnosis. Common inner ear causes of vertigo include: vestibular neuritis (sudden, unilateral vestibular loss), Meniere's disease (episodic vertigo), benign paroxysmal positional vertigo (BPPV), and bilateral vestibular loss. Common central nervous system causes of vertigo include: post concussion syndrome, cervical vertigo, vestibular migraine, cerebrovascular disease, and acoustic neuroma. A basic knowledge of vestibular physiology, coupled with a understanding of common vestibular syndromes, will lead to correct diagnosis and treatment in most cases.
Peptide-gated ion channels and the simple nervous system of Hydra.
Gründer, Stefan; Assmann, Marc
2015-02-15
Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses. © 2015. Published by The Company of Biologists Ltd.
Learning and Memory... and the Immune System
ERIC Educational Resources Information Center
Marin, Ioana; Kipnis, Jonathan
2013-01-01
The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…
NASA Astrophysics Data System (ADS)
Petrushin, Alexey; Ferrara, Lorenzo; Blau, Axel
2016-12-01
Objective. In light of recent progress in mapping neural function to behavior, we briefly and selectively review past and present endeavors to reveal and reconstruct nervous system function in Caenorhabditis elegans through simulation. Approach. Rather than presenting an all-encompassing review on the mathematical modeling of C. elegans, this contribution collects snapshots of pathfinding key works and emerging technologies that recent single- and multi-center simulation initiatives are building on. We thereby point out a few general limitations and problems that these undertakings are faced with and discuss how these may be addressed and overcome. Main results. Lessons learned from past and current computational approaches to deciphering and reconstructing information flow in the C. elegans nervous system corroborate the need of refining neural response models and linking them to intra- and extra-environmental interactions to better reflect and understand the actual biological, biochemical and biophysical events that lead to behavior. Together with single-center research efforts, the Si elegans and OpenWorm projects aim at providing the required, in some cases complementary tools for different hardware architectures to support advancement into this direction. Significance. Despite its seeming simplicity, the nervous system of the hermaphroditic nematode C. elegans with just 302 neurons gives rise to a rich behavioral repertoire. Besides controlling vital functions (feeding, defecation, reproduction), it encodes different stimuli-induced as well as autonomous locomotion modalities (crawling, swimming and jumping). For this dichotomy between system simplicity and behavioral complexity, C. elegans has challenged neurobiologists and computational scientists alike. Understanding the underlying mechanisms that lead to a context-modulated functionality of individual neurons would not only advance our knowledge on nervous system function and its failure in pathological states, but have directly exploitable benefits for robotics and the engineering of brain-mimetic computational architectures that are orthogonal to current von-Neumann-type machines.
Harsh discipline and behavior problems: the moderating effects of cortisol and alpha-amylase.
Chen, Frances R; Raine, Adrian; Rudo-Hutt, Anna S; Glenn, Andrea L; Soyfer, Liana; Granger, Douglas A
2015-01-01
Numerous studies link harsh discipline to adjustment problems in youth, yet not all individuals exposed to harsh discipline develop behavior problems. Contemporary theory suggests that this relationship could be moderated by individual differences in environmentally sensitive biological systems. This study investigated whether the interaction between hypothalamic-pituitary-adrenal (HPA) activity and autonomic nervous system (ANS) arousal moderated the link between harsh discipline and behavior problems. Three saliva samples were collected on a single day from 425 inner city youth (50% male, age 11-12 years, 80% African American) and were later assayed for cortisol (HPA) and alpha-amylase (ANS). Problem behavior was assessed by self- and parent-report using the Child Behavior Checklist. Youth also reported the level of harsh discipline that they experienced. Harsh discipline was positively associated with externalizing and internalizing problems only when there were asymmetrical profiles of HPA activity and ANS arousal. This pattern was evident for boys but not girls. Findings are discussed in relation to prevailing theories suggesting that biological susceptibility translates adversity into risk for behavior problems. Copyright © 2014 Elsevier B.V. All rights reserved.
Spaceflight-induced neuroplasticity in humans as measured by MRI: what do we know so far?
Van Ombergen, Angelique; Laureys, Steven; Sunaert, Stefan; Tomilovskaya, Elena; Parizel, Paul M; Wuyts, Floris L
2017-01-01
Space travel poses an enormous challenge on the human body; microgravity, ionizing radiation, absence of circadian rhythm, confinement and isolation are just some of the features associated with it. Obviously, all of the latter can have an impact on human physiology and even induce detrimental changes. Some organ systems have been studied thoroughly under space conditions, however, not much is known on the functional and morphological effects of spaceflight on the human central nervous system. Previous studies have already shown that central nervous system changes occur during and after spaceflight in the form of neurovestibular problems, alterations in cognitive function and sensory perception, cephalic fluid shifts and psychological disturbances. However, little is known about the underlying neural substrates. In this review, we discuss the current limited knowledge on neuroplastic changes in the human central nervous system associated with spaceflight (actual or simulated) as measured by magnetic resonance imaging-based techniques. Furthermore, we discuss these findings as well as their future perspectives, since this can encourage future research into this delicate and intriguing aspect of spaceflight. Currently, the literature suffers from heterogeneous experimental set-ups and therefore, the lack of comparability of findings among studies. However, the cerebellum, cortical sensorimotor and somatosensory areas and vestibular-related pathways seem to be involved across different studies, suggesting that these brain regions are most affected by (simulated) spaceflight. Extending this knowledge is crucial, especially with the eye on long-duration interplanetary missions (e.g. Mars) and space tourism.
Central and peripheral nervous systems: master controllers in cancer metastasis.
Shi, Ming; Liu, Dan; Yang, Zhengyan; Guo, Ning
2013-12-01
Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
76 FR 5711 - Bispyribac-sodium; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
...- sodium has shown no indications of central or peripheral nervous system toxicity in any study and does not appear to be structurally related to any other chemical that causes adverse nervous system effects... the nervous system is a target for [[Page 5715
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
2017-08-30
Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors
Natural History Study of Children With Metachromatic Leukodystrophy
2016-04-19
Lipid Metabolism Disorders; Metachromatic Leukodystrophy (MLD); Nervous System Diseases; Brain Diseases; Central Nervous System Diseases; Demyelinating Diseases; Metabolism, Inborn Errors; Genetic Diseases, Inborn; Sphingolipidoses; Hereditary Central Nervous System Demyelinating Diseases; Metabolic Inborn Brain Diseases; Lysosomal Storage Diseases; Metabolic Diseases; Sulfatidosis
Nutritional and metabolic diseases involving the nervous system.
Kopcha, M
1987-03-01
This article will discuss eight diseases that alter normal nervous system function: hypovitaminosis A, water deprivation/salt toxicity, ammonia toxicosis, hypomagnesemia, hypocalcemia, nervous ketosis, hepatoencephalopathy, and rumen metabolic acidosis.
The glia of the adult Drosophila nervous system
Kremer, Malte C.; Jung, Christophe; Batelli, Sara; Rubin, Gerald M.
2017-01-01
Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017 GLIA 2017;65:606–638 PMID:28133822
Kujawska-Danecka, Hanna; Masiak, Anna; Smoleńska, Zaneta; Zdrojewski, Zbigniew
2011-01-01
The peripheral nervous system is usually involved in the majority of systemic connective tissue diseases, particularly in systemic lupus erythematosus, Sjögren's syndrome, vasculitis and systemic sclerosis. The pathogenesis of lesions in the peripheral nervous system associated with the autoimmune process is complex and it appears that two mechanisms, immunological and ischemic, are of greatest importance. Structures of the nervous system may be damaged by several autoantibodies (e.g. antineuronal, anti-nerve growth factor, anti-neurotrophins), by cytotoxic effects ofproinflammatory cytokines and by activated cells of the immune system. Local ischemia and hypoxia of neurons caused by inflammation of vasa nervosum represents the second significant mechanism leading to damage of nerve fibres in the peripheral nervous system. We present 3 cases with involvement of the peripheral nervous system as a dominant feature in the clinical picture of systemic connective tissue diseases. Clinical conditions in which the peripheral nervous system is involved include peripheral sensory and sensorimotor polyneuropathy, mononeuropathies, cranial neuropathies, acute inflammatory demyelinating polyneuropathy (Guillian-Barré syndrome), chronic inflammatory demyelinating polyneuropathy, plexopathy, myasthenia gravis, and dysfunctions of the autonomic nervous system. The diagnosis is based on clinical symptoms reported by the patient and disclosed during neurologic examination. The importance of electrophysiologic tests is advocated. Selection of treatment depends on the patient's clinical condition, as well as on the clinical form and type of disease. Treatment relies principally on glucocorticosteroids, intravenous immunoglobulins, cyclophosphamide, and other immunosuppressive drugs. Plasmapheresis and rituximab are administered in severe cases. Rehabilitation of the patient appears to be an important element of therapy. Cases with neurologic symptoms as the first and often the sole manifestation of systemic connective tissue disease are particularly problematic requiring a multidimensional approach; their process of diagnosis and treatment is usually long.
Nervous System Complexity Baffles Scientists.
ERIC Educational Resources Information Center
Fox, Jeffrey L.
1982-01-01
New research findings about how nerve cells transmit signals are forcing researchers to overhaul their simplistic ideas about the nervous system. Topics highlighted include the multiple role of peptides in the nervous system, receptor molecules, and molecules that form ion channels within membranes. (Author/JN)
75 FR 4571 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-28
... peripheral nervous systems. Researchers at the National Cancer Institute (``NCI'')-Frederick investigating genetic influences on cancer susceptibility of the nervous system have synthesized novel analogues of.... Applications: Therapies for tumors associated with NF1 (including brain and peripheral nervous system tumors...
... Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 Increased between 2005 and 2011 Central nervous system (CNS) stimulants include prescription drugs, like those used ...
Strategies for Enhanced Drug Delivery to the Central Nervous System
Dwibhashyam, V. S. N. M.; Nagappa, A. N.
2008-01-01
Treating central nervous system diseases is very challenging because of the presence of a variety of formidable obstacles that impede drug delivery. Physiological barriers like the blood-brain barrier and blood-cerebrospinal fluid barrier as well as various efflux transporter proteins make the entry of drugs into the central nervous system very difficult. The present review provides a brief account of the blood brain barrier, the P-glycoprotein efflux and various strategies for enhancing drug delivery to the central nervous system. PMID:20046703
ERIC Educational Resources Information Center
Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.
Designed to accompany the student text on the nervous system, this manual presents laboratory activities dealing with concepts presented in the text. Thirty-seven activities are described. Four supplementary activities dealing with concepts in electricity are also included. Laboratory activities are divided into several parts, each part covering a…
ERIC Educational Resources Information Center
Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.
This volume contains the lesson plans and appropriate teacher background material for a 37-lesson sequence on the nervous system in health and medicine. Additional material is provided for supplementary lessons on concepts of electricity. Associated material, contained in separate volumes, include a student text and a student laboratory manual.…
Pharmacotherapy for Adults with Tumors of the Central Nervous System
Schor, Nina F.
2009-01-01
Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel approaches aimed at overcoming these challenges. PMID:19091301
Onchocerciasis-related epilepsy? Prospects at a time of uncertainty.
Marin, Benoît; Boussinesq, Michel; Druet-Cabanac, Michel; Kamgno, Joseph; Bouteille, Bernard; Preux, Pierre-Marie
2006-01-01
Epilepsy and onchocerciasis (river blindness) constitute serious public health problems in several tropical countries. There are four main mechanisms that might explain a relationship between these two diseases: (i) the presence of Onchocerca volvulus in the central nervous system; (ii) the pathogenicity of various O. volvulus strains; (iii) immunological mechanisms involving cross-reactive immunization or cytokine production during infection; and (iv) the triggering role of insomnia due to itching.
Psilocybin mushroom (Psilocybe semilanceata) intoxication with myocardial infarction.
Borowiak, K S; Ciechanowski, K; Waloszczyk, P
1998-01-01
Intentional intoxication with natural hallucinogenic substances such as hallucinogenic mushrooms continues to be a major problem in the US and Europe, particularly in the harbor complex of northwest Poland (Pomerania). A case is described of Psilocybe intoxication in an 18-year-old man resulting in Wolff-Parkinson-White syndrome, arrhythmia, and myocardial infarction. The indole concentrations of hallucinogenic mushrooms may predict the risk for adverse central nervous system and cardiac toxicity.
Pharmacological treatment of ADHD and the short and long term effects on sleep.
Huang, Yu-Shu; Tsai, Ming-Horng; Guilleminault, Christian
2011-01-01
There is growing research focusing on the sleep problems of children with attention-deficit/hyperactivity disorder (ADHD) in recent years. High incidence of sleep disorders in children with ADHD may be associated with a substantial impact on their quality of life and exacerbation of ADHD symptoms. The core symptoms of ADHD can be effectively treated by various medications, including methylphenidate (MPH), amphetamine, pemoline, and the newly FDA-approved extended-release α2 adrenergic agonists. However, most of them are known to affect patients' sleep because of their pharmacological actions on dopaminergic and/or noradrenergic release in the central nervous system. Previous studies have found increased incidence of insomnia and sleep disturbances in ADHD children treated with CNS (central nervous system) stimulants. In contrast, recent prospective, double-blind, placebo-controlled trials concluded that MPH, by objective polysomnographic or actigraphic measurements, did not cause significant sleep problems in children or adolescents with ADHD. Given the fact that sleep quality and core symptoms of ADHD are highly correlated, it is imperative that we understand the effects of ADHD medications on sleep while prescribing either CNS stimulants or non-CNS stimulants. Here we will concisely review the pharmacological treatments of ADHD, and provide the relevant data discussing their short- and long-term effects on sleep.
Hinnant, J Benjamin; Erath, Stephen A; Tu, Kelly M; El-Sheikh, Mona
2016-08-01
The present study examined two measures of sympathetic nervous system (SNS) activity as moderators of the indirect path from permissive parenting to deviant peer affiliations to delinquency among a community sample of adolescents. Participants included 252 adolescents (M = 15.79 years; 53 % boys; 66 % European American, 34 % African American). A multi-method design was employed to address the research questions. Two indicators of SNS reactivity, skin conductance level reactivity (SCLR) and cardiac pre-ejection period reactivity (PEPR) were examined. SNS activity was measured during a baseline period and a problem-solving task (star-tracing); reactivity was computed as the difference between the task and baseline periods. Adolescents reported on permissive parenting, deviant peer affiliations, externalizing behaviors, and substance use (alcohol, marijuana). Analyses revealed indirect effects between permissive parenting and delinquency via affiliation with deviant peers. Additionally, links between permissive parenting to affiliation with deviant peers and affiliation with deviant peers to delinquency was moderated by SNS reactivity. Less SNS reactivity (less PEPR and/or less SCLR) were risk factors for externalizing problems and alcohol use. Findings highlight the moderating role of SNS reactivity in parenting and peer pathways that may contribute to adolescent delinquency and point to possibilities of targeted interventions for vulnerable youth.
Hinnant, J. Benjamin; Erath, Stephen A.; Tu, Kelly M.; El-Sheikh, Mona
2015-01-01
The present study examined two measures of sympathetic nervous system (SNS) activity as moderators of the indirect path from permissive parenting to deviant peer affiliations to delinquency among a community sample of adolescents. Participants included 252 adolescents (M = 15.79 years; 53% boys; 66% European American, 34% African American). A multi-method design was employed to address the research questions. Two indicators of SNS reactivity, skin conductance level reactivity (SCLR) and cardiac pre-ejection period reactivity (PEPR) were examined. SNS activity was measured during a baseline period and a problem-solving task (star-tracing); reactivity was computed as the difference between the task and baseline periods. Adolescents reported on permissive parenting, deviant peer affiliations, externalizing behaviors, and substance use (alcohol, marijuana). Analyses revealed indirect effects between permissive parenting and delinquency via affiliation with deviant peers. Additionally, links between permissive parenting to affiliation with deviant peers and affiliation with deviant peers to delinquency was moderated by SNS reactivity. Less SNS reactivity (less PEPR and/or less SCLR) were risk factors for externalizing problems and alcohol use. Findings highlight the moderating role of SNS reactivity in parenting and peer pathways that may contribute to adolescent delinquency and point to possibilities of targeted interventions for vulnerable youth. PMID:26667026
Anteroposterior patterning in hemichordates and the origins of the chordate nervous system
NASA Technical Reports Server (NTRS)
Lowe, Christopher J.; Wu, Mike; Salic, Adrian; Evans, Louise; Lander, Eric; Stange-Thomann, Nicole; Gruber, Christian E.; Gerhart, John; Kirschner, Marc
2003-01-01
The chordate central nervous system has been hypothesized to originate from either a dorsal centralized, or a ventral centralized, or a noncentralized nervous system of a deuterostome ancestor. In an effort to resolve these issues, we examined the hemichordate Saccoglossus kowalevskii and studied the expression of orthologs of genes that are involved in patterning the chordate central nervous system. All 22 orthologs studied are expressed in the ectoderm in an anteroposterior arrangement nearly identical to that found in chordates. Domain topography is conserved between hemichordates and chordates despite the fact that hemichordates have a diffuse nerve net, whereas chordates have a centralized system. We propose that the deuterostome ancestor may have had a diffuse nervous system, which was later centralized during the evolution of the chordate lineage.
Complex Homology and the Evolution of Nervous Systems.
Liebeskind, Benjamin J; Hillis, David M; Zakon, Harold H; Hofmann, Hans A
2016-02-01
We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. Copyright © 2015. Published by Elsevier Ltd.
42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...
42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...
42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...
42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...
Code of Federal Regulations, 2011 CFR
2011-07-01
... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...
Code of Federal Regulations, 2013 CFR
2013-07-01
... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...
Code of Federal Regulations, 2010 CFR
2010-07-01
... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...
Code of Federal Regulations, 2014 CFR
2014-07-01
... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...
Code of Federal Regulations, 2012 CFR
2012-07-01
... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...
Binge drinking: Burden of liver disease and beyond
Llerena, Susana; Arias-Loste, María Teresa; Puente, Angela; Cabezas, Joaquín; Crespo, Javier; Fábrega, Emilio
2015-01-01
The consumption of alcoholic beverages is harmful to human health. In recent years, consumption patterns of alcoholic beverages have changed in our society, and binge drinking has generalized. It is considered to be a socio-sanitary problem with few known consequences in terms of individual and third-party social impacts (in the form of violence or traffic accidents) and its organic impact (affects the liver and other organs and systems, such as the nervous and cardiovascular systems) and represents an important financial burden due to its increasing economic impact. This review provides a global approach to binge drinking and emphasizes its epidemiological character, the effect of this type of consumption and the possible management of a problem with an increasing tendency in our society. PMID:26644814
Effects of Low-Level Blast Exposure on the Nervous System: Is There Really a Controversy?
Elder, Gregory A.; Stone, James R.; Ahlers, Stephen T.
2014-01-01
High-pressure blast waves can cause extensive CNS injury in human beings. However, in combat settings, such as Iraq and Afghanistan, lower level exposures associated with mild traumatic brain injury (mTBI) or subclinical exposure have been much more common. Yet controversy exists concerning what traits can be attributed to low-level blast, in large part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress disorder (PTSD). We describe how TBI is defined in human beings and the problems posed in using current definitions to recognize blast-related mTBI. We next consider the problem of applying definitions of human mTBI to animal models, in particular that TBI severity in human beings is defined in relation to alteration of consciousness at the time of injury, which typically cannot be assessed in animals. However, based on outcome assessments, a condition of “low-level” blast exposure can be defined in animals that likely approximates human mTBI or subclinical exposure. We review blast injury modeling in animals noting that inconsistencies in experimental approach have contributed to uncertainty over the effects of low-level blast. Yet, animal studies show that low-level blast pressure waves are transmitted to the brain. In brain, low-level blast exposures cause behavioral, biochemical, pathological, and physiological effects on the nervous system including the induction of PTSD-related behavioral traits in the absence of a psychological stressor. We review the relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical lowering of Abeta by blast, which along with other observations suggest that blast-related TBI is pathophysiologically distinct from non-blast TBI. Human neuroimaging studies show that blast-related mTBI is associated with a variety of chronic effects that are unlikely to be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level blast as having long-term effects on the nervous system. PMID:25566175
46 CFR Appendix C to Subpart C of... - Medical Surveillance Guidelines for Benzene
Code of Federal Regulations, 2014 CFR
2014-10-01
... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...
46 CFR Appendix C to Subpart C to... - Medical Surveillance Guidelines for Benzene
Code of Federal Regulations, 2011 CFR
2011-10-01
... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...
46 CFR Appendix C to Subpart C of... - Medical Surveillance Guidelines for Benzene
Code of Federal Regulations, 2013 CFR
2013-10-01
... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...
46 CFR Appendix C to Subpart C of... - Medical Surveillance Guidelines for Benzene
Code of Federal Regulations, 2012 CFR
2012-10-01
... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...
Extraversion, Neuroticism and Strength of the Nervous System
ERIC Educational Resources Information Center
Frigon, Jean-Yves
1976-01-01
The hypothesized identity of the dimensions of extraversion-introversion and strength of the nervous system was tested on four groups of nine subjects (neurotic extraverts, stable extraverts, neurotic introverts, stable introverts). Strength of the subjects' nervous system was estimated using the electroencephalographic (EEG) variant of extinction…
dos Reis Santos, Israel; Danaga, Aline Roberta; de Carvalho Aguiar, Isabella; Oliveira, Ezequiel Fernandes; Dias, Ismael Souza; Urbano, Jessica Julioti; Martins, Aline Almeida; Ferraz, Leonardo Macario; Fonsêca, Nina Teixeira; Fernandes, Virgilio; Fernandes, Vinicius Alves Thomaz; Lopes, Viviane Cristina Delgado; Leitão Filho, Fernando Sérgio Studart; Nacif, Sérgio Roberto; de Carvalho, Paulo de Tarso Camillo; Sampaio, Luciana Maria Malosá; Giannasi, Lílian Christiane; Romano, Salvatore; Insalaco, Giuseppe; Araujo, Ana Karina Fachini; Dellê, Humberto; Souza, Nadia Karina Guimarães; Giannella-Neto, Daniel; Oliveira, Luis Vicente Franco
2013-10-08
Chronic kidney disease (CKD) is one of the most serious public health problems. The increasing prevalence of CKD in developed and developing countries has led to a global epidemic. The hypothesis proposed is that patients undergoing dialysis would experience a marked negative influence on physiological variables of sleep and autonomic nervous system activity, compromising quality of life. A prospective, consecutive, double blind, randomized controlled clinical trial is proposed to address the effect of dialysis on sleep, pulmonary function, respiratory mechanics, upper airway collapsibility, autonomic nervous activity, depression, anxiety, stress and quality of life in patients with CKD. The measurement protocol will include body weight (kg); height (cm); body mass index calculated as weight/height(2); circumferences (cm) of the neck, waist, and hip; heart and respiratory rates; blood pressures; Mallampati index; tonsil index; heart rate variability; maximum ventilatory pressures; negative expiratory pressure test, and polysomnography (sleep study), as well as the administration of specific questionnaires addressing sleep apnea, excessive daytime sleepiness, depression, anxiety, stress, and quality of life. CKD is a major public health problem worldwide, and its incidence has increased in part by the increased life expectancy and increasing number of cases of diabetes mellitus and hypertension. Sleep disorders are common in patients with renal insufficiency. Our hypothesis is that the weather weight gain due to volume overload observed during interdialytic period will influence the degree of collapsibility of the upper airway due to narrowing and predispose to upper airway occlusion during sleep, and to investigate the negative influences of haemodialysis in the physiological variables of sleep, and autonomic nervous system, and respiratory mechanics and thereby compromise the quality of life of patients. The protocol for this study is registered with the Brazilian Registry of Clinical Trials (ReBEC RBR-7yhr4w and World Health Organization under Universal Trial Number UTN: U1111-1127-9390 [http://www.ensaiosclinicos.gov.br/rg/RBR-7yhr4w/]).
A neuromorphic network for generic multivariate data classification
Schmuker, Michael; Pfeil, Thomas; Nawrot, Martin Paul
2014-01-01
Computational neuroscience has uncovered a number of computational principles used by nervous systems. At the same time, neuromorphic hardware has matured to a state where fast silicon implementations of complex neural networks have become feasible. En route to future technical applications of neuromorphic computing the current challenge lies in the identification and implementation of functional brain algorithms. Taking inspiration from the olfactory system of insects, we constructed a spiking neural network for the classification of multivariate data, a common problem in signal and data analysis. In this model, real-valued multivariate data are converted into spike trains using “virtual receptors” (VRs). Their output is processed by lateral inhibition and drives a winner-take-all circuit that supports supervised learning. VRs are conveniently implemented in software, whereas the lateral inhibition and classification stages run on accelerated neuromorphic hardware. When trained and tested on real-world datasets, we find that the classification performance is on par with a naïve Bayes classifier. An analysis of the network dynamics shows that stable decisions in output neuron populations are reached within less than 100 ms of biological time, matching the time-to-decision reported for the insect nervous system. Through leveraging a population code, the network tolerates the variability of neuronal transfer functions and trial-to-trial variation that is inevitably present on the hardware system. Our work provides a proof of principle for the successful implementation of a functional spiking neural network on a configurable neuromorphic hardware system that can readily be applied to real-world computing problems. PMID:24469794
Effects of alcohol on the endocrine system.
Rachdaoui, Nadia; Sarkar, Dipak K
2013-09-01
Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. Copyright © 2013 Elsevier Inc. All rights reserved.
76 FR 18915 - Ethiprole; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... homeostasis and the developing nervous system in the young is not available. Based on a battery of... of the nervous system, the Agency is requiring a developmental thyroid toxicity study to assess for... nervous system, the Agency is requiring the developmental thyroid toxicity study in lieu of the DNT. iii...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... cancer; nervous system disease; reproductive or developmental dysfunction; non-malignant respiratory... nervous system cancers, stomach cancer, prostatic cancer and testicular cancer. The non-malignant diseases... and bladder cancer exists. G. Brain and Other Central Nervous System Cancers Of the 20 published...
75 FR 37301 - Exempt Chemical Mixtures Containing Gamma-Butyrolactone
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
... their central nervous system (CNS) depressant effect. An overdose from GBL or GHB may result in... the central nervous system that is substantially similar to or greater than the stimulant, depressant, or hallucinogenic effect on the central nervous system of a controlled substance in schedule I or II...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
..., Central Nervous System Research Unit (Currently Known as Neuroscience Research Unit), Global External... as Warner Lambert Company, Central Nervous System Research Unit, Global External Supply Department... Central Nervous System Research Unit was renamed the Neuroscience Research Unit. In order to ensure proper...
76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug... Committee: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee...
ERIC Educational Resources Information Center
El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin
2013-01-01
We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…
New, Novice or Nervous? The "Quick" Guide to the "No-Quick-Fix"
ERIC Educational Resources Information Center
Teaching History, 2016
2016-01-01
"Teaching History" presents "New, Novice or Nervous (NNN)" for those new to the published writings of history teachers. Each problem newcomers wrestle with is one other teachers have wrestled with too. Quick fixes do not exist. But in others' writing, there is something better: "conversations in which other history…
Mitochondria in the nervous system: From health to disease, part II.
Carrì, Maria Teresa; Polster, Brian M; Beart, Philip M
2018-04-10
In Part II of this Special Issue on "Mitochondria in the Nervous System: From Health to Disease", the editors bring together more reviews and original articles from researchers in the field of mitochondrial metabolism in the healthy and diseased nervous system. Subjects span from basic mitochondrial physiology to papers on mitochondrial dynamics and to those altered states of the nervous system that can be considered "mitopathologies". Finally, a few papers approach aspects of mitochondrial biology linked to the feasibility and validity of a mitochondrial therapy. Copyright © 2018. Published by Elsevier Ltd.
Diagnosis abnormalities of limb movement in disorders of the nervous system
NASA Astrophysics Data System (ADS)
Tymchik, Gregory S.; Skytsiouk, Volodymyr I.; Klotchko, Tatiana R.; Bezsmertna, Halyna; Wójcik, Waldemar; Luganskaya, Saule; Orazbekov, Zhassulan; Iskakova, Aigul
2017-08-01
The paper deals with important issues of diagnosis early signs of diseases of the nervous system, including Parkinson's disease and other specific diseases. Small quantities of violation trajectory of spatial movement of the extremities of human disease at the primary level as the most appropriate features are studied. In modern medical practice is very actual the control the emergence of diseases of the nervous system, including Parkinson's disease. In work a model limbs with six rotational kinematic pairs for diagnosis of early signs of diseases of the nervous system is considered. subject.
Chatterjee, Nivedita; Sinha, Sitabhra
2008-01-01
The nervous system of the nematode C. elegans provides a unique opportunity to understand how behavior ('mind') emerges from activity in the nervous system ('brain') of an organism. The hermaphrodite worm has only 302 neurons, all of whose connections (synaptic and gap junctional) are known. Recently, many of the functional circuits that make up its behavioral repertoire have begun to be identified. In this paper, we investigate the hierarchical structure of the nervous system through k-core decomposition and find it to be intimately related to the set of all known functional circuits. Our analysis also suggests a vital role for the lateral ganglion in processing information, providing an essential connection between the sensory and motor components of the C. elegans nervous system.
Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.
Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M
2016-06-13
Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.
Cantera, Rafael; Lüer, Karin; Rusten, Tor Erik; Barrio, Rosa; Kafatos, Fotis C; Technau, Gerhard M
2002-12-01
The gene spalt is expressed in the embryonic central nervous system of Drosophila melanogaster but its function in this tissue is still unknown. To investigate this question, we used a combination of techniques to analyse spalt mutant embryos. Electron microscopy showed that in the absence of spalt, the central nervous system cells are separated by enlarged extracellular spaces populated by membranous material at 60% of embryonic development. Surprisingly, the central nervous system from slightly older embryos (80% of development) exhibited almost wild-type morphology. An extensive survey by laser confocal microscopy revealed that the spalt mutant central nervous system has abnormal levels of particular cell adhesion and cytoskeletal proteins. Time-lapse analysis of neuronal differentiation in vitro, lineage analysis and transplantation experiments confirmed that the mutation causes cytoskeletal and adhesion defects. The data indicate that in the central nervous system, spalt operates within a regulatory pathway which influences the expression of the beta-catenin Armadillo, its ligand N-Cadherin, Notch, and the cell adhesion molecules Neuroglian, Fasciclin 2 and Fasciclin 3. Effects on the expression of these genes are persistent but many morphological aspects of the phenotype are transient, leading to the concept of sequential redundancy for stable organisation of the central nervous system.
Degenerative disease affecting the nervous system.
Eadie, M J
1974-03-01
The term "degenerative disease" is one which is rather widely used in relation to the nervous system and yet one which is rarely formally and carefully defined. The term appears to be applied to disorders of the nervous system which often occur in later life and which are of uncertain cause. In the Shorter Oxford Dictionary the word degeneration is defined as "a change of structure by which an organism, or an organ, assumes the form of a lower type". However this is not quite the sense in which the word is applied in human neuropathology, where it is conventional to restrict the use of the word to those organic disorders which are of uncertain or poorly understood cause and in which there is a deterioration or regression in the level of functioning of the nervous system. The concept of degenerative disorder is applied to other organs as well as to the brain, and as disease elsewhere in the body may affect the nervous system, it seems reasonable to include within the topic of degenerative disorder affecting the nervous system those conditions in which the nervous system is involved as a result of primary degenerations in other parts of the body. Copyright © 1974 Australian Physiotherapy Association. Published by . All rights reserved.
New tools for the analysis of glial cell biology in Drosophila.
Awasaki, Takeshi; Lee, Tzumin
2011-09-01
Because of its genetic, molecular, and behavioral tractability, Drosophila has emerged as a powerful model system for studying molecular and cellular mechanisms underlying the development and function of nervous systems. The Drosophila nervous system has fewer neurons and exhibits a lower glia:neuron ratio than is seen in vertebrate nervous systems. Despite the simplicity of the Drosophila nervous system, glial organization in flies is as sophisticated as it is in vertebrates. Furthermore, fly glial cells play vital roles in neural development and behavior. In addition, powerful genetic tools are continuously being created to explore cell function in vivo. In taking advantage of these features, the fly nervous system serves as an excellent model system to study general aspects of glial cell development and function in vivo. In this article, we review and discuss advanced genetic tools that are potentially useful for understanding glial cell biology in Drosophila. Copyright © 2011 Wiley-Liss, Inc.
Morales, Juan F; Montoto, Sebastian Scioli; Fagiolino, Pietro; Ruiz, Maria E
2017-01-01
The Blood-Brain Barrier (BBB) is a physical and biochemical barrier that restricts the entry of certain drugs to the Central Nervous System (CNS), while allowing the passage of others. The ability to predict the permeability of a given molecule through the BBB is a key aspect in CNS drug discovery and development, since neurotherapeutic agents with molecular targets in the CNS should be able to cross the BBB, whereas peripherally acting agents should not, to minimize the risk of CNS adverse effects. In this review we examine and discuss QSAR approaches and current availability of experimental data for the construction of BBB permeability predictive models, focusing on the modeling of the biorelevant parameter unbound partitioning coefficient (Kp,uu). Emphasis is made on two possible strategies to overcome the current limitations of in silico models: considering the prediction of brain penetration as a multifactorial problem, and increasing experimental datasets through accurate and standardized experimental techniques.
Janušonis, Skirmantas
2014-12-01
Altered serotonin (5-hydroxytryptamine, 5-HT) signaling has been implicated in some developmental abnormalities of autism spectrum disorder (ASD). However, the presumed role of 5-HT in ASD raises new questions in fundamental neuroscience. Specifically, it is not clear if the current piecemeal approach to 5-HT signaling in the mammalian body is effective and whether new conceptual approaches may be required. This review briefly discusses 5-HT production and circulation in the central nervous system and outside of it, especially with regard to ASD, and proposes a more encompassing approach that questions the utility of the "neurotransmitter" concept. It then introduces the idea of a generalized 5-HT packet that may offer insights into possible links between serotonergic varicosities and blood platelets. These approaches have theoretical significance, but they are also well positioned to advance our understanding of some long-standing problems in autism research. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.
The Effects of Different Factors on the Behavior of Neural Stem Cells
Huang, Lixiang
2017-01-01
The repair of central nervous system (CNS) injury has been a worldwide problem in the biomedical field. How to reduce the damage to the CNS and promote the reconstruction of the damaged nervous system structure and function recovery has always been the concern of nerve tissue engineering. Multiple differentiation potentials of neural stem cell (NSC) determine the application value for the repair of the CNS injury. Thus, how to regulate the behavior of NSCs becomes the key to treating the CNS injury. So far, a large number of researchers have devoted themselves to searching for a better way to regulate the behavior of NSCs. This paper summarizes the effects of different factors on the behavior of NSCs in the past 10 years, especially on the proliferation and differentiation of NSCs. The final purpose of this review is to provide a more detailed theoretical basis for the clinical repair of the CNS injury by nerve tissue engineering. PMID:29358957
NEONATAL ABSTINENCE SYNDROME: PHARMACOLOGIC STRATEGIES FOR THE MOTHER AND INFANT
Kraft, Walter K.; Stover, Megan W.; Davis, Jonathan M.
2015-01-01
Opioid use in pregnancy has increased dramatically over the past decade. Since prenatal opioid use is associated with numerous obstetrical and neonatal complications, this now has become a major public health problem. In particular, in utero opioid exposure can result in neonatal abstinence syndrome (NAS) which is a serious condition characterized by central nervous system hyperirritability and autonomic nervous system dysfunction. The present review seeks to define current practices regarding the approach to the pregnant mother and neonate with prenatal opiate exposure. Although the cornerstone of prenatal management of opioid dependence is opioid maintenance therapy, the ideal agent has yet to be definitively established. Pharmacologic management of NAS is also highly variable and may include an opioid, barbiturate, and/or α-agonist. Genetic factors appear to be associated with the incidence and severity of NAS. Establishing pharmacogenetic risk factors for the development of NAS has the potential for creating opportunities for “personalized genomic medicine” and novel, individualized therapeutic interventions. PMID:26791055
Katragkou, Aspasia; Antachopoulos, Charalampos; Hatziagorou, Elpis; Sdougka, Maria; Roilides, Emmanuel; Tsanakas, John
2013-04-01
Extensively drug-resistant (XDR) tuberculosis (TB) represents a serious and growing problem in both endemic and non-endemic countries. We describe a 2.5-year-old girl with XDR-pulmonary TB and an 18-month-old boy with pre-XDR-central nervous system TB. Patients received individualized treatment with second-line anti-TB agents based on genotypic and phenotypic drug susceptibility testing results. Both children achieved culture conversion 3 months and 1 month after treatment initiation, respectively. The child with XDR-pulmonary TB showed evidence of cure while treatment adverse events were managed without treatment interruption. The child with pre-XDR-central nervous system TB after 6-month hospitalization with multiple infectious complications had a dismal end due to hepatic insufficiency possibly related to anti-TB treatment. This is the first report of children with pre-XDR and XDR TB in Greece, emphasizing the public health dimensions and management complexity of XDR TB.
Parkes, J D
1999-06-01
Sleep-wake problems are common in specific inborn errors of metabolism and structure of the central nervous system. Psychological factors, behavioural difficulties, metabolic disturbances, and widespread rather than focal damage to the nervous system are present in many of these diseases and all influence the sleep-wake cycle. However, a number of conditions cause relatively focal damage to the neuroanatomical substrate of sleeping and waking. These include fatal familial insomnia, with involvement of the prion protein gene on chromosome 20, Norrie disease, the Prader-Willi syndrome and the Moebius syndrome. The last three important conditions, although rare, are considered in detail in this review. They result in sensory deprivation, hypothalamic and mid-brain damage, and involve the X-chromosome, chromosome 15, and chromosome 13, respectively. These conditions cause a wide variety of sleep disturbance, including parasomnias, daytime sleepiness, and a condition like cataplexy. The place of the relevant gene products in normal sleep regulation needs further exploration.
[Influence of mental rotation of objects on psychophysiological functions of women].
Chikina, L V; Fedorchuk, S V; Trushina, V A; Ianchuk, P I; Makarchuk, M Iu
2012-01-01
An integral part of activity of modern human beings is an involvement to work with the computer systems which, in turn, produces a nervous - emotional tension. Hence, a problem of control of the psychophysiological state of workmen with the purpose of health preservation and success of their activity and the problem of application of rehabilitational actions are actual. At present it is known that the efficiency of rehabilitational procedures rises following application of the complex of regenerative programs. Previously performed by us investigation showed that mental rotation is capable to compensate the consequences of a nervous - emotional tension. Therefore, in the present work we investigated how the complex of spatial tasks developed by us influences psychophysiological performances of tested women for which the psycho-emotional tension with the usage of computer technologies is more essential, and the procedure of mental rotation is more complex task for them, than for men. The complex of spatial tasks applied in the given work included: mental rotation of simple objects (letters and digits), mental rotation of complex objects (geometrical figures) and mental rotation of complex objects with the usage of a short-term memory. Execution of the complex of spatial tasks reduces the time of simple and complex sensomotor response, raises parameters of a short-term memory, brain work capacity and improves nervous processes. Collectively, mental rotation of objects can be recommended as a rehabilitational resource for compensation of consequences of any psycho-emotional strain, both for men, and for women.
[Cannabis: Effects in the Central Nervous System. Therapeutic, societal and legal consequences].
Rivera-Olmos, Víctor Manuel; Parra-Bernal, Marisela C
2016-01-01
The consumption of marijuana extracted from Cannabis sativa and indica plants involves an important cultural impact in Mexico. Their psychological stimulatory effect is widely recognized; their biochemical and molecular components interact with CB1 and CB2 (endocannabinoid system) receptors in various central nervous system structures (CNS) and immune cells. The psychoactive element Δ-9-tetrahydrocannabinol (THC) can be reproduced synthetically. Systematic reviews show evidence of therapeutic effectiveness of therapeutic marijuana only for certain symptoms of multiple sclerosis (spasticity, spasms and pain), despite attempts for its widespread use, including refractory childhood epilepsy. Evidence indicates significant adverse effects of smoked marijuana on the structure, functioning and brain connectivity. Cannabis exposure during pregnancy affects fetal brain development, potentially leading to later behavioral problems in children. Neuropsychological tests and advanced imaging techniques show involvement in the learning process in adolescents with substance use. Also, marijuana increases the cognitive impairment in patients with multiple sclerosis. Social and ethical consequences to legally free marijuana for recreational use may be deleterious transcendentally. The medicinal or psychoactive cannabinol no addictive effect requires controlled proven efficacy and safety before regulatory approval studies.
Sińczuk-Walczak, H
1995-01-01
A clinical picture of selected cases diagnosed or suspected of chronic poisoning by organic solvents such as: Trichlorethylene (TRI), Tetrachlorethylene (PER), Carbon Disulfide (CS2) is presented. Based on examples of diagnosed neurological syndromes, some diagnostic and certification issues concerning occupational diseases of the neurological system, are analysed. An objective assessment of patients' complaints, differentiation between occupational diseases, so called idiopathic diseases of the nervous system, selection of appropropriate diagnostic methods in order to confirm or exclude these diseases belong to essential problems among those discussed.
Spatiotemporal dynamics of large-scale brain activity
NASA Astrophysics Data System (ADS)
Neuman, Jeremy
Understanding the dynamics of large-scale brain activity is a tough challenge. One reason for this is the presence of an incredible amount of complexity arising from having roughly 100 billion neurons connected via 100 trillion synapses. Because of the extremely high number of degrees of freedom in the nervous system, the question of how the brain manages to properly function and remain stable, yet also be adaptable, must be posed. Neuroscientists have identified many ways the nervous system makes this possible, of which synaptic plasticity is possibly the most notable one. On the other hand, it is vital to understand how the nervous system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease which affects 1% of the population. In the following work, we seek to answer some of these questions from two different perspectives. The first uses mean-field theory applied to neuronal populations, where the variables of interest are the percentages of active excitatory and inhibitory neurons in a network, to consider how the nervous system responds to external stimuli, self-organizes and generates epileptiform activity. The second method uses statistical field theory, in the framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed from physics which posits that in some regime the brain operates in a collectively stable or marginally stable manner. This will be examined in two different neuronal networks with self-organized criticality serving as the overarching theme for the union of both perspectives. One of the biggest problems in neuroscience is the question of to what extent certain details are significant to the functioning of the brain. These details give rise to various spatiotemporal properties that at the smallest of scales explain the interaction of single neurons and synapses and at the largest of scales describe, for example, behaviors and sensations. In what follows, we will shed some light on this issue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perelson, A.S.; Weisbuch, G.
1997-10-01
The immune system is a complex system of cells and molecules that can provide us with a basic defense against pathogenic organisms. Like the nervous system, the immune system performs pattern recognition tasks, learns, and retains a memory of the antigens that it has fought. The immune system contains more than 10{sup 7} different clones of cells that communicate via cell-cell contact and the secretion of molecules. Performing complex tasks such as learning and memory involves cooperation among large numbers of components of the immune system and hence there is interest in using methods and concepts from statistical physics. Furthermore,more » the immune response develops in time and the description of its time evolution is an interesting problem in dynamical systems. In this paper, the authors provide a brief introduction to the biology of the immune system and discuss a number of immunological problems in which the use of physical concepts and mathematical methods has increased our understanding. {copyright} {ital 1997} {ital The American Physical Society}« less
Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M
2017-02-01
Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central nervous system positivity in T-cell acute lymphoblastic leukemia (odds ratio=11.00, 95% confidence interval, 2.00-60.62). We propose zeta-chain-associated protein kinase 70, CCR7 and CXCR4 as markers of central nervous system infiltration in acute lymphoblastic leukemia warranting prospective investigation. Copyright© Ferrata Storti Foundation.
Nonlinear dynamics in the study of birdsong
NASA Astrophysics Data System (ADS)
Mindlin, Gabriel B.
2017-09-01
Birdsong, a rich and complex behavior, is a stellar model to understand a variety of biological problems, from motor control to learning. It also enables us to study how behavior emerges when a nervous system, a biomechanical device and the environment interact. In this review, I will show that many questions in the field can benefit from the approach of nonlinear dynamics, and how birdsong can inspire new directions for research in dynamics.
[Anorexia nervosa and nervus peronaeus lesions].
Weber, Peter; Rost, Barbara
2009-09-01
Anorexia nervosa could be associated with numerous medical complications. In addition, malnutrition can cause different problems of central nervous system, whereas reports on periphere nerve lesions are rare. We report a case of a 14 8/12 years old girl suffering from anorexia nervosa since five months, who presented with peroneal nerve palsy. In association to anorexia nervosa the prognosis of this mononeuropathy seems to be good. Anorectic patients with neurological complications need an interdisciplinary medical treatment.
The Effect of Feedback on Penile Tumescence in Sexually Functional Men
2003-01-06
cardiovascular and nervous systems. However, men who have few physical problems may also experience the disorder due to psychological factors. Men who suffer...following orgasm ) (Ellis, 1906). Masters and Johnson further developed this model during the 1950s and 1960s. Based on more than 10,000 observations...involves erection of the penis, which usually occurs within a few seconds after sexual stimulation begins. In addition, skin ridges of the scrotum
[Pain as a stimulator of protective and curative processes (the theory of pain)].
Uglov, F G; Kopylov, V A
1985-06-01
The work deals with the theoretical approach to problem of pain. The mechanism of the appearance of pain is considered as lack of correspondence between functional capacity of the nervous system and the presented load. The function of pain as reparator and stimulator of defensive forces of the organism in pathological processes is disclosed. The possible employment of pain as a curative factor in practical medicine is discussed.
Risk of central nervous system defects in offspring of women with and without mental illness.
Ayoub, Aimina; Fraser, William D; Low, Nancy; Arbour, Laura; Healy-Profitós, Jessica; Auger, Nathalie
2018-02-22
We sought to determine the relationship between maternal mental illness and the risk of having an infant with a central nervous system defect. We analyzed a cohort of 654,882 women aged less than 20 years between 1989 and 2013 who later delivered a live born infant in any hospital in Quebec, Canada. The primary exposure was mental illness during pregnancy or hospitalization for mental illness before pregnancy. The outcomes were neural and non-neural tube defects of the central nervous system in any offspring. We computed risk ratios (RR) and 95% confidence intervals (CI) for the association between mental disorders and risk of central nervous system defects in log-binomial regression models adjusted for age at delivery, total parity, comorbidity, socioeconomic deprivation, place of residence, and time period. Maternal mental illness was associated with an increased risk of nervous system defects in offspring (RR 1.76, 95% CI 1.64-1.89). Hospitalization for any mental disorder was more strongly associated with non-neural tube (RR 1.84, 95% CI 1.71-1.99) than neural tube defects (RR 1.31, 95% CI 1.08-1.59). Women at greater risk of nervous system defects in offspring tended to be diagnosed with multiple mental disorders, have more than one hospitalization for mental disease, or be 17 or older at first hospitalization. A history of mental illness is associated with central nervous system defects in offspring. Women hospitalized for mental illness may merit counseling at first symptoms to prevent central nervous system defects at pregnancy.
The Society of Toxicologic Pathology charged a Nervous System Sampling Working Group with devising recommended practices to routinely screen the central and peripheral nervous systems in Good Laboratory Practice-type nonclinical general toxicity studies. Brains should be trimmed ...
75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
76 FR 77895 - Schedules of Controlled Substances: Placement of Ezogabine Into Schedule V
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-15
... ester, is a new chemical substance with central nervous system depressant properties and is classified... nervous system as an anticonvulsant and the potential side effects of the drug therein, warrant closer... the central nervous system is alone not enough to merit its inclusion into Schedule IV of the CSA, nor...
78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-01
... means adverse outcomes to the nervous system resulting from exposure during any life stage. Special... critical to the development and/or function of the nervous system. The NTP is also interested in receiving... to act as toxicants to the developing or adult nervous systems. Request for Information 1...
3D printed nervous system on a chip.
Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C
2016-04-21
Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.
A wearable, low-power, health-monitoring instrumentation based on a Programmable System-on-Chip.
Massot, Bertrand; Gehin, Claudine; Nocua, Ronald; Dittmar, Andre; McAdams, Eric
2009-01-01
Improvement in quality and efficiency of health and medicine, at home and in hospital, has become of paramount importance. The solution of this problem would require the continuous monitoring of several key patient parameters, including the assessment of autonomic nervous system (ANS) activity using non-invasive sensors, providing information for emotional, sensorial, cognitive and physiological analysis of the patient. Recent advances in embedded systems, microelectronics, sensors and wireless networking enable the design of wearable systems capable of such advanced health monitoring. The subject of this article is an ambulatory system comprising a small wrist device connected to several sensors for the detection of the autonomic nervous system activity. It affords monitoring of skin resistance, skin temperature and heart activity. It is also capable of recording the data on a removable media or sending it to computer via a wireless communication. The wrist device is based on a Programmable System-on-Chip (PSoC) from Cypress: PSoCs are mixed-signal arrays, with dynamic, configurable digital and analogical blocks and an 8-bit Microcontroller unit (MCU) core on a single chip. In this paper we present first of all the hardware and software architecture of the device, and then results obtained from initial experiments.
Improving and Accelerating Drug Development for Nervous System Disorders
Pankevich, Diana E.; Altevogt, Bruce M.; Dunlop, John; Gage, Fred H.; Hyman, Steve E.
2014-01-01
Advances in the neurosciences have placed the field in the position where it is poised to significantly reduce the burden of nervous system disorders. However, drug discovery, development and translation for nervous system disorders still pose many unique challenges. The key scientific challenges can be summarized as follows: mechanisms of disease, target identification and validation, predictive models, biomarkers for patient stratification and as endpoints for clinical trials, clear regulatory pathways, reliability and reproducibility of published data, and data sharing and collaboration. To accelerate nervous system drug development the Institute of Medicine’s Forum on Neuroscience and Nervous System Disorders has hosted a series of public workshops that brought together representatives of industry, government (including both research funding and regulatory agencies), academia, and patient groups to discuss these challenges and offer potential strategies to improve the translational neuroscience. PMID:25442933
Desplan, Claude
2016-01-01
Nervous system development is a process that integrates cell proliferation, differentiation and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerge while integrating this information. PMID:27404003
Sköld, Mattias K; Svensson, Mikael; Tsao, Jack; Hultgren, Thomas; Landegren, Thomas; Carlstedt, Thomas; Cullheim, Staffan
2011-01-01
The Karolinska Institutet 200-year anniversary symposium on injuries to the spinal cord and peripheral nervous system gathered expertise in the spinal cord, spinal nerve, and peripheral nerve injury field spanning from molecular prerequisites for nerve regeneration to clinical methods in nerve repair and rehabilitation. The topics presented at the meeting covered findings on adult neural stem cells that when transplanted to the hypoglossal nucleus in the rat could integrate with its host and promote neuron survival. Studies on vascularization after intraspinal replantation of ventral nerve roots and microarray studies in ventral root replantation as a tool for mapping of biological patterns typical for neuronal regeneration were discussed. Different immune molecules in neurons and glia and their very specific roles in synapse plasticity after injury were presented. Novel strategies in repair of injured peripheral nerves with ethyl-cyanoacrylate adhesive showed functional recovery comparable to that of conventional epineural sutures. Various aspects on surgical techniques which are available to improve function of the limb, once the nerve regeneration after brachial plexus lesions and repair has reached its limit were presented. Moreover, neurogenic pain after amputation and its treatment with mirror therapy were shown to be followed by dramatic decrease in phantom limb pain. Finally clinical experiences on surgical techniques to repair avulsed spinal nerve root and the motoric as well as sensoric regain of function were presented.
Sköld, Mattias K.; Svensson, Mikael; Tsao, Jack; Hultgren, Thomas; Landegren, Thomas; Carlstedt, Thomas; Cullheim, Staffan
2011-01-01
The Karolinska Institutet 200-year anniversary symposium on injuries to the spinal cord and peripheral nervous system gathered expertise in the spinal cord, spinal nerve, and peripheral nerve injury field spanning from molecular prerequisites for nerve regeneration to clinical methods in nerve repair and rehabilitation. The topics presented at the meeting covered findings on adult neural stem cells that when transplanted to the hypoglossal nucleus in the rat could integrate with its host and promote neuron survival. Studies on vascularization after intraspinal replantation of ventral nerve roots and microarray studies in ventral root replantation as a tool for mapping of biological patterns typical for neuronal regeneration were discussed. Different immune molecules in neurons and glia and their very specific roles in synapse plasticity after injury were presented. Novel strategies in repair of injured peripheral nerves with ethyl-cyanoacrylate adhesive showed functional recovery comparable to that of conventional epineural sutures. Various aspects on surgical techniques which are available to improve function of the limb, once the nerve regeneration after brachial plexus lesions and repair has reached its limit were presented. Moreover, neurogenic pain after amputation and its treatment with mirror therapy were shown to be followed by dramatic decrease in phantom limb pain. Finally clinical experiences on surgical techniques to repair avulsed spinal nerve root and the motoric as well as sensoric regain of function were presented. PMID:21629875
The psyche and gastric functions.
Nardone, Gerardo; Compare, Debora
2014-01-01
Although the idea that gastric problems are in some way related to mental activity dates back to the beginning of the last century, until now it has received scant attention by physiologists, general practitioners and gastroenterologists. The major breakthrough in understanding the interactions between the central nervous system and the gut was the discovery of the enteric nervous system (ENS) in the 19th century. ENS (also called 'little brain') plays a crucial role in the regulation of the physiological gut functions. Furthermore, the identification of corticotropin-releasing factor (CRF) and the development of specific CRF receptor antagonists have permitted to characterize the neurochemical basis of the stress response. The neurobiological response to stress in mammals involves three key mechanisms: (1) stress is perceived and processed by higher brain centers; (2) the brain mounts a neuroendocrine response by way of the hypothalamic-pituitary-adrenal axis (HPA) and the autonomic nervous system (ANS), and (3) the brain triggers feedback mechanisms by HPA and ANS stimulation to restore homeostasis. Various stressors such as anger, fear, painful stimuli, as well as life or social learning experiences affect both the individual's physiologic and gastric function, revealing a two-way interaction between brain and stomach. There is overwhelming experimental and clinical evidence that stress influences gastric function, thereby outlining the pathogenesis of gastric diseases such as functional dyspepsia, gastroesophageal reflux disease and peptic ulcer disease. A better understanding of the role of pathological stressors in the modulation of disease activity may have important pathogenetic and therapeutic implications. © 2014 S. Karger AG, Basel.
G Mariam, Ayle; Assefa, Getachew
2012-10-01
Neurological dysfunction in AIDS is common, occurring in as many as eighty percent of children. Thus, it is important to recognize the central nervous system imaging appearance of HIV, in particular those of HIV encephalopathy, as this is an AIDS defining illness and with distinct neuro-imaging features essential for early diagnosis and timely therapeutic intervention To identify the clinical features in HIV-1 infection of the central nervous system and their associated neuroradiological correlates. Retrospective review of the records of all children with HIV-1 encephalopathy identified among children with neurological and developmental problems and who were on follow up at a child development and neurology clinic in an African city. A total of 22 children (10 male and 12 female) with HIV-1 encephalopathy were identified among 2382 children with various forms of neurological and developmental problems and who were on follow up at a child development and neurology clinic for a little bit over eight years period. All the children acquired the infection vertically. The age range of these children was between 10 months to 14 years. The median age was 5.6 years. The mean duration of symptom was 3.2 years. Global delay or regression in development along with signs of pyramidal tract involvement and seizures were the commonest clinical signs observed in these children. Neuro-behavioral problems were commonly observed among preschool and school aged children. In older children and preadolescents focal seizures with or with out neurologic deficit and neuroradiological findings were common. Nonhemorrhagic stroke was rare and occurred in one child and another child had cortical blindness. Three children had no neurological deficit. Rapid progression of the disease carried grave prognosis. Opportunistic infections and tumors of the central nervous system were also uncommon among these children. Brain volume loss with dilatation of the lateral ventricle, bilateral symmetrical or asymmetrical calcification of the basal ganglia and periventricular involvement of the white matter were the commonest neuro-radiological findings observed in these children. Atrophy of the brain with dilatation of the lateral ventricles and calcification of the basal ganglia and peri-ventricular involvement of the white matter were the commonest neuro-radiological findings in children with HIV-1 encephalopathy. Similarly global delay or regression in development along with pyramidal tract signs and seizures were the commonest neurological findings. Behavioral problems were common in preschool and school aged children. Focal seizures were common in older children and preadolescents. Rapid progression of the disease carried grave prognosis.
Strati, Paolo; Uhm, Joon H; Kaufmann, Timothy J; Nabhan, Chadi; Parikh, Sameer A; Hanson, Curtis A; Chaffee, Kari G; Call, Timothy G; Shanafelt, Tait D
2016-04-01
Abroad array of conditions can lead to neurological symptoms in chronic lymphocytic leukemia patients and distinguishing between clinically significant involvement of the central nervous system by chronic lymphocytic leukemia and symptoms due to other etiologies can be challenging. Between January 1999 and November 2014, 172 (4%) of the 4174 patients with chronic lymphocytic leukemia followed at our center had a magnetic resonance imaging of the central nervous system and/or a lumbar puncture to evaluate neurological symptoms. After comprehensive evaluation, the etiology of neurological symptoms was: central nervous system chronic lymphocytic leukemia in 18 patients (10% evaluated by imaging and/or lumbar puncture, 0.4% overall cohort); central nervous system Richter Syndrome in 15 (9% evaluated, 0.3% overall); infection in 40 (23% evaluated, 1% overall); autoimmune/inflammatory conditions in 28 (16% evaluated, 0.7% overall); other cancer in 8 (5% evaluated, 0.2% overall); and another etiology in 63 (37% evaluated, 1.5% overall). Although the sensitivity of cerebrospinal fluid analysis to detect central nervous system disease was 89%, the specificity was only 42% due to the frequent presence of leukemic cells in the cerebrospinal fluid in other conditions. No parameter on cerebrospinal fluid analysis (e.g. total nucleated cells, total lymphocyte count, chronic lymphocytic leukemia cell percentage) were able to offer a reliable discrimination between patients whose neurological symptoms were due to clinically significant central nervous system involvement by chronic lymphocytic leukemia and another etiology. Median overall survival among patients with clinically significant central nervous system chronic lymphocytic leukemia and Richter syndrome was 12 and 11 months, respectively. In conclusion, clinically significant central nervous system involvement by chronic lymphocytic leukemia is a rare condition, and neurological symptoms in patients with chronic lymphocytic leukemia are due to other etiologies in approximately 80% of cases. Analysis of the cerebrospinal fluid has high sensitivity but limited specificity to distinguish clinically significant chronic lymphocytic leukemia involvement from other etiologies. Copyright© Ferrata Storti Foundation.
Meffre, R; Gehin, C; Schmitt, P M; De Oliveira, F; Dittmar, A
2006-01-01
Pressure ulcers constitute an important health problem. They affect lots of people with mobility disorder and they are difficult to detect and prevent because the damage begins on the muscle. This paper proposes a new approach to study pressure ulcers. We aim at developing a methodology to analyse the probability for a patient to develop a pressure ulcer, and that can detect risky situation. The idea is to relate the mobility disorder to autonomic nervous system (ANS) trouble. More precisely, the evaluation of the consequence of the discomfort on the ANS (stress induced by discomfort) can be relevant for the early detection of the pressure ulcer. Mobility is evaluated through movement measurement. This evaluation, at the interface between soft living tissues and any support has to consider the specificity of the human environment. Soft living tissues have non-linear mechanical properties making conventional rigid sensors non suitable for interface parameters measurement. A new actimeter system has been designed in order to study movements of the human body whatever its support while seating. The device is based on elementary active cells. The number of pressure cells can be easily adapted to the application. The spatial resolution is about 4 cm(2). In this paper, we compare activity measurement of a seated subject with his autonomic nervous system activity, recorded by E.motion device. It has been developed in order to record six parameters: skin potential, skin resistance, skin temperature, skin blood rate, instantaneous cardiac frequency and instantaneous respiratory frequency. The design, instrumentation, and first results are presented.
Meyer, Néva P; Carrillo-Baltodano, Allan; Moore, Richard E; Seaver, Elaine C
2015-01-01
Reconstructing the evolutionary history of nervous systems requires an understanding of their architecture and development across diverse taxa. The spiralians encompass diverse body plans and organ systems, and within the spiralians, annelids exhibit a variety of morphologies, life histories, feeding modes and associated nervous systems, making them an ideal group for studying evolution of nervous systems. We describe nervous system development in the annelid Capitella teleta (Blake JA, Grassle JP, Eckelbarger KJ. Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. Zoosymposia. 2009;2:25-53) using whole-mount in situ hybridization for a synaptotagmin 1 homolog, nuclear stains, and cross-reactive antibodies against acetylated α-tubulin, 5-HT and FMRFamide. Capitella teleta is member of the Sedentaria (Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, et al. Phylogenomic analyses unravel annelid evolution. Nature. 2011;471:95-8) and has an indirectly-developing, lecithotrophic larva. The nervous system of C. teleta shares many features with other annelids, including a brain and a ladder-like ventral nerve cord with five connectives, reiterated commissures, and pairs of peripheral nerves. Development of the nervous system begins with the first neurons differentiating in the brain, and follows a temporal order from central to peripheral and from anterior to posterior. Similar to other annelids, neurons with serotonin-like-immunoreactivity (5HT-LIR) and FMRFamide-like-immunoreactivity (FMRF-LIR) are found throughout the brain and ventral nerve cord. A small number of larval-specific neurons and neurites are present, but are visible only after the central nervous system begins to form. These larval neurons are not visible after metamorphosis while the rest of the nervous system is largely unchanged in juveniles. Most of the nervous system that forms during larvogenesis in C. teleta persists into the juvenile stage. The first neurons differentiate in the brain, which contrasts with the early formation of peripheral, larval-specific neurons found in some spiralian taxa with planktotrophic larvae. Our study provides a clear indication that certain shared features among annelids - e.g., five connectives in the ventral nerve cord - are only visible during larval stages in particular species, emphasizing the need to include developmental data in ancestral character state reconstructions. The data provided in this paper will serve as an important comparative reference for understanding evolution of nervous systems, and as a framework for future molecular studies of development.
Nanotechnology, neuromodulation & the immune response: discourse, materiality & ethics.
Fins, Joseph J
2015-04-01
Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged.
Change in airflow among patients with asthma discussing relationship problems with their partners.
Schmaling, Karen B; Afari, Niloofar; Hops, Hyman; Barnhart, Scott; Buchwald, Dedra
2009-09-01
This study examined the covariation of negative emotions with airflow among 48 persons with asthma and their partners as they discussed relationship problems. Measures included self-reported questionnaires, airflow and behavior coded from videotaped discussions. Significantly increased self-reported hostility and statistically but not clinically significant declines in airflow were found post- versus pre-discussion. Self-reported responses to asthma symptoms of more anger and less loneliness predicted lower post-discussion airflow after accounting for pre-discussion airflow. The use of effort-independent measures of airflow and autonomic nervous system monitoring may inform future research regarding the physiological mechanisms through which mood and behavior affect airflow.
Does the nervous system use equilibrium-point control to guide single and multiple joint movements?
Bizzi, E; Hogan, N; Mussa-Ivaldi, F A; Giszter, S
1992-12-01
The hypothesis that the central nervous system (CNS) generates movement as a shift of the limb's equilibrium posture has been corroborated experimentally in studies involving single- and multijoint motions. Posture may be controlled through the choice of muscle length-tension curve that set agonist-antagonist torque-angle curves determining an equilibrium position for the limb and the stiffness about the joints. Arm trajectories seem to be generated through a control signal defining a series of equilibrium postures. The equilibrium-point hypothesis drastically simplifies the requisite computations for multijoint movements and mechanical interactions with complex dynamic objects in the environment. Because the neuromuscular system is springlike, the instantaneous difference between the arm's actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex "inverse dynamic" problem of computing the torques at the joints. The hypothesis provides a simple, unified description of posture and movement as well as contact control task performance, in which the limb must exert force stably and do work on objects in the environment. The latter is a surprisingly difficult problem, as robotic experience has shown. The prior evidence for the hypothesis came mainly from psychophysical and behavioral experiments. Our recent work has shown that microstimulation of the frog spinal cord's premotoneural network produces leg movements to various positions in the frog's motor space. The hypothesis can now be investigated in the neurophysiological machinery of the spinal cord.
Complex neural architecture in the diploblastic larva of Clava multicornis (Hydrozoa, Cnidaria).
Piraino, Stefano; Zega, Giuliana; Di Benedetto, Cristiano; Leone, Antonella; Dell'Anna, Alessandro; Pennati, Roberta; Carnevali, Daniela Candia; Schmid, Volker; Reichert, Heinrich
2011-07-01
The organization of the cnidarian nervous system has been widely documented in polyps and medusae, but little is known about the nervous system of planula larvae, which give rise to adult forms after settling and metamorphosis. We describe histological and cytological features of the nervous system in planulae of the hydrozoan Clava multicornis. These planulae do not swim freely in the water column but rather crawl on the substrate by means of directional, coordinated ciliary movement coupled to lateral muscular bending movements associated with positive phototaxis. Histological analysis shows pronounced anteroposterior regionalization of the planula's nervous system, with different neural cell types highly concentrated at the anterior pole. Transmission electron microscopy of planulae shows the nervous system to be unusually complex, with a large, orderly array of sensory cells at the anterior pole. In the anterior half of the planula, the basiectodermal plexus of neurites forms an extensive orthogonal network, whereas more posteriorly neurites extend longitudinally along the body axis. Additional levels of nervous system complexity are uncovered by neuropeptide-specific immunocytochemistry, which reveals distinct neural subsets having specific molecular phenotypes. Together these observations imply that the nervous system of the planula of Clava multicornis manifests a remarkable level of histological, cytological, and functional organization, the features of which may be reminiscent of those present in early bilaterian animals. Copyright © 2011 Wiley-Liss, Inc.
[Thyroid hormones and the development of the nervous system].
Mussa, G C; Zaffaroni, M; Mussa, F
1990-09-01
The growth and differentiation of the central nervous system are closely related to the presence of iodine and thyroid hormones. During the first trimester of human pregnancy the development of the nervous system depends entirely on the availability of iodine; after 12 week of pregnancy it depends on the initial secretion of iodothyronine by the fetal thyroid gland. During the early stages of the development of the nervous system a thyroid hormone deficit may provoke alterations in the maturation of both noble nervous cells (cortical pyramidal cells, Purkinje cells) and glial cells. Hypothyroidism may lead to cellular hypoplasia and reduced dendritic ramification, gemmules and interneuronal connections. Experimental studies in hypothyroid rats have also shown alterations in the content and organization of neuronal intracytoplasmatic microtubules, the biochemical maturation of synaptosomes and the maturation of nuclear and cytoplasmatic T3 receptors. Excess thyroid hormones during the early stages of development may also cause permanent damage to the central nervous system. Hyperthyroidism may initially induce an acceleration of the maturation processes, including the migration and differentiation of cells, the extension of the dendritic processes and synaptogenesis. An excess of thyroid hormones therefore causes neuronal proliferation to end precociously leading to a reduction of the total number of gemmules. Experimental research and clinical studies have partially clarified the correlation between the maturation of the nervous system and thyroid function during the early stages of development; both a deficit and excess of thyroid hormones may lead to permanent anatomo-functional damage to the central nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)
The larval nervous system of the penis worm Priapulus caudatus (Ecdysozoa)
2016-01-01
The origin and extreme diversification of the animal nervous system is a central question in biology. While most of the attention has traditionally been paid to those lineages with highly elaborated nervous systems (e.g. arthropods, vertebrates, annelids), only the study of the vast animal diversity can deliver a comprehensive view of the evolutionary history of this organ system. In this regard, the phylogenetic position and apparently conservative molecular, morphological and embryological features of priapulid worms (Priapulida) place this animal lineage as a key to understanding the evolution of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we characterize the nervous system of the hatching larva and first lorica larva of the priapulid worm Priapulus caudatus by immunolabelling against acetylated and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results show that a circumoral brain and an unpaired ventral nerve with a caudal ganglion characterize the central nervous system of hatching embryos. After the first moult, the larva attains some adult features: a neck ganglion, an introvert plexus, and conspicuous secondary longitudinal neurites. Our study delivers a neuroanatomical framework for future embryological studies in priapulid worms, and helps illuminate the course of nervous system evolution in the Ecdysozoa. PMID:26598729
Orita, Makiko; Hayashida, Naomi; Shinkawa, Tetsuko; Kudo, Takashi; Koga, Mikitoshi; Togo, Michita; Katayama, Sotetsu; Hiramatsu, Kozaburo; Mori, Shunsuke; Takamura, Noboru
2012-07-01
Severely and multiply disabled children (SMDC) are frequently affected in more than one area of development, resulting in multiple disabilities. The aim of the study was to evaluate the efficacy of music therapy in SMDC using monitoring changes in the autonomic nervous system, by the frequency domain analysis of heart rate variability. We studied six patients with SMDC (3 patients with cerebral palsy, 1 patient with posttraumatic syndrome after head injury, 1 patient with herpes encephalitis sequelae, and 1 patient with Lennox-Gastaut syndrome characterized by frequent seizures, developmental delay and psychological and behavioral problems), aged 18-26 (mean 22.5 ± 3.5). By frequency domain method using electrocardiography, we measured the high frequency (HF; with a frequency ranging from 0.15 to 0.4 Hz), which represents parasympathetic activity, the low frequency/high frequency ratio, which represents sympathetic activity between the sympathetic and parasympathetic activities, and heart rate. A music therapist performed therapy to all patients through the piano playing for 50 min. We monitored each study participant for 150 min before therapy, 50 min during therapy, and 10 min after therapy. Interestingly, four of 6 patients showed significantly lower HF components during music therapy than before therapy, suggesting that these four patients might react to music therapy through the suppression of parasympathetic nervous activities. Thus, music therapy can suppress parasympathetic nervous activities in some patients with SMDC. The monitoring changes in the autonomic nervous activities could be a powerful tool for the objective evaluation of music therapy in patients with SMDC.
... degeneration; Multiple system atrophy cerebellar predominance; MSA-C Images Central nervous system and peripheral nervous system References Jankovic J, Lang AE. Diagnosis and assessment of Parkinson disease ...
The neurotoxicology and pathology of organomercury, organolead, and organotin.
Chang, L W
1990-12-01
The toxicities of many metals, such as mercury and lead, are known to man since the dawn of civilization. Organic compounds of some heavy metals are known to have a particular toxic impact on the central nervous system. Organomercury, particularly alkyl-mercuric compounds (e.g. methylmercury), has a selective effect on the granule cells of the cerebellum, the nerve cells of the calcarine cortex, and the sensory neurons in the dorsal root ganglia. The well known Minamata Bay disease is the result of a massive epidemic episode of human exposure to alkylmercury contaminated food sources. Mental retardation and other developmental defects are also known to be a consequence of exposure to this toxic metal. Organic lead compounds have been employed as gasoline additives and in other industrial purposes. Unlike its inorganic counterpart, organolead compounds have a more prominent impact on the central nervous system. Pathological changes of the brain stem neurons have been described. Organotin compounds have been used in plastic industries and as agricultural chemicals. Both trimethyl and triethyl tin compounds are found to be extremely neurotoxic. Despite the similarity of their chemical structures, trimethyl and triethyl tins have a diversely different toxic property and effects. While triethyl tin is myelinotoxic, producing edematous and vacuolar changes in the central myelin, trimethyl tin is neurotoxic, producing prominent toxic changes in the neurons of the limbic system (hippocampus, entorhinal cortex, etc.). The factors which determine the specificity and selectivity of the neurotoxic impacts by various organometals are still unknown. In view that most of the organometals are still widely employed by many countries for industrial and for agricultural purposes, caution must be made for their proper handling and disposure to avoid undesirable exposures to workers and environmental contamination of water sources and food-chain for the common public. Since organometals are difficult to eliminate from the central nervous system, injuries usually lead to permanent neurological deficits, such tragedies are frequently long lasting and create not only a medical problem, but also a social economical problem for the society.
2017-08-28
B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma; Central Nervous System Lymphoma; Intraocular Lymphoma; Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System; Recurrent Adult Diffuse Large Cell Lymphoma; Retinal Lymphoma
This review of metal and metal-oxide based nanoparticles focuses on factors that influence their distribution into the nervous system, evidence that they enter brain parenchyma, and nervous system responses. Emphasis is placed on gold as a model metal-based nanoparticle and for r...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug Safety... and Central Nervous System Drugs Advisory Committee and the Drug Safety and Risk Management Advisory...
A survey of current practices for sampling and examination of the nervous system in rodents and non-rodents for general and neurotoxicity (NT) studies was conducted by the Nervous System Sampling Subcommittee of the STP. For general toxicity studies most of those surveyed (>63%) ...
Viral Oncolytic Therapeutics for Neoplastic Meningitis
2012-07-01
the central nervous system (CNS). While several novel molecular approaches are being developed, many of them require delivery of macromolecu- lar or...nonhuman primates. Keywords PET Imaging . Pharmacokinetics . Biopharmaceuticals . Macromolecules . Brain . Central nervous system . Drug delivery...Iodine-124 Introduction The leptomeningeal route to the central nervous system (CNS) starts from drug administration (injection or in- fusion) into the
... effective, directed treatments. Central Nervous System The "central command system" of the body, it includes the brain, ... The central nervous system (CNS) is the "central command system" of the body, and includes the brain, ...
NASA Astrophysics Data System (ADS)
Yenaeng, Sasikanchana; Saelee, Somkid; Samai, Wirachai
2018-01-01
The system evaluation for report writing skills of summary by Hybrid Genetic Algorithm-Support Vector Machines (HGA-SVM) with Ontology of Medical Case Study in Problem Based Learning (PBL) is a system was developed as a guideline of scoring for the facilitators or medical teacher. The essay answers come from medical student of medical education courses in the nervous system motion and Behavior I and II subject, a third year medical student 20 groups of 9-10 people, the Faculty of Medicine in Prince of Songkla University (PSU). The audit committee have the opinion that the ratings of individual facilitators are inadequate, this system to solve such problems. In this paper proposes a development of the system evaluation for report writing skills of summary by HGA-SVM with Ontology of medical case study in PBL which the mean scores of machine learning score and humans (facilitators) score were not different at the significantly level .05 all 3 essay parts contain problem essay part, hypothesis essay part and learning objective essay part. The result show that, the average score all 3 essay parts that were not significantly different from the rate at the level of significance .05.
The complex simplicity of the brittle star nervous system.
Zueva, Olga; Khoury, Maleana; Heinzeller, Thomas; Mashanova, Daria; Mashanov, Vladimir
2018-01-01
Brittle stars (Ophiuroidea, Echinodermata) have been increasingly used in studies of animal behavior, locomotion, regeneration, physiology, and bioluminescence. The success of these studies directly depends on good working knowledge of the ophiuroid nervous system. Here, we describe the arm nervous system at different levels of organization, including the microanatomy of the radial nerve cord and peripheral nerves, ultrastructure of the neural tissue, and localization of different cell types using specific antibody markers. We standardize the nomenclature of nerves and ganglia, and provide an anatomically accurate digital 3D model of the arm nervous system as a reference for future studies. Our results helped identify several general features characteristic to the adult echinoderm nervous system, including the extensive anatomical interconnections between the ectoneural and hyponeural components, neuroepithelial organization of the central nervous system, and the supporting scaffold of the neuroepithelium formed by radial glial cells. In addition, we provide further support to the notion that the echinoderm radial glia is a complex and diverse cell population. We also tested the suitability of a range of specific cell-type markers for studies of the brittle star nervous system and established that the radial glial cells are reliably labeled with the ERG1 antibodies, whereas the best neuronal markers are acetylated tubulin, ELAV, and synaptotagmin B. The transcription factor Brn1/2/4 - a marker of neuronal progenitors - is expressed not only in neurons, but also in a subpopulation of radial glia. For the first time, we describe putative ophiuroid proprioceptors associated with the hyponeural part of the central nervous system. Together, our data help establish both the general principles of neural architecture common to the phylum Echinodermata and the specific ophiuroid features.
2013-01-01
Introduction Intestinal dysmotility following human necrotizing enterocolitis suggests that the enteric nervous system is injured during the disease. We examined human intestinal specimens to characterize the enteric nervous system injury that occurs in necrotizing enterocolitis, and then used an animal model of experimental necrotizing enterocolitis to determine whether transplantation of neural stem cells can protect the enteric nervous system from injury. Methods Human intestinal specimens resected from patients with necrotizing enterocolitis (n = 18), from control patients with bowel atresia (n = 8), and from necrotizing enterocolitis and control patients undergoing stoma closure several months later (n = 14 and n = 6 respectively) were subjected to histologic examination, immunohistochemistry, and real-time reverse-transcription polymerase chain reaction to examine the myenteric plexus structure and neurotransmitter expression. In addition, experimental necrotizing enterocolitis was induced in newborn rat pups and neurotransplantation was performed by administration of fluorescently labeled neural stem cells, with subsequent visualization of transplanted cells and determination of intestinal integrity and intestinal motility. Results There was significant enteric nervous system damage with increased enteric nervous system apoptosis, and decreased neuronal nitric oxide synthase expression in myenteric ganglia from human intestine resected for necrotizing enterocolitis compared with control intestine. Structural and functional abnormalities persisted months later at the time of stoma closure. Similar abnormalities were identified in rat pups exposed to experimental necrotizing enterocolitis. Pups receiving neural stem cell transplantation had improved enteric nervous system and intestinal integrity, differentiation of transplanted neural stem cells into functional neurons, significantly improved intestinal transit, and significantly decreased mortality compared with control pups. Conclusions Significant injury to the enteric nervous system occurs in both human and experimental necrotizing enterocolitis. Neural stem cell transplantation may represent a novel future therapy for patients with necrotizing enterocolitis. PMID:24423414
Yokel, Robert; Grulke, Eric; MacPhail, Robert
2013-01-01
This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern. Copyright © 2013 Wiley Periodicals, Inc.
Cancela, Camila Silva Peres; Murao, Mitiko; Viana, Marcos Borato; de Oliveira, Benigna Maria
2012-01-01
Background Despite all the advances in the treatment of childhood acute lymphoblastic leukemia, central nervous system relapse remains an important obstacle to curing these patients. This study analyzed the incidence of central nervous system relapse and the risk factors for its occurrence in children and adolescents with acute lymphoblastic leukemia. Methods This study has a retrospective cohort design. The studied population comprised 199 children and adolescents with a diagnosis of acute lymphoblastic leukemia followed up at Hospital das Clinicas, Universidade Federal de Minas Gerais (HC-UFMG) between March 2001 and August 2009 and submitted to the Grupo Brasileiro de Tratamento de Leucemia da Infância - acute lymphoblastic leukemia (GBTLI-LLA-99) treatment protocol. Results The estimated probabilities of overall survival and event free survival at 5 years were 69.5% (± 3.6%) and 58.8% (± 4.0%), respectively. The cumulative incidence of central nervous system (isolated or combined) relapse was 11.0% at 8 years. The estimated rate of isolated central nervous system relapse at 8 years was 6.8%. In patients with a blood leukocyte count at diagnosis ≥ 50 x 109/L, the estimated rate of isolated or combined central nervous system relapse was higher than in the group with a count < 50 x 109/L (p-value = 0.0008). There was no difference in cumulative central nervous system relapse (isolated or combined) for the other analyzed variables: immunophenotype, traumatic lumbar puncture, interval between diagnosis and first lumbar puncture and place where the procedure was performed. Conclusions These results suggest that a leukocyte count > 50 x 109/L at diagnosis seems to be a significant prognostic factor for a higher incidence of central nervous system relapse in childhood acute lymphoblastic leukemia. PMID:23323068
ERIC Educational Resources Information Center
Weisz, John R.; And Others
1987-01-01
Compared Thailand to United States in regard to children's psychological problems and corresponding clinic referral patterns. Overcontrolled problems (somaticizing, fearfulness, nervous movements, worrying) were reported more often for Thai than for American youth. Undercontrolled problems (disobedience, fighting, lying, arguing) were reported…
NASA Astrophysics Data System (ADS)
Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.
2015-11-01
The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of formation of connections between neurons in simplest biological objects. Based on the correspondence of function of the created models to function of biological nervous systems we suggest the use of computational and electronic models of the brain for the study of its function under normal and pathological conditions, because operating principles of the models are built on principles imitating the function of biological nervous systems and the brain.
Recent Understanding on Diagnosis and Management of Central Nervous System Vasculitis in Children
Iannetti, Ludovico; Zito, Roberta; Bruschi, Simone; Papetti, Laura; Ulgiati, Fiorenza; Nicita, Francesco; Del Balzo, Francesca; Spalice, Alberto
2012-01-01
Central nervous system vasculitides in children may develop as a primary condition or secondary to an underlying systemic disease. Many vasculitides affect both adults and children, while some others occur almost exclusively in childhood. Patients usually present with systemic symptoms with single or multiorgan dysfunction. The involvement of central nervous system in childhood is not frequent and it occurs more often as a feature of subtypes like childhood polyarteritis nodosa, Kawasaki disease, Henoch Schönlein purpura, and Bechet disease. Primary angiitis of the central nervous system of childhood is a reversible cause of severe neurological impairment, including acute ischemic stroke, intractable seizures, and cognitive decline. The first line therapy of CNS vasculitides is mainly based on corticosteroids and immunosuppressor drugs. Other strategies include plasmapheresis, immunoglobulins, and biologic drugs. This paper discusses on current understanding of most frequent primary and secondary central nervous system vasculitides in children including a tailored-diagnostic approach and new evidence regarding treatment. PMID:23008735
[Pathophysiology of prolonged hypokinesia].
Kovalenko, E A
1976-01-01
Hypokinesia is an important problem in modern medicine. In the pathogenetic effect of prolonged hypokinesia the main etiological factor is diminished motor activity; of major importance are disorders in the energy and plastic metabolism which affect the muscle system; the contributing factors are cardiovascular deconditioning and orthostatic intolerance. This is attributed to a decreased oxygen supply and eliminated hydrostatic influences during a prolonged recumbency. Blood redistribution in the vascular bed is related to the Gauer-Henry reflex and subsequent changes in the fluid-electrolyte balance. Decreased load on the bone system induces changes in the protein-phosphate-calcium metabolism, diminished bone density and increased calcium content in the blood and urine. Changes in the calcium metabolism are systemic. The activity of the higher nervous system and reflex functions is lowered. Changes in the function of the autonomic nervous system which include a noticeable decline of its adaptive-trophic role as a result of the decrease of afferent and efferent impulsation are of great importance. Changes in the hormonal function involve a peculiar stress-reaction which develops at an early stage of hypokinesia as a response to an unusual situation. Prolonged hypokinesia may result in a disturbed function of the pituitary-adrenal system. It is assumed that prolonged hypokinesia may induce a specific disease of hypokinesia during which man cannot lead a normal mode of life and work.
Uribe, Rosa A; Gu, Tiffany; Bronner, Marianne E
2016-03-01
The enteric nervous system, the largest division of the peripheral nervous system, is derived from vagal neural crest cells that invade and populate the entire length of the gut to form diverse neuronal subtypes. Here, we identify a novel population of neurons within the enteric nervous system of zebrafish larvae that express the transgenic marker ptf1a:GFP within the midgut. Genetic lineage analysis reveals that enteric ptf1a:GFP(+) cells are derived from the neural crest and that most ptf1a:GFP(+) neurons express the neurotransmitter 5HT, demonstrating that they are serotonergic. This transgenic line, Tg(ptf1a:GFP), provides a novel neuronal marker for a subpopulation of neurons within the enteric nervous system, and highlights the possibility that Ptf1a may act as an important transcription factor for enteric neuron development. © 2016 Wiley Periodicals, Inc.
Evolution of the Human Nervous System Function, Structure, and Development.
Sousa, André M M; Meyer, Kyle A; Santpere, Gabriel; Gulden, Forrest O; Sestan, Nenad
2017-07-13
The nervous system-in particular, the brain and its cognitive abilities-is among humans' most distinctive and impressive attributes. How the nervous system has changed in the human lineage and how it differs from that of closely related primates is not well understood. Here, we consider recent comparative analyses of extant species that are uncovering new evidence for evolutionary changes in the size and the number of neurons in the human nervous system, as well as the cellular and molecular reorganization of its neural circuits. We also discuss the developmental mechanisms and underlying genetic and molecular changes that generate these structural and functional differences. As relevant new information and tools materialize at an unprecedented pace, the field is now ripe for systematic and functionally relevant studies of the development and evolution of human nervous system specializations. Copyright © 2017 Elsevier Inc. All rights reserved.
Sengupta, S; Rojas, R; Mahadevan, A; Kasper, E; Jeyapalan, S
2015-04-01
Nervous system relapse of patients with advanced HER2-neu-positive breast cancer is an increasing problem, with one-third of women developing brain metastases. Standard therapies using steroids, surgery and radiotherapy do not provide a lasting response. We evaluated CPT-11 and bevacizumab, which can both cross the blood-brain barrier, as combination therapy to treat HER2-neu-positive breast cancer with brain metastases.
Primary central nervous system B-cell lymphoma in a young dog
Kim, Na-Hyun; Ciesielski, Thomas; Kim, Jung H.; Yhee, Ji-Young; Im, Keum-Soon; Nam, Hae-Mi; Kim, Il-Hwan; Kim, Jong-Hyuk; Sur, Jung-Hyang
2012-01-01
This report describes a primary central nervous system B-cell lymphoma in a 3-year-old intact female Maltese dog. Canine primary central nervous system lymphomas constitute about 4% of all intracranial primary neoplasms, but comprehensive histopathologic classifications have rarely been carried out. This is the first report of this disease in a young adult dog. PMID:23115372
Classification of neural tumors in laboratory rodents, emphasizing the rat.
Weber, Klaus; Garman, Robert H; Germann, Paul-Georg; Hardisty, Jerry F; Krinke, Georg; Millar, Peter; Pardo, Ingrid D
2011-01-01
Neoplasms of the nervous system, whether spontaneous or induced, are infrequent in laboratory rodents and very rare in other laboratory animal species. The morphology of neural tumors depends on the intrinsic functions and properties of the cell type, the interactions between the neoplasm and surrounding normal tissue, and regressive changes. The incidence of neural neoplasms varies with sex, location, and age of tumor onset. Although the onset of spontaneous tumor development cannot be established in routine oncogenicity studies, calculations using the time of diagnosis (day of death) have revealed significant differences in tumor biology among different rat strains. In the central nervous system, granular cell tumors (a meningioma variant), followed by glial tumors, are the most common neoplasms in rats, whereas glial cell tumors are observed most frequently in mice. Central nervous system tumors usually affect the brain rather than the spinal cord. Other than adrenal gland pheochromocytomas, the most common neoplasms of the peripheral nervous system are schwannomas. Neural tumors may develop in the central nervous system and peripheral nervous system from other cell lineages (including extraneural elements like adipose tissue and lymphocytes), but such lesions are very rare in laboratory animals.
[Stress and autonomic dysregulation in patients with fibromyalgia syndrome].
Friederich, H-C; Schellberg, D; Mueller, K; Bieber, C; Zipfel, S; Eich, W
2005-06-01
The aim of the present study was to evaluate to what extent the orthostatic dysregulation of FMS patients can be attributed primarily to reduced baroreceptor-mediated activation of the sympathetic nervous system and whether a hyporeactive sympathetic nervous system can also be confirmed for mental stress. A total of 28 patients with primary FMS were examined and compared with 15 healthy subjects. Diagnostic investigations of the autonomic nervous system were based on measuring HRV in frequency range and assessing spontaneous baroreflex sensitivity (sBRS) under mental stress and passive orthostatism. Both under orthostatic and mental stress FMS patients exhibited reduced activation of the sympathetic nervous system as measured by the spectral power of HRV in the low-frequency range and the mean arterial blood pressure or heart rate. The present study provided no indications for dysregulation of sBRS. The results obtained confirm the hypothesis of a hyporeactive stress system in FMS patients for both peripherally and centrally mediated stimulation of the sympathetic nervous system.
Central sympathoexcitatory actions of angiotensin II: role of type 1 angiotensin II receptors.
DiBona, G F
1999-01-01
The role of the renin-angiotensin system in the control of sympathetic nerve activity is reviewed. Two general mechanisms are considered, one that involves the effects of circulating angiotensin II (AngII) on the central nervous system and a second that involves the central nervous system effects of AngII that originates within the central nervous system. The role of type 1 AngII receptors in discrete brain sites that mediate the sympathoexcitatory actions of AngII of either circulating or central nervous system origin is examined. AngII of circulating origin has ready access to the subfornical organ and area postrema, where it can bind to type 1 AngII receptors on neurons whose connections to the nucleus tractus solitarius and rostral ventrolateral medulla result in sympathoexcitation. In the rostral ventrolateral medulla, angiotensin peptides of central nervous system origin, likely involving angiotensin species in addition to AngII and binding to receptors other than type 1 or 2 AngII receptors, tonically support sympathetic nerve activity.
Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan
2014-06-01
To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process. © 2013 Japanese Society of Neuropathology.
Magnetic resonance imaging characteristics in four dogs with central nervous system neosporosis.
Parzefall, Birgit; Driver, Colin J; Benigni, Livia; Davies, Emma
2014-01-01
Neosporosis is a polysystemic disease that can affect dogs of any age and can cause inflammation of the central nervous system. Antemortem diagnosis can be challenging, as clinical and conventional laboratory test findings are often nonspecific. A previous report described cerebellar lesions in brain MRI studies of seven dogs and proposed that these may be characteristic for central nervous system Neosporosis. The purpose of this retrospective study was to describe MRI characteristics in another group of dogs with confirmed central nervous system neosporosis and compare them with the previous report. The hospital's database was searched for dogs with confirmed central nervous system neosporosis and four observers recorded findings from each dog's MRI studies. A total of four dogs met inclusion criteria. Neurologic examination was indicative of a forebrain and cerebellar lesion in dog 2 and multifocal central nervous system disease in dogs 1, 3, and 4. Magnetic resonance imaging showed mild bilateral and symmetrical cerebellar atrophy in three of four dogs (dogs 2, 3, 4), intramedullary spinal cord changes in two dogs (dogs 3, 4) and a mesencephalic and metencephalic lesion in one dog (dog 2). Multifocal brain lesions were recognized in two dogs (dogs 1, 4) and were present in the thalamus, lentiform nucleus, centrum semiovale, internal capsule, brainstem and cortical gray matter of the frontal, parietal or temporal lobe. Findings indicated that central nervous system neosporosis may be characterized by multifocal MRI lesions as well as cerebellar involvement in dogs. © 2014 American College of Veterinary Radiology.
Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis
Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Vázquez-Figueroa, Lionel D.; Díaz-Balzac, Roberto J.; García-Arrarás, José E.
2016-01-01
The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components. PMID:26987052
Is There Anything "Autonomous" in the Nervous System?
ERIC Educational Resources Information Center
Rasia-Filho, Alberto A.
2006-01-01
The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…
A map of terminal regulators of neuronal identity in Caenorhabditis elegans
2016-01-01
Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In‐depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron‐type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity‐defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the control of terminal identities, suggesting that these factors have ancient, phylogenetically conserved roles in controlling terminal neuronal differentiation in the nervous system. WIREs Dev Biol 2016, 5:474–498. doi: 10.1002/wdev.233 For further resources related to this article, please visit the WIREs website. PMID:27136279
The larval nervous system of the penis worm Priapulus caudatus (Ecdysozoa).
Martín-Durán, José M; Wolff, Gabriella H; Strausfeld, Nicholas J; Hejnol, Andreas
2016-01-05
The origin and extreme diversification of the animal nervous system is a central question in biology. While most of the attention has traditionally been paid to those lineages with highly elaborated nervous systems (e.g. arthropods, vertebrates, annelids), only the study of the vast animal diversity can deliver a comprehensive view of the evolutionary history of this organ system. In this regard, the phylogenetic position and apparently conservative molecular, morphological and embryological features of priapulid worms (Priapulida) place this animal lineage as a key to understanding the evolution of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we characterize the nervous system of the hatching larva and first lorica larva of the priapulid worm Priapulus caudatus by immunolabelling against acetylated and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results show that a circumoral brain and an unpaired ventral nerve with a caudal ganglion characterize the central nervous system of hatching embryos. After the first moult, the larva attains some adult features: a neck ganglion, an introvert plexus, and conspicuous secondary longitudinal neurites. Our study delivers a neuroanatomical framework for future embryological studies in priapulid worms, and helps illuminate the course of nervous system evolution in the Ecdysozoa. © 2015 The Authors.
Potential Side Effect of Inadvertent Intravascular Administration of Liposomal Bupivacaine
2017-06-01
treat and is potentially fatal. LAST can impair function of the central nervous system and cause cardiovascular collapse, with potentially...in the reversal of cardiovascular and central nervous system symptoms of local anesthetic and other lipophilic drug overdoses. ILE is gaining...to the sites of toxic action in the central nervous system and the heart. However, liposomal formulations of local anesthetics (EXPAREL in
Physiological and Mood Changes Induced by Exercise Withdrawal
2004-01-01
parasympathetic nervous system and a shift towards increased sympathetic activity (Dekker et al., 2000; Task Force of the European Society of Cardiology and...HR response will be important. HR is controlled by both the sympathetic and parasympathetic nervous systems . Heart rate variability (HRV) is a... sympathetic and parasympathetic nervous systems plays an important role in cardiovascular homeostasis. Heart rate variability has been used as an
Fedor-Freybergh, Peter G.
1999-01-01
The immune system is now seen to be closely integrated with other physiological circuits, such as the central nervous system (CNS) and the neuroendocrine system. There is also an increasing amount of evidence that this integrated circuit is bidirectional and both systems exert a reciprocal effect on each other. We have always stressed the interdisciplinary nature of the science where disciplines and sciences such as medicine, biochemistry, genetics, psychology, human ethology, etc. meet and undergo a process of "cross-fertilization." We also have stressed the indivisibility of the somatic and psychological processes in the indivisible continuum of human life from its very beginning and the inseparability of the development and functions of the central nervous system and the immunological and neuroendocrine processes. This transdisciplinary and integrative aspect of sciences and their entree in the twenty-first century is the true vision for our common efforts. Integration means also amalgamation, assimilation, blending, combining, incorporation, unification and harmony. This last mentioned, harmony, should be stressed and underlined specifically: a harmony between different views and approaches, between different methods and methodologies, different theories and practices. In order to undertake such a challenge, a new scientific theory and a common language is required, a language that would be understood across disciplines and would be able to assist in getting beyond semantic problems. The bridge between the immune system, neuroendocrinology and the rest of the central nervous system opens the gateway to more common understanding and acceptance across the disciplines. It is an umbrella for the endeavor that unites various scientific fields in their attempt to elucidate the processes of experience involved from the earliest stages of human life. This integration does cross over the different disciplines and diagnostic systems. It attaches theoretical and applied fields, basic research and clinical experience throughout the whole continuity of human life from conception and onwards. Integrated Psychoimmuno-Neuroendocrinology represents a unique opportunity for the primary prevention of psychological, emotional and physical disorders.
Determining Optimal Post-Stroke Exercise (DOSE)
2018-02-13
Cerebrovascular Accident; Stroke; Cerebral Infarction; Brain Infarction; Brain Ischemia; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Vascular Diseases
Central Nervous System Infections in Denmark
2018-02-04
Central Nervous System Infections; Bacterial Meningitis; Viral Meningitis; Aseptic Meningitis; Encephalitis; Brain Abscess; Neuroborreliosis; Neurosyphilis; Lyme Disease; Tertiary Syphilis; Cerebral Abscess; Meningitis
[Molecular genetics of familial tumour syndromes of the central nervous system].
Murnyák, Balázs; Szepesi, Rita; Hortobágyi, Tibor
2015-02-01
Although most of the central nervous system tumours are sporadic, rarely they are associated with familial tumour syndromes. These disorders usually present with an autosomal dominant inheritance and neoplasia develops at younger age than in sporadic cases. Most of these tumours are bilateral, multiplex or multifocal. The causative mutations occur in genes involved in cell cycle regulation, cell growth, differentiation and DNA repair. Studying these hereditary cancer predisposition syndromes associated with nervous system tumours can facilitate the deeper understanding of the molecular background of sporadic tumours and the development of novel therapeutic agents. This review is an update on hereditary tumour syndromes with nervous system involvement with emphasis on molecular genetic characteristics and their clinical implications.
Lee, Myung-Nam; Nam, Kyung-Dong; Kim, Hyeon-Young
2017-03-01
Nursing care for patients with central nervous system problems requires advanced professional knowledge and care skills. Nursing students are more likely to have difficulty in dealing with adult patients who have severe neurological problems in clinical practice. This study investigated the effect on the metacognition, team efficacy, and learning attitude of nursing students after an integrated simulation and problem-based learning program. A real scenario of a patient with increased intracranial pressure was simulated for the students. The results showed that this method was effective in improving the metacognitive ability of the students. Furthermore, we used this comprehensive model of simulation with problem-based learning in order to assess the consequences of student satisfaction with the nursing major, interpersonal relationships, and importance of simulation-based education in relation to the effectiveness of the integrated simulation with problem-based learning. The results can be used to improve the design of clinical practicum and nursing education.
A history of the autonomic nervous system: part I: from Galen to Bichat.
Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane
2016-12-01
The development of our current understanding of the autonomic nervous system has a rich history with many international contributors. Although our thoughts of an autonomic nervous system arose with the Greeks, the evolution and final understanding of this neural network would not be fully realized until centuries later. Therefore, our current knowledge of this system is based on hundreds of years of hypotheses and testing and was contributed to by many historic figures.
NASA Astrophysics Data System (ADS)
Harzsch, S.; Dawirs, R. R.
1993-02-01
We investigated the morphology of the central nervous system throughout the larval development of Carcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.
Nodal signalling and asymmetry of the nervous system
Signore, Iskra A.; Palma, Karina
2016-01-01
The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left–right asymmetry of the nervous system. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821531
Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects
Darwazeh, Rami; Yan, Yi
2013-01-01
Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study. PMID:25206579
Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects.
Darwazeh, Rami; Yan, Yi
2013-10-05
Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study.
THE SYMPATHETIC NERVOUS SYSTEM ALTERATIONS IN HUMAN HYPERTENSION
Grassi, Guido; Mark, Allyn; Esler, Murray
2015-01-01
A number of articles have dealt with the importance and mechanisms of the sympathetic nervous system alterations in experimental animal models of hypertension. This review addresses the role of the sympathetic nervous system in the pathophysiology and therapy of human hypertension. We first discuss the strengths and limitations of various techniques for assessing the sympathetic nervous system in humans, with a focus on heart rate, plasma norepinephrine, microneurographic recording of sympathetic nerve traffic, and measurements of radiolabeled norepinephrine spillover. We then examine the evidence supporting the importance of neuroadrenergic factors as “promoters” and “amplifiers” of human hypertension. We expand on the role of the sympathetic nervous system in two increasingly common forms of secondary hypertension, namely hypertension associated with obesity and with renal disease. With this background, we examine interventions of sympathetic deactivation as a mode of antihypertensive treatment. Particular emphasis is given to the background and results of recent therapeutic approaches based on carotid baroreceptor stimulation and radiofrequency ablation of the renal nerves. PMID:25767284
... Tremor - familial; Benign essential tremor; Shaking - essential tremor Images Central nervous system and peripheral nervous system References Jankovic J. Parkinson disease and other movement disorders. In: Daroff ...
... developing. Alternative Names Parkinsonism - secondary; Atypical Parkinson disease Images Central nervous system and peripheral nervous system References Jankovic J. Parkinson disease and other movement disorders. In: Daroff ...
... movements; Body movements - uncontrollable; Dyskinesia; Athetosis; Myoclonus; Ballismus Images Central nervous system and peripheral nervous system References Jankovic J, Lang AE. Diagnosis and assessment of Parkinson disease ...
The continuing problem of human African trypanosomiasis (sleeping sickness).
Kennedy, Peter G E
2008-08-01
Human African trypanosomiasis, also known as sleeping sickness, is a neglected disease, and it continues to pose a major threat to 60 million people in 36 countries in sub-Saharan Africa. Transmitted by the bite of the tsetse fly, the disease is caused by protozoan parasites of the genus Trypanosoma and comes in two types: East African human African trypanosomiasis caused by Trypanosoma brucei rhodesiense and the West African form caused by Trypanosoma brucei gambiense. There is an early or hemolymphatic stage and a late or encephalitic stage, when the parasites cross the blood-brain barrier to invade the central nervous system. Two critical current issues are disease staging and drug therapy, especially for late-stage disease. Lumbar puncture to analyze cerebrospinal fluid will remain the only method of disease staging until reliable noninvasive methods are developed, but there is no widespread consensus as to what exactly defines biologically central nervous system disease or what specific cerebrospinal fluid findings should justify drug therapy for late-stage involvement. All four main drugs used for human African trypanosomiasis are toxic, and melarsoprol, the only drug that is effective for both types of central nervous system disease, is so toxic that it kills 5% of patients who receive it. Eflornithine, alone or combined with nifurtimox, is being used increasingly as first-line therapy for gambiense disease. There is a pressing need for an effective, safe oral drug for both stages of the disease, but this will require a significant increase in investment for new drug discovery from Western governments and the pharmaceutical industry.
GORE Flow Reversal System and GORE Embolic Filter Extension Study
2016-01-22
Carotid Stenosis; Constriction, Pathologic; Carotid Artery Diseases; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Arterial Occlusive Diseases; Vascular Diseases; Cardiovascular Diseases; Pathological Conditions, Anatomical
Khaw, K T; Manji, H; Britton, J; Schon, F
1991-01-01
Arriving at a firm diagnosis of neurosarcoidosis continues to pose serious problems, particularly when evidence of granulomatous disease outside the nervous system is lacking. The commonest mode of presentation of neurosarcoidosis is with cranial nerve palsies. Two cases of presumed neurosarcoidosis with cranial nerve palsies showed clear evidence of focal meningeal disease on gadolinium-DTPA enhanced MRI brain scans. Although not specific for sarcoidosis, this technique may be very useful in aiding the diagnosis in suspected cases. Images PMID:1880510
Molecular approaches to treatments for cocaine abuse
NASA Astrophysics Data System (ADS)
Flippen-Anderson, Judith L.; George, Clifford; Deschamps, Jeffrey R.
2003-02-01
Cocaine is a potent stimulant of the central nervous system with severe addiction potential. Its abuse is a major problem worldwide. The exact mechanism of action of cocaine is still uncertain but it is known that its reinforcing and stimulant effects are related to its ability to inhibit the membrane bound dopamine transporter (DAT). This paper discusses efforts that are underway to identify ligands for possible use in the treatment of cocaine abuse. Much of this effort has been focussed on understanding cocaine interactions at DAT receptor sites.
1989-01-01
CEREBRAL INJURY 351 23. YOUNG, W. 1980. H2 clearance measurement of blood flow: A review of technique andpolarographic principles. Stroke 11: 552-564.24...Gerbil Brain: Inhibition of Ischemia-Reperfusion-Induced Cerebral Injury by a Platelet-Activating Factor Antagonist (BN 52021). By THOMAS PANETTA, VICTOR L...and in the complex pathophysiology of cerebral ischemia, stroke , and brain trauma has been a subject of increasing interest. These problems are of
[Treatment of refractory status epilepticus with topiramate. Report of three cases].
Soler, Bernardita; Godoy, Jaime; Mellado Talesnik, Patricio
2009-07-01
Refractory status epilepticus is a catastrophic illness of the central nervous system, with a mortality rate that reaches 50%. We report three patients admitted with refractory status epilepticus: a 24 year-old male that discontinued antiepileptic medications, a 46 year-old male with a focal epilepsy secondary to an encephalitis that discontinued medications due to gastrointestinal problems and a 59 year-old male with an ischemic encephalopathy AH were treated with topiramate, delivered through a nasogastric tube with a good response.
Sengupta, S.; Rojas, R.; Mahadevan, A.; Kasper, E.; Jeyapalan, S.
2015-01-01
Nervous system relapse of patients with advanced HER2–neu-positive breast cancer is an increasing problem, with one-third of women developing brain metastases. Standard therapies using steroids, surgery and radiotherapy do not provide a lasting response. We evaluated CPT-11 and bevacizumab, which can both cross the blood–brain barrier, as combination therapy to treat HER2–neu-positive breast cancer with brain metastases. PMID:26634139
'This diagnosis can be extremely scary'.
Newton-Snow, Tamsin
2017-01-18
Neurofibromatosis type 2 (NF2) is a rare genetic disorder that occurs in an estimated one in 35,000 people. The condition is often life-limiting and involves tumours growing on the nervous system, typically on the hearing nerves, brain and spine. While the tumours are mainly benign, they can lead to hearing loss, deafness and problems with balance and mobility. Most patients will need surgery or other treatments for NF2-related brain or spinal cord tumours at some point in their lives.
Advanced Optical Technologies for Defense Trauma and Critical Care
2017-03-12
biofilms, and the development of innovative technologies for the study of the response of nervous system cells to injury. 15. SUBJECT TERMS Hemorrhagic...approaches to accelerate nerve healing following traumatic brain injury (TBI) and traumatic injury to the peripheral nervous system . Fig. 3...Two key aspects of repair of traumatic nervous system damage are: (1) the ability of damaged neurons to heal (repair the damage), and (2) the
Plasticity and Activation of Spared Intraspinal Respiratory Circuits Following Spinal Cord Injury
2016-10-01
fluorescent immunohistochemistry (IHC) procedures. Accordingly, we performed IHC with two markers commonly used in the central nervous system (GFAP and...immunohistochemistry (IHC) procedures. Accordingly, we performed IHC with two 365 markers commonly used in the central nervous system (GFAP and NeuN) either...905 mammalian central nervous system . J Neurosci Methods 1: 107-132, 1979. 906 Kirkwood PA, Munson JB, Sears TA, and Westgaard RH. Respiratory
Association between number of siblings and nervous system tumors suggests an infectious etiology.
Altieri, Andrea; Castro, Felipe; Bermejo, Justo Lorenzo; Hemminki, Kari
2006-12-12
To estimate the effect of the number of siblings on the risk of histopathologic subtypes of tumors of the nervous system using large population-based data. The Swedish Family-Cancer Database comprises 13,613 diagnoses of nervous system tumors with histopathologic information. We analyzed the data using Poisson regression models taking into account potential confounding effects of age, birth cohort, socioeconomic status, and family history of cancer. The rate ratios (RR) for having four or more siblings vs none were significantly increased for hemangioblastoma (RR = 1.68), childhood neuroblastoma (RR = 2.01), and ependymoma (RR = 1.83, p trend < 0.01). For age at diagnosis < or =15 years, the RRs for individuals with three or more younger siblings compared to none were 1.34 for astrocytoma, 2.30 for medulloblastoma, 2.61 for ependymoma, 3.71 for meningioma, and 2.13 for neuroblastoma, with significant trends in risk. Non-significant decreased risks were found between the number of older siblings and nervous system tumors. We provide the first reliable quantification of the effects of number of siblings on the risk of nervous system tumors. Sibship size and number of younger siblings correlate with the incidence of childhood nervous system tumors, suggesting a role of infectious agents in the etiology of the disease.
2014-11-04
Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood Infratentorial Ependymoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Gonadotroph Adenoma; Pituitary Basophilic Adenoma; Pituitary Chromophobe Adenoma; Pituitary Eosinophilic Adenoma; Prolactin Secreting Adenoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Pituitary Tumor; Recurrent/Refractory Childhood Hodgkin Lymphoma; T-cell Childhood Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; TSH Secreting Adenoma; Unspecified Childhood Solid Tumor, Protocol Specific
Ma, Zhe; Liu, Cun; Deng, Biping; Dong, Shaogang; Tao, Guowei; Zhan, Xinfeng; Wang, Chuner; Liu, Shaoping; Qu, Xun
2010-12-01
To detect the distinct proteins in amniotic fluid (AF) between nervous system malformations fetuses and normal fetuses. Surface-enhanced laser desorption-ionization/time-of-flight mass spectrometry was used to characterize AF peptides in AF between nervous system malformations fetuses and normal fetuses. WCX2 protein chips were used to characterize AF peptides in AF. Protein chips were examined in a PBSIIC protein reader, the protein profiling was collected by ProteinChip software version 3.1 (Ciphergen Biosystems, Fremont, CA, USA) and analyzed by Biomarker Wizard software (Ciphergen Biosystems). Nine distinct proteins were identified in AF between nervous system malformations fetuses and normal fetuses. Compared with the control group, three proteins with m/z 4967.5 Da, 5258.0 Da, and 11,717.0 Da were down-regulated, and six proteins with m/z 2540.4 Da, 3107.1 Da, 3396.8 Da, 4590.965 Da, 5589.2 Da and 6429.4 Da up-regulated in nervous system malformations fetuses. The results suggest that there are distinct proteins in protein profiling of AF between nervous system malformations fetuses and normal fetuses. © 2010 The Authors. Journal of Obstetrics and Gynaecology Research © 2010 Japan Society of Obstetrics and Gynecology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumilov, V. N., E-mail: vnshumilov@rambler.ru; Syryamkin, V. I., E-mail: maximus70sir@gmail.com; Syryamkin, M. V., E-mail: maximus70sir@gmail.com
The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervousmore » systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of formation of connections between neurons in simplest biological objects. Based on the correspondence of function of the created models to function of biological nervous systems we suggest the use of computational and electronic models of the brain for the study of its function under normal and pathological conditions, because operating principles of the models are built on principles imitating the function of biological nervous systems and the brain.« less
NASA Technical Reports Server (NTRS)
1977-01-01
Children with cerebral palsy have nervous system defects which lead to muscular spasticity and loss of coordination. Many of these children have great difficulty walking because certain muscles are in a constant state of contraction. Surgical techniques can lengthen muscles or tendons to improve the child's walking pattern, but it is vital to diagnose accurately the particular spasticity problem of each patient; the individual muscles causing the handicap vary greatly from child to child. It is difficult by physical examination alone to determine precisely which muscle groups are most involved. Biotelemetry has provided a solution. For the past two years, the Children's Hospital at Standord, assisted by NASA and the Stanford Biomedical Application Team, has been applying biotelemetry to the cerebral palsy problem.
Applications of human umbilical cord blood cells in central nervous system regeneration.
Herranz, Antonio S; Gonzalo-Gobernado, Rafael; Reimers, Diana; Asensio, Maria J; Rodríguez-Serrano, Macarena; Bazán, Eulalia
2010-03-01
In recent decades, there has been considerable amount of information about embryonic stem cells (ES). The dilemma facing scientists interested in the development and use of human stem cells in replacement therapies is the source of these cells, i.e. the human embryo. There are many ethical and moral problems related to the use of these cells. Hematopoietic stem cells from umbilical cord blood have been proposed as an alternative source of embryonic stem cells. After exposure to different agents, these cells are able to express antigens of diverse cellular lineages, including the neural type. The In vitro manipulation of human umbilical cord blood (hUCB) cells has shown their stem capacity and plasticity. These cells are easily accessible, In vitro amplifiable, well tolerated by the host, and with more primitive molecular characteristics that give them great flexibility. Overall, these properties open a promising future for the use of hUCB in regenerative therapies for the Central Nervous System (CNS). This review will focus on the available literature concerning umbilical cord blood cells as a therapeutic tool for the treatment of neurodegenerative diseases.
Your brain on drugs: imaging of drug-related changes in the central nervous system.
Tamrazi, Benita; Almast, Jeevak
2012-01-01
Drug abuse is a substantial problem in society today and is associated with significant morbidity and mortality. Various drugs are associated with serious complications affecting the brain, and it is critical to recognize the imaging findings of these complications to provide prompt medical management. The central nervous system (CNS) is a target organ for drugs of abuse as well as specific prescribed medications. Drugs of abuse affecting the CNS include cocaine, heroin, alcohol, amphetamines, toluene, and cannabis. Prescribed medications or medical therapies that can affect the CNS include immunosuppressants, antiepileptics, nitrous oxide, and total parenteral nutrition. The CNS complications of these drugs include neurovascular complications, encephalopathy, atrophy, infection, changes in the corpus callosum, and other miscellaneous changes. Imaging abnormalities indicative of these complications can be appreciated at both magnetic resonance (MR) imaging and computed tomography (CT). It is critical for radiologists to recognize complications related to drugs of abuse as well as iatrogenic effects of various medications. Therefore, diagnostic imaging modalities such as MR imaging and CT can play a pivotal role in the recognition and timely management of drug-related complications in the CNS.
Cocaine's appetite for fat and the consequences on body weight.
Billing, Lawrence; Ersche, Karen D
2015-03-01
For many individuals in treatment for cocaine dependence, weight gain is a substantial problem during recovery. This weight gain causes significant distress and seems to increase the risk of relapse. The mechanisms underlying cocaine's effects on weight remain elusive. It is widely assumed that this weight gain reflects a metabolic or behavioural compensatory response to the cessation of cocaine use. Here we challenge this assumption and outline potential mechanisms by which chronic cocaine use produces disturbances in the regulation of fat intake and storage, through its effects on the central and peripheral nervous systems, specifically the sympathetic nervous system. We hypothesize that the cocaine-induced alteration in fat regulation results in cocaine users developing a pronounced appetite for fatty food but keeps their fat mass low. This altered fat appetite subsequently leads to excessive weight gain when individuals enter treatment and stop using cocaine. Our aim is to shed light on the neurobiological mechanisms that may underlie the alterations in eating and fat regulation in cocaine-dependent individuals, to open up potential new avenues to support these individuals in recovery.
Mastication as a Stress-Coping Behavior
Iinuma, Mitsuo
2015-01-01
Exposure to chronic stress induces various physical and mental effects that may ultimately lead to disease. Stress-related disease has become a global health problem. Mastication (chewing) is an effective behavior for coping with stress, likely due to the alterations chewing causes in the activity of the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Mastication under stressful conditions attenuates stress-induced increases in plasma corticosterone and catecholamines, as well as the expression of stress-related substances, such as neurotrophic factors and nitric oxide. Further, chewing reduces stress-induced changes in central nervous system morphology, especially in the hippocampus and hypothalamus. In rodents, chewing or biting on wooden sticks during exposure to various stressors reduces stress-induced gastric ulcer formation and attenuates spatial cognitive dysfunction, anxiety-like behavior, and bone loss. In humans, some studies demonstrate that chewing gum during exposure to stress decreases plasma and salivary cortisol levels and reduces mental stress, although other studies report no such effect. Here, we discuss the neuronal mechanisms that underline the interactions between masticatory function and stress-coping behaviors in animals and humans. PMID:26090453
[Determination of vanadium concentration in foods produced on the Eastern Coast of Lake Maracaibo].
Tudares, C M; Villalobos, H D
1998-04-01
In the northeastern coast of Lake Maracaibo it has been reported some years ago a high incidence of congenital malformations of the Central Nervous Systems (Neural Tube Defects Type). This epidemiological problem is present in other countries too (Ireland and New Zealand) and has been associated with oil activities. In fact, some experimental works inform about the vanadium compounds cellular toxic effects mainly in the Central Nervous System of mammals. The main goal of this work is to measure the vanadium content in foods produced in the northeastern coast of Lake Maracaibo. Lagunillas, Valmore Rodriguez, and Baralt were the districts selected for the work. The digestion of the samples achieved by the methodology reported by Myron et al., with Graphite Furnace Atomic Absorption. The amounts of vanadium in the different foods analized were higher than the controls in the bibliographic reports. At this moment, there is not definitive proofs that vanadium compounds are the etiological agents of the Neural Tube Defects, but, these compounds are presents in foods produced in the northeastern coast of Lake Maracaibo.
Leigh and Leigh-like syndrome in children and adults.
Finsterer, Josef
2008-10-01
Leigh syndrome (also termed subacute, necrotizing encephalopathy) is a devastating neurodegenerative disorder, characterized by almost identical brain changes, e.g., focal, bilaterally symmetric lesions, particularly in the basal ganglia, thalamus, and brainstem, but with considerable clinical and genetic heterogeneity. Clinically, Leigh syndrome is characterized by a wide variety of abnormalities, from severe neurologic problems to a near absence of abnormalities. Most frequently the central nervous system is affected, with psychomotor retardation, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure. Some patients also present with peripheral nervous system involvement, including polyneuropathy or myopathy, or non-neurologic abnormalities, e.g., diabetes, short stature, hypertrichosis, cardiomyopathy, anemia, renal failure, vomiting, or diarrhea (Leigh-like syndrome). In the majority of cases, onset is in early childhood, but in a small number of cases, adults are affected. In the majority of cases, dysfunction of the respiratory chain (particularly complexes I, II, IV, or V), of coenzyme Q, or of the pyruvate dehydrogenase complex are responsible for the disease. Associated mutations affect genes of the mitochondrial or nuclear genome. Leigh syndrome and Leigh-like syndrome are the mitochondrial disorders with the largest genetic heterogeneity.
Horowitz, L; Sarkin, J M
1992-01-01
Surveys indicate over 50 million Americans, mostly women, currently operate video display terminals (VDTs) at home or in the workplace. Recent epidemiological studies reveal more than 75% of approximately 30 million American temporomandibular disorder (TMD) sufferers are women. What does the VDT and TMD have in common besides an affinity for the female gender? TMD is associated with numerous risk factors that commonly initiate sympathetic nervous system and stress hormone response mechanisms resulting in muscle spasms, trigger point formation, and pain in the head and neck. Likewise VDT operation may be linked to three additional sympathetic nervous system irritants including: (1) electrostatic ambient air negative ion depletion, (2) electromagnetic radiation, and (3) eyestrain and postural stress associated with poor work habits and improper work station design. Additional research considering the roles these three factors may play in the etiology of TMD and other myofascial pain problems is indicated. Furthermore, dentists are advised to educate patients as to these possible risks, encourage preventive behaviors on the part of employers and employees, and recommend workplace health, safety, and ergonomic upgrades when indicated.
Progressive supranuclear palsy
... dystonia; Richardson-Steele-Olszewski syndrome; Palsy - progressive supranuclear Images Central nervous system and peripheral nervous system References Jankovic J. Parkinson disease and other movement disorders. In: Daroff ...
Myocardial ischaemia and the cardiac nervous system.
Armour, J A
1999-01-01
The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some tentative ideas concerning the importance of this nervous system in cardiac disease states with a view to stimulating further interest in neural control of the heart so that appropriate neurocardiological strategies can be devised for the management of heart disease.
Neurovascular patterning cues and implications for central and peripheral neurological disease
Gamboa, Nicholas T.; Taussky, Philipp; Park, Min S.; Couldwell, William T.; Mahan, Mark A.; Kalani, M. Yashar S.
2017-01-01
The highly branched nervous and vascular systems run along parallel trajectories throughout the human body. This stereotyped pattern of branching shared by the nervous and vascular systems stems from a common reliance on specific cues critical to both neurogenesis and angiogenesis. Continually emerging evidence supports the notion of later-evolving vascular networks co-opting neural molecular mechanisms to ensure close proximity and adequate delivery of oxygen and nutrients to nervous tissue. As our understanding of these biologic pathways and their phenotypic manifestations continues to advance, identification of where pathways go awry will provide critical insight into central and peripheral nervous system pathology. PMID:28966815
An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System.
Tseng, Ting-Chen; Tao, Lei; Hsieh, Fu-Yu; Wei, Yen; Chiu, Ing-Ming; Hsu, Shan-hui
2015-06-17
An injectable, self-healing hydrogel (≈1.5 kPa) is developed for healing nerve-system deficits. Neurosphere-like progenitors proliferate in the hydrogel and differentiate into neuron-like cells. In the zebrafish injury model, the central nervous system function is partially rescued by injection of the hydrogel and significantly rescued by injection of the neurosphere-laden hydrogel. The self-healing hydrogel may thus potentially repair the central nervous system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The eye and visual nervous system: anatomy, physiology and toxicology.
McCaa, C S
1982-01-01
The eyes are at risk to environmental injury by direct exposure to airborne pollutants, to splash injury from chemicals and to exposure via the circulatory system to numerous drugs and bloodborne toxins. In addition, drugs or toxins can destroy vision by damaging the visual nervous system. This review describes the anatomy and physiology of the eye and visual nervous system and includes a discussion of some of the more common toxins affecting vision in man. Images FIGURE 1. FIGURE 2. PMID:7084144
Fluoxetine Opens Window to Improve Motor Recovery After Stroke
2018-05-01
Stroke; Cerebrovascular Accident; Cerebral Infarction; Brain Infarction; Brain Ischemia; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Vascular Diseases
... Frontotemporal dementia; FTD; Arnold Pick disease; 3R tauopathy Images Central nervous system and peripheral nervous system References Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet . 2015;386( ...
Neurologic involvement in scleroderma: a systematic review.
Amaral, Tiago Nardi; Peres, Fernando Augusto; Lapa, Aline Tamires; Marques-Neto, João Francisco; Appenzeller, Simone
2013-12-01
To perform a systematic review of neurologic involvement in Systemic sclerosis (SSc) and Localized Scleroderma (LS), describing clinical features, neuroimaging, and treatment. We performed a literature search in PubMed using the following MeSH terms, scleroderma, systemic sclerosis, localized scleroderma, localized scleroderma "en coup de sabre", Parry-Romberg syndrome, cognitive impairment, memory, seizures, epilepsy, headache, depression, anxiety, mood disorders, Center for Epidemiologic Studies Depression (CES-D), SF-36, Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Patient Health Questionnaire-9 (PHQ-9), neuropsychiatric, psychosis, neurologic involvement, neuropathy, peripheral nerves, cranial nerves, carpal tunnel syndrome, ulnar entrapment, tarsal tunnel syndrome, mononeuropathy, polyneuropathy, radiculopathy, myelopathy, autonomic nervous system, nervous system, electroencephalography (EEG), electromyography (EMG), magnetic resonance imaging (MRI), and magnetic resonance angiography (MRA). Patients with other connective tissue disease knowingly responsible for nervous system involvement were excluded from the analyses. A total of 182 case reports/studies addressing SSc and 50 referring to LS were identified. SSc patients totalized 9506, while data on 224 LS patients were available. In LS, seizures (41.58%) and headache (18.81%) predominated. Nonetheless, descriptions of varied cranial nerve involvement and hemiparesis were made. Central nervous system involvement in SSc was characterized by headache (23.73%), seizures (13.56%) and cognitive impairment (8.47%). Depression and anxiety were frequently observed (73.15% and 23.95%, respectively). Myopathy (51.8%), trigeminal neuropathy (16.52%), peripheral sensorimotor polyneuropathy (14.25%), and carpal tunnel syndrome (6.56%) were the most frequent peripheral nervous system involvement in SSc. Autonomic neuropathy involving cardiovascular and gastrointestinal systems was regularly described. Treatment of nervous system involvement, on the other hand, varied in a case-to-case basis. However, corticosteroids and cyclophosphamide were usually prescribed in severe cases. Previously considered a rare event, nervous system involvement in scleroderma has been increasingly recognized. Seizures and headache are the most reported features in LS en coup de sabre, while peripheral and autonomic nervous systems involvement predominate in SSc. Moreover, recently, reports have frequently documented white matter lesions in asymptomatic SSc patients, suggesting smaller branches and perforating arteries involvement. Copyright © 2013 Elsevier Inc. All rights reserved.
MedlinePlus Videos and Cool Tools
... the pancreas, ovaries and testes. The endocrine and nervous systems work very closely together. The brain continuously sends ... endocrine glands. Because of this intimate relationship, the nervous and endocrine systems are referred to as the neuroendocrine system. The ...
Combined central diabetes insipidus and cerebral salt wasting syndrome in children.
Lin, Jainn-Jim; Lin, Kuang-Lin; Hsia, Shao-Hsuan; Wu, Chang-Teng; Wang, Huei-Shyong
2009-02-01
Central diabetes insipidus, a common consequence of acute central nervous system injury, causes hypernatremia; cerebral salt wasting syndrome can cause hyponatremia. The two conditions occurring simultaneous are rarely described in pediatric patients. Pediatric cases of combined diabetes insipidus and cerebral salt wasting after acute central nervous system injury between January 2000 and December 2007 were retrospectively reviewed, and clinical characteristics were systemically assessed. Sixteen patients, aged 3 months to 18 years, met study criteria: 11 girls and 5 boys. The most common etiologies were severe central nervous system infection (n = 7, 44%) and hypoxic-ischemic event (n = 4, 25%). In 15 patients, diabetes insipidus was diagnosed during the first 3 days after acute central nervous system injury. Onset of cerebral salt wasting syndrome occurred 2-8 days after the onset of diabetes insipidus. In terms of outcome, 13 patients died (81%) and 3 survived under vegetative status (19%). Central diabetes insipidus and cerebral salt wasting syndrome may occur after acute central nervous system injury. A combination of both may impede accurate diagnosis. Proper differential diagnoses are critical, because the treatment strategy for each entity is different.
Behavior as a sentry of metal toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, B.
1978-01-01
Many of the toxic properties of metals are expressed as behavioral aberrations. Some of these arise from direct actions on the central nervous system. Others arise from primary events elsewhere, but still influence behavior. Toxicity may be expressed either as objectively measurable phenomena, such as ataxia, or as subjective complaints, such as depression. In neither instance is clinical medicine equipped to provide assessments of subtle, early indices of toxicity. Reviewers of visual disturbances, paresthesia, and mental retardation exemplify the potential contribution of psychology to the toxicology of metals. Behavior and nervous system functions act as sensitive mirrors of metal toxicity.more » Sensitivity is the prime aim in environmental health assessments. Early detection of adverse effects, before they progress to irreversibility, underlies the strategy for optimal health protection. Some of the toxic actions of metals originate in direct nervous system dysfunction. Others may reflect disturbances of systems less directly linked to behavior than the central nervous system. But behavior, because it expresses the integrated functioning of the organism, can indicate flaws in states and processes outside the nervous system.« less
Designing and implementing nervous system simulations on LEGO robots.
Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph
2013-05-25
We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.
AMX0035 in Patients With Amyotrophic Lateral Sclerosis (ALS)
2018-05-21
Amyotrophic Lateral Sclerosis; Motor Neuron Disease; Neuromuscular Diseases; Neurodegenerative Diseases; Spinal Cord Diseases; TDP-43 Proteinopathies; Nervous System Diseases; Central Nervous System Diseases
Stages of AIDS-Related Lymphoma
... trials is also available. AIDS-Related Primary Central Nervous System Lymphoma Treatment of AIDS-related primary central nervous system lymphoma may include the following: External radiation therapy . ...
ERIC Educational Resources Information Center
National Evaluation Systems, Inc., Amherst, MA.
This module on the nervous system is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. It is part of an eight-unit miniseries on anatomy and physiology within the series of 17 modules. Following a preface which explains to the student how to use the…
Tosi, Umberto; Marnell, Christopher S.; Chang, Raymond; Cho, William C.; Ting, Richard; Maachani, Uday B.; Souweidane, Mark M.
2017-01-01
Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents. PMID:28208698
Tosi, Umberto; Marnell, Christopher S; Chang, Raymond; Cho, William C; Ting, Richard; Maachani, Uday B; Souweidane, Mark M
2017-02-08
Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood-brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a "wait-and-see" approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.
The Nervous Flyer: Nerves, Flying and the First World War.
Shaw Cobden, Lynsey
2018-02-02
This is not an article about 'shell-shock'. It explores the military medical response to nervous disorders in the Royal Flying Corps. The First World War exposed the propensity of pilots to the nervous and psychological rigours of aerial warfare, but their unique experiences have been overlooked in favour of 'trauma' in infantrymen. This represents a critical lacuna in the historiography of military medicine, for flying personnel were studied apart from 'shell-shocked' soldiers. This article will show that flyers were believed to be medically different, and what set them apart from men in the trenches was their unique employment. The war necessitated, and provided the conditions for, the study of the medical problems of flying, including the significant nervous strains. Medical officers quickly established that flying not only affected bodily functions, but also 'wore down' the nerves that regulated psychological responses. This article will therefore present the medical view. It will study the research of air-minded medical officers and the conclusions reached on the nervous disorders of flying personnel.
Treatment Options for AIDS-Related Lymphoma
... trials is also available. AIDS-Related Primary Central Nervous System Lymphoma Treatment of AIDS-related primary central nervous system lymphoma may include the following: External radiation therapy . ...
38 CFR 4.119 - Schedule of ratings-endocrine system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...
38 CFR 4.119 - Schedule of ratings-endocrine system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...
38 CFR 4.119 - Schedule of ratings-endocrine system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...
38 CFR 4.119 - Schedule of ratings-endocrine system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...
Summer teachers' teaching tool
and nervous system of the frog. Skeleton System Organs Digestive System Nervous System Berkeley Lab students study anatomy of a frog in Biology class room. The pictures showed the skeleton, organs, digestive
Code of Federal Regulations, 2014 CFR
2014-04-01
... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...
Code of Federal Regulations, 2012 CFR
2012-04-01
... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...
Code of Federal Regulations, 2013 CFR
2013-04-01
... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...
Code of Federal Regulations, 2011 CFR
2011-04-01
... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...
Code of Federal Regulations, 2010 CFR
2010-04-01
... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...
A gamma-secretase inhibitor decreases amyloid-beta production in the central nervous system
Bateman, Randall J.; Siemers, Eric R.; Mawuenyega, Kwasi G.; Wen, Guolin; Browning, Karen R.; Sigurdson, Wendy C.; Yarasheski, Kevin E.; Friedrich, Stuart W.; DeMattos, Ronald B.; May, Patrick C.; Paul, Steven M.; Holtzman, David M.
2009-01-01
Objective Accumulation of amyloid-β (Aβ) by over-production or under-clearance in the central nervous system is hypothesized to be a necessary event in the pathogenesis of Alzheimer Disease. However, previously there has not been a method to determine drug effects on Aβ production or clearance in the human central nervous system. The objective of this study was to determine the effects of a gamma-secretase inhibitor on the production of Aβ in the human CNS. Methods We utilized a recently developed method of stable-isotope labeling combined with cerebrospinal fluid sampling to directly measure Aβ production during treatment of a gamma-secretase inhibitor, LY450139. We assessed whether this drug could decrease central nervous system Aβ production in healthy men (age 21–50) at single oral doses of 100mg, 140mg, or 280mg (N=5 per group). Results LY450139 significantly decreased the production of central nervous system Aβ in a dose-dependent fashion, with inhibition of Aβ generation of 47%, 52%, and 84% over a 12 hour period with doses of 100 mg, 140, and 280 mg respectively. There was no difference in Aβ clearance. Interpretation Stable isotope labeling of central nervous system proteins can be utilized to assess the effects of drugs on the production and clearance rates of proteins targeted as potential disease modifying treatments for Alzheimer Disease and other central nervous system disorders. Results from this approach can assist in making decisions about drug dosing and frequency in the design of larger and longer clinical trials for diseases such as Alzheimer Disease, and may accelerate effective drug validation. PMID:19360898
Łacka, Katarzyna; Florczak, Jolanta; Gradecka-Kubik, Ilona; Rajewska, Justyna; Junik, Roman
2010-03-01
Lack of thyroid hormones in the womb and the first years of life causes changes in the nervous system and mental retardation. The aim of the study was to assess changes in peripheral and central nervous system in 29 adult patients with primary congenital hypothyroidism (PCH) depending on the cause of the disease and systematic treatment of L-thyroxine. The analysis was performed in 29 adult patients with PCH (16 women, 13 men) on the basis of the results of neurological examination, EEG, SPECT (Computer tomography single photon emission) of the brain. Changes in the nervous system were found in 72% of respondents. Patients who had implemented replacement therapy L-thyroxine after completing 12 months of age showed the most neurological disorders. There were variations in the cranial nerves III, IX, IV and VI. In 34% of respondents revealed paraneoplastic cerebellar symptoms, while the pyramid, and extrapyramidal symptoms in 10% and 3% of the people. EEG showed changes in brain bioelectrical activity in the entire study group. In the 83% found a significant asymmetry in regional cerebral blood flow (rCBF). Hypoperfusion outbreak occurred mainly in the stands and leading occipital. The relationship between time of initiation of treatment, and the presence of a systematic change in the nervous system was inversely proportional. In turn, analyzing the causes of most PCH deviations were found in the nervous system in patients with athyreosis. Brain SPECT study in these patients confirmed the organic changes in brain development. CONCLUSIONS. The presence and extent of changes in peripheral and central nervous system depends on the cause PCH, pending the implementation of L-thyroxine treatment and systematic. Studies of brain SPECT and EEG confirmed the existence of developmental changes of the brain in patients with PCH.
Central Nervous System Oxygen Toxicity in Closed-Circuit Scuba Divers
1986-03-01
CENTRAL NERVOUS SYSTEM OXYGEN TOXICITY IN CLOSED -CIRCUIT SCUBA DIVERS III By F. K. Butler, Jr., LCDR, MC, USN NAVY EXPERIMENTAL DIVING UNIT DTIC...PANAMA CITY. FLORIDA 321407 IN. aLV OMW Vol NAVY EXPERIMENTAL DIVING UNIT REPORT NO. 5-86 CENTRAL NERVOUS SYSTEM OXYGEN TOXICITY IN CLOSED -CIRCUIT SCUBA...BUTLER, Jr. J . .d.M. HAMILTON LCDR, MC, USK CDR, MC, USK CDR, USKN Medical Research Officer Senior Medical Officer Comanding Officer UNCLASSIFIED 4
Interfacing with the nervous system: a review of current bioelectric technologies.
Sahyouni, Ronald; Mahmoodi, Amin; Chen, Jefferson W; Chang, David T; Moshtaghi, Omid; Djalilian, Hamid R; Lin, Harrison W
2017-10-23
The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.
Raasch, Jenni; Zeller, Nicolas; van Loo, Geert; Merkler, Doron; Mildner, Alexander; Erny, Daniel; Knobeloch, Klaus-Peter; Bethea, John R.; Waisman, Ari; Knust, Markus; Del Turco, Domenico; Deller, Thomas; Blank, Thomas; Priller, Josef; Brück, Wolfgang
2011-01-01
The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by conditional ablation of IκB kinase 2 resulted in strong preservation of central nervous system myelin, reduced expression of proinflammatory mediators and a significantly attenuated glial response. Importantly, IκB kinase 2 depletion in astrocytes, but not in oligodendrocytes, was sufficient to protect mice from myelin loss. Our results reveal a crucial role of glial cell-specific IκB kinase 2/nuclear factor kappa B signalling for oligodendrocyte damage during toxic demyelination. Thus, therapies targeting IκB kinase 2 function in non-neuronal cells may represent a promising strategy for the treatment of distinct demyelinating central nervous system diseases. PMID:21310728
Afshar, Maryam; Birnbaum, Daniel; Golden, Carla
2014-06-01
The pathogenesis of methotrexate central nervous system toxicity is multifactorial, but it is likely related to central nervous system folate homeostasis. The use of folinate rescue has been described to decrease toxicity in patients who had received intrathecal methotrexate. It has also been described in previous studies that there is an elevated level of homocysteine in plasma and cerebrospinal fluid of patients who had received intrathecal methotrexate. Homocysteine is an N-methyl-D-aspartate receptor agonist. The use of dextromethorphan, noncompetitive N-methyl-D-aspartate receptor receptor antagonist, has been used in the treatment of sudden onset of neurological dysfunction associated with methotrexate toxicity. It remains unclear whether the dextromethorphan impacted the speed of recovery, and its use remains controversial. This study reviews the use of dextromethorphan in the setting of subacute methotrexate central nervous system toxicity. Charts of 18 patients who had sudden onset of neurological impairments after receiving methotrexate and were treated with dextromethorphan were reviewed. The use of dextromethorphan in most of our patients resulted in symptomatic improvement. In this patient population, earlier administration of dextromethorphan resulted in faster improvement of impairments and led to prevention of recurrence of seizure activity induced by methotrexate central nervous system toxicity. Our study provides support for the use of dextromethorphan in patients with subacute methotrexate central nervous system toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.
Hoffmann, Christine; Ziegler, Ute; Buschmann, Anne; Weber, Artur; Kupfer, Leila; Oelschlegel, Anja; Hammerschmidt, Baerbel; Groschup, Martin H
2007-03-01
To elucidate the still-unknown pathogenesis of bovine spongiform encephalopathy (BSE), an oral BSE challenge and sequential kill study was carried out on 56 calves. Relevant tissues belonging to the peripheral and central nervous system, as well as to the lymphoreticular tract, from necropsied animals were analysed by highly sensitive immunohistochemistry and immunoblotting techniques to reveal the presence of BSE-associated pathological prion protein (PrPSc) depositions. Our results demonstrate two routes involving the autonomic nervous system through which BSE prions spread by anterograde pathways from the gastrointestinal tract (GIT) to the central nervous system (CNS): (i) via the coeliac and mesenteric ganglion complex, splanchnic nerves and the lumbal/caudal thoracic spinal cord (representing the sympathetic GIT innervation); and (ii) via the Nervus vagus (parasympathetic GIT innervation). The dorsal root ganglia seem to be subsequently affected, so it is likely that BSE prion invasion of the non-autonomic peripheral nervous system (e.g. sciatic nerve) is a secondary retrograde event following prion replication in the CNS. Moreover, BSE-associated PrPSc was already detected in the brainstem of an animal 24 months post-infection, which is 8 months earlier than reported previously. These findings are important for the understanding of BSE pathogenesis and for the development of new diagnostic strategies for this infectious disease.
... the body's defense (immune) system mistakenly attacks part of the nervous system. This leads to nerve inflammation that causes muscle ... Nerve supply to the pelvis Brain and nervous system References Katirji B. Disorders of peripheral nerves. In: Daroff RB, Jankovic J, Mazziotta ...
Neuropsychiatric lupus erythematosus, cerebral infarctions, and anticardiolipin antibodies.
Fields, R A; Sibbitt, W L; Toubbeh, H; Bankhurst, A D
1990-01-01
Anticardiolipin antibody (aCL) has been associated with thromboembolic phenomena, including stroke, in certain patients with systemic lupus erythematosus (SLE); however, the relation between this antibody and the central nervous system manifestations of SLE is unknown. Serum samples and cerebrospinal fluid from five patients with SLE and acute central nervous system manifestations were assayed for the presence of aCL. Anticardiolipin antibody was identified in sera from four of the five patients but in none of the cerebrospinal fluid samples. Nuclear magnetic resonance imaging showed 'infarct-like' lesions in these four patients. This preliminary study suggests that a correlation between serum aCL and cerebral infarcts in central nervous system lupus may potentially exist. From this limited study it seems unlikely that aCL has a direct pathogenic role in the diffuse encephalopathy of acute central nervous system lupus. Images PMID:2317112
40 CFR 158.500 - Toxicology data requirements table.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., following pre- and postnatal exposure (i.e., nervous system malformations or neuropathy, brain weight... the nervous system (e.g., SAR relationship to known neurotoxicants, altered neuroreceptor or...
Safety and Efficacy Study of VY-AADC01 for Advanced Parkinson's Disease
2018-02-27
Idiopathic Parkinson's Disease; Parkinson's Disease; Basal Ganglia Disease; Brain Diseases; Central Nervous System Diseases; Movement Disorders; Nervous System Diseases; Neurodegenerative Diseases; Parkinsonian Disorders
Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.
Dantzer, Robert
2018-01-01
Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.
Microbiota-gut-brain axis and the central nervous system.
Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei
2017-08-08
The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.
Teleost fish as a model system to study successful regeneration of the central nervous system.
Zupanc, Günther K H; Sîrbulescu, Ruxandra F
2013-01-01
Traumatic brain injury and spinal cord injury are devastating conditions that may result in death or long-term disability. A promising strategy for the development of effective cell replacement therapies involves the study of regeneration-competent organisms. Among this group, teleost fish are distinguished by their excellent potential to regenerate nervous tissue and to regain function after injury to the central nervous system. In this chapter, we summarize our current understanding of the cellular processes that mediate this regenerative potential, and we show that several of these processes are shared with the normal development of the intact central nervous system; we describe how the spontaneous self-repair of the teleostean central nervous system leads to functional recovery, at physiological and behavioral levels; we discuss the possible function of molecular factors associated with the degenerative and regenerative processes after injury; and, finally, we speculate on evolutionary aspects of adult neurogenesis and neuronal regeneration, and on how a better understanding of these aspects could catalyze the development of therapeutic strategies to overcome the regenerative limits of the mammalian CNS.
microRNA function in left-right neuronal asymmetry: perspectives from C. elegans.
Alqadah, Amel; Hsieh, Yi-Wen; Chuang, Chiou-Fen
2013-09-23
Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.
[The role of recombinant activated factor VII in neuro- surgical and neurocritical patients].
Rama-Maceiras, P; Ingelmo-Ingelmo, I; Fábregas-Juliá, N; Hernández-Palazón, J
2011-06-01
Central nervous system haemorrhage is a severe pathology, as a small amount of bleeding inside the brain can result in devastating consequences. Haemostatic agents might decrease the consequences of intra- cranial bleeding, whichever spontaneous, traumatic, or anticoagulation treatment etiology. Proacogulant recombinant activated factor VII (rFVIIa) has been given after central nervous system bleeding, with an off-label indication. In this update, we go over the drug mechanism of action, its role in the treatment of central nervous system haemorrhage and the published evidences regarding this subject. We carried out a literature review concerning the treatment with rFVIIa in central nervous system haemorrhage, neurocritical pathologies and neurosurgical procedures, searching in MEDLINE and in clinical trials registry: http://clinicaltrials.gov (last review September 2010), as well as performing a manual analysis of collected articles, looking for aditional references. The results of randomized clinical trials do not support the systematic administration of rFVIIa for spontaneous intracranial cerebral haemorrhage. In other central nervous system related haemorrhages, the current available data consist on retrospective studies, expert opinion or isolated case reports.
Farin, Azadeh; Liu, Charles Y; Langmoen, Iver A; Apuzzo, Michael L J
2009-11-01
STEM CELL THERAPY has emerged as a promising novel therapeutic endeavor for traumatic brain injury, spinal cord injury, stroke, and epilepsy in experimental studies. A few preliminary clinical trials have further supported its safety and early efficacy after transplantation into humans. Although not yet clinically available for central nervous system disorders, stem cell technology is expected to evolve into one of the most powerful tools in the biological management of complex central nervous system disorders, many of which currently have limited treatment modalities. The identification of stem cells, discovery of neurogenesis, and application of stem cells to treat central nervous system disorders represent a dramatic evolution and expansion of the neurosurgeon's capabilities into the neurorestoration and neuroregeneration realms. In Part 3 of a 5-part series on stem cells, we discuss the theory, experimental evidence, and clinical data pertaining to the use of stem cells for the treatment of traumatic, vascular, and epileptic disorders.
Differentiation of Drosophila glial cells.
Sasse, Sofia; Neuert, Helen; Klämbt, Christian
2015-01-01
Glial cells are important constituents of the nervous system and a hallmark of these cells are their pronounced migratory abilities. In Drosophila, glial lineages have been well described and some of the molecular mechanisms necessary to guide migrating glial cells to their final target sites have been identified. With the onset of migration, glial cells are already specified into one of five main glial cell types. The perineurial and subperineurial glial cells are eventually located at the outer surface of the Drosophila nervous system and constitute the blood-brain barrier. The cortex glial cells ensheath all neuroblasts and their progeny and reside within the central nervous system. Astrocyte-like cells invade the neuropil to control synaptic function and ensheathing glial cells encase the entire neuropil. Within the peripheral nervous system, wrapping glial cells ensheath individual axons or axon fascicles. Here, we summarize the current knowledge on how differentiation of glial cells into the specific subtypes is orchestrated. Furthermore, we discuss sequencing data that will facilitate further analyses of glial differentiation in the fly nervous system. © 2015 Wiley Periodicals, Inc.
Casco, V H; Izaguirre, M F; Marín, L; Vergara, M N; Lajmanovich, R C; Peltzer, P; Soler, A Peralta
2006-05-01
Tadpoles of the toad Bufo arenarum treated with cypermethrin (CY) at concentrations above 39 mug CY/L showed dose-dependent apoptotic cell death in immature cells of the central nervous system as demonstrated by morphometric analysis, the TUNEL method, and DNA fragmentation assay. Light-and electron-microscopic studies showed structural alterations in the intermediate and marginal layers of the brain. Immature cerebral tissue showed cellular shrinkage, nuclear fragmentation and increase of intercellular spaces. In this study we demonstrated high toxicity of CY to larval stages of Bufo arenarum. Our results show that doses lower than those used in routine insecticide applications can cause massive apoptosis in the immature cells of the central nervous system. These results coincide with our previous studies in Physalaemus biligonigerus, confirming the severe toxic effects of CY to the central nervous system of anuran species from Argentina. This may increase the mortality index in wild animals and contribute to the loss of biodiversity in our agroecosystems. We postulate that CY induces apoptosis in central nervous system cells of Bufo arenarum tadpoles by specific neurotoxic mechanisms.
Nervous system examination on YouTube.
Azer, Samy A; Aleshaiwi, Sarah M; Algrain, Hala A; Alkhelaif, Rana A
2012-12-22
Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words "nervous system examination", "nervous system clinical examination", "cranial nerves examination", "CNS examination", "examination of cerebellum", "balance and coordination examination". Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Currently, YouTube provides an adequate resource for learning nervous system examination, which can be used by medical students. However, there were deficiencies in videos covering examination of the cerebellum and balance system. Useful videos can be used as learning resources to medical students.
Nervous system examination on YouTube
2012-01-01
Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Conclusions Currently, YouTube provides an adequate resource for learning nervous system examination, which can be used by medical students. However, there were deficiencies in videos covering examination of the cerebellum and balance system. Useful videos can be used as learning resources to medical students. PMID:23259768
Sensor-based fine telemanipulation for space robotics
NASA Technical Reports Server (NTRS)
Andrenucci, M.; Bergamasco, M.; Dario, P.
1989-01-01
The control of a multifingered hand slave in order to accurately exert arbitrary forces and impart small movements to a grasped object is, at present, a knotty problem in teleoperation. Although a number of articulated robotic hands have been proposed in the recent past for dexterous manipulation in autonomous robots, the possible use of such hands as slaves in teleoperated manipulation is hindered by the present lack of sensors in those hands, and (even if those sensors were available) by the inherent difficulty of transmitting to the master operator the complex sensations elicited by such sensors at the slave level. An analysis of different problems related to sensor-based telemanipulation is presented. The general sensory systems requirements for dexterous slave manipulators are pointed out and the description of a practical sensory system set-up for the developed robotic system is presented. The problem of feeding back to the human master operator stimuli that can be interpreted by his central nervous system as originated during real dexterous manipulation is then considered. Finally, some preliminary work aimed at developing an instrumented glove designed purposely for commanding the master operation and incorporating Kevlar tendons and tension sensors, is discussed.
21 CFR 1308.13 - Schedule III.
Code of Federal Regulations, 2014 CFR
2014-04-01
... a stimulant effect on the central nervous system, including its salts, isomers (whether optical... any quantity of the following substances having a depressant effect on the central nervous system: (1...
21 CFR 1308.13 - Schedule III.
Code of Federal Regulations, 2012 CFR
2012-04-01
... a stimulant effect on the central nervous system, including its salts, isomers (whether optical... any quantity of the following substances having a depressant effect on the central nervous system: (1...
21 CFR 1308.13 - Schedule III.
Code of Federal Regulations, 2013 CFR
2013-04-01
... a stimulant effect on the central nervous system, including its salts, isomers (whether optical... any quantity of the following substances having a depressant effect on the central nervous system: (1...
... of these disorders. Additional studies will emphasize the quantitative analysis of the central nervous system structure and ... of these disorders. Additional studies will emphasize the quantitative analysis of the central nervous system structure and ...
Autonomic innervation of the fish gut.
Olsson, Catharina
2009-01-01
The enteric nervous system follows a similar overall arrangement in all vertebrate groups. In fish, the majority of nerve cell bodies are found in the myenteric plexus, innervating muscles, blood vessels and glands. In this review, I describe similarities and differences in size, shape and transmitter content in enteric neurons in different fish species and also in comparison with other vertebrates, foremost mammals. The use of different histological and immunochemical methods is reviewed in a historical perspective including advantages and disadvantages of different methods. Lately, zebrafish have become an important model species for developmental studies of the nervous system, including the enteric nervous system, and this is briefly discussed. Finally, examples of how the enteric nervous system controls gut activity in fish is presented, focussing on the effect on gastrointestinal motility.
Central nervous system tissue heterotopia of the nose: case report and review of the literature
Altissimi, G; Ascani, S; Falcetti, S; Cazzato, C; Bravi, I
2009-01-01
Summary The Authors present a case of heterotopic central nervous system tissue observed in an 81-year-old male in the form of an ethmoidal polyp. A review of the literature indicates that this is a rare condition characterised by a connective tissue lesion with astrocytic and oligodendrocytic glial cells, which may be located outside the nasal pyramid in some cases and inside the nasal cavity in others. The most important diagnostic aspect involves differentiating these from meningoencephalocele, which maintains an anatomical connection with central nervous system tissue. Contrast-enhanced imaging is essential for diagnosis, as in cases of heterotopic central nervous system tissue, it will demonstrate that there are no connections with intra-cranial tissue. Endoscopic excision is the treatment of choice. PMID:20161881
Cooper-Vince, Christine E.; DeSerisy, Mariah; Cornacchio, Danielle; Sanchez, Amanda; McLaughlin, Katie A.; Comer, Jonathan S.
2017-01-01
Parasympathetic nervous system influences on cardiac functions—commonly indexed via respiratory sinus arrhythmia (RSA)—are central to self-regulation. RSA suppression during challenging emotional and cognitive tasks is often associated with better emotional and behavioral functioning in preschoolers. However, the links between RSA suppression and child behavior across various challenging interpersonal contexts remains unclear. The present study experimentally evaluated the relationship between child RSA reactivity to adult (mother vs. study staff) direction and disruptive behavior problems in children ages 3–8 with varying levels of disruptive behavior problems (N=43). Reduced RSA suppression in the context of mothers’ play-based direction was associated with more severe child behavior problems. In contrast, RSA suppression in the context of staff play-based direction was not associated with behavior problems. Findings suggest that the association between RSA suppression and child behavior problems may vary by social context (i.e., mother vs. other adult direction-givers). Findings are discussed in regard to RSA as an indicator of autonomic self-regulation that has relevance to child disruptive behavior problems. PMID:28261792
Designing and Implementing Nervous System Simulations on LEGO Robots
Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph
2013-01-01
We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.1 The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum. PMID:23728477
Khat (Catha edulis): health aspects of khat chewing.
Hassan, N A G M; Gunaid, A A; Murray-Lyon, I M
2007-01-01
Catha edulis Forsk leaves (khat) are chewed daily by a high proportion of the adult population in Yemen for the mild stimulant effect. Cathinone is believed to be the main active ingredient in fresh khat leaves and is structurally related and pharmacologically similar to amphetamine. The habit of khat chewing is widespread with a deep-rooted sociocultural tradition in Yemen and as such poses a public health problem. The objective of this literature review was to examine studies on khat, particularly human studies, with special reference to its effect on the central nervous system, cardiovascular, digestive and genitourinary systems, oral-dental tissues, diabetes mellitus and cancer.
Hatayama, Tomoko; Kitamura, Shingo; Tamura, Chihiro; Nagano, Mayumi; Ohnuki, Koichiro
2008-12-01
The aim of this study was to clarify the effects of 45 min of facial massage on the activity of autonomic nervous system, anxiety and mood in 32 healthy women. Autonomic nervous activity was assessed by heart rate variability (HRV) with spectral analysis. In the spectral analysis of HRV, we evaluated the high-frequency components (HF) and the low- to high-frequency ratio (LF/HF ratio), reflecting parasympathetic nervous activity and sympathetic nervous activity, respectively. The State Trait Anxiety Inventory (STAI) and the Profile of Mood Status (POMS) were administered to evaluate psychological status. The score of STAI and negative scale of POMS were significantly reduced following the massage, and only the LF/HF ratio was significantly enhanced after the massage. It was concluded that the facial massage might refresh the subjects by reducing their psychological distress and activating the sympathetic nervous system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... substances having a depressant effect on the central nervous system, including its salts, isomers, and salts... following substances having a stimulant effect on the central nervous system, including its salts, isomers...
Code of Federal Regulations, 2012 CFR
2012-04-01
... substances having a depressant effect on the central nervous system, including its salts, isomers, and salts... following substances having a stimulant effect on the central nervous system, including its salts, isomers...
Code of Federal Regulations, 2013 CFR
2013-04-01
... substances having a depressant effect on the central nervous system, including its salts, isomers, and salts... following substances having a stimulant effect on the central nervous system, including its salts, isomers...
... does not close properly before birth), or other nervous system conditions that affect the bladder muscles. Oxybutynin is ... the body); myasthenia gravis (a disorder of the nervous system that causes muscle weakness); fast or irregular heartbeat; ...
Code of Federal Regulations, 2011 CFR
2011-04-01
... substances having a depressant effect on the central nervous system, including its salts, isomers, and salts... following substances having a stimulant effect on the central nervous system, including its salts, isomers...
... in people with Parkinson's disease (a brain and nervous system disease with symptoms of slowing of movement, muscle ... develops abnormal protein structures, and the brain and nervous system are destroyed over time). Talk to your doctor ...
... healthy cells. The Merck Manual states the following: Radiation Injury to the Nervous System: The nervous system can be damaged by radiation therapy. Acute and subacute transient symptoms may develop early, but ...
Swanson, Larry W.; Bota, Mihail
2010-01-01
The nervous system is a biological computer integrating the body's reflex and voluntary environmental interactions (behavior) with a relatively constant internal state (homeostasis)—promoting survival of the individual and species. The wiring diagram of the nervous system's structural connectivity provides an obligatory foundational model for understanding functional localization at molecular, cellular, systems, and behavioral organization levels. This paper provides a high-level, downwardly extendible, conceptual framework—like a compass and map—for describing and exploring in neuroinformatics systems (such as our Brain Architecture Knowledge Management System) the structural architecture of the nervous system's basic wiring diagram. For this, the Foundational Model of Connectivity's universe of discourse is the structural architecture of nervous system connectivity in all animals at all resolutions, and the model includes two key elements—a set of basic principles and an internally consistent set of concepts (defined vocabulary of standard terms)—arranged in an explicitly defined schema (set of relationships between concepts) allowing automatic inferences. In addition, rules and procedures for creating and modifying the foundational model are considered. Controlled vocabularies with broad community support typically are managed by standing committees of experts that create and refine boundary conditions, and a set of rules that are available on the Web. PMID:21078980
Autonomic nervous system involvement in pulmonary arterial hypertension.
Vaillancourt, Mylène; Chia, Pamela; Sarji, Shervin; Nguyen, Jason; Hoftman, Nir; Ruffenach, Gregoire; Eghbali, Mansoureh; Mahajan, Aman; Umar, Soban
2017-12-04
Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease characterized by increased pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Autonomic nervous system involvement in the pathogenesis of PAH has been demonstrated several years ago, however the extent of this involvement is not fully understood. PAH is associated with increased sympathetic nervous system (SNS) activation, decreased heart rate variability, and presence of cardiac arrhythmias. There is also evidence for increased renin-angiotensin-aldosterone system (RAAS) activation in PAH patients associated with clinical worsening. Reduction of neurohormonal activation could be an effective therapeutic strategy for PAH. Although therapies targeting adrenergic receptors or RAAS signaling pathways have been shown to reverse cardiac remodeling and improve outcomes in experimental pulmonary hypertension (PH)-models, the effectiveness and safety of such treatments in clinical settings have been uncertain. Recently, novel direct methods such as cervical ganglion block, pulmonary artery denervation (PADN), and renal denervation have been employed to attenuate SNS activation in PAH. In this review, we intend to summarize the multiple aspects of autonomic nervous system involvement in PAH and overview the different pharmacological and invasive strategies used to target autonomic nervous system for the treatment of PAH.
Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J
2016-04-30
Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.
Alpha-7 Nicotinic Receptors in Nervous System Disorders: From Function to Therapeutic Perspectives.
De Jaco, Antonella; Bernardini, Laura; Rosati, Jessica; Tata, Ada Maria
2017-01-01
The α7 nicotinic receptor consists of identical subunits and is one of the most abundant acetylcholine receptors in the mammalian central nervous system. However its expression is also found in the peripheral nervous system as well as in the immune system and various peripheral tissues. Nicotinic Receptors: They are involved in the regulation of several activities ranging from excitatory neurotransmission, the modulation of the release of several neurotransmitters, regulation of neurite outgrowth, and even neuronal survival/death. Its expression is found in brain areas that underlie learning and memory, suggesting their involvement in regulating cognitive functions. The α7-nicotinic receptor has a strategic role during development in regulating molecular pathways activated during neurogenesis. Because of its pleiotropic effects, receptor dysfunction or dysregulated expression is found in pathophysiological conditions of the nervous system including neurodegenerative diseases and neurodevelopmental disorders. Here we review the physiological and pathological roles of alpha-7 nicotinic receptor in different nervous system disorders and the current therapeutic strategies developed to target selectively this receptor for potentiating or reducing its functions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Rare Primary Central Nervous System Tumors
Kubicky, Charlotte Dai; Sahgal, Arjun; Chang, Eric L.; Lo, Simon S.
2014-01-01
There are close to 70,000 new cases of primary central nervous system tumors diagnosed annually in the United States. Meningiomas, gliomas, nerve sheath tumors and pituitary tumors account for 85% of them. There is abundant literature on these commonly occurring tumors but data from the literature on infrequently encountered tumors such as atypical teratoid/rhabdoid tumor, choroid plexus carcinoma, ganglioglioma, hemangiopericytoma, and pleomorphic xanthoastrocytoma are limited. This review provides an overview of the clinicopathologic and therapeutic aspects of these rare primary central nervous system tumors. PMID:25276324
A pediatric renal lymphoma case presenting with central nervous system findings.
Baran, Ahmet; Küpeli, Serhan; Doğru, Omer
2013-06-01
In pediatric patients renal lymphoma frequently presents in the form of multiple, bilateral mass lesions, infrequently as a single or retroperitoneal mass, and rarely as diffuse infiltrative lesions. In patients with apparent central nervous system involvement close attention to other physical and laboratory findings are essential for preventing a delay in the final diagnosis. Herein we present a pediatric patient with renal lymphoma that presented with central nervous system findings that caused a delay in diagnosis. None declared.
Role of Neuroactive Steroids in the Peripheral Nervous System
Melcangi, Roberto Cosimo; Giatti, Silvia; Pesaresi, Marzia; Calabrese, Donato; Mitro, Nico; Caruso, Donatella; Garcia-Segura, Luis Miguel
2011-01-01
Several reviews have so far pointed out on the relevant physiological and pharmacological role exerted by neuroactive steroids in the central nervous system. In the present review we summarize observations indicating that synthesis and metabolism of neuroactive steroids also occur in the peripheral nerves. Interestingly, peripheral nervous system is also a target of their action. Indeed, as here reported neuroactive steroids are physiological regulators of peripheral nerve functions and they may also represent interesting therapeutic tools for different types of peripheral neuropathy. PMID:22654839
Jóźwiak, Sergiusz; Podogrodzki, Jacek
2010-01-01
The paper compares effectiveness of NDT-Bobath and Vojta methods in the treatment of selected dysfunctions of the nervous system in children. It evaluates applicability of both methods in prenatal and perinatal injury of the central nervous system, myelomeningocele, Down syndrome and spasticity. The existing literature is supplemented by own clinical experience of the authors. The paper forms the opinion on the constant debates on the superiority of one method over another.
Code of Federal Regulations, 2014 CFR
2014-04-01
... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... on the central nervous system, including its salts, isomers, and salts of isomers: (1) Aminorex (Some...
Sarcoidosis - nervous system ... Sarcoidosis is a long-term disorder that affects many parts of the body, mostly the lungs. In ... is another part of the nervous system that sarcoidosis can affect. People may have weakness in their ...
... brain, spinal cord, and nerves make up the nervous system. Together they control all the workings of the ... something goes wrong with a part of your nervous system, you can have trouble moving, speaking, swallowing, breathing, ...
Childhood Astrocytomas Treatment
... symptoms and almost all need treatment. The central nervous system controls many important body functions. Astrocytomas are most common in these parts of the central nervous system (CNS): Cerebrum : The largest part of the brain, ...
Chitty, Kate M; Evans, Elizabeth; Torr, Jennifer J; Iacono, Teresa; Brodaty, Henry; Sachdev, Perminder; Trollor, Julian N
2016-04-01
Information on the rates and predictors of polypharmacy of central nervous system medication in older people with intellectual disability is limited, despite the increased life expectancy of this group. This study examined central nervous system medication use in an older sample of people with intellectual disability. Data regarding demographics, psychiatric diagnoses and current medications were collected as part of a larger survey completed by carers of people with intellectual disability over the age of 40 years. Recruitment occurred predominantly via disability services across different urban and rural locations in New South Wales and Victoria. Medications were coded according to the Monthly Index of Medical Specialties central nervous system medication categories, including sedatives/hypnotics, anti-anxiety agents, antipsychotics, antidepressants, central nervous system stimulants, movement disorder medications and anticonvulsants. The Developmental Behaviour Checklist for Adults was used to assess behaviour. Data were available for 114 people with intellectual disability. In all, 62.3% of the sample was prescribed a central nervous system medication, with 47.4% taking more than one. Of those who were medicated, 46.5% had a neurological diagnosis (a seizure disorder or Parkinson's disease) and 45.1% had a psychiatric diagnosis (an affective or psychotic disorder). Linear regression revealed that polypharmacy was predicted by the presence of neurological and psychiatric diagnosis, higher Developmental Behaviour Checklist for Adults scores and male gender. This study is the first to focus on central nervous system medication in an older sample with intellectual disability. The findings are in line with the wider literature in younger people, showing a high degree of prescription and polypharmacy. Within the sample, there seems to be adequate rationale for central nervous system medication prescription. Although these data do not indicate non-adherence to guidelines for prescribing in intellectual disability, the high rate of polypharmacy and its relationship to Developmental Behaviour Checklist for Adults scores reiterate the importance of continued medication review in older people with intellectual disability. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Arisawa, Hirohiko; Fukui, Kenji; Fujise, Nobuaki; Masunaga, Hiroaki
2002-01-01
A novel muscarinic receptor agonist SNI-2011 ((+/-)-cis-2-methylspirol[1,3-oxathiolane-5,3'-quinuclidine] monohydrochloride hemihydrate, cevimeline, CAS 153504-70-2), is a candidate therapeutic drug for xerostomia in Sjögren's syndrome. The general pharmacological properties of this drug on the somatic nervous system and on the autonomic nervous system and smooth muscle were investigated in mice, rats, guinea pigs, rabbits and cats. 1. Somatic nervous system: SNI-2011 had no effect on the neuromuscular junction in rats and no muscle relaxant effect in mice. No surface anesthetic effect was observed in guinea pigs, but infiltration anesthetic effect was found after intracutaneous injection of solution (1% or higher). 2. Autonomic nervous system and smooth muscle: SNI-2011 tended to cause mydriasis at 3 mg/kg i.v. or higher in rabbits and dose-dependently caused mydriasis at 10 mg/kg p.o. or higher in rats. Mydriasis in rats was also observed by ophthalmic instillation, caused via the peripheral muscarinic acetylcholine receptors. SNI-2011 elevated the base line tension of nictitating membrane in cats when it was injected intravenously at 3 mg/kg or higher. In the smooth muscle, SNI-2011 increased the spontaneous movement of isolated rabbit ileum (1 x 10(-6) mol/l or higher), contractions of isolated guinea pig ileum (1 x 10(-6) mol/l or higher) and isolated guinea pig trachea (3 x 10(-6) mol/l or higher). SNI-2011 relaxed the histamine- and noradrenaline-induced contractions of isolated guinea pig aorta and augmented noradrenaline- and phenylephrine-induced contractions of isolated rat vas deferens. These effects were induced by relatively higher concentrations only i.e. 1 x 10(-5) mol/l or higher. From these results, SNI-2011 has muscarinic side effects on the somatic nervous system and on the autonomic nervous system and smooth muscle, however, in the case of oral administration, that is clinical administration route, SNI-2011 caused no muscarinic side effect at the effective doses needed for saliva secretion.
Guillemot-Legris, Owein; Masquelier, Julien; Everard, Amandine; Cani, Patrice D; Alhouayek, Mireille; Muccioli, Giulio G
2016-08-26
Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks) a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest on a primary co-culture of astrocytes and microglial cells. We measured an increase in the inflammatory tone in the cerebellum at the different time-points. However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two different regions of the central nervous system, specifically an increase in the cerebellum and no modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly suggest region-dependent as well as time-dependent adaptations of the central nervous system to the high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing enabled us to identify three classes of lipids-phosphatidylinositols, phosphatidylethanolamines, and lysophosphatidylcholines-as well as palmitoylethanolamide, as potentially responsible for the difference in inflammatory tone. This study demonstrates that the inflammatory tone induced by a high-fat diet does not similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize their activity and their role in controlling inflammation in the central nervous system.
The effect of spaceflight and microgravity on the human brain.
Van Ombergen, Angelique; Demertzi, Athena; Tomilovskaya, Elena; Jeurissen, Ben; Sijbers, Jan; Kozlovskaya, Inessa B; Parizel, Paul M; Van de Heyning, Paul H; Sunaert, Stefan; Laureys, Steven; Wuyts, Floris L
2017-10-01
Microgravity, confinement, isolation, and immobilization are just some of the features astronauts have to cope with during space missions. Consequently, long-duration space travel can have detrimental effects on human physiology. Although research has focused on the cardiovascular and musculoskeletal system in particular, the exact impact of spaceflight on the human central nervous system remains to be determined. Previous studies have reported psychological problems, cephalic fluid shifts, neurovestibular problems, and cognitive alterations, but there is paucity in the knowledge of the underlying neural substrates. Previous space analogue studies and preliminary spaceflight studies have shown an involvement of the cerebellum, cortical sensorimotor, and somatosensory areas and the vestibular pathways. Extending this knowledge is crucial, especially in view of long-duration interplanetary missions (e.g., Mars missions) and space tourism. In addition, the acquired insight could be relevant for vestibular patients, patients with neurodegenerative disorders, as well as the elderly population, coping with multisensory deficit syndromes, immobilization, and inactivity.
Personality change at the intersection of autonomic arousal and stress.
Hart, Daniel; Eisenberg, Nancy; Valiente, Carlos
2007-06-01
We hypothesized that personality change in children can be predicted by the interaction of family risk with susceptibility to autonomic arousal and that children characterized by both high-risk families and highly reactive autonomic nervous systems tend to show maladaptive change. This hypothesis was tested in a 6-year longitudinal study in which personality-type prototypicality, problem behavior, and negative emotional intensity were measured at 2-year intervals. The results indicated that children who both had exaggerated skin conductance responses (a measure of autonomic reactivity) and were living in families with multiple risk factors were most likely to develop an undercontrolled personality type and to exhibit increases in problem behavior and negative emotional intensity. The implications of the results for understanding personality change are discussed.
Oncogenic role of cytomegalovirus in medulloblastoma?
Hortal, Alejandro M; Vermeulen, Jeroen F; Van Hecke, Wim; Bovenschen, Niels
2017-11-01
Medulloblastoma is the most common solid tumor among children. Current therapeutic strategies for this malignancy include surgical resection, radiation therapy and chemotherapy. However, these treatments are accompanied with serious side effects such as neurological complications and psychosocial problems, due to the severity of treatment on the developing nervous system. To solve this problem, novel therapeutic approaches are currently being investigated. One of them is targeting human cytomegalovirus in medulloblastoma cancer cells. However, this approach is still under debate, since the presence of cytomegalovirus in medulloblastomas remains controversial. In this review, we discuss the current controversies on the role of cytomegalovirus in medulloblastoma oncogenesis and the potential of cytomegalovirus as a novel (immuno)therapeutic target. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
[Advance of genetics and genomics in neurology].
Ginter, E K; Illarioshkin, S N
2012-01-01
Studies of genomic background of neurological disorders are very actual in view of their high population prevalence, severe course, serious impact on patients' disability and progressive mental and physical de-adaptation. In the paper, problems of genetic heterogeneity of hereditary neurological disorders and character of the respective genetic burden in the regions of Russian Federation are discussed in detail, a 'dynamic' type of mutations (increase in number of microsatellite repeats copies) attributable to many neurodegenerative diseases is analyzed, and achievements of Russian researchers in the identification of genes for hereditary neurological disorders and in the realization of pilot protocols of gene therapy are presented. Problems related to studies of genetic predisposition to common multifactorial diseases of the nervous system are discussed.
Dextromethorphan and Quinidine
... is in a class of medications called central nervous system agents. The way it works in the brain ... ever had myasthenia gravis (a disorder of the nervous system that causes muscle weakness), a history of street ...
Entinostat in Treating Pediatric Patients With Recurrent or Refractory Solid Tumors
2018-05-23
Childhood Brain Stem Neoplasm; Childhood Lymphoma; Childhood Solid Neoplasm; Pineal Region Neoplasm; Recurrent Childhood Central Nervous System Neoplasm; Recurrent Childhood Visual Pathway Glioma; Refractory Central Nervous System Neoplasm
Increased intracranial pressure
... the membranes covering the brain and spinal cord) Subdural hematoma (bleeding between the covering of the brain and ... intracranial pressure Patient Instructions Ventriculoperitoneal shunt - discharge Images Subdural hematoma Central nervous system and peripheral nervous system References ...
Brain and nervous system (image)
The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, ...
Rimério, Carla Aparecida Tavares; De Oliveira, Renato Souza; de Almeida Bonatelli, Murilo Queiroz; Nucci, Anamarli; Costa, Sandra Cecília Botelho; Bonon, Sandra Helena Alves
2015-04-01
Infections of the central nervous systems (CNS) present a diagnostic problem for which an accurate laboratory diagnosis is essential. Invasive practices, such as cerebral biopsy, have been replaced by obtaining a polymerase chain reaction (PCR) diagnosis using cerebral spinal fluid (CSF) as a reference method. Tests on DNA extracted from plasma are noninvasive, thus avoiding all of the collateral effects and patient risks associated with CSF collection. This study aimed to determine whether plasma can replace CSF in nested PCR analysis for the detection of CNS human herpesvirus (HHV) diseases by analysing the proportion of patients whose CSF nested PCR results were positive for CNS HHV who also had the same organism identified by plasma nested PCR. In this study, CSF DNA was used as the "gold standard," and nested PCR was performed on both types of samples. Fifty-two patients with symptoms of nervous system infection were submitted to CSF and blood collection. For the eight HHV, one positive DNA result-in plasma and/or CSF nested PCR-was considered an active HHV infection, whereas the occurrence of two or more HHVs in the same sample was considered a coinfection. HHV infections were positively detected in 27/52 (51.9%) of the CSF and in 32/52 (61.5%) of the plasma, difference not significant, thus nested PCR can be performed on plasma instead of CSF. In conclusion, this findings suggest that plasma as a useful material for the diagnosis of cases where there is any difficulty to perform a CSF puncture. © 2015 Wiley Periodicals, Inc.
Delalande, Jean-Marie; Thapar, Nikhil; Burns, Alan J
2015-05-28
All developing organs need to be connected to both the nervous system (for sensory and motor control) as well as the vascular system (for gas exchange, fluid and nutrient supply). Consequently both the nervous and vascular systems develop alongside each other and share striking similarities in their branching architecture. Here we report embryonic manipulations that allow us to study the simultaneous development of neural crest-derived nervous tissue (in this case the enteric nervous system), and the vascular system. This is achieved by generating chicken chimeras via transplantation of discrete segments of the neural tube, and associated neural crest, combined with vascular DiI injection in the same embryo. Our method uses transgenic chick(GFP) embryos for intraspecies grafting, making the transplant technique more powerful than the classical quail-chick interspecies grafting protocol used with great effect since the 1970s. Chick(GFP)-chick intraspecies grafting facilitates imaging of transplanted cells and their projections in intact tissues, and eliminates any potential bias in cell development linked to species differences. This method takes full advantage of the ease of access of the avian embryo (compared with other vertebrate embryos) to study the co-development of the enteric nervous system and the vascular system.
Delalande, Jean-Marie; Thapar, Nikhil; Burns, Alan J.
2015-01-01
All developing organs need to be connected to both the nervous system (for sensory and motor control) as well as the vascular system (for gas exchange, fluid and nutrient supply). Consequently both the nervous and vascular systems develop alongside each other and share striking similarities in their branching architecture. Here we report embryonic manipulations that allow us to study the simultaneous development of neural crest-derived nervous tissue (in this case the enteric nervous system), and the vascular system. This is achieved by generating chicken chimeras via transplantation of discrete segments of the neural tube, and associated neural crest, combined with vascular DiI injection in the same embryo. Our method uses transgenic chickGFP embryos for intraspecies grafting, making the transplant technique more powerful than the classical quail-chick interspecies grafting protocol used with great effect since the 1970s. ChickGFP-chick intraspecies grafting facilitates imaging of transplanted cells and their projections in intact tissues, and eliminates any potential bias in cell development linked to species differences. This method takes full advantage of the ease of access of the avian embryo (compared with other vertebrate embryos) to study the co-development of the enteric nervous system and the vascular system. PMID:26065540
40 CFR 721.8825 - Substituted methylpyridine and substituted 2-phenoxypyridine.
Code of Federal Regulations, 2014 CFR
2014-07-01
... nervous system toxicity unless the specified protective equipment is used. (3) The significant new uses... present a hazard of liver, kidney, and nervous system toxicity unless the specified protective equipment...
25 CFR 11.451 - Abuse of psychotoxic chemical solvents.
Code of Federal Regulations, 2010 CFR
2010-04-01
... causing intoxication, inebriation, excitement, stupefaction, or the dulling of the brain or nervous system... the brain or nervous system. (d) The statement listing the contents of a substance packaged in a...
25 CFR 11.451 - Abuse of psychotoxic chemical solvents.
Code of Federal Regulations, 2011 CFR
2011-04-01
... causing intoxication, inebriation, excitement, stupefaction, or the dulling of the brain or nervous system... the brain or nervous system. (d) The statement listing the contents of a substance packaged in a...
21 CFR 250.201 - Preparations for the treatment of pernicious anemia.
Code of Federal Regulations, 2014 CFR
2014-04-01
... be markedly deleterious effects on the nervous system. It is well established that whereas the development of anemia is completely reversible with adequate treatment, the involvement of the nervous system...
21 CFR 250.201 - Preparations for the treatment of pernicious anemia.
Code of Federal Regulations, 2010 CFR
2010-04-01
... be markedly deleterious effects on the nervous system. It is well established that whereas the development of anemia is completely reversible with adequate treatment, the involvement of the nervous system...
25 CFR 11.451 - Abuse of psychotoxic chemical solvents.
Code of Federal Regulations, 2014 CFR
2014-04-01
... causing intoxication, inebriation, excitement, stupefaction, or the dulling of the brain or nervous system... the brain or nervous system. (d) The statement listing the contents of a substance packaged in a...
21 CFR 250.201 - Preparations for the treatment of pernicious anemia.
Code of Federal Regulations, 2012 CFR
2012-04-01
... be markedly deleterious effects on the nervous system. It is well established that whereas the development of anemia is completely reversible with adequate treatment, the involvement of the nervous system...
25 CFR 11.451 - Abuse of psychotoxic chemical solvents.
Code of Federal Regulations, 2013 CFR
2013-04-01
... causing intoxication, inebriation, excitement, stupefaction, or the dulling of the brain or nervous system... the brain or nervous system. (d) The statement listing the contents of a substance packaged in a...
25 CFR 11.451 - Abuse of psychotoxic chemical solvents.
Code of Federal Regulations, 2012 CFR
2012-04-01
... causing intoxication, inebriation, excitement, stupefaction, or the dulling of the brain or nervous system... the brain or nervous system. (d) The statement listing the contents of a substance packaged in a...
21 CFR 250.201 - Preparations for the treatment of pernicious anemia.
Code of Federal Regulations, 2013 CFR
2013-04-01
... be markedly deleterious effects on the nervous system. It is well established that whereas the development of anemia is completely reversible with adequate treatment, the involvement of the nervous system...
40 CFR 721.8825 - Substituted methylpyridine and substituted 2-phenoxypyridine.
Code of Federal Regulations, 2013 CFR
2013-07-01
... nervous system toxicity unless the specified protective equipment is used. (3) The significant new uses... present a hazard of liver, kidney, and nervous system toxicity unless the specified protective equipment...
40 CFR 721.8825 - Substituted methylpyridine and substituted 2-phenoxypyridine.
Code of Federal Regulations, 2011 CFR
2011-07-01
... nervous system toxicity unless the specified protective equipment is used. (3) The significant new uses... present a hazard of liver, kidney, and nervous system toxicity unless the specified protective equipment...
40 CFR 721.8825 - Substituted methylpyridine and substituted 2-phenoxypyridine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... nervous system toxicity unless the specified protective equipment is used. (3) The significant new uses... present a hazard of liver, kidney, and nervous system toxicity unless the specified protective equipment...
21 CFR 250.201 - Preparations for the treatment of pernicious anemia.
Code of Federal Regulations, 2011 CFR
2011-04-01
... be markedly deleterious effects on the nervous system. It is well established that whereas the development of anemia is completely reversible with adequate treatment, the involvement of the nervous system...
40 CFR 721.8825 - Substituted methylpyridine and substituted 2-phenoxypyridine.
Code of Federal Regulations, 2012 CFR
2012-07-01
... nervous system toxicity unless the specified protective equipment is used. (3) The significant new uses... present a hazard of liver, kidney, and nervous system toxicity unless the specified protective equipment...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-25
... Nervous System Proteinopathies, Including Parkinson's Disease AGENCY: National Institutes of Health... limited to ``Treatment of Gaucher disease and human central nervous system proteinopathies, including...
... the injury of a nerve attached to a muscle, and weakness due to nervous system disorders, such as muscle diseases. ... syndrome (autoimmune disorder of the nerves that causes muscle ... (a nervous system disorder that involves damage to at least 2 ...
... Staying Safe Videos for Educators Search English Español Brain and Nervous System KidsHealth / For Parents / Brain and ... healthy, and remove waste products. All About the Brain The brain is made up of three main ...
[Systemic paracoccidioidomycosis with central nervous system involvement].
Duarte, A L; Baruffa, G; Terra, H B; Renck, D V; de Moura, D; Petrucci, C
1999-01-01
A clinical case of a patient bearing systemic paracoccidioidomycosis with regional ganglionic and oral exposure and later pulmonary involvement is presented. The patient was treated with specific drugs (amphotericin B, itraconazole, sulfamethoxazole-trimethoprim) and followed throughout a 6-year period and eventually died showing an extensive involvement of the central nervous system.
Fujisawa, Etsuco; Shibayama, Hidehiro; Mitobe, Fumi; Katada, Fumiaki; Sato, Susumu; Fukutake, Toshio
2017-11-25
There have been 23 reports of primary central nervous system anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma in the literature. Here we report the 24th case of a 40-year-old man who presented with occipital headache for one month. His contrast-enhanced brain MRI showed enhancement around the right temporal lobe, which suggested a diagnosis of hypertrophic pachymeningitis. He improved with steroid therapy. After discharge, however, he was readmitted with generalized convulsive seizures. Finally, he was diagnosed as primary central nervous system ALK-positive anaplastic large cell lymphoma by brain biopsy. Primary central nervous system lymphoma invading dura matter can rarely manifests as a unilateral pachymeningitis. Therefore, in case of pachymeningitis, we should pay attention to the possibility of infiltration of lymophoma with meticulous clinical follow-up.
Hall, S G; Bieber, A J
1997-03-01
We have identified and characterized three embryonic lethal mutations that alter or abolish expression of Drosophila Neuroglian and have used these mutations to analyze Neuroglian function during development. Neuroglian is a member of the immunoglobulin superfamily. It is expressed by a variety of cell types during embryonic development, including expression on motoneurons and the muscle cells that they innervate. Examination of the nervous systems of neuroglian mutant embryos reveals that motoneurons have altered pathfinding trajectories. Additionally, the sensory cell bodies of the peripheral nervous system display altered morphology and patterning. Using a temperature-sensitive mutation, the phenocritical period for Neuroglian function was determined to occur during late embryogenesis, an interval which coincides with the period during which neuromuscular connections and the peripheral nervous system pattern are established.
The Central Nervous System Sites Mediating the Orexigenic Actions of Ghrelin
Mason, B.L.; Wang, Q.; Zigman, J.M.
2014-01-01
The peptide hormone ghrelin is important for both homeostatic and hedonic eating behaviors, and its orexigenic actions occur mainly via binding to the only known ghrelin receptor, the growth hormone secretagogue receptor (GHSR). GHSRs are located in several distinct regions of the central nervous system. This review discusses those central nervous system sites that have been found to play critical roles in the orexigenic actions of ghrelin, including hypothalamic nuclei, the hippocampus, the amygdala, the caudal brain stem, and midbrain dopaminergic neurons. Hopefully, this review can be used as a stepping stone for the reader wanting to gain a clearer understanding of the central nervous system sites of direct ghrelin action on feeding behavior, and as inspiration for future studies to provide an even-more-detailed map of the neurocircuitry controlling eating and body weight. PMID:24111557
Effects of Brazilian scorpion venoms on the central nervous system.
Nencioni, Ana Leonor Abrahão; Neto, Emidio Beraldo; de Freitas, Lucas Alves; Dorce, Valquiria Abrão Coronado
2018-01-01
In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group, T. serrulatus , T. bahiensis , T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus , T. silvestres, T. brazilae , T. confluens , T. costatus , T. fasciolatus and T. neglectus are also found in the country, but the incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms - such as myocardial damage, cardiac arrhythmias, pulmonary edema and shock - are mainly due to the release of mediators from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous system and inflammatory response in the process. The participation of the central nervous system in envenoming has always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct participation of the central nervous system in the envenoming process. This review summarizes the major findings on the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally. Most of the studies have been performed with T. serrulatus and T. bahiensis . Little information is available regarding the other Brazilian Tityus species.
Central nervous system complications after liver transplantation.
Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu
2015-08-01
We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Axonal sprouting and laminin appearance after destruction of glial sheaths.
Masuda-Nakagawa, L M; Muller, K J; Nicholls, J G
1993-01-01
Laminin, a large extracellular matrix molecule, is associated with axonal outgrowth during development and regeneration of the nervous system in a variety of animals. In the leech central nervous system, laminin immunoreactivity appears after axon injury in advance of the regenerating axons. Although studies of vertebrate nervous system in culture have implicated glial and Schwann cells as possible sources, the cells that deposit laminin at sites crucial for regeneration in the living animal are not known. We have made a direct test to determine whether, in the central nervous system of the leech, cells other than ensheathing glial cells can produce laminin. Ensheathing glial cells of adult leeches were ablated selectively by intracellular injection of a protease. As a result, leech laminin accumulated within 10 days in regions of the central nervous system where it is not normally found, and undamaged, intact axons began to sprout extensively. In normal leeches laminin immunoreactivity is situated only in the basement membrane that surrounds the central nervous system, whereas after ablation of ensheathing glia it appeared in spaces through which neurons grew. Within days of ablation of the glial cell, small mobile phagocytes, or microglia, accumulated in the spaces formerly occupied by the glial cell. Microglia were concentrated at precisely the sites of new laminin appearance and axon sprouting. These results suggest that in the animal, as in culture, leech laminin promotes sprouting and that microglia may be responsible for its appearance. Images Fig. 1 Fig. 2 Fig. 3 PMID:8506343
Tsuji, Yoshihiro; Suzuki, Naoki; Hitomi, Yasumasa; Yoshida, Toshiko; Mizuno-Matsumoto, Yuko
2017-06-01
Few studies have focused on the imbalance of the autonomic nervous system in ultrafiltration rate (UFR) subjects without blood pressure variation during maintenance hemodialysis (HD), although the role of autonomic nervous system activation during HD has been proposed to be an important factor for the maintenance of blood pressure. Variations over time in autonomic nervous activity due to differences in UFR were evaluated by measuring heart rate variability (HRV) and approximate entropy (ApEn) in 35 HD patients without blood pressure variations during HD session. The subjects were divided into 3 groups, those with UFR <10 ml/h/kg; ≥10 ml/h/kg but ≤15 ml/h/kg; and >15 ml/h/kg, and Holter ECG was recorded continuously during HD session using frequency analysis of RR intervals. High frequency (HF) and low frequency (LF) spectral components are found to be representative of the parasympathetic nervous system and sympathovagal balance, respectively, with the ratio of LF to HF of HRV providing a measure of sympathetic nervous system. In subjects with UFR >15 ml/h/kg, HF components were significantly lower, and LF/HF and ApEn values were significantly higher, in the latter half of an HD session than before starting HD. Removing water from these subjects would promote sustained sympathetic nervous overactivity. These findings indicate that the UFR during HD needs to be set at ≤15 ml/h/kg.
Zając-Spychała, Olga; Wachowiak, Jacek
2012-01-01
Acute lymphoblastic leukemia is the most common malignancy in children. All current therapy regimens used in the treatment of childhood acute lymphoblastic leukemia include prophylaxis of the central nervous system. Initially it was thought that the best way of central nervous system prophylaxis is radiotherapy. But despite its effectiveness this method, may cause late sequelae and complications. In the programme currently used in Poland to treat acute lymphoblastic leukemia, prophylactic radiotherapy has been reduced by 50% (12 Gy) and is used only in patients stratified into the high risk group and in patients diagnosed as T-cell ALL (T-ALL). Complementary to radiotherapy, intrathecal methotrexate is given alone or in combination with cytarabine and hydrocortisone is given, as well as systemic chemotherapy with intravenous methotrexate is administered in high or medium doses (depending on risk groups and leukemia immunophenotype). Recent studies have shown that high dose irradiation of the central nervous system impairs cognitive development causing memory loss, visuomotor coordination impairment, attention disorders and reduction in the intelligence quotient. It has been proved that the degree of cognitive impairment depends on the radiation dose directed to the medial temporal lobe structures, particularly in the hippocampus and the surrounding cortex. Also, methotrexate used intravenously in high doses, interferes with the metabolism of folic acid which is necessary for normal development and the optimal functioning of neurons in the central nervous system. It has been proved that patients who have been treated with high doses of methotrexate are characterized by reduced memory skills and a lower intelligence quotient. The literature data concerning long term neuroanatomical abnormalities and neuropsychological deficits are ambiguous, and there is still no data concerning current methods of central nervous system prophylaxis with low doses of irradiation in combination with high doses of intravenous methotrexate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of any signs of central nervous system disease in herd animals; maintaining records of the... State or APHIS representative of any clinical signs of a central nervous system disease or chronic... identification number (AIN). A numbering system for the official identification of individual animals in the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... of any signs of central nervous system disease in herd animals; maintaining records of the... State or APHIS representative of any clinical signs of a central nervous system disease or chronic... identification number (AIN). A numbering system for the official identification of individual animals in the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... of any signs of central nervous system disease in herd animals; maintaining records of the... State or APHIS representative of any clinical signs of a central nervous system disease or chronic... identification number (AIN). A numbering system for the official identification of individual animals in the...
Towards a general theory of neural computation based on prediction by single neurons.
Fiorillo, Christopher D
2008-10-01
Although there has been tremendous progress in understanding the mechanics of the nervous system, there has not been a general theory of its computational function. Here I present a theory that relates the established biophysical properties of single generic neurons to principles of Bayesian probability theory, reinforcement learning and efficient coding. I suggest that this theory addresses the general computational problem facing the nervous system. Each neuron is proposed to mirror the function of the whole system in learning to predict aspects of the world related to future reward. According to the model, a typical neuron receives current information about the state of the world from a subset of its excitatory synaptic inputs, and prior information from its other inputs. Prior information would be contributed by synaptic inputs representing distinct regions of space, and by different types of non-synaptic, voltage-regulated channels representing distinct periods of the past. The neuron's membrane voltage is proposed to signal the difference between current and prior information ("prediction error" or "surprise"). A neuron would apply a Hebbian plasticity rule to select those excitatory inputs that are the most closely correlated with reward but are the least predictable, since unpredictable inputs provide the neuron with the most "new" information about future reward. To minimize the error in its predictions and to respond only when excitation is "new and surprising," the neuron selects amongst its prior information sources through an anti-Hebbian rule. The unique inputs of a mature neuron would therefore result from learning about spatial and temporal patterns in its local environment, and by extension, the external world. Thus the theory describes how the structure of the mature nervous system could reflect the structure of the external world, and how the complexity and intelligence of the system might develop from a population of undifferentiated neurons, each implementing similar learning algorithms.
Multiple Sclerosis and the Family Physician
Sky, Ruth
1977-01-01
Multiple sclerosis is difficult to diagnose since it develops over a period of time and the symptoms and signs are scattered throughout the central nervous system. Because there is no specific treatment, the problems of management are especially challenging. Case histories are presented to support the concept that multiple sclerosis is a family and community concern. Family physicians are urged to maintain a supportive role and an interested attitude towards patients with multiple sclerosis. These patients and their families have urgent and continuing needs for their doctors' skills. PMID:21304869
Effects of weightlessness in man.
NASA Technical Reports Server (NTRS)
Berry, C. A.
1973-01-01
The program for the Apollo 16 flight was designed to include both safeguards against and investigations of the physiological problems arising from increase in the period of manned space flight. Precautions included the provision of a controlled diet with high potassium content, carefully controlled work loads and work-rest cycles, and an emergency cardiology consultation service, and investigations were made to enable preflight vs postflight comparisons of metabolic, cardiovascular, and central nervous system data. Results of these investigations indicate that adjustment to weightlessness can be satisfactorily assisted by appropriate countermeasures, including attention to diet.
[Occupational myofibrosis - main aspects of clinics, diagnosis and treatment].
Popov, A V; Ulanovskaya, E V
2013-01-01
Occupational chronic myofibrosis is a disease resulting from physical overstrain and functional overload of upper extremities and shoulder girdle and beeing the most prevalent occupational diseases related to the so-called "working hand". Myofibrosis occur among persons employed actually in all industries, building and agriculture and may develop as an isolated disease or combined with other occupational diseases of musculoskeletal and peripheral nervous systems. Today problems of diagnostics, especially at the early stage of the disease, and the development of knew methods of treatment are still topical.
Behavioral Economics of Self-Control Failure
Heshmat, Shahram
2015-01-01
The main idea in this article is that addiction is a consequence of falling victim to decision failures that lead to preference for the addictive behaviors. Addiction is viewed as valuation disease, where the nervous system overvalues cues associated with drugs or drug-taking. Thus, addiction can be viewed as a diminished capacity to choose. Addicted individuals assign lower values to delayed rewards than to immediate ones. The preference for immediate gratification leads to self-control problems. This article highlights a number of motivational forces that can generate self-control failure. PMID:26339218
Autonomous requirements of the Menkes disease protein in the nervous system.
Hodgkinson, Victoria L; Zhu, Sha; Wang, Yanfang; Ladomersky, Erik; Nickelson, Karen; Weisman, Gary A; Lee, Jaekwon; Gitlin, Jonathan D; Petris, Michael J
2015-11-15
Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A within the central nervous system, we generated Atp7a(Nes) mice, in which the Atp7a gene was specifically deleted within neural and glial cell precursors without impairing systemic copper homeostasis, and compared these mice with the mottled brindle (mo-br) mutant, a murine model of Menkes disease in which Atp7a is defective in all cells. Whereas mo-br mice displayed neurodegeneration, demyelination, and 100% mortality prior to weaning, the Atp7a(Nes) mice showed none of these phenotypes, exhibiting only mild sensorimotor deficits, increased anxiety, and susceptibility to NMDA-induced seizure. Our results indicate that the pathophysiology of severe neurological signs and symptoms in Menkes disease is the result of copper deficiency within the central nervous system secondary to impaired systemic copper homeostasis and does not arise from an intrinsic lack of ATP7A within the developing brain. Furthermore, the sensorimotor deficits, hypophagia, anxiety, and sensitivity to NMDA-induced seizure in the Atp7a(Nes) mice reveal unique autonomous requirements for ATP7A in the nervous system. Taken together, these data reveal essential roles for copper acquisition in the central nervous system in early development and suggest novel therapeutic approaches in affected patients. Copyright © 2015 the American Physiological Society.
The neurobiology of climate change
NASA Astrophysics Data System (ADS)
O'Donnell, Sean
2018-02-01
Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.
The neurobiology of climate change.
O'Donnell, Sean
2018-01-06
Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.
The crosstalk between autonomic nervous system and blood vessels
Sheng, Yulan; Zhu, Li
2018-01-01
The autonomic nervous system (ANS), comprised of two primary branches, sympathetic and parasympathetic nervous system, plays an essential role in the regulation of vascular wall contractility and tension. The sympathetic and parasympathetic nerves work together to balance the functions of autonomic effector organs. The neurotransmitters released from the varicosities in the ANS can regulate the vascular tone. Norepinephrine (NE), adenosine triphosphate (ATP) and Neuropeptide Y (NPY) function as vasoconstrictors, whereas acetylcholine (Ach) and calcitonin gene-related peptide (CGRP) can mediate vasodilation. On the other hand, vascular factors, such as endothelium-derived relaxing factor nitric oxide (NO), and constriction factor endothelin, play an important role in the autonomic nervous system in physiologic conditions. Endothelial dysfunction and inflammation are associated with the sympathetic nerve activity in the pathological conditions, such as hypertension, heart failure, and diabetes mellitus. The dysfunction of the autonomic nervous system could be a risk factor for vascular diseases and the overactive sympathetic nerve is detrimental to the blood vessel. In this review, we summarize findings concerning the crosstalk between ANS and blood vessels in both physiological and pathological conditions and hope to provide insight into the development of therapeutic interventions of vascular diseases. PMID:29593847
Nervous systems and scenarios for the invertebrate-to-vertebrate transition
Holland, Nicholas D.
2016-01-01
Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. PMID:26598728
Ando, Hideo; Noguchi, Ryo
2003-06-01
This study was carried out to determine the effects of the frequency of whole-body vibration on palmar sweating response and the activity of the central sympathetic nervous system. Palmar sweating volume was measured on the right palm of six healthy men before and during 3 minutes of exposure to sinusoidal whole-body vibration at three different frequencies (16, 31.5, and 63 Hz). The whole-body vibration had a frequency-weighted, root mean square (rms) acceleration magnitude of 2.0 m/s2. As the index of the activated central sympathetic nervous system, saliva level of 3-methoxy-4-hydroxyphenylglycol (MHPG) was analyzed before and immediately after each vibration exposure. Each vibration frequency induced a palmar sweating response, that of 31.5 Hz being the largest. However, no significant difference was found between the three vibration conditions. Saliva MHPG increased in all the vibration exposures, and the largest change was observed at 31.5 Hz, the difference being significant. Acute exposure to whole-body vibration induced a palmar sweating response and activated the central sympathetic nervous system. The effects on the central nervous system were found to be dependent on the frequency of the vibration.
Bacterial Signaling to the Nervous System through Toxins and Metabolites.
Yang, Nicole J; Chiu, Isaac M
2017-03-10
Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Signs and symptoms of autonomic dysfunction in dysphonic individuals].
Park, Kelly; Behlau, Mara
2011-01-01
To verify the occurrence of signs and symptoms of autonomic nervous system dysfunction in individuals with behavioral dysphonia, and to compare it with the results obtained by individuals without vocal complaints. Participants were 128 adult individuals with ages between 14 and 74 years, divided into two groups: behavioral dysphonia (61 subjects) and without vocal complaints (67 subjects). It was administered the Protocol of Autonomic Dysfunction, containing 46 questions: 22 related to the autonomic nervous system and had no direct relationship with voice, 16 related to both autonomic nervous system and voice, six non-relevant questions, and two reliability questions. There was a higher occurrence of reported neurovegetative signs in the group with behavioral dysphonia, in questions related to voice, such as frequent throat clearing, frequent swallowing need, fatigability when speaking, and sore throat. In questions not directly related to voice, dysphonic individuals presented greater occurrence of three out of 22 symptoms: gas, tinnitus and aerophagia. Both groups presented similar results in questions non-relevant to the autonomic nervous system. Reliability questions needed reformulation. Individuals with behavioral dysphonia present higher occurrence of neurovegetative signs and symptoms, particularly those with direct relationship with voice, indicating greater lability of the autonomic nervous system in these subjects.
Overview of the Neurolab Spacelab mission
NASA Technical Reports Server (NTRS)
Homick, J. L.; Delaney, P.; Rodda, K.
1998-01-01
Neurolab is a NASA Spacelab mission with multinational cooperative participation that is dedicated to research on the nervous system. The nervous systems of all animal species have evolved in a one-g environment and are functionally influenced by the presence of gravity. The absence of gravity presents a unique opportunity to gain new insights into basic neurologic functions as well as an enhanced understanding of physiological and behavioral responses mediated by the nervous system. The primary goal of Neurolab is to expand our understanding of how the nervous system develops, functions in, and adapts to microgravity space flight. Twenty-six peer reviewed investigations using human and nonhuman test subjects were assigned to one of eight science discipline teams. Individual and integrated experiments within these teams have been designed to collect a wide range of physiological and behavior data in flight as well as pre- and postflight. Information from these investigations will be applicable to enhancing the well being and performance of future long duration space travelers, will contribute to our understanding of normal and pathological functioning of the nervous system, and may be applied by the medical community to enhance the health of humans on Earth.
A host defense role for a natural antiviral substance in the nervous system.
Baron, S; Chopra, A K; Coppenhaver, D H; Gelman, B B; Poast, J; Singh, I P
1998-05-15
The pathogenesis of virus infections of the nervous system (NS) is regulated by host defenses. The defensive role of a major constitutive antiviral substance was studied by determining its distribution in the human nervous system, its concentration and the ability of this viral inhibitor to protect mice against viral infection. The 4000 kDa inhibitor complex in the human nervous system was detected in brain gray and white matter, spinal cord, and sciatic nerve but not in human cerebrospinal fluid. The inhibitor was found in the extracellular medium incubated with minced murine brain. The inhibitory titer ranged from approximately 50 to 200 antiviral units per gram against polio 1, Semliki Forest, Banzi, mengo, Newcastle disease and herpes simplex 1 viruses. The inhibitor is composed of lipid and essential protein and carbohydrate moieties as determined by enzymatic inactivation. Protection of inhibitor-treated mice was demonstrated against both an alphavirus and a picornavirus. Thus a natural defensive role for the broadly antiviral inhibitor is suggested by its constitutively high concentration, wide distribution in nervous system tissues, presence in extracellular fluid and its ability to provide protection in infected mice.
Long Term Effects of Soft Splints on Stroke Patients and Patients With Disorders of Consciousness
2017-06-01
Brain Injuries; Disorder of Consciousness; Stroke; Spasticity as Sequela of Stroke; Contracture; Hypertonic Disorder; Central Nervous System Diseases; Pathologic Processes; Craniocerebral Trauma; Trauma, Nervous System; Neurocognitive Disorders
What Are the Parts of the Nervous System?
... Research Information Find a Study Resources and Publications Neuroscience Condition Information NICHD Research Information Find a Study ... functions does the nervous system control? Why study neuroscience? What are the areas of neuroscience? NICHD Research ...
... Some are common and normal. Others are signs of a nervous system disorder. Causes Causes may include: Autoimmune disorders , such ... muscle Spinal muscular atrophy Weak muscles (myopathy) Symptoms of a nervous system disorder include: Loss of, or change in, sensation ...
... lichen simplex chronicus; Atopic dermatitis - lichen simplex chronicus; Psoriasis - lichen simplex chronicus ... people who have: Skin allergies Eczema (atopic dermatitis) Psoriasis Nervousness, anxiety, depression, and other emotional problems The ...
Inflight Medical Events in the Shuttle Program
NASA Technical Reports Server (NTRS)
Baisden, Denise L.; Effenhauser, R. K.; Wear, Mary L.
1999-01-01
Since the first launch of the Space Shuttle in 1981, the astronauts and their flight surgeons have dealt with a variety of inflight medical issues. A review will be provided of these issues as well as medications used in the treatment of these medical problems. Detailed medical debriefs are conducted by the flight ,surgeon with the individual crewmembers three days after landing. These debriefs were review for Shuttle flights from 1988 through 1999 to determine the frequency of inflight medical events. Medical events were grouped by ICD category and the frequency of medical events within those categories were reviewed. The ICD category of Symptoms, Signs and Ill-defined Conditions had the most medical events. Facial fullness and headache were the most common complaints within this category. The ICD category of Respiratory System had the next most common medical events with sinus congestion being the most common complaint. This was followed by Digestive System complaints and Nervous System/Sense Organ complaints. A variety of inflight medical events have occurred throughout the Shuttle program. Fortunately, the majority of these problems have been minor and have been well within the capability of the medical equipment flown and the skills of the Crew Medical Officers. Medical ,problems/procedures that are routine on the ground often present unique problems in the space flight environment. It is important that the flight surgeon understand the common medical problems encountered.
The Nervous Flyer: Nerves, Flying and the First World War1
Shaw Cobden, Lynsey
2018-01-01
This is not an article about ‘shell-shock’. It explores the military medical response to nervous disorders in the Royal Flying Corps. The First World War exposed the propensity of pilots to the nervous and psychological rigours of aerial warfare, but their unique experiences have been overlooked in favour of ‘trauma’ in infantrymen. This represents a critical lacuna in the historiography of military medicine, for flying personnel were studied apart from ‘shell-shocked’ soldiers. This article will show that flyers were believed to be medically different, and what set them apart from men in the trenches was their unique employment. The war necessitated, and provided the conditions for, the study of the medical problems of flying, including the significant nervous strains. Medical officers quickly established that flying not only affected bodily functions, but also ‘wore down’ the nerves that regulated psychological responses. This article will therefore present the medical view. It will study the research of air-minded medical officers and the conclusions reached on the nervous disorders of flying personnel. PMID:29528049
NEURONAL ACTION ON THE DEVELOPING BLOOD VESSEL PATTERN
James, Jennifer M.; Mukouyama, Yoh-suke
2011-01-01
The nervous system relies on a highly specialized network of blood vessels for development and neuronal survival. Recent evidence suggests that both the central and peripheral nervous systems (CNS and PNS) employ multiple mechanisms to shape the vascular tree to meet its specific metabolic demands, such as promoting nerve-artery alignment in the PNS or the development the blood brain barrier in the CNS. In this article we discuss how the nervous system directly influences blood vessel patterning resulting in neuro-vascular congruence that is maintained throughout development and in the adult. PMID:21978864
Melanoma central nervous system metastases: current approaches, challenges, and opportunities
Cohen, Justine V.; Tawbi, Hussain; Margolin, Kim A.; Amravadi, Ravi; Bosenberg, Marcus; Brastianos, Priscilla K.; Chiang, Veronica L.; de Groot, John; Glitza, Isabella C.; Herlyn, Meenhard; Holmen, Sheri L.; Jilaveanu, Lucia B.; Lassman, Andrew; Moschos, Stergios; Postow, Michael A.; Thomas, Reena; Tsiouris, John A.; Wen, Patrick; White, Richard M.; Turnham, Timothy; Davies, Michael A.; Kluger, Harriet M.
2017-01-01
Summary Melanoma central nervous system metastases are increasing, and the challenges presented by this patient population remain complex. In December 2015, the Melanoma Research Foundation and the Wistar Institute hosted the First Summit on Melanoma Central Nervous System (CNS) Metastases in Philadelphia, Pennsylvania. Here, we provide a review of the current status of the field of melanoma brain metastasis research; identify key challenges and opportunities for improving the outcomes in patients with melanoma brain metastases; and set a framework to optimize future research in this critical area. PMID:27615400
A rare adverse effect of metronidazole: nervous system symptoms.
Kafadar, Ihsan; Moustafa, Fatma; Yalçın, Koray; Klç, Betül Aydn
2013-06-01
Metronidazole, as a 5-nitroimidazole compound, is effective on anaerobic bacteria and protozoon diseases. Mostly, metronidazole is a tolerable drug but rarely presents serious adverse effects on the nervous system. In case of these adverse effects, treatment must be stopped.In this report, a 3-year-old child hospitalized because of diarrhea is presented. During the metronidazole treatment, loss of sight, vertigo, ataxia, and headache occurred as the adverse effects. By this report, we want to express the rare adverse effects of drugs in the differential diagnoses of nervous system diseases.
1959-04-01
U.S. DEPARTMENT OF COMMERCE National Technical Information Service AD-AO36 168 RADIATION-INDUCED CENTRAL NERVOUS SYSTEM DEATH - A STUDY OF THE...ý." - ý " . :..’ýý.ý-. .. , . ý 4 ý .. -- ’ý.- -!:;:ý’,. 1,ý,-: WJiAUOK4KOUED CENTRAL NERVOUS SYSTEM NT A Study of the Pathologic Findings in...University SCHOOL OF AVIATION MEDICINE, USAF Randolph AFB, Texas April 1959 7757-. AdIAIONH-INDUCED CENTRAL NEVOUS $Y$194 DUTH A Study of the Pathologic
2017-08-01
AWARD NUMBER: W81XWH-12-1-0051 TITLE: Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System ...Central Nervous System Following Neural Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0051 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Robert...induces re- growth of dopaminergic axons at 3 to 6 weeks after destruction by a neurotoxin. However, this approach cannot be used in humans because
Shiozu, Hiroyasu; Higashijima, Misako; Koga, Tomoshige
2015-01-01
[Purpose] The purpose of the current study was to clarify problems associated with swallowing, related to nutrition and activities of daily living (ADL), in elderly individuals with sarcopenia. [Subjects and Methods] Seventy-seven subjects were assigned to a sarcopenia or a non-sarcopenia group according to a definition used by the European Working Group on Sarcopenia in Older People. Analyses were conducted including and excluding subjects with a central nervous system disorders in order to focus on the influence of sarcopenia. The swallowing ability, ADL, and nutrition levels were compared between the 2 groups. [Results] Swallowing function as well as ADL and nutrition levels were significantly lower in the sarcopenia group than in the non-sarcopenia group. [Conclusion] It is important to include dimensions of swallowing, nutrition, and ADL in the assessment and treatment of swallowing problems in elderly individuals with sarcopenia. PMID:25729176
Reactions of the nervous system to magnetic fields
NASA Technical Reports Server (NTRS)
Kholodov, Y. A.
1974-01-01
This magnetobiological survey considers sensory, nervous, stress and genetic effects of magnetic fields on man and animals. It is shown that the nervous system plays an important role in the reactions of the organism to magnetic fields; the final biological effect is a function of the strength of the magnetic fields, the gradient, direction of the lines of force, duration and location of the action, and the functional status of the organism.
Adrenoceptor Polymorphisms in Hypertension and Diabetes with obesity-update in 2014.
Masuo, K
2014-08-12
Hypertension, diabetes mellitus (especially type 2 diabetes mellitus) and metabolic syndrome associated with obesity are rapidly growing public health problems. Sympathetic nerve activation is well documented in hypertension, diabetes mellitus, and obesity, hypertension and diabetes are determined by genetic background and environmental factors. Reduced energy expenditure and resting metabolic rate are predictive of weight gain, and the sympathetic nervous system participates in regulating energy balance through thermogenesis. The thermogenic effects of sympathetic nervous system in obesity have been mainly mediated via the β2 and β3-adrenergic receptors in humans. Further, β2-adrenoceptors importantly influence vascular reactivity and may regulate blood pressure. Genetic polymorphisms of the -adrenoceptor gene have been shown to alter the function of several adrenoceptor subtype and thus to modify the response to catecholamine. Among β2-adrenoceptor polymorphisms, Arg16Gly, Gln27Glu, and Thr164Ile are considered the most functionally important. β2-adrenoceptor genes have been studied in relation to hypertension. Genetic variations in the β3-adrenoceptor, such as the Try64Arg variant, are also associated with both obesity and hypertension. This review is an update of several versions published of the relationships between adrenoceptor polymorphisms and hypertension, diabetes and obesiy based on the my own review on the relationship with obesity in 2011 in "Journal of Obesity" [1], and another of my own reviews on the relationships with hypertension in 2010 in "International journal of Hypertension" [2], with 37 articles provided by the "PubMed" with the keywords of "adrenoceptor polymorphisms, obesity, hypertension and diabetes" searched on December 2013. However, the relationships of the polymorphisms of β2- and β3-adrenoceptor genes with sympathetic nervous system activity, hypertension and metabolic syndrome have been still discordant, it might be related to the ethnicity, gender, severeity of obesity, duration of hypertension or obesity, etc (refer the "Possible confounding variable affecting the relationships" section and Table 4). Therefore, this review may not be so much different from the previous ones, but, of importance, currently most investigations have shown that the β-adrenoceptor polymorphisms accompanying sympathetic nervous activity contribute to the onset and maintenance of hypertension, diabetes and obesity.
The bliss (not the problem) of motor abundance (not redundancy).
Latash, Mark L
2012-03-01
Motor control is an area of natural science exploring how the nervous system interacts with other body parts and the environment to produce purposeful, coordinated actions. A central problem of motor control-the problem of motor redundancy-was formulated by Nikolai Bernstein as the problem of elimination of redundant degrees-of-freedom. Traditionally, this problem has been addressed using optimization methods based on a variety of cost functions. This review draws attention to a body of recent findings suggesting that the problem has been formulated incorrectly. An alternative view has been suggested as the principle of abundance, which considers the apparently redundant degrees-of-freedom as useful and even vital for many aspects of motor behavior. Over the past 10 years, dozens of publications have provided support for this view based on the ideas of synergic control, computational apparatus of the uncontrolled manifold hypothesis, and the equilibrium-point (referent configuration) hypothesis. In particular, large amounts of "good variance"-variance in the space of elements that has no effect on the overall performance-have been documented across a variety of natural actions. "Good variance" helps an abundant system to deal with secondary tasks and unexpected perturbations; its amount shows adaptive modulation across a variety of conditions. These data support the view that there is no problem of motor redundancy; there is bliss of motor abundance.
Central nervous system magnesium deficiency.
Langley, W F; Mann, D
1991-03-01
The central nervous system concentration of magnesium (Mg++) appears to have a critical level below which neurologic dysfunction occurs. Observations presented suggest that the interchange of the Mg++ ion between the cerebrospinal fluid, extracellular fluid, and bone is more rapid and dynamic than is usually believed. This is especially so when the hypertrophied parathyroid gland is associated with significant skeletal depletion of Mg++ as judged by history rather than serum level. Magnesium, much like calcium, has a large presence in bone and has a negative feedback relationship with the parathyroid gland. A decline in central nervous system Mg++ may occur when the skeletal buffer system orchestrated largely by the parathyroid glands is activated by an increase in serum calcium. Observations in veterinary medicine and obstetrics suggest that the transfer of Mg++ from the extracellular fluid into bone during mineralization processes may be extensive. If the inhibition of the hypertrophied parathyroid gland is prolonged and the skeletal depletion of Mg++ extreme, serious neurologic symptoms, including seizures, coma, and death, may occur. Noise, excitement, and bodily contact appear to precipitate neurologic symptoms in Mg+(+)-deficient human subjects as it has been documented to occur in Mg+(+)-deficient experimental animals. The similarity of the acute central nervous system demyelinating syndromes with reactive central nervous system Mg++ deficiency is reviewed.
Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.
Weekamp, H H; Huygen, P L M; Merx, J L; Kremer, H P H; Cremers, Cor W R J; Longridge, Neil S
2003-09-01
To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs. Chronic recurrent subarachnoidal hemorrhage with bleeding into the cerebrospinal fluid is the cause of deposition of hemosiderin in leptomeningeal and subpial tissue, cranial nerves, and spinal cord. Removing the cause of bleeding can prevent irreversible damage to these structures. Because this is the only effective treatment, an early diagnosis is crucial. Retrospective case review. Tertiary referral center. A 72-year-old woman with superficial hemosiderosis of the central nervous system that developed when she was age 39. Neurologic and imaging diagnostic examinations and longitudinal evaluation of cochleovestibular features were performed. Neurosurgery was not performed. Progressive bilateral sensorineural hearing loss and severe vestibular hyporeflexia developed within 15 years, which can be attributed to lesions in the cochleovestibular system. Additional pathology of the central nervous system developed later. The patient demonstrated cochlear and vestibular findings that are typical of this pathologic condition. It is the first documented case with extensive serial audiometry used to precisely outline the degree of hearing deterioration during the course of the disease.
Burwell, R G; Dangerfield, P H; Freeman, B J C
2008-01-01
There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). In recent years encouraging advances thought to be related to the pathogenesis of AIS have been made in several fields. After reviewing concepts of AIS pathogenesis we formulated a collective model of pathogenesis. The central concept of this collective model is a normal neuro-osseous timing of maturation (NOTOM) system operating in a child's internal world during growth and maturation; this provides a dynamic physiological balance of postural equilibrium continuously renewed between two synchronous, polarized processes (NOTOM escalator) linked through sensory input and motor output, namely: 1) osseous escalator-increasing skeletal size and relative segmental mass, and 2) neural escalator - including the CNS body schema. The latter is recalibrated continuously as the body adjusts to biomechanical and kinematic changes resulting from skeletal enlargement, enabling it to coordinate motor actions. We suggest that AIS progression results from abnormality of the neural and/or osseous components of these normal escalator in time and/or space - as asynchrony and/or asymmetries - which cause a failure of neural systems to control asymmetric growth of a rapidly enlarging and moving adolescent spine. This putative initiating asymmetric growth in the spine is explained in separate papers as resulting from dysfunction of the hypothalamus expressed through the sympathetic nervous system (leptin-sympathetic nervous system concept for AIS pathogenesis). In girls, the expression of AIS may result from disharmony between the somatic and autonomic nervous systems - relative postural maturational delay in the somatic nervous system and hypothalamic dysfunction in the autonomic nervous system, with the conflict being fought out in the spine and trunk of the girl and compounded by biomechanical spinal growth modulation.
Physiology of motion sickness symptoms
NASA Technical Reports Server (NTRS)
Harm, Deborah L.
1990-01-01
Motion sickness research is reviewed with the emphasis placed on theories developed to explain its symptomatology. A general review of central nervous system, autonomic nervous system, and neuroendocrine system involvement in the syndrome. Particular attention is given to signs, symptoms, and physiological correlates, methodological issues, and directions for future research based on a dynamic interactive systems model.
Salzet, M; Bulet, P; Weber, W M; Clauss, W; Verger-Bocquet, M; Malecha, J
1996-03-22
Purification of a material immunoreactive to an antiserum against the C-terminal part of the oxytocin (Pro-Leu-Gly-amide) and present in the central nervous system of the Pharyngobdellid leech Erpobdella octoculata was performed by reversed-phase high performance liquid chromatography combined with both enzyme-linked immunosorbent and dot immunobinding assays for oxytocin. The amino acid sequence of the purified peptide (Ile-Pro-Glu-Pro-Tyr-Val-Trp-Asp) was established by Edman degradation and confirmed by electrospray mass spectrometry measurement. When injected in leeches, purified or synthetic peptides exert an anti-diuretic effect, the most effective ranged between 10 pmol and 1 nmol. They provoked an uptake of water 1-2 h post-injection. Furthermore, electrophysiological experiments conducted in the leech Hirudo medicinalis revealed an inhibition of the potency of Na+ conductances of leech skin by this peptide. Immunocytochemical studies with an antiserum against synthetic oxytocin-like molecule provided the cytological basis for existence of a neuropeptide, since large amounts of immunoreactive neurons were detected in the central nervous systems of E. octoculata. The purified molecule is both different to peptides of the oxytocin/vasopressin family and is a novel neuropeptide in the animal kingdom. It was named the leech osmoregulator factor (LORF). An identification of the proteins immunoreactive to an antiserum against oxytocin performed at the level of both central nervous systems extracts and in vitro central nervous system-translated RNA products indicated that in the two cases, a single protein was detected. These proteins with a molecular masses of, respectively, approximately 34 kDa (homodimer of 17 kDa) for the central nervous systems extracts and approximately 19 kDa for in vitro central nervous system-translated RNA products were not recognized by the antiserum against MSEL- and VLDV-neurophysin (proteins associated to oxytocin and vasopressin), confirming that LORF did not belong to the oxytocin/vasopressin family.
NASA Astrophysics Data System (ADS)
Kozhina, R. A.; Chausov, V. N.; Kuzmina, E. A.; Boreyko, A. V.
2018-04-01
One of the central problems of modern radiobiology is the study of DNA damage induction and repair mechanisms in central nervous system cells, in particular, in hippocampal cells. The study of the regularities of molecular damage formation and repair in the hippocampus cells is of special interest, because these cells, unlike most cells of the central nervous system (CNS), keep proliferative activity, i.e. ability to neurogenesis. Age-related changes in hippocampus play an important role, which could lead to radiosensitivity changes in neurons to the ionizing radiation exposure. Regularities in DNA double-strand breaks (DSB) induction and repair in different aged mice hippocampal cells in vivo and in vitro under the action of γ-rays 60Co were studied with DNA comet-assay. The obtained dose dependences of DNA DSB induction are linear both in vivo and in vitro. It is established that in young animals' cells, the degree of DNA damage is higher than in older animals. It is shown that repair kinetics is basically different for exposure in vivo and in vitro.
Upregulating substance P levels to treat obstructive sleep apnea.
Ursavas, Ahmet
2008-05-01
The neuropeptide (tachykinin) substance P is widely distributed in the central and peripheral nervous systems. Substance P has been suggested to function as a neurotransmitter, cotransmitter, or neuromodulator in the central and peripheral nervous system. substance P also influences sleep physiology. Neurokinin 1 (NK-1) receptors may also be implicated in the control of sleep/wake behavior. Obstructive sleep apnea syndrome (OSAS) is defined as repeated episodes of upper airway occlusion during sleep with subsequent excessive daytime sleepiness (EDS). Substance P levels are found to be significantly lowered in patients with OSAS. The aim of this review was to investigate the relationship between substance P, EDS and other OSAS complications. The literature was searched using standard methods. Medline and Embase were searched systematically from 1974 to the end of February 2008 for relevant articles published in English. EDS seen in some OSAS patients may be associated with various pathophysiological mechanisms including changes in substance P levels. Intravenous substance P administration in OSAS patients can be effective in the treatment of EDS. Further studies on the possible relationship between low serum substance P and hypertension, reproductive function disorders, memory and learning problems in OSAS cases is required.
Theile, Jonathan W.; Cummins, Theodore R.
2011-01-01
Chronic and neuropathic pain constitute significant health problems affecting millions of individuals each year. Pain sensations typically originate in sensory neurons of the peripheral nervous system which relay information to the central nervous system (CNS). Pathological pain sensations can arise as result of changes in excitability of these peripheral sensory neurons. Voltage-gated sodium channels are key determinants regulating action potential generation and propagation; thus, changes in sodium channel function can have profound effects on neuronal excitability and pain signaling. At present, most of the clinically available sodium channel blockers used to treat pain are non-selective across sodium channel isoforms and can contribute to cardio-toxicity, motor impairments, and CNS side effects. Numerous strides have been made over the last decade in an effort to develop more selective and efficacious sodium channel blockers to treat pain. The purpose of this review is to highlight some of the more recent developments put forth by research universities and pharmaceutical companies alike in the pursuit of developing more targeted sodium channel therapies for the treatment of a variety of neuropathic pain conditions. PMID:22007172
Increased working memory related fMRI signal in children following Tick Borne Encephalitis.
Henrik, Ullman; Åsa, Fowler; Ronny, Wickström
2016-01-01
Tick Borne Encephalitis (TBE) is a viral infection in the central nervous system endemic in Europe and Asia. While pediatric infection may carry a lower risk for serious neurological sequelae compared to adults, a large proportion of children experience long term cognitive problems, most markedly decreased working memory capacity. We explored whether task related functional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) could reveal a biological correlate of status-post TBE in children. We examined 11 serologically verified pediatric TBE patients with central nervous system involvement with 55 healthy controls with working memory tests and MRI. The TBE patients showed a prominent deficit in working memory capacity and an increased task related functional MRI signal in working memory related cortical areas during a spatial working memory task performed without sedation. No diffusion differences could be found with DTI, in line with the reported paucity of anatomical abnormalities. This study is the first to demonstrate functional MRI abnormalities in TBE patients that bears similarity to other patient groups with diffuse neuronal damage. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Cognitive impairment and memory loss associated with histoplasmosis: a case study.
Loughan, Ashlee R; Perna, Robert; Hertza, Jeremy
2014-01-01
Histoplasmosis is a rare disease caused by inhalation of the fungus Histoplasma capsulatum. It can spread via cerebral circulation to the central nervous system as a manifestation of a disseminated infection; particularly in patients with immune suppression, which can result in isolated ring-enhancing lesions and inflammation in the brain. Of the reported disseminated histoplasmosis cases (approximately 1 in 2000 per year), only 5-20% have evidence of central nervous system involvement. This paper reviews a single case study of a 57-year-old female diagnosed with disseminated CNS histoplasmosis. Patient's complaints included reduced short-term memory, word-finding problems, and difficulty organizing, making decisions, getting lost while driving, recalling names, retaining information while reading, and slowed processing speed. There was also a history of mild depression and anxiety. Direct testing revealed deficits in multiple cognitive domains including complex attention, processing speed, semantic fluency, visual scanning, motor speed, set-shifting, naming, nonverbal memory, and verbal memory. Neuropsychological deficits suggest cortical and subcortical brain dysfunction, including anterior, temporal, and mesial-temporal regions. This case illustrates the need for neuropsychologists to understand histoplasmosis, the related pathophysiology, and the neuropsychological impact; particularly with the potential for delayed progression.
de Leon-Lomeli, R; Murguia, J S; Chouvarda, I; Mendez, M O; Gonzalez-Galvan, E; Alba, A; Milioli, G; Grassi, A; Terzano, M G; Parrino, L
2014-01-01
Insomnia is a condition that affects the nervous and muscular system. Thirty percent of the population between 18 and 60 years suffers from insomnia. The effects of this disorder involve problems such as poor school or job performance and traffic accidents. In addition, patients with insomnia present changes in the cardiac function during sleep. Furthermore, the structure of electroencephalographic A-phases, which builds up the Cyclic Alternating Pattern during sleep, is related to the insomnia events. Therefore, the relationship between these brain activations (A-phases) and the autonomic nervous system would be of interest, revealing the interplay of central and autonomic activity during insomnia. With this goal, a study of the relationship between A-phases and heart rate fluctuations is presented. Polysomnography recording of five healthy subjects, five sleep misperception patients and five patients with psychophysiological insomnia were used in the study. Detrended Fluctuation Analysis (DFA) was used in order to evaluate the heart rate dynamics and this was correlated with the number of A-phases. The results suggest that pathological patients present changes in the dynamics of the heart rate. This is reflected in the modification of A-phases dynamics, which seems to modify of heart rate dynamics.
Probiotic, Prebiotic, and Brain Development
Cerdó, Tomás; Ruíz, Alicia; Suárez, Antonio
2017-01-01
Recently, a number of studies have demonstrated the existence of a link between the emotional and cognitive centres of the brain and peripheral functions through the bi-directional interaction between the central nervous system and the enteric nervous system. Therefore, the use of bacteria as therapeutics has attracted much interest. Recent research has found that there are a variety of mechanisms by which bacteria can signal to the brain and influence several processes in relation to neurotransmission, neurogenesis, and behaviour. Data derived from both in vitro experiments and in vivo clinical trials have supported some of these new health implications. While recent molecular advancement has provided strong indications to support and justify the role of the gut microbiota on the gut–brain axis, it is still not clear whether manipulations through probiotics and prebiotics administration could be beneficial in the treatment of neurological problems. The understanding of the gut microbiota and its activities is essential for the generation of future personalized healthcare strategies. Here, we explore and summarize the potential beneficial effects of probiotics and prebiotics in the neurodevelopmental process and in the prevention and treatment of certain neurological human diseases, highlighting current and future perspectives in this topic. PMID:29135961