NASA Technical Reports Server (NTRS)
Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Coats, G. D.
1983-01-01
A nested-grid mesoscale atmospheric simulation system (MASS) is tested over Florida for the case of intense seabreeze-induced convection. The goal of this modeling system is to provide real-time aviation weather support which is designed to fit local terminal operations such as those supporting NASA's STS. Results from a 58 km and a 14.5 km nested-grid simulation show that this version of the MASS is capable of simulating many of the basic characteristics of convective complexes during periods of relatively weak synoptic scale flow regimes. However, it is noted that extensive development work is required with nested-grid cumulus and planetary boundary layer parameterization schemes before many of the meso-beta scale features such as thunderstorm downdraft-produced bubble high pressure centers can be accurately simulated. After these schemes are properly tuned, MASS can be utilized to initialize microscale modeling systems.
NASA Technical Reports Server (NTRS)
Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Coats, G. D.
1983-01-01
A nested-grid mesoscale atmospheric simulation system (MASS) is tested over Florida for the case of intense seabreeze-induced convection. The goal of this modeling system is to provide real-time aviation weather support which is designed to fit local terminal operations such as those supporting NASA's STS. Results from a 58 km and a 14.5 km nested-grid simulation show that this version of the MASS is capable of simulating many of the basic characteristics of convective complexes during periods of relatively weak synoptic scale flow regimes. However, it is noted that extensive development work is required with nested-grid cumulus and planetary boundary layer parameterization schemes before many of the meso-beta scale features such as thunderstorm downdraft-produced bubble high pressure centers can be accurately simulated. After these schemes are properly tuned, MASS can be utilized to initialize microscale modeling systems.
Implementation of wind turbine parameterizations in a mesoscale-LES nested model framework
NASA Astrophysics Data System (ADS)
Chow, Fotini; Marjanovic, Nikola; Mirocha, Jeffrey
2014-11-01
Wind turbine performance depends on weather conditions, local topography, and wind turbine spacing, among other factors. Atmospheric simulations can be used to predict wind energy production at increasingly higher resolutions. Turbine models placed within such simulations can be used to investigate turbine operation and performance. This work describes the implementation of generalized actuator disk (GAD) and line (GAL) models into the Weather Research and Forecasting (WRF) mesoscale atmospheric model. WRF can be used in a grid nested configuration starting from the mesoscale (~10 km resolution) and ending with fine scale resolutions (~1-10 m) suitable for large-eddy simulations (LES). At LES scales it becomes possible to resolve both the thrust and torque forces generated on turbines and imparted to the atmosphere using GAD and GAL models. Both models include real-time yaw and pitch control to respond to changing flow conditions. Here, the GAD and GAL are tested for idealized and real model configurations and compared to data from a wind farm. Comparisons are also made that help determine the importance of turbine blade tilt away from the tower and the inclusion of tower and turbine hub drag effects.
NASA Astrophysics Data System (ADS)
Bongartz, K.
Distributed, physically based river basin models are receiving increasing importance in integrated water resources management (IWRM) in Germany and in Europe, especially after the release of the new European Water Framework Directive (WFD). Applications in mesoscale catchments require an appropriate approach to represent the spatial distribution of related catchment properties such as land use, soil physics and topography by utilizing techniques of remote sensing and GIS analyses. The challenge is to delineate scale independent homogeneous modelling entities which, on the one hand may represent the dynamics of the dominant hydrological processes and, on the other hand can be derived from spatially distributed physiographical catchment properties. This scaling problem is tackled in this regional modelling study by applying the concept of hydrological response units (HRUs). In a nested catchment approach three different modelling conceptualisations are used to describe the runoff processes: (i) the topographic stream-segment-based HRU delineation proposed by Leavesley et al. [Precipitation-Runoff-Modelling-System, User’s Manual, Water Resource Investigations Report 83-4238, US Geological Survey, 1983]; (ii) the process based physiographic HRU-concept introduced by Flügel [Hydrol. Process. 9 (1995) 423] and (iii) an advanced HRU-concept adapted from (ii), which included the topographic topology of HRU-areas and the river network developed by Staudenraush [Eco Regio 8 (2000) 121]. The influence of different boundary conditions associated with changing the landuse classes, the temporal data resolution and the landuse scenarios were investigated. The mesoscale catchment of the river Ilm ( A∼895 km 2) in Thuringia, Germany, and the Precipitation-Runoff-Modelling-System (PRMS) were selected for this study. Simulations show that the physiographic based concept is a reliable method for modelling basin dynamics in catchments up to 200 km 2 whereas in larger catchments
Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.; ...
2017-07-06
Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s–1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less
Dudhia, J.; Guo, Y.R.
1996-04-01
A goal of the Atmospheric Radiation Measurement (ARM) Program has been to obtain a complete representation of physical processes on the scale of a general circulation model (GCM) grid box in order to better parameterize radiative processes in these models. Since an observational network of practical size cannot be used alone to characterize the Cloud and Radiation Testbed (CART) site`s 3D structure and time development, data assimilation using the enhanced observations together with a mesoscale model is used to give a full 4D analysis at high resolution. The National Center for Atmospheric Research (NCAR)/Penn State Mesoscale Model (MM5) has been applied over a ten-day continuous period in a triple-nested mode with grid sizes of 60, 20 and 6.67 in. The outer domain covers the United States` 48 contiguous states; the innermost is a 480-km square centered on Lamont, Oklahoma. A simulation has been run with data assimilation using the Mesoscale Analysis and Prediction System (MAPS) 60-km analyses from the Forecast Systems Laboratory (FSL) of the National Ocean and Atmospheric Administration (NOAA). The nested domains take boundary conditions from and feed back continually to their parent meshes (i.e., they are two-way interactive). As reported last year, this provided a simulation of the basic features of mesoscale events over the CART site during the period 16-26 June 1993 when an Intensive Observation Period (IOP) was under way.
Validation of mesoscale models
NASA Technical Reports Server (NTRS)
Kuo, Bill; Warner, Tom; Benjamin, Stan; Koch, Steve; Staniforth, Andrew
1993-01-01
The topics discussed include the following: verification of cloud prediction from the PSU/NCAR mesoscale model; results form MAPS/NGM verification comparisons and MAPS observation sensitivity tests to ACARS and profiler data; systematic errors and mesoscale verification for a mesoscale model; and the COMPARE Project and the CME.
NASA Astrophysics Data System (ADS)
Canuto, V. M.; Dubovikov, M. S.
Mesoscale eddies are not resolved in coarse resolution ocean models and must be modeled. They affect both mean momentum and scalars. At present, no generally accepted model exists for the former; in the latter case, mesoscales are modeled with a bolus velocity u∗ to represent a sink of mean potential energy. However, comparison of u∗(model) vs. u∗ (eddy resolving code, [J. Phys. Ocean. 29 (1999) 2442]) has shown that u∗(model) is incomplete and that additional terms, "unrelated to thickness source or sinks", are required. Thus far, no form of the additional terms has been suggested. To describe mesoscale eddies, we employ the Navier-Stokes and scalar equations and a turbulence model to treat the non-linear interactions. We then show that the problem reduces to an eigenvalue problem for the mesoscale Bernoulli potential. The solution, which we derive in analytic form, is used to construct the momentum and thickness fluxes. In the latter case, the bolus velocity u∗ is found to contain two types of terms: the first type entails the gradient of the mean potential vorticity and represents a positive contribution to the production of mesoscale potential energy; the second type of terms, which is new, entails the velocity of the mean flow and represents a negative contribution to the production of mesoscale potential energy, or equivalently, a backscatter process whereby a fraction of the mesoscale potential energy is returned to the original reservoir of mean potential energy. This type of terms satisfies the physical description of the additional terms given by [J. Phys. Ocean. 29 (1999) 2442]. The mesoscale flux that enters the momentum equations is also contributed by two types of terms of the same physical nature as those entering the thickness flux. The potential vorticity flux is also shown to contain two types of terms: the first is of the gradient-type while the other terms entail the velocity of the mean flow. An expression is derived for the mesoscale
NASA Technical Reports Server (NTRS)
Hsu, H. M.
1980-01-01
A mesoscale numerical model of the Florida peninsula was formulated and applied to a dry, neutral atmosphere. The prospective use of the STAR-100 computer for the submesoscale model is discussed. The numerical model presented is tested under synoptically undisturbed conditions. Two cases, differing only in the direction of the prevailing geostrophic wind, are examined: a prevailing southwest wind and a prevailing southeast wind, both 6 m/sec at all levels initially.
Mesoscale ocean dynamics modeling
mHolm, D.; Alber, M.; Bayly, B.; Camassa, R.; Choi, W.; Cockburn, B.; Jones, D.; Lifschitz, A.; Margolin, L.; Marsden, L.; Nadiga, B.; Poje, A.; Smolarkiewicz, P.; Levermore, D.
1996-05-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ocean is a very complex nonlinear system that exhibits turbulence on essentially all scales, multiple equilibria, and significant intrinsic variability. Modeling the ocean`s dynamics at mesoscales is of fundamental importance for long-time-scale climate predictions. A major goal of this project has been to coordinate, strengthen, and focus the efforts of applied mathematicians, computer scientists, computational physicists and engineers (at LANL and a consortium of Universities) in a joint effort addressing the issues in mesoscale ocean dynamics. The project combines expertise in the core competencies of high performance computing and theory of complex systems in a new way that has great potential for improving ocean models now running on the Connection Machines CM-200 and CM-5 and on the Cray T3D.
NASA Technical Reports Server (NTRS)
Kaplan, M. L.; Gooden, A. L.
1977-01-01
A fundamental approach involving the integration of two different numerical models over several different spatial mesh lengths is considered. Model I is a hydrostatic, incompressible, and adiabatic primitive (Newtonian) equation set with no boundary layer forcing, i.e., surface heat or moisture flux or external frictional stresses. Typically this model is initialized from conventional radiosonde data and run for a 12-15 hour forecast period over a 40 km horizontal mesh. If phase I of the tornado developmental processes develops, the data is 'frozen' in space and time, interpolated to a 20 km mesh, and integrated for a shorter time period (3 hours) with a shorter time step. Model II is a nonhydrostatic compressible 18-level complement of model I. If model II indicates the development of the intensification of phase V dynamical processes, the data is frozen and interpolated to finer mesh lengths until the tornadic circulation system is approximated
NASA Technical Reports Server (NTRS)
Kaplan, M. L.; Gooden, A. L.
1977-01-01
A fundamental approach involving the integration of two different numerical models over several different spatial mesh lengths is considered. Model I is a hydrostatic, incompressible, and adiabatic primitive (Newtonian) equation set with no boundary layer forcing, i.e., surface heat or moisture flux or external frictional stresses. Typically this model is initialized from conventional radiosonde data and run for a 12-15 hour forecast period over a 40 km horizontal mesh. If phase I of the tornado developmental processes develops, the data is 'frozen' in space and time, interpolated to a 20 km mesh, and integrated for a shorter time period (3 hours) with a shorter time step. Model II is a nonhydrostatic compressible 18-level complement of model I. If model II indicates the development of the intensification of phase V dynamical processes, the data is frozen and interpolated to finer mesh lengths until the tornadic circulation system is approximated
Nesting large-eddy simulations within mesoscale simulations for wind energy applications
Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A
2008-09-08
With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.
Nesting Large-Eddy Simulations Within Mesoscale Simulations for Wind Energy Applications
NASA Astrophysics Data System (ADS)
Lundquist, J. K.; Mirocha, J. D.; Chow, F. K.; Kosovic, B.; Lundquist, K. A.
2008-12-01
With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES) account for complex terrain and resolve individual atmospheric eddies on length scales smaller than turbine blades. These small-domain high-resolution simulations are possible with a range of commercial and open- source software, including the Weather Research and Forecasting (WRF) model. In addition to "local" sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecating model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosoviæ (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Examples of data assimilation in mesoscale models
NASA Technical Reports Server (NTRS)
Carr, Fred; Zack, John; Schmidt, Jerry; Snook, John; Benjamin, Stan; Stauffer, David
1993-01-01
The keynote address was the problem of physical initialization of mesoscale models. The classic purpose of physical or diabatic initialization is to reduce or eliminate the spin-up error caused by the lack, at the initial time, of the fully developed vertical circulations required to support regions of large rainfall rates. However, even if a model has no spin-up problem, imposition of observed moisture and heating rate information during assimilation can improve quantitative precipitation forecasts, especially early in the forecast. The two key issues in physical initialization are the choice of assimilating technique and sources of hydrologic/hydrometeor data. Another example of data assimilation in mesoscale models was presented in a series of meso-beta scale model experiments with and 11 km version of the MASS model designed to investigate the sensitivity of convective initiation forced by thermally direct circulations resulting from differential surface heating to four dimensional assimilation of surface and radar data. The results of these simulations underscore the need to accurately initialize and simulate grid and sub-grid scale clouds in meso- beta scale models. The status of the application of the CSU-RAMS mesoscale model by the NOAA Forecast Systems Lab for producing real-time forecasts with 10-60 km mesh resolutions over (4000 km)(exp 2) domains for use by the aviation community was reported. Either MAPS or LAPS model data are used to initialize the RAMS model on a 12-h cycle. The use of MAPS (Mesoscale Analysis and Prediction System) model was discussed. Also discussed was the mesobeta-scale data assimilation using a triply-nested nonhydrostatic version of the MM5 model.
Saharan Cyclogenesis As Seen From Mesoscale Modeling
NASA Astrophysics Data System (ADS)
Born, K.; Simmer, C.
In order to study causes of longterm rainfall variability in Northwestafrica in the framework of IMPETUS Westafrica, typical rainfall events--extratropical fronts, oro- graphically triggered thunderstorms, advection of moist tropical air--were examined in detail using the Lokalmodell (LM) of the German Weather Service. One of the most interesting types of rainfall bearing phenomena are Saharan cyclones, which form usu- ally in the lee of the Atlas Mountains. They have been subject to some studies in the past, because they may be connected with severe dust storms and strong rainfall even in the dry season. With their relatively small vertical extent, their short lifetime and - in most cases - their absence of a clearly visible cold front, they seem to be typical mesoscale cyclones. Nevertheless, a closer view shows that these cyclones are con- nected with strong inactive synoptic scale cold fronts. Multiscale interactions, i. e. thunderstorms occurring in the warm sector of Saharan cyclones, rapid movement and synoptic scale forcing makes them to interesting objects for mesoscale modelling. The convection parameterization--which has to be adapted to the mesoscale-- as well as the nesting into initial and boundary data are very important for the development of Saharan cyclones in the model environment.
Mesoscale modeling of the severe thunderstorm environment
NASA Technical Reports Server (NTRS)
Koch, Steven E.
1988-01-01
The abilities of limited-area mesoscale models to provide accurate predictions of the environment of midlatitude severe thunderstorms and the possible feedback effects of the storms upon their environment are reviewed. Mesoaplha-scale models, mesobeta models, and terrain-induced mesoscale systems are discussed. The importance of the initial state and model numerics and physics is examined. It is found that mesoscale models must be run locally if they are to be used for short-range forecasting.
Relevance of meso-scales a two-way-nesting approach
NASA Astrophysics Data System (ADS)
Thürkow, Markus; Kirchner, Ingo; Ulbrich, Uwe; Weiher, Stefan; Will, Andreas
2014-05-01
The aim of the MesoTel project presented here is to improve (decadal) forecasts for Europe by focusing on the feedback of the meso-beta-scale and large scales in a specific key region, where synoptic systems, relevant for European weather and climate, develop - Central America - North Atlantic (CANA). Meso-beta-scale atmospheric dynamics affect the development of cyclones and Rossby wave trains, which again affect ocean dynamics. As regional feedbacks are expected to modify the development of the large scales and the conditions for meso-scale processes, a two-way nesting approach is applied. The two-way coupled model system consists of the atmosphere-ocean general circulation model ECHAM6/MPIOM (MPI-ESM) and of the regional climate model COSMO-CLM (CCLM). As MesoTel is part of the MiKlip research initiative, the potential effects on decadal predictions are of particular interest. Ultimately, the influence of the meso-scale processes resolved on the Northern Hemisphere large to planetary scale dynamics and its interannual to decadal predictability shall be investigated. In addition, the concept of coupling using the model components OASIS3-MCT, the MPI-ESM and CCLM is presented. This includes the data exchange, horizontal and vertical interpolation respectively aggregation, as well as the physical coupling strategy which had been elaborated. Using this approach no additional spectral transformations are needed to exchange, nest and correct the prognostic variables. We will present how to fix scalability problems using a sequential coupling and how well the OASIS3-MCT coupler copes with high communication respectively data overflow due to the increasing number of coupling fields using a performance analysis. There will be a section which deals with the horizontal and vertical interpolation as well as aggregation steps to validate the error using different interpolation methods, to analyze the signal to noise ratio out of these transformations. First evaluation
Mesoscale Modeling, Forecasting and Remote Sensing Research.
remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed
Wind turbine parameterizations implemented in WRF mesoscale-LES nested simulations
NASA Astrophysics Data System (ADS)
Marjanovic, N.; Mirocha, J. D.; Chow, F. K.
2014-12-01
Atmospheric simulations can be used to predict wind energy production at increasingly higher resolutions, which can better capture boundary layer processes and topography. Wind turbine performance depends on several different factors including local topography, weather conditions, and turbine spacing. In this work, we implement and examine the performance of a generalized actuator disk model (GAD) and a generalized actuator line model (GAL) in the Weather Research and Forecasting (WRF) model, a mesoscale atmospheric model. The wind turbine parameterizations are designed for turbulence-resolving simulations, and are used within downscaled large-eddy simulations (LES) forced with mesoscale simulations and WRF's grid nesting capability. The GAD represents the effects of thrust and torque created by a wind turbine on the atmosphere within a disk representing the rotor swept area. The forces applied by the turbine blades on the atmosphere are parameterized using blade-element theory and the aerodynamic properties of the blades. The GAL tracks the location of the individual turbine blades and applies thrust and tangential forces at the temporal location of each blade instead of distributing the total force of all the blades over the actuator disk like the GAD does. This should in theory increase fidelity but carries higher computational cost (~10 m for GAD vs. ~1 m resolution for GAL). Both GAD and GAL models include real-time yaw and pitch control to respond realistically to changing flow conditions. Comparisons are also made to help determine the importance of turbine blade tilt away from the tower and the inclusion of the tower and turbine hub drag effects. Our implementations are designed to permit simulation of turbine wake effects and turbine/airflow interactions within a realistic atmospheric boundary layer flow field, including resolved turbulence, time-evolving mesoscale forcing, and real topography. This work was performed under the auspices of the U
Mesoscale acid deposition modeling studies
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Proctor, F. H.; Zack, John W.; Karyampudi, V. Mohan; Price, P. E.; Bousquet, M. D.; Coats, G. D.
1989-01-01
The work performed in support of the EPA/DOE MADS (Mesoscale Acid Deposition) Project included the development of meteorological data bases for the initialization of chemistry models, the testing and implementation of new planetary boundary layer parameterization schemes in the MASS model, the simulation of transport and precipitation for MADS case studies employing the MASS model, and the use of the TASS model in the simulation of cloud statistics and the complex transport of conservative tracers within simulated cumuloform clouds. The work performed in support of the NASA/FAA Wind Shear Program included the use of the TASS model in the simulation of the dynamical processes within convective cloud systems, the analyses of the sensitivity of microburst intensity and general characteristics as a function of the atmospheric environment within which they are formed, comparisons of TASS model microburst simulation results to observed data sets, and the generation of simulated wind shear data bases for use by the aviation meteorological community in the evaluation of flight hazards caused by microbursts.
Dynamic Model of Mesoscale Eddies
NASA Astrophysics Data System (ADS)
Dubovikov, Mikhail S.
2003-04-01
Oceanic mesoscale eddies which are analogs of well known synoptic eddies (cyclones and anticyclones), are studied on the basis of the turbulence model originated by Dubovikov (Dubovikov, M.S., "Dynamical model of turbulent eddies", Int. J. Mod. Phys.B7, 4631-4645 (1993).) and further developed by Canuto and Dubovikov (Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: I. General formalism", Phys. Fluids8, 571-586 (1996a) (CD96a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: II. Sheardriven flows", Phys. Fluids8, 587-598 (1996b) (CD96b); Canuto, V.M., Dubovikov, M.S., Cheng, Y. and Dienstfrey, A., "A dynamical model for turbulence: III. Numerical results", Phys. Fluids8, 599-613 (1996c)(CD96c); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "A dynamical model for turbulence: IV. Buoyancy-driven flows", Phys. Fluids9, 2118-2131 (1997a) (CD97a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: V. The effect of rotation", Phys. Fluids9, 2132-2140 (1997b) (CD97b); Canuto, V.M., Dubovikov, M.S. and Wielaard, D.J., "A dynamical model for turbulence: VI. Two dimensional turbulence", Phys. Fluids9, 2141-2147 (1997c) (CD97c); Canuto, V.M. and Dubovikov, M.S., "Physical regimes and dimensional structure of rotating turbulence", Phys. Rev. Lett. 78, 666-669 (1997d) (CD97d); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "Turbulent convection in a spectral model", Phys. Rev. Lett. 78, 662-665 (1997e) (CD97e); Canuto, V.M. and Dubovikov, M.S., "A new approach to turbulence", Int. J. Mod. Phys.12, 3121-3152 (1997f) (CD97f); Canuto, V.M. and Dubovikov, M.S., "Two scaling regimes for rotating Raleigh-Benard convection", Phys. Rev. Letters78, 281-284, (1998) (CD98); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: VII. The five invariants for shear driven flows", Phys. Fluids11, 659-664 (1999a) (CD99a); Canuto, V.M., Dubovikov, M.S. and Yu, G., "A dynamical model for turbulence: VIII. IR and UV
Mesoscale Modeling of Energetic Materials
2014-10-23
This briefing represents interim progress towards these goals. 15. SUBJECT TERMS Heterogeneous explosives , Mesoscale dynamics, Level set method...High Explosives Research and Development Branch (RWME) – Damage Mechanisms Branch (RWMW) • Goal: Predict survivability of energetic payload of high...the mechanical behavior of simple explosive – Pristine – Damaged • Performed simulations on mechanical RVE’s – From XCMT – Idealized • Developed and
Nano- and mesoscale modeling of cement matrix
NASA Astrophysics Data System (ADS)
Yu, Zechuan; Lau, Denvid
2015-04-01
Atomistic simulations of cementitious material can enrich our understanding of its structural and mechanical properties, whereas current computational capacities restrict the investigation length scale within 10 nm. In this context, coarse-grained simulations can translate the information from nanoscale to mesoscale, thus bridging the multi-scale investigations. Here, we develop a coarse-grained model of cement matrix using the concept of disk-like building block. The objective is to introduce a new method to construct a coarse-grained model of cement, which could contribute to the scale-bridging issue from nanoscale to mesoscale. PAC codes: 07.05.Tp, 62.25.-g, 82.70.Dd
Nano- and mesoscale modeling of cement matrix.
Yu, Zechuan; Lau, Denvid
2015-01-01
Atomistic simulations of cementitious material can enrich our understanding of its structural and mechanical properties, whereas current computational capacities restrict the investigation length scale within 10 nm. In this context, coarse-grained simulations can translate the information from nanoscale to mesoscale, thus bridging the multi-scale investigations. Here, we develop a coarse-grained model of cement matrix using the concept of disk-like building block. The objective is to introduce a new method to construct a coarse-grained model of cement, which could contribute to the scale-bridging issue from nanoscale to mesoscale. PAC codes: 07.05.Tp, 62.25.-g, 82.70.Dd.
Chemistry on the mesoscale: Modeling and measurement issues
NASA Technical Reports Server (NTRS)
Thompson, Anne; Pleim, John; Walcek, Christopher; Ching, Jason; Binkowski, Frank; Tao, Wei-Kuo; Dickerson, Russell; Pickering, Kenneth
1993-01-01
The topics covered include the following: Regional Acid Deposition Model (RADM) -- a coupled chemistry/mesoscale model; convection in RADM; unresolved issues for mesoscale modeling with chemistry -- nonprecipitating clouds; unresolved issues for mesoscale modeling with chemistry -- aerosols; tracer studies with Goddard Cumulus Ensemble Model (GCEM); field observations of trace gas transport in convection; and photochemical consequences of convection.
Mesoscale landscape model of gypsy moth phenology
Joseph M. Russo; John G. W. Kelley; Andrew M. Liebhold
1991-01-01
A recently-developed high resolution climatological temperature data base was input into a gypsy moth phenology model. The high resolution data were created from a coupling of 30-year averages of station observations and digital elevation data. The resultant maximum and minimum temperatures have about a 1 km resolution which represents meteorologically the mesoscale....
Rafkin, Scot C R; Sta Maria, Magdalena R V; Michaels, Timothy I
2002-10-17
Mesoscale (<100 km) atmospheric phenomena are ubiquitous on Mars, as revealed by Mars Orbiter Camera images. Numerical models provide an important means of investigating martian atmospheric dynamics, for which data availability is limited. But the resolution of general circulation models, which are traditionally used for such research, is not sufficient to resolve mesoscale phenomena. To provide better understanding of these relatively small-scale phenomena, mesoscale models have recently been introduced. Here we simulate the mesoscale spiral dust cloud observed over the caldera of the volcano Arsia Mons by using the Mars Regional Atmospheric Modelling System. Our simulation uses a hierarchy of nested models with grid sizes ranging from 240 km to 3 km, and reveals that the dust cloud is an indicator of a greater but optically thin thermal circulation that reaches heights of up to 30 km, and transports dust horizontally over thousands of kilometres.
Modeling mesoscale circulation of the Black Sea
NASA Astrophysics Data System (ADS)
Korotenko, K. A.
2015-11-01
An eddy-resolving (1/30)° version of the DieCAST low-dissipative model, adapted to the Black Sea circulation, is presented. Under mean climatological forcing, the model realistically reproduces major dominant large-scale and mesoscale structures of seasonal sea circulation, including the Rim Current, coastal anticyclonic eddies, mushroom currents, etc. Due to its extremely low dissipation and high resolution, the model makes it possible to trace the development of the baroclinic instability along the Turkish and Caucasian coasts, reproduce mesoscale structures generated by this mechanism, and assess the scales of these structures. The model also realistically reproduces short-term effects of bora winds on the evolution of subsurface layer structures.
Mesoscale model forecast verification during monsoon 2008
NASA Astrophysics Data System (ADS)
Ashrit, Raghavendra; Mohandas, Saji
2010-08-01
There have been very few mesoscale modelling studies of the Indian monsoon, with focus on the verification and intercomparison of the operational real time forecasts. With the exception of Das et al (2008), most of the studies in the literature are either the case studies of tropical cyclones and thunderstorms or the sensitivity studies involving physical parameterization or climate simulation studies. Almost all the studies are based on either National Center for Environmental Prediction (NCEP), USA, final analysis fields (NCEP FNL) or the reanalysis data used as initial and lateral boundary conditions for driving the mesoscale model. Here we present a mesoscale model forecast verification and intercomparison study over India involving three mesoscale models: (i) the Weather Research and Forecast (WRF) model developed at the National Center for Atmospheric Research (NCAR), USA, (ii) the MM5 model developed by NCAR, and (iii) the Eta model of the NCEP, USA. The analysis is carried out for the monsoon season, June to September 2008. This study is unique since it is based entirely on the real time global model forecasts of the National Centre for Medium Range Weather Forecasting (NCMRWF) T254 global analysis and forecast system. Based on the evaluation and intercomparison of the mesoscale model forecasts, we recommend the best model for operational real-time forecasts over the Indian region. Although the forecast mean 850 hPa circulation shows realistic monsoon flow and the monsoon trough, the systematic errors over the Arabian Sea indicate an easterly bias to the north (of mean flow) and westerly bias to the south (of mean flow). This suggests that the forecasts feature a southward shift in the monsoon current. The systematic error in the 850 hPa temperature indicates that largely the WRF model forecasts feature warm bias and the MM5 model forecasts feature cold bias. Features common to all the three models include warm bias over northwest India and cold bias over
A history of mesoscale model development
NASA Astrophysics Data System (ADS)
Dudhia, Jimy
2014-01-01
The development of atmospheric mesoscale models from their early origins in the 1970's until the present day is described. Evolution has occurred in dynamical and physics representations in these models. The dynamics has had to change from hydrostatic to fully nonhydrostatic equations to handle the finer scales that have become possible in the last few decades with advancing computer power, which has enabled real-time forecasting to go to finer grid sizes. Meanwhile the physics has also become more sophisticated than the initial representations of the major processes associated with the surface, boundary layer, radiation, clouds and convection. As resolutions have become finer, mesoscale models have had to change paradigms associated with assumptions related to what is considered sub-grid scale needing parameterization, and what is resolved well enough to be explicitly handled by the dynamics. This first occurred with cumulus parameterization as real-time forecast models became able to represent individual updrafts, and is now starting to occur in the boundary layer as future forecast models may be able resolve individual thermals. Beyond that, scientific research has provided a greater understanding of detailed microphysical and land-surface processes that are important to aspects of weather prediction, and these parameterizations have been developing complexity at a steady rate. This paper can just give a perspective of these developments in the broad field of research associated with mesoscale atmospheric model development.
Mesoscale Wind Predictions for Wave Model Evaluation
2016-06-07
contains the following components for atmospheric analysis and prediction : complex data quality control ; a multivariate optimum interpolation analysis...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 30...SEP 1999 2. REPORT TYPE 3. DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Mesoscale Wind Predictions for Wave Model Evaluation
Mesoscale Modeling of Chromatin Folding
NASA Astrophysics Data System (ADS)
Schlick, Tamar
2009-03-01
Eukaryotic chromatin is the fundamental protein/nucleic acid unit that stores the genetic material. Understanding how chromatin fibers fold and unfold in physiological conditions is important for interpreting fundamental biological processes like DNA replication and transcription regulation. Using a mesoscopic model of oligonucleosome chains and tailored sampling protocols, we elucidate the energetics of oligonucleosome folding/unfolding and the role of each histone tail, linker histones, and divalent ions in regulating chromatin structure. The resulting compact topologies reconcile features of the zigzag model with straight linker DNAs with the solenoid model with bent linker DNAs for optimal fiber organization and reveal dynamic and energetic aspects involved.
A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model
Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.; ...
2016-09-16
Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less
A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model
Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.; Wiersema, David J.; Chow, Fotini K.
2016-09-16
Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developed and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.
Probabilistic, meso-scale flood loss modelling
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2016-04-01
Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.
Mesoscale Modelling of the Response of Aluminas
Bourne, N. K.
2006-07-28
The response of polycrystalline alumina to shock is not well addressed. There are several operating mechanisms that only hypothesized which results in models which are empirical. A similar state of affairs in reactive flow modelling led to the development of mesoscale representations of the flow to illuminate operating mechanisms. In this spirit, a similar effort is undergone for a polycrystalline alumina. Simulations are conducted to observe operating mechanisms at the micron scale. A method is then developed to extend the simulations to meet response at the continuum level where measurements are made. The approach is validated by comparison with continuum experiments. The method and results are presented, and some of the operating mechanisms are illuminated by the observed response.
Nested polyhedra model of turbulence.
Gürcan, Ö D
2017-06-01
A discretization of the wave-number space is proposed, using nested polyhedra, in the form of alternating dodecahedra and icosahedra that are self-similarly scaled. This particular choice allows the possibility of forming triangles using only discretized wave vectors when the scaling between two consecutive dodecahedra is equal to the golden ratio and the icosahedron between the two dodecahedra is the dual of the inner dodecahedron. Alternatively, the same discretization can be described as a logarithmically spaced (with a scaling equal to the golden ratio), nested dodecahedron-icosahedron compounds. A wave vector which points from the origin to a vertex of such a mesh, can always find two other discretized wave vectors that are also on the vertices of the mesh (which is not true for an arbitrary mesh). Thus, the nested polyhedra grid can be thought of as a reduction (or decimation) of the Fourier space using a particular set of self-similar triads arranged approximately in a spherical form. For each vertex (i.e., discretized wave vector) in this space, there are either 9 or 15 pairs of vertices (i.e., wave vectors) with which the initial vertex can interact to form a triangle. This allows the reduction of the convolution integral in the Navier-Stokes equation to a sum over 9 or 15 interaction pairs, transforming the equation in Fourier space to a network of "interacting" nodes that can be constructed as a numerical model, which evolves each component of the velocity vector on each node of the network. This model gives the usual Kolmogorov spectrum of k^{-5/3}. Since the scaling is logarithmic, and the number of nodes for each scale is constant, a very large inertial range (i.e., a very high Reynolds number) with a much lower number of degrees of freedom can be considered. Incidentally, by assuming isotropy and a certain relation between the phases, the model can be used to systematically derive shell models.
Nested polyhedra model of turbulence
NASA Astrophysics Data System (ADS)
Gürcan, Ö. D.
2017-06-01
A discretization of the wave-number space is proposed, using nested polyhedra, in the form of alternating dodecahedra and icosahedra that are self-similarly scaled. This particular choice allows the possibility of forming triangles using only discretized wave vectors when the scaling between two consecutive dodecahedra is equal to the golden ratio and the icosahedron between the two dodecahedra is the dual of the inner dodecahedron. Alternatively, the same discretization can be described as a logarithmically spaced (with a scaling equal to the golden ratio), nested dodecahedron-icosahedron compounds. A wave vector which points from the origin to a vertex of such a mesh, can always find two other discretized wave vectors that are also on the vertices of the mesh (which is not true for an arbitrary mesh). Thus, the nested polyhedra grid can be thought of as a reduction (or decimation) of the Fourier space using a particular set of self-similar triads arranged approximately in a spherical form. For each vertex (i.e., discretized wave vector) in this space, there are either 9 or 15 pairs of vertices (i.e., wave vectors) with which the initial vertex can interact to form a triangle. This allows the reduction of the convolution integral in the Navier-Stokes equation to a sum over 9 or 15 interaction pairs, transforming the equation in Fourier space to a network of "interacting" nodes that can be constructed as a numerical model, which evolves each component of the velocity vector on each node of the network. This model gives the usual Kolmogorov spectrum of k-5 /3. Since the scaling is logarithmic, and the number of nodes for each scale is constant, a very large inertial range (i.e., a very high Reynolds number) with a much lower number of degrees of freedom can be considered. Incidentally, by assuming isotropy and a certain relation between the phases, the model can be used to systematically derive shell models.
Nested Gulf of Mexico Modeling with HYCOM
2004-10-29
Gulf of Mexico Modeling with HYCOM Patrick J. Hogan1 Alan J. Wallcraft1 Ole Martin Smedstad2 1Naval Research Laboratory Stennis Space Center...2004 4. TITLE AND SUBTITLE Nested Gulf of Mexico Modeling with HYCOM 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Running Nested Gulf of Mexico • 1/12° Assimilative Nested Gulf of Mexico 1/25° Free-Running Nested Gulf of Mexico
Real-Time Mesoscale Modeling Over Antarctica: The Antarctic Mesoscale Prediction System*.
NASA Astrophysics Data System (ADS)
Powers, Jordan G.; Monaghan, Andrew J.; Cayette, Arthur M.; Bromwich, David H.; Kuo, Ying-Hwa; Manning, Kevin W.
2003-11-01
*Byrd Polar Research Center Contribution Number 1276In support of the United States Antarctic Program (USAP), the National Center for Atmospheric Research and the Byrd Polar Research Center of The Ohio State University have created the Antarctic Mesoscale Prediction System (AMPS): an experimental, real-time mesoscale modeling system covering Antarctica. AMPS has been designed to serve flight forecasters at McMurdo Station, to support science and operations around the continent, and to be a vehicle for the development of physical parameterizations suitable for polar regions. Since 2000, AMPS has been producing high-resolution forecasts (grids to 3.3 km) with the “Polar MM5,” a version of the fifth-generation Pennsylvania State University NCAR Mesoscale Model tuned for the polar atmosphere. Beyond its basic mission of serving the USAP flight forecasters at McMurdo, AMPS has assisted both in emergency operations to save lives and in programs to explore the extreme polar environment. The former have included a medical evacuation from the South Pole and a marine rescue from the continental margin. The latter have included scientific field campaigns and the daily activities of international Antarctic forecasters and researchers. The AMPS program has been a success in terms of advancing polar mesoscale NWP, serving critical logistical operations of the USAP, and, most visibly, assisting in emergency rescue missions to save lives. The history and performance of AMPS are described and the successes of this unique real-time mesoscale modeling system in crisis support are detailed.
A mesoscale sixth-order numerical modelling system
NASA Technical Reports Server (NTRS)
Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Tuccillo, J. J.
1981-01-01
A numerical simulation system is currently under development for NASA which is intended to improve the modeling of subsynoptic and mesoscale adjustments associated with cyclogenesis, severe storm development and atmospheric transport processes. The model utilizes a standard hydrostatic sigma-p coordinate primitive equation set, with x,y-space differencing accurate to eighth order. A three-step dynamic initialization procedure is employed between the analysis of real-time data and grid interpolation. Results of an 18-hour simulation during which synoptic scale cyclogenesis, subsynoptic scale jet streak adjustments, mesoscale convergence zones and tornadic storms were observed have shown the present model to have the potential for simulating the fine-scale structure of features associated with cyclogenesis and intense squall-line development. The mesoscale model was also found to produce less truncation than the NWS LFM model, although a frictionless version of the mesoscale model somewhat overdeepens and overaccelerates features.
HYBRID MESOSCALE MODELING OF DYNAMIC GRAIN FRAGMENTATION
R. SWIFT; C. HAGELBERG; M. HILTL
2001-04-01
Fines created by grain fragmentation from shaped-charge, jet perforation treatment often plug-up pores in the vicinity of the perforation tunnel. We analyze and model grain damage on samples recovered from impact tests of dry and water saturated sandstone at stress levels and duration similar to that of perforation loading. Analyses of Scanning Electron Microscope (SEM) images and laser particle size measurements on portions of the recovered samples characterize grain damage and changes in grain size distribution. Hybrid modeling that combines the Discrete Element Method (DEM) with Smooth Particle Hydrodynamics (SPH), and includes mesoscale representation of grain/pore structure, shows how grain damage evolves for dry and wet conditions. Modeling defines behavior in accord with recovered sample analyses as follows: (1) Increase in grain damage is obtained with an increase in stress level and pulse duration. (2) The grains in dry samples are extremely and irregularly fragmented with extensive reduced porosity. (3) Less grain damage and higher porosity is obtained in saturated samples. The influence of pore fluid mitigates the interaction between grains, thus reducing fragmentation damage. (4) Computed particle size distributions are similar in character to measurements.
Meso-NH: Non-hydrostatic mesoscale atmospheric model
NASA Astrophysics Data System (ADS)
Laboratoire d'Aérologie; Centre National de Recherches Météorologiques
2016-12-01
Meso-NH is the non-hydrostatic mesoscale atmospheric model of the French research community jointly developed by the Laboratoire d'Aérologie (UMR 5560 UPS/CNRS) and by CNRM (UMR 3589 CNRS/Météo-France). Meso-NH incorporates a non-hydrostatic system of equations for dealing with scales ranging from large (synoptic) to small (large eddy) scales while calculating budgets and has a complete set of physical parameterizations for the representation of clouds and precipitation. It is coupled to the surface model SURFEX for representation of surface atmosphere interactions by considering different surface types (vegetation, city, ocean, lake) and allows a multi-scale approach through a grid-nesting technique. Meso-NH is versatile, vectorized, parallelized, and operates in 1D, 2D or 3D; it is coupled with a chemistry module (including gas-phase, aerosol, and aqua-phase components) and a lightning module, and has observation operators that compare model output directly with satellite observations, radar, lidar and GPS.
Coupled Mesoscale Modeling of the Atmosphere and Ocean
NASA Astrophysics Data System (ADS)
Hodur, Richard
2002-08-01
The Naval Research Laboratory (NRL) has developed the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS^TM). COAMPS is comprised of separate atmosphere and ocean data assimilation systems. The atmospheric portion of COAMPS has been in operational use at the Fleet Numerical Meteorology and Oceanography Center (FNMOC) since 1998, and it has been found to be useful for the prediction of mesoscale weather events in the coastal zone, and in areas of significant topography. A multivariate optimum interpolation (MVOI) analysis is used to construct analyses of the atmosphere using observations from radiosondes, satellites, ships, buoys, aircraft, etc.. Using these analyses, the COAMPS atmospheric model solves the nonhydrostatic form of the primitive equations using moving, multi-nested grids and sophisticated physical parameterizations for boundary layer, precipitation, and radiation. Although the original design of COAMPS was for shared-memory, vector-processor computers, NRL recently teamed with scientists at the Lawrence Livermore National Laboratory (LLNL) to adapt COAMPS for distributed-memory architecture computers. The new version of the COAMPS atmospheric model now supports distributed memory across nodes using the message-passing-interface (MPI), and shared memory across processors using OpenMP. Any arbitrary horizontal domain decomposition and number of halo points can be used for each nest. Tests have demonstrated that the atmospheric model scales to at least 200 processors. The ocean component of COAMPS uses a 3-dimensional MVOI analysis that can assimilate in-situ and remotely-sensed observations, as well as incorporate subsurface thermohaline structure through the use of the Modular Ocean Data Assimilation System (MODAS) synthetic database. The hydrostatic NRL Coastal Ocean Model (NCOM) is the COAMPS ocean model. NCOM uses a hybrid z/sigma vertical coordinate, and uses a 2-dimensional domain decomposition and MPI for use on distributed memory
User's guide to the Penn State/NCAR Mesoscale Modeling System
NASA Astrophysics Data System (ADS)
Gill, David O.
1992-10-01
An updated version of the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Modeling system (the MM4 system) is presented. The standard MM4 modeling package employs a Cressman multi-scan isobaric and surface analysis, with a hydrostatic predictive component using a leap frog integration of the flux form of the primitive equations on sigma coordinates. An experimental version has expanded the data ingest routines to allow hybrid isentropic-isobaric + surface analyses. Experimental versions of the model allow split-explicit time integration, several cumulus parameterizations coupled with an explicit moisture scheme, multiple levels of movable nests, relaxation of the hydrostatic assumptions, additional planetary boundary layer schemes, and microphysical packages. Due to the developmental nature of the modeling system, periodic upgrades in documentation are required to keep the manuals in accord with the programs. The document supersedes Penn State/NCAR Mesoscale Model User's Manual--Ver 8.
Evaluation of Mesoscale Model Phenomenological Verification Techniques
NASA Technical Reports Server (NTRS)
Lambert, Winifred
2006-01-01
Forecasters at the Spaceflight Meteorology Group, 45th Weather Squadron, and National Weather Service in Melbourne, FL use mesoscale numerical weather prediction model output in creating their operational forecasts. These models aid in forecasting weather phenomena that could compromise the safety of launch, landing, and daily ground operations and must produce reasonable weather forecasts in order for their output to be useful in operations. Considering the importance of model forecasts to operations, their accuracy in forecasting critical weather phenomena must be verified to determine their usefulness. The currently-used traditional verification techniques involve an objective point-by-point comparison of model output and observations valid at the same time and location. The resulting statistics can unfairly penalize high-resolution models that make realistic forecasts of a certain phenomena, but are offset from the observations in small time and/or space increments. Manual subjective verification can provide a more valid representation of model performance, but is time-consuming and prone to personal biases. An objective technique that verifies specific meteorological phenomena, much in the way a human would in a subjective evaluation, would likely produce a more realistic assessment of model performance. Such techniques are being developed in the research community. The Applied Meteorology Unit (AMU) was tasked to conduct a literature search to identify phenomenological verification techniques being developed, determine if any are ready to use operationally, and outline the steps needed to implement any operationally-ready techniques into the Advanced Weather Information Processing System (AWIPS). The AMU conducted a search of all literature on the topic of phenomenological-based mesoscale model verification techniques and found 10 different techniques in various stages of development. Six of the techniques were developed to verify precipitation forecasts, one
Meso-Scale Modeling of Polycrystal Deformation
NASA Astrophysics Data System (ADS)
Lim, Hojun
Computational material modeling of material is essential to accelerate material/process design and reduce costs in wide variety of applications. In particular, multi-scale models are gaining momentum in many fields as computers become faster, and finer structures become accessible experimentally. An effective (i.e. sufficiently accurate and fast to have practical impact) multi-scale model of dislocation-based metal plasticity may have many important applications such as metal forming. A two-scale method to predict quantitatively the Hall-Petch effect, as well as dislocation densities and lattice curvatures throughout a polycrystal, has been developed and implemented. Based on a finite element formulation, the first scale is called a Grain-Scale Simulation (GSS) that is standard except for using novel single-crystal constitutive equations that were proposed and tested as part of this work (and which are informed from the second model scale). The GSS allows the determination of local stresses, strains, and slip magnitudes while enforcing compatibility and equilibrium throughout a polycrystal in a finite element sense. The second scale is called here a Meso-Scale Simulation (MSS) which is novel in concept and application. It redistributes the mobile part of the dislocation density within grains consistent with the plastic strain distribution, and enforces slip transmission criteria at grain boundaries that depend on local grain and boundary properties. Stepwise simulation at the two scales proceeds sequentially in order to predict the spatial distribution of dislocation density and the flow stress for each slip system within each grain, and each simulation point. The MSS was formulated with the minimum number of undermined or arbitrary parameters, three. Two of these are related to the shape of the strain hardening curve and the other represents the initial yield. These parameters do not invoke additional length scales. The new model made possible the following
Multiscale Modeling of Mesoscale and Interfacial Phenomena
NASA Astrophysics Data System (ADS)
Petsev, Nikolai Dimitrov
With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and
NASA Technical Reports Server (NTRS)
Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K. F.
1983-01-01
A report is presented regarding the synoptic- and mesoscale predictive capabilities of a regional-scale numerical weather prediction model known as the Mesoscale Atmospheric Simulation System (MASS, Version 2.0). The development of this model has been discussed by Kaplan et al. (1982). An evaluation of the performance of MASS 2.0 is based on the study of a sample of approximately thirty 12 h and 24 h forecasts of atmospheric flow patterns over the U.S. during spring and early summer of 1982. A description of model systems is provided, and synoptic-scale evaluation methods are considered along with aspects of mesoscale evaluation methodology, examples of coherent mesoscale information provided by MASS 2.0, the results of a diagnostic study of mesoscale convective systems (MCS), and the results of a limited real-time forecast experiment.
Nested ocean models: Work in progress
NASA Technical Reports Server (NTRS)
Perkins, A. Louise
1991-01-01
The ongoing work of combining three existing software programs into a nested grid oceanography model is detailed. The HYPER domain decomposition program, the SPEM ocean modeling program, and a quasi-geostrophic model written in England are being combined into a general ocean modeling facility. This facility will be used to test the viability and the capability of two-way nested grids in the North Atlantic.
Nested Gulf of Mexico Modeling with HYCOM
2005-12-08
Nested Gulf of Mexico Modeling with HYCOM Patrick J. Hogan Alan J. Wallcraft Naval Research Laboratory Stennis Space Center, MS HYCOM Meeting...valid OMB control number. 1. REPORT DATE DEC 2005 2. REPORT TYPE 3. DATES COVERED 00-00-2005 to 00-00-2005 4. TITLE AND SUBTITLE Nested Gulf of Mexico Modeling...topography is from NRL-DBDB2 • Integrated over 2000-2001 1/25° (~4 km) non-assimilative Nested Gulf of Mexico Possible cross-shelf transport
Recent Applications of Mesoscale Modeling to Nanotechnology and Drug Delivery
Maiti, A; Wescott, J; Kung, P; Goldbeck-Wood, G
2005-02-11
Mesoscale simulations have traditionally been used to investigate structural morphology of polymer in solution, melts and blends. Recently we have been pushing such modeling methods to important areas of Nanotechnology and Drug delivery that are well out of reach of classical molecular dynamics. This paper summarizes our efforts in three important emerging areas: (1) polymer-nanotube composites; (2) drug diffusivity through cell membranes; and (3) solvent exchange in nanoporous membranes. The first two applications are based on a bead-spring-based approach as encoded in the Dissipative Particle Dynamics (DPD) module. The last application used density-based Mesoscale modeling as implemented in the Mesodyn module.
Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick; Churchfield, Matthew; Kosović, Branko; Réthoré, Pierre-Elouan; Hansen, Kurt Schaldemose; Hahmann, Andrea; Mirocha, Jeffrey D.; Rife, Daran
2016-08-31
The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant challenges to traditional wind engineering models that rely on surface-layer theories and engineering wind farm models to simulate the flow in and around wind farms. However, adopting an ABL approach offers the opportunity to better integrate wind farm design tools and meteorological models. The challenge is how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so-called 'terra incognita,' a term used to designate the turbulent scales that transition from mesoscale to microscale. This range of scales within atmospheric research deals with the transition from parameterized to resolved turbulence and the improvement of surface boundary-layer parameterizations. The coupling of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research in this area.
Mesoscale modeling of solute precipitation and radiation damage
Zhang, Yongfeng; Schwen, Daniel; Ke, Huibin; Bai, Xianming; Hales, Jason
2015-09-01
This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.
Hall, Zachary J; Meddle, Simone L; Healy, Susan D
Despite centuries of observing the nest building of most extant bird species, we know surprisingly little about how birds build nests and, specifically, how the avian brain controls nest building. Here, we argue that nest building in birds may be a useful model behaviour in which to study how the brain controls behaviour. Specifically, we argue that nest building as a behavioural model provides a unique opportunity to study not only the mechanisms through which the brain controls behaviour within individuals of a single species but also how evolution may have shaped the brain to produce interspecific variation in nest-building behaviour. In this review, we outline the questions in both behavioural and comparative neuroscience that nest building could be used to address, summarize recent findings regarding the neurobiology of nest building in lab-reared zebra finches and across species building different nest structures, and suggest some future directions for the neurobiology of nest building.
Mesoscale modeling of molecular machines: cyclic dynamics and hydrodynamical fluctuations.
Cressman, Andrew; Togashi, Yuichi; Mikhailov, Alexander S; Kapral, Raymond
2008-05-01
Proteins acting as molecular machines can undergo cyclic internal conformational motions that are coupled to ligand binding and dissociation events. In contrast to their macroscopic counterparts, nanomachines operate in a highly fluctuating environment, which influences their operation. To bridge the gap between detailed microscopic and simple phenomenological descriptions, a mesoscale approach, which combines an elastic network model of a machine with a particle-based mesoscale description of the solvent, is employed. The time scale of the cyclic hinge motions of the machine prototype is strongly affected by hydrodynamical coupling to the solvent.
Refinement of a mesoscale model for large eddy simulation
NASA Astrophysics Data System (ADS)
Gasset, Nicolas
With the advent of wind energy technology, several methods have become mature and are seen today as standard for predicting and forecasting the wind. However, their results are still site dependent, and the increasing sizes of both modern wind turbines and wind farms tackle limits of existing methods. Some triggered processes extend to the junction between microscales and mesoscales.The main objectives of this thesis are thus to identify, implement and evaluate an approach allowing for microscale and mesoscale ABL flow modelling considering the various challenges of modern wind energy applications. A literature review of ABL flow modelling from microscales to mesoscales first provides an overview of the specificities and abilities of existing methods. The combined mesoscale/large eddy simulation (LES) modelling appears to be the most promising approach, and the Compressible Community Mesoscale Model (MC2) is elected as the basis of the method in which the components required for LES are added and implemented. A detailed description of the mathematical model and the numerical aspects of the various components of the LES-capable MC2 are then presented so that a complete view of the proposed approach along with the specificities of its implementation are provided. This further allows to introduce the enhancements and new components of the method (separation of volumetric and deviatoric Reynolds tensor terms, vertical staggering, subgrid scale models, 3D turbulent diffusion, 3D turbulent kinetic energy equation), as well as the adaptation of its operating mode to allow for LES (initialization, large scale geostrophic forcing, surface and lateral boundaries). Finally, fundamental aspects and new components of the proposed approach are evaluated based on theoretical 1D Ekman boundary layer and 3D unsteady shear and buoyancy driven homogeneous surface full ABL cases. The model behaviour at high resolution as well as the components required for LES in MC2 are all finely
Driving Mesoscale Processes with Global Data Assimilative Models (Invited)
NASA Astrophysics Data System (ADS)
Bust, G. S.; Comberiate, J.; Datta-Barua, S.
2013-12-01
Global large scale ionosphere-thermosphere (IT) data assimilation methods have evolved to the point where they are able to estimate several IT state variables simultaneously over the entire globe.The large scale state variables estimated by data assimilative techniques can then be used to drive physical models of mesoscale and small scale processes. This allows for the possibility of being able to accurately predict mesoscale and small scale processes and structures from knowledge of the large scale driving physics. However, the accuracy of any such predictions will depend a) upon the accuracy of the estimated large scale state variables from data assimilation as well as b) the accuracy of the mesoscale and small scale models. In this presentation, we will focus upon the current capability of the data assimilation models IDA4D and EMPIRE to accurately estimate large scale IT state variables at equatorial latitudes. We will then discuss how these large scale state variables can be used to drive mesoscale models of the equatorial ionosphere and thermosphere. Results will be presented of large scale estimates of equatorial electron density and electric potential from analysis of IDA4D/EMPIRE and ingestion of C/NOFS observations
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
2013-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in...parameterization of cumulus convective clouds in mesoscale numerical weather prediction models OBJECTIVES Conduct detailed studies of cloud ...microphysical processes in order to develop a unified parameterization of boundary layer stratocumulus and trade wind cumulus convective clouds . Develop
Comments on the challenge of using mesoscale data in mesoscale numerical models
NASA Technical Reports Server (NTRS)
Uccellini, Louis W.
1987-01-01
The dangers of addressing the initialization issues for limited-area mesoscale models by extending the lessons learned during the development of global analysis and prediction systems are discussed. Lack of impact with data inserts at one time suggests that the lateral boundary conditions imposed on the limited-area models might force the model simulation toward a preferred solution, work against the new data being inserted into the model and, therefore, limit the potential impact that this data can have on the model system. The second potential pitfall involves the imposition of balance constraints on the data that are being inserted into the model to compute winds from temperature data and/or temperature from wind data.
Runtime system library for parallel finite difference models with nesting
Michalakes, J.
1997-03-01
RSL is a parallel run-time system library for implementing regular-grid models with nesting on distributed memory parallel computers. RSL provides support for automatically decomposing multiple model domains and for redistributing work between processors at run time for dynamic load balancing. A unique feature of RSL is that processor subdomains need not be rectangular patches; rather, grid points are independently allocated to processors, allowing more precisely balanced allocation of work to processors. Communication mechanisms are tailored to the application: RSL provides an efficient high-level stencil exchange operation for updating subdomain ghost areas and interdomain communication to support two-way interaction between nest levels. RSL also provides run-time support for local iteration over subdomains, global-local index translation, and distributed I/O from ordinary Fortran record-blocked data sets. The interface to RSL supports Fortran77 and Fortran90. RSL has been used to parallelize the NCAR/Penn State Mesoscale Model (MM5).
Assimilation of GOES Land Surface Data into a Mesoscale Models
NASA Technical Reports Server (NTRS)
Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Dembek, Scott; Goodman, H. Michael (Technical Monitor)
2001-01-01
A technique has been developed for assimilating Geostationary Operational Environmental Satellite (GOES)-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The assimilation technique has been applied to the Oklahoma-Kansas region during the spring-summer 2000 time period when dynamic changes in vegetation cover occur. In April, central Oklahoma is characterized by large NDVI associated with winter wheat while surrounding areas are primarily rangeland with lower NDVI. In July the vegetation pattern reverses as the central wheat area changes to low NDVI due to harvesting and the surrounding rangeland is greener than it was in April. The goal of this study is to determine if assimilating satellite land surface data can improve simulation of the complex spatial distribution of surface energy and water fluxes across this region. The PSU/NCAR NM5 V3 system is used in this study. The grid configuration consists of a 36-km CONUS domain and a 12-km nest over the area of interest. Bulk verification statistics (BIAS and RMSE) of surface
Numerical Model Studies of the Martian Mesoscale Circulations
NASA Technical Reports Server (NTRS)
Segal, Moti; Arritt, Raymond W.
1997-01-01
The study objectives were to evaluate by numerical modeling various possible mesoscale circulation on Mars and related atmospheric boundary layer processes. The study was in collaboration with J. Tillman of the University of Washington (who supported the study observationally). Interaction has been made with J. Prusa of Iowa State University in numerical modeling investigation of dynamical effects of topographically-influenced flow. Modeling simulations included evaluations of surface physical characteristics on: (i) the Martian atmospheric boundary layer and (ii) their impact on thermally and dynamically forced mesoscale flows. Special model evaluations were made in support of selection of the Pathfinder landing sites. J. Tillman's finding of VL-2 inter-annual temperature difference was followed by model simulations attempting to point out the forcing for this feature. Publication of the results in the reviewed literature in pending upon completion of the manuscripts in preparation as indicated later.
Mesoscale Modeling of LX-17 Under Isentropic Compression
Springer, H K; Willey, T M; Friedman, G; Fried, L E; Vandersall, K S; Baer, M R
2010-03-06
Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weighted specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.
Estimation of Eddy Dissipation Rates from Mesoscale Model Simulations
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.
2012-01-01
The Eddy Dissipation Rate is an important metric for representing the intensity of atmospheric turbulence and is used as an input parameter for predicting the decay of aircraft wake vortices. In this study, the forecasts of eddy dissipation rates obtained from the current state-of-the-art mesoscale model are evaluated for terminal area applications. The Weather Research and Forecast mesoscale model is used to simulate the planetary boundary layer at high horizontal and vertical mesh resolutions. The Bougeault-Lacarrer and the Mellor-Yamada-Janji schemes implemented in the Weather Research and Forecast model are evaluated against data collected during the National Aeronautics and Space Administration s Memphis Wake Vortex Field Experiment. Comparisons with other observations are included as well.
Modeling the mesoscale variability in the Adriatic Sea
NASA Astrophysics Data System (ADS)
Korotenko, K. A.
2007-06-01
A new high-resolution (<2 km) version of the DieCAST fourth-accuracy-order model for the ocean circulation is proposed for the study of the general circulation, mesoscale structures, and their variability in the Adriatic Sea. The model uses mean seasonal data on the temperature, salinity, buoyancy fluxes, and wind. The data of the COAMPS system with a 4-km resolution were used for the simulation of the sea response to the effects of various winds: Sirocco, Maestro, and two types of boras. The mean monthly runoffs from 38 rivers and mean daily runoffs from 12 main rivers throughout the year were given in the model. The conditions at the open boundary of the Strait of Otranto were given on the basis of the hierarchy of two coarser models for the Adriatic and Mediterranean seas. Due to the extremely weak dissipation and the high resolution (the mesh size is less than the baroclinic radius of deformation, 5 10 km), the model allows one to trace the development of a baroclinic instability along the Italian coast, to simulate mesoscale structures associated with the instability, and to estimate the scales of the structures. Mesoscale filaments, meanders, mushroom-like currents, fronts, and intrusions known from satellite observations were simulated and explained. The scenario of the anomalous upwelling near the Italian coast observed in the summer of 2003 was also simulated and analyzed.
Mesoscale modeling of metal-loaded high explosives
Bdzil, John Bohdan; Lieberthal, Brandon; Srewart, Donald S
2010-01-01
We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.
Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models
NASA Astrophysics Data System (ADS)
Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.
2014-12-01
Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.
NASA Technical Reports Server (NTRS)
Avissar, Roni; Chen, Fei
1993-01-01
Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes
NASA Technical Reports Server (NTRS)
Avissar, Roni; Chen, Fei
1993-01-01
Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes
Adaptation of Mesoscale Weather Models to Local Forecasting
NASA Technical Reports Server (NTRS)
Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.
2003-01-01
Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes
Multiscale models for synoptic-mesoscale interactions in the ocean
NASA Astrophysics Data System (ADS)
Grooms, Ian; Shafer Smith, K.; Majda, Andrew J.
2012-11-01
Multiscale analysis is used to derive two sets of coupled models, each based on the same distinguished limit, to represent the interaction of the midlatitude oceanic synoptic scale-where coherent features such as jets and rings form-and the mesoscale, defined by the internal deformation scale. The synoptic scale and mesoscale overlap at low and mid latitudes, and are hence synonymous in much of the oceanographic literature; at higher latitudes the synoptic scale can be an order of magnitude larger than the deformation scale, which motivates our asymptotic approach and our nonstandard terminology. In the first model the synoptic dynamics are described by ‘Large Amplitude Geostrophic’ (LAG) equations while the eddy dynamics are quasigeostrophic. This model has order one isopycnal variation on the synoptic scale; the synoptic dynamics respond to an eddy momentum flux while the eddy dynamics respond to the baroclinically unstable synoptic density gradient. The second model assumes small isopycnal variation on the synoptic scale, but allows for a planetary scale background density gradient that may be fixed or evolved on a slower time scale. Here the large-scale equations are just the barotropic quasigeostrophic equations, and the mesoscale is modeled by the baroclinic quasigeostrophic equations. The synoptic dynamics now respond to both eddy momentum and buoyancy fluxes, but the small-scale eddy dynamics are simply advected by the synoptic-scale flow-there is no baroclinic production term in the eddy equations. The energy budget is closed by deriving an equation for the slow evolution of the eddy energy, which ensures that energy gained or lost by the synoptic-scale flow is reflected in a corresponding loss or gain by the eddies. This latter model, aided by the eddy energy equation-a key result of this paper-provides a conceptual basis through which to understand the classic baroclinic turbulence cycle.
Mesoscale atmospheric modeling for emergency response
O'Steen, B.L.; Fast, J.D.
1992-01-01
Atmospheric transport models for emergency response have traditionally utilized meteorological fields interpolated from sparse data to predict contaminant transport. Often these fields are adjusted to satisfy constraints derived from the governing equations of geophysical fluid dynamics, e.g. mass continuity. Gaussian concentration distributions or stochastic models are then used to represent turbulent diffusion of a contaminant in the diagnosed meteorological fields. The popularity of these models derives from their relative simplicity, ability to make reasonable short-term predictions and, most important, execution speed. The ability to generate a transport prediction for an accidental release from the Savannah River Site in a time frame which will allow protective action to be taken is essential in an emergency response operation.
Mesoscale atmospheric modeling for emergency response
O`Steen, B.L.; Fast, J.D.
1992-12-31
Atmospheric transport models for emergency response have traditionally utilized meteorological fields interpolated from sparse data to predict contaminant transport. Often these fields are adjusted to satisfy constraints derived from the governing equations of geophysical fluid dynamics, e.g. mass continuity. Gaussian concentration distributions or stochastic models are then used to represent turbulent diffusion of a contaminant in the diagnosed meteorological fields. The popularity of these models derives from their relative simplicity, ability to make reasonable short-term predictions and, most important, execution speed. The ability to generate a transport prediction for an accidental release from the Savannah River Site in a time frame which will allow protective action to be taken is essential in an emergency response operation.
RSL: A parallel Runtime System Library for regional atmospheric models with nesting
Michalakes, J.G.
1997-08-01
RSL is a parallel runtime system library developed at Argonne National Laboratory that is tailored to regular-grid atmospheric models with mesh refinement in the form of two-way interacting nested grids. RSL provides high-level stencil and interdomain communication, irregular domain decomposition, automatic local/global index translation, distributed I/O, and dynamic load balancing. RSL was used with Fortran90 to parallelize a well-known and widely used regional weather model, the Penn State/NCAR Mesoscale model.
Mesoscale Modelling of Westafrican Precipitation In Impetus Westafrica
NASA Astrophysics Data System (ADS)
Born, K.; Bachner, S.; Haase, G.; Hübener, H.; Paeth, H.; Sogalla, M.
The objective of the IMPETUS Westafricaproject is the research on water availability, water use and management and future impacts of expected climate changes on the socio-economic development in two critical regions of Westafrica: On the northern side of the Sahara in the catchment of the Qued Drâa in Morocco, south of the Sahara and Sahel in the catchment of the river Ouémé in Benin. Precipitation is the most important input to the hydrological cycle in these regions. For any hydrologic or economic modeling we need spatially distributed precipitation fields as accurate as possible. Therefore, precipitation modeling is one scope for the meteorologists participating in IMPETUS. For detailed studies on the influence of land use changes on soil hydrology and plant growth, the spatial scale of used models should be as small as possible. Therefore, the use of mesoscale models for regional climate modelling is tested and further developped. Since causes of rainfall variability are multiscale phenomena--teleconnections with ENSO and NAO steer the rainfall variability as well as local changes like deforestation--a hierachy of models, from the global scale down to the Meso- /Micro- scale, was set up to study processes affecting rainfall variability in the regions of interest. This model chain is described in some detail, first results and fu- ture aims of research activities in the area of mesoscale modeling are shown.
DEVELOPMENT OF A LAND-SURFACE MODEL PART I: APPLICATION IN A MESOSCALE METEOROLOGY MODEL
Parameterization of land-surface processes and consideration of surface inhomogeneities are very important to mesoscale meteorological modeling applications, especially those that provide information for air quality modeling. To provide crucial, reliable information on the diurn...
DEVELOPMENT OF A LAND-SURFACE MODEL PART I: APPLICATION IN A MESOSCALE METEOROLOGY MODEL
Parameterization of land-surface processes and consideration of surface inhomogeneities are very important to mesoscale meteorological modeling applications, especially those that provide information for air quality modeling. To provide crucial, reliable information on the diurn...
Utilization of satellite data in mesoscale modeling of severe weather
NASA Technical Reports Server (NTRS)
Warner, Thomas T.
1987-01-01
The Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) data were used to model the 36 hour cyclogenesis period over the Pacific Ocean. Various combinations of VAS data, conventional radiosonde data, and gridded data from the National Weather Service global analysis were used in successive-correction and variational objective-analysis procedures. The Penn State/NCAR mesoscale model was used to test the impact of the VAS data on a 12 hour forecast of convective precipitation in the midweastern U.S.
Mesoscale Modeling of the Atmosphere and Aerosols
2000-09-30
fires, or the dynamical and topographical forcing is small-scale, as in dust storms . A high-resolution COAMPS is needed to simulate the first stages of...context. However, the tightly coupled application is practical only for dynamically driven aerosols (e.g. dust storms ) or for planned (e.g. known...an imbedded aerosol module for COAMPS for use in the design and evaluation of techniques for coupling off-line transport and dispersion models to
Mesoscale Model Microphysics and Rapid Hurricane Intensification
NASA Astrophysics Data System (ADS)
Meiselman, Ben Aaron
Production of liquid water and subsequent evaporative cooling are important processes in the thermodynamic cycle of a hurricane. Allowing evaporative cooling in a hurricane simulation results in the development of a less intense hurricane than a simulation that removes evaporative cooling of precipitation (Wang 2002 and Pattnaik and Krishnamurti 2007) or evaporation of cloud water and precipitation (Zhu and Zhang 2006). In addition, the weight of liquid water within the eyewall updrafts of the storm may act to limit the eyewall updraft magnitudes (Zhang et al. 2000). In order to explore the effects of removing evaporative cooling and water loading, we use the "no cloud cloud model" (NCCM) of Fovell (2004). The NCCM microphysics formulation is based on the scheme of Kessler (1969) in which all hydrometeors are in liquid form. In NCCM, all condensate is removed upon its formation, thus preventing evaporative cooling and eliminating water loading effects. Using the Weather Research and Forecasting (WRF) model, Fovell and Su (2007) show that a NCCM-based storm both intensifies more rapidly than a Kessler microphysics storm and attains a peak intensity well in excess of that predicted by the Emanuel (1988) Maximum Potential Intensity (MPI) theory. In the present study, the mechanism for rapid intensification is explored utilizing the axisymmetric hurricane model of Rotunno and Emanuel (1987) and confirmed using the three dimensional WRF model. While larger upward velocities due to the lack of water loading are found to be a necessary ingredient in the onset of rapid intensification, this factor alone is not sufficient for any sustained intensification. Combined with the warming that is unchecked by evaporative cooling of the no evaporation storm, however, the lack of water loading contributes to the phenomenal intensification observed in the NCCM storm. This intensification is associated with downdrafts that flank the inside edge of the eyewall and result in significant
Mesoscale modeling of dislocations in molecular crystals
NASA Astrophysics Data System (ADS)
Lei, Lei; Koslowski, Marisol
2011-02-01
Understanding the inelastic deformation of molecular crystals is of fundamental importance to the modeling of the processing of drugs in the pharmaceutical industry as well as to the initiation of detonation in high energy density materials. In this work, we present dislocation dynamics simulations of the deformation of two molecular crystals of interest in the pharmaceutical industry, sucrose and paracetamol. The simulations calculate the yield stress of sucrose and paracetamol in good agreement with experimental observation and predict the anisotropy in the mechanical response observed in these materials. Our results show that dislocation dynamics is an effective tool to study plastic deformation in molecular crystals.
Mesoscale modeling of polyelectrolyte brushes with salt.
Ibergay, Cyrille; Malfreyt, Patrice; Tildesley, Dominic J
2010-06-03
We report dissipative particle dynamics (DPD) simulations of a polyelectrolyte brush under athermal solvent conditions. The electrostatic interactions are calculated using the particle-particle particle-mesh (PPPM) method with charges distributed over the particles. The polymer beads, counterions, co-ions, and solvent particles are modeled explicitly. The DPD simulations show a dependence of the brush height on the grafting density and the charge fraction that is typical of the nonlinear osmotic brush regime. We report the effect of the addition of salt on the structural properties of the brush. In the case of a polyelectrolyte brush with a high surface coverage, the simulations reproduce the transition between the nonlinear osmotic brush regime where the thickness of the brush is independent of the salt concentration and the salted regime where the brush height decreases weakly with the salt concentration.
Evaluation of an Urban Canopy Parameterization in a Mesoscale Model
Chin, H S; Leach, M J; Sugiyama, G A; Leone, Jr., J M; Walker, H; Nasstrom, J; Brown, M J
2004-03-18
A modified urban canopy parameterization (UCP) is developed and evaluated in a three-dimensional mesoscale model to assess the urban impact on surface and lower atmospheric properties. This parameterization accounts for the effects of building drag, turbulent production, radiation balance, anthropogenic heating, and building rooftop heating/cooling. USGS land-use data are also utilized to derive urban infrastructure and urban surface properties needed for driving the UCP. An intensive observational period with clear-sky, strong ambient wind and drainage flow, and the absence of land-lake breeze over the Salt Lake Valley, occurring on 25-26 October 2000, is selected for this study. A series of sensitivity experiments are performed to gain understanding of the urban impact in the mesoscale model. Results indicate that within the selected urban environment, urban surface characteristics and anthropogenic heating play little role in the formation of the modeled nocturnal urban boundary layer. The rooftop effect appears to be the main contributor to this urban boundary layer. Sensitivity experiments also show that for this weak urban heat island case, the model horizontal grid resolution is important in simulating the elevated inversion layer. The root mean square errors of the predicted wind and temperature with respect to surface station measurements exhibit substantially larger discrepancies at the urban locations than the rural counterparts. However, the close agreement of modeled tracer concentration with observations fairly justifies the modeled urban impact on the wind direction shift and wind drag effects.
Validation of an Urban Parameterization in a Mesoscale Model
Leach, M.J.; Chin, H.
2001-07-19
The Atmospheric Science Division at Lawrence Livermore National Laboratory uses the Naval Research Laboratory's Couple Ocean-Atmosphere Mesoscale Prediction System (COAMPS) for both operations and research. COAMPS is a non-hydrostatic model, designed as a multi-scale simulation system ranging from synoptic down to meso, storm and local terrain scales. As model resolution increases, the forcing due to small-scale complex terrain features including urban structures and surfaces, intensifies. An urban parameterization has been added to the Naval Research Laboratory's mesoscale model, COAMPS. The parameterization attempts to incorporate the effects of buildings and urban surfaces without explicitly resolving them, and includes modeling the mean flow to turbulence energy exchange, radiative transfer, the surface energy budget, and the addition of anthropogenic heat. The Chemical and Biological National Security Program's (CBNP) URBAN field experiment was designed to collect data to validate numerical models over a range of length and time scales. The experiment was conducted in Salt Lake City in October 2000. The scales ranged from circulation around single buildings to flow in the entire Salt Lake basin. Data from the field experiment includes tracer data as well as observations of mean and turbulence atmospheric parameters. Wind and turbulence predictions from COAMPS are used to drive a Lagrangian particle model, the Livermore Operational Dispersion Integrator (LODI). Simulations with COAMPS and LODI are used to test the sensitivity to the urban parameterization. Data from the field experiment, including the tracer data and the atmospheric parameters, are also used to validate the urban parameterization.
An explicit mixed numerical method for mesoscale model
NASA Technical Reports Server (NTRS)
Hsu, H.-M.
1981-01-01
A mixed numerical method has been developed for mesoscale models. The technique consists of a forward difference scheme for time tendency terms, an upstream scheme for advective terms, and a central scheme for the other terms in a physical system. It is shown that the mixed method is conditionally stable and highly accurate for approximating the system of either shallow-water equations in one dimension or primitive equations in three dimensions. Since the technique is explicit and two time level, it conserves computer and programming resources.
Three Dimensional Visualization of a Coastal Mesoscale Model
1993-12-01
thankful to Karen, my wife, who managed to keep the faith as well as grow a beautiful daughter, Danielle Tayler Sampson -- our first. Danielle, I ...No I I TITLE (include secutray class•ncarronii Three Dimensional Visualization of a Coastal Mesoscale Model 12 PERSONAl. AUTHOR(S) Sampson, R. Mark 1...3a TYPE OF REPORT 13b TIME COVERED 114 DATE OF REPORT (year, monA daiv; I PAGE COUN.NT Master’s Thesis Fr To 93 December 70 16 SUPPLEMENTARY NOTATION
Functional Error Models to Accelerate Nested Sampling
NASA Astrophysics Data System (ADS)
Josset, L.; Elsheikh, A. H.; Demyanov, V.; Lunati, I.
2014-12-01
The main challenge in groundwater problems is the reliance on large numbers of unknown parameters with wide rage of associated uncertainties. To translate this uncertainty to quantities of interest (for instance the concentration of pollutant in a drinking well), a large number of forward flow simulations is required. To make the problem computationally tractable, Josset et al. (2013, 2014) introduced the concept of functional error models. It consists in two elements: a proxy model that is cheaper to evaluate than the full physics flow solver and an error model to account for the missing physics. The coupling of the proxy model and the error models provides reliable predictions that approximate the full physics model's responses. The error model is tailored to the problem at hand by building it for the question of interest. It follows a typical approach in machine learning where both the full physics and proxy models are evaluated for a training set (subset of realizations) and the set of responses is used to construct the error model using functional data analysis. Once the error model is devised, a prediction of the full physics response for a new geostatistical realization can be obtained by computing the proxy response and applying the error model. We propose the use of functional error models in a Bayesian inference context by combining it to the Nested Sampling (Skilling 2006; El Sheikh et al. 2013, 2014). Nested Sampling offers a mean to compute the Bayesian Evidence by transforming the multidimensional integral into a 1D integral. The algorithm is simple: starting with an active set of samples, at each iteration, the sample with the lowest likelihood is kept aside and replaced by a sample of higher likelihood. The main challenge is to find this sample of higher likelihood. We suggest a new approach: first the active set is sampled, both proxy and full physics models are run and the functional error model is build. Then, at each iteration of the Nested
Optogenetic stimulation of a meso-scale human cortical model
NASA Astrophysics Data System (ADS)
Selvaraj, Prashanth; Szeri, Andrew; Sleigh, Jamie; Kirsch, Heidi
2015-03-01
Neurological phenomena like sleep and seizures depend not only on the activity of individual neurons, but on the dynamics of neuron populations as well. Meso-scale models of cortical activity provide a means to study neural dynamics at the level of neuron populations. Additionally, they offer a safe and economical way to test the effects and efficacy of stimulation techniques on the dynamics of the cortex. Here, we use a physiologically relevant meso-scale model of the cortex to study the hypersynchronous activity of neuron populations during epileptic seizures. The model consists of a set of stochastic, highly non-linear partial differential equations. Next, we use optogenetic stimulation to control seizures in a hyperexcited cortex, and to induce seizures in a normally functioning cortex. The high spatial and temporal resolution this method offers makes a strong case for the use of optogenetics in treating meso scale cortical disorders such as epileptic seizures. We use bifurcation analysis to investigate the effect of optogenetic stimulation in the meso scale model, and its efficacy in suppressing the non-linear dynamics of seizures.
Mesoscale modelling of crack-induced diffusivity in concrete
NASA Astrophysics Data System (ADS)
Nilenius, Filip; Larsson, Fredrik; Lundgren, Karin; Runesson, Kenneth
2015-02-01
Cracks have large impact on the diffusivity of concrete since they provide low-resistance pathways for moisture and chloride ions to migrate through the material. In this work, crack-induced diffusivity in concrete is modelled on the heterogeneous mesoscale and computationally homogenized to obtain macroscale diffusivity properties. Computations are carried out using the finite element method on three-dimensional statistical volume elements (SVEs) comprising the mesoscale constituents in terms of cement paste, aggregates and the interfacial transition zone (ITZ). The SVEs are subjected to uni-axial tension loading and cracks are simulated by use of an isotropic damage model. In a damaged finite element, the crack plane is assumed to be perpendicular to the largest principle strain, and diffusivity properties are assigned to the element only in the in-plane direction of the crack by anisotropic constitutive modelling. The numerical results show that the macroscale diffusivity of concrete can be correlated to the applied mechanical straining of the SVE and that the macroscale diffusivity increases mainly in the transversal direction relative to the axis of imposed mechanical straining.
NASA Technical Reports Server (NTRS)
Forbes, G. S.; Pielke, R. A.
1985-01-01
Various empirical and statistical weather-forecasting studies which utilize stratification by weather regime are described. Objective classification was used to determine weather regime in some studies. In other cases the weather pattern was determined on the basis of a parameter representing the physical and dynamical processes relevant to the anticipated mesoscale phenomena, such as low level moisture convergence and convective precipitation, or the Froude number and the occurrence of cold-air damming. For mesoscale phenomena already in existence, new forecasting techniques were developed. The use of cloud models in operational forecasting is discussed. Models to calculate the spatial scales of forcings and resultant response for mesoscale systems are presented. The use of these models to represent the climatologically most prevalent systems, and to perform case-by-case simulations is reviewed. Operational implementation of mesoscale data into weather forecasts, using both actual simulation output and method-output statistics is discussed.
NASA Technical Reports Server (NTRS)
Forbes, G. S.; Pielke, R. A.
1985-01-01
Various empirical and statistical weather-forecasting studies which utilize stratification by weather regime are described. Objective classification was used to determine weather regime in some studies. In other cases the weather pattern was determined on the basis of a parameter representing the physical and dynamical processes relevant to the anticipated mesoscale phenomena, such as low level moisture convergence and convective precipitation, or the Froude number and the occurrence of cold-air damming. For mesoscale phenomena already in existence, new forecasting techniques were developed. The use of cloud models in operational forecasting is discussed. Models to calculate the spatial scales of forcings and resultant response for mesoscale systems are presented. The use of these models to represent the climatologically most prevalent systems, and to perform case-by-case simulations is reviewed. Operational implementation of mesoscale data into weather forecasts, using both actual simulation output and method-output statistics is discussed.
Anisotropic mesoscale eddy transport in ocean general circulation models
NASA Astrophysics Data System (ADS)
Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan
2014-11-01
In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.
Nonlinear natural engine: Model for thermodynamic processes in mesoscale systems
Wheatley, John; Buchanan, D. S.; Swift, G. W.; Migliori, A.; Hofler, T.
1985-01-01
To develop intuition on the possible application of concepts from thermodynamic heat engines to mesoscale systems, we have constructed and studied a model thermoacoustic heat engine. The model consists of a chain of coupled nonlinear acoustic vibrators in which the primary thermodynamic medium is argon gas, the secondary thermodynamic medium is constituted by solids bounding the gas, and frequencies are ca. 3 × 102 Hz. The nonlinear elements are the necks, made flexible by means of an oil-loaded DuPont Kapton film, of Helmholtz resonators. When the primary medium is driven uniformly by an acoustic driver at a frequency somewhat below the low-amplitude resonant frequency and at a high enough driving amplitude, stationary localized or solitary states appear irreversibly on the chain. These are characterized by a higher vibrational amplitude than that in surrounding vibrators, where the amplitude can decrease; by the appearance of deep subharmonics of the drive frequency, corresponding to driven low-frequency vibrations of the Kapton film-oil systems; and by the pumping of heat toward the localized states. Possible implications of these results for mesoscale systems consisting of chains of molecular vibrators are then discussed. Images PMID:16593625
Nonlinear natural engine: model for thermodynamic processes in mesoscale systems
Wheatley, J.; Buchanan, D.S.; Swift, G.W.; Migliori, A.; Hofler, T.
1985-12-01
To develop intuition on the possible application of concepts from thermodynamic heat engines to mesoscale systems, the authors have constructed and studied a model thermoacoustic heat engine. The model consists of a chain of coupled nonlinear acoustic vibrators in which the primary thermodynamic medium is argon gas, the secondary thermodynamic medium is constituted by solids bounding the gas, and frequencies are ca. 3 x 10/sup 2/ Hz. The nonlinear elements are the necks, made flexible by means of an oil-loaded DuPont Kapton film, of Helmholtz resonators. When the primary medium is driven uniformly by an acoustic driver at a frequency somewhat below the low-amplitude resonant frequency and at a high enough driving amplitude, stationary localized or solitary states appear irreversibly on the chain. These are characterized by a higher vibrational amplitude than that in surrounding vibrators, where the amplitude can decrease; by the appearance of deep subharmonics of the drive frequency, corresponding to driven low-frequency vibrations of the Kapton film-oil systems; and by the pumping of heat toward the localized states. Possible implications of these results for mesoscale systems consisting of chains of molecular vibrators are then discussed. 19 references, 3 figures.
Nonlinear natural engine: Model for thermodynamic processes in mesoscale systems.
Wheatley, J; Buchanan, D S; Swift, G W; Migliori, A; Hofler, T
1985-12-01
To develop intuition on the possible application of concepts from thermodynamic heat engines to mesoscale systems, we have constructed and studied a model thermoacoustic heat engine. The model consists of a chain of coupled nonlinear acoustic vibrators in which the primary thermodynamic medium is argon gas, the secondary thermodynamic medium is constituted by solids bounding the gas, and frequencies are ca. 3 x 10(2) Hz. The nonlinear elements are the necks, made flexible by means of an oil-loaded DuPont Kapton film, of Helmholtz resonators. When the primary medium is driven uniformly by an acoustic driver at a frequency somewhat below the low-amplitude resonant frequency and at a high enough driving amplitude, stationary localized or solitary states appear irreversibly on the chain. These are characterized by a higher vibrational amplitude than that in surrounding vibrators, where the amplitude can decrease; by the appearance of deep subharmonics of the drive frequency, corresponding to driven low-frequency vibrations of the Kapton film-oil systems; and by the pumping of heat toward the localized states. Possible implications of these results for mesoscale systems consisting of chains of molecular vibrators are then discussed.
Modeling Mesoscale Eddies in the North Atlantic Ocean
NASA Technical Reports Server (NTRS)
Chao, Yi
1999-01-01
Ocean modeling plays an important role in understanding the current climatic conditions and predicting the future climate change. Modeling the ocean at eddy-permitting and/or eddy resolving resolutions (1/3 degree or higher) has a two-fold objective. One part is to represent the ocean as realistically as possible, because mesoscale eddies have an impact on the large-scale circulation. The second objective is to learn how to represent effects of mesoscale eddies without explicitly resolving them. This is particularly important for climate models which cannot be run at eddy-resolving resolutions because of the computational constraints. At JPL, a 1/6 degree latitude by 1/6 degree longitude with 37 vertical levels Atlantic Ocean model has been developed. The model is based on the Parallel Ocean Program (POP) developed at Los Alamos National Laboratory (LANL). Using the 256-processor Cray T3D, we have conducted a 40-year integration of this Atlantic eddy-resolving ocean model. A regional analysis demonstrate that many observed features associated with the Caribbean Sea eddies can be realistically simulated by this model. Analysis of this Atlantic eddy-resolving ocean model further suggests that these Caribbean Sea eddies are connected with eddies formed outside the Caribbean Sea at the confluence of the North Brazil Current (NBC) and the North Equatorial Countercurrent. The diagram of the model simulated surface current shows that the Caribbean eddies ultimately originate in the NBC retroflection region, traveling more than a year from the North Brazil coast through the Lesser Antilles into the Caribbean Sea and eventually into the Gulf of Mexico. Additional information is contained in the original.
Seaman, N.L.; Guo, Z.; Ackerman, T.P.
1996-04-01
Predictions of cloud occurrence and vertical location from the Pennsylvannia State University/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) were evaluated statistically using cloud observations obtained at Coffeyville, Kansas, as part of the Second International satellite Cloud Climatology Project Regional Experiment campaign. Seventeen cases were selected for simulation during a November-December 1991 field study. MM5 was used to produce two sets of 36-km simulations, one with and one without four-dimensional data assimilation (FDDA), and a set of 12-km simulations without FDDA, but nested within the 36-km FDDA runs.
Three-dimensional parabolic equation modeling of mesoscale eddy deflection.
Heaney, Kevin D; Campbell, Richard L
2016-02-01
The impact of mesoscale oceanography, including ocean fronts and eddies, on global scale low-frequency acoustics is examined using a fully three-dimensional parabolic equation model. The narrowband acoustic signal, for frequencies from 2 to 16 Hz, is simulated from a seismic event on the Kerguellen Plateau in the South Indian Ocean to an array of receivers south of Ascension Island in the South Atlantic, a distance of 9100 km. The path was chosen for its relevance to seismic detections from the HA10 Ascension Island station of the International Monitoring System, for its lack of bathymetric interaction, and for the dynamic oceanography encountered as the sound passes the Cape of Good Hope. The acoustic field was propagated through two years (1992 and 1993) of the eddy-permitting ocean state estimation ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) system. The range of deflection of the back-azimuth was 1.8° with a root-mean-square of 0.34°. The refraction due to mesoscale oceanography could therefore have significant impacts upon localization of distant low-frequency sources, such as seismic or nuclear test events.
2012-09-30
and Flow-Blocking Drag due to Unresolved Mesoscale Orography Guided by Mesoscale Model Predictability Research Stephen D. Eckermann Geospace ...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Geospace Science & Technology Branch
Mesoscale constitutive modeling of non-crystallizing filled elastomers
NASA Astrophysics Data System (ADS)
Harish, Ajay B.; Wriggers, Peter; Jungk, Juliane; Hojdis, Nils; Recker, Carla
2016-04-01
Elastomers are exceptional materials owing to their ability to undergo large deformations before failure. However, due to their very low stiffness, they are not always suitable for industrial applications. Addition of filler particles provides reinforcing effects and thus enhances the material properties that render them more versatile for applications like tyres etc. However, deformation behavior of filled polymers is accompanied by several nonlinear effects like Mullins and Payne effect. To this day, the physical and chemical changes resulting in such nonlinear effect remain an active area of research. In this work, we develop a heterogeneous (or multiphase) constitutive model at the mesoscale explicitly considering filler particle aggregates, elastomeric matrix and their mechanical interaction through an approximate interface layer. The developed constitutive model is used to demonstrate cluster breakage, also, as one of the possible sources for Mullins effect observed in non-crystallizing filled elastomers.
Initialization of a mesoscale model for April 10, 1979, using alternative data sources
NASA Technical Reports Server (NTRS)
Kalb, M. W.
1984-01-01
A 35 km grid limited area mesoscale model was initialized with high density SESAME radiosonde data and high density TIROS-N satellite temperature profiles for April 10, 1979. These data sources were used individually and with low level wind fields constructed from surface wind observations. The primary objective was to examine the use of satellite temperature data for initializing a mesoscale model by comparing the forecast results with similar experiments employing radiosonde data. The impact of observed low level winds on the model forecasts was also investigated with experiments varying the method of insertion. All forecasts were compared with each other and with mesoscale observations for precipitation, mass and wind structure. Several forecasts produced convective precipitation systems with characteristics satisfying criteria for a mesoscale convective complex. High density satellite temperature data and balanced winds can be used in a mesoscale model to produce forecasts which verify favorably with observations.
Hydrodynamic modeling of Singapore's coastal waters: Nesting and model accuracy
NASA Astrophysics Data System (ADS)
Hasan, G. M. Jahid; van Maren, Dirk Sebastiaan; Ooi, Seng Keat
2016-01-01
The tidal variation in Singapore's coastal waters is influenced by large-scale, complex tidal dynamics (by interaction of the Indian Ocean and the South China Sea) as well as monsoon-driven low frequency variations, requiring a model with large spatial coverage. Close to the shores, the complex topography, influenced by headlands and small islands, requires a high resolution model to simulate tidal dynamics. This can be achieved through direct nesting or multi-scale nesting, involving multiple model grids. In this paper, we investigate the effect of grid resolution and multi-scale nesting on the tidal dynamics in Singapore's coastal waters, by comparing model results with observations using different statistical techniques. The results reveal that the intermediate-scale model is generally sufficiently accurate (equal to or better than the most refined model), but also that the most refined model is only more accurate when nested in the intermediate scale model (requiring multi-scale nesting). This latter is the result of the complex tidal dynamics around Singapore, where the dominantly diurnal tidal currents are decoupled from the semi-diurnal water level variations. Furthermore, different techniques to quantify model accuracy (harmonic analysis, basic statistics and more complex statistics) are inconsistent in determining which model is more accurate.
Robust parametric models of runoff characteristics at the mesoscale
NASA Astrophysics Data System (ADS)
Samaniego, Luis; Bárdossy, András
2005-03-01
Many hydrologic studies report that runoff characteristics such as means or extremes of a given basin may be modified due to climatic and/or land use/cover changes and that the magnitude of these changes largely depends on the geographic location and the scale at which the study is carried out. Identifying the main causes of variability at the mesoscale, however, is a challenging task because of the lack of data regarding the spatial distribution of relevant explanatory variables and, if they exist, because of their high uncertainty. This study proposes a general method to find a robust non-linear model by solving a constrained multiobjective optimization problem whose solution space is composed of all feasible combinations of given explanatory variables. As a result, a model that simultaneously fulfills several criteria such as parsimony, robustness, significance, and overall performance is expected. Furthermore, it does not require assumptions regarding the sampling distributions neither of the parameters nor of the estimators because their p-values are estimated by a non-parametric technique. Finally, there is no limitation with respect to the functional form adopted for a given model and its estimator because a generalized reduced gradient algorithm is used for the calibration of its parameters. The proposed method was tested in the upper catchment of the Neckar River (Germany) covering an area of approximately 4000 km 2. The objective of this study was to detect trends and responses of runoff characteristics in mesoscale catchments due to changes of climatic or land use/cover conditions. In this case, the explained variables are the specific total discharge in summer and winter whereas the explanatory variables comprise several physiographic, land cover and climatic characteristics evaluated for 46 subcatchments during the period 1961-1993. The results of the study indicate a significant gain in performance and robustness of the selected models compared to
Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.; Vanvalkenburg, Randal L.; Pruis, Mathew J.; LimonDuparcmeur, Fanny M.
2012-01-01
The fast-time wake transport and decay models require vertical profiles of crosswinds, potential temperature and the eddy dissipation rate as initial conditions. These inputs are normally obtained from various field sensors. In case of data-denied scenarios or operational use, these initial conditions can be provided by mesoscale model simulations. In this study, the vertical profiles of potential temperature from a mesoscale model were used as initial conditions for the fast-time wake models. The mesoscale model simulations were compared against available observations and the wake model predictions were compared with the Lidar measurements from three wake vortex field experiments.
Observation Denial and Performance of a Local Mesoscale Model
NASA Technical Reports Server (NTRS)
Watson, Leela R.; Bauman, William H., III
2009-01-01
.Forecasters at the 45th Weather Squadron (45 WS) use observations from the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) wind tower network and the CCAFS (XMR) daily rawinsonde observations (RAOB) to issue and verify wind advisories and warnings for operations. These observations are also used by the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) in Houston, Texas and the NWS Melbourne, Florida (NWS MLB) to initialize their locally-run mesoscale models. In addition, SMG uses these observations to support shuttle landings at the Shuttle Landing Facility (SLF). Due to impending budget cuts, some or all of the wind towers on the east-central Florida mainland and the XMR RAOBs may be eliminated. The locations of the mainland towers and XMR RAOB site are shown in Figure 1. The loss of these data may impact the forecast capability of the 45 WS, SMG and NWS MLB.
NASA Astrophysics Data System (ADS)
Steeneveld, G. J.; Ronda, R. J.; Holtslag, A. A. M.
2015-02-01
The numerical weather prediction of radiation fog is challenging, as many models typically show large biases for the timing of the onset and dispersal of the fog, as well as for its depth and liquid water content. To understand the role of physical processes, i.e. turbulence, radiation, land-surface coupling, and microphysics, we evaluate the HARMONIE and Weather Research and Forecasting (WRF) mesoscale models for two contrasting warm fog episodes at the relatively flat terrain around the Cabauw tower facility in the Netherlands. One case involves a radiation fog that arose in calm anticyclonic conditions, and the second is a radiation fog that developed just after a cold front passage. The WRF model represents the radiation fog well, while the HARMONIE model forecasts a stratus lowering fog layer in the first case and hardly any fog in the second case. Permutations of parametrization schemes for boundary-layer mixing, radiation and microphysics, each for two levels of complexity, have been evaluated within the WRF model. It appears that the boundary-layer formulation is critical for forecasting the fog onset, while for fog dispersal the choice of the microphysical scheme is a key element, where a double-moment scheme outperforms any of the single-moment schemes. Finally, the WRF model results appear to be relatively insensitive to horizontal grid spacing, but nesting deteriorates the modelled fog formation. Increasing the domain size leads to a more scattered character of the simulated fog. Model results with one-way or two-way nesting show approximately comparable results.
NASA Astrophysics Data System (ADS)
Litta, A. J.; Chakrapani, B.; Mohankumar, K.
2007-07-01
Heavy rainfall events become significant in human affairs when they are combined with hydrological elements. The problem of forecasting heavy precipitation is especially difficult since it involves making a quantitative precipitation forecast, a problem well recognized as challenging. Chennai (13.04°N and 80.17°E) faced incessant and heavy rain about 27 cm in 24 hours up to 8.30 a.m on 27th October 2005 completely threw life out of gear. This torrential rain caused by deep depression which lay 150km east of Chennai city in Bay of Bengal intensified and moved west north-west direction and crossed north Tamil Nadu and south Andhra Pradesh coast on 28th morning. In the present study, we investigate the predictability of the MM5 mesoscale model using different cumulus parameterization schemes for the heavy rainfall event over Chennai. MM5 Version 3.7 (PSU/NCAR) is run with two-way triply nested grids using Lambert Conformal Coordinates (LCC) with a nest ratio of 3:1 and 23 vertical layers. Grid sizes of 45, 15 and 5 km are used for domains 1, 2 and 3 respectively. The cumulus parameterization schemes used in this study are Anthes-Kuo scheme (AK), the Betts-Miller scheme (BM), the Grell scheme (GR) and the Kain-Fritsch scheme (KF). The present study shows that the prediction of heavy rainfall is sensitive to cumulus parameterization schemes. In the time series of rainfall, Grell scheme is in good agreement with observation. The ideal combination of the nesting domains, horizontal resolution and cloud parameterization is able to simulate the heavy rainfall event both qualitatively and quantitatively.
Implementation of Modeling the Land-Surface/Atmosphere Interactions to Mesoscale Model COAMPS
2012-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Implementation of Modeling the Land-Surface/Atmosphere...Interactions to Mesoscale Model COAMPS Dr. Bogumil Jakubiak Interdisciplinary Centre for Mathematical and Computational Modelling , Warsaw...Interdisciplinary Centre for Mathematical and Computational Modelling , Warsaw University, Pawinskiego 5A, 02-106 Warsaw, Poland phone: +48-22-8749-144 fax
Systematic multiscale models for deep convection on mesoscales
NASA Astrophysics Data System (ADS)
Klein, Rupert; Majda, Andrew J.
2006-11-01
This paper builds on recent developments of a unified asymptotic approach to meteorological modeling [ZAMM, 80: 765 777, 2000, SIAM Proc. App. Math. 116, 227 289, 2004], which was used successfully in the development of Systematic multiscale models for the tropics in Majda and Klein [J. Atmosph. Sci. 60: 393 408, 2003] and Majda and Biello [PNAS, 101: 4736 4741, 2004]. Biello and Majda [J. Atmosph. Sci. 62: 1694 1720, 2005]. Here we account for typical bulk microphysics parameterizations of moist processes within this framework. The key steps are careful nondimensionalization of the bulk microphysics equations and the choice of appropriate distinguished limits for the various nondimensional small parameters that appear. We are then in a position to study scale interactions in the atmosphere involving moist physics. We demonstrate this by developing two systematic multiscale models that are motivated by our interest in mesoscale organized convection. The emphasis here is on multiple length scales but common time scales. The first of these models describes the short-time evolution of slender, deep convective hot towers with horizontal scale ~ 1 km interacting with the linearized momentum balance on length and time scales of (10 km/3 min). We expect this model to describe how convective inhibition may be overcome near the surface, how the onset of deep convection triggers convective-scale gravity waves, and that it will also yield new insight into how such local convective events may conspire to create larger-scale strong storms. The second model addresses the next larger range of length and time scales (10 km, 100 km, and 20 min) and exhibits mathematical features that are strongly reminiscent of mesoscale organized convection. In both cases, the asymptotic analysis reveals how the stiffness of condensation/evaporation processes induces highly nonlinear dynamics. Besides providing new theoretical insights, the derived models may also serve as a theoretical devices
Operational Assimilation of GOES Data into a Mesoscale Model
NASA Technical Reports Server (NTRS)
Lapenta, William; Suggs, Ron; McNider, Richard; Jedlovec, Gary; Dembek, Scott
2000-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The technique has been employed on a semi-operational basis at the Global Hydrology and Climate Center (GHCC) within the Penn State/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Model (MM5) since 1 November 1998. We performed the assimilation on a model grid centered over the Southeastern US. In addition, a control run without assimilation was performed to provide insight into the performance of the assimilation technique. Bulk verification statistics (BIAS and RMSE) of surface air temperature and relative humidity of more than 250 case days has been performed to date. Results show that assimilation of the satellite data results reduces both the bias and RMSE for simulations of surface air temperature and relative humidity. We are working with forecasters at the National Weather Service Forecast Office located in Birmingham, AL to evaluate the impact of the assimilation on precipitation forecasts. In addition
Operational Assimilation of GOES Data into a Mesoscale Model
NASA Technical Reports Server (NTRS)
Lapenta, William; Suggs, Ron; McNider, Richard; Jedlovec, Gary; Dembek, Scott
2000-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The technique has been employed on a semi-operational basis at the Global Hydrology and Climate Center (GHCC) within the Penn State/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Model (MM5) since 1 November 1998. We performed the assimilation on a model grid centered over the Southeastern US. In addition, a control run without assimilation was performed to provide insight into the performance of the assimilation technique. Bulk verification statistics (BIAS and RMSE) of surface air temperature and relative humidity of more than 250 case days has been performed to date. Results show that assimilation of the satellite data results reduces both the bias and RMSE for simulations of surface air temperature and relative humidity. We are working with forecasters at the National Weather Service Forecast Office located in Birmingham, AL to evaluate the impact of the assimilation on precipitation forecasts. In addition
Performance of a Local Mesoscale Model with Data Denial
NASA Technical Reports Server (NTRS)
Watson, Leela; Baumann, William H., III
2008-01-01
Forecasters at the 45th Weather Squadron (45 WS) use observations from the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) wind tower network and daily rawinsonde observations (RAOB) to issue and verify wind advisories, watches, and warnings for operations. They are also used by the Spaceflight Meteorology Group and Melbourne, Florida National Weather Service to initialize locally run mesoscale models. Due to impending budget cuts, some or all of the mainland wind towers and RAOBs may be eliminated, The loss of these data may significantly impact the forecast capability of the 45 WS and SMG. The Applied Meteorology Unit (AMU) was tasked to conduct an objective independent modeling study to determine how important these observations are to the accuracy of the model output used by the forecasters as input to their forecasts. To accomplish this, the AMU performed a sensitivity study using the Weather Research and Forecasting (WRF) model run with and without KSC/CCAFS wind tower and CCAFS RAOB observations and assessed the accuracy of model forecasts by comparing them to the observations.
A hierarchical nest survival model integrating incomplete temporally varying covariates
Converse, Sarah J.; Royle, J. Andrew; Adler, Peter H.; Urbanek, Richard P.; Barzan, Jeb A.
2013-01-01
Nest success is a critical determinant of the dynamics of avian populations, and nest survival modeling has played a key role in advancing avian ecology and management. Beginning with the development of daily nest survival models, and proceeding through subsequent extensions, the capacity for modeling the effects of hypothesized factors on nest survival has expanded greatly. We extend nest survival models further by introducing an approach to deal with incompletely observed, temporally varying covariates using a hierarchical model. Hierarchical modeling offers a way to separate process and observational components of demographic models to obtain estimates of the parameters of primary interest, and to evaluate structural effects of ecological and management interest. We built a hierarchical model for daily nest survival to analyze nest data from reintroduced whooping cranes (Grus americana) in the Eastern Migratory Population. This reintroduction effort has been beset by poor reproduction, apparently due primarily to nest abandonment by breeding birds. We used the model to assess support for the hypothesis that nest abandonment is caused by harassment from biting insects. We obtained indices of blood-feeding insect populations based on the spatially interpolated counts of insects captured in carbon dioxide traps. However, insect trapping was not conducted daily, and so we had incomplete information on a temporally variable covariate of interest. We therefore supplemented our nest survival model with a parallel model for estimating the values of the missing insect covariates. We used Bayesian model selection to identify the best predictors of daily nest survival. Our results suggest that the black fly Simulium annulus may be negatively affecting nest survival of reintroduced whooping cranes, with decreasing nest survival as abundance of S. annulus increases. The modeling framework we have developed will be applied in the future to a larger data set to evaluate the
A hierarchical nest survival model integrating incomplete temporally varying covariates
Converse, Sarah J; Royle, J Andrew; Adler, Peter H; Urbanek, Richard P; Barzen, Jeb A
2013-01-01
Nest success is a critical determinant of the dynamics of avian populations, and nest survival modeling has played a key role in advancing avian ecology and management. Beginning with the development of daily nest survival models, and proceeding through subsequent extensions, the capacity for modeling the effects of hypothesized factors on nest survival has expanded greatly. We extend nest survival models further by introducing an approach to deal with incompletely observed, temporally varying covariates using a hierarchical model. Hierarchical modeling offers a way to separate process and observational components of demographic models to obtain estimates of the parameters of primary interest, and to evaluate structural effects of ecological and management interest. We built a hierarchical model for daily nest survival to analyze nest data from reintroduced whooping cranes (Grus americana) in the Eastern Migratory Population. This reintroduction effort has been beset by poor reproduction, apparently due primarily to nest abandonment by breeding birds. We used the model to assess support for the hypothesis that nest abandonment is caused by harassment from biting insects. We obtained indices of blood-feeding insect populations based on the spatially interpolated counts of insects captured in carbon dioxide traps. However, insect trapping was not conducted daily, and so we had incomplete information on a temporally variable covariate of interest. We therefore supplemented our nest survival model with a parallel model for estimating the values of the missing insect covariates. We used Bayesian model selection to identify the best predictors of daily nest survival. Our results suggest that the black fly Simulium annulus may be negatively affecting nest survival of reintroduced whooping cranes, with decreasing nest survival as abundance of S. annulus increases. The modeling framework we have developed will be applied in the future to a larger data set to evaluate the
A hierarchical nest survival model integrating incomplete temporally varying covariates.
Converse, Sarah J; Royle, J Andrew; Adler, Peter H; Urbanek, Richard P; Barzen, Jeb A
2013-11-01
Nest success is a critical determinant of the dynamics of avian populations, and nest survival modeling has played a key role in advancing avian ecology and management. Beginning with the development of daily nest survival models, and proceeding through subsequent extensions, the capacity for modeling the effects of hypothesized factors on nest survival has expanded greatly. We extend nest survival models further by introducing an approach to deal with incompletely observed, temporally varying covariates using a hierarchical model. Hierarchical modeling offers a way to separate process and observational components of demographic models to obtain estimates of the parameters of primary interest, and to evaluate structural effects of ecological and management interest. We built a hierarchical model for daily nest survival to analyze nest data from reintroduced whooping cranes (Grus americana) in the Eastern Migratory Population. This reintroduction effort has been beset by poor reproduction, apparently due primarily to nest abandonment by breeding birds. We used the model to assess support for the hypothesis that nest abandonment is caused by harassment from biting insects. We obtained indices of blood-feeding insect populations based on the spatially interpolated counts of insects captured in carbon dioxide traps. However, insect trapping was not conducted daily, and so we had incomplete information on a temporally variable covariate of interest. We therefore supplemented our nest survival model with a parallel model for estimating the values of the missing insect covariates. We used Bayesian model selection to identify the best predictors of daily nest survival. Our results suggest that the black fly Simulium annulus may be negatively affecting nest survival of reintroduced whooping cranes, with decreasing nest survival as abundance of S. annulus increases. The modeling framework we have developed will be applied in the future to a larger data set to evaluate the
Air Pollution Modeling Using A 3-d Hemispheric Nested Model
NASA Astrophysics Data System (ADS)
Frohn, L. M.; Christensen, J. H.; Brandt, J.; Hertel, O.
A 3-D Eulerian transport-chemistry model based on modules and parameterisations from models developed over the last decade at the National Environmental Research Institute (DREAM, DEHM, ACDEP and DEOM) has been developed. The model is hemispheric with currently two nests implemented. The horizontal resolution in the mother domain is 150 km x 150 km. First nest covers the European area wit,h a 50 km x 50 km resolution, second covers the Scandinavian area with a resolution of 16.67 km x 16.67 km. The model employs a chemical scheme (originally 53 species) which has been modified to include a detailed description of the nitrogen chemistry. The concentration of air pollutants, such as sulfur and nitrogen in various forms, has been calculated with the model, applying no nesting as well as one and two nests. The calculated values have been validated by comparison to measurements from more than 200 EMEP monitoring stations. Furthermore deposition of nitrogen to marine waters has been estimated with the model. The goal is to obtain an improved description of spatial and temporal variations in the nutrient deposition to the marine environment. In the presentation the physics and chemistry of the model will be shortly described. Validations of the model calculations by comparison to EMEP measurements will be shown and discussed together with the results of the deposition calculations.
A Mesoscale Model of DNA and Its Renaturation
Sambriski, E.J.; Schwartz, D.C.; de Pablo, J.J.
2009-01-01
A mesoscale model of DNA is presented (3SPN.1), extending the scheme previously developed by our group. Each nucleotide is mapped onto three interaction sites. Solvent is accounted for implicitly through a medium-effective dielectric constant and electrostatic interactions are treated at the level of Debye-Hückel theory. The force field includes a weak, solvent-induced attraction, which helps mediate the renaturation of DNA. Model parameterization is accomplished through replica exchange molecular dynamics simulations of short oligonucleotide sequences over a range of composition and chain length. The model describes the melting temperature of DNA as a function of composition as well as ionic strength, and is consistent with heat capacity profiles from experiments. The dependence of persistence length on ionic strength is also captured by the force field. The proposed model is used to examine the renaturation of DNA. It is found that a typical renaturation event occurs through a nucleation step, whereby an interplay between repulsive electrostatic interactions and colloidal-like attractions allows the system to undergo a series of rearrangements before complete molecular reassociation occurs. PMID:19254530
Solar Radiation Estimated Through Mesoscale Atmospheric Modeling over Northeast Brazil
NASA Astrophysics Data System (ADS)
de Menezes Neto, Otacilio Leandro; Costa, Alexandre Araújo; Ramalho, Fernando Pinto; de Maria, Paulo Henrique Santiago
2009-03-01
The use of renewable energy sources, like solar, wind and biomass is rapidly increasing in recent years, with solar radiation as a particularly abundant energy source over Northeast Brazil. A proper quantitative knowledge of the incoming solar radiation is of great importance for energy planning in Brazil, serving as basis for developing future projects of photovoltaic power plants and solar energy exploitation. This work presents a methodology for mapping the incoming solar radiation at ground level for Northeast Brazil, using a mesoscale atmospheric model (Regional Atmospheric Modeling System—RAMS), calibrated and validated using data from the network of automatic surface stations from the State Foundation for Meteorology and Water Resources from Ceará (Fundação Cearense de Meteorologia e Recursos Hídricos- FUNCEME). The results showed that the model exhibits systematic errors, overestimating surface radiation, but that, after the proper statistical corrections, using a relationship between the model-predicted cloud fraction, the ground-level observed solar radiation and the incoming solar radiation estimated at the top of the atmosphere, a correlation of 0.92 with a confidence interval of 13.5 W/m2 is found for monthly data. Using this methodology, we found an estimate for annual average incoming solar radiation over Ceará of 215 W/m2 (maximum in October: 260 W/m2).
Random-forcing model of the mesoscale oceanic eddies
NASA Astrophysics Data System (ADS)
Berloff, Pavel S.
2005-04-01
The role of mesoscale oceanic eddies in driving large-scale currents is studied in an eddy-resolving midlatitude double-gyre ocean model. The reference solution is decomposed into large-scale and eddy components in a way which is dynamically consistent with a non-eddy-resolving ocean model. That is, the non-eddy-resolving solution driven by this eddy-forcing history, calculated on the basis of this decomposition, correctly approximates the original flow. The main effect of the eddy forcing on the large-scale flow is to enhance the eastward-jet extension of the subtropical western boundary current. This is an anti-diffusive process, which cannot be represented in terms of turbulent diffusion. It is shown that the eddy-forcing history can be approximated as a space-time correlated, random-forcing process in such a way that the non-eddy-resolving solution correctly approximates the reference solution. Thus, the random-forcing model can potentially replace the diffusion model, which is commonly used to parameterize eddy effects on the large-scale currents. The eddy-forcing statistics are treated as spatially inhomogeneous but stationary, and the dynamical roles of space-time correlations and spatial inhomogeneities are systematically explored. The integral correlation time, oscillations of the space correlations, and inhomogeneity of the variance are found to be particularly important for the flow response.
Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms
NASA Astrophysics Data System (ADS)
Simmer, C.
2015-12-01
An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.
NASA Astrophysics Data System (ADS)
Lascaux, F.; Masciadri, E.; Hagelin, S.; Stoesz, J.
2009-09-01
Mesoscale model such as Meso-NH have proven to be highly reliable in reproducing 3D maps of optical turbulence (OT).1-3 These last years ground-based astronomy has been looking towards Antarctica, especially its summits and the continental plateau where the OT appears to be confined in a shallow layer close to the surface. However some uncertainties remain. That's why our group is focusing on a detailed study of the atmospheric flow and turbulence in the internal Antarctic Plateau. Our intention in this study is to use the Meso-NH model to do predictions of the atmospheric flow in the internal plateau. The use of this model permits us to have access to informations inside an entire 3D volume, which is not the case with observations only. Two different configurations of the model have been used: one with a low horizontal resolution (ΔX = 100 km) and another one with higher horizontal resolution with the help of the grid-nesting interactive technique (ΔX = 1 km in the innermost domain). The impact of the configuration on the meteorological parameters has already been studied.4 We present here the results obtained with Meso-Nh of forecasted CN2 profiles, surface layer thickness (SLT) and seeing values at Dome C for the 16 winter nights, whose CN2 profiles have been measured by Ref.5.
Dynamically consistent parameterization of mesoscale eddies. Part I: Simple model
NASA Astrophysics Data System (ADS)
Berloff, Pavel
2015-03-01
This work aims at developing a framework for dynamically consistent parameterization of mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. The proposed eddy parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous eddy field and in the non-eddy-resolving configuration with the eddy parameterization replacing the eddy effects. The parameterization locally approximates transient eddy flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced cumulative eddy forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of the footprint strongly depend on the underlying large-scale and the corresponding relationships provide the basis for the eddy parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting eddy forcing field, which is interactively added to the model as an extra forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.
Mesoscale Phase Field Modeling of Glass Strengthening Under Triaxial Compression
Li, Yulan; Sun, Xin
2015-09-28
Recent hydraulic bomb and confined sleeve tests on transparent armor glass materials such as borosilicate glass and soda-lime glass showed that the glass strength was a function of confinement pressure. The measured stress-strain relation is not a straight line as most brittle materials behave under little or no confinement. Moreover, borosilicate glass exhibited a stronger compressive strength when compared to soda-lime glass, even though soda-lime has higher bulk and shear moduli as well as apparent yield strength. To better understand these experimental findings, a mesoscale phase field model is developed to simulate the nonlinear stress versus strain behaviors under confinement by considering heterogeneity formation under triaxial compression and the energy barrier of a micro shear banding event (referred to as pseudo-slip hereafter) in the amorphous glass. With calibrated modeling parameters, the simulation results demonstrate that the developed phase field model can quantitatively predict the pressure-dependent strength, and it can also explain the difference between the two types of glasses from the perspective of energy barrier associated with a pseudo-slip event.
NASA Technical Reports Server (NTRS)
Matthews, D. A.
1978-01-01
The effects of mesoscale triggering on organized nonsevere convective cloud systems in the High Plains are considered. Two experiments were conducted to determine if a one-dimensional quasi-time dependent model could (1) detect soundings which were sensitive to mesoscale triggering, and (2) discriminate between cases which had mesoscale organized convection and those with no organized convection. The MESOCU model was used to analyze the available potential instability and thermodynamic potential for cloud growth. It is noted that lifting is a key factor in the release of available potential instability on the High Plains.
NASA Technical Reports Server (NTRS)
Matthews, D. A.
1978-01-01
The effects of mesoscale triggering on organized nonsevere convective cloud systems in the High Plains are considered. Two experiments were conducted to determine if a one-dimensional quasi-time dependent model could (1) detect soundings which were sensitive to mesoscale triggering, and (2) discriminate between cases which had mesoscale organized convection and those with no organized convection. The MESOCU model was used to analyze the available potential instability and thermodynamic potential for cloud growth. It is noted that lifting is a key factor in the release of available potential instability on the High Plains.
Probabilistic flood damage modelling at the meso-scale
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2014-05-01
Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.
Meso-scale modeling of irradiated concrete in test reactor
Giorla, Alain B.; Vaitová, M.; Le Pape, Yann; Štemberk, P.
2015-10-18
In this paper, we detail a numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale. Irradiation experiments in test reactor (Elleuch et al.,1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al.,2015). In conclusion, the proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.
Using dispersion and mesoscale meteorological models to forecast pollen concentrations
NASA Astrophysics Data System (ADS)
Pasken, Robert; Pietrowicz, Joseph A.
This work describes the results of research into a source-oriented pollen concentration forecasting technique. Tests were conducted using the National Center for Atmospheric Research/ Penn State Fifth Generation Mesoscale Model (MM5), the National Oceanographic and Atmospheric Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT_4) Model combined with the locations of oak trees and their aerial coverage from biogenic emissions land cover database version 3.1 (BELD3). Daily forecasts of pollen concentrations via MM5 and HYSPLIT_4 were made with 30-min increments and tested against 30-min oak pollen data collected by the St. Louis County Department of Health in Clayton, Missouri, for the month of April 2000. Results from these tests show that the combination of MM5 and HYSPLIT_4 with accurate source locations can provide short-term forecasts as indicated by the levels of forecast pollen and actual oak pollen levels, which follow similar profiles for the day. From the 30 individual pollen concentration forecasts, two example forecasts are presented. Additional studies need to be conducted to further validate these results, using an array of pollen collectors. A better understanding of the biology of pollen release is critical to improving these pollen concentration forecasts.
Meso-scale modeling of irradiated concrete in test reactor
Giorla, Alain B.; Vaitová, M.; Le Pape, Yann; ...
2015-10-18
In this paper, we detail a numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale. Irradiation experiments in test reactor (Elleuch et al.,1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damagemore » around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al.,2015). In conclusion, the proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.« less
NASA Astrophysics Data System (ADS)
Barranger, Nicolas; Stathopoulos, Christos; Kallos, Georges
2013-04-01
. Following, the implementation of all databases, a high resolution simulation is performed over the complex terrain area of Northern Spain. The results are compared with meteorological station in the Navarra region and tall masts available on site. Using two way nesting techniques, the model is simultaneously resolving the synoptic forcing over Spanish Peninsula, mesoscale features over Navarra Region and microscale flow pattern passing around the Alaiz Mountain. To do so, multiple grids nests are set up in which the resolution varies gradually from the order of 10km to 100m. The time step decreases from twenty seconds to tens of milliseconds according to the Courant Friedrichs Lewy condition. The model that features Message Passing Interface is run using 64 cores. For high resolution grids (less than 500m), local convection is resolved using Large eddy simulation (LES) turbulent closure schemes. The LES technique provides a more detailed characterization of microscale turbulent flows using the complete Reynolds stress tensor for the sub filter scale parameterization.
Representing urban terrain characteristics in mesoscale meteorological and dispersion models is critical to produce accurate predictions of wind flow and temperature fields, air quality, and contaminant transport. A key component of the urban terrain representation is the charac...
Representing urban terrain characteristics in mesoscale meteorological and dispersion models is critical to produce accurate predictions of wind flow and temperature fields, air quality, and contaminant transport. A key component of the urban terrain representation is the charac...
STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS
Anter El-Azab
2013-04-08
The research under this project focused on a theoretical and computational modeling of dislocation dynamics of mesoscale deformation of metal single crystals. Specifically, the work aimed to implement a continuum statistical theory of dislocations to understand strain hardening and cell structure formation under monotonic loading. These aspects of crystal deformation are manifestations of the evolution of the underlying dislocation system under mechanical loading. The project had three research tasks: 1) Investigating the statistical characteristics of dislocation systems in deformed crystals. 2) Formulating kinetic equations of dislocations and coupling these kinetics equations and crystal mechanics. 3) Computational solution of coupled crystal mechanics and dislocation kinetics. Comparison of dislocation dynamics predictions with experimental results in the area of statistical properties of dislocations and their field was also a part of the proposed effort. In the first research task, the dislocation dynamics simulation method was used to investigate the spatial, orientation, velocity, and temporal statistics of dynamical dislocation systems, and on the use of the results from this investigation to complete the kinetic description of dislocations. The second task focused on completing the formulation of a kinetic theory of dislocations that respects the discrete nature of crystallographic slip and the physics of dislocation motion and dislocation interaction in the crystal. Part of this effort also targeted the theoretical basis for establishing the connection between discrete and continuum representation of dislocations and the analysis of discrete dislocation simulation results within the continuum framework. This part of the research enables the enrichment of the kinetic description with information representing the discrete dislocation systems behavior. The third task focused on the development of physics-inspired numerical methods of solution of the coupled
A hybrid wind farm parameterization for mesoscale and climate models
NASA Astrophysics Data System (ADS)
Pan, Y.; Archer, C. L.
2016-12-01
To better understand the potential impacts of wind farms on weather and climate at the local to regional scale, a new hybrid wind farm parameterization is proposed here for mesoscale models, such as the Weather Research and Forecasting Model (WRF), or climate models, such as the Community Atmosphere Model (CAM). All previous wind farm parameterizations treat all the wind turbines in the same grid cell as identical (i.e., they all share the same upstream wind velocity) and ignore the effect of wind direction. By contrast, the new hybrid model considers each individual wind turbine, based on its position in the layout and on wind direction. The new parameterization is developed starting from large eddy simulations (LES) of existing wind farms, in which the local flow around each wind turbine is directly simulated at high spatial ( 3.5 m) and temporal ( 0.1 s) resolutions and the effects of subgrid-scale processes are modeled. Based on analytic and statistical relationships between the LES results and several geometric properties of the wind farm layout (such as blockage ratio and blocking distance), the new hybrid parameterization predicts the local upstream wind speed of each individual wind turbine in the same grid cell, and thus successfully account for the effects of layout and wind direction with little computational cost. With the newly predicted upstream velocity, the turbine-induced forces and added turbulence kinetic energy (TKE) in the atmosphere are derived analytically. The wind speed, wind speed deficit, and TKE profiles and power production obtained with the hybrid parameterization for the test case (the 48-turbine Lillgrund wind farm in Sweden) are in better agreement with the LES results than previous parameterizations. Future work includes the insertion of the hybrid parameterization into the WRF code to assess impacts on near-surface properties, such as temperature and heat and momentum fluxes, in the region surrounding the wind farm.
A spatial model of waterfowl nest site selection in grassland nesting cover
NASA Astrophysics Data System (ADS)
Pool, Duane Bruce
Ducks Unlimited's (DU) mission statement is focused on providing for the annual lifecycle needs of migratory waterfowl. The largest impacts to the success and numbers of continental populations are determined by their activities on the breeding grounds. To model and therefore manage habitats and landscapes for ducks (Anas and Aythya spp.) it is necessary to understand several characteristics of their behavior. This research builds a model of nest site selection from nest probability based on remotely sensed data, presence data and minimum threshold theory. The methods used are applicable to other sensor platforms as well as other target species or phenomenon. Using data compression techniques, logistic regression, and spatial statistical functions (Ripley's k-function, a global k-function, and Multiple Response Permutation Procedure) we tested the observed point patterns and developed a point process model to predict nesting patterns. The application of this type of fine resolution database, validated by empirical data, will be more powerful than either classified remote sensing data or field level nest demographic data alone. In the largest of the five study sites, which was also the site with the greatest number of observations, the pattern of nests were significantly different from Poisson. The model developed to fit these data was tested using the other sites and the observed data on the other four sites were not shown to be significantly different from the model. The tests for spatial association showed some evidence negative association between Blue-winged Teal and Gadwall as well as between successful and unsuccessful nest. There is some evidence that a process of natural selection may exist and the future studies should be designed with this in mind. These data will be used as a baseline for future habitat manipulation and controlled experiments on the DU Goebel Ranch complex. The results of this and future studies will be used as the basis for DU strategic
Meso-Scale Radioactive Dispersion Modelling using GPU
NASA Astrophysics Data System (ADS)
Sunarko; Suud, Zaki
2017-01-01
Lagrangian Particle Dispersion Method (LPDM) is applied to model atmospheric dispersion of radioactive material in a meso-scale of a few tens of kilometers for site study purpose. Empirical relationships are used to determine the dispersion coefficient for various atmospheric stabilities. Diagnostic 3-D wind field is created based on data from a meteorological station using mass-conservation principle. Particles imitating radioactive pollutant are dispersed in the wind-field as a point source. Time-integrated air concentration is calculated using kernel density estimator (KDE) in the lowest layer of the atmosphere. Parallel code is developed for GTX-660Ti GPU with a total of 1344 scalar processors using CUDA programming. Significant speedup of about 20 times is achieved compared to the serial version of the code while accuracy is kept at reasonable level. Only small differences in particle positions and grid doses are observed when using the same sets of random number and meteorological data in both CPU and GPU versions of the code.
Modeling of Mesoscale Variability in Biofilm Shear Behavior
Barai, Pallab; Kumar, Aloke; Mukherjee, Partha P.
2016-01-01
Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a) initial increase in stiffness due to strain stiffening of polymer matrix, and b) eventual reduction in stiffness because of tear in polymeric substrate. PMID:27806068
Kim, Cheol-Hee; Song, Chang-Keun; Lee, Sang-Hyun; Song, Sang-Keun
2008-10-01
In order to simulate the impact of mesoscale wind fields and to assess potential capability of atmospheric Lagrangian particle dispersion model (LPDM) as an emergency response model for the decision supports, two different simulations of LPDM with the mesoscale prognostic model MM5 (Mesoscale Model ver. 5) were driven. The first simulation of radioactive noble gas (85Kr exponent) emitted during JCO accident occurred from 30 September to 3 October 1999 at Tokai, Japan showed that the first arriving short pulse was found in Tsukuba located at 60 km away from the accidental area. However, the released radioactive noble gas was transported back to the origin site about 2 days later due to the mesoscale meteorological wind circulation, enhancing the levels of 85Kr with the secondary peak in Tsukuba. The second simulation of atmospheric dilution factors (the ratio of concentration to the emission rate, chi/Q), during the underground nuclear test (UNT) performed by North Korea showed that high chi/Q moved to the eastward and extended toward southward in accordance with the mesoscale atmospheric circulations generated by mesoscale prognostic model MM5. In comparison with the measurements, the simulated horizontal distribution patterns of 85Kr during the JCO are well accord with that of observation in Tsukuba such as the existence of secondary peak which is associated with the mesoscale circulations. However, the simulated level of 85Kr anomaly was found to be significantly lower than the observations, and some interpretations on these discrepancies were described. Applications of LPDM to two mesoscale emergency response dispersion cases suggest the potential capability of LPDM to be used as a decision support model provided accurate emission rate of accident in case of a large accident.
NASA Astrophysics Data System (ADS)
Munters, Wim; Meneveau, Charles; Meyers, Johan
2014-11-01
In order to incorporate multiple scales of meteorological phenomena in atmospheric simulations, subsequent nesting of meso-scale models is often used. However, the spatial and temporal resolution in such models is too coarse to resolve the three-dimensional turbulent eddies that are characteristic for atmospheric boundary layer flows. This motivates the development of tools to couple meso-scale models to Large-Eddy Simulations (LES), in which turbulent fluctuations are explicitly resolved. A major challenge in this area is the spin-up region near the inlet of the LES in which the flow has to evolve from a RANS-like inflow, originating from the meso-scale model, to a fully turbulent velocity field. We propose a generalized concurrent precursor inflow method capable of imposing boundary conditions for time-varying inflow directions. The method is based on a periodic fully-developed precursor boundary-layer simulation that is dynamically rotated with the wind direction that drives the main LES. In this way realistic turbulent inflow conditions are applied while still retaining flexibility to dynamically adapt to meso-scale variations in wind directions. Applications to wind simulations with varying inflow directions, and comparisons to conventional coupling methods are shown. Work supported by ERC (ActiveWindFarms, Grant No: 306471). CM is supported by NSF (Grant No. 1243482).
Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations
NASA Astrophysics Data System (ADS)
Berri, Guillermo J.; Bertossa, Germán
2017-08-01
A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.
Analysis of a Mesoscale Model for Depicting Rain-on-Snow Flooding Events in Mountainous Terrain
NASA Astrophysics Data System (ADS)
Morehead, M. D.; Dawson, P.; Seyfried, M. S.
2002-12-01
Cold season rain-on-snow events are one of the major sources of flooding in the Pacific Northwest. Accurate modeling of the atmospheric fields forcing these events is leading to a better understanding of the atmospheric conditions behind these events and to better prediction of these floods. A mesoscale atmospheric model (RAMS) with nested grids is being used for high resolution simulations of winter precipitation and other climate variables in the Owyhee mountains of southwestern Idaho. The Reynolds Creek Experimental Watershed (RCEW) contains a dense array of meteorologic and hydrologic instrumentation with which to test the spatial and temporal hydrologic and atmospheric models. The large number of precipitation gauges in the RCEW cover a wide range of precipitation zones found in mountainous terrain. These gauges allow for a thorough assessment of the areal distribution and timing of modeled versus measured precipitation and temperature. A comparison of the modeled and measured data from two winter storms associated with rain-on-snow events shows close agreement in the spatial and temporal distributions of precipitation, temperature and other variables. The model correctly predicts the spatial distribution of precipitation and the temporal conversion from snow to rain-on-snow in the lower elevations of the watershed. The modeled precipitation is typically slightly lower than the measured values. Some of the high frequency (hourly) weather variability was not captured by the model, presumably due to lack of sufficient data in the initialization process. The longer term goal is to develop a tool for generating detailed weather information for winter time hydrologic studies including cold season flooding processes and to better understand the processes controlling winter flooding.
Observation Denial and Performance of a Local Mesoscale Model
NASA Technical Reports Server (NTRS)
Watson, Leela R.; Bauman, William H., III
2009-01-01
Forecasters at the 45th Weather Squadron (45 WS) use observations from the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) wind tower network and the CCAFS (XMR) daily rawinsonde observations (RAOB) to issue and verify wind advisories and warnings for operations. These observations are also used by the Spaceflight Meteorology Group (SMG) in Houston, Texas and the Melbourne, Florida National Weather Service office to initialize their locally run mesoscale models. SMG also uses the observations to support shuttle landings at the KSC Shuttie Landing Facility. Due to impending budget cuts, some or all of the KSC/CCAFS wind towers on the east-central Florida mainland and the XMR RAOBs may be eliminated. The loss of these data may impact the forecast capability of the 45 WS and SMG. The Applied Meteorology Unit (AMU) was tasked to conduct a modeling study to determine how important these observations are to the accuracy of the model output used by the forecasters as input to their forecasts. To accomplish this, the AMU performed a sensitivity study using the Weather Research and Forecasting (NRF) model initialized with and without KSC/CCAFS wind tower and XMR RAOB observations. The AMU assessed the accuracy of model output by comparing peak wind forecasts with operationally significant wind advisory and warning criteria forecast by the 45 WS. To assess model performance when initialized with and without some of the wind tower and XMR RAOB observations, the AMU conducted a subjective analysis by displaying model wind forecasts graphically with the observations overlaid for comparison and they conducted an objective analysis by comparing the maximum peak wind forecast to the maximum peak wind observed within the KSC/CCAFS wind tower network. Data were collected for twelve warm season cases and eight cool season cases from June - September 2007 and November - January 2008, respectively. For each case chosen, the 45 WS must have issued a wind advisory
Mesoscale Modeling During Mixed-Phase Arctic Cloud Experiment
Avramov, A.; Harringston, J.Y.; Verlinde, J.
2005-03-18
Mixed-phase arctic stratus clouds are the predominant cloud type in the Arctic (Curry et al. 2000) and through various feedback mechanisms exert a strong influence on the Arctic climate. Perhaps one of the most intriguing of their features is that they tend to have liquid tops that precipitate ice. Despite the fact that this situation is colloidally unstable, these cloud systems are quite long lived - from a few days to over a couple of weeks. It has been hypothesized that mixed-phase clouds are maintained through a balance between liquid water condensation resulting from the cloud-top radiative cooling and ice removal by precipitation (Pinto 1998; Harrington et al. 1999). In their modeling study Harrington et al. (1999) found that the maintenance of this balance depends strongly on the ambient concentration of ice forming nucleus (IFN). In a follow-up study, Jiang et al. (2002), using only 30% of IFN concentration predicted by Meyers et al. (1992) IFN parameterization were able to obtain results similar to the observations reported by Pinto (1998). The IFN concentration measurements collected during the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004 over the North Slope of Alaska and the Beaufort Sea (Verlinde et al. 2005), also showed much lower values then those predicted (Prenne, pers. comm.) by currently accepted ice nucleation parameterizations (e.g. Meyers et al. 1992). The goal of this study is to use the extensive IFN data taken during M-PACE to examine what effects low IFN concentrations have on mesoscale cloud structure and coastal dynamics.
Mesoscale modeling study of severe convection over complex terrain
NASA Astrophysics Data System (ADS)
Zhang, Ying; Meng, Zhiyong; Zhu, Peijun; Su, Tao; Zhai, Guoqing
2016-11-01
Short squall lines that occurred over Lishui, southwestern Zhejiang Province, China, on 5 July 2012, were investigated using the WRF model based on 1°×1° gridded NCEP Final Operational Global Analysis data. The results from the numerical simulations were particularly satisfactory in the simulated radar echo, which realistically reproduced the generation and development of the convective cells during the period of severe convection. The initiation of this severe convective case was mainly associated with the uplift effect of mesoscale mountains, topographic convergence, sufficient water vapor, and enhanced low-level southeasterly wind from the East China Sea. An obvious wind velocity gradient occurred between the Donggong Mountains and the southeast coastline, which easily enabled wind convergence on the windward slope of the Donggong Mountains; both strong mid-low-level southwesterly wind and low-level southeasterly wind enhanced vertical shear over the mountains to form instability; and a vertical coupling relation between the divergence on the upper-left side of the Donggong Mountains and the convergence on the lower-left side caused the convection to develop rapidly. The convergence centers of surface streams occurred over the mountain terrain and updrafts easily broke through the lifting condensation level (LCL) because of the strong wind convergence and topographic lift, which led to water vapor condensation above the LCL and the generation of the initial convective cloud. The centers of surface convergence continually created new convective cells that moved with the southwest wind and combined along the Donggong Mountains, eventually forming a short squall line that caused severe convective weather.
NASA Astrophysics Data System (ADS)
Marécal, V.; Durry, G.; Longo, K.; Freitas, S.; Rivière, E. D.; Pirre, M.
2006-08-01
In this study, we evaluate the ability of the BRAMS mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS). The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer) instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to ECMWF analysis. The mesoscale model performs significantly better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The improvement provided by the mesoscale model for water vapour comes mainly from (i) the enhanced vertical resolution in the UTLS (250 m for BRAMS and ~1 km for ECMWF model) and (ii) the more detailed microphysical parameterization providing ice supersaturations as in the observations. The ECMWF vertical resolution (~1 km) is too coarse to capture the observed fine scale vertical variations of water vapour in the UTLS. In near saturated or supersaturated layers, the mesoscale model relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, ECMWF analysis gives good results partly thanks to data assimilation. The analysis of the mesoscale model results showed that in undersaturated layers, the water vapour profile depends mainly on the dynamics. In saturated/supersaturated layers, microphysical processes play an important role and have to be taken into account on top of the dynamical processes to understand the water vapour profiles. In the lower stratosphere, the ECMWF model and the BRAMS model give very similar water vapour profiles that are significantly dryer than micro-SDLA measurements. This similarity comes from the fact that BRAMS is initialised using ECMWF analysis and that no mesoscale
NASA Technical Reports Server (NTRS)
Koch, Steven E.; Mcqueen, Jeffery T.
1987-01-01
A survey of various one- and two-way interactive nested grid techniques used in hydrostatic numerical weather prediction models is presented and the advantages and disadvantages of each method are discussed. The techniques for specifying the lateral boundary conditions for each nested grid scheme are described in detail. Averaging and interpolation techniques used when applying the coarse mesh grid (CMG) and fine mesh grid (FMG) interface conditions during two-way nesting are discussed separately. The survey shows that errors are commonly generated at the boundary between the CMG and FMG due to boundary formulation or specification discrepancies. Methods used to control this noise include application of smoothers, enhanced diffusion, or damping-type time integration schemes to model variables. The results from this survey provide the information needed to decide which one-way and two-way nested grid schemes merit future testing with the Mesoscale Atmospheric Simulation System (MASS) model. An analytically specified baroclinic wave will be used to conduct systematic tests of the chosen schemes since this will allow for objective determination of the interfacial noise in the kind of meteorological setting for which MASS is designed. Sample diagnostic plots from initial tests using the analytic wave are presented to illustrate how the model-generated noise is ascertained. These plots will be used to compare the accuracy of the various nesting schemes when incorporated into the MASS model.
Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen
2005-01-01
The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...
NASA Technical Reports Server (NTRS)
Wu, Dong L.; Zhang, Fuqing
2004-01-01
Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.
Numerical Model Studies of the Martian Mesoscale Circulations
NASA Technical Reports Server (NTRS)
Segal, M.; Arritt, R. W.
1996-01-01
Studies concerning mesoscale topographical effects on Martian flows examined low-level jets in the near equatorial latitudes and the dynamical intensification of flow by steep terrain. Continuation of work from previous years included evaluating the dissipation of cold air mass outbreaks due to enhanced sensible heat flux, further sensitivity and scaling evaluations for generalization of the characteristics of Martian mesoscale circulation caused by horizontal sensible heat-flux gradients, and evaluations of the significance that non-uniform surface would have on enhancing the polar CO2 ice sublimation during the spring. The sensitivity of maximum and minimum atmospheric temperatures to changes in wind speed, surface albedo, and deep soil temperature was investigated.
Intercomparison of state-of-the-art models for wind energy resources with mesoscale models:
NASA Astrophysics Data System (ADS)
Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria; Badger, Jake; Joergensen, Hans E.
2016-04-01
1. Introduction Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are functional for giving information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Several mesoscale models and families of models are being used, and each often contains thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. To remedy this problem and for evaluating the capabilities of mesoscale models to estimate site wind conditions, a tailored benchmarking study has been co-organized by the European Wind Energy Association (EWEA) and the European Energy Research Alliance Joint Programme Wind Energy (EERA JP WIND). EWEA hosted results and ensured that participants were anonymous. The blind evaluation was performed at the Wind Energy Department of the Technical University of Denmark (DTU) with the following objectives: (1) To highlight common issues on mesoscale modelling of wind conditions on sites with different characteristics, and (2) To identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. 2. Approach Three experimental sites were selected: FINO 3 (offshore, GE), Høvsore (coastal, DK), and Cabauw (land-based, NL), and three other sites without observations based on . The three mast sites were chosen because the availability of concurrent suitable time series of vertical profiles of winds speed and other surface parameters. The participants were asked to provide hourly time series of wind speed, wind direction, temperature, etc., at various vertical heights for a complete year. The methodology used to derive the time series was left to the choice of the participants, but they were asked for a brief description of their model and many other parameters (e.g., horizontal and
NASA Astrophysics Data System (ADS)
Haupt, S. E.; Zajaczkowski, F. J.; Schmehl, K. J.
2010-12-01
Wind energy companies require information regarding details of the wind field for both micrositing new wind farms and the specific turbines within them as well as for forecasting power production at particular sites. Although Numerical Weather Prediction (NWP) models applied on the mesoscale can provide information regarding the general flow characteristics, the very fine scale details (on the order of meters to tens of meters) dependent on local features are not available. That is precisely the realm in which Computational Fluid Dynamics (CFD) models excel. These CFD models are capable of capturing details of the boundary layer dynamics and turbulent structures over a finer range of scales as well as flow around features such as buildings. They are not generally configured, however, to include radiation, moist convection physics, land surface parameterizations, and other physics packages commonly available within the NWP models. The solution proposed here is to blend the information provided by the mesoscale NWP models with the details of CFD by assimilating the NWP data directly into the CFD model. The assimilation occurs both at the boundaries as an inflow condition for the CFD model and internally by assimilating an NWP wind and temperature profile at the vertical gridlines of the mesoscale model run. This internal assimilation uses the Newtonian Relaxation technique, in which the solution is nudged toward the mesoscale values in the vicinity of the grid line while maintaining the internal mass and momentum consistency of the CFD model. The assimilation blending technique is demonstrated in the Rock Springs valley nestled between rolling ridges in the central Pennsylvania countryside in the vicinity of several wind farms. Two specific case days are chosen to represent typical summer and winter characteristics. The WRF-ARW NWP model is run with four dimensional data assimilation to produce a 1.3 km resolution mesoscale analysis. That data provide the basis for
Nested Logit Models for Multiple-Choice Item Response Data
ERIC Educational Resources Information Center
Suh, Youngsuk; Bolt, Daniel M.
2010-01-01
Nested logit item response models for multiple-choice data are presented. Relative to previous models, the new models are suggested to provide a better approximation to multiple-choice items where the application of a solution strategy precedes consideration of response options. In practice, the models also accommodate collapsibility across all…
Case study modeling of turbulent and mesoscale fluxes over the BOREAS region
Vidale, P.L.; Pielke, R.A.; Steyaert, L.T.; Barr, A.
1997-01-01
Results from aircraft and surface observations provided evidence for the existence of mesoscale circulations over the Boreal Ecosystem-Atmosphere Study (BOREAS) domain. Using an integrated approach that included the use of analytical modeling, numerical modeling, and data analysis, we have found that there are substantial contributions to the total budgets of heat over the BOREAS domain generated by mesoscale circulations. This effect is largest when the synoptic flow is relatively weak, yet it is present under less favorable conditions, as shown by the case study presented here. While further analysis is warranted to document this effect, the existence of mesoscale flow is not surprising, since it is related to the presence of landscape patches, including lakes, which are of a size on the order of the local Rossby radius and which have spatial differences in maximum sensible heat flux of about 300 W m-2. We have also analyzed the vertical temperature profile simulated in our case study as well as high-resolution soundings and we have found vertical profiles of temperature change above the boundary layer height, which we attribute in part to mesoscale contributions. Our conclusion is that in regions with organized landscapes, such as BOREAS, even with relatively strong synoptic winds, dynamical scaling criteria should be used to assess whether mesoscale effects should be parameterized or explicitly resolved in numerical models of the atmosphere.
NASA Astrophysics Data System (ADS)
Duvert, C.; Némery, J.; Gratiot, N.; Prat, C.; Collet, L.; Esteves, M.
2009-12-01
at the outlet, with a dominance of cohesive sediments (mainly silt and clay). Sediment delivery dynamics was found to be seasonally dependent and principally driven by the river network transport capacity. With the exception of events associated with a very high discharge peak, sub-catchments delivered very little sediment to the basin’s outlet during first events of the rainy season (corresponding to May-June period). Later on (from July until the end of the season), even low headwater sediment peaks were coupled with significant sediment fluxes at the outlet. An analysis of SSC-Q hysteresis patterns was also conducted for major flood events at each site. Anti-clockwise SSC-Q hysteresis loops were recorded most frequently at the three upland sub-catchments, while at the outlet a double-peaked SSC signal was repeatedly detected, outlining the variety in sediment contributions. The findings of this nested watershed approach suggest that during the first part of the rainy season, fine sediment loads exported from active hillslopes deposit as fluid mud layers in the lowland river channels. Once the in-channel storage capacity is loaded, the river transport potential guarantees a direct transit between headwater areas and delivery zones.
NASA Technical Reports Server (NTRS)
Kalb, M. W.; Perkey, D. J.
1985-01-01
The influence of synoptic scale initial conditions on the accuracy of mesoscale precipitation modeling is investigated. Attention is focused on the relative importance of the water vapor, cloud water, rain water, and vertical motion, with the analysis carried out using the Limited Area Mesoscale Prediction System (LAMPS). The fully moist primitive equation model has 15 levels and a terrain-following sigma coordinate system. A K-theory approach was implemented to model the planetary boundary layer. A total of 15 sensitivity simulations were run to investigate the effects of the synoptic initial conditions of the four atmospheric variables. The absence of synoptic cloud and rain water amounts in the initialization caused a 2 hr delay in the onset of precipitation. The delay was increased if synoptic-scale vertical motion was used instead of mesoscale values. Both the delays and a choice of a smoothed moisture field resulted in underestimations of the total rainfall.
NASA Technical Reports Server (NTRS)
Kalb, M. W.; Perkey, D. J.
1985-01-01
The influence of synoptic scale initial conditions on the accuracy of mesoscale precipitation modeling is investigated. Attention is focused on the relative importance of the water vapor, cloud water, rain water, and vertical motion, with the analysis carried out using the Limited Area Mesoscale Prediction System (LAMPS). The fully moist primitive equation model has 15 levels and a terrain-following sigma coordinate system. A K-theory approach was implemented to model the planetary boundary layer. A total of 15 sensitivity simulations were run to investigate the effects of the synoptic initial conditions of the four atmospheric variables. The absence of synoptic cloud and rain water amounts in the initialization caused a 2 hr delay in the onset of precipitation. The delay was increased if synoptic-scale vertical motion was used instead of mesoscale values. Both the delays and a choice of a smoothed moisture field resulted in underestimations of the total rainfall.
Modeling nest survival of cavity-nesting birds in relation to postfire salvage logging
Vicki Saab; Robin E. Russell; Jay Rotella; Jonathan G. Dudley
2011-01-01
Salvage logging practices in recently burned forests often have direct effects on species associated with dead trees, particularly cavity-nesting birds. As such, evaluation of postfire management practices on nest survival rates of cavity nesters is necessary for determining conservation strategies. We monitored 1,797 nests of 6 cavity-nesting bird species: Lewis'...
NASA Astrophysics Data System (ADS)
Rivière, Emmanuel; Marécal, Virginie; Khaykin, Sergey; Amarouche, Nadir; Ghysels, Mélanie; Mappe-Fogaing, Irène; Behera, Abhinna; Held, Gerhard; França, Hermes
2016-04-01
One of the main aims of the TRO-pico project (2010-2015) was to study the variability of overshooting convection at the local scale to try to deduce a typical impact on the TTL water at the global scale. In this study, we've identified local maximum in the water vapour profiles gathered by the balloon-borne hygrometers Pico-SDLA and Flash above Bauru, Brazil (22.3 S) during the TRO-pico campaign. We tried to link them to overshooting cells in the surrounding of Bauru with a trajectory analysis. In this study we select a couple of cases of overshooting convection both sampled by the Bauru S-Band radar and by one of the balloon-borne instruments of the TRO-pico campaign in 2012 and 2013. The selected cases are the case of March 13, 2012 (hereafter M12), sounded by both hygrometers Pico-SDLA and FLASH, and the case of January 26, 2013 (hereafter J13), sounded by Pico-SDLA. For the M12 case, local water vapour enhancements at two different altitudes due to two different cells were reported, with local enhancement of about 0.65 ppmv. For the J26 case, the water enhancement was about 1 ppmv. The corresponding mesoscale simulations with the Brazilian Regional Atmospheric Modelling System (BRAMS) using 3 nested grids with horizontal resolution down to 800 m were carried out. Simulation results are compared to Bauru's radar echo tops and and water vapour in situ measurements. As for the M12 simulation, the model is doing a rather good job in reproducing several overshooting cells, both in severity and timing. Associated stratospheric water budget are computed for each cases.
NASA Astrophysics Data System (ADS)
Haupt, Sue Ellen; Kosovic, Branko; Shaw, William
2017-04-01
The purpose of the US DOE's Mesoscale-Microscale Coupling (MMC) Project is to develop, verify, and validate physical models and modeling techniques that bridge the most important atmospheric scales that determine wind plant performance and reliability. As part of DOE's Atmosphere to Electrons (A2e) program, the MMC project seeks to create a new predictive numerical simulation capability that is able to represent the full range of atmospheric flow conditions impacting wind plant performance. The recent focus of MMC has been on nonstationary conditions over flat terrain. These nonstationary cases are critical for wind energy and represent a primary need for mesoscale meteorological forcing of the microscale models. The MMC team modeled two types of non-stationary cases: 1) diurnal cycles in which the daytime convective boundary layer collapses with the setting of the sun when the surface heat flux changes from positive to negative, passing through a brief period of neutral stability before becoming stable, with smaller scale turbulence and the potential for low level jet (LLJ) formation; and 2) frontal passage as an example of a synoptic weather event that may cause relatively rapid changes in wind speed and direction. The team compared and contrasted two primary techniques for non-stationary forcing of the microscale by the mesoscale model. The first is to use the tendencies from the mesoscale model to directly force the microscale mode. The second method is to couple not only the microscale domain's internal forcing parameters, but also its lateral boundaries, to a mesoscale simulation. While the boundary coupled approach provides the greatest generality, since the mesoscale flow information providing the lateral boundary information for the microscale domain contains no explicit turbulence information, the approach requires methods to accelerate turbulence production at the microscale domain's inflow boundaries. Forefront assessment strategies, including comparing
An Application of an Explicit Microphysics Mesoscale Model to a Regional Icing Event
1994-03-24
in the production of SLW 10 0 . ...330 - 14 .r0 -0 _/ _I " \\.1". 1, . " X ",• " F I " i . 13 L S s u d n tak en .at. W i g n C o o r d , at, .. 2.. U T...FNCN 1JLNBE.RS :An Application of an Explicit Microphysics Mesoscale ’Model to a Regional Icing Event PE 61102F PR 2310 S6. AUTHOR(S) TA G7 George D ...1994 American MWcoOkocal Society An Application of an Explicit Microphysics Mesoscale Model to a Regional Icing Event GEORGE D . MODICA AND SCOT T
The evolution of the mesoscale environment of severe local storms Preliminary modeling results
NASA Technical Reports Server (NTRS)
Anthes, R. A.; Kuo, Y.-H.; Benjamin, S. G.; Li, Y.-F.
1982-01-01
A mesoscale model is employed for predicting two severe weather events observed during thy 1979 SESAME field programs. Particular attention is given to the development and decay of a low-level jet, to the formation of a mesoscale convective complex (MCC) and its modification of lower- and upper-level circulation, to the formation of mesoscale regions of heavy precipitation, the intensification of surface warm and cold fronts, the formation of drylines, dynamic coupling of upper- and low-level jets, the formation of a mountain wave, and the formation and maintenance of capping inversions. A summary of the physics and parameters of a tornado outbreak and a heavy precipitation event are given for a simple bulk-PBL formulation with no heating. A ten-layer model was demonstrated to be sufficient for generating and maintaining distinct vertical gradients of temperature, moisture, and wind across low-level inversions.
Weather Research and Forecasting Model with Vertical Nesting Capability
2014-08-01
The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improves WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundary conditions to be provided through the nesting procedure.
A shallow convection parameterization for the non-hydrostatic MM5 mesoscale model
Seaman, N.L.; Kain, J.S.; Deng, A.
1996-04-01
A shallow convection parameterization suitable for the Pennsylvannia State University (PSU)/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) is being developed at PSU. The parameterization is based on parcel perturbation theory developed in conjunction with a 1-D Mellor Yamada 1.5-order planetary boundary layer scheme and the Kain-Fritsch deep convection model.
2014-09-30
Alexander F. Shchepetkin (PI) James C. McWilliams and Maarten J. Molemaker (Co-PIs) Department of Atmospheric and Oceanic Sciences University of...LONG-TERM GOALS Our goals are the continuing development of the Regional Oceanic Modeling System (ROMS) with emphasis on the ability to simulate... Oceanic Sciences,Los Angeles,CA,90095 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR
NASA Astrophysics Data System (ADS)
Armand, P. P.; Achim, P.; Taffary, T.
2006-12-01
The monitoring of atmospheric radioactive xenon concentration is performed for nuclear safety regulatory requirements. It is also planned to be used for the detection of hypothetical nuclear tests in the framework of the Comprehensive nuclear-Test-Ban Treaty (CTBT). In this context, the French Atomic Energy Commission designed a high sensitive and automated fieldable station, named SPALAX, to measure the activity concentrations of xenon isotopes in the atmosphere. SPALAX stations were set up in Western Europe and have been operated quite continuously for three years or more, detecting principally xenon-133 and more scarcely xenon-135, xenon-133m and xenon-131m. There are around 150 nuclear power plants in the European Union, research reactors, reprocessing plants, medical production and application facilities releasing radioactive xenon in normal or incidental operations. A numerical study was carried out aiming to explain the SPALAX measurements. The mesoscale Atmospheric Transport Modelling involves the MM5 suite (PSU- NCAR) to predict the wind fields on nested domains, and FLEXPART, a 3D Lagrangian particle dispersion code, used to simulate the backward transport of xenon plumes detected by the SPALAX. For every event of detection, at least one potential xenon source has a significant efficiency of emission. The identified likely sources are located quite close to the SPALAX stations (some tens of kilometres), or situated farther (a few hundreds of kilometres). A base line of some mBq per cubic meter in xenon-133 is generated by the nuclear power plants. Peaks of xenon-133 ranging from tens to hundreds of mBq per cubic meter originate from a radioisotope production facility. The calculated xenon source terms required to obtain the SPALAX measurements are discussed and seem consistent with realistic emissions from the xenon sources in Western Europe.
Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model
NASA Astrophysics Data System (ADS)
Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank
2017-07-01
Two parameterizations for horizontal mixing of momentum and tracers by subgrid mesoscale eddies are implemented in a high-resolution global ocean model. These parameterizations follow on the techniques of large eddy simulation (LES). The theory underlying one parameterization (2D Leith due to Leith, 1996) is that of enstrophy cascades in two-dimensional turbulence, while the other (QG Leith) is designed for potential enstrophy cascades in quasi-geostrophic turbulence. Simulations using each of these parameterizations are compared with a control simulation using standard biharmonic horizontal mixing.Simulations using the 2D Leith and QG Leith parameterizations are more realistic than those using biharmonic mixing. In particular, the 2D Leith and QG Leith simulations have more energy in resolved mesoscale eddies, have a spectral slope more consistent with turbulence theory (an inertial enstrophy or potential enstrophy cascade), have bottom drag and vertical viscosity as the primary sinks of energy instead of lateral friction, and have isoneutral parameterized mesoscale tracer transport. The parameterization choice also affects mass transports, but the impact varies regionally in magnitude and sign.
NASA Technical Reports Server (NTRS)
Chen, Chaing
1991-01-01
This study presents a nested-grid nonhydrostatic and elastic model using a terrain-following coordinate transformation as well as a unique application of grid-nesting techniques to the time-splitting elastic model. A simulation of the 10-m-high Witch of Agnesi Mountain provides the control to test this new model. The results show that the model produces the same solution as that derived from a simple linear analytic model. It is demonstrated that the new nested-grid model improves model resolution without resorting to the costly method of placing a fine-resolution grid over the entire domain. Since the wave reflection from the boundaries of the fine-grid model is well controlled, the boundary of the nested fine-grid model can be located even at the wave-active region. The model can be used to simulate various weather systems in which scale interactions are important.
Combined macro-meso scale modeling of sintering. Part II, Mesoscale simulations
TIKARE,VEENA; OLEVSKY,EUGENE A.; BRAGINSKY,MICHAEL V.
2000-05-23
A mesoscale kinetic Monte Carlo model is presented to simulate microstructural evolution during sintering of 2D complex microstructures which evolves by grain growth, pore migration and densification. No assumptions about the geometry of the evolving microstructure are made. The results of these simulations are used to generate sintering stress and normalize viscous bulk modulus for use in continuum level simulation of sintering. The advantage of these simulations is that they can be used to generate more accurate parameters as various assumptions regarding geometry and transport mechanism are made. The previous companion paper used the results from the mesoscale simulations to simulate shrinkage and warpage in sintering of bilayer ceramics.
The CAOS model: a physically based, flexible hydrological model for the mesoscale
NASA Astrophysics Data System (ADS)
Westhoff, Martijn; Zehe, Erwin
2014-05-01
Hydrological models are not only tools to predict discharge, but they are also hypotheses of how a catchment functions with respect to rainfall-runoff behaviour. In this work in progress, we present a new (physically based) model concept that should ultimately be suitable to run at the mesoscale. To be able to run it efficiently on the mesoscale, the model cannot be too complex. Yet, we wanted it physically based, with explicit incorporation of dissipative structures, such as macropores and lateral preferential flow paths. Besides water fluxes it should also be able to simulate solute concentrations and energy fluxes. This helps to parameterize the model while the model is also thermodynamically consistent, meaning that it is suitable to test thermodynamic optimality principles (such as maximum entropy production principle). With these constraints in mind, we developed a model where, in each subroutine, flow is modelled in only one dimension (vertical for the unsaturated zone and lateral for subsurface storm flow, groundwater flow and stream flow routines, making the model multiple 1-D), decreasing computation time significantly. The code is developed in an object oriented way, leading to more flexibility to test different model structures. For example, we will demonstrate the effect on simulated rapid subsurface flow for different mathematical descriptions (i.e. the Darcy-Weisbach equation vs. the diffusive wave and kinematic wave equation). For this study, the model will also be evaluated for hillslopes in three different geological settings within the Attert Basin in Luxembourg.
NASA Astrophysics Data System (ADS)
Platonov, Vladimir; Kislov, Alexander; Rivin, Gdaly; Varentsov, Mikhail; Rozinkina, Inna; Nikitin, Mikhail; Chumakov, Mikhail
2017-04-01
The detailed hydrodynamic modelling of meteorological parameters during the last 30 years (1985 - 2014) was performed for the Okhotsk Sea and the Sakhalin island regions. The regional non-hydrostatic atmospheric model COSMO-CLM used for this long-term simulation with 13.2, 6.6 and 2.2 km horizontal resolutions. The main objective of creation this dataset was the outlook of the investigation of statistical characteristics and the physical mechanisms of extreme weather events (primarily, wind speed extremes) on the small spatio-temporal scales. COSMO-CLM is the climate version of the well-known mesoscale COSMO model, including some modifications and extensions adapting to the long-term numerical experiments. The downscaling technique was realized and developed for the long-term simulations with three consequent nesting domains. ERA-Interim reanalysis ( 0.75 degrees resolution) used as global forcing data for the starting domain ( 13.2 km horizontal resolution), then these simulation data used as initial and boundary conditions for the next model runs over the domain with 6.6 km resolution, and similarly, for the next step to 2.2 km domain. Besides, the COSMO-CLM model configuration for 13.2 km run included the spectral nudging technique, i.e. an additional assimilation of reanalysis data not only at boundaries, but also inside the whole domain. Practically, this computational scheme realized on the SGI Altix 4700 supercomputer system in the Main Computer Center of Roshydromet and used 2,400 hours of CPU time total. According to modelling results, the verification of the obtained dataset was performed on the observation data. Estimations showed the mean error -0.5 0C, up to 2 - 3 0C RMSE in temperature, and overestimation in wind speed (RMSE is up to 2 m/s). Overall, analysis showed that the used downscaling technique with applying the COSMO-CLM model reproduced the meteorological conditions, spatial distribution, seasonal and synoptic variability of temperature and
Modelling the Shock Response of Polycrystals at the Mesoscale
NASA Astrophysics Data System (ADS)
Case, Simon; Horie, Yuki
2006-07-01
Simulation of the shock compression of a copper polycrystal at the mesoscale has been carried out using a Discrete Element code. Grains were aligned in three crystal orientations with respect to the shock direction; <100>, <110>, and <111>. The polycrystal had an average grain diameter of 14μm and was impacted by a single crystal of copper at 200m/s. Results show the presence of a Particle Velocity Dispersion which attains its maximum magnitude of 8m/s at the plastic wave rise, and which is quantitatively of the same order as experimentally observed values. Non-planar elastic and plastic wave fronts are present. The shock front position distribution increases with propagation distance until its standard deviation is 0.4μm at a propagation distance of 80μm.
NASA Astrophysics Data System (ADS)
Winnicki, I.; Jasinski, J.; Kroszczynski, K.; Pietrek, S.
2009-04-01
The paper presents elements of research conducted in the Faculty of Civil Engineering and Geodesy of the Military University of Technology, Warsaw, Poland, concerning application of mesoscale models and remote sensing data to determining meteorological conditions of aircraft flight directly related with atmospheric instabilities. The quality of meteorological support of aviation depends on prompt and effective forecasting of weather conditions changes. The paper presents a computer module for detecting and monitoring zones of cloud cover, precipitation and turbulence along the aircraft flight route. It consists of programs and scripts for managing, processing and visualizing meteorological and remote sensing databases. The application was developed in Matlab® for Windows®. The module uses products of COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) mesoscale non-hydrostatic model of the atmosphere developed by the US Naval Research Laboratory, satellite images acquisition system from the MSG-2 (Meteosat Second Generation) of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and meteorological radars data acquired from the Institute of Meteorology and Water Management (IMGW), Warsaw, Poland. The satellite images acquisition system and the COAMPS model are run operationally in the Faculty of Civil Engineering and Geodesy. The mesoscale model is run on an IA64 Feniks multiprocessor 64-bit computer cluster. The basic task of the module is to enable a complex analysis of data sets of miscellaneous information structure and to verify COAMPS results using satellite and radar data. The research is conducted using uniform cartographic projection of all elements of the database. Satellite and radar images are transformed into the Lambert Conformal projection of COAMPS. This facilitates simultaneous interpretation and supports decision making process for safe execution of flights. Forecasts are based on horizontal
Development of a 1D canopy module to couple mesoscale meteorogical model with building energy model
NASA Astrophysics Data System (ADS)
Mauree, Dasaraden; Kohler, Manon; Blond, Nadège; Clappier, Alain
2013-04-01
The actual global warming, highlighted by the scientific community, is due to the greenhouse gases emissions resulting from our energy consumption. This energy is mainly produced in cities (about 70% of the total energy use). Around 36% of this energy are used in buildings (residential/tertiary) and this accounts for about 20% of the greenhouse gases emissions. Moreover, the world population is more and more concentrated in urban areas, 50% of the actual world population already lives in cities and this ratio is expected to reach 70% by 2050. With the obviously increasing responsibility of cities in climate change in the future, it is of great importance to go toward more sustainable cities that would reduce the energy consumption in urban areas. The energy use inside buildings is driven by two factors: (1) the level of comfort wished by the inhabitants and (2) the urban climate. On the other hand, the urban climate is influenced by the presence of buildings. Indeed, artificial surfaces of urban areas modify the energy budget of the Earth's surface and furthermore, heat is released into the atmosphere due to the energy used by buildings. Modifications at the building scale (micro-scale) can thus have an influence on the climate of the urban areas and surroundings (meso-scale), and vice and versa. During the last decades, meso-scale models have been developed to simulate the atmospheric conditions for domain of 100-1000km wide with a resolution of few kilometers. Due to their low resolution, the effects of small obstacles (such as buildings, trees, ...) near the ground are not reproduced properly and parameterizations have been developed to represent such effects in meso-scale models. On the other side, micro-scale models have a higher resolution (around 1 meter) and consequently can better simulate the impact of obstacles on the atmospheric heat flux exchanges with the earth surface. However, only a smaller domain (less than 1km) can be simulated for the same
NASA Astrophysics Data System (ADS)
Miyazaki, D.; Uchiyama, Y.; Kanki, R.; Miyazawa, Y.
2014-12-01
Japan Sea (JPS) is connected to other seas by five narrow and shallow straits with a minimal depth of the order of 100 meters or less, resulting in limited water exchange thereby isolating the water and aquatic ecosystem. The modeling and observational studies on quantifying the dynamics of JPS are still undergoing (e.g., Hirose et al., 2007), whereas effects of submesoscale dynamics on the mean structure, eddies, and material dispersal in JPS have not been extensively investigated yet. In the present study, we conduct a detailed oceanic downscaling numerical experiment using ROMS in a double nested configuration bounded on the assimilative JCOPE2 (Miyazawa et al., 2009) reanalysis at horizontal resolutions of 3 km (ROMS-L1) and 1 km (ROMS-L2). The L1 and L2 models are compared to the observed data to show a good agreement with an appropriate parameter choice. Our models sufficiently reproduce the overall frontal structure and associated major currents in JPS consisting of the Liman Cold Current along the Russian coast and the Tsushima Warm Current along the Japanese coast. Surface normalized relative vorticity fields demonstrate that both the mesoscale and submesoscale eddies are apparently enhanced, as the model grid resolution is finer. In summer and fall, mesoscale eddies are evident in L1 and L2. In contrast in winter and spring, submesoscale eddies are significantly energized in the whole JPS particularly in L2 due to the surface cooling that preconditions symmetric instability (e.g., Thomas et al., 2012). The enhancement of EKE appears around Tsushima strait and along the Korean Peninsula in L1, while EKE in L2 is extensively increased in the most part of the southern JPS. On the other hand, a SSH variance, a proxy of mesoscale variability, is more realistically distributed in L2 than L1, suggesting a potential importance of submesoscale eddies on the mesoscale dynamics.
Integrating Visualizations into Modeling NEST Simulations
Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.
2015-01-01
Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Lazarus, Steven M.; Splitt, Michael E.; Crosson, William L.; Lapenta, William M.; Jedlovec, Gary J.; Peters-Lidard, Christa D.
2008-01-01
The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many meteorological processes. High-resolution, accurate representations of surface properties such as sea-surface temperature (SST), soil temperature and moisture content, ground fluxes, and vegetation are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of sensible weather. The NASA Short-term Prediction Research and Transition (SPoRT) Center has been conducting separate studies to examine the impacts of high-resolution land-surface initialization data from the Goddard Space Flight Center Land Information System (LIS) on subsequent WRF forecasts, as well as the influence of initializing WRF with SST composites derived from the MODIS instrument. This current project addresses the combined impacts of using high-resolution lower boundary data over both land (LIS data) and water (MODIS SSTs) on the subsequent daily WRF forecasts over Florida during May 2004. For this experiment, the WRF model is configured to run on a nested domain with 9- km and 3-kin grid spacing, centered on the Florida peninsula and adjacent coastal waters of the Gulf of Mexico and Atlantic Ocean. A control configuration of WRF is established to take all initial condition data from the NCEP Eta model. Meanwhile, two WRF experimental runs are configured to use high-resolution initialization data from (1) LIS land-surface data only, and (2) a combination of LIS data and high-resolution MODIS SST composites. The experiment involves running 24-hour simulations of the control WRF configuration, the MS-initialized WRF, and the LIS+MODIS-initialized WRF daily for the entire month of May 2004. All atmospheric data for initial and boundary conditions for the Control, LIS, and LIS+MODIS runs come from the NCEP Eta model on a 40-km grid. Verification statistics are generated at land surface observation sites and buoys, and the impacts
Hoffmann, Axel; Schultheiß, Helmut
2014-12-17
Magnetic interactions give rise to a surprising amount of complexity due to the fact that both static and dynamic magnetic properties are governed by competing short-range exchange interactions and long-range dipolar coupling. Even though the underlying dynamical equations are well established, the connection of magnetization dynamics to other degrees of freedom, such as optical excitations, charge and heat flow, or mechanical motion, make magnetism a mesoscale research problem that is still wide open for exploration. Synthesizing magnetic materials and heterostructures with tailored properties will allow to take advantage of magnetic interactions spanning many length-scales, which can be probed with advancedmore » spectroscopy and microscopy and modeled with multi-scale simulations. Finally, this paper highlights some of the current basic research topics in mesoscale magnetism, which beyond their fundamental science impact are also expected to influence applications ranging from information technologies to magnetism based energy conversion.« less
Hoffmann, Axel; Schultheiß, Helmut
2014-12-17
Magnetic interactions give rise to a surprising amount of complexity due to the fact that both static and dynamic magnetic properties are governed by competing short-range exchange interactions and long-range dipolar coupling. Even though the underlying dynamical equations are well established, the connection of magnetization dynamics to other degrees of freedom, such as optical excitations, charge and heat flow, or mechanical motion, make magnetism a mesoscale research problem that is still wide open for exploration. Synthesizing magnetic materials and heterostructures with tailored properties will allow to take advantage of magnetic interactions spanning many length-scales, which can be probed with advanced spectroscopy and microscopy and modeled with multi-scale simulations. Finally, this paper highlights some of the current basic research topics in mesoscale magnetism, which beyond their fundamental science impact are also expected to influence applications ranging from information technologies to magnetism based energy conversion.
Network-based model of the growth of termite nests
NASA Astrophysics Data System (ADS)
Eom, Young-Ho; Perna, Andrea; Fortunato, Santo; Darrouzet, Eric; Theraulaz, Guy; Jost, Christian
2015-12-01
We present a model for the growth of the transportation network inside nests of the social insect subfamily Termitinae (Isoptera, termitidae). These nests consist of large chambers (nodes) connected by tunnels (edges). The model based on the empirical analysis of the real nest networks combined with pruning (edge removal, either random or weighted by betweenness centrality) and a memory effect (preferential growth from the latest added chambers) successfully predicts emergent nest properties (degree distribution, size of the largest connected component, average path lengths, backbone link ratios, and local graph redundancy). The two pruning alternatives can be associated with different genuses in the subfamily. A sensitivity analysis on the pruning and memory parameters indicates that Termitinae networks favor fast internal transportation over efficient defense strategies against ant predators. Our results provide an example of how complex network organization and efficient network properties can be generated from simple building rules based on local interactions and contribute to our understanding of the mechanisms that come into play for the formation of termite networks and of biological transportation networks in general.
Network-based model of the growth of termite nests.
Eom, Young-Ho; Perna, Andrea; Fortunato, Santo; Darrouzet, Eric; Theraulaz, Guy; Jost, Christian
2015-12-01
We present a model for the growth of the transportation network inside nests of the social insect subfamily Termitinae (Isoptera, termitidae). These nests consist of large chambers (nodes) connected by tunnels (edges). The model based on the empirical analysis of the real nest networks combined with pruning (edge removal, either random or weighted by betweenness centrality) and a memory effect (preferential growth from the latest added chambers) successfully predicts emergent nest properties (degree distribution, size of the largest connected component, average path lengths, backbone link ratios, and local graph redundancy). The two pruning alternatives can be associated with different genuses in the subfamily. A sensitivity analysis on the pruning and memory parameters indicates that Termitinae networks favor fast internal transportation over efficient defense strategies against ant predators. Our results provide an example of how complex network organization and efficient network properties can be generated from simple building rules based on local interactions and contribute to our understanding of the mechanisms that come into play for the formation of termite networks and of biological transportation networks in general.
Mitigating Excessive Drying From the Use of Observations in Mesoscale Modeling
2014-01-01
Temperature. Mon. Wea. Rev., 1980, 180, 1046–1053. Chen, F.; Dudhia, J. Coupling an Advanced Land-Surface/ Hydrology Model with the Penn State/NCAR MM5...National Operational Hydrologic Remote Sensing Center NOAA National Oceanic and Atmospheric Administration RRTM Rapid Radiative Transfer Model ...Mitigating Excessive Drying From the Use of Observations in Mesoscale Modeling by Brian P. Reen, Robert E. Dumais, Jr., and Jeffrey E
Modified finite-element model for application to terrain-induced mesoscale flows
Lee, R.L.; Leone, J.M. Jr.; Gresho, P.M.
1982-11-01
Terrain-induced mesoscale flows are localized atmospheric motions generated primarily by surface inhomogeneities such as differential heating and irregular terrain. Well-known examples of such flows are sea-and-land breeze circulations, mountain-valley flows, urban heat island circulations and mountain lee waves. A numerical model capable of capturing the details of these frequently complicated flow patterns must often contain a realistic and rather accurate representation of the relevant terrain. Over the last decade, mesoscale models have been developed in which various approaches were used to incorporate variable terrain. In this study, a somewhat unique approach, based on a modified finite element procedure, was used to solve the nonhydrostatic planetary boundary layer equations. The nonhydrostatic and finite element features of the model are particularly advantageous for modeling flows over complex topography. The numerical aspects of the model, the parameterizations currently used, and a few preliminary results are presented.
Burian, S. J.; Brown, M. J.; Ching, J.; Cheuk, M. L.; Yuan, M.; McKinnon, A. T.; Han, W. S.
2004-01-01
Accurate predictions of air quality and atmospheric dispersion at high spatial resolution rely on high fidelity predictions of mesoscale meteorological fields that govern transport and turbulence in urban areas. However, mesoscale meteorological models do not have the spatial resolution to directly simulate the fluid dynamics and thermodynamics in and around buildings and other urban structures that have been shown to modify micro- and mesoscale flow fields (e.g., see review by Bornstein 1987). Mesoscale models therefore have been adapted using numerous approaches to incorporate urban effects into the simulations (e.g., see reviews by Brown 2000 and Bornstein and Craig 2002). One approach is to introduce urban canopy parameterizations to approximate the drag, turbulence production, heating, and radiation attenuation induced by sub-grid scale buildings and urban surface covers (Brown 2000). Preliminary results of mesoscale meteorological and air quality simulations for Houston (Dupont et al. 2004) demonstrated the importance of introducing urban canopy parameterizations to produce results with high spatial resolution that accentuates variability, highlights important differences, and identifies critical areas. Although urban canopy parameterizations may not be applicable to all meteorological and dispersion models, they have been successfully introduced and demonstrated in many of the current operational and research mode mesoscale models, e.g., COAMPS (Holt et al. 2002), HOTMAC (Brown and Williams 1998), MM5 (e.g., Otte and Lacser 2001; Lacser and Otte 2002; Dupont et al. 2004), and RAMS (Rozoff et al. 2003). The primary consequence of implementing an urban parameterization in a mesoscale meteorological model is the need to characterize the urban terrain in greater detail. In general, urban terrain characterization for mesoscale modeling may be described as the process of collecting datasets of urban surface cover physical properties (e.g., albedo, emissivity) and
NASA Astrophysics Data System (ADS)
Marécal, V.; Durry, G.; Longo, K.; Freitas, S.; Rivière, E. D.; Pirre, M.
2007-03-01
In this study, we evaluate the ability of the BRAMS (Brazilian Regional Atmospheric Modeling System) mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS). The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer) instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to the ECMWF analysis. The observations exhibit fine scale vertical structures of water vapour of a few hundred meters height. The ECMWF vertical resolution (~1 km) is too coarse to capture these vertical structures in the UTLS. With a vertical resolution similar to ECMWF, the mesoscale model performs better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The BRAMS model with 250 m vertical resolution is able to capture more of the observed fine scale vertical variations of water vapour compared to runs with a coarser vertical resolution. This is mainly related to: (i) the enhanced vertical resolution in the UTLS and (ii) to the more detailed microphysical parameterization providing ice supersaturations as in the observations. In near saturated or supersaturated layers, the mesoscale model predicted relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, the ECMWF analysis gives good results partly attributed to data assimilation. The analysis of the mesoscale model results showed that the vertical variations of the water vapour profile depends on the dynamics in unsaturated layer while the microphysical processes play a major role in saturated/supersaturated layers. In the lower stratosphere, the ECMWF model and the BRAMS model give very similar water vapour
Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.
2014-06-01
Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.
The effects of elevation data representation on mesoscale atmospheric model simulations
Walker, H.; Leone, J.M. Jr.; Kim, Jinwon
1996-01-01
Mesoscale atmospheric model simulations rely on descriptions of the land surface characteristics, which must be developed from geographic databases. Certain features of the geographic data, such as its resolution and accuracy, as well as the method of processing for use in the model, can be very important in producing accurate model simulations. The work described here is part of research effort into the relationship between these aspects of geographic data and the performance of mesoscale atmospheric models and is particularly focused on elevation data and how it is prepared for use in such models. A source for digital elevation data will typically not be at the resolution required for a given model simulation and so a resampling step is required. In addition, predictive non-linear model often cannot accept forcing at high spatial frequencies due to the terrain, thus smoothing is also required. The effect of different means of resampling and smoothing elevation data on two types of model simulations is investigated. At smaller spatial scales, nocturnal drainage winds in mountain valleys in Colorado are examined for effects on the general characteristics as well as the details of the flows. At the larger end of the mesoscale, extended simulations of California weather are examined for effects on orographic lifting, low-level convergence and divergence and ultimately rain and snow distribution.
Mesoscale Modeling of the Inland Nocturnal Sea Breeze
Kurzeja, R.J.; Buckley, R.L.
1995-09-12
The mesoscale sea breeze has important consequences for many densely populated coastal environments, including convection initiation, aviation safety, and air quality. The sea breeze characteristics before and after sunset are markedly different (Sha et al 1993). A gravity current will form during the early afternoon due to the relatively large density difference between the land and sea air. During the afternoon, as the lighter land air is forced upward by the cooler dense sea air, Kelvin-Helmholtz (KH) billows often form along the interface, as well as thin regions of turbulent rising air, playing a crucial role in the mixing process (Simpson 1994). After sunset, the frontal zone expands as longwave radiation cools the surface which reduces vertical mixing. With further inland penetration, the sea breeze encounters increasingly stable air near the ground, resulting in the formation of an undular bore or cutoff vortex (Sha et al. 1993). It has been demonstrated that large-scale winds have profound effects on both the strength and inland penetration of sea breezes (Arritt 1993, among others). In general, offshore flow results in a sharper frontal discontinuity and less inland penetration, while onshore flow produces weaker fronts which may penetrate further inland. Most sea breeze studies have focused on its more dramatic daytime properties near the coast whereas inland nocturnal sea breezes have received much less attention. The reason for this neglect is a lack of good observational data in the boundary layer. Sha et al. (1991) note the necessity of high resolution data to capture the finer structures of the sea breeze. A unique opportunity to examine the nocturnal sea breeze became available at the Savannah River Site (SRS, located roughly 150 km from the Atlantic Ocean in southwestern South Carolina) during the Stable Boundary Layer Experiment (STABLE), 12-17 April, 1988. (Abstract Truncated)
Studying PMMA films on silica surfaces with generic microscopic and mesoscale models
NASA Astrophysics Data System (ADS)
Zhang, J.; Mukherji, D.; Daoulas, K. Ch.
2016-10-01
Polymer films on solid substrates present significant interest for fundamental polymer physics and industrial applications. For their mesoscale study, we develop a hybrid particle-based representation where polymers are modeled as worm-like chains and non-bonded interactions are introduced through a simple density functional. The mesoscale description is parameterized to match a generic microscopic model, which nevertheless can represent real materials. Choosing poly (methyl methacrylate) adsorbed on silica as a case study, the consistency of both models in describing conformational and structural properties in polymer films is investigated. We compare selected quantifiers of chain-shape, the structure of the adsorbed layer, as well as the statistics of loops, tails, and trains. Overall, the models are found to be consistent with each other. Some deviations in conformations and structure of adsorbed layer can be attributed to the simplified description of polymer/surface interactions and local liquid packing in the mesoscale model. These results are encouraging for a future development of pseudo-dynamical schemes, parameterizing the kinetics in the hybrid model via the dynamics of the generic microscopic model.
A simplified mesoscale model for predicting the mechanical behavior of stitched CFRP laminates
NASA Astrophysics Data System (ADS)
Li, Jun; Wang, Bo; Jiao, Guiqiong
2017-06-01
This paper presents a finite element (FE) analysis of the mechanical responses for stitched CFRP laminates under different mechanical loads. Firstly, the through-thickness stitch was simplified to z-pin like reinforcement with a uniform displacement constraint on the upper and lower surfaces of the laminate. Then, a mesoscale 3D representative volume element (RVE) of the stitched composite was proposed and modeled in the FE code ABAQUS, where the reinforcing stitch, composite layers and interfaces were built. A 3D Hashin damage model and built-in cohesive elements were respectively used to predict the mechanical failure of the stitch and the damageable behavior of cohesive interfaces. Simulation results reveal the progressive damage and rupture processes of the RVE under tensile and shear mechanical loads, and macroscopic nonlinear load-displacement responses of the mesoscale model are also captured.
Model studies on the role of moist convection as a mechanism for interaction between the mesoscales
NASA Technical Reports Server (NTRS)
Waight, Kenneth T., III; Song, J. Aaron; Zack, John W.; Price, Pamela E.
1991-01-01
A three year research effort is described which had as its goal the development of techniques to improve the numerical prediction of cumulus convection on the meso-beta and meso-gamma scales. Two MESO models are used, the MASS (mesoscale) and TASS (cloud scale) models. The primary meteorological situation studied is the 28-29 Jun. 1986 Cooperative Huntsville Meteorological Experiment (COHMEX) study area on a day with relatively weak large scale forcing. The problem of determining where and when convection should be initiated is considered to be a major problem of current approaches. Assimilation of moisture data from satellite, radar, and surface data is shown to significantly improve mesoscale simulations. The TASS model is shown to reproduce some observed mesoscale features when initialized with 3-D observational data. Convection evolution studies center on comparison of the Kuo and Fritsch-Chappell cumulus parameterization schemes to each other, and to cloud model results. The Fritsch-Chappell scheme is found to be superior at about 30 km resolution, while the Kuo scheme does surprisingly well in simulating convection down to 10 km in cases where convergence features are well-resolved by the model grid. Results from MASS-TASS interaction experiments are presented and discussed. A discussion of the future of convective simulation is given, with the conclusion that significant progress is possible on several fronts in the next few years.
Nest survival in dusky Canada geese (Branta canadensis occidentalis): Use of discrete-time models
Grand, J.B.; Fondell, T.F.; Miller, D.; Anthony, R. Michael
2006-01-01
The Dusky Canada Goose (Branta canadensis occidentalis) population that breeds in the Copper River Delta, Alaska, has declined substantially since the late 1970s. Persistent low numbers have been attributed to low productivity in recent years. We examined patterns in survival rates of 1,852 nests to better understand ecological processes that influenced productivity during 1997-2000. We compared 10 nonparametric models of daily survival rate of nests (DSR) that included variation among years, calendar dates, nest initiation dates, and nest ages with equivalent models based on parametric functions. The unequivocal best model included patterns of DSR that varied among discrete periods of years, calendar dates, and nest ages. Generally, DSR was low early in the nesting season and higher midseason. Across years, patterns in DSR were most variable early and late in the nesting season. Daily survival rates of nests declined between the first and second week after initiation, increased until the fourth week, and then declined during the last week before hatch. Nest survival probability estimates ranged from 0.07 to 0.71 across years and nest initiation dates. Mean rates of nest survival ranged between 0.21 and 0.31 each year. We suggest (1) considering models that do not limit estimates of daily nest survival to parametric forms; (2) placing greater emphasis on sample size when nests are rare, to obtain accurate estimates of nest survival; and (3) developing new techniques to estimate the number of nests initiated.
Combining Machine Learning and Mesoscale Modeling for Atmospheric Releases Hazard Assessment
NASA Astrophysics Data System (ADS)
Cervone, G.; Franzese, P.; Ezber, Y.; Boybeyi, Z.
2007-12-01
In applications such as homeland security and hazards response, it is necessary to know in real time which areas are most at risk from a potentially harmful atmospheric pollutant. Using high resolution remote sensing measurements and atmospheric mesoscale numerical models, it is possible to detect and study the transport and dispersion of particles with great accuracy, and to determine the ground concentrations which might pose a threat to people and properties. Satellite observations from different sensors must be fused together to compensate for different spatial, temporal and spectral resolutions and data availability. Such observations are used to initialize and validate atmospheric mesoscale models, which can provide accurate estimates of ground concentrations. Such numerical models are, however, usually slow due to the complex nature of the computations, and do not provide real time answers. We will define probability maps of risks by running several atmospheric mesoscale and T&D simulations spanning the climatological input conditions of an entire year, observed using high resolution remote sensing instruments. Such maps provide an immediate risk assessment area associated with a given source location. If a release indeed occurs, the computed risk maps can be used for first assessment and rapid response. We analyze the output of the mesoscale model runs using machine learning algorithms to find characteristic patterns which relate potential risk areas with atmospheric parameters which can be observed using remote sensing instruments and ground measurements. Therefore, when a release occurs, it is possible to give a quick hazard assessment without running a time consuming model, but by comparing the current atmospheric conditions with those associated with each identified risk area. The offline learning provides knowledge that can later be used to protect people and properties.
Hot-spot contributions in shocked high explosives from mesoscale ignition models
NASA Astrophysics Data System (ADS)
Levesque, G.; Vitello, P.; Howard, W. M.
2013-06-01
High explosive performance and sensitivity is strongly related to the mesoscale defect densities. Bracketing the population of mesoscale hot spots that are active in the shocked ignition of explosives is important for the development of predictive reactive flow models. By coupling a multiphysics-capable hydrodynamics code (ale3d) with a chemical kinetics solver (cheetah), we can parametrically analyze different pore sizes undergoing collapse in high pressure shock conditions with evolving physical parameter fields. Implementing first-principles based decomposition kinetics, burning hot spots are monitored, and the regimes of pore sizes that contribute significantly to burnt mass faction and those that survive thermal conduction on the time scales of ignition are elucidated. Comparisons are drawn between the thermal explosion theory and the multiphysics models for the determination of nominal pore sizes that burn significantly during ignition for the explosive 1,3,5-triamino-2,4,6-trinitrobenzene.
THE APPLICATION OF AN EVOLUTIONARY ALGORITHM TO THE OPTIMIZATION OF A MESOSCALE METEOROLOGICAL MODEL
Werth, D.; O'Steen, L.
2008-02-11
We show that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root mean square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). We find that the optimization can be efficient with relatively modest computer resources, thus operational implementation is possible. The optimization efficiency, however, is found to depend strongly on the procedure used to perturb the 'child' parameters relative to their 'parents' within the evolutionary algorithm. In addition, the meteorological variables included in the rms error and their weighting are found to be an important factor with respect to finding the global optimum.
Regional Model Nesting Within GFS Daily Forecasts Over West Africa
NASA Technical Reports Server (NTRS)
Druyan, Leonard M.; Fulakeza, Matthew; Lonergan, Patrick; Worrell, Ruben
2010-01-01
The study uses the RM3, the regional climate model at the Center for Climate Systems Research of Columbia University and the NASA/Goddard Institute for Space Studies (CCSR/GISS). The paper evaluates 30 48-hour RM3 weather forecasts over West Africa during September 2006 made on a 0.5 grid nested within 1 Global Forecast System (GFS) global forecasts. September 2006 was the Special Observing Period #3 of the African Monsoon Multidisciplinary Analysis (AMMA). Archived GFS initial conditions and lateral boundary conditions for the simulations from the US National Weather Service, National Oceanographic and Atmospheric Administration were interpolated four times daily. Results for precipitation forecasts are validated against Tropical Rainfall Measurement Mission (TRMM) satellite estimates and data from the Famine Early Warning System (FEWS), which includes rain gauge measurements, and forecasts of circulation are compared to reanalysis 2. Performance statistics for the precipitation forecasts include bias, root-mean-square errors and spatial correlation coefficients. The nested regional model forecasts are compared to GFS forecasts to gauge whether nesting provides additional realistic information. They are also compared to RM3 simulations driven by reanalysis 2, representing high potential skill forecasts, to gauge the sensitivity of results to lateral boundary conditions. Nested RM3/GFS forecasts generate excessive moisture advection toward West Africa, which in turn causes prodigious amounts of model precipitation. This problem is corrected by empirical adjustments in the preparation of lateral boundary conditions and initial conditions. The resulting modified simulations improve on the GFS precipitation forecasts, achieving time-space correlations with TRMM of 0.77 on the first day and 0.63 on the second day. One realtime RM3/GFS precipitation forecast made at and posted by the African Centre of Meteorological Application for Development (ACMAD) in Niamey, Niger
Mesoscale circulations in the Los Angeles Basin: A numerical modeling study
Ulrickson, B.L.
1988-01-01
Mesoscale atmospheric forcing in the Los Angeles Basin was investigated by means of a numerical model and observations. Special attention was paid to airflows that are important to the transport of pollutants in the region. The numerical model was modified in order to improve its numerical stability and enhance its accuracy in the context of sharp topographic relief and strong sea/land thermal contrasts. Output from two simulations were compared with observations to document the model's strengths and weaknesses. Overall, the model results compared well with the observations. Large-scale conditions typical of summer and winter smog episodes were discovered by compositing cases described in the literature. Summer and winter simulations were performed, with and without the large-scale winds typical of the summer and winter episodes, and the results were analyzed. Light geostrophic winds were found to have little influence on the strong mesoscale circulations predicted for the summer day, but stronger geostrophic winds exerted considerable influence on the weaker mesoscale circulations that occurred on the winter day.
Simultaneous Nested Modeling from the Synoptic Scale to the LES Scale
NASA Astrophysics Data System (ADS)
Liu, Y.; Wu, W.; Gregory, G.; Warner, T.; Swerdlin, S.
2009-04-01
Many applications require accurate weather information over broad temporal and spatial scales. For example, wind energy prediction requires regional weather forecasting to cope with intra-hour, multi-hour and day ahead decision-making. In addition, microscale modeling is needed to support wind turbine sitting decisions and turbine operations. In the last 10 years, the National Center for Atmospheric Research, US, has developed a Real-Time Four-Dimensional Data Assimilation (RTFDDA) and forecasting system to support diverse weather-critical applications such as wind energy forecasting. RTFDDA, built upon the Weather Research and Forecasting (WRF) model, is a rapid-cycling, multi-scale weather system with a capability for effectively combining all available weather observations with the full-physics WRF model to produce high-accuracy multi-scale 4D weather information from synoptic scales (~2000 km), to mesoscales (2 - 2000 km), and to microscales (< 2 km). RTFDDA performs successive downscaling from synoptic numerical weather predictions (based on global models), to regional weather predictions (mesoscale weather processes), and to small and microscale weather modeling with Large Eddy Simulation (LES). Two real weather cases with typical strong local forcing phenomena, one with an isolated elongated bell-shaped mountain in central Utah and the other with complex coastlines along the Chesapeake Bay, Maryland, were simulated using the WRF-RTFDDA-LES system with six nested domains having grid sizes of 30, 10, 3.333, 1.111, 0.369 and 0.123 km. The NASA SRTM (Shuttle Radar-sensing Topography Mission) 30-m resolution terrain heights were used to specify the fine mesh model terrain and to adjust fine-scale coastlines. Both cases were run for 24+ hours to span the diurnal evolution of local weather. Analysis of the model results indicates an encouraging downscaling capability of the modeling system in simulating the high-resolution underlying forcing and interaction with
NASA Astrophysics Data System (ADS)
Spiga, Aymeric; Forget, François
2009-02-01
The Laboratoire de Météorologie Dynamique (LMD) Mesoscale Model is a new versatile simulator of the Martian atmosphere and environment at horizontal scales ranging from hundreds of kilometers to tens of meters. The model combines the National Centers for Environmental Prediction(NCEP)-National Center for Atmospheric Research (NCAR) fully compressible nonhydrostatic Advanced Research Weather Research and Forecasting (ARW-WRF) dynamical core, adapted to Mars, with the LMD-general circulation model (GCM) comprehensive set of physical parameterizations for the Martian dust, CO2, water, and photochemistry cycles. Since LMD-GCM large-scale simulations are also used to drive the mesoscale model at the boundaries of the chosen domain of interest, a high level of downscaling consistency is reached. To define the initial state and the atmosphere at the domain boundaries, a specific ``hybrid'' vertical interpolation from the coarse-resolution GCM fields to the high-resolution mesoscale domain is used to ensure the stability and the physical relevancy of the simulations. Used in synoptic-scale mode with a cyclic domain wrapped around the planet, the mesoscale model correctly replicates the main large-scale thermal structure and the zonally propagating waves. The model diagnostics of the near-surface pressure, wind, and temperature daily cycles in Chryse Planitia are in accordance with the Viking and Pathfinder measurements. Afternoon gustiness at the respective landing sites is adequately accounted for on the condition that convective adjustment is turned off in the mesoscale simulations. On the rims of Valles Marineris, intense daytime anabatic (~30 m s-1) and nighttime katabatic (~40 m s-1) winds are predicted. Within the canyon corridors, topographical channeling can amplify the wind a few kilometers above the ground, especially during the night. Through large-eddy simulations in Gusev Crater, the model describes the mixing layer growth during the afternoon, and the
Turbulence Parameterizations for Convective Boundary Layers in High-Resolution Mesoscale Models
2003-12-01
radars are especially dependent on clear weather conditions for effective operations. For example, dust storms and low cloud cover were weather events...PAGES 160 14. SUBJECT TERMS Grid Resolution, Parameterizations, Boundary Layer, Mesoscale Modeling, COAMPS . 16. PRICE CODE 17. SECURITY...Parameterizations in COAMPS using aircraft measurements. This work was also supported in part by a grant of computer time from the DOD high
Coastal Foredune Evolution, Part 2: Modeling Approaches for Meso-Scale Morphologic Evolution
2017-03-01
ERDC/CHL CHETN-II-57 March 2017 Approved for public release; distribution is unlimited. Coastal Foredune Evolution , Part 2: Modeling Approaches...for Meso-Scale Morphologic Evolution by Margaret L. Palmsten1, Katherine L. Brodie2, and Nicholas J. Spore2 PURPOSE: This Coastal and Hydraulics...Engineering Technical Note (CHETN) is the second of two CHETNs focused on improving technologies to forecast coastal foredune evolution . Part 1
An evaluation of randomization models for nested species subsets analysis.
Cook, Rosamonde R; Quinn, James F
1998-02-01
Randomization models, often termed "null" models, have been widely used since the 1970s in studies of species community and biogeographic patterns. More recently they have been used to test for nested species subset patterns (or nestedness) among assemblages of species occupying spatially subdivided habitats, such as island archipelagoes and terrestrial habitat patches. Nestedness occurs when the species occupying small or species-poor sites have a strong tendency to form proper subsets of richer species assemblages. In this paper, we examine the ability of several published simulation models to detect, in an unbiased way, nested subset patterns from a simple matrix of site-by-species presence-absence data. Each approach attempts to build in biological realism by following the assumption that the ecological processes that generated the patterns observed in nature would, if they could be repeated many times over using the same species and landscape configuration, produce islands with the same number of species and species present on the same number of islands as observed. In mathematical terms, the mean marginal totals (column and row sums) of many simulated matrices would match those of the observed matrix. Results of model simulations suggest that the true probability of a species occupying any given site cannot be estimated unambiguously. Nearly all of the models tested were shown to bias simulation matrices toward low levels of nestedness, increasing the probability of a Type I statistical error. Further, desired marginal totals could be obtained only through ad-hoc manipulation of the calculated probabilities. Paradoxically, when such results are achieved, the model is shown to have little statistical power to detect nestedness. This is because nestedness is determined largely by the marginal totals of the matrix themselves, as suggested earlier by Wright and Reeves. We conclude that at the present time, the best null model for nested subset patterns may be one
LES one-way coupling of nested grids using scale similarity model
NASA Astrophysics Data System (ADS)
Nozawa, Kojiro; Tamura, Tetsuro
2010-11-01
The method for coupling between nested grids with turbulence energy smoothly transferred is proposed for LES turbulent flows. In this method fluctuating velocity simulated in a coarse grid is imposed to a fine grid. As a result, time-sequential data of the grid-scale velocity fluctuation of the fine grid can be obtained utilizing the scale similarity concept [J. Bardina, J. H. Ferziger and W. C. Reynolds, AIAA Paper, No.80-1357, (1980)]. The a-priori test of a turbulent boundary layer flow over a rough surface is conducted to validate this method. In order to fulfill simulations of spatially developing turbulent boundary layer flows we apply the quasi-periodic boundary condition to the streamwise direction [K. Nozawa and T. Tamura, Proc. of the Turbulent Shear Flow Phenomena, vol.2, 443-448.(2001)]. In the test coarsely resolved velocity data which is generated filtering finely resolved LES data are applied for directly reproducing subgrid-scale components of the coarsely resolved LES. The reproduced fluctuation velocity agrees well with the true value which can be derived by subtracting the generated coarsely resolved velocity data from the finely resolved LES data. Also, the spectra of the reproduced streamwise fluctuation velocities at higher wave number range corresponding to the fine mesh size fit to the -5/3 power law for the inertial subrange. This method is expected to appropriately combine the meso-scale meteorological model with the LES model of urban scale.
NASA Astrophysics Data System (ADS)
Gourdeau, L.; Verron, J.; Melet, A.; Kessler, W.; Marin, F.; Djath, B.
2014-04-01
The Solomon Sea is an area of high level of eddy kinetic energy (EKE), and represents a transit area for the low-latitude western boundary currents (LLWBCs) connecting the subtropics to the equatorial Pacific and playing a major role in ENSO dynamics. This study aims at documenting the surface mesoscale activity in the Solomon Sea for the first time. Our analysis is based on the joint analysis of altimetric data and outputs from a 1/12° model simulation. The highest surface EKE is observed in the northern part of the basin and extends southward to the central basin. An eddy tracking algorithm is used to document the characteristics and trajectories of coherent mesoscale vortices. Cyclonic eddies, generated in the south basin, are advected to the north by the LLWBCs before merging with stationary mesoscale structures present in the mean circulation. Anticyclonic eddies are less numerous. They are generated in the southeastern basin, propagate westward, reach the LLWBCs, and dissipate. The seasonal and interannual modulations of the mesoscale activity are well marked. At seasonal time scale, maximum (minimum) activity is in May-June (September). At interannual time scale, the mesoscale activity is particularly enhanced during La Niña conditions. If instabilities of the regional circulations seem to explain the generation of mesoscale features, the modulation of the mesoscale activity seems to be rather related with the intrusion at Solomon Strait of the surface South Equatorial Current, rather than to the LLWBCs, by modulating the horizontal and vertical shears suitable for instabilities.
NASA Astrophysics Data System (ADS)
Nakayama, H.
2016-12-01
The model validation of an large-eddy simulation (LES)-based computational fluid dynamics (CFD) model coupled to a numerical weather prediction (NWP) is carried out. The Joint Urban 2003 field experimental data of tracer gas concentration released as puff and 30-minute continuous releases for the case of IOP6 are used to evaluate the performance of the coupling approach. The model used for a mesoscale meteorological simulation is the Weather Research and Forecasting (WRF) model, the Advanced Research WRF Version 3.3.1 (Skamarock et al. 2008). We use a nesting capability to resolve the Oklahoma City region by setting two-way nested, three computational domains. The CFD model used here is based on an LES (Nakayama et al., 2015). The LES model is configured using two domains with one-way between parent and nested domains. The parent and nested domains are set to generate urban boundary layer flows and conduct detailed simulations of plume dispersion within the urban central district, respectively. In the LES model, wind velocity and potential temperature data obtained by the WRF model are imposed at lateral boundaries, and time-dependent turbulent inflow conditions are prescribed using the recycling inflow technique proposed by Kataoka and Mizuno (2002). The surface heat fluxes are calculated using the surface potential temperature obtained by the WRF model.The LES results show that vertical profiles of wind speed, wind direction, and potential temperature are similar to those of the WRF. This indicates that the target meteorological conditions are successfully reproduced in the LES model. The time-averaged concentrations of the LES are considerably different from those of the field experimental data at the several points especially for the puff case. However, the LES generally show reasonable performance in comparison to the experimental data through the continuous and puff release cases. It is concluded that our approach is physically reasonable.
Initialization of mesoscale models - The possible impact of remotely sensed data
NASA Technical Reports Server (NTRS)
Gal-Chen, T.
1983-01-01
Little or no improvement appears to have been achieved in mesoscale numerical prediction. This has been blamed on inherent unpredictability, insufficient spatial resolution, inadequate parameterization of important physical processes, and errors in the numerical discretization of the governing hydrodynamic equations. Attention is presently given to the more fundamental difficulty of forecasting when present conditions are not known with sufficient accuracy, and to the matching of remotely sensed sounding-capability satellite and all-weather Doppler radar data with mesoscale numerical models. This matching is not straightforward; simple and variational forms of four-dimensional assimilation, and Kalman filtering, are suggested approaches but their practical testing remains to be accomplished. The most severe problem faced is that of the temperature and humidity profiles' vertical resolution.
NASA Astrophysics Data System (ADS)
Hahmann, A. N.
2015-12-01
Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are useful because they give information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Various mesoscale models and families of mesoscale models are being used, with thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. We have carried out a blind benchmarking study to evaluate the capabilities of mesoscale models used in wind energy to estimate site wind conditions: to highlight common issues on mesoscale modeling of wind conditions on sites with different characteristics, and to identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. Three experimental sites with tall mast measurements were selected: FINO3 (offshore), Høvsøre (coastal), and Cabauw (land-based). The participants were asked to provide hourly time series of wind speed and direction, temperature, etc., at various heights for 2011. The methods used were left to the choice of the participants, but they were asked for a detailed description of their model and many other parameters (e.g., horizontal and vertical resolution, model parameterizations, surface roughness length) that could be used to group the models and interpret the results of the intercomparison. The analysis of the time series includes comparison to observations, summarized with well-known measures such as biases, RMSE, correlations, and of sector-wise statistics, and the temporal spectra. The statistics were grouped by the models, their spatial resolution, forcing data, various integration methods, etc. The results show high fidelity of the various entries in simulating the wind climate at the offshore and coastal site. Over land and the statistics of other derived fields
Representing Hurricanes with a Nested Global Forecast Model
NASA Astrophysics Data System (ADS)
Otte, M. J.; Walko, R. L.; Avissar, R.
2007-12-01
A global forecast model is essential for predicting hurricane tracks beyond a period of ~2 days since global processes that may influence the longer-term storm tracks can be represented explicitly and there are no errors from the lateral boundary conditions that can propagate into the model domain and diminish the accuracy of the track forecasts. However, global models usually do not have enough horizontal and vertical resolution to produce meaningful hurricane intensity forecasts. Most current operational global forecast models represent the atmosphere horizontally using spherical harmonic basis functions with an equivalent resolution of ~40-50 km. The NOAA Science Advisory Board Hurricane Intensity Research Working Group recommends approximately 1-km-resolution hurricane forecasts in order to represent the important physical processes in the core region of hurricanes that are important to accurately predict hurricane intensity. Even with state-of-the-art computers, it will be many years before global forecasts with 1-km horizontal resolution are practical. To predict both hurricane tracks and intensity well, a nested global model is necessary. Large-scale processes are represented on a coarser, computationally-efficient grid while features such as hurricanes are represented on a high-resolution nest. The global model used in this study is the Ocean-Land-Atmosphere Model (OLAM) being developed at Duke University. OLAM is the global successor to the Regional Atmospheric Modeling System (RAMS), which originated at Colorado State University in 1986. OLAM uses the same physics parameterizations as RAMS, but it solves the governing equations by discretizing the atmosphere on an unstructured triangular finite-volume grid. The triangular grid uses the Arakawa-C staggering and is fully mass conservative. Since the triangular mesh is unstructured, the mesh can be refined to produce much higher horizontal resolution in areas of interest such as near hurricanes. Here, we
The Adriatic Sea modelling system: a nested approach
NASA Astrophysics Data System (ADS)
Zavatarelli, M.; Pinardi, N.
2003-01-01
A modelling system for the Adriatic Sea has been built within the framework of the Mediterranean Forecasting System Pilot Project. The modelling system consists of a hierarchy of three numerical models (whole Mediterranean Sea, whole Adriatic Sea, Northern Adriatic Basin) coupled among each other by simple one-way, off-line nesting techniques, to downscale the larger scale flow field to highly resolved coastal scale fields. Numerical simulations have been carried out under climatological surface forcing. Simulations were aimed to assess the effectiveness of the nesting techniques and the skill of the system to reproduce known features of the Adriatic Sea circulation phenomenology (main circulation features, dense water formation,flow at the Otranto Strait and coastal circulation characteristics over the northern Adriatic shelf), in view of the pre-operational use of the modelling system. This paper describes the modelling system setup, and discusses the simulation results for the whole Adriatic Sea and its northern basin, comparing the simulations with the observed climatological circulation characteristics. Results obtained with the northern Adriatic model are also compared with the corresponding simulations obtained with the coarser resolution Adriatic model.
Mesoscale modeling of combined aerosol and photo-oxidant processes in the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Lazaridis, M.; Spyridaki, A.; Solberg, S.; Smolík, J.; Zdímal, V.; Eleftheriadis, K.; Aleksanropoulou, V.; Hov, O.; Georgopoulos, P. G.
2005-03-01
Particulate matter and photo-oxidant processes in the Eastern Mediterranean have been studied using the UAM-AERO mesoscale air quality model in conjunction with the NILU-CTM regional model. Meteorological data were obtained from the RAMS prognostic meteorological model. The modeling domain includes the eastern Mediterranean area between the Greek mainland and the island of Crete. The modeling system is applied to study the atmospheric processes in three periods, i.e. 13-16 July 2000, 26-30 July 2000 and 7-14 January 2001. The spatial and temporal distributions of both gaseous and particulate matter pollutants have been extensively studied together with the identification of major emission sources in the area. The modeling results were compared with field data obtained in the same period. The objective of the current modeling work was mainly to apply the UAM-AERO mesoscale model in the eastern Mediterranean in order to assess the performed field campaigns and determine that the applied mesoscale model is fit for this purpose. Comparison of the modeling results with measured data was performed for a number of gaseous and aerosol species. The UAM-AERO model underestimates the PM10 measured concentrations during summer and winter campaigns. Discrepancies between modeled and measured data are attributed to unresolved particulate matter emissions. Particulate matter in the area is mainly composed by sulphate, sea salt and crustal materials, and with significant amounts of nitrate, ammonium and organics. During winter the particulate matter and oxidant concentrations were lower than the summer values.
Mesoscale energy deposition footprint model for kiloelectronvolt cluster bombardment of solids.
Russo, Michael F; Garrison, Barbara J
2006-10-15
Molecular dynamics simulations have been performed to model 5-keV C60 and Au3 projectile bombardment of an amorphous water substrate. The goal is to obtain detailed insights into the dynamics of motion in order to develop a straightforward and less computationally demanding model of the process of ejection. The molecular dynamics results provide the basis for the mesoscale energy deposition footprint model. This model provides a method for predicting relative yields based on information from less than 1 ps of simulation time.
Modeling the wind-fields of accidental releases by mesoscale forecasting
Albritton, J.R.; Lee, R.L.; Mobley, R.L.; Pace, J.C.; Hodur, R.A.; Lion, C.S.
1997-07-01
Modeling atmospheric releases even during fair weather can present a sever challenge to diagnostic, observed-data-driven, models. Such schemes are often handicapped by sparse input data from meteorological surface stations and soundings. Forecasting by persistence is only acceptable for a few hours and cannot predict important changes in the diurnal cycle or from synoptic evolution. Many accident scenarios are data-sparse in space and/or time. Here we describe the potential value of limited-area, mesoscale, forecast models for real-time emergency response. Simulated wind-fields will be passed to ARAC`s operational models to produce improved forecasts of dispersion following accidents.
Toward an extended-geostrophic Euler-Poincare model for mesoscale oceanographic flow
Allen, J.S.; Newberger, P.A.; Holm, D.D.
1998-07-01
The authors consider the motion of a rotating, continuously stratified fluid governed by the hydrostatic primitive equations (PE). An approximate Hamiltonian (L1) model for small Rossby number {var_epsilon} is derived for application to mesoscale oceanographic flow problems. Numerical experiments involving a baroclinically unstable oceanic jet are utilized to assess the accuracy of the L1 model compared to the PE and to other approximate models, such as the quasigeostrophic (QG) and the geostrophic momentum (GM) equations. The results of the numerical experiments for moderate Rossby number flow show that the L1 model gives accurate solutions with errors substantially smaller than QG or GM.
Toward a Mesoscale Model for the Dynamics of Polymer Solutions
Miller, G H; Trebotich, D
2006-10-02
To model entire microfluidic systems containing solvated polymers we argue that it is necessary to have a numerical stability constraint governed only by the advective CFL condition. Advancements in the treatment of Kramers bead-rod polymer models are presented to enable tightly-coupled fluid-particle algorithms in the context of system-level modeling.
Mesoscale simulations of two model systems in biophysics: from red blood cells to DNAs
NASA Astrophysics Data System (ADS)
Peng, Zhangli; Chen, Yeng-Long; Lu, Huijie; Pan, Zehao; Chang, Hsueh-Chia
2015-12-01
Computational modeling has become increasingly important in biophysics, but the great challenge in numerical simulations due to the multiscale feature of biological systems limits the capability of modeling in making discoveries in biology. Innovative multiscale modeling approaches are desired to bridge different scales from nucleic acids and proteins to cells and tissues. Although all-atom molecular dynamics has been successfully applied in many microscale biological processes such as protein folding, it is still prohibitively expensive for studying macroscale problems such as biophysics of cells and tissues. On the other hand, continuum-based modeling has become a mature procedure for analysis and design in many engineering fields, but new insights for biological systems in the microscale are limited when molecular details are missing in continuum-based modeling. In this context, mesoscale modeling approaches such as Langevin dynamics, lattice Boltzmann method, and dissipative particle dynamics have become popular by simultaneously incorporating molecular interactions and long-range hydrodynamic interactions, providing insights to properties on longer time and length scales than molecular dynamics. In this review, we summarized several mesoscale simulation approaches for studying two model systems in biophysics: red blood cells (RBCs) and deoxyribonucleic acids (DNAs). The RBC is a model system for cell mechanics and biological membranes, while the DNA represents a model system for biopolymers. We introduced the motivations of studying these problems and presented the key features of different mesoscale methods. Furthermore, we described the latest progresses in these methods and highlighted the major findings for modeling RBCs and DNAs. Finally, we also discussed the challenges and potential issues of different approaches.
NASA Astrophysics Data System (ADS)
Gu, Yongxian
The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time
NASA Astrophysics Data System (ADS)
Theeuwes, N. E.; Steeneveld, G. J.; Krikken, F.; Holtslag, A. A. M.
2010-03-01
Lake effect snow is a shallow convection phenomenon during cold air advection over a relatively warm lake. A severe case of lake effect snow over Lake Erie on 24 December 2001 was studied with the MM5 and WRF mesoscale models. This particular case provided over 200 cm of snow in Buffalo (NY), caused three casualties and 10 million of material damage. Hence, the need for a reliable forecast of the lake effect snow phenomenon is evident. MM5 and WRF simulate lake effect snow successfully, although the intensity of the snowbelt is underestimated. It appears that significant differences occur between using a simple and a complex microphysics scheme. In MM5, the use of the simple-ice microphysics scheme results in the triggering of the convection much earlier in time than with the more sophisticated Reisner-Graupel-scheme. Furthermore, we find a large difference in the maximum precipitation between the different nested domains: Reisner-Graupel produces larger differences in precipitation between the domains than "simple ice". In WRF, the sophisticated Thompson microphysics scheme simulates less precipitation than the simple WSM3 scheme. Increased temperature of Lake Erie results in an exponential growth in the 24-h precipitation. Regarding the convection scheme, the updated Kain-Fritsch scheme (especially designed for shallow convection during lake effect snow), gives only slight differences in precipitation between the updated and the original scheme.
Procedures for offline grid nesting in regional ocean models
NASA Astrophysics Data System (ADS)
Mason, Evan; Molemaker, Jeroen; Shchepetkin, Alexander F.; Colas, Francois; McWilliams, James C.; Sangrà, Pablo
One-way offline nesting of a primitive-equation regional ocean numerical model (ROMS) is investigated, with special attention to the boundary forcing file creation process. The model has a modified open boundary condition which minimises false wave reflections, and is optimised to utilise high-frequency boundary updates. The model configuration features a previously computed solution which supplies boundary forcing data to an interior domain with an increased grid resolution. At the open boundaries of the interior grid (the child) the topography is matched to that of the outer grid (the parent), over a narrow transition region. A correction is applied to the normal baroclinic and barotropic velocities at the open boundaries of the child to ensure volume conservation. It is shown that these steps, together with a carefully constructed interpolation of the parent data, lead to a high-quality child solution, with minimal artifacts such as persistent rim currents and wave reflections at the boundaries. Sensitivity experiments provide information about the robustness of the model open boundary condition to perturbations in the surface wind stress forcing field, to the perturbation of the volume conservation enforcement in the boundary forcing, and to perturbation of the vertical density structure in the boundary forcing. This knowledge is important when extending the nesting technique to include external data from alien sources, such as ocean models with physics and/or numerics different from ROMS, or from observed climatologies of temperature, salinity and sea level.
ERIC Educational Resources Information Center
Park, Jungkyu; Yu, Hsiu-Ting
2016-01-01
The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…
ERIC Educational Resources Information Center
Park, Jungkyu; Yu, Hsiu-Ting
2016-01-01
The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…
The use of satellite estimates of rainfall in the initialization of a mesoscale hurricane model
NASA Technical Reports Server (NTRS)
Fiorino, M.
1979-01-01
The use of rainfall rate data obtained from satellites to improve the initial specification of the hurricane circulation is discussed with particular reference to the techniques for incorporating rainfall data into high-resolution hurricane models. The variation of latent heating in a numerical model of a steady state tropical cyclone is considered to ascertain what features of the storm motion can be deduced from a given field of latent heat release. A real-data example involving a mesoscale model for hurricane Eloise (1975) has demonstrated that satellite measurements of rainfall may be beneficial to numerical hurricane prediction.
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
2012-09-30
and the 6th moments. The development and testing of the parameterization was made using the CIMMS LES explicit warm rain microphysical model. The...implemented into the 3D dynamical framework of the CIMMS LES model where the errors of the parameterization were assessed in a realistic setting. The
Numerical simulations of Hurricane Bertha using a mesoscale atmospheric model
Buckley, R.L.
1996-08-01
The Regional Atmospheric Model System (RAMS) has been used to simulate Hurricane Bertha as it moved toward and onto shore during the period July 10--12, 1996. Using large-scale atmospheric data from 00 UTC, 11 July (Wednesday evening) to initialize the model, a 36-hour simulation was created for a domain centered over the Atlantic Ocean east of the Florida coast near Jacksonville. The simulated onshore impact time of the hurricane was much earlier than observed (due to the use of results from the large-scale model, which predicted early arrival). However, the movement of the hurricane center (eye) as it approached the North Carolina/South Carolina coast as simulated in RAMS was quite good. Observations revealed a northerly storm track off the South Carolina coast as it moved toward land. As it approached landfall, Hurricane Bertha turned to the north-northeast, roughly paralleling the North Carolina coast before moving inland near Wilmington. Large-scale model forecasts were unable to detect this change in advance and predicted landfall near Myrtle Beach, South Carolina; RAMS, however, correctly predicted the parallel coastal movement. For future hurricane activity in the southeast, RAMS is being configured to run in an operational model using input from the large-scale pressure data in hopes of providing more information on predicted hurricane movement and landfall location.
Local Bathymetry Estimation Using Variational Inverse Modeling: A Nested Approach
NASA Astrophysics Data System (ADS)
Almeida, T. G.; Walker, D. T.; Farquharson, G.
2014-12-01
Estimation of subreach river bathymetry from remotely-sensed surface velocity data is presented using variational inverse modeling applied to the 2D depth-averaged, shallow-water equations (SWEs). A nested approach is adopted to focus on obtaining an accurate estimate of bathymetry over a small region of interest within a larger complex hydrodynamic system. This approach reduces computational cost significantly. We begin by constructing a minimization problem with a cost function defined by the error between observed and estimated surface velocities, and then apply the SWEs as a constraint on the velocity field. An adjoint SWE model is developed through the use of Lagrange multipliers, converting the unconstrained minimization problem into a constrained one. The adjoint model solution is used to calculate the gradient of the cost function with respect to bathymetry. The gradient is used in a descent algorithm to determine the bathymetry that yields a surface velocity field that is a best-fit to the observational data. In this application of the algorithm, the 2D depth-averaged flow is computed within a nested framework using Delft3D-FLOW as the forward computational model. First, an outer simulation is generated using discharge rate and other measurements from USGS and NOAA, assuming a uniform bottom-friction coefficient. Then a nested, higher resolution inner model is constructed using open boundary condition data interpolated from the outer model (see figure). Riemann boundary conditions with specified tangential velocities are utilized to ensure a near seamless transition between outer and inner model results. The initial guess bathymetry matches the outer model bathymetry, and the iterative assimilation procedure is used to adjust the bathymetry only for the inner model. The observation data was collected during the ONR Rivet II field exercise for the mouth of the Columbia River near Hammond, OR. A dual beam squinted along-track-interferometric, synthetic
Intercomparison of mesoscale meteorological models for precipitation forecasting
NASA Astrophysics Data System (ADS)
Richard, E.; Cosma, S.; Benoit, R.; Binder, P.; Buzzi, A.; Kaufmann, P.
In the framework of the RAPHAEL EU project, a series of past heavy precipitation events has been simulated with different meteorological models. Rainfall hindcasts and forecasts have been produced by four models in use at various meteorological services or research centres of Italy, Canada, France and Switzerland. The paper is focused on the comparison of the computed precipitation fields with the available surface observations. The comparison is carried out for three meteorological situations which lead to severe flashflood over the Toce-Ticino catchment in Italy (6599 km2) or the Ammer catchment (709 km2) in Germany. The results show that all four models reproduced the occurrence of these heavy precipitation events. The accuracy of the computed precipitation appears to be more case-dependent than model-dependent. The sensitivity of the computed rainfall to the boundary conditions (hindcast v. forecast) was found to be rather weak, indicating that a flood forecasting system based upon a numerical meteo-hydrological simulation could be feasible in an operational context.
Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals
2013-05-01
which could be modeled using cohesive zone (Clayton, 2005; Clayton et al., 2012a) or continuum damage mechanics (Clayton, 2006; Aslan et al., 2011...Wang et al., 1995; Morris and Krenn, 2000). References Aslan , O., Codero, N., Gaubert, A., Forest, S., 2011. Micromorphic approach to single crystal
Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics.
Persson, Rasmus A X; Voulgarakis, Nikolaos K; Chu, Jhih-Wei
2014-11-07
Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.
Range-Specific High-resolution Mesoscale Model Setup
NASA Technical Reports Server (NTRS)
Watson, Leela R.
2013-01-01
This report summarizes the findings from an AMU task to determine the best model configuration for operational use at the ER and WFF to best predict winds, precipitation, and temperature. The AMU ran test cases in the warm and cool seasons at the ER and for the spring and fall seasons at WFF. For both the ER and WFF, the ARW core outperformed the NMM core. Results for the ER indicate that the Lin microphysical scheme and the YSU PBL scheme is the optimal model configuration for the ER. It consistently produced the best surface and upper air forecasts, while performing fairly well for the precipitation forecasts. Both the Ferrier and Lin microphysical schemes in combination with the YSU PBL scheme performed well for WFF in the spring and fall seasons. The AMU has been tasked with a follow-on modeling effort to recommended local DA and numerical forecast model design optimized for both the ER and WFF to support space launch activities. The AMU will determine the best software and type of assimilation to use, as well as determine the best grid resolution for the initialization based on spatial and temporal availability of data and the wall clock run-time of the initialization. The AMU will transition from the WRF EMS to NU-WRF, a NASA-specific version of the WRF that takes advantage of unique NASA software and datasets. 37
Mesoscale modeling of smoke radiative feedback over the Sahel region
NASA Astrophysics Data System (ADS)
Yang, Z.; Wang, J.; Ichoku, C. M.; Ellison, L.; Zhang, F.; Yue, Y.
2013-12-01
This study employs satellite observations and a fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem) to study the smoke radative feedback on surface energy budget, boundary layer processes, and atmospheric lapse rate in February 2008 over the Sahel region. The smoke emission inventories we use come from various sources, including but not limited to the Fire Locating and Modeling of Burning Emissions (FLAMBE) developed by NRL and the Fire Energetic and Emissions Research (FEER) developed by NASA GSFC. Model performance is evaluated using numerous satellite and ground-based datasets: MODIS true color images, ground-based Aerosol Optical Depth (AOD) measurements from AERONET, MODIS AOD retrievals, and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) atmospheric backscattering and extinction products. Specification of smoke injection height of 650 m in WRF-Chem yields aerosol vertical profiles that are most consistent with CALIOP observations of aerosol layer height. Statistically, 5% of the CALIPSO valid measurements of aerosols in February 2008 show aerosol layers either above the clouds or between the clouds, reinforcing the importance of the aerosol vertical distribution for quantifying aerosol impact on climate in the Sahel region. The results further show that the smoke radiative feedbacks are sensitive to assumptions of black carbon and organic carbon ratio in the particle emission inventory. Also investigated is the smoke semi-direct effect as a function of cloud fraction.
Mesoscale modelling of shock initiation in HMX-based explosives
Swift, D. C.; Mulford, R. N. R.; Winter, R. E.; Taylor, P.; Salisbury, D. A.; Harris, E. J.
2002-01-01
Motivation: predictive capability Want to predict initiation, detonics and performance given: {sm_bullet} Variations in composition {sm_bullet} Variations in morphology {sm_bullet}Different loading conditions Previous work on PBX and ANFO: need physically-based model rather than just mechanical calibrations
Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics
NASA Astrophysics Data System (ADS)
Persson, Rasmus A. X.; Voulgarakis, Nikolaos K.; Chu, Jhih-Wei
2014-11-01
Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.
Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics
Persson, Rasmus A. X.; Chu, Jhih-Wei; Voulgarakis, Nikolaos K.
2014-11-07
Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.
Next-Generation Global and Mesoscale Atmospheric Models
2013-09-30
explore: 1. Unified high-order continuous Galerkin (CG) and discontinuous Galerkin (DG) spatial discretization methods; 2. Unified high-order... Galerkin (EBG) methods such as the spectral element (SE/CG) and discontinuous Galerkin (DG) methods. However, we have only partly showed the benefits...results of, to our knowledge, the first simulation with moisture for a discontinuous Galerkin (DG) model. The significance of this simulation is that it
A sensitivity study of storm cyclones with a mesoscale model
NASA Astrophysics Data System (ADS)
Radtke, K. S.; Tetzlaff, G.
2003-04-01
Extra tropical storms caused noticeable damages in the last decades. The evolution of strong cyclones is investigated by simulations with the nonhydrostatic limited area model 'Lokal Modell' (LM) of the German Weather Service (DWD). Which Conditions become important to distinguish an common cyclone from an storm-cyclone? Intense cyclones are mostly characterised by two typical large-scale features: high baroclinicity along the track of the low pressure system and a region of high equivalent potential temperature. For this purpose the observed values of the horizontal temperature gradient and the distribution of air moisture are varied and were used as forcing data, in such a way the development of storms was modified. The forcing data for the LM were generated by the global model of the DWD. Therefore data of real cyclones, such as the low Ginger, which occurred in 2000, were used. As the LM simulates only a limited area, the lateral bounds become problematic because of the manipulated forcing data. A procedure is tested, in order to prevent these problems. In this manner ensembles of storm scenarios were produced. The effects of various conditions were studied. Here in particular the changes in the surface velocity field were of interest. In the case of Ginger, an increase of the temperature gradient about 10 K causes an increasing of the maximum velocity about 3 m/s.
NASA Astrophysics Data System (ADS)
Nunalee, C. G.; Horváth, Á.; Basu, S.
2015-03-01
Recent decades have witnessed a drastic increase in the fidelity of numerical weather prediction (NWP) modeling. Currently, both research-grade and operational NWP models regularly perform simulations with horizontal grid spacings as fine as 1 km. This migration towards higher resolution potentially improves NWP model solutions by increasing the resolvability of mesoscale processes and reducing dependency on empirical physics parameterizations. However, at the same time, the accuracy of high-resolution simulations, particularly in the atmospheric boundary layer (ABL), are also sensitive to orographic forcing which can have significant variability on the same spatial scale as, or smaller than, NWP model grids. Despite this sensitivity, many high resolution atmospheric simulations do not consider uncertainty with respect to selection of static terrain height dataset. In this paper, we use the Weather Research and Forecasting (WRF) model to simulate realistic cases of lower tropospheric flow over and downstream of mountainous islands using both the default global 30 s United States Geographic Survey terrain height dataset (GTOPO30) and the 3 s Shuttle Radar Topography Mission (SRTM) terrain height dataset. Our results demonstrate cases where the differences between GTOPO30-based and SRTM-based model terrain height are significant enough to produce entirely different orographic wake mechanics, such as vortex shedding vs. no vortex shedding. These results are also compared to MODIS visible satellite imagery and highlight the importance of considering uncertain static boundary conditions when running high-resolution mesoscale models.
NASA Astrophysics Data System (ADS)
Uno, I.; Satake, S.; Hara, Y.; Takemura, T.; Wang, Z.; Carmichael, G. R.
2002-12-01
Number of yellow sand (Kosa) observation has been surprisingly increasing in Japan and Korea since 2000. Especially extremely high PM10 concentration (exceeding 0.5mg/m3) was observed in Japan several times in 2002, so we have an urgent scientific and political need to forecast/reproduce the detailed dust emission, transport and deposition processes. Intensive modeling studies have already been conducted to examine transport of Sahara dust and its impact on global radiation budget. One of the important differences between the Sahara desert and the Asian desert (mainly Gobi Desert and Takla Makan Desert) is the elevation of the dust source. The averaged elevation of Gobi Desert is approximately 1500 to 2500 m. These deserts are surrounded by high mountains. Furthermore advance of the recent manmade desertification made complicated land use patches for the arid region in Inner Mongolia. Therefore the development of a high horizontal resolution dust model is highly required. In this study, we will report a newly developed nested version of the dust transport model (as a part of Chemical weather FORecasting System; CFORS) in order to have a better understanding of Asian springtime heady dust episode. Here, CFORS is a multi-tracer, on-line, system built within the RAMS mesoscale meteorological model. A unique feature of nested CFORS is that multiple tracers are run on-line in RAMS under the two-way nesting, so that all the fine-scale on-line meteorological information such as 3-D winds, boundary-layer turbulence, surface fluxes and precipitation amount are directly used by the dust emission and transport at every time step. As a result, nested-CFORS produces with high time resolution 3-dimensional fields of dust distributions and major meteorological parameters under the nesting capability of RAMS. In this work, the dust transport model simulation with the nested-CFORS was conducted between March and April of the years 2001 and 2002, respectively. The sensititivy
Nested Sphere Model for SQUID-based Impedance Magnetocardiography
NASA Astrophysics Data System (ADS)
Vajrala, Vijayanand; Nawarathna, Dharmakeerthi; Claycomb, James; Miller, John
2004-03-01
An axisymmetric FEM model is used to predict the SQUID response to changes in tissue conductivity and blood volume during the cardiac cycle. The heart is modeled as a nested sphere inside a cylindrical conducting thorax. The current density and resulting magnetic field is calculated during end systolic, end diastolic and diastolic phases. Modeling results are compared to Impedance Magnetocardiography (IMCG) measurements made using a High-Tc SQUID magnetometer in an unshielded environment .In this measurements, a low amplitude ac current is passed through the body through outer electrodes. Variations in blood flow during the cardiac cycle perturb currents that give rise to time varying magnetic fields amplitudes. Applications to inductive IMCG will be discussed.
Mutable polyelectrolyte tube arrays: mesoscale modeling and lateral force microscopy.
Cranford, Steven W; Han, Lin; Ortiz, Christine; Buehler, Markus J
2017-08-23
In this study, the pH-dependent friction of layer-by-layer assemblies of poly(allylamine hydrochloride) and poly(acrylic acid) (PAH/PAA) are quantified for microtube array structures via experimental and simulated lateral force microscopy (LFM). A novel coarse-grain tube model is developed, utilizing a molecular dynamics (MD) framework with a Hertzian soft contact potential (such that F ∼ δ(3/2)) to allow the efficient dynamic simulation of 3D arrays consisting of hundreds of tubes at micrometer length scales. By quantitatively comparing experimental LFM and computational results, the coupling between geometry (tube spacing and swelling) and material properties (intrinsic stiffness) results in a transition from bending dominated deformation to bending combined with inter-tube contact, independent of material adhesion assumptions. Variation of tube spacing (and thus control of contact) can be used to exploit the normal and lateral resistance of the tube arrays as a function of pH (2.0/5.5), beyond the effect of areal tube density, with increased resistances (potential mutability) up to a factor of ∼60. This study provides a novel modeling platform to assess and design dynamic polyelectrolyte-based substrates/coatings with tailorable stimulus-responsive surface friction. Our results show that micro-geometry can be used alongside stimulus-responsive material changes to amplify and systematically tune mutability.
MESOSCALE MODELLING OF SHOCK INITIATION IN HMX-BASED EXPLOSIVES
Mulford, R. N. R.; Swift, D. C.
2001-01-01
Hydrocode calculations we used to simulate initiation in single- and double-shock experiments on several HMX-based explosives. Variations in the reactive behavior of theee materials reflects the differences between binders in the material, providing information regarding the sensitivity of the explosive to the mechanical properties of the constituents. Materials considered are EDC-37, with a soft binder, PBX-9601, with a relatively malleable binder, and PIBX-9404, with a stiff binder. Bulk reactive behavior of these materials is dominated by the HMX component and should be comparable, while the mechanical response varies. The reactive flow model is temperature-dependent, based on a modified Arrhenius rate. Some unreacted material is allowed to react at a rate given by the state of the hotspot rather than the bulk state of the unreacted explosive, according to a length scale reflecting the hotspot size, and a time scale for thermal equilibration. The Arrhenius rate for HMX is wsumed to be the same for all compositions. The initiation data for different HMX-bwd explosives axe modelled by choosing plausible parameters to describe the reactive and dissipative properties of the binder, and hence the behavior of the hotspots in each formulation.
Mesoscale to plant-scale models of nuclear waste reprocessing.
Noble, David Frederick; O'Hern, Timothy John; Moffat, Harry K.; Nemer, Martin B.; Domino, Stefan Paul; Rao, Rekha Ranjana; Cipiti, Benjamin B.; Brotherton, Christopher M.; Jove-Colon, Carlos F.; Pawlowski, Roger Patrick
2010-09-01
Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.
Tight-binding model for materials at mesoscale
Tai, Yuan-Yen; Choi, Hongchul; Zhu, Wei; Zhu, Jian-Xin
2016-12-21
TBM3 is an open source package for computational simulations of quantum materials at multiple scales in length and time. The project originated to investigate the multiferroic behavior in transition-metal oxide heterostructures. The framework has also been designed to study emergent phemona in other quantum materials like 2-dimensional transition-metal dichalcogenides, graphene, topological insulators, and skyrmion in materials, etc. In the long term, we will enable the package for transport and time-resolved phenomena. TBM3 is currently a C++ based numerical tool package and framework for the design and construction of any kind of lattice structures with multi-orbital and spin degrees of freedom. The fortran based portion of the package will be added in the near future. The design of TBM3 is in a highly flexible and reusable framework and the tight-binding parameters can be modeled or informed by DFT calculations. It is currently GPU enabled and feature of CPU enabled MPI will be added in the future.
Mesoscale Ocean Large Eddy Simulations Using High-resolution Ocean Models
NASA Astrophysics Data System (ADS)
Pearson, B.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Bailey, D. A.
2016-02-01
Inaccurate parameterization of sub-grid eddies can cause excessive damping and spurious diapycnal mixing, especially in high-resolution [O(10km)] ocean models. The Mesoscale Ocean Large Eddy Simulation (MOLES) approach provides a framework for developing resolution- and flow-adaptive parameterizations of eddy effects. Large eddy simulation techniques are commonly used to simulate 3D turbulence, and MOLES is modified to be appropriate for the more two-dimensional nature of mesoscale ocean turbulence. However, the effect of MOLES in high-resolution ocean models has not been investigated extensively. We will contrast results, and cost, from a suite of idealized simulations of frontal spin-down (MITgcm) and from high-resolution global climate models (0.1o, POP2), under a variety of eddy parameterizations. These include MOLES based upon 2D turbulence theory, MOLES based upon quasi-geostrophic (QG) turbulence theory, and traditional biharmonic schemes. The idealized simulations show that MOLES (particularly QG) improves the spectral slopes of energy and enstrophy near the grid-scale when compared to more traditional eddy parameterizations, across a range of grid resolutions. In the high-resolution global climate model we compare the effect of different parameterizations on the spectral characteristics of the simulated flow, and on the large-scale transport. Using MOLES in a climate model results in greater energy and variability near the grid scale, and this produces a flow, which, spectrally, is more consistent with an inertial turbulent cascade and observations of eddy behavior.
Meso-scale Modeling of Self-assembly of Polymer-Grafted Nanoparticles
NASA Astrophysics Data System (ADS)
Mancini, Derrick; Deshmukh, Sanket; Sankaranarayanan, Subramanian
2015-03-01
We develop meso-scale models to explore the self-assembly behavior of polymer-grafted nanoparticles. Specifically, we study nanoparticles with grafts of the thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAM), which undergoes a coil-to-globule transition across the LCST at around 305 K. The atomic-scale mechanism of the coil-to-globule transition of polymers grafted nanoparticles and their interactions (agglomeration, assembly behavior) with other particles that are in its vicinity is poorly understood, yet knowledge about these interactions would enable designing novel self-assembled materials with well-defined structural and dynamical properties. Additionally, the effects of chemical nature, geometry, and morphology of the nanoparticle surface on the conformational transition of thermo-sensitive polymers is also unknown. We report on 1) development of all-atom models of polymer-grafted nanoparticles to conduct MD simulations at atomic-levels and 2) perform mesoscopic scaling of the conformational dynamics resulting from the atomistic simulations with the aid of coarse-grained or meso-scale models of PNIPAM and its composites. Coarse-grained simulations allow modeling of larger assemblies of polymer-grafted nanoparticles over longer time scales. This research used resources of the Center for Nanoscale Materials and the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-06CH11357.
Mesoscale/convective interaction
NASA Technical Reports Server (NTRS)
Haines, P. A.; Sun, W. Y.
1988-01-01
A novel cumulus parameterization scheme (CPS) has been developed in order to account for mesoscale/convective-scale interaction which considers both the mesoscale and convective scale mass and moisture budgets, under the assumption that the heating rate is a maximum for given environmental conditions. The basis of the CPS is a detailed, quasi-one-dimensional cloud model that calculates mass and moisture fluxes similar to those calculated by the Schlesinger (1978) three-dimensional model.
Nested Grid Modeling of Circulation on the Inner-shelf
NASA Astrophysics Data System (ADS)
Cai, D.; Haas, K. A.; Di Lorenzo, E.; Suanda, S. H.; Kumar, N.; Miller, A. J.; Feddersen, F.; Edwards, C. A.
2016-02-01
The dynamical controls on the circulation for the inner shelf (5-30 m water depth) are complex due to dominant balances associated with the many temporal and spatial scales of surface and wave forcing along with intrinsic variability (instabilities, internal wave propagation, etc.). To shed some light on this problem, numerical simulations of the inner shelf region that roughly corresponds to the Point Sal beach off the coast of Point Conception are conducted by coupling ROMS and SWAN modules of the COAWST model system. The model system is configured with four nested grids with resolutions ranging from approximately 600 m to the outer shelf ( 200 m) to the inner shelf ( 66 m) and finally to the surf zone ( 22 m). A solution from a 1 km grid encompassing our domain provides the boundary conditions for the 600 m grid. Barotropic tidal forcing is incorporated at the 600 m grid to provide tidal variability. Surface gravity waves are introduced beginning at the 200 m nested grid in order to resolve the influence of wave driven currents originating in the surf zone on the process inner shelf. The simulations focus on the time period of June - July, 2015 corresponding to an ONR pilot study in which observational experiment data was collected. The experiment data in part consists of in situ measurement, which includes mooring with conductivity, temperature, depth, and flow velocity. In addition, multiple modalities of remote sensing data was collected including land-based and aerial radar and video, which can provide information on sea surface fronts, height, and temperature and multispectral images of the biological condition. This data will be used to test the capability of our model to exhibit realistic behavior in terms of flow structures on the shelf, alongshore flows, and internal tides.
Meso-Scale Modeling to Characterize Moisture Absorption of 3D Woven Composite
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Zhou, Chu-wei
2016-08-01
For polymer-matrix composites, moisture is expected to degrade their mechanical properties due to matrix plasticization and moisture introduced micro-scale defects. In this study, the moisture absorptions of bulk epoxy, unidirectional composite (UD) and 3D woven composite (3D WC) were tested. Two-stage features have been observed for all these three materials. Moisture properties for UD and 3D WC were found not in simple direct proportion to their matrix volume fractions. The moisture approach of UD was modeled including the effect of fiber/matrix interphase which promotes the moisture uptake. Then, meso-scale FE model for 3D WC was established to characterize the inhomogeneous moisture diffusion. The moisture properties of resin-rich region and fiber bundle in 3D WC were determined from water uptake experiments of bulk epoxy and UD, respectively. Through homogenizing moisture properties of surface and interior weave structures, a simplified theoretical sandwich moisture diffusion approach was established. The moisture weight gains of 3D WC predicted by both meso-scale FE model and simplified sandwich approach were well agreed with the experimental data.
Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling
NASA Astrophysics Data System (ADS)
GÜLdemeister, Nicole; WÜNnemann, Kai; Durr, Nathanael; Hiermaier, Stefan
2013-01-01