Science.gov

Sample records for nested regional climate

  1. Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling

    EPA Science Inventory

    This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Pro...

  2. Simulations of present and future climates in the western U.S. with four nested regional climate models

    SciTech Connect

    Duffy, P B; Arritt, R W; Coquard, J; Gutowski, W; Han, J; Iorio, J; Kim, J; Leung, L R; Roads, J; Zeledon, E

    2004-06-15

    We analyze simulations of present and future climates in the western U.S. performed with four regional climate models (RCMs) nested within two global ocean-atmosphere climate models. Our primary goal is to assess the range of regional climate responses to increased greenhouse gases in available RCM simulations. The four RCMs used different geographical domains, different increased greenhouse gas scenarios for future-climate simulations, and (in some cases) different lateral boundary conditions. For simulations of the present climate, we compare RCM results to observations and to results of the GCM that provided lateral boundary conditions to the RCM. For future-climate (increased greenhouse gas) simulations, we compare RCM results to each other and to results of the driving GCMs. When results are spatially averaged over the western U.S., we find that the results of each RCM closely follow those of the driving GCM in the same region, in both present and future climates. In present-climate simulations, the RCMs have biases in spatially-averaged simulated precipitation and near-surface temperature that seem to be very close to those of the driving GCMs. In future-climate simulations, the spatially-averaged RCM-projected responses in precipitation and near-surface temperature are also very close to those of the respective driving GCMs. Precipitation responses predicted by the RCMs are in many regions not statistically significant compared to interannual variability. Where the predicted precipitation responses are statistically significant, they are positive. The models agree that near-surface temperatures will increase, but do not agree on the spatial pattern of this increase. The four RCMs produce very different estimates of water content of snow in the present climate, and of the change in this water content in response to increased greenhouse gases.

  3. Projected changes of extreme precipitation over Contiguous United States with Nested regional climate model (NRCM)

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2013-12-01

    Extreme weather events have already significantly influenced North America. During 2005-2011, the extreme events have increased by 250 %, from four or fewer events occurring in 2005, while 14 events occurring in 2011 (www.ncdc.noaa.gov/billions/). In addition, extreme rainfall amounts, frequency, and intensity were all expected to increase under greenhouse warming scenarios (Wehner 2005; Kharin et al. 2007; Tebaldi et al. 2006). Global models are powerful tools to investigate the climate and climate change on large scales. However, such models do not represent local terrain and mesoscale weather systems well owing to their coarse horizontal resolution (150-300 km). To capture the fine-scale features of extreme weather events, regional climate models (RCMs) with a more realistic representation of the complex terrain and heterogeneous land surfaces are needed (Mass et al. 2002). This study uses the Nested Regional Climate model (NRCM) to perform regional scale climate simulations on a 12-km × 12-km high resolution scale over North America (including Alaska; with 600 × 515 grid cells at longitude and latitude), known as CORDEX_North America, instead of small regions as studied previously (eg., Dominguez et al. 2012; Gao et al. 2012). The performance and the biases of the NRCM extreme precipitation calculations (2000-2010) have been evaluated with PRISM precipitation (Daly et al. 1997) by Wang and Kotamarthi (2013): the NRCM replicated very well the monthly amount of extreme precipitation with less than 3% overestimation over East CONUS, and the frequency of extremes over West CONUS and upper Mississippi River Basin. The Representative Concentration Pathway (RCP) 8.5 and RCP 4.5 from the new Community Earth System Model version 1.0 (CESM v1.0) are dynamically downscaled to predict the extreme rainfall events at the end-of-century (2085-2095) and to explore the uncertainties of future extreme precipitation induced by different scenarios over distinct regions. We have

  4. Two-way against one-way nesting for climate downscaling in Europe and the Mediterranean region using LMDZ4

    NASA Astrophysics Data System (ADS)

    Li, Shan; Li, Laurent; Le Treut, Hervé

    2016-04-01

    In the 21st century, the estimated surface temperature warming projected by General Circulation Models (GCMs) is between 0.3 and 4.8 °C, depending on the scenario considered. GCMs exhibit a good representation of climate on a global scale, but they are not able to reproduce regional climate processes with the same level of accuracy. Society and policymakers need model projections to define climate change adaptation and mitigation policies on a global, regional and local scale. Climate downscaling is mostly conducted with a regional model nested into the outputs of a global model. This one-way nesting approach is generally used in the climate community without feedbacks from Regional Climate Models (RCMs) to GCMs. This lack of interaction between the two models may affect regional modes of variability, in particular those with a boundary conflict. The objective of this study is to evaluate a two-way nesting configuration that makes an interactive coupling between the RCM and the GCM, an approach against the traditional configuration of one-way nesting system. An additional aim of this work is to examine if the two-way nesting system can improve the RCM performance. The atmospheric component of the IPSL integrated climate model (LMDZ) is configured at both regional (LMDZ-regional) and global (LMDZ-global) scales. The two models have the same configuration for the dynamical framework and the physical forcings. The climatology values of sea surface temperature (SST) are prescribed for the two models. The stretched-grid of LMDZ-global is applied to a region defined by Europe, the Mediterranean, North Africa and Western North Atlantic. To ensure a good statistical significance of results, all simulations last at least 80 years. The nesting process of models is performed by a relaxation procedure of a time scale of 90 minutes. In the case of two-way nesting, the exchange between the two models is every two hours. The relaxation procedure induces a boundary conflict

  5. A test for evaluating the downscaling ability of one-way nested regional climate models: The Big-Brother Experiment

    NASA Astrophysics Data System (ADS)

    Denis, Bertrand

    The purpose of this thesis is to evaluate the downscaling ability of one-way nesting regional climate models (RCM). To do this, a rigorous and well-defined experiment for assessing the reliability of the one-way nesting approach is developed. This experiment, baptised the Big-Brother Experiment (BBE), is used for addressing some important one-way nesting issues. The first part of this work is dedicated to the development of a scale decomposition tool employed for the BBE. This tool involves a new spectral analysing technique suitable for two-dimensional fields on limited-area domains, and is based on the discrete cosine transform (DCT). It is used for degrading the spatial resolution of the lateral boundary conditions (LBC) used to drive the Canadian RCM (CRCM), for extracting mesoscale features from the atmospheric fields, and for regional validation, and producing power spectra. The second part of the thesis describes the BBE framework and its first results. The BBE consists in first establishing a reference virtual-reality climate from an RCM simulation using a large and high-resolution domain. This simulation is called the "Big Brother". This big-brother simulation is then degraded toward the resolution of today's global objective analyses (OA) and/or global climate models (GCM) by removing the short scales. The resulting fields are then used as nesting data to drive an RCM (called the "Little Brother") which is integrated at the same high-resolution as the Big Brother, but over a sub-area of the big-brother domain. The climate statistics of the Little Brother are then compared with those of the big-brother simulation over the little-brother domain. Differences between the two climates can thus be unambiguously attributed to errors associated with the dynamical downscaling technique, and not to model errors nor to observation limitations. The results for a February simulation shows that the Canadian RCM, using a factor of 6 between the model and the LBC spatial

  6. Considerations on domain location according to the jump of resolution between the driving data and the nested regional climate model within the Big-Brother experiment.

    NASA Astrophysics Data System (ADS)

    Matte, D.; Laprise, R.; Theriault, J. M.; Lucas-Picher, P.

    2015-12-01

    Many studies have shown the importance of choosing the domain size adequately for dynamical downscaling with nested regional climate models. It is well known that domain should not be too large to avoid large departure from the driving data, and not be too small to provide sufficient distance from the lateral inflow to allow a full development of the small-scale features resolved by the increase resolution. Although practitioners of dynamical downscaling are well aware that the jump of resolution between the driving data and the nested regional climate model impacts the simulated climate, the issue has never been properly study. Larger is the jump of resolution, larger is the distance from the lateral inflow to fully develop the small-scale features permitted by the increase resolution. Our investigation compares direct nesting to achieve a grid mesh of 0.15o from driving data at 3.6°, 1.8o, 0.45° and 0.15° using the perfect-prognostic approach of the Big-Brother protocol. The results show that the small-scale transient-eddy component struggles to be fully developed with reduced resolution of the driving data. Overall, this study suggests that domain location (i.e. domain of interest or subsequent nested domains) must be chosen carefully according to the jump of resolution to allow the optimal development of small-scale features allowed by the increase resolution of the nested model.

  7. Multi-decadal scenario simulation over Korea using a one-way double-nested regional climate model system. Part 1: recent climate simulation (1971 2000)

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Kwon, Won-Tae; Ahn, Joong-Bae; Giorgi, Filippo

    2007-06-01

    We present an analysis of a high resolution multi-decadal simulation of recent climate (1971 2000) over the Korean Peninsula with a regional climate model (RegCM3) using a one-way double-nested system. Mean climate state as well as frequency and intensity of extreme climate events are investigated at various temporal and spatial scales, with focus on surface air temperature and precipitation. The mother intermediate resolution model domain encompasses the eastern regions of Asia at 60 km grid spacing while the high resolution nested domain covers the Korean Peninsula at 20 km grid spacing. The simulation spans the 30-year period of January 1971 through December 2000, and initial and lateral boundary conditions for the mother domain are provided from ECHO-G fields based on the IPCC SRES B2 scenario. The model shows a good performance in reproducing the climatological and regional characteristics of surface variables, although some persistent biases are present. Main results are as follows: (1) The RegCM3 successfully simulates the fine-scale structure of the temperature field due to topographic forcing but it shows a systematic cold bias mostly due to an underestimate of maximum temperature. (2) The frequency distribution of simulated daily mean temperature agrees well with the observed seasonal and spatial patterns. In the summer season, however, daily variability is underestimated. (3) The RegCM3 simulation adequately captures the seasonal evolution of precipitation associated to the East Asia monsoon. In particular, the simulated winter precipitation is remarkably good, clearly showing typical precipitation patterns that occur on the northwestern areas of Japan during the winter monsoon. Although summer precipitation is underestimated, area-averaged time series of precipitation over Korea show that the RegCM3 agrees better with observations than ECHO-G both in terms of seasonal evolution and precipitation amounts. (4) Heavy rainfall phenomena exceeding 300 mm

  8. Potential Influences of Climate and Nest Structure on Spotted Owl Reproductive Success: A Biophysical Approach

    PubMed Central

    Rockweit, Jeremy T.; Franklin, Alan B.; Bakken, George S.; Gutiérrez, R. J.

    2012-01-01

    Many bird species do not make their own nests; therefore, selection of existing sites that provide adequate microclimates is critical. This is particularly true for owls in north temperate climates that often nest early in the year when inclement weather is common. Spotted owls use three main types of nest structures, each of which are structurally distinct and may provide varying levels of protection to the eggs or young. We tested the hypothesis that spotted owl nest configuration influences nest microclimate using both experimental and observational data. We used a wind tunnel to estimate the convective heat transfer coefficient (hc) of eggs in 25 potential nest configurations that mimicked 2 nest types (top-cavity and platform nests), at 3 different wind speeds. We then used the estimates of hc in a biophysical heat transfer model to estimate how long it would take unattended eggs to cool from incubation temperature (∼36°C) to physiological zero temperature (PZT; ∼26°C) under natural environmental conditions. Our results indicated that the structural configuration of nests influences the cooling time of the eggs inside those nests, and hence, influences the nest microclimate. Estimates of time to PZT ranged from 10.6 minutes to 33.3 minutes. Nest configurations that were most similar to platform nests always had the fastest egg cooling times, suggesting that platform nests were the least protective of those nests we tested. Our field data coupled with our experimental results suggested that nest choice is important for the reproductive success of owls during years of inclement weather or in regions characterized by inclement weather during the nesting season. PMID:22859993

  9. Potential influences of climate and nest structure on spotted owl reproductive success: a biophysical approach.

    PubMed

    Rockweit, Jeremy T; Franklin, Alan B; Bakken, George S; Gutiérrez, R J

    2012-01-01

    Many bird species do not make their own nests; therefore, selection of existing sites that provide adequate microclimates is critical. This is particularly true for owls in north temperate climates that often nest early in the year when inclement weather is common. Spotted owls use three main types of nest structures, each of which are structurally distinct and may provide varying levels of protection to the eggs or young. We tested the hypothesis that spotted owl nest configuration influences nest microclimate using both experimental and observational data. We used a wind tunnel to estimate the convective heat transfer coefficient (h(c)) of eggs in 25 potential nest configurations that mimicked 2 nest types (top-cavity and platform nests), at 3 different wind speeds. We then used the estimates of h(c) in a biophysical heat transfer model to estimate how long it would take unattended eggs to cool from incubation temperature (~36 °C) to physiological zero temperature (PZT; ~26 °C) under natural environmental conditions. Our results indicated that the structural configuration of nests influences the cooling time of the eggs inside those nests, and hence, influences the nest microclimate. Estimates of time to PZT ranged from 10.6 minutes to 33.3 minutes. Nest configurations that were most similar to platform nests always had the fastest egg cooling times, suggesting that platform nests were the least protective of those nests we tested. Our field data coupled with our experimental results suggested that nest choice is important for the reproductive success of owls during years of inclement weather or in regions characterized by inclement weather during the nesting season. PMID:22859993

  10. Regional Model Nesting Within GFS Daily Forecasts Over West Africa

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew; Lonergan, Patrick; Worrell, Ruben

    2010-01-01

    The study uses the RM3, the regional climate model at the Center for Climate Systems Research of Columbia University and the NASA/Goddard Institute for Space Studies (CCSR/GISS). The paper evaluates 30 48-hour RM3 weather forecasts over West Africa during September 2006 made on a 0.5 grid nested within 1 Global Forecast System (GFS) global forecasts. September 2006 was the Special Observing Period #3 of the African Monsoon Multidisciplinary Analysis (AMMA). Archived GFS initial conditions and lateral boundary conditions for the simulations from the US National Weather Service, National Oceanographic and Atmospheric Administration were interpolated four times daily. Results for precipitation forecasts are validated against Tropical Rainfall Measurement Mission (TRMM) satellite estimates and data from the Famine Early Warning System (FEWS), which includes rain gauge measurements, and forecasts of circulation are compared to reanalysis 2. Performance statistics for the precipitation forecasts include bias, root-mean-square errors and spatial correlation coefficients. The nested regional model forecasts are compared to GFS forecasts to gauge whether nesting provides additional realistic information. They are also compared to RM3 simulations driven by reanalysis 2, representing high potential skill forecasts, to gauge the sensitivity of results to lateral boundary conditions. Nested RM3/GFS forecasts generate excessive moisture advection toward West Africa, which in turn causes prodigious amounts of model precipitation. This problem is corrected by empirical adjustments in the preparation of lateral boundary conditions and initial conditions. The resulting modified simulations improve on the GFS precipitation forecasts, achieving time-space correlations with TRMM of 0.77 on the first day and 0.63 on the second day. One realtime RM3/GFS precipitation forecast made at and posted by the African Centre of Meteorological Application for Development (ACMAD) in Niamey, Niger

  11. The influence of regional hydrology on nesting behavior and nest fate of the American alligator

    USGS Publications Warehouse

    Ugarte, Cristina A.; Bass, Oron L.; Nuttle, William; Mazzotti, Frank J.; Rice, Kenneth G.; Fujisaki, Ikuko; Whelan, Kevin R.T.

    2013-01-01

    Hydrologic conditions are critical to the nesting behavior and reproductive success of crocodilians. In South Florida, USA, growing human settlement has led to extensive surface water management and modification of historical water flows in the wetlands, which have affected regional nesting of the American alligator (Alligator mississippiensis). Although both natural and anthropogenic factors are considered to determine hydrologic conditions, the aspects of hydrological patterns that affect alligator nest effort, flooding (partial and complete), and failure (no hatchling) are unclear. We deconstructed annual hydrological patterns using harmonic models that estimated hydrological matrices including mean, amplitude, timing of peak, and periodicity of surface water depth and discharge and examined their effects on alligator nesting using survey data from Shark Slough, Everglades National Park, from 1985 to 2005. Nest effort increased in years with higher mean and lesser periodicity of water depth. A greater proportion of nests were flooded and failed when peak discharge occurred earlier in the year. Also, nest flooding rates were greater in years with greater periodicity of water depth, and nest failure rate was greater when mean discharge was higher. This study guides future water management decisions to mitigate negative impacts on reproduction of alligators and provides wildlife managers with a tool for assessing and modifying annual water management plans to conserve crocodilians and other wetland species.

  12. Nesting phenology of marine turtles: insights from a regional comparative analysis on green turtle (Chelonia mydas).

    PubMed

    Dalleau, Mayeul; Ciccione, Stéphane; Mortimer, Jeanne A; Garnier, Julie; Benhamou, Simon; Bourjea, Jérôme

    2012-01-01

    Changes in phenology, the timing of seasonal activities, are among the most frequently observed responses to environmental disturbances and in marine species are known to occur in response to climate changes that directly affects ocean temperature, biogeochemical composition and sea level. We examined nesting seasonality data from long-term studies at 8 green turtle (Chelonia mydas) rookeries that include 21 specific nesting sites in the South-West Indian Ocean (SWIO). We demonstrated that temperature drives patterns of nesting seasonality at the regional scale. We found a significant correlation between mean annual Sea Surface Temperature (SST) and dates of peak nesting with rookeries exposed to higher SST having a delayed nesting peak. This supports the hypothesis that temperature is the main factor determining peak nesting dates. We also demonstrated a spatial synchrony in nesting activity amongst multiple rookeries in the northern part of the SWIO (Aldabra, Glorieuses, Mohéli, Mayotte) but not with the eastern and southern rookeries (Europa, Tromelin), differences which could be attributed to females with sharply different adult foraging conditions. However, we did not detect a temporal trend in the nesting peak date over the study period or an inter-annual relation between nesting peak date and SST. The findings of our study provide a better understanding of the processes that drive marine species phenology. The findings will also help to predict their ability to cope with climate change and other environmental perturbations. Despite demonstrating this spatial shift in nesting phenology, no trend in the alteration of nesting dates over more than 20 years was found.

  13. Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)

    PubMed Central

    Dalleau, Mayeul; Ciccione, Stéphane; Mortimer, Jeanne A.; Garnier, Julie; Benhamou, Simon; Bourjea, Jérôme

    2012-01-01

    Changes in phenology, the timing of seasonal activities, are among the most frequently observed responses to environmental disturbances and in marine species are known to occur in response to climate changes that directly affects ocean temperature, biogeochemical composition and sea level. We examined nesting seasonality data from long-term studies at 8 green turtle (Chelonia mydas) rookeries that include 21 specific nesting sites in the South-West Indian Ocean (SWIO). We demonstrated that temperature drives patterns of nesting seasonality at the regional scale. We found a significant correlation between mean annual Sea Surface Temperature (SST) and dates of peak nesting with rookeries exposed to higher SST having a delayed nesting peak. This supports the hypothesis that temperature is the main factor determining peak nesting dates. We also demonstrated a spatial synchrony in nesting activity amongst multiple rookeries in the northern part of the SWIO (Aldabra, Glorieuses, Mohéli, Mayotte) but not with the eastern and southern rookeries (Europa, Tromelin), differences which could be attributed to females with sharply different adult foraging conditions. However, we did not detect a temporal trend in the nesting peak date over the study period or an inter-annual relation between nesting peak date and SST. The findings of our study provide a better understanding of the processes that drive marine species phenology. The findings will also help to predict their ability to cope with climate change and other environmental perturbations. Despite demonstrating this spatial shift in nesting phenology, no trend in the alteration of nesting dates over more than 20 years was found. PMID:23056527

  14. Regional warming and the thermal regimes of American crocodile nests in the Tempisque Basin, Costa Rica.

    PubMed

    Murray, Christopher M; Easter, Michael; Padilla, Sergio; Marin, Mahmood Sasa; Guyer, Craig

    2016-08-01

    Spatial variation in global climate change makes population-specific responses to this enigmatic threat pertinent on a regional scale. Organisms with temperature-dependent sex determination (TSD) potentially possess a unique physiological susceptibility that threatens population viability if rapid environmental effects on sex ratios render populations non-viable. A heavily male-biased sex ratio for hatchling American crocodiles of the Tempisque Basin, Costa Rica requires assessment of how nest temperature affects sex determination at this site, how females might compensate for these effects when creating nests, and how current patterns of climate change might alter future sex ratios and survival in hatchling cohorts. We demonstrate high within-nest variation in temperature but predict a female bias at hatching based on nest temperatures quantified here. Further, our data suggest that egg size and metabolic heating associated with this factor outweighs microhabitat parameters and depth in influencing nest thermal regimes. Finally, we document regional warming in the Tempisque Basin over the last 15 years and project that further heating over the next 15 years will not yield hatchling sex ratios as male biased as those currently found at this site. Thus, we find no support for nest temperature or climate change as likely explanations for male-biased American crocodile (Crocodylus acutus) sex ratios in the Tempisque Basin. PMID:27503716

  15. Regional warming and the thermal regimes of American crocodile nests in the Tempisque Basin, Costa Rica.

    PubMed

    Murray, Christopher M; Easter, Michael; Padilla, Sergio; Marin, Mahmood Sasa; Guyer, Craig

    2016-08-01

    Spatial variation in global climate change makes population-specific responses to this enigmatic threat pertinent on a regional scale. Organisms with temperature-dependent sex determination (TSD) potentially possess a unique physiological susceptibility that threatens population viability if rapid environmental effects on sex ratios render populations non-viable. A heavily male-biased sex ratio for hatchling American crocodiles of the Tempisque Basin, Costa Rica requires assessment of how nest temperature affects sex determination at this site, how females might compensate for these effects when creating nests, and how current patterns of climate change might alter future sex ratios and survival in hatchling cohorts. We demonstrate high within-nest variation in temperature but predict a female bias at hatching based on nest temperatures quantified here. Further, our data suggest that egg size and metabolic heating associated with this factor outweighs microhabitat parameters and depth in influencing nest thermal regimes. Finally, we document regional warming in the Tempisque Basin over the last 15 years and project that further heating over the next 15 years will not yield hatchling sex ratios as male biased as those currently found at this site. Thus, we find no support for nest temperature or climate change as likely explanations for male-biased American crocodile (Crocodylus acutus) sex ratios in the Tempisque Basin.

  16. Regional Climate Modeling: Progress, Challenges, and Prospects

    SciTech Connect

    Wang, Yuqing; Leung, Lai R.; McGregor, John L.; Lee, Dong-Kyou; Wang, Wei-Chyung; Ding, Yihui; Kimura, Fujio

    2004-12-01

    Regional climate modeling with regional climate models (RCMs) has matured over the past decade and allows for meaningful utilization in a broad spectrum of applications. In this paper, latest progresses in regional climate modeling studies are reviewed, including RCM development, applications of RCMs to dynamical downscaling for climate change assessment, seasonal climate predictions and climate process studies, and the study of regional climate predictability. Challenges and potential directions of future research in this important area are discussed, with the focus on those to which less attention has been given previously, such as the importance of ensemble simulations, further development and improvement of regional climate modeling approach, modeling extreme climate events and sub-daily variation of clouds and precipitation, model evaluation and diagnostics, applications of RCMs to climate process studies and seasonal predictions, and development of regional earth system models. It is believed that with both the demonstrated credibility of RCMs’ capability in reproducing not only monthly to seasonal mean climate and interannual variability but also the extreme climate events when driven by good quality reanalysis and the continuous improvements in the skill of global general circulation models (GCMs) in simulating large-scale atmospheric circulation, regional climate modeling will remain an important dynamical downscaling tool for providing the needed information for assessing climate change impacts and seasonal climate predictions, and a powerful tool for improving our understanding of regional climate processes. An internationally coordinated effort can be developed with different focuses by different groups to advance regional climate modeling studies. It is also recognized that since the final quality of the results from nested RCMs depends in part on the realism of the large-scale forcing provided by GCMs, the reduction of errors and improvement in

  17. Tropical cyclone activity in nested regional and global grid-refined simulations

    NASA Astrophysics Data System (ADS)

    Hashimoto, Atsushi; Done, James M.; Fowler, Laura D.; Bruyère, Cindy L.

    2016-07-01

    The capacity of two different grid refinement methods—two-way limited area nesting and variable-mesh refinement—to capture Northwest Pacific Tropical Cyclone (TC) activity is compared in a suite of single-year continuous simulations. Simulations are conducted with and without regional grid refinement from approximately 100-20 km grid spacing over the Northwest Pacific. The capacity to capture smooth transitions between the two resolutions varies by grid refinement method. Nesting shows adverse influence of the nest boundary, with the boundary evident in seasonal average cloud patterns and precipitation, and contortions of the seasonal mean mid-latitude jet. Variable-mesh, on the other hand, reduces many of these effects and produced smoother cloud patterns and mid-latitude jet structure. Both refinement methods lead to increased TC frequency in the region of refinement compared to simulations without grid refinement, although nesting adversely affects TC tracks through the contorted mid-latitude jet. The variable-mesh approach leads to enhanced TC activity over the Southern Indian and Southwest Pacific basins, compared to a uniform mesh simulation. Nesting, on the other hand, does not appear to influence basins outside the region of grid refinement. This study provides evidence that variable mesh may bring benefits to seasonal TC simulation over traditional nesting, and demonstrates capacity of variable mesh refinement for regional climate simulation.

  18. Climatic Concepts and Regions.

    ERIC Educational Resources Information Center

    Thomas, Paul F.

    Designed for students in grades 7 through 12, this teaching unit presents illustrative resource materials depicting concepts related to climate and geographic regions. Emphasis is on giving students an understanding of climatic elements and factors, not as isolated, disjointed entities, but as a dynamic interplay of forces having a very definite…

  19. Northwest Regional Climate Assessment

    NASA Technical Reports Server (NTRS)

    Lipschultz, Fred

    2011-01-01

    Objectives are to establish a continuing, inclusive National process that: 1) synthesizes relevant science and information 2) increases understanding of what is known & not known 3) identifies information needs related to preparing for climate variability and change, and reducing climate impacts and vulnerability 4) evaluates progress of adaptation & mitigation activities 5) informs science priorities 6) builds assessment capacity in regions and sectors 7) builds understanding & skilled use of findings

  20. A Hierarchical Evaluation of Regional Climate Simulations

    SciTech Connect

    Leung, Lai-Yung R.; Ringler, Todd; Collins, William D.; Taylor, Mark; Ashfaq, Moetasim

    2013-08-20

    Global climate models (GCMs) are the primary tools for predicting the evolution of the climate system. Through decades of development, GCMs have demonstrated useful skill in simulating climate at continental to global scales. However, large uncertainties remain in projecting climate change at regional scales, which limit our ability to inform decisions on climate change adaptation and mitigation. To bridge this gap, different modeling approaches including nested regional climate models (RCMs), global stretch-grid models, and global high-resolution atmospheric models have been used to provide regional climate simulations (Leung et al. 2003). In previous efforts to evaluate these approaches, isolating their relative merits was not possible because factors such as dynamical frameworks, physics parameterizations, and model resolutions were not systematically constrained. With advances in high performance computing, it is now feasible to run coupled atmosphere-ocean GCMs at horizontal resolution comparable to what RCMs use today. Global models with local refinement using unstructured grids have become available for modeling regional climate (e.g., Rauscher et al. 2012; Ringler et al. 2013). While they offer opportunities to improve climate simulations, significant efforts are needed to test their veracity for regional-scale climate simulations.

  1. Do regional climate models represent regional climate?

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin

    2014-05-01

    When using climate change scenarios - either from global climate models or further downscaled - to assess localised real world impacts, one has to ensure that the local simulation indeed correctly represents the real world local climate. Representativeness has so far mainly been discussed as a scale issue: simulated meteorological variables in general represent grid box averages, whereas real weather is often expressed by means of point values. As a result, in particular simulated extreme values are not directly comparable with observed local extreme values. Here we argue that the issue of representativeness is more general. To illustrate this point, assume the following situations: first, the (GCM or RCM) simulated large scale weather, e.g., the mid-latitude storm track, might be systematically distorted compared to observed weather. If such a distortion at the synoptic scale is strong, the simulated local climate might be completely different from the observed. Second, the orography even of high resolution RCMs is only a coarse model of true orography. In particular in mountain ranges the simulated mesoscale flow might therefore considerably deviate from the observed flow, leading to systematically displaced local weather. In both cases, the simulated local climate does not represent observed local climate. Thus, representativeness also encompasses representing a particular location. We propose to measure this aspect of representativeness for RCMs driven with perfect boundary conditions as the correlation between observations and simulations at the inter-annual scale. In doing so, random variability generated by the RCMs is largely averaged out. As an example, we assess how well KNMIs RACMO2 RCM at 25km horizontal resolution represents winter precipitation in the gridded E-OBS data set over the European domain. At a chosen grid box, RCM precipitation might not be representative of observed precipitation, in particular in the rain shadow of major moutain ranges

  2. Techniques for studying nest success of ducks in upland habitats in the prairie pothole region

    USGS Publications Warehouse

    Klett, A.T.; Duebbert, H.F.; Faanes, C.A.; Higgins, K.F.

    1986-01-01

    Selected procedures are described for conducting nesting studies of upland nesting ducks in the prairie pothole region. Emphasis is on the use of standard procedures so that comparable results can be obtained. Major topics addressed are finding nests by flushing hens with drags pulled by vehicles, recording of appropriate data, and calculating nest success rates. Techniques are described for conducting nest searches, candling eggs in the field, determining fate of clutches, and identifying species from evidence at nests. Two methods are presented for calculating nest success.

  3. Procedures for offline grid nesting in regional ocean models

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Molemaker, Jeroen; Shchepetkin, Alexander F.; Colas, Francois; McWilliams, James C.; Sangrà, Pablo

    One-way offline nesting of a primitive-equation regional ocean numerical model (ROMS) is investigated, with special attention to the boundary forcing file creation process. The model has a modified open boundary condition which minimises false wave reflections, and is optimised to utilise high-frequency boundary updates. The model configuration features a previously computed solution which supplies boundary forcing data to an interior domain with an increased grid resolution. At the open boundaries of the interior grid (the child) the topography is matched to that of the outer grid (the parent), over a narrow transition region. A correction is applied to the normal baroclinic and barotropic velocities at the open boundaries of the child to ensure volume conservation. It is shown that these steps, together with a carefully constructed interpolation of the parent data, lead to a high-quality child solution, with minimal artifacts such as persistent rim currents and wave reflections at the boundaries. Sensitivity experiments provide information about the robustness of the model open boundary condition to perturbations in the surface wind stress forcing field, to the perturbation of the volume conservation enforcement in the boundary forcing, and to perturbation of the vertical density structure in the boundary forcing. This knowledge is important when extending the nesting technique to include external data from alien sources, such as ocean models with physics and/or numerics different from ROMS, or from observed climatologies of temperature, salinity and sea level.

  4. Simulating Regional Climate Change in New Hampshire

    NASA Astrophysics Data System (ADS)

    Komurcu, M.; Acosta, R. P.; Huber, M.

    2014-12-01

    Dynamical downscaling of Global Climate Model (GCM) simulated future projections using smaller scale, higher resolution models is widely used to assess the regional impacts of climate change on weather, ecosystems and economy. In this study, the Weather Research and Forecasting (WRF) model is used to dynamically downscale Community Earth System Model (CESM) future projections using Representative Concentration Pathways (RCP) 4.5 and 8.5 to simulate the possible effects of climate change in New Hampshire (NH). The first step to ensure that the downscaled model output is representative of the NH region is to find the correct WRF model set up for the region. This task is accomplished using CESM simulations of the historical period as forcing for WRF simulations and performing multiple sensitivity tests with different options for WRF physics parameterizations such as boundary layer, cloud microphysics and convection parameterizations. Simulated precipitation, temperature and other variables are compared with observations to obtain the more suitable model setup for NH. WRF simulations are performed on nested grids with 36, 12 and 4 km grid spacing, and the smallest grid sized nest is focused over NH. Furthermore, to prevent the drift of regional model from global model simulated climatology, WRF is reinitialized from GCM output every five days. Previous studies have shown that future regional climate model predictions of precipitation and snow water equivalent depend on the re-initialization interval of WRF from GCM forcing specifically over the western U.S, where topography is high. This problem is mainly because re-initialization erases the simulated memory for certain variables such as soil moisture. To evaluate whether re-initialization time-scale is also important in the Eastern US, in this study, the effects of 5-daily versus monthly re-initialization of WRF using CESM output on model simulated precipitation are also investigated. The obtained WRF model setup is

  5. Challenging some tenets of Regional Climate Modelling

    NASA Astrophysics Data System (ADS)

    Laprise, R.; de Elía, R.; Caya, D.; Biner, S.; Lucas-Picher, P.; Diaconescu, E.; Leduc, M.; Alexandru, A.; Separovic, L.

    2008-08-01

    Nested Regional Climate Models (RCMs) are increasingly used for climate-change projections in order to achieve spatial resolutions that would be computationally prohibitive with coupled global climate models. RCMs are commonly thought to behave as a sort of sophisticated magnifying glass to perform dynamical downscaling, which is to add fine-scale details upon the large-scale flow provided as time-dependent lateral boundary condition. Regional climate modelling is a relatively new approach, initiated less than twenty years ago. The interest for the approach has grown rapidly as it offers a computationally affordable means of entering into appealing applications of timely societal relevance, such as high-resolution climate-change projections and seasonal prediction. There exists however a need for basic research aiming at establishing firmly the strengths and limitations of the technique. This paper synthesises the results of a stream of investigations on the merits and weaknesses of the nested approach, initiated almost a decade ago by some members of our team. This short paper revisits some commonly accepted notions amongst practitioners of Regional Climate Modelling, in the form of four tenets that will be challenged: (1) RCMs are capable of generating small-scale features absent in the driving fields supplied as lateral boundary conditions; (2) The generated small scales have the appropriate amplitudes and statistics; (3) The generated small scales accurately represent those that would be present in the driving data if it were not limited by resolution; (4) In performing dynamical downscaling, RCMs operate as a kind of sophisticated magnifying glass, in the sense that the small scales that are generated are uniquely defined for a given set of lateral boundary conditions (LBC). From the partial failure of the last two tenets emerges the notion of internal variability, which has often been thought to be negligible in one-way nested models due to the control

  6. The North American Regional Climate Change Assessment Program: Overview of Climate Change Results

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.; Narccap Team

    2010-12-01

    NARCCAP is an international program that is serving the climate scenario needs of the United States, Canada, and northern Mexico. We are systematically investigating the uncertainties in regional scale projections of future climate and producing high resolution climate change scenarios using multiple regional climate models(RCMs)and multiple global model responses to a future emission scenario, by nesting the RCMs within atmosphere ocean general circulation models (AOGCMs) forced with the A2 SRES scenario, over a domain covering the conterminous US, northern Mexico, and most of Canada. The project also includes a validation component through nesting the participating RCMs within NCEP reanalyses. The basic spatial resolution of the RCM simulations is 50 km. This program includes RCMs that participated in the European PRUDENCE program (HadRM3 and RegCM), the Canadian regional climate model (CRCM) as well as the NCEP regional spectral model (RSM), the NCAR/PSU MM5, and NCAR WRF. Candidate AOGCMs include the Hadley Centre HadCM3, NCAR CCSM, the Canadian CGCM3 and the GFDL model. The resulting climate model runs form the basis for multiple high resolution climate scenarios that can be used in climate change impacts assessments over North America. High resolution (50 km) global time-slice experiments based on the GFDL atmospheric model and the NCAR atmospheric model (CAM3) have also been produced and will be compared with the simulations of the regional models. Additional key science issues are being investigated such as the importance of compatible physics in the nested and nesting models. Measures of uncertainty across the multiple runs are being developed by geophysical statisticians. . In this overview talk, results from Phase II of the project, the RCM simulations using boundary conditions from the current and future runs of the 4 AOGCMs, will be presented.

  7. A Regional Climate Change Assessment Program for North America

    SciTech Connect

    Mearns, L. O.; Gutowski, William; Jones, Richard; Leung, Lai-Yung R.; McGinnis, Seth; Nunes, A.; Qian, Yun

    2009-09-08

    There are two main uncertainties in determining future climate: the trajectories of future emissions of greenhouse gases and aerosols, and the response of the global climate system to any given set of future emissions [Meehl et al., 2007]. These uncertainties normally are elucidated via application of global climate models, which provide information at relatively coarse spatial resolutions. Greater interest in, and concern about, the details of climate change at regional scales has provided the motivation for the application of regional climate models, which introduces additional uncertainty [Christensen et al., 2007a]. These uncertainties in fi ne- scale regional climate responses, in contrast to uncertainties of coarser spatial resolution global models in which regional models are nested, now have been documented in numerous contexts [Christensen et al., 2007a] and have been found to extend to uncertainties in climate impacts [Wood et al., 2004; Oleson et al., 2007]. While European research in future climate projections has moved forward systematically to examine combined uncertainties from global and regional models [Christensen et al., 2007b], North American climate programs have lagged behind. To fi ll this research gap, scientists developed the North American Regional Climate Change Assessment Program (-NARCCAP). The fundamental scientifi c motivation of this international program is to explore separate and combined uncertainties in regional projections of future climate change resulting from the use of multiple atmosphere- ocean general circulation models (AOGCMs) to drive multiple regional climate models (RCMs). An equally important, and related, motivation for this program is to provide the climate impacts and adaptation community with high- resolution regional climate change scenarios that can be used for studies of the societal impacts of climate change and possible adaptation strategies.

  8. The North American Regional Climate Change Assessment Program: Overview of Phase I Results

    SciTech Connect

    Mearns, L. O.; Arritt, R.; Biner, S.; Bukovsky, Melissa; McGinnis, Seth; Sain, Steve; Caya, Daniel; Correia Jr., James; Flory, Dave; Gutowski, William; Takle, Gene; Jones, Richard; Leung, Lai-Yung R.; Moufouma-Okia, Wilfran; McDaniel, Larry; Nunes, A.; Qian, Yun; Roads, J.; Sloan, Lisa; Snyder, Mark A.

    2012-09-20

    The North American Regional Climate Change Assessment Program is an international effort designed to systematically investigate the uncertainties in regional scale projections of future climate and produce high resolution climate change scenarios using multiple regional climate models (RCMs) nested within atmosphere ocean general circulation models (AOGCMs) forced with the A2 SRES scenario, with a common domain covering the conterminous US, northern Mexico, and most of Canada. The program also includes an evaluation component (Phase I) wherein the participating RCMs are nested within 25 years of NCEP/DOE global reanalysis II. The grid spacing of the RCM simulations is 50 km.

  9. Historical versus contemporary climate forcing on the annual nesting variability of loggerhead sea turtles in the Northwest Atlantic Ocean.

    PubMed

    Arendt, Michael D; Schwenter, Jeffrey A; Witherington, Blair E; Meylan, Anne B; Saba, Vincent S

    2013-01-01

    A recent analysis suggested that historical climate forcing on the oceanic habitat of neonate sea turtles explained two-thirds of interannual variability in contemporary loggerhead (Caretta caretta) sea turtle nest counts in Florida, where nearly 90% of all nesting by this species in the Northwest Atlantic Ocean occurs. Here, we show that associations between annual nest counts and climate conditions decades prior to nest counts and those conditions one year prior to nest counts were not significantly different. Examination of annual nest count and climate data revealed that statistical artifacts influenced the reported 31-year lag association with nest counts. The projected importance of age 31 neophytes to annual nest counts between 2020 and 2043 was modeled using observed nest counts between 1989 and 2012. Assuming consistent survival rates among cohorts for a 5% population growth trajectory and that one third of the mature female population nests annually, the 41% decline in annual nest counts observed during 1998-2007 was not projected for 2029-2038. This finding suggests that annual nest count trends are more influenced by remigrants than neophytes. Projections under the 5% population growth scenario also suggest that the Peninsular Recovery Unit could attain the demographic recovery criteria of 106,100 annual nests by 2027 if nest counts in 2019 are at least comparable to 2012. Because the first year of life represents only 4% of the time elapsed through age 31, cumulative survival at sea across decades explains most cohort variability, and thus, remigrant population size. Pursuant to the U.S. Endangered Species Act, staggered implementation of protection measures for all loggerhead life stages has taken place since the 1970s. We suggest that the 1998-2007 nesting decline represented a lagged perturbation response to historical anthropogenic impacts, and that subsequent nest count increases since 2008 reflect a potential recovery response. PMID:24339901

  10. Historical versus Contemporary Climate Forcing on the Annual Nesting Variability of Loggerhead Sea Turtles in the Northwest Atlantic Ocean

    PubMed Central

    Arendt, Michael D.; Schwenter, Jeffrey A.; Witherington, Blair E.; Meylan, Anne B.; Saba, Vincent S.

    2013-01-01

    A recent analysis suggested that historical climate forcing on the oceanic habitat of neonate sea turtles explained two-thirds of interannual variability in contemporary loggerhead (Caretta caretta) sea turtle nest counts in Florida, where nearly 90% of all nesting by this species in the Northwest Atlantic Ocean occurs. Here, we show that associations between annual nest counts and climate conditions decades prior to nest counts and those conditions one year prior to nest counts were not significantly different. Examination of annual nest count and climate data revealed that statistical artifacts influenced the reported 31-year lag association with nest counts. The projected importance of age 31 neophytes to annual nest counts between 2020 and 2043 was modeled using observed nest counts between 1989 and 2012. Assuming consistent survival rates among cohorts for a 5% population growth trajectory and that one third of the mature female population nests annually, the 41% decline in annual nest counts observed during 1998–2007 was not projected for 2029–2038. This finding suggests that annual nest count trends are more influenced by remigrants than neophytes. Projections under the 5% population growth scenario also suggest that the Peninsular Recovery Unit could attain the demographic recovery criteria of 106,100 annual nests by 2027 if nest counts in 2019 are at least comparable to 2012. Because the first year of life represents only 4% of the time elapsed through age 31, cumulative survival at sea across decades explains most cohort variability, and thus, remigrant population size. Pursuant to the U.S. Endangered Species Act, staggered implementation of protection measures for all loggerhead life stages has taken place since the 1970s. We suggest that the 1998–2007 nesting decline represented a lagged perturbation response to historical anthropogenic impacts, and that subsequent nest count increases since 2008 reflect a potential recovery response. PMID

  11. Great Lakes' regional climate regimes

    NASA Astrophysics Data System (ADS)

    Kravtsov, Sergey; Sugiyama, Noriyuki; Roebber, Paul

    2016-04-01

    We simulate the seasonal cycle of the Great Lakes' water temperature and lake ice using an idealized coupled lake-atmosphere-ice model. Under identical seasonally varying boundary conditions, this model exhibits more than one seasonally varying equilibrium solutions, which we associate with distinct regional climate regimes. Colder/warmer regimes are characterized by abundant/scarce amounts of wintertime ice and cooler/warmer summer temperatures, respectively. These regimes are also evident in the observations of the Great Lakes' climate variability over recent few decades, and are found to be most pronounced for Lake Superior, the deepest of the Great Lakes, consistent with model predictions. Multiple climate regimes of the Great Lakes also play a crucial role in the accelerated warming of the lakes relative to the surrounding land regions in response to larger-scale global warming. We discuss the physical origin and characteristics of multiple climate regimes over the lakes, as well as their implications for a longer-term regional climate variability.

  12. Climate change velocity underestimates climate change exposure in mountainous regions.

    PubMed

    Dobrowski, Solomon Z; Parks, Sean A

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  13. Climate change velocity underestimates climate change exposure in mountainous regions

    NASA Astrophysics Data System (ADS)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  14. Climate change velocity underestimates climate change exposure in mountainous regions

    PubMed Central

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  15. Climate change velocity underestimates climate change exposure in mountainous regions.

    PubMed

    Dobrowski, Solomon Z; Parks, Sean A

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  16. Regional Climate Change Projections over Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Cassain Sales, Domingo; Araújo Costa, Alexandre; Mariano da Silva, Emerson; Cavalcante, Arnóbio M. B.; das Chagas Vasconcelos Júnior, Francisco; Martins de Araújo Junior, Luiz; Oliveira Guimarães, Sullyandro

    2013-04-01

    Climate change and climate change impact studies often require a spatial resolution beyond the horizontal grid spacing of the data generated by Global Climate Models (GCMs). Dynamical Downscaling is one of techniques that allow regionalization of information from such models, in which the GCM data drive a Regional Climate Model (RCM) that in turn, at least theoretically, presents the climatological fields in more detail and can add value to climatic analysis. In this context, CORDEX is a coordinated experiment that standardizes dynamical downscaling simulations over continental regions, to provide a contribution from the regional climate modeling community to the IPCC/AR5 and beyond. Because computer resources are limited, a modeling group involved in CORDEX typically chooses one or few of the suggested domains, and use one or a few CMIP5 GCM data to drive its regional model. At the State University of Ceará (UECE), in Brazil, we used RAMS6.0 (Regional Atmospheric Modeling System Version 6.0), driven by HadGEM2-ES (Hadley Centre Global Enviroment Model Version 2 - Earth System) data, over a extended CORDEX Central America domain (longitude: 124.5W to 24.5W, latitude: 33.5N to 17.5S). This work presents the evaluation of climatological features of precipitation and temperature over Northeast Brazil region (longitude: 47W to 34.5W, latitude: 2.5S to 17.5S) for 20 years of the historical period (1985-2005) evaluating short-term (2015-2035), mid-term (2045-2065) and long-term (2079-2099) changes, under the RCP4.5 e RCP8.5 scenarios. For the historical period, the results were compared against several observed data sets, in order to evaluate the performance of RAMS6.0 nested to HadGEM2-ES. The correlation between the simulated and observed annual cycle of precipitation is high (above 0.93). RAMS6.0 shows a wet bias of 0.706 mm/day that is larger than HadGEM2-ES bias (0.197 mm/day), however the regional model corrects the month of maximum precipitation (the global model

  17. Effects of climate variation on timing of nesting, reproductive success, and offspring sex ratios of red-winged blackbirds.

    PubMed

    Weatherhead, Patrick J

    2005-06-01

    Predicting ecological consequences of climate change will be improved by understanding how species are affected by contemporary climate variation, particularly if analyses involve more than single ecological variables and focus on large-scale climate phenomena. I used 18 years of data from red-winged blackbirds (Agelaius phoeniceus) studied over a 25-year period in eastern Ontario to explore chronological and climate-related patterns of reproduction. Although blackbirds started nesting earlier in years with warmer springs, associated with low winter values of the North Atlantic Oscillation Index (NAOI), there was no advance in laying dates over the study. Nesting ended progressively later and the breeding season lasted longer over the study, however, associated with higher spring values of NAOI. As the length of the nesting season increased, offspring sex ratios became more female biased, apparently as a result of females adjusting the sex of the eggs they laid, rather than from sex-biased nestling mortality. Clutch size did not vary systematically over the study or with climate. Opposing trends of declining nest success and increasing productivity of successful nests over the study resulted in no chronological change in productivity per female. Higher productivity of successful nests was associated with higher winter NAOI values, possibly because synchrony between nesting and food availability was higher in years with high NAOI values. Other than the association between the start of nesting and spring temperatures, local weather (e.g., temperature, rainfall) patterns that linked NAOI with reproduction were not identified, suggesting that weather patterns may be complex. Because climate affected most aspects of red-winged blackbird reproduction examined, focusing on associations between climate and single variables (e.g., first-egg dates) will have limited value in predicting how future climates will affect populations.

  18. The North American Regional Climate Change Assessment Program (NARCCAP): Overview of Climate Change Results

    NASA Astrophysics Data System (ADS)

    Bukovsky, M. S.; Mearns, L. O.

    2012-04-01

    NARCCAP is an international program that is serving the climate scenario needs of the United States, Canada, and northern Mexico. We are systematically investigating the uncertainties in regional scale projections of future climate and producing high resolution climate change scenarios using six different regional climate models (RCMs ) and multiple global model responses to a future emission scenario, by nesting the RCMs within four atmosphere ocean general circulation models (AOGCMs) forced with the A2 SRES scenario, over a domain covering the conterminous US, northern Mexico, and most of Canada. The project also includes a validation component through nesting the participating RCMs within NCEP reanalyses. The spatial resolution of the RCM simulations is 50 km. This program includes RCMs that participated in the European PRUDENCE program (HadRM3 and RegCM), the Canadian regional climate model (CRCM) as well as the NCEP regional spectral model (RSM), the NCAR/PSU MM5, and NCAR WRF. AOGCMs include the Hadley Centre HadCM3, NCAR CCSM, the Canadian CGCM3 and the GFDL model. Insufficient funding was available to simulate all 24 combinations of RCMs and AOGCMs. Thus, we used a balanced fractional factorial statistical design to reduce the number of combinations of RCM-AOGCM pairs to twelve. High resolution (50 km) global time-slice experiments based on the GFDL atmospheric model and the NCAR atmospheric model (CAM3) have also been produced and will be compared with the simulations of the regional models. The geographic domain was regionalized into 29 subregions based on common climatological features, and summary climate change statistics for each of the subregions have been produced. In this overview talk, results from the RCM climate change simulations for select subregions of North America will be presented.

  19. Duck nest success on Conservation Reserve Program land in the prairie pothole region

    USGS Publications Warehouse

    Kantrud, H.A.

    1993-01-01

    Habitat fragmentation from intensified farming has concentrated nesting waterfowl and their predators in the remaining, relatively small untitled habitats of the prairie pothole region in the United States. The areas of land that have been enrolled in the Conservation Reserve Program (CRP) in this area could help disperse these concentrations and reduce losses to predators. The presence of CRP land may influence decisions about intensive management of public lands devoted to waterfowl production. During 1989–1991, waterfowl nest success on CRP fields in areas of high wetland density in the prairie pothole region was 23.1 percent compared to 8.2 percent on similar covers on federal waterfowl production areas. CRP fields thus provided more secure nesting cover for upland-nesting ducks than waterfowl production areas. However, nest success and use of the fields by ducks varied greatly. CRP fields are abundant and of a wide variety of age classes and sizes. These characteristics make CRP fields well suited as study sites for determining the effects of cover area, distance to water, and cover age on nest success of ducks.

  20. Duck nest success on Conservation Reserve Program land in the prairie pothole region

    USGS Publications Warehouse

    Kantrud, H.A.

    1993-01-01

    Habitat fragmentation from intensified farming has concentrated nesting waterfowl and their predators in the remaining, relatively small untitled habitats of the prairie pothole region in the United States. The areas of land that have been enrolled in the Conservation Reserve Program (CRP) in this area could help disperse these concentrations and reduce losses to predators. The presence of CRP land may influence decisions about intensive management of public lands devoted to waterfowl production. During 1989-1991, waterfowl nest success on CRP fields in areas of high wetland density in the prairie pothole region was 23.1 percent compared to 8.2 percent on similar covers on federal waterfowl production areas. CRP fields thus provided more secure nesting cover for upland-nesting ducks than waterfowl production areas. However, nest success and use of the fields by ducks varied greatly. CRP fields are abundant and of a wide variety of age classes and sizes. These characteristics make CRP fields well suited as study sites for determining the effects of cover area, distance to water, and cover age on nest success of ducks.

  1. Factors associated with duck nest success in the prairie pothole region of Canada

    USGS Publications Warehouse

    Greenwood, R.J.; Sargeant, A.B.; Johnson, D.H.; Cowardin, L.; Shaffer, T.L.

    1995-01-01

    Populations of some dabbling ducks have declined sharply in recent decades and information is needed to understand reasons for this. During 1982-85, we studied duck nesting for 1-4 years in 17 1.6 by 16.0-km, high-density duck areas in the Prairie Pothole Region (PPR) of Canada, 9 in parkland and 8 in prairie. We estimated nest-initiation dates, habitat preferences, nest success, and nest fates for mallards (Anas platyrhynchos), gadwalls (A. strepera), blue-winged teals (A. discors), northern shovelers (A. clypeata), and northern pintails (A. acuta). We also examined the relation of mallard production to geographic and temporal variation in wetlands, breeding populations, nesting effort, and hatch rate.Average periods of nest initiation were similar for mallards and northern pintails, and nearly twice as long as those of gadwalls, blue-winged teals, and northern shovelers. Median date of nest initiation was related to presence of wet wetlands (contained visible standing water), spring precipitation, and May temperature. Length of initiation period was related to presence of wet wetlands and precipitation in May, June temperature, and nest success; it was negatively related overall to drought that prevailed over much of Prairie Canada during the study, especially in 1984.Mallards, gadwalls, and northern pintails nested most often in brush in native grassland, blue-winged teals in road rights-of-way, and northern shovelers in hayfields and small (<2 ha) untilled tracts of upland habitat (hereafter called Odd area). Among 8 habitat classes that composed all suitable nesting habitat of each study area, nest success estimates averaged 25% in Woodland, 19% in Brush, 18% in Hayland, 16% in Wetland, 15% in Grass, 11% in Odd area, 8% in Right-of-way, and 2% in Cropland. We detected no significant difference in nest success among species: mallard (11%), gadwall (14%), blue-winged teal (15%), northern shoveler (12%), and northern pintail (7%). Annual nest success (pooled by

  2. Forecasting range expansion into ecological traps: climate-mediated shifts in sea turtle nesting beaches and human development.

    PubMed

    Pike, David A

    2013-10-01

    Some species are adapting to changing environments by expanding their geographic ranges. Understanding whether range shifts will be accompanied by increased exposure to other threats is crucial to predicting when and where new populations could successfully establish. If species overlap to a greater extent with human development under climate change, this could form ecological traps which are attractive to dispersing individuals, but the use of which substantially reduces fitness. Until recently, the core nesting range for the Critically Endangered Kemp's ridley sea turtle (Lepidochelys kempii) was ca. 1000 km of sparsely populated coastline in Tamaulipas, Mexico. Over the past twenty-five years, this species has expanded its range into populated areas of coastal Florida (>1500 km outside the historical range), where nesting now occurs annually. Suitable Kemp's ridley nesting habitat has persisted for at least 140 000 years in the western Gulf of Mexico, and climate change models predict further nesting range expansion into the eastern Gulf of Mexico and northern Atlantic Ocean. Range expansion is 6-12% more likely to occur along uninhabited stretches of coastline than are current nesting beaches, suggesting that novel nesting areas will not be associated with high levels of anthropogenic disturbance. Although the high breeding-site fidelity of some migratory species could limit adaptation to climate change, rapid population recovery following effective conservation measures may enhance opportunities for range expansion. Anticipating the interactive effects of past or contemporary conservation measures, climate change, and future human activities will help focus long-term conservation strategies.

  3. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard.

    PubMed

    Dayananda, Buddhi; Gray, Sarah; Pike, David; Webb, Jonathan K

    2016-07-01

    Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current 'cold' nests (mean = 23.2 °C, range 10-33 °C) and future 'hot' nests (27.0 °C, 14-37 °C). 'Hot' incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot-incubated hatchlings had higher annual mortality (99%, 97%) than cold-incubated (11%, 58%) or wild-born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78- 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52- 1.0) with mean times to extinction of 18-44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest-site choices. Over the period 1992-2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest-site selection. The impacts of climate change may

  4. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard.

    PubMed

    Dayananda, Buddhi; Gray, Sarah; Pike, David; Webb, Jonathan K

    2016-07-01

    Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current 'cold' nests (mean = 23.2 °C, range 10-33 °C) and future 'hot' nests (27.0 °C, 14-37 °C). 'Hot' incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot-incubated hatchlings had higher annual mortality (99%, 97%) than cold-incubated (11%, 58%) or wild-born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78- 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52- 1.0) with mean times to extinction of 18-44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest-site choices. Over the period 1992-2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest-site selection. The impacts of climate change may

  5. Landscape and regional context differentially affect nest parasitism and nest predation for Wood Thrush in central Virginia, USA (Presentation)

    EPA Science Inventory

    Many empirical studies have shown that forest-breeding songbirds suffer greater rates of nest predation and nest parasitism in smaller forest patches and in fragmented landscapes. To compare the performance of different metrics of spatial habitat configuration resulting from defo...

  6. Climate Impacts on Sea Turtle Breeding Phenology in Greece and Associated Foraging Habitats in the Wider Mediterranean Region.

    PubMed

    Patel, Samir H; Morreale, Stephen J; Saba, Vincent S; Panagopoulou, Aliki; Margaritoulis, Dimitris; Spotila, James R

    2016-01-01

    Sea turtles are vulnerable to climate change impacts in both their terrestrial (nesting beach) and oceanic habitats. From 1982 to 2012, air and sea surface temperatures at major high use foraging and nesting regions (n = 5) of loggerhead turtles (Caretta caretta) nesting in Greece have steadily increased. Here, we update the established relationships between sea surface temperature and nesting data from Zakynthos (latitude: 37.7°N), a major nesting beach, while also expanding these analyses to include precipitation and air temperature and additional nesting data from two other key beaches in Greece: Kyparissia Bay (latitude: 37.3°N) and Rethymno, Crete (latitude: 35.4°N). We confirmed that nesting phenology at Zakynthos has continued to be impacted by breeding season temperature; however, temperature has no consistent relationship with nest numbers, which are declining on Zakynthos and Crete but increasing at Kyparissia. Then using statistically downscaled outputs of 14 climate models assessed by the Intergovernmental Panel on Climate Change (IPCC), we projected future shifts in nesting for these populations. Based on the climate models, we projected that temperature at the key foraging and breeding sites (Adriatic Sea, Aegean Sea, Crete, Gulf of Gabès and Zakynthos/Kyparissia Bay; overall latitudinal range: 33.0°-45.8°N) for loggerhead turtles nesting in Greece will rise by 3-5°C by 2100. Our calculations indicate that the projected rise in air and ocean temperature at Zakynthos could cause the nesting season in this major rookery to shift to an earlier date by as much as 50-74 days by 2100. Although an earlier onset of the nesting season may provide minor relief for nest success as temperatures rise, the overall climatic changes to the various important habitats will most likely have an overall negative impact on this population.

  7. Climate Impacts on Sea Turtle Breeding Phenology in Greece and Associated Foraging Habitats in the Wider Mediterranean Region.

    PubMed

    Patel, Samir H; Morreale, Stephen J; Saba, Vincent S; Panagopoulou, Aliki; Margaritoulis, Dimitris; Spotila, James R

    2016-01-01

    Sea turtles are vulnerable to climate change impacts in both their terrestrial (nesting beach) and oceanic habitats. From 1982 to 2012, air and sea surface temperatures at major high use foraging and nesting regions (n = 5) of loggerhead turtles (Caretta caretta) nesting in Greece have steadily increased. Here, we update the established relationships between sea surface temperature and nesting data from Zakynthos (latitude: 37.7°N), a major nesting beach, while also expanding these analyses to include precipitation and air temperature and additional nesting data from two other key beaches in Greece: Kyparissia Bay (latitude: 37.3°N) and Rethymno, Crete (latitude: 35.4°N). We confirmed that nesting phenology at Zakynthos has continued to be impacted by breeding season temperature; however, temperature has no consistent relationship with nest numbers, which are declining on Zakynthos and Crete but increasing at Kyparissia. Then using statistically downscaled outputs of 14 climate models assessed by the Intergovernmental Panel on Climate Change (IPCC), we projected future shifts in nesting for these populations. Based on the climate models, we projected that temperature at the key foraging and breeding sites (Adriatic Sea, Aegean Sea, Crete, Gulf of Gabès and Zakynthos/Kyparissia Bay; overall latitudinal range: 33.0°-45.8°N) for loggerhead turtles nesting in Greece will rise by 3-5°C by 2100. Our calculations indicate that the projected rise in air and ocean temperature at Zakynthos could cause the nesting season in this major rookery to shift to an earlier date by as much as 50-74 days by 2100. Although an earlier onset of the nesting season may provide minor relief for nest success as temperatures rise, the overall climatic changes to the various important habitats will most likely have an overall negative impact on this population. PMID:27332550

  8. Climate Impacts on Sea Turtle Breeding Phenology in Greece and Associated Foraging Habitats in the Wider Mediterranean Region

    PubMed Central

    Morreale, Stephen J.; Saba, Vincent S.; Panagopoulou, Aliki; Margaritoulis, Dimitris; Spotila, James R.

    2016-01-01

    Sea turtles are vulnerable to climate change impacts in both their terrestrial (nesting beach) and oceanic habitats. From 1982 to 2012, air and sea surface temperatures at major high use foraging and nesting regions (n = 5) of loggerhead turtles (Caretta caretta) nesting in Greece have steadily increased. Here, we update the established relationships between sea surface temperature and nesting data from Zakynthos (latitude: 37.7°N), a major nesting beach, while also expanding these analyses to include precipitation and air temperature and additional nesting data from two other key beaches in Greece: Kyparissia Bay (latitude: 37.3°N) and Rethymno, Crete (latitude: 35.4°N). We confirmed that nesting phenology at Zakynthos has continued to be impacted by breeding season temperature; however, temperature has no consistent relationship with nest numbers, which are declining on Zakynthos and Crete but increasing at Kyparissia. Then using statistically downscaled outputs of 14 climate models assessed by the Intergovernmental Panel on Climate Change (IPCC), we projected future shifts in nesting for these populations. Based on the climate models, we projected that temperature at the key foraging and breeding sites (Adriatic Sea, Aegean Sea, Crete, Gulf of Gabès and Zakynthos/Kyparissia Bay; overall latitudinal range: 33.0°—45.8°N) for loggerhead turtles nesting in Greece will rise by 3–5°C by 2100. Our calculations indicate that the projected rise in air and ocean temperature at Zakynthos could cause the nesting season in this major rookery to shift to an earlier date by as much as 50–74 days by 2100. Although an earlier onset of the nesting season may provide minor relief for nest success as temperatures rise, the overall climatic changes to the various important habitats will most likely have an overall negative impact on this population. PMID:27332550

  9. Climate Simulations based on a different-grid nested and coupled model

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ji, Jinjun; Li, Yinpeng

    2002-05-01

    An atmosphere-vegetation interaction model (A VIM) has been coupled with a nine-layer General Cir-culation Model (GCM) of Institute of Atmospheic Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (IAP/LASG), which is rhomboidally truncated at zonal wave number 15, to simulate global climatic mean states. A VIM is a model having inter-feedback between land surface processes and eco-physiological processes on land. As the first step to couple land with atmosphere completely, the physiological processes are fixed and only the physical part (generally named the SVAT (soil-vegetation-atmosphere-transfer scheme) model) of AVIM is nested into IAP/LASG L9R15 GCM. The ocean part of GCM is prescribed and its monthly sea surface temperature (SST) is the climatic mean value. With respect to the low resolution of GCM, i.e., each grid cell having lon-gitude 7.5° and latitude 4.5°, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere. The coupling model has been integrated for 15 years and its last ten-year mean of outputs was chosen for analysis. Compared with observed data and NCEP reanalysis, the coupled model simulates the main characteris-tics of global atmospheric circulation and the fields of temperature and moisture. In particular, the simu-lated precipitation and surface air temperature have sound results. The work creates a solid base on coupling climate models with the biosphere.

  10. Year-round effects of climate on demographic parameters of an arctic-nesting goose species.

    PubMed

    van Oudenhove, Louise; Gauthier, Gilles; Lebreton, Jean-Dominique

    2014-11-01

    Understanding how climate change will affect animal population dynamics remains a major challenge, especially in long-distant migrants exposed to different climatic regimes throughout their annual cycle. We evaluated the effect of temperature throughout the annual cycle on demographic parameters (age-specific survival and recruitment, breeding propensity and fecundity) of the greater snow goose (Chen caerulescens atlantica L.), an arctic-nesting species. As this is a hunted species, we used the theory of exploited populations to estimate hunting mortality separately from natural mortality in order to evaluate climatic effects only on the latter form of mortality. Our analysis was based on a 22-year marking study (n = 27,150 females) and included live recaptures at the breeding colony and dead recoveries from hunters. We tested the effect of climatic covariates by applying a procedure that accounts for unexplained environmental variation in the demographic parameter to a multistate capture-mark-recapture recruitment model. Breeding propensity, clutch size and hatching probability all increased with high temperatures on the breeding grounds. First-year survival to natural causes of mortality increased when temperature was high at the end of the summer, whereas adult survival was not affected by temperature. On the contrary, accession to reproduction decreased with warmer climatic conditions during the non-breeding season. Survival was strongly negatively related to hunting mortality in adults, as expected, but not in first-year birds, which suggests the possibility of compensation between natural and hunting mortality in the latter group. We show that events occurring both at and away from the breeding ground can affect the demography of migratory birds, either directly or through carryover effects, and sometimes in opposite ways. This highlights the need to account for the whole life cycle of an animal when attempting to project the response of populations to future

  11. Year-round effects of climate on demographic parameters of an arctic-nesting goose species.

    PubMed

    van Oudenhove, Louise; Gauthier, Gilles; Lebreton, Jean-Dominique

    2014-11-01

    Understanding how climate change will affect animal population dynamics remains a major challenge, especially in long-distant migrants exposed to different climatic regimes throughout their annual cycle. We evaluated the effect of temperature throughout the annual cycle on demographic parameters (age-specific survival and recruitment, breeding propensity and fecundity) of the greater snow goose (Chen caerulescens atlantica L.), an arctic-nesting species. As this is a hunted species, we used the theory of exploited populations to estimate hunting mortality separately from natural mortality in order to evaluate climatic effects only on the latter form of mortality. Our analysis was based on a 22-year marking study (n = 27,150 females) and included live recaptures at the breeding colony and dead recoveries from hunters. We tested the effect of climatic covariates by applying a procedure that accounts for unexplained environmental variation in the demographic parameter to a multistate capture-mark-recapture recruitment model. Breeding propensity, clutch size and hatching probability all increased with high temperatures on the breeding grounds. First-year survival to natural causes of mortality increased when temperature was high at the end of the summer, whereas adult survival was not affected by temperature. On the contrary, accession to reproduction decreased with warmer climatic conditions during the non-breeding season. Survival was strongly negatively related to hunting mortality in adults, as expected, but not in first-year birds, which suggests the possibility of compensation between natural and hunting mortality in the latter group. We show that events occurring both at and away from the breeding ground can affect the demography of migratory birds, either directly or through carryover effects, and sometimes in opposite ways. This highlights the need to account for the whole life cycle of an animal when attempting to project the response of populations to future

  12. Regional drivers of clutch loss reveal important trade-offs for beach-nesting birds

    PubMed Central

    Schlacher, Thomas A.; Weston, Michael A.; Huijbers, Chantal M.; Anderson, Chris; Gilby, Ben L.; Olds, Andrew D.; Connolly, Rod M.; Schoeman, David S.

    2016-01-01

    Coastal birds are critical ecosystem constituents on sandy shores, yet are threatened by depressed reproductive success resulting from direct and indirect anthropogenic and natural pressures. Few studies examine clutch fate across the wide range of environments experienced by birds; instead, most focus at the small site scale. We examine survival of model shorebird clutches as an index of true clutch survival at a regional scale (∼200 km), encompassing a variety of geomorphologies, predator communities, and human use regimes in southeast Queensland, Australia. Of the 132 model nests deployed and monitored with cameras, 45 (34%) survived the experimental exposure period. Thirty-five (27%) were lost to flooding, 32 (24%) were depredated, nine (7%) buried by sand, seven (5%) destroyed by people, three (2%) failed by unknown causes, and one (1%) was destroyed by a dog. Clutch fate differed substantially among regions, particularly with respect to losses from flooding and predation. ‘Topographic’ exposure was the main driver of mortality of nests placed close to the drift line near the base of dunes, which were lost to waves (particularly during storms) and to a lesser extent depredation. Predators determined the fate of clutches not lost to waves, with the depredation probability largely influenced by region. Depredation probability declined as nests were backed by higher dunes and were placed closer to vegetation. This study emphasizes the scale at which clutch fate and survival varies within a regional context, the prominence of corvids as egg predators, the significant role of flooding as a source of nest loss, and the multiple trade-offs faced by beach-nesting birds and those that manage them. PMID:27672510

  13. Contaminant exposure and reproductive success of Ospreys (Pandion haliaetus) nesting in Chesapeake Bay regions of concern

    USGS Publications Warehouse

    Rattner, B.A.; McGowan, P.C.; Golden, N.H.; Hatfield, J.S.; Toschik, P.C.; Lukei, R.F.; Hale, R.C.; Schmitz-Afonso, I.; Rice, C.P.

    2004-01-01

    The Chesapeake Bay osprey population has more than doubled in size since restrictions were placed on the production and use of DDT and other toxic organochlorine contaminants in the 1970s. Ospreys are now nesting in the most highly polluted portions of the Bay. In 2000 and 2001, contaminant exposure and reproduction were monitored in ospreys nesting in regions of concern, including Baltimore Harbor and the Patapsco River, the Anacostia and middle Potomac rivers, and the Elizabeth River, and a presumed reference site consisting of the South, West, and Rhode rivers. A 'sample egg' from each study nest was collected for contaminant analysis, and the fate of eggs remaining in each nest (n = 14-16/site) was monitored at 7- to 10-day intervals from egg incubation through fledging of young. Ospreys fledged young in regions of concern (observed success: 0.88 -1.53 fledglings/active nest), although productivity was marginal for sustaining local populations in Baltimore Harbor and the Patapsco River and in the Anacostia and middle Potomac rivers. Concentrations of p,p'DDE and many other organochlorine pesticides or metabolites, total PCBs, some arylhydrocarbon receptor-active PCB congeners and polybrominated diphenyl ether congeners, and perfluorooctanesulfonate were often greater in sample eggs from regions of concern compared to the reference site. Nonetheless, logistic regression analyses did not provide evidence linking marginal productivity to p,p' -DDE, total PCBs, or arylhydrocarbon receptor-active PCB congener exposure in regions of concern. In view of the moderate concentrations of total PCBs in eggs from the reference site, concerns related to new and emerging toxicants, and the absence of ecotoxicological data for terrestrial vertebrates in many Bay tributaries, a more thorough spatial evaluation of contaminant exposure in ospreys throughout the Chesapeake may be warranted.

  14. Regional drivers of clutch loss reveal important trade-offs for beach-nesting birds

    PubMed Central

    Schlacher, Thomas A.; Weston, Michael A.; Huijbers, Chantal M.; Anderson, Chris; Gilby, Ben L.; Olds, Andrew D.; Connolly, Rod M.; Schoeman, David S.

    2016-01-01

    Coastal birds are critical ecosystem constituents on sandy shores, yet are threatened by depressed reproductive success resulting from direct and indirect anthropogenic and natural pressures. Few studies examine clutch fate across the wide range of environments experienced by birds; instead, most focus at the small site scale. We examine survival of model shorebird clutches as an index of true clutch survival at a regional scale (∼200 km), encompassing a variety of geomorphologies, predator communities, and human use regimes in southeast Queensland, Australia. Of the 132 model nests deployed and monitored with cameras, 45 (34%) survived the experimental exposure period. Thirty-five (27%) were lost to flooding, 32 (24%) were depredated, nine (7%) buried by sand, seven (5%) destroyed by people, three (2%) failed by unknown causes, and one (1%) was destroyed by a dog. Clutch fate differed substantially among regions, particularly with respect to losses from flooding and predation. ‘Topographic’ exposure was the main driver of mortality of nests placed close to the drift line near the base of dunes, which were lost to waves (particularly during storms) and to a lesser extent depredation. Predators determined the fate of clutches not lost to waves, with the depredation probability largely influenced by region. Depredation probability declined as nests were backed by higher dunes and were placed closer to vegetation. This study emphasizes the scale at which clutch fate and survival varies within a regional context, the prominence of corvids as egg predators, the significant role of flooding as a source of nest loss, and the multiple trade-offs faced by beach-nesting birds and those that manage them.

  15. Regional drivers of clutch loss reveal important trade-offs for beach-nesting birds.

    PubMed

    Maslo, Brooke; Schlacher, Thomas A; Weston, Michael A; Huijbers, Chantal M; Anderson, Chris; Gilby, Ben L; Olds, Andrew D; Connolly, Rod M; Schoeman, David S

    2016-01-01

    Coastal birds are critical ecosystem constituents on sandy shores, yet are threatened by depressed reproductive success resulting from direct and indirect anthropogenic and natural pressures. Few studies examine clutch fate across the wide range of environments experienced by birds; instead, most focus at the small site scale. We examine survival of model shorebird clutches as an index of true clutch survival at a regional scale (∼200 km), encompassing a variety of geomorphologies, predator communities, and human use regimes in southeast Queensland, Australia. Of the 132 model nests deployed and monitored with cameras, 45 (34%) survived the experimental exposure period. Thirty-five (27%) were lost to flooding, 32 (24%) were depredated, nine (7%) buried by sand, seven (5%) destroyed by people, three (2%) failed by unknown causes, and one (1%) was destroyed by a dog. Clutch fate differed substantially among regions, particularly with respect to losses from flooding and predation. 'Topographic' exposure was the main driver of mortality of nests placed close to the drift line near the base of dunes, which were lost to waves (particularly during storms) and to a lesser extent depredation. Predators determined the fate of clutches not lost to waves, with the depredation probability largely influenced by region. Depredation probability declined as nests were backed by higher dunes and were placed closer to vegetation. This study emphasizes the scale at which clutch fate and survival varies within a regional context, the prominence of corvids as egg predators, the significant role of flooding as a source of nest loss, and the multiple trade-offs faced by beach-nesting birds and those that manage them. PMID:27672510

  16. Contaminant exposure and reproductive success of ospreys (Pandion haliaetus) nesting in Chesapeake Bay regions of concern.

    PubMed

    Rattner, B A; McGowan, P C; Golden, N H; Hatfield, J S; Toschik, P C; Lukei, R F; Hale, R C; Schmitz-Afonso, I; Rice, C P

    2004-07-01

    The Chesapeake Bay osprey population has more than doubled in size since restrictions were placed on the production and use of DDT and other toxic organochlorine contaminants in the 1970s. Ospreys are now nesting in the most highly polluted portions of the Bay. In 2000 and 2001, contaminant exposure and reproduction were monitored in ospreys nesting in regions of concern, including Baltimore Harbor and the Patapsco River, the Anacostia and middle Potomac rivers, and the Elizabeth River, and a presumed reference site consisting of the South, West, and Rhode rivers. A "sample egg" from each study nest was collected for contaminant analysis, and the fate of eggs remaining in each nest (n = 14-16/site) was monitored at 7- to 10-day intervals from egg incubation through fledging of young. Ospreys fledged young in regions of concern (observed success: 0.88-1.53 fledglings/active nest), although productivity was marginal for sustaining local populations in Baltimore Harbor and the Patapsco River and in the Anacostia and middle Potomac rivers. Concentrations of p,p'-DDE and many other organochlorine pesticides or metabolites, total PCBs, some arylhydrocarbon receptor-active PCB congeners and polybrominated diphenyl ether congeners, and perfluorooctanesulfonate were often greater in sample eggs from regions of concern compared to the reference site. Nonetheless, logistic regression analyses did not provide evidence linking marginal productivity to p,p'-DDE, total PCBs, or arylhydrocarbon receptor-active PCB congener exposure in regions of concern. In view of the moderate concentrations of total PCBs in eggs from the reference site, concerns related to new and emerging toxicants, and the absence of ecotoxicological data for terrestrial vertebrates in many Bay tributaries, a more thorough spatial evaluation of contaminant exposure in ospreys throughout the Chesapeake may be warranted. PMID:15346786

  17. Effects of climate and exurban development on nest predation and predator presence in the southern Appalachian Mountains (USA).

    PubMed

    Lumpkin, Heather A; Pearson, Scott M; Turner, Monica G

    2012-08-01

    In the eastern United States, land-use and climate change have likely contributed to declines in the abundance of Neotropical migrant birds that occupy forest interiors, but the mechanisms are not well understood. We conducted a nest-predation experiment in southern Appalachian Mountain forests (North Carolina, U.S.A.) during the 2009 and 2010 breeding seasons to determine the effects of exurban development and temperature on predator presence and the average number of days until eggs in an artificial nest were disturbed by predators. We baited artificial nests with quail (Excalfactoria chinensi) eggs and monitored them for 18 days. We used clay eggs, track plates, and motion-triggered cameras to detect and identify nest predators. The average number of days a nest was undisturbed decreased as mean temperature increased and, to a lesser extent, as the density of buildings increased. Nests on the ground were more often depredated than those in trees, likely due to increased predation by opossum (Didelphis virginiana) and other carnivores. Raccoons (Procyon lotor), opossums, corvids (Corvus brachyrhynchos and Cyanocitta cristata), chipmunks (Tamias striatus), black bears (Ursus americanus), and domestic cats (Felis catus) were the most commonly detected predators. Presence of these predators did not vary as a function of mean temperature. Domestic cats and corvids were detected more frequently in plots with high rather than low densities of buildings. Forest-interior specialists and Neotropical migrants often nest in cool, high-elevation areas with low housing density. These bird species, especially those that nest on the ground, may be most vulnerable to increased nest predation if temperature and exurban development increase at higher elevations as anticipated. PMID:22624665

  18. FY08 LDRD Final Report Regional Climate

    SciTech Connect

    Bader, D C; Chin, H; Caldwell, P M

    2009-05-19

    An integrated, multi-model capability for regional climate change simulation is needed to perform original analyses to understand and prepare for the impacts of climate change on the time and space scales that are critical to California's future environmental quality and economic prosperity. Our intent was to develop a very high resolution regional simulation capability to address consequences of climate change in California to complement the global modeling capability that is supported by DOE at LLNL and other institutions to inform national and international energy policies. The California state government, through the California Energy Commission (CEC), institutionalized the State's climate change assessment process through its biennial climate change reports. The bases for these reports, however, are global climate change simulations for future scenarios designed to inform international policy negotiations, and are primarily focused on the global to continental scale impacts of increasing emissions of greenhouse gases. These simulations do not meet the needs of California public and private officials who will make major decisions in the next decade that require an understanding of climate change in California for the next thirty to fifty years and its effects on energy use, water utilization, air quality, agriculture and natural ecosystems. With the additional development of regional dynamical climate modeling capability, LLNL will be able to design and execute global simulations specifically for scenarios important to the state, then use those results to drive regional simulations of the impacts of the simulated climate change for regions as small as individual cities or watersheds. Through this project, we systematically studied the strengths and weaknesses of downscaling global model results with a regional mesoscale model to guide others, particularly university researchers, who are using the technique based on models with less complete parameterizations or

  19. Region-wide trends of nesting ospreys in northwestern Mexico: a three-decade perspective

    USGS Publications Warehouse

    Henny, Charles J.; Anderson, Daniel W.; Vera, Aradit Castellanos; Cartron, Jean-Luc E.

    2008-01-01

    We used a double-sampling technique (air plus ground survey) in 2006, with partial double coverage, to estimate the present size of the Osprey (Pandion haliaetus) nesting population in northwestern Mexico (coastal Baja California, islands in the Gulf of California, and coastal Sonora and Sinaloa). With the exception of Natividad, Cedros, and San Benitos islands along the Pacific coast of Baja California (all three excluded from our coverage in 2006 due to fog), this survey was a repeat of previous surveys conducted by us with the same protocol in 1977 and 1992/1993, allowing for estimates of regional population trends. The minimum population estimate for the area we surveyed in 2006 was 1343 nesting pairs, an 81% increase since 1977, but only a 3% increase since 1992/1993. The population on the Gulf side of Baja California generally remained stable during the three surveys (255, 236, and 252 pairs, respectively). The population of the Midriff Islands (Gulf of California in the vicinity of 29°N latitude) remained similar from 1992/1993 (308 pairs) to 2006 (289 pairs), but with notable population changes on the largest two islands (Guardian Angel: 45 to 105 pairs [133% increase]; Tiburón: 164 to 109 pairs [34% decrease]). The minimum estimated Osprey population on the Sonora mainland decreased in a manner similar to adjacent Isla Tiburón, i.e., by 26%, from 214 pairs in 1993 to 158 pairs in 2006. In contrast, the population in coastal Sinaloa, which had increased by 150% between 1977 and 1993, grew again by 58% between 1993 and 2006, from 180 to 285 pairs. Our survey confirmed previously described patterns of rapid population changes at a local level, coupled with apparent shifts in spatial distribution. The large ground-nesting population that until recently nested on two islands in San Ignacio Lagoon ( Pacific Ocean side, Baja California) was no longer present on the islands in 2006, but an equivalent number of pairs were found to the north and south of the

  20. Towards predictive understanding of regional climate change

    NASA Astrophysics Data System (ADS)

    Xie, Shang-Ping; Deser, Clara; Vecchi, Gabriel A.; Collins, Matthew; Delworth, Thomas L.; Hall, Alex; Hawkins, Ed; Johnson, Nathaniel C.; Cassou, Christophe; Giannini, Alessandra; Watanabe, Masahiro

    2015-10-01

    Regional information on climate change is urgently needed but often deemed unreliable. To achieve credible regional climate projections, it is essential to understand underlying physical processes, reduce model biases and evaluate their impact on projections, and adequately account for internal variability. In the tropics, where atmospheric internal variability is small compared with the forced change, advancing our understanding of the coupling between long-term changes in upper-ocean temperature and the atmospheric circulation will help most to narrow the uncertainty. In the extratropics, relatively large internal variability introduces substantial uncertainty, while exacerbating risks associated with extreme events. Large ensemble simulations are essential to estimate the probabilistic distribution of climate change on regional scales. Regional models inherit atmospheric circulation uncertainty from global models and do not automatically solve the problem of regional climate change. We conclude that the current priority is to understand and reduce uncertainties on scales greater than 100 km to aid assessments at finer scales.

  1. The Regional Impacts of Climate Change

    NASA Astrophysics Data System (ADS)

    Watson, Robert T.; Zinyowera, Marufu C.; Moss, Richard H.

    1998-01-01

    The degree to which human conditions and the natural environment are vulnerable to the potential effects of climate change is a key concern for governments and the environmental science community worldwide. This book from the Intergovernmental Panel on Climate Change (IPCC) provides the best available base of scientific information for policymakers and public use. The Regional Impacts of Climate Change: An Assessment of Vulnerability reviews state-of-the-art information on potential impacts of climate change for ecological systems, water supply, food production, coastal infrastructure, human health, and other resources for ten global regions. It also illustrates that the increasing costs of climate and climate variability, in terms of loss of human life and capital due to floods, storms, and droughts, are a result of the lack of adjustment and response in society's policies and use of resources. This book points to management options that would make many sectors more resilient to current variability in climate and thus help these sectors adapt to future changes in climate. This book will become the primary source of information on regional aspects of climate change for policymakers, the scientific community, and students.

  2. The Regional Impacts of Climate Change

    NASA Astrophysics Data System (ADS)

    Watson, Robert T.; Zinyowera, Marufu C.; Moss, Richard H.

    1997-12-01

    The degree to which human conditions and the natural environment are vulnerable to the potential effects of climate change is a key concern for governments and the environmental science community worldwide. This book from the Intergovernmental Panel on Climate Change (IPCC) provides the best available base of scientific information for policymakers and public use. The Regional Impacts of Climate Change: An Assessment of Vulnerability reviews state-of-the-art information on potential impacts of climate change for ecological systems, water supply, food production, coastal infrastructure, human health, and other resources for ten global regions. It also illustrates that the increasing costs of climate and climate variability, in terms of loss of human life and capital due to floods, storms, and droughts, are a result of the lack of adjustment and response in society's policies and use of resources. This book points to management options that would make many sectors more resilient to current variability in climate and thus help these sectors adapt to future changes in climate. This book will become the primary source of information on regional aspects of climate change for policymakers, the scientific community, and students.

  3. Great plains regional climate assessment technical report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Great Plains region (GP) plays important role in providing food and energy to the economy of the United States. Multiple climatic and non-climatic stressors put multiple sectors, livelihoods and communities at risk, including agriculture, water, ecosystems and rural and tribal communities. The G...

  4. Regional climate service in Southern Germany

    NASA Astrophysics Data System (ADS)

    Schipper, Janus; Hackenbruch, Julia

    2013-04-01

    Climate change challenges science, politics, business and society at the international, national and regional level. The South German Climate Office at the Karlsruhe Institute of Technology (KIT) is a contact for the structuring and dissemination of information on climate and climate change in the South German region. It provides scientifically based and user-oriented climate information. Thereby it builds a bridge between the climate sciences and society and provides scientific information on climate change in an understandable way. The expertise of KIT, in which several institutions operate on fundamental and applied climate research, and of partner institutions is the basis for the work in the climate office. The regional focus is on the south of Germany. Thematic focuses are e.g. regional climate modeling, trends in extreme weather events such as heavy rain and hail event, and issues for energy and water management. The South German Climate Office is one of four Regional Helmholtz Climate Offices, of which each has a regional and thematic focus. The users of the Climate Office can be summarized into three categories. First, there is the general public. This category consists mainly of non-professionals. Here, special attention is on an understandable translation of climate information. Attention is paid to application-related aspects, because each individual is affected in a different way by climate change. Typical examples of this category are school groups, citizens and the media. The second category consists of experts of other disciplines. Unlike the first category they are mainly interested in the exchange of results and data. It is important to the climate office to provide support for the use of climatological results. Typical representatives of this category are ministries, state offices, and companies. In the third and final category are scientists. In addition to the climatologists, this category also holds representatives from other scientific

  5. Climate change signal over Northern Adriatic Region

    NASA Astrophysics Data System (ADS)

    Zampieri, M.; Lionello, P.; Nikulin, G.

    2009-04-01

    In this study we collect the results of several regional climate models from various projects (PRUDENCE, ENSEMBLES, and others). Temperature, precipitation, Sea Level Pressure, 500hPa geopotential height and wind speed are analyzed for Venetia and the Northern Adriatic region. The agreement among models is analyzed for the control runs and for the scenario simulations, and the dispersion among models is evaluated. The importance of resolutions is addressed as well as the changes of climate extremes in future scenarios.

  6. One regional ARM guide for climatic evaluation

    SciTech Connect

    Brown, R.M.

    1990-04-01

    One of the early tasks of the Atmospheric Radiation Measurements (ARM) Program is to provide climatic guides for site selection purposes including possible continental, regional, local and on-site locations. The first guide ``A Preliminary ARM Guide for Climatic Evaluations`` provided some climate data on a continental scale; this one is an attempt to show the variability that exists over a region. Kansas was chosen for this particular guide because it satisfies most of the requirements given in the ARM Program Plan, i.e., climatic significance, potential for synergism with other programs and scientific and logistical viability. Kansas has extreme climatic variations, is centrally located, is compatible with other large scale programs (Fife), has good airfields and accommodations to minimize time and effort in planning and operating an ARM site for continuous use and special campaigns.

  7. One regional ARM guide for climatic evaluation

    SciTech Connect

    Brown, R.M.

    1990-04-01

    One of the early tasks of the Atmospheric Radiation Measurements (ARM) Program is to provide climatic guides for site selection purposes including possible continental, regional, local and on-site locations. The first guide A Preliminary ARM Guide for Climatic Evaluations'' provided some climate data on a continental scale; this one is an attempt to show the variability that exists over a region. Kansas was chosen for this particular guide because it satisfies most of the requirements given in the ARM Program Plan, i.e., climatic significance, potential for synergism with other programs and scientific and logistical viability. Kansas has extreme climatic variations, is centrally located, is compatible with other large scale programs (Fife), has good airfields and accommodations to minimize time and effort in planning and operating an ARM site for continuous use and special campaigns.

  8. Regional Climate Simulation Experiments with a Variable Resolution Stretched Grid GCM

    NASA Technical Reports Server (NTRS)

    Takacs, Lawrence L.; Stein, Uri; Govindaraju, Ravi C.

    1999-01-01

    The variable resolution stretched grid (SG) version of the Goddard Earth Observing System (GEOS) GCM has been recently developed and tested in a regional climate simulation mode. The SG-approach is an alternative to the widely used nested grid approach introduced a decade ago as a pioneering step to regional climate modeling. The region of interest with a uniform about 60 km resolution used in experiments is a rectangle over the U.S. The results of one annual as well as two-month simulations for the anomalous climate event of the U.S. drought of 1988, are validated against data analysis fields and diagnostics. The efficient regional down-scaling as well as the positive impact of fine regional resolution, are obtained. The SG-concept appeared to be a promising candidate for regional and subregional climate studies and applications.

  9. "Climate Matters Documoments": Enabling Regionally-Specific Climate Awareness

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Finucane, M.

    2012-12-01

    The Pacific Regional Integrated Sciences & Assessments (RISA) is a multidisciplinary program that enhances the ability of Pacific Island communities to understand, plan for, and adapt to climate-induced change. Using both social and physical science research methods, the Pacific RISA engages a network of regional decision-makers and stakeholders to help solve climate-related issues. Pacific RISA has a broad audience of local and regional decision-makers (i.e. natural resource managers, community planners, state and federal government agencies) and stakeholders (i.e. farmers and ranchers, fishermen, community and native islander groups). The RISA program engages with this audience through a mixed-method approach of two-way communication, including one-on-one interviews, workshops, consensus discussions and public presentations that allow us to tailor our efforts to the needs of specific stakeholders. A recent Pacific RISA project was the creation and production of four short, educational "documoment" videos that explore the different ways in which climate change in Hawaii affects stakeholders from different sectors. The documoments, generally titled "Climate Matters", start with a quote about why climate matters to each stakeholder: a rancher, a coastal hotel owner, the manager of a landfill, and the local branch of the National Weather Service. The narratives then have each stakeholder discussing how climate impacts their professional and personal lives, and describing the types of climate change they have experienced in the islands. Each video ends with a technical fact about how different climate variables in Hawaii (sea level, precipitation, ENSO) have actually changed within the last century of observational data. Freely available on www.PacificRISA.org, the Documoments have been viewed over 350 times, and have inspired similar video projects and received positive attention from different audiences of stakeholders and scientists. In other assessment work the

  10. CLIMATE IMPACTS ON REGIONAL WATER

    EPA Science Inventory

    The New England region (including the 6 New England
    states plus upstate New York) offers a very diverse geography,
    matched by an equally diverse economy and human
    population. Livelihoods throughout the region are based
    on service industries that depend heavily on comm...

  11. Automatic Multi-Scale Calibration Procedure for Nested Hydrological-Hydrogeological Regional Models

    NASA Astrophysics Data System (ADS)

    Labarthe, B.; Abasq, L.; Flipo, N.; de Fouquet, C. D.

    2014-12-01

    Large hydrosystem modelling and understanding is a complex process depending on regional and local processes. A nested interface concept has been implemented in the hydrosystem modelling platform for a large alluvial plain model (300 km2) part of a 11000 km2 multi-layer aquifer system, included in the Seine basin (65000 km2, France). The platform couples hydrological and hydrogeological processes through four spatially distributed modules (Mass balance, Unsaturated Zone, River and Groundwater). An automatic multi-scale calibration procedure is proposed. Using different data sets from regional scale (117 gauging stations and 183 piezometers over the 65000 km2) to the intermediate scale(dense past piezometric snapshot), it permits the calibration and homogenization of model parameters over scales.The stepwise procedure starts with the optimisation of the water mass balance parameters at regional scale using a conceptual 7 parameters bucket model coupled with the inverse modelling tool PEST. The multi-objective function is derived from river discharges and their de-composition by hydrograph separation. The separation is performed at each gauging station using an automatic procedure based one Chapman filter. Then, the model is run at the regional scale to provide recharge estimate and regional fluxes to the groundwater local model. Another inversion method is then used to determine the local hydrodynamic parameters. This procedure used an initial kriged transmissivity field which is successively updated until the simulated hydraulic head distribution equals a reference one obtained by krigging. Then, the local parameters are upscaled to the regional model by renormalisation procedure.This multi-scale automatic calibration procedure enhances both the local and regional processes representation. Indeed, it permits a better description of local heterogeneities and of the associated processes which are transposed into the regional model, improving the overall performances

  12. Selecting global climate models for regional climate change studies

    PubMed Central

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652

  13. Selecting global climate models for regional climate change studies.

    PubMed

    Pierce, David W; Barnett, Tim P; Santer, Benjamin D; Gleckler, Peter J

    2009-05-26

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures.

  14. RSL: A parallel Runtime System Library for regional atmospheric models with nesting

    SciTech Connect

    Michalakes, J.G.

    1997-08-01

    RSL is a parallel runtime system library developed at Argonne National Laboratory that is tailored to regular-grid atmospheric models with mesh refinement in the form of two-way interacting nested grids. RSL provides high-level stencil and interdomain communication, irregular domain decomposition, automatic local/global index translation, distributed I/O, and dynamic load balancing. RSL was used with Fortran90 to parallelize a well-known and widely used regional weather model, the Penn State/NCAR Mesoscale model.

  15. Regional Climate Simulation with a Variable Resolution Stretched Grid GCM: The Regional Down-Scaling Effects

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Suarez, Max; Sawyer, William; Govindaraju, Ravi C.

    1999-01-01

    The results obtained with the variable resolution stretched grid (SG) GEOS GCM (Goddard Earth Observing System General Circulation Models) are discussed, with the emphasis on the regional down-scaling effects and their dependence on the stretched grid design and parameters. A variable resolution SG-GCM and SG-DAS using a global stretched grid with fine resolution over an area of interest, is a viable new approach to REGIONAL and subregional CLIMATE studies and applications. The stretched grid approach is an ideal tool for representing regional to global scale interactions. It is an alternative to the widely used nested grid approach introduced a decade ago as a pioneering step in regional climate modeling. The GEOS SG-GCM is used for simulations of the anomalous U.S. climate events of 1988 drought and 1993 flood, with enhanced regional resolution. The height low level jet, precipitation and other diagnostic patterns are successfully simulated and show the efficient down-scaling over the area of interest the U.S. An imitation of the nested grid approach is performed using the developed SG-DAS (Data Assimilation System) that incorporates the SG-GCM. The SG-DAS is run with withholding data over the area of interest. The design immitates the nested grid framework with boundary conditions provided from analyses. No boundary condition buffer is needed for the case due to the global domain of integration used for the SG-GCM and SG-DAS. The experiments based on the newly developed versions of the GEOS SG-GCM and SG-DAS, with finer 0.5 degree (and higher) regional resolution, are briefly discussed. The major aspects of parallelization of the SG-GCM code are outlined. The KEY OBJECTIVES of the study are: 1) obtaining an efficient DOWN-SCALING over the area of interest with fine and very fine resolution; 2) providing CONSISTENT interactions between regional and global scales including the consistent representation of regional ENERGY and WATER BALANCES; 3) providing a high

  16. Integrating Climate Information and Decision Processes for Regional Climate Resilience

    NASA Astrophysics Data System (ADS)

    Buizer, James; Goddard, Lisa; Guido, Zackry

    2015-04-01

    An integrated multi-disciplinary team of researchers from the University of Arizona and the International Research Institute for Climate and Society at Columbia University have joined forces with communities and institutions in the Caribbean, South Asia and West Africa to develop relevant, usable climate information and connect it to real decisions and development challenges. The overall objective of the "Integrating Climate Information and Decision Processes for Regional Climate Resilience" program is to build community resilience to negative impacts of climate variability and change. We produce and provide science-based climate tools and information to vulnerable peoples and the public, private, and civil society organizations that serve them. We face significant institutional challenges because of the geographical and cultural distance between the locale of climate tool-makers and the locale of climate tool-users and because of the complicated, often-inefficient networks that link them. To use an accepted metaphor, there is great institutional difficulty in coordinating the supply of and the demand for useful climate products that can be put to the task of building local resilience and reducing climate vulnerability. Our program is designed to reduce the information constraint and to initiate a linkage that is more demand driven, and which provides a set of priorities for further climate tool generation. A demand-driven approach to the co-production of appropriate and relevant climate tools seeks to meet the direct needs of vulnerable peoples as these needs have been canvassed empirically and as the benefits of application have been adequately evaluated. We first investigate how climate variability and climate change affect the livelihoods of vulnerable peoples. In so doing we assess the complex institutional web within which these peoples live -- the public agencies that serve them, their forms of access to necessary information, the structural constraints

  17. CARICOF - The Caribbean Regional Climate Outlook Forum

    NASA Astrophysics Data System (ADS)

    Van Meerbeeck, Cedric

    2013-04-01

    Regional Climate Outlook Forums (RCOFs) are viewed as a critical building block in the Global Framework for Climate Services (GFCS) of the World Meteorological Organization (WMO). The GFCS seeks to extend RCOFs to all vulnerable regions of the world such as the Caribbean, of which the entire population is exposed to water- and heat-related natural hazards. An RCOF is initially intended to identify gaps in information and technical capability; facilitate research cooperation and data exchange within and between regions, and improve coordination within the climate forecasting community. A focus is given on variations in climate conditions on a seasonal timescale. In this view, the relevance of a Caribbean RCOF (CARICOF) is the following: while the seasonality of the climate in the Caribbean has been well documented, major gaps in knowledge exist in terms of the drivers in the shifts of amplitude and phase of seasons (as evidenced from the worst region-wide drought period in recent history during 2009-2010). To address those gaps, CARICOF has brought together National Weather Services (NWSs) from 18 territories under the coordination of the Caribbean Institute for Meteorology and Hydrology (CIMH), to produce region-wide, consensus, seasonal climate outlooks since March 2012. These outlooks include tercile rainfall forecasts, sea and air surface temperature forecasts as well as the likely evolution of the drivers of seasonal climate variability in the region, being amongst others the El Niño Southern Oscillation or tropical Atlantic and Caribbean Sea temperatures. Forecasts for both the national-scale forecasts made by the NWSs and CIMH's regional-scale forecast amalgamate output from several forecasting tools. These currently include: (1) statistical models such as Canonical Correlation Analysis run with the Climate Predictability Tool, providing tercile rainfall forecasts at weather station scale; (2) a global outlooks published by the WMO appointed Global Producing

  18. Changes in vegetation structure in seeded nesting cover in the prairie pothole region

    USGS Publications Warehouse

    Higgins, K.F.; Barker, W.T.

    1982-01-01

    A sample of 365 stands of seeded nesting cover (mixtures of cool-season grasses and legumes) was studied in the glaciated prairie pothole region during 1977-79. Measurements of species composition, canopy cover, plant height, and visual obstruction values differed with stand age but only in a general way when results from over the entire region were pooled. Maximum values for plant height and visual obstruction occurred once per stand during the first 10 growing seasons. Although the year of maximum growth was variable and unpredictable, stands showed trends of degeneration in height and visual obstruction after the year of maximum growth.Seeded nesting cover grew similarly throughout the region when on soils of capability class IV or better and within a precipitation range of 30 to 61 cm. Precipitation was the factor that most affected stand growth, especially the amount received in the year before spring measurements. Height and visual obstruction values within a stand were also directly affected by some individual species and by the percentage of grass within a stand. In 2 of the 3 study years, the height and visual obstruction values of residual cover were extremely reduced by ice pack, heavy snow pack, or a combination of snow pack and harvest by rodents. Such events, if frequent, largely negate the possibility of using minimum visual obstruction or plant height measurements for assessing quality of vegetation for wildlife cover and management purposes.Species composition, number of species, and canopy cover varied most during the first three growing seasons and least during the next six. Succession toward dominance by native grasses and forbs and woody species was retarded by the predominance of the species of seeded nesting cover, at least during the first 10 growing seasons.All stands had at least one species present that was either a noxious weed, a problem cropland weed, or a nuisance weed. Weeds were usually local in distribution. Five weed species

  19. The North American Regional Climate Change Assessment Program (NARCCAP): Overview of Phase II Results

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2008-12-01

    NARCCAP is an international program that serves the climate scenario needs of the United States, Canada, and northern Mexico. We are systematically investigating the uncertainties in regional scale projections of future climate and producing high resolution climate change scenarios using multiple regional climate models(RCMs)and multiple global model responses to a future emission scenario, by nesting the RCMs within atmosphere ocean general circulation models (AOGCMs) forced with the A2 SRES scenario, over a domain covering the conterminous US, northern Mexico, and most of Canada. The project also includes a validation component through nesting the participating RCMs within NCEP reanalyses. The basic spatial resolution of the RCM simulations is 50 km. This program includes RCMs that participated in the European PRUDENCE program (HadRM3 and RegCM), the Canadian regional climate model (CRCM) as well as the NCEP regional spectral model (RSM), the NCAR/PSU MM5, and NCAR WRF. AOGCMs include the Hadley Centre HadCM3, NCAR CCSM3, the Canadian CGCM3 and the GFDL model. The resulting climate model runs form the basis for multiple high resolution climate scenarios that can be used in climate change impacts assessments over North America. High resolution (50 km) global time-slice experiments based on the GFDL atmospheric model (AM2.1) and the NCAR atmospheric model (CAM3) have also been produced and will be compared with the simulations of the regional models. There also will be opportunities for double nesting over key regions through which additional modelers in the regional modeling community will be able to participate in NARCCAP. Additional key science issues are being investigated such as the importance of compatible physics in the nested and nesting models. Measures of uncertainty across the multiple runs are being developed by geophysical statisticians. In this overview talk, results from Phase II of the project, the RCM simulations using boundary conditions from the

  20. Large Ensembles of Regional Climate Projections

    NASA Astrophysics Data System (ADS)

    Massey, Neil; Allen, Myles; Hall, Jim

    2016-04-01

    Projections of regional climate change have great utility for impact assessment at a local scale. The CORDEX climate projection framework presents a method of providing these regional projections by driving a regional climate model (RCM) with output from CMIP5 climate projection runs of global climate models (GCM). This produces an ensemble of regional climate projections, sampling the model uncertainty, the forcing uncertainty and the uncertainty of the response of the climate system to the increase in greenhouse gas (GHG) concentrations. Using the weather@home project to compute large ensembles of RCMs via volunteer distributed computing presents another method of generating projections of climate variables and also allows the sampling of the uncertainty due to internal variability. weather@home runs both a RCM and GCM on volunteer's home computers, with the free-running GCM driving the boundaries of the RCM. The GCM is an atmosphere only model and requires forcing at the lower boundary with sea-surface temperature (SST) and sea-ice concentration (SIC) data. By constructing SST and SIC projections, using projections of GHG and other atmospheric gases, and running the weather@home RCM and GCM with these forcings, large ensembles of projections of climate variables at regional scales can be made. To construct the SSTs and SICs, a statistical model is built to represent the response of SST and SIC to increases in GHG concentrations in the CMIP5 ensemble, for both the RCP4.5 and RCP8.5 scenarios. This statistical model uses empirical orthogonal functions (EOFs) to represent the change in the long term trend of SSTs in the CMIP5 projections. A multivariate distribution of the leading principle components (PC) is produced using a copula and sampled to produce a timeseries of PCs which are recombined with the EOFs to generate a timeseries of SSTs, with internal variability added from observations. Hence, a large ensemble of SST projections is generated, with each SST

  1. A coupled regional climate-biosphere model for climate studies

    SciTech Connect

    Bossert, J.; Winterkamp, J.; Barnes, F.; Roads, J.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop and test a regional climate modeling system that couples a limited-area atmospheric code to a biosphere scheme that properly represents surface processes. The development phase has included investigations of the impact of variations in surface forcing parameters, meteorological input data resolution, and model grid resolution. The testing phase has included a multi-year simulation of the summer climate over the Southwest United States at higher resolution than previous studies. Averaged results from a nine summer month simulation demonstrate the capability of the regional climate model to produce a representative climatology of the Southwest. The results also show the importance of strong summertime thermal forcing of the surface in defining this climatology. These simulations allow us to observe the climate at much higher temporal and spatial resolutions than existing observational networks. The model also allows us to see the full three-dimensional state of the climate and thereby deduce the dominant physical processes at any particular time.

  2. Regional climate change and national responsibilities

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko

    2016-03-01

    Global warming over the past several decades is now large enough that regional climate change is emerging above the noise of natural variability, especially in the summer at middle latitudes and year-round at low latitudes. Despite the small magnitude of warming relative to weather fluctuations, effects of the warming already have notable social and economic impacts. Global warming of 2 °C relative to preindustrial would shift the ‘bell curve’ defining temperature anomalies a factor of three larger than observed changes since the middle of the 20th century, with highly deleterious consequences. There is striking incongruity between the global distribution of nations principally responsible for fossil fuel CO2 emissions, known to be the main cause of climate change, and the regions suffering the greatest consequences from the warming, a fact with substantial implications for global energy and climate policies.

  3. Nest-climatic factors affect the abundance of biting flies and their effects on nestling condition

    NASA Astrophysics Data System (ADS)

    Martínez-de la Puente, Josué; Merino, Santiago; Lobato, Elisa; Aguilar, Juan Rivero-de; del Cerro, Sara; Ruiz-de-Castañeda, Rafael; Moreno, Juan

    2010-11-01

    The first step in the establishment of a host-biting fly relationship is host location. While a number of studies highlight the role of host emitted products as important cues affecting host location by biting flies, the role of host temperature is far from clear. We investigated the role of different nest microclimatic variables affecting the interaction between pied flycatchers and two biting flies: black flies and biting midges. Biting midge abundances increased with temperature inside the nest, supporting the potential importance of nest temperature as a cue used by insects to localize their hosts. The possibility that biting fly infestations were associated to ecological conditions in the vicinity of the nests is also discussed. Furthermore, we found a negative association between nestling weight (including tarsus length as a covariate in the analyses) and the interaction between the abundance of biting midges and the presence/absence of black flies in nests. The potential negative effect of these ectoparasites on nestling weight (condition index) and potential differences in the bird phenotypic/genetic quality associated with nest site choice and parasite infestations are considered.

  4. The Swedish Regional Climate Modelling Programme, SWECLIM: a review.

    PubMed

    Rummukainen, Markku; Bergström, Sten; Persson, Gunn; Rodhe, Johan; Tjernström, Michael

    2004-06-01

    The Swedish Regional Climate Modelling Programme, SWECLIM, was a 6.5-year national research network for regional climate modeling, regional climate change projections and hydrological impact assessment and information to a wide range of stakeholders. Most of the program activities focussed on the regional climate system of Northern Europe. This led to the establishment of an advanced, coupled atmosphere-ocean-hydrology regional climate model system, a suite of regional climate change projections and progress on relevant data and process studies. These were, in turn, used for information and educational purposes, as a starting point for impact analyses on different societal sectors and provided contributions also to international climate research. PMID:15264594

  5. Shading and Watering as a Tool to Mitigate the Impacts of Climate Change in Sea Turtle Nests

    PubMed Central

    Hill, Jacob E.; Paladino, Frank V.; Spotila, James R.; Tomillo, Pilar Santidrián

    2015-01-01

    Increasing sand temperatures resulting from climate change may negatively impact sea turtle nests by altering sex ratios and decreasing reproductive output. We analyzed the effect of nest shading and watering on sand temperatures as climate mitigation strategies in a beach hatchery at Playa Grande, Costa Rica. We set up plots and placed thermocouples at depths of 45cm and 75cm. Half of the plots were shaded and half were exposed to the sun. Within these exposure treatments, we applied three watering treatments over one month, replicating local climatic conditions experienced in this area. We also examined gravimetric water content of sand by collecting sand samples the day before watering began, the day after watering was complete, and one month after completion. Shading had the largest impact on sand temperature, followed by watering and depth. All watering treatments lowered sand temperature, but the effect varied with depth. Temperatures in plots that received water returned to control levels within 10 days after watering stopped. Water content increased at both depths in the two highest water treatments, and 30 days after the end of water application remained higher than plots with low water. While the impacts of watering on sand temperature dissipate rapidly after the end of application, the impacts on water content are much more lasting. Although less effective at lowering sand temperatures than shading, watering may benefit sea turtle clutches by offsetting negative impacts of low levels of rain in particularly dry areas. Prior to implementing such strategies, the natural conditions at the location of interest (e.g. clutch depth, environmental conditions, and beach characteristics) and natural hatchling sex ratios should be taken into consideration. These results provide insight into the effectiveness of nest shading and watering as climate mitigation techniques and illustrate important points of consideration in the crafting of such strategies. PMID

  6. Shading and watering as a tool to mitigate the impacts of climate change in sea turtle nests.

    PubMed

    Hill, Jacob E; Paladino, Frank V; Spotila, James R; Tomillo, Pilar Santidrián

    2015-01-01

    Increasing sand temperatures resulting from climate change may negatively impact sea turtle nests by altering sex ratios and decreasing reproductive output. We analyzed the effect of nest shading and watering on sand temperatures as climate mitigation strategies in a beach hatchery at Playa Grande, Costa Rica. We set up plots and placed thermocouples at depths of 45 cm and 75 cm. Half of the plots were shaded and half were exposed to the sun. Within these exposure treatments, we applied three watering treatments over one month, replicating local climatic conditions experienced in this area. We also examined gravimetric water content of sand by collecting sand samples the day before watering began, the day after watering was complete, and one month after completion. Shading had the largest impact on sand temperature, followed by watering and depth. All watering treatments lowered sand temperature, but the effect varied with depth. Temperatures in plots that received water returned to control levels within 10 days after watering stopped. Water content increased at both depths in the two highest water treatments, and 30 days after the end of water application remained higher than plots with low water. While the impacts of watering on sand temperature dissipate rapidly after the end of application, the impacts on water content are much more lasting. Although less effective at lowering sand temperatures than shading, watering may benefit sea turtle clutches by offsetting negative impacts of low levels of rain in particularly dry areas. Prior to implementing such strategies, the natural conditions at the location of interest (e.g. clutch depth, environmental conditions, and beach characteristics) and natural hatchling sex ratios should be taken into consideration. These results provide insight into the effectiveness of nest shading and watering as climate mitigation techniques and illustrate important points of consideration in the crafting of such strategies.

  7. Detection and Attribution of Regional Climate Change

    SciTech Connect

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  8. Landscape and regional context differentially affect nest parasitism and nest predation for Wood Thrush in central Virginia, USA

    EPA Science Inventory

    Many empirical studies have shown that forest-breeding songbirds, and neotropical migrants in particular, are found in lower abundance in small patches of forest in the Eastern United States compared to similar, but larger patches in the same region. A common hypothesis for the ...

  9. The weather@home regional climate modelling project for Australia and New Zealand

    NASA Astrophysics Data System (ADS)

    Black, Mitchell T.; Karoly, David J.; Rosier, Suzanne M.; Dean, Sam M.; King, Andrew D.; Massey, Neil R.; Sparrow, Sarah N.; Bowery, Andy; Wallom, David; Jones, Richard G.; Otto, Friederike E. L.; Allen, Myles R.

    2016-09-01

    A new climate modelling project has been developed for regional climate simulation and the attribution of weather and climate extremes over Australia and New Zealand. The project, known as weather@home Australia-New Zealand, uses public volunteers' home computers to run a moderate-resolution global atmospheric model with a nested regional model over the Australasian region. By harnessing the aggregated computing power of home computers, weather@home is able to generate an unprecedented number of simulations of possible weather under various climate scenarios. This combination of large ensemble sizes with high spatial resolution allows extreme events to be examined with well-constrained estimates of sampling uncertainty. This paper provides an overview of the weather@home Australia-New Zealand project, including initial evaluation of the regional model performance. The model is seen to be capable of resolving many climate features that are important for the Australian and New Zealand regions, including the influence of El Niño-Southern Oscillation on driving natural climate variability. To date, 75 model simulations of the historical climate have been successfully integrated over the period 1985-2014 in a time-slice manner. In addition, multi-thousand member ensembles have also been generated for the years 2013, 2014 and 2015 under climate scenarios with and without the effect of human influences. All data generated by the project are freely available to the broader research community.

  10. GFDL's unified regional-global weather-climate modeling system with variable resolution capability for severe weather predictions and regional climate simulations

    NASA Astrophysics Data System (ADS)

    Lin, S. J.

    2015-12-01

    The NOAA/Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions (e.g., tornado outbreak events and cat-5 hurricanes) and ultra-high-resolution (1-km) regional climate simulations within a consistent global modeling framework. The fundation of this flexible regional-global modeling system is the non-hydrostatic extension of the vertically Lagrangian dynamical core (Lin 2004, Monthly Weather Review) known in the community as FV3 (finite-volume on the cubed-sphere). Because of its flexability and computational efficiency, the FV3 is one of the final candidates of NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched (single) grid capability, a two-way (regional-global) multiple nested grid capability, and the combination of the stretched and two-way nests, so as to make convection-resolving regional climate simulation within a consistent global modeling system feasible using today's High Performance Computing System. One of our main scientific goals is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornadoes using a global model that was originally designed for century long climate simulations. As a unified weather-climate modeling system, we evaluated the performance of the model with horizontal resolution ranging from 1 km to as low as 200 km. In particular, for downscaling studies, we have developed various tests to ensure that the large-scale circulation within the global varaible resolution system is well simulated while at the same time the small-scale can be accurately captured

  11. Satellite-based climate information within the WMO RA VI Regional Climate Centre on Climate Monitoring

    NASA Astrophysics Data System (ADS)

    Obregón, A.; Nitsche, H.; Körber, M.; Kreis, A.; Bissolli, P.; Friedrich, K.; Rösner, S.

    2014-05-01

    The World Meteorological Organization (WMO) established Regional Climate Centres (RCCs) around the world to create science-based climate information on a regional scale within the Global Framework for Climate Services (GFCS). The paper introduces the satellite component of the WMO Regional Climate Centre on Climate Monitoring (RCC-CM) for Europe and the Middle East. The RCC-CM product portfolio is based on essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS), spanning the atmospheric (radiation, clouds, water vapour) and terrestrial domains (snow cover, soil moisture). In the first part, the input data sets are briefly described, which are provided by the EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) Satellite Application Facilities (SAF), in particular CM SAF, and by the ESA (European Space Agency) Climate Change Initiative (CCI). In the second part, the derived RCC-CM products are presented, which are divided into two groups: (i) operational monitoring products (e.g. monthly means and anomalies) based on near-real-time environmental data records (EDRs) and (ii) climate information records (e.g. climatologies, time series, trend maps) based on long-term thematic climate data records (TCDRs) with adequate stability, accuracy and homogeneity. The products are provided as maps, statistical plots and gridded data, which are made available through the RCC-CM website (www.dwd.de/rcc-cm).

  12. Climatic Effects of Regional Nuclear War

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.

    2011-01-01

    We use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and longlasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes seem to be more persistent because of improvements in representing aerosol processes and microphysical/dynamical interactions, including radiative heating effects, in newer global climate system models. The assumptions and calculations that go into these conclusions will be described.

  13. Providing Western Regional Climate Services - Perspectives from the Western Regional Climate Center

    NASA Astrophysics Data System (ADS)

    Brown, T. J.; Redmond, K. T.

    2014-12-01

    The western United States faces distinct challenges such as persistent drought, dwindling water resources amidst an expanding population, and climate-sensitive alpine environments. The complex terrain of the region compounds these challenges. The Western Regional Climate Center (WRCC), one of six National Oceanic and Atmospheric Administration (NOAA) university-based regional climate centers, has been providing climate services since 1986 that support the unique needs of stakeholders in the mountainous region of the western U.S. This includes meteorological data, tools, and products for thousands of stations across the West, and gridded data products, such as based on PRISM for example, that are used for drought assessment among other needs. WRCC and partners have developed numerous web-based tools and products to support decision-making and research pertinent to the West. Changing climate and variability along with the diverse physical and human geographies of the western U.S. require continuous advancements in climate knowledge and applications development. Examples include the need for tools and model downscaling that support and inform adaptation, mitigation and resiliency planning; web-based analytics that would allow users to interact and explore temporal and spatial data and relationships, and products from new satellite sensors that can provide higher resolution information on soil moisture and vegetation health given the sparseness of in-situ observations for the vastness of the West. This presentation provides an overview of some insights, opportunities and challenges of providing current and future climate services in the West.

  14. Objective calibration of regional climate models

    NASA Astrophysics Data System (ADS)

    Bellprat, O.; Kotlarski, S.; Lüthi, D.; SchäR, C.

    2012-12-01

    Climate models are subject to high parametric uncertainty induced by poorly confined model parameters of parameterized physical processes. Uncertain model parameters are typically calibrated in order to increase the agreement of the model with available observations. The common practice is to adjust uncertain model parameters manually, often referred to as expert tuning, which lacks objectivity and transparency in the use of observations. These shortcomings often haze model inter-comparisons and hinder the implementation of new model parameterizations. Methods which would allow to systematically calibrate model parameters are unfortunately often not applicable to state-of-the-art climate models, due to computational constraints facing the high dimensionality and non-linearity of the problem. Here we present an approach to objectively calibrate a regional climate model, using reanalysis driven simulations and building upon a quadratic metamodel presented by Neelin et al. (2010) that serves as a computationally cheap surrogate of the model. Five model parameters originating from different parameterizations are selected for the optimization according to their influence on the model performance. The metamodel accurately estimates spatial averages of 2 m temperature, precipitation and total cloud cover, with an uncertainty of similar magnitude as the internal variability of the regional climate model. The non-linearities of the parameter perturbations are well captured, such that only a limited number of 20-50 simulations are needed to estimate optimal parameter settings. Parameter interactions are small, which allows to further reduce the number of simulations. In comparison to an ensemble of the same model which has undergone expert tuning, the calibration yields similar optimal model configurations, but leading to an additional reduction of the model error. The performance range captured is much wider than sampled with the expert-tuned ensemble and the presented

  15. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources.

    PubMed

    Buotte, Polly C; Peterson, David L; McKelvey, Kevin S; Hicke, Jeffrey A

    2016-03-15

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability assessment conducted by the US Forest Service. During this assessment, five subregional workshops were held to capture variability in vulnerability and to develop adaptation tactics. At each workshop, participants answered a questionnaire to: 1) identify species, resources, or other information missing from the regional assessment, and 2) describe subregional vulnerability to climate change. Workshop participants divided into six resource groups; here we focus on wildlife resources. Participants identified information missing from the regional assessment and multiple instances of subregional variability in climate change vulnerability. We provide recommendations for improving the process of capturing subregional variability in a regional vulnerability assessment. We propose a revised conceptual framework structured around pathways of climate influence, each with separate rankings for exposure, sensitivity, and adaptive capacity. These revisions allow for a quantitative ranking of species, pathways, exposure, sensitivity, and adaptive capacity across subregions. Rankings can be used to direct the development and implementation of future regional research and monitoring programs. The revised conceptual framework is equally applicable as a stand-alone model for assessing climate change vulnerability and as a nested model within a regional assessment for capturing subregional variability in vulnerability. PMID:26796918

  16. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources.

    PubMed

    Buotte, Polly C; Peterson, David L; McKelvey, Kevin S; Hicke, Jeffrey A

    2016-03-15

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability assessment conducted by the US Forest Service. During this assessment, five subregional workshops were held to capture variability in vulnerability and to develop adaptation tactics. At each workshop, participants answered a questionnaire to: 1) identify species, resources, or other information missing from the regional assessment, and 2) describe subregional vulnerability to climate change. Workshop participants divided into six resource groups; here we focus on wildlife resources. Participants identified information missing from the regional assessment and multiple instances of subregional variability in climate change vulnerability. We provide recommendations for improving the process of capturing subregional variability in a regional vulnerability assessment. We propose a revised conceptual framework structured around pathways of climate influence, each with separate rankings for exposure, sensitivity, and adaptive capacity. These revisions allow for a quantitative ranking of species, pathways, exposure, sensitivity, and adaptive capacity across subregions. Rankings can be used to direct the development and implementation of future regional research and monitoring programs. The revised conceptual framework is equally applicable as a stand-alone model for assessing climate change vulnerability and as a nested model within a regional assessment for capturing subregional variability in vulnerability.

  17. Portuguese wine regions under a changing climate

    NASA Astrophysics Data System (ADS)

    Santos, João A.; Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Jones, Gregory V.; Pinto, Joaquim G.

    2014-05-01

    Viticulture and wine production are among the most important sectors of the Portuguese economy. However, as grapevines are strongly affected by weather and climate, climate change may represent an important threat to wine production. The current (1950-2000) and future (2041-2070) bioclimatic conditions in Portugal are discussed by analyzing a number of indices suitable for viticultural zoning, including a categorized bioclimatic index. A two-step method of spatial pattern downscaling is applied in order to achieve a very high spatial resolution (of approximately 1 km) throughout Portugal. Future projections are based on an ensemble of 13 climate model transient experiments, forced by the SRES A1B emission scenario. Results for the recent past are in clear agreement with the current distribution of vineyards and of the established Denomination of Origin regions. Furthermore, the typical climatic conditions associated with each grapevine variety that are currently grown in Portugal are assessed. Under future scenarios, nevertheless, the current conditions are projected to change significantly towards a lower bioclimatic diversity. This can be explained by the projected warming and drying in future decades. The resulting changes in varietal suitability and wine characteristics of each region may thereby bring important challenges for the Portuguese winemaking sector. As such, new measures need to be timely implemented to adapt to these climate change projections and to mitigate their likely detrimental impacts on the Portuguese economy. Acknowledgments: this work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project ClimVineSafe (PTDC/AGR-ALI/110877/2009).

  18. South Asian Summer Monsoon Dynamics In A High-Resolution Nested Climate Model

    NASA Astrophysics Data System (ADS)

    Ashfaq, M.; Ying, S.; Tung, W.; Trapp, R. J.; Gao, X.; Pal, J. S.; Diffenbuagh, N. S.

    2007-12-01

    We present results from a high-resolution climate simulation of the south Asian monsoon using the Abdus Salam Centre for Theoretical Physics Regional Climate Model (RegCM3). The RegCM3 experiment consists of a 30-year integration from 1961 to 1990 performed at a 25 km grid spacing. Atmospheric boundary conditions for the integration are provided by the National Aeronautics and Space Administration (NASA) Finite Volume General Circulation Model (FVGCM). The ability of RegCM3 to simulate the dynamics of the summer monsoon is tested by comparing a number of fields with observations, including upper and lower level circulation patterns, seasonal mean precipitation and temperature, and variations in tropospheric temperature gradient and easterly vertical shear. Our results show that RegCM3 is able to simulate the dynamical features of the South Asian summer monsoon reasonably well. For instance, the seasonal reversal of tropospheric temperature gradient and strengthening of easterly vertical shear compare well with observations. Furthermore, summer monsoon onset dates over land match reasonably well with the long-term onset-climatology, and the interannual variations in the anomalies of the local Hadley circulation and summer monsoon precipitation are strongly correlated. The primary discrepancies occur over areas of high seasonal precipitation - such as the west coasts of India and Myanmar - where RegCM3 values exceed those found in the observations. Similarly, RegCM3 overestimates precipitation values on the lee side of the Western Ghats. Compared to the driving FVGCM simulation, the RegCM3 simulation shows significant improvement in spatial pattern of seasonal precipitation.

  19. Regional climate projection of the Maritime Continent using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    IM, E. S.; Eltahir, E. A. B.

    2014-12-01

    Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  20. Regional climate change in the Northern Adriatic

    NASA Astrophysics Data System (ADS)

    Zampieri, M.; Giorgi, F.; Lionello, P.; Nikulin, G.

    An analysis of the climate change signal for seasonal temperature and precipitation over the Northern Adriatic region is presented here. We collected 43 regional climate simulations covering the target area, including experiments produced in the context of the PRUDENCE and ENSEMBLES projects, and additional experiments produced by the Swedish Meteorological and Hydrological Institute. The ability of the models to simulate the present climate in terms of mean and interannual variability is discussed and the insufficient reproduction of some features, such as the intensity of summer precipitation, are shown. The contribution to the variance associated with the intermodel spread is computed. The changes of mean and interannual variability are analyzed for the period 2071-2100 in the PRUDENCE runs (A2 scenario) and the periods 2021-2050 and 2071-2100 (A1B scenario) for the other runs. Ensemble results show a major warming at the end of the 21st century. Warming will be larger in the A2 scenario (about 5.5 K in summer and 4 K in winter) than in the A1B. Precipitation is projected to increase in winter and decrease in summer by 20% (+0.5 mm/day and -1 mm/day over the Alps, respectively). The climate change signal for scenario A1B in the period 2021-2050 is significant for temperature, but not yet for precipitation. In summer, interannual variability is projected to increase for temperature and for precipitation. Winter interannual variability change is different among scenarios. A reduction of precipitation is found for A2, while for A1B a reduction of temperature interannual variability is observed.

  1. Climate impacts on northern Canada: regional background.

    PubMed

    Prowse, Terry D; Furgal, Chris; Bonsal, Barrie R; Peters, Daniel L

    2009-07-01

    Understanding the implications of climate change on northern Canada requires a background about the size and diversity of its human and biogeophysical systems. Occupying an area of almost 40% of Canada, with one-third of this contained in Arctic islands, Canada's northern territories consist of a diversity of physical environments unrivaled around the circumpolar north. Major ecozones composed of a range of landforms, climate, vegetation, and wildlife include: Arctic, boreal and taiga cordillera; boreal and taiga plains; taiga shield; and northern and southern Arctic. Although generally characterized by a cold climate, there is an enormous range in air temperature with mean annual values being as high as -5 degrees C in the south to as low as -20 degrees C in the high Arctic islands. A similar contrast characterizes precipitation, which can be > 700 mm y(-1) in some southern alpine regions to as low as 50 mm y(-1) over islands of the high Arctic. Major freshwater resources are found within most northern ecozones, varying from large glaciers or ice caps and lakes to extensive wetlands and peat lands. Most of the North's renewable water, however, is found within its major river networks and originates in more southerly headwaters. Ice covers characterize the freshwater systems for multiple months of the year while permafrost prevails in various forms, dominating the terrestrial landscape. The marine environment, which envelops the Canadian Arctic Archipelago, is dominated by seasonal to multiyear sea ice often several meters thick that plays a key role in the regional climate. Almost two-thirds of northern Canadian communities are located along coastlines with the entire population being just over 100 000. Most recent population growth has been dominated by an expansion of nonaboriginals, primarily the result of resource development and the growth of public administration. The economies of northern communities, however, remain quite mixed with traditional land

  2. Climate impacts on northern Canada: regional background.

    PubMed

    Prowse, Terry D; Furgal, Chris; Bonsal, Barrie R; Peters, Daniel L

    2009-07-01

    Understanding the implications of climate change on northern Canada requires a background about the size and diversity of its human and biogeophysical systems. Occupying an area of almost 40% of Canada, with one-third of this contained in Arctic islands, Canada's northern territories consist of a diversity of physical environments unrivaled around the circumpolar north. Major ecozones composed of a range of landforms, climate, vegetation, and wildlife include: Arctic, boreal and taiga cordillera; boreal and taiga plains; taiga shield; and northern and southern Arctic. Although generally characterized by a cold climate, there is an enormous range in air temperature with mean annual values being as high as -5 degrees C in the south to as low as -20 degrees C in the high Arctic islands. A similar contrast characterizes precipitation, which can be > 700 mm y(-1) in some southern alpine regions to as low as 50 mm y(-1) over islands of the high Arctic. Major freshwater resources are found within most northern ecozones, varying from large glaciers or ice caps and lakes to extensive wetlands and peat lands. Most of the North's renewable water, however, is found within its major river networks and originates in more southerly headwaters. Ice covers characterize the freshwater systems for multiple months of the year while permafrost prevails in various forms, dominating the terrestrial landscape. The marine environment, which envelops the Canadian Arctic Archipelago, is dominated by seasonal to multiyear sea ice often several meters thick that plays a key role in the regional climate. Almost two-thirds of northern Canadian communities are located along coastlines with the entire population being just over 100 000. Most recent population growth has been dominated by an expansion of nonaboriginals, primarily the result of resource development and the growth of public administration. The economies of northern communities, however, remain quite mixed with traditional land

  3. Climate Change and Climate Variability in the Latin American Region

    NASA Astrophysics Data System (ADS)

    Magrin, G. O.; Gay Garcia, C.; Cruz Choque, D.; Gimenez-Sal, J. C.; Moreno, A. R.; Nagy, G. J.; Nobre, C.; Villamizar, A.

    2007-05-01

    Over the past three decades LA was subjected to several climate-related impacts due to increased El Niño occurrences. Two extremely intense episodes of El Niño and other increased climate extremes happened during this period contributing greatly to augment the vulnerability of human systems to natural disasters. In addition to weather and climate, the main drivers of the increased vulnerability are demographic pressure, unregulated urban growth, poverty and rural migration, low investment in infrastructure and services, and problems in inter-sector coordination. As well, increases in temperature and increases/decreases in precipitation observed during the last part of 20th century have yet led to intensification of glaciers melting, increases in floods/droughts and forest fires frequency, increases in morbidity and mortality, increases in plant diseases incidence; lost of biodiversity, reduction in dairy cattle production, and problems with hydropower generation, highly affecting LA human system. For the end of the 21st century, the projected mean warming for LA ranges from 1 to 7.5ºC and the frequency of weather and climate extremes could increase. Additionally, deforestation is projected to continue leading to a reduction of 25 percent in Amazonia forest in 2020 and 40 percent in 2050. Soybeans planted area in South America could increase by 55 percent by 2020 enhancing aridity/desertification in many of the already water- stressed regions. By 2050 LA population is likely to be 50 percent larger than in 2000, and migration from the country sides to the cities will continue. In the near future, these predicted changes are very likely to severely affect a number of ecosystems and sectors distribution; b) Disappearing most tropical glaciers; c) Reducing water availability and hydropower generation; d) Increasing desertification and aridity; e) Severely affecting people, resources and economic activities in coastal areas; f) Increasing crop's pests and diseases

  4. Influence of Regional Climate Model spatial resolution on wind climates

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Barthelmie, R. J.; Nikulin, G.; Jones, C.

    2010-12-01

    Global and regional climate models are being run at increasingly fine horizontal and vertical resolution with the goal of increased skill. However, relatively few studies have quantified the change in modeled wind climates that derives from applying a Regional Climate Model (RCM) at varying resolutions, and the response to varying resolution may be highly non-linear since most models run in climate mode are hydrostatic. Thus, herein we examine the influence of grid-resolution on modelled wind speeds and gusts and derived extremes thereof over southern Scandinavia using output from the Rossby Centre (RCA3) RCM run at four different resolutions from 50 x 50 km to 6 x 6 km, and with two different vertical grid-spacings. Domain averaged fifty-year return period wind speeds and wind gusts derived using the method of moments approach to compute the Gumbel parameters, increase with resolution (Table 1), though the change is strongly mediated by the model grid-cell surface characteristics. Power spectra of the 3-hourly model time-step ‘instantaneous’ wind speeds and daily wind gusts at all four resolutions show clear peaks in the variance associated with bi-annual, annual, seasonal and synoptic frequencies. The variance associated with these peaks is enhanced with increased resolution, though not in a monotonic fashion, and is more marked in wind gusts than wind speeds. Relative to in situ observations, the model generally underestimates the variance, particularly associated with the synoptic time scale, even for the highest resolution simulations. There is some evidence to suggest that the change in the power spectra with horizontal resolution is less marked in the transition from 12.5 km to 6.25 km, than from 50 to 25 km, or 25 km to 12.5 km.Table 1. Domain averaged mean annual wind speed (U), 50-year return period extreme wind speed (U50yr) and wind gust (Gust50yr) (m/s) from the four RCA3 simulations at different resolution based on output from 1987-2008. The

  5. Program for Arctic Regional Climate Assessment (PARCA)

    NASA Technical Reports Server (NTRS)

    Gogineni, Sivaprasad; Thomas, Robert H.; Abdalati, Waleed (Editor)

    1999-01-01

    The Program for Arctic Regional Climate Assessment (PARCA) is a NASA-sponsored initiative with the prime objective of understanding the mass balance of the Greenland ice sheet. In October 1998, PARCA investigators met to review activities of the previous year, assess the program's progress, and plan future investigations directed at accomplishing that objective. Some exciting results were presented and discussed, including evidence of dramatic thinning of the ice sheet near the southeastern coast. Details of the investigations and many of the accomplishments are given in this report, but major highlights are given in the Executive Summary of the report.

  6. Ant-nest ichnofossils in honeycomb calcretes, Neogene Ogallala Formation, High Plains region of western Kansas, U.S.A.

    USGS Publications Warehouse

    Smith, J.J.; Platt, B.F.; Ludvigson, Greg A.; Thomasson, J.R.

    2011-01-01

    Two new ant-nest trace fossils are described from calcic sandy paleosols of the Neogene Ogallala Formation in western Kansas. The ichnofossils are preserved within and below calcrete beds weathering in positive relief as carbonate-filled casts or as cavities in negative relief. Daimoniobarax ichnogenus nov. is established for burrow systems composed of vertically tiered, horizontally oriented pancake-shaped chambers connected by predominantly vertical and cylindrical shafts ~. 0.8. cm in diameter. Ichnospecies of Daimoniobarax are differentiated based on differences in the plan view outline of chambers, shaft orientation, and junctions between chambers and shafts.Daimoniobarax nephroides ichnospecies nov. is composed of an ~. 24-76. cm long vertical sequence of distinctly lobed chambers (~. 2-20. cm wide and ~. 1. cm high) arranged along sinuous to helical shafts. Chamber shape in plan view ranges from small teardrops to larger kidney- and U-shaped forms. Shafts intersect at chamber edges such that chambers appear to bud from the central shafts. Daimoniobarax nephroides is most similar to the nests of extant seed-harvester ants of the New World genus Pogonomyrmex. Such ants are specialized granivores and prefer sandy soils in arid to semi-arid grassland and desert regions.Daimoniobarax tschinkeli ichnospecies nov. is ~. 30-80. cm in vertical extent. Chambers (~. 2-30. cm wide and ~. 1. cm high) are circular to elongate or pseudopodial in plan view. Vertical shafts are straight to slightly sinuous and intersect most often toward the center of the chambers. The generalized architecture of D. tschinkeli is similar to that of the nests or nest portions of several extant ant genera, though it does not closely resemble any known modern nest.Ant ichnofossils provide valuable information on hidden biodiversity, paleohydrologic regimes, paleopedogenic processes, and paleoclimate during the time of nest occupation. Depth-related changes in chamber size and vertical spacing

  7. Using expert opinion to prioritize impacts of climate change on sea turtles' nesting grounds.

    PubMed

    Fuentes, M M P B; Cinner, J E

    2010-12-01

    Managers and conservationists often need to prioritize which impacts from climate change to deal with from a long list of threats. However, data which allows comparison of the relative impact from climatic threats for decision-making is often unavailable. This is the case for the management of sea turtles in the face of climate change. The terrestrial life stages of sea turtles can be negatively impacted by various climatic processes, such as sea level rise, altered cyclonic activity, and increased sand temperatures. However, no study has systematically investigated the relative impact of each of these climatic processes, making it challenging for managers to prioritize their decisions and resources. To address this we offer a systematic method for eliciting expert knowledge to estimate the relative impact of climatic processes on sea turtles' terrestrial reproductive phase. For this we used as an example the world's largest population of green sea turtles and asked 22 scientists and managers to answer a paper based survey with a series of pair-wise comparison matrices that compared the anticipated impacts from each climatic process. Both scientists and managers agreed that increased sand temperature will likely cause the most threat to the reproductive output of the nGBR green turtle population followed by sea level rise, then altered cyclonic activity. The methodology used proved useful to determine the relative impact of the selected climatic processes on sea turtles' reproductive output and provided valuable information for decision-making. Thus, the methodological approach can potentially be applied to other species and ecosystems of management concern. PMID:20702026

  8. Using expert opinion to prioritize impacts of climate change on sea turtles' nesting grounds.

    PubMed

    Fuentes, M M P B; Cinner, J E

    2010-12-01

    Managers and conservationists often need to prioritize which impacts from climate change to deal with from a long list of threats. However, data which allows comparison of the relative impact from climatic threats for decision-making is often unavailable. This is the case for the management of sea turtles in the face of climate change. The terrestrial life stages of sea turtles can be negatively impacted by various climatic processes, such as sea level rise, altered cyclonic activity, and increased sand temperatures. However, no study has systematically investigated the relative impact of each of these climatic processes, making it challenging for managers to prioritize their decisions and resources. To address this we offer a systematic method for eliciting expert knowledge to estimate the relative impact of climatic processes on sea turtles' terrestrial reproductive phase. For this we used as an example the world's largest population of green sea turtles and asked 22 scientists and managers to answer a paper based survey with a series of pair-wise comparison matrices that compared the anticipated impacts from each climatic process. Both scientists and managers agreed that increased sand temperature will likely cause the most threat to the reproductive output of the nGBR green turtle population followed by sea level rise, then altered cyclonic activity. The methodology used proved useful to determine the relative impact of the selected climatic processes on sea turtles' reproductive output and provided valuable information for decision-making. Thus, the methodological approach can potentially be applied to other species and ecosystems of management concern.

  9. Regional climate: Design and analysis of computer experiments?

    NASA Astrophysics Data System (ADS)

    Nychka, D. W.

    2011-12-01

    As attention shifts from broad global summaries of climate change to more specific regional impacts there is a need for data sciences to quantify the uncertainty in regional predictions. This talk will provide an overview on regional climate experiments with an emphasis on the statistical problems for interpreting these large and complex simulations. A regional climate model is a computer code based on physics that simulates the detailed flow of the atmosphere in a particular region from the large scale information of a global climate model. One intent is to compare simulations under current climate to future scenarios to infer the nature of climate change expected at a location. There exists a mature sub-discipline in engineering and statistics on the design and analysis of computer experiments. This talk will sketch how general methods from this area may apply to the interpretation of climate model experiments and to what extent the problems of interpreting climate projections are unique and require new ideas.

  10. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    NASA Astrophysics Data System (ADS)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  11. Two-Way Integration of WRF and CCSM for Regional Climate Simulations

    SciTech Connect

    Lin, Wuyin; Zhang, Minghua; He, Juanxiong; Jiao, Xiangmin; Chen, Ying; Colle, Brian; Vogelmann, Andrew M.; Liu, Ping; Khairoutdinov, Marat; Leung, Ruby

    2013-07-12

    Under the support of the DOE award DE-SC0004670, we have successfully developed an integrated climate modeling system by nesting Weather Research and Forecasting (WRF) model within the Community Climate System Model (CCSM) and the ensuing new generation Community Earth System Model (CESM). The integrated WRF/CESM system is intended as one method of global climate modeling with regional simulation capabilities. It allows interactive dynamical regional downscaling in the computational flow of present or future global climate simulations. This capability substantially simplifies the process of dynamical downscaling by avoiding massive intermediate model outputs at high frequency that are typically required for offline regional downscaling. The inline coupling also has the advantage of higher temporal resolution for the interaction between regional and global model components. With the aid of the inline coupling, a capability has also been developed to ingest other global climate simulations (by CESM or other models), which otherwise may not have necessary intermediate outputs for regional downscaling, to realize their embedded regional details. It is accomplished by relaxing the global atmospheric state of the integrated model to that of the source simulations with an appropriate time scale. This capability has the potential to open a new venue for ensemble regional climate simulations using a single modeling system. Furthermore, this new modeling system provides an effective modeling framework for the studies of physical and dynamical feedbacks of regional weather phenomena to the large scale circulation. The projected uses of this capability include the research of up-scaling effect of regional weather system, and its use as an alternative physical representation of sub-scale processes in coarser-resolution climate models.

  12. Population size and trends for nesting ospreys in northwestern Mexico: Region-wide surveys, 1977, 1992/1993 and 2006

    USGS Publications Warehouse

    Henny, Charles J.; Anderson, Daniel W.; Vera, Aradit Castellanos; Carton, Jean-Luc E.

    2007-01-01

    We used a double-sampling technique (air plus ground survey) in 2006, with partial double coverage, to estimate the present size of the osprey (Pandion haliaetus) nesting population in northwestern Mexico. With the exception of Natividad, Cedros, and San Benito Islands along the Pacific Coast of Baja California, all three excluded from our coverage in 2006 due to fog, this survey was a repeat of previous surveys conducted by us with the same protocol in 1977 and 1992/1993 (Baja California surveyed in 1992, Sonora and Sinaloa 1993), allowing for estimates of regional population trends. Population estimates at the 'time of aerial survey' include those nesting, but missed from the air. The population estimate for our coverage area in 2006 was 1,343 nesting pairs, or an 81% increase since 1977, but only a 3% increase since 1992/1993. The population on the Gulf side of Baja California generally remained stable during the three surveys (255, 236 and 252 pairs, respectively). The overall Midriff Islands population remained similar from 1992/1993 (308 pairs) to 2006 (289 pairs), but with notable population changes on the largest two islands (Isla Angel de la Guarda: 45 to 105 pairs [+ 60 pairs]; Isla Tiburon: 164 to 109 pairs [- 55 pairs, or -34%]). The estimated osprey population on the Sonora mainland decreased in a manner similar to adjacent Isla Tiburon, i.e., by 26%, from 214 pairs in 1993 to 158 pairs in 2006. In contrast, the population in Sinaloa, which had increased by 150% between 1977 and 1993, grew again by 58% between 1993 and 2006, from 180 to 285 pairs. Our survey confirmed previously described patterns of rapid population changes at a local level, coupled with apparent shifts in spatial distribution. The large ground nesting population that until recently nested on two islands in San Ignacio Lagoon was no longer present on the islands in 2006, but an equivalent number of pairs were found to the north and south of the lagoon, nesting in small towns and along

  13. Climate programs update: USDA Southwest Regional Climate Hub update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PROGRAM OVERVIEW: The overarching goal of the USDA SW Climate Hub is to assist farmers, ranchers and foresters in addressing the effects of climate change including prolonged drought, increased insect outbreaks and severe wildfires. In the first year of operations, the SW Climate Hub (est. Februa...

  14. Climate Dynamics of Regional US Southeastern drought

    NASA Astrophysics Data System (ADS)

    Arrigo, J.

    2008-12-01

    The phenomena of droughts both regional and continental have received considerable attention from both science and policy. Understanding the larger scale dynamics of these events is critical to improving predictability, management and mitigation strategies. The history of drought in the United States shows both long (multi-decadal) and short (seasonal or yearly) droughts in various regions. Some of the most severe droughts, such as those with the largest economic losses or that have received the most attention both from the scientific and broader communities have occurred in the Midwest/Great Plains (e.g. the "Dust Bowl" years, the 1988 drought) and generally correlate with continent-wide anomalies. The Southeast region of the US, while generally having a more humid temperature climate than the rest of the country, also is subject to periods of drought conditions. In this study we analyze long term records of PDSI in the southeastern United States. While some occurrences correlate with larger continental scale droughts, many severe southeastern droughts occur during a synoptic pattern correlating with wetter conditions through the greater Midwest, have a seasonal pattern different than larger continental scale anomalies, and show correlations with patterns in Atlantic tropical activity. While winter and spring deficits may initiate a drought, we find a proportionally larger decrease in summertime precipitation during severe drought periods. Some of this decrease may be related to the contribution of tropical systems, which increases in the periods following droughts. We suggest that the dynamics of drought in this region differ from the larger US pattern, and particularly need to account for the interaction between continental and tropical contributions. With an increasing population and areas of high agricultural productivity, we argue this region deserves further attention from both the scientific and larger community, that understanding these dynamics will

  15. Climate Regionalization through Hierarchical Clustering: Options and Recommendations for Africa

    NASA Astrophysics Data System (ADS)

    Badr, H. S.; Zaitchik, B. F.; Dezfuli, A. K.

    2014-12-01

    Climate regionalization is an important but often under-emphasized step in studies of climate variability and predictions. While most investigations of regional climate or statistical/dynamical predictions do make at least an implicit attempt to focus on a study region or sub-regions that are climatically coherent in some respect, rigorous climate regionalization--in which the study area is divided on the basis of the most relevant climate metrics and at a resolution most appropriate to the data and the scientific question--has the potential to enhance the precision and explanatory power of climate studies in many cases. This is particularly true for climatically complex regions such as the Greater Horn of Africa (GHA) and Equatorial West Africa. Here we present an improved clustering method and a flexible, open-source software tool (R package "HiClimR") designed specifically for climate regionalization. As a demonstration, we apply HiClimR to regionalize the GHA on the basis of interannual precipitation variability in each calendar month and for three-month running seasons. Different clustering methods are tested to show the behavior of each method and provide recommendations for specific problems. This would underscore the applicability of our work to a wide range of climate issues, and enable researchers to easily and quickly learn how to apply our tools to their own problems. Both the proposed methodology and the R package can be easily used for a broad range of climate applications.

  16. Regional Collaborations to Combat Climate Change: The Climate Science Centers as Strategies for Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Morelli, T. L.; Palmer, R. N.

    2014-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. The consortium approach taken by the CSCs allows the academic side of the Centers to gather expertise across departments, disciplines, and even institutions. This interdisciplinary approach is needed for successfully meeting regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach. Partnership with the federal government facilitates interactions with the key on-the-ground stakeholders who are able to operationalize the results and conclusions of that research, monitor the progress of management actions, and provide feedback to refine future methodology and decisions as new information on climate impacts is discovered. For example, NE CSC researchers are analyzing the effect of climate change on the timing and volume of seasonal and annual streamflows and the concomitant effects on ecological and cultural resources; developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; studying the effects of changes in the frequency and magnitude of drought and stream temperature on brook trout habitats, spatial distribution and population persistence; and conducting assessments of northeastern regional climate projections and high-resolution downscaling. Project methods are being developed in collaboration with stakeholders and results are being shared broadly with federal, state, and other partners to implement and refine effective and adaptive management actions.

  17. Regional climate simulations over Vietnam using the WRF model

    NASA Astrophysics Data System (ADS)

    Raghavan, S. V.; Vu, M. T.; Liong, S. Y.

    2015-07-01

    We present an analysis of the present-day (1961-1990) regional climate simulations over Vietnam. The regional climate model Weather Research and Forecasting (WRF) was driven by the global reanalysis ERA40. The performance of the regional climate model in simulating the observed climate is evaluated with a main focus on precipitation and temperature. The regional climate model was able to reproduce the observed spatial patterns of the climate, although with some biases. The model also performed better in reproducing the extreme precipitation and the interannual variability. Overall, the WRF model was able to simulate the main regional signatures of climate variables, seasonal cycles, and frequency distributions. This study is an evaluation of the present-day climate simulations of a regional climate model at a resolution of 25 km. Given that dynamical downscaling has become common for studying climate change and its impacts, the study highlights that much more improvements in modeling might be necessary to yield realistic simulations of climate at high resolutions before they can be used for impact studies at a local scale. The need for a dense network of observations is also realized as observations at high resolutions are needed when it comes to evaluations and validations of models at sub-regional and local scales.

  18. Regional climate simulations over Vietnam using the WRF model

    NASA Astrophysics Data System (ADS)

    Raghavan, S. V.; Vu, M. T.; Liong, S. Y.

    2016-10-01

    We present an analysis of the present-day (1961-1990) regional climate simulations over Vietnam. The regional climate model Weather Research and Forecasting (WRF) was driven by the global reanalysis ERA40. The performance of the regional climate model in simulating the observed climate is evaluated with a main focus on precipitation and temperature. The regional climate model was able to reproduce the observed spatial patterns of the climate, although with some biases. The model also performed better in reproducing the extreme precipitation and the interannual variability. Overall, the WRF model was able to simulate the main regional signatures of climate variables, seasonal cycles, and frequency distributions. This study is an evaluation of the present-day climate simulations of a regional climate model at a resolution of 25 km. Given that dynamical downscaling has become common for studying climate change and its impacts, the study highlights that much more improvements in modeling might be necessary to yield realistic simulations of climate at high resolutions before they can be used for impact studies at a local scale. The need for a dense network of observations is also realized as observations at high resolutions are needed when it comes to evaluations and validations of models at sub-regional and local scales.

  19. Estimating expected change of wind speed and solar radiation in the Carpathian basin using fine resolution regional climate models

    NASA Astrophysics Data System (ADS)

    Bartholy, J.; Pongracz, R.; Dobor, L.; Miklos, E.; Gelybo, G. Y.

    2009-04-01

    Spatial resolution of global climate models (GCMs) are inappropriate to describe regional climate processes; therefore, GCM outputs may be misleading to compose regional climate change scenarios for the 21st century. In order to provide better estimations for regional climate parameters, fine resolution regional climate models (RCM) can be used. RCMs are limited area models nested in GCMs, i.e., the initial and the boundary conditions of RCMs are provided by the GCM outputs. In order to estimate the regional climate change expected in the Carpathian basin, outputs from several RCMs are summarized and analyzed for the periods of 2071-2100 (in case of A2 and B2 emission scenarios) and 1961-1990 (representing the current baseline climatic conditions). The RCM output variables with 50 km resolution horizontal are available from the completed European project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). Wind speed and solar radiation are both important meteorological parameters in terms of renewable energy potentials. The results suggest that in the Carpathian basin wind speed is likely to increase in all months by the end of the 21st century in case of both scenarios, which increases the wind energy potential in the region. Solar radiation is projected to increase in the summer half-year, and slightly decrease in winter. Thus, solar energy use during summer may become a more efficient renewable source in the future.

  20. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    SciTech Connect

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  1. Regionally nested patterns of fish assemblages in floodplain lakes of the Magdalena river (Colombia)

    PubMed Central

    Granado-Lorencio, Carlos; Serna, Andrés Hernández; Carvajal, Juan David; Jiménez-Segura, Luz Fernanda; Gulfo, Alejandra; Alvarez, Frank

    2012-01-01

    We investigated if fish assemblages in neotropical floodplain lakes (cienagas) exhibit nestedness, and thus offer support to the managers of natural resources of the area for their decision making. The location was floodplain lakes of the middle section of the Magdalena river, Colombia. We applied the nested subset analysis for the series of 30 cienagas (27 connected to the main river and three isolated). All fish were identified taxonomically in the field and the matrix for presence–absence in all the lakes was used for the study of the pattern of nestedness. The most diverse order was Characiformes (20 species), followed by Siluriformes (19 species). Characidae and Loricaridae were the richest families. The species found in all the lakes studied were migratory species (17), and sedentary species (33). Two species (Caquetaia kraussii and Cyphocharax magdalenae) were widespread across the cienagas archipelago (100% of incidence). Nestedness analysis showed that the distribution of species over the spatial gradient studied (840 km) is significantly nested. The cienagas deemed the most hospitable were Simiti, El Llanito, and Canaletal. Roughly, 13 out of the 50 species caught show markedly idiosyncratic distributions. The resulting dataset showed a strong pattern of nestedness in the distribution of Magdalenese fishes, and differed significantly from random species assemblages. Out of all the measurements taken in the cienagas, only the size (area) and local richness are significantly related to the range of order of nested subset patterns (r=–0.59 and –0.90, respectively, at p < 0.01). Differential species extinction is suggested as the cause of a nested species assemblage, when the reorganized matrix of species occurring in habitat islands is correlated with the island area. Our results are consistent with this hypothesis. PMID:22833801

  2. A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.

    2000-01-01

    The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.

  3. Climate uncertainty and the regional economic impacts of global climate change

    SciTech Connect

    Scott, M.J.; Liebetrau, A.M.; Lopresti, C.A.

    1993-10-01

    The US Department of Energy funded pioneering research analyzing the effects of climate change and CO{sup 2} fertilization at the regional level in the Missouri-Iowa-Nebraska-Kansas (MINK) region. That study used existing process models of the agricultural, water, energy, and forestry sectors and of the regional economy to conduct a wide-ranging, integrated analysis of the regional economic effects of climate change. Neither the full integration of the process models nor the full investigation of the uncertainties of climate and economic response to climate was accomplished because (1) the process models were time-consuming to run, and (2) the MINI( study used a single rich historical climate analog -- the 1930s `` Dustbowl`` period -- to depict climate change. More analysis was required to develop ranges of climate influences over more extreme climate conditions.

  4. Incorporating vegetation dynamics in regional climate change projections over the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Alo, C. A.; Anagnostou, E. N.

    2009-09-01

    Recent projections of climate change over the Mediterranean region based on general circulation models (e.g. IPCC AR4 GCMs) and regional climate models (e.g. PRUDENCE RCMs) generally show strong warming and pronounced decrease in precipitation, especially in the summer. While the role of vegetation in modulating the regional climate is widely recognized, most, if not all, of these GCM and RCM climate change projections do not account for the response of the dynamic biosphere to potential climate changes. Here, we present preliminary results from ongoing 15-year simulations over the Mediterranean region with a regional climate model (RegCM3) asynchronously coupled to a dynamic vegetation model (CLM-DGVM). Three experiments are performed in order to explore the impact of vegetation feedback on simulated changes in mean climate, climate variability and extreme climatic events (i.e., flood-inducing storms, droughts, heat waves, and extreme winds). This includes 1) a present day climate run with dynamic vegetation, 2) a future climate run with dynamic vegetation, and 3) a future climate run with static vegetation (i.e. vegetation fixed at the present day state). RegCM3 and CLM-DGVM are both run at a horizontal grid spacing of 20 km over a region covering the Mediterranean basin and parts of Central Europe and Northern Africa. Results illustrate the importance of including vegetation feedback in predictions of climate change impacts on Mediterranean climate variability, extreme climatic events and storms.

  5. Simulation of Anomalous Regional Climate Events with a Variable Resolution Stretched Grid GCM

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.

    1999-01-01

    The stretched-grid approach provides an efficient down-scaling and consistent interactions between global and regional scales due to using one variable-resolution model for integrations. It is a workable alternative to the widely used nested-grid approach introduced over a decade ago as a pioneering step in regional climate modeling. A variable-resolution General Circulation Model (GCM) employing a stretched grid, with enhanced resolution over the US as the area of interest, is used for simulating two anomalous regional climate events, the US summer drought of 1988 and flood of 1993. The special mode of integration using a stretched-grid GCM and data assimilation system is developed that allows for imitating the nested-grid framework. The mode is useful for inter-comparison purposes and for underlining the differences between these two approaches. The 1988 and 1993 integrations are performed for the two month period starting from mid May. Regional resolutions used in most of the experiments is 60 km. The major goal and the result of the study is obtaining the efficient down-scaling over the area of interest. The monthly mean prognostic regional fields for the stretched-grid integrations are remarkably close to those of the verifying analyses. Simulated precipitation patterns are successfully verified against gauge precipitation observations. The impact of finer 40 km regional resolution is investigated for the 1993 integration and an example of recovering subregional precipitation is presented. The obtained results show that the global variable-resolution stretched-grid approach is a viable candidate for regional and subregional climate studies and applications.

  6. Regional-Scale Climate Change: Observations and Model Simulations

    SciTech Connect

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  7. Regional Climate Studies with Variable-Resolution Stretched-Grid GCMs

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A variable resolution GCM using a global stretched grid with fine resolution over the area(s) of interest, is a viable new approach to regional and subregional climate studies and applications. It is an alternative to the widely used nested grid approach introduced a decade ago as a pioneering step in regional climate modeling. The first version of the SG-GCM based on the GEOS (Goddard Earth Observing System) GCM using a finite-difference approximation, has been developed and thoroughly tested during the last few years. Successful simulations have been performed with the SG-GCM for the anomalous regional climate events of the U.S. 1988 summer drought and 1993 summer flood. They have shown the practical feasibility of the SG-approach for regional climate modeling. The GEOS SG-DAS (Data Assimilation System) incorporating the SG-GCM has also been developed and tested. The assimilated regional fields and diagnostics are used for validating the SG-GCM regional simulations. Two new SG-GCMs are being developed. The first is the SG-version of the new NASANCAR FV-GCM (with the finite-volume (FV) dynamics), and the second is the SG-version of the new GCM with spectral-element dynamics. Both GCMs use the WAR CCM4 physics. Using these advanced numerics will provide increased computational efficiency for the new the SG-GCMs, and will allow us to employ more flexible stretching strategies beneficial for the efficient regional down-scaling. The major current developments are focused on: simulating the 1997-1999 (and beyond) ENSO cycle and related monsoonal circulations, with enhanced regional resolution; studying intraseasonal and interannual regional climate variability for the extended multiyear (AMIP-type) SG-GCM simulations; and studying the impact of ensemble integrations.

  8. Does Nudging Squelch the Extremes in Regional Climate Modeling?

    EPA Science Inventory

    An important question in regional climate downscaling is whether to constrain (nudge) the interior of the limited-area domain toward the larger-scale driving fields. Prior research has demonstrated that interior nudging can increase the skill of regional climate predictions origin...

  9. Impacts of Climate Change on Grain Sorghum Yield in the Ogallala Aquifer Region, USA

    NASA Astrophysics Data System (ADS)

    Paul, G.; Anandhi, A.; Prasad, P.; Staggenborg, S. A.; Gowda, P. H.; Rice, C. W.

    2011-12-01

    The Ogallala aquifer region consists of 232 counties spread over 8 states of United States is facing declining water levels and deteriorating water quality which in turn affects the crop production in these counties. Coupled with the water stress, the changing climatic conditions also has adverse effects on crop production. The objectives of this study was to generate the future scenarios of grain sorghum production in the Ogallala region for plausible future climates. Three RCM's participating in the North American Regional Climate Change Assessment Program (NARCCAP), used in this study are Canadian RCM (CRCM), Regional Climate Model (RegCM3) and the Hadley Regional Model (HRM3). The RCMs were nested within the AOGCMs for the current period 1971-2000 and for the future period 2041-2070 for A2 emission scenario. Grain sorghum yield were simulated across the study region using the CERES-Sorghum model program available in the DSSAT (Decision Support System for Agrotechnology Transfer) crop simulation model suite. Daily data on rainfall, solar radiation, maximum and minimum temperature generated from the RCM were used as meteorological inputs in the current analysis. Grain sorghum hybrid 'Pioneer 8333' planting date and density were set at 5 June and 160,000 plants per hectare respectively. Simulation results show a decrease in the yield of grain sorghum for A2 emission scenario without considering effects of elevated carbon dioxide and changes in genetics. Results of the study provide critical information needed to help decision/policy makers to device long-term strategies to cope with impacts of climate change and variability on water use and crop production for the Ogallala aquifer region.

  10. [Climatic suitability of single cropping rice planting region in China].

    PubMed

    Duan, Ju-Qi; Zhou, Guang-Sheng

    2012-02-01

    To clarify the leading climate factors affecting the distribution of single cropping rice planting region in China at national and annual temporal scales and to reveal the potential distribution and climatic suitability divisions of this planting region in China could not only provide scientific basis for optimizing the allocation of single cropping rice production, modifying planting pattern, and introducing fine varieties, but also ensure the food security of China. In this paper, the potential climate factors affecting the single cropping rice distribution in China at regional and annual scales were selected from related literatures, and the single cropping rice geographic information from the national agro-meteorological observation stations of China Meteorological Administration (CMA), together with the maximum entropy model (MaxEnt) and spatial analyst function of Arc-GIS software, were adopted to clarify the leading climate factors affecting the potential distribution of single cropping rice planting region in China, and to construct a model about the relationships between the potential distribution of the planting region and the climate. The results showed that annual precipitation, moisture index, and days of not less than 18 degrees C stably were the leading climate factors affecting the potential distribution of single cropping rice planting region in China, with their cumulative contribution rate reached 94.5% of all candidate climate factors. The model constructed in this paper could well simulate the potential distribution of single cropping rice planting region in China. According to the appearance frequency, the low, medium and high climatic suitability divisions of single cropping rice planting region in China were clarified, and the climate characteristics of the planting region in each climatic suitability division were analyzed. PMID:22586968

  11. Nesting ecology and reproductive rate of the red-winged blackbird in tidal marshes of the upper Chesapeake Bay region

    USGS Publications Warehouse

    Meanley, B.; Webb, J.S.

    1963-01-01

    The nesting ecology and reproductive rate of the polygynous red-winged blackbird, Agelaius phoeniceus, were studied in the tidal marshes of Maryland during the period of 1958 through 1961. Sixteen nesting colonies were located in six major marsh communities of the Eastern Shore and were visited approximately twice a week from late April to mid-August. The average clutch size for 537 clutches was 3.3 eggs, with a range of 2 to 5 eggs. The ratio of territorial males to nesting females was 1:1.9. There was direct evidence of double broods by four females. The average number of young produced was 4.2 per breeding female or 8.1 per breeding male. Nesting success for the total of 675 active nests was 57%, with a range from 38% to 69% in the colonies. Robust plants that held constant form throughout the nesting season supported 95% of the nests, and the success of these nests was 58%; in contrast, non-robust plants supported only 5% of the nests, and success of this group of nests was only 26%. Nesting success varied with height from ground: 45% for nests less than 2 feet from the ground, 55% for those 2 to 4 feet, and 62% for those more than 4 feet. Histories of 749 nests were summarized by stages: 749 newly built, 675 with eggs, 424 with nestlings, and 388 with fledging young.

  12. Nested PCR to detect and distinguish the sympatric filarial species Onchocerca volvulus, Mansonella ozzardi and Mansonella perstans in the Amazon Region.

    PubMed

    Tang, Thuy-Huong Ta; López-Vélez, Rogelio; Lanza, Marta; Shelley, Anthony John; Rubio, Jose Miguel; Luz, Sérgio Luiz Bessa

    2010-09-01

    We present filaria-nested polymerase chain reaction (PCR), which is based on amplification of first internal transcribed spacer rDNA to distinguish three parasitic filarial species (Onchocerca volvulus, Mansonella ozzardi and Mansonella perstans) that can be found in the Amazon Region. Nested PCR-based identifications yielded the same results as those utilizing morphological characters. Nested PCR is highly sensitive and specific and it detects low-level infections in both humans and vectors. No cross-amplifications were observed with various other blood parasites and no false-positive results were obtained with the nested PCR. The method works efficiently with whole-blood, blood-spot and skin biopsy samples. Our method may thus be suitable for assessing the efficacy of filaria control programmes in Amazonia by recording parasite infections in both the human host and the vector. By specifically differentiating the major sympatric species of filaria, this technique could also enhance epidemiological research in the region. PMID:20945000

  13. Implication of Agricultural Land Use Change on Regional Climate Projection

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.

  14. Mu-opioid receptor densities are depleted in regions implicated in agonistic and sexual behavior in male European starlings (Sturnus vulgaris) defending nest sites and courting females

    PubMed Central

    Kelm, Cynthia A.; Forbes-Lorman, Robin M.; Auger, Catherine J.; Riters, Lauren V.

    2010-01-01

    Social status and resource availability can strongly influence individual behavioral responses to conspecifics. In European starlings, males that acquire nest sites sing in response to females and dominate other males. Males without nest sites sing, but not to females, and they do not interact agonistically with other males. Little is known about the neural regulation of status- or resource-appropriate behavioral responses to conspecifics. Opioid neuropeptides are implicated in birdsong and agonistic behavior, suggesting that opioids may underlie differences in the production of these behaviors in males with and without nest sites. Here, we examined densities of immunolabeled mu-opioid receptors in groups of male starlings. Males that defended nest boxes dominated other males and sang at higher rates when presented with a female than males without nest boxes, independent of testosterone concentrations. Multiple regression analyses showed nest box ownership (not agonistic behavior or singing) predicted the optical density of receptor labeling in the medial bed nucleus of stria terminalis, paraventricular nucleus, ventral tegmental area and the medial preoptic nucleus. Compared to males without nest boxes, males with nest boxes had lower densities of immunolabeled mu-opioid receptors in these regions. Singing additionally predicted the area covered by labeling in the ventral tegmental area. The results suggest that elevated opioid activity in these regions suppresses courtship and agonistic behavioral responses to conspecifics in males without nest boxes. The findings are consistent with a dynamic role for opioid receptors in adjusting social behavior so that it is appropriate given the resources available to an individual. PMID:21147175

  15. Mu-opioid receptor densities are depleted in regions implicated in agonistic and sexual behavior in male European starlings (Sturnus vulgaris) defending nest sites and courting females.

    PubMed

    Kelm, Cynthia A; Forbes-Lorman, Robin M; Auger, Catherine J; Riters, Lauren V

    2011-05-16

    Social status and resource availability can strongly influence individual behavioral responses to conspecifics. In European starlings, males that acquire nest sites sing in response to females and dominate other males. Males without nest sites sing, but not to females, and they do not interact agonistically with other males. Little is known about the neural regulation of status- or resource-appropriate behavioral responses to conspecifics. Opioid neuropeptides are implicated in birdsong and agonistic behavior, suggesting that opioids may underlie differences in the production of these behaviors in males with and without nest sites. Here, we examined densities of immunolabeled mu-opioid receptors in groups of male starlings. Males that defended nest boxes dominated other males and sang at higher rates when presented with a female than males without nest boxes, independent of testosterone concentrations. Multiple regression analyses showed nest box ownership (not agonistic behavior or singing) predicted the optical density of receptor labeling in the medial bed nucleus of stria terminalis, paraventricular nucleus, ventral tegmental area and the medial preoptic nucleus. Compared to males without nest boxes, males with nest boxes had lower densities of immunolabeled mu-opioid receptors in these regions. Singing additionally predicted the area covered by labeling in the ventral tegmental area. The results suggest that elevated opioid activity in these regions suppresses courtship and agonistic behavioral responses to conspecifics in males without nest boxes. The findings are consistent with a dynamic role for opioid receptors in adjusting social behavior so that it is appropriate given the resources available to an individual. PMID:21147175

  16. Building a Regional Collaborative for Climate Literacy

    NASA Astrophysics Data System (ADS)

    Shcherba, O.; Carlton, C.

    2015-12-01

    The San Francisco Bay Area has a strong community of environmental educators with an articulated interest in expanding, elevating, and strengthening climate change programming. Based in this community, a group of educators identified a strong need for and interest in collaborating to increase capacity and knowledge, support pilot testing, and implement climate change best practices in educational and interpretive programs. Since its inception, the Bay Area Climate Literacy Collaborative has brought together over 25 organizations, ranging from wildlife refuges to nonprofit education centers and city park agencies. While still in its nascent phase, the Bay Area Climate Literacy Collaborative exemplifies the power of collective impact. With the backbone support of the Institute at the Golden Gate, the Collaborative has developed a common agenda and is making strides towards developing common measures of success. The initial development stages of this group present an interesting case study and highlight some of the challenges, opportunities, and lessons learned for others seeking to build their own collective impact initiative.

  17. Regional Climate Variations and Change for Terrestrial Ecosystems Workshop Review

    EPA Science Inventory

    North Carolina State University, the University of North Carolina at Chapel Hill, and the U.S. Environmental Protection Agency, in partnership with the U.S. Department of the Interior Southeast Climate Science Center (SECSC), hosted the Regional Climate Variations and Change for ...

  18. A framework for modeling uncertainty in regional climate change

    EPA Science Inventory

    In this study, we present a new modeling framework and a large ensemble of climate projections to investigate the uncertainty in regional climate change over the United States associated with four dimensions of uncertainty. The sources of uncertainty considered in this framework ...

  19. Regional Climate Service in Northern Germany -The North German Climate Office

    NASA Astrophysics Data System (ADS)

    Meinke, I.; Von Storch, H.

    2012-12-01

    The North German Climate Office was established in 2006 at the Institute for Coastal Research at the Helmholtz-Zentrum Geesthacht, Germany as consequence of an increased public information need regarding coastal climate change and its impacts in Northern Germany. The service is characterized by an intensive dialogue between regional climate research and stakeholders in Northern Germany. About once a week scientists of the North German climate office are invited to contribute to public dialogue events. Also numerous direct inquiries are answered and expert interviews are conducted. From this dialogue process specific stakeholder information needs are localized and analysed to develop tailored information products. To provide easy and user specific access to research results interactive web tools are developed. One example is the North German climate atlas, an interactive web tool on possible future climate change in Northern Germany. Another interactive web tool is informing on present and future coastal protection needs in Northern Germany. Another aim of our information products is to assess and summarize the existing scientific knowledge on climate, climate change and impacts in Northern Germany. A mini IPCC-like regional assessment report has been published in 2010, which is summarizing, discussing and assessing the scientific knowledge on regional climate, climate change and impacts as well as possible adaptation strategies in the metropolitan region of Hamburg.

  20. Ensemble-based Regional Climate Prediction: Political Impacts

    NASA Astrophysics Data System (ADS)

    Miguel, E.; Dykema, J.; Satyanath, S.; Anderson, J. G.

    2008-12-01

    Accurate forecasts of regional climate, including temperature and precipitation, have significant implications for human activities, not just economically but socially. Sub Saharan Africa is a region that has displayed an exceptional propensity for devastating civil wars. Recent research in political economy has revealed a strong statistical relationship between year to year fluctuations in precipitation and civil conflict in this region in the 1980s and 1990s. To investigate how climate change may modify the regional risk of civil conflict in the future requires a probabilistic regional forecast that explicitly accounts for the community's uncertainty in the evolution of rainfall under anthropogenic forcing. We approach the regional climate prediction aspect of this question through the application of a recently demonstrated method called generalized scalar prediction (Leroy et al. 2009), which predicts arbitrary scalar quantities of the climate system. This prediction method can predict change in any variable or linear combination of variables of the climate system averaged over a wide range spatial scales, from regional to hemispheric to global. Generalized scalar prediction utilizes an ensemble of model predictions to represent the community's uncertainty range in climate modeling in combination with a timeseries of any type of observational data that exhibits sensitivity to the scalar of interest. It is not necessary to prioritize models in deriving with the final prediction. We present the results of the application of generalized scalar prediction for regional forecasts of temperature and precipitation and Sub Saharan Africa. We utilize the climate predictions along with the established statistical relationship between year-to-year rainfall variability in Sub Saharan Africa to investigate the potential impact of climate change on civil conflict within that region.

  1. Site selection and nest survival of the Bar-Headed Goose (Anser indicus) on the Mongolian Plateau

    USGS Publications Warehouse

    Batbayar, Nyambayar; Takekawa, John Y.; Natsagdorj, Tseveenmyadag; Spragens, Kyle A.; Xiao, Xiamgming

    2014-01-01

    Waterbirds breeding on the Mongolian Plateau in Central Asia must find suitable wetland areas for nesting in a semiarid region characterized by highly variable water conditions. The first systematic nesting study of a waterbird dependent on this region for breeding was conducted on the Bar-headed Goose (Anser indicus). The purpose of this study was to document Bar-headed Goose nesting locations, characterize nests and nesting strategies, and estimate daily nest survival (n = 235 nests) from eight areas of west-central Mongolia across three summers (2009–2011) using a modified Mayfield estimator. Bar-headed Goose daily nest survival ranged from 0.94 to 0.98, with a 3-year average nest success of 42.6% during incubation. Bar-headed Geese were found to primarily nest on isolated pond and lake islands as previously reported, but were also documented regularly, though less frequently, along rocky cliffs in several regions of west-central Mongolia. Daily nest survival was higher for cliff nests than for island nests. Information-theoretic models indicated that nest survival decreased with nest age and varied annually with changing environmental conditions. Results of this study suggest that while Bar-headed Geese primarily rely on nesting island sites these sites may be more susceptible to anthropogenic disturbance and predation events influenced by seasonal variation in environmental conditions, and that higher daily nest survival values documented for the less frequent cliff nest strategy may provide an important alternative strategy during poor island nest success years. Thus, conservation efforts for this and other waterbird species in the semiarid region should be focused on conserving nesting islands and protecting them from disturbance in areas of high livestock densities experiencing a rapidly warming climate.

  2. Regional Climate Predictability in the Extratropics

    SciTech Connect

    Robertson,A.W.:Ghil,M.

    2001-08-09

    The goal of this project was to develop a dynamical framework for extratropical climate predictability on decade-to-century timescales and subcontinental spatial scales,besed on the intraseasonal dynamics of the midlatitude atmosphere and their interaction with the ocean's longer timescales.A two-pronged approach was taken,based on (a)idealized,quasi-geostrophic,coupled models of the midlatitude ocean-atmosphere system,and(b)analysis of GCM results.

  3. Current climate and climate change over India as simulated by the Canadian Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Alexandru, Adelina; Sushama, Laxmi

    2014-09-01

    The performance of the fifth generation of the Canadian Regional Climate Model (CRCM5) in reproducing the main climatic characteristics over India during the southwest (SW)-, post- and pre-monsoon seasons are presented in this article. To assess the performance of CRCM5, European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and Interim re-analysis (ERA-Interim) driven CRCM5 simulation is compared against independent observations and reanalysis data for the 1971-2000 period. Projected changes for two future periods, 2041-2070 and 2071-2100, with respect to the 1971-2000 current period are assessed based on two transient climate change simulations of CRCM5 spanning the 1950-2100 period. These two simulations are driven by the Canadian Earth System Model version 2 (CanESM2) and the Max Planck Institute for Meteorology's Earth System Low Resolution Model (MPI-ESM-LR), respectively. The boundary forcing errors associated with errors in the driving global climate models are also studied by comparing the 1971-2000 period of the CanESM2 and MPI-ESM-LR driven simulations with that of the CRCM5 simulation driven by ERA-40/ERA-Interim. Results show that CRCM5 driven by ERA-40/ERA-Interim is in general able to capture well the temporal and spatial patterns of 2 m-temperature, precipitation, wind, sea level pressure, total runoff and soil moisture over India in comparison with available reanalysis and observations. However, some noticeable differences between the model and observational data were found during the SW-monsoon season within the domain of integration. CRCM5 driven by ERA-40/ERA-Interim is 1-2 °C colder than CRU observations and generates more precipitation over the Western Ghats and central regions of India, and not enough in the northern and north-eastern parts of India and along the Konkan west coast in comparison with the observed precipitation. The monsoon onset seems to be relatively well captured over the southwestern coast of India

  4. Current climate and climate change over India as simulated by the Canadian Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Alexandru, Adelina; Sushama, Laxmi

    2015-08-01

    The performance of the fifth generation of the Canadian Regional Climate Model (CRCM5) in reproducing the main climatic characteristics over India during the southwest (SW)-, post- and pre-monsoon seasons are presented in this article. To assess the performance of CRCM5, European Centre for Medium- Range Weather Forecasts (ECMWF) Re- Analysis (ERA- 40) and Interim re-analysis (ERA-Interim) driven CRCM5 simulation is compared against independent observations and reanalysis data for the 1971-2000 period. Projected changes for two future periods, 2041-2070 and 2071-2100, with respect to the 1971-2000 current period are assessed based on two transient climate change simulations of CRCM5 spanning the 1950-2100 period. These two simulations are driven by the Canadian Earth System Model version 2 (CanESM2) and the Max Planck Institute for Meteorology's Earth System Low Resolution Model (MPI-ESM-LR), respectively. The boundary forcing errors associated with errors in the driving global climate models are also studied by comparing the 1971-2000 period of the CanESM2 and MPI-ESM-LR driven simulations with that of the CRCM5 simulation driven by ERA-40/ERA-Interim. Results show that CRCM5 driven by ERA-40/ERA-Interim is in general able to capture well the temporal and spatial patterns of 2 m-temperature, precipitation, wind, sea level pressure, total runoff and soil moisture over India in comparison with available reanalysis and observations. However, some noticeable differences between the model and observational data were found during the SW-monsoon season within the domain of integration. CRCM5 driven by ERA-40/ERA-Interim is 1-2 °C colder than CRU observations and generates more precipitation over the Western Ghats and central regions of India, and not enough in the northern and north-eastern parts of India and along the Konkan west coast in comparison with the observed precipitation. The monsoon onset seems to be relatively well captured over the southwestern coast of

  5. Influence of land use and climate on wetland breeding birds in the Prairie Pothole region of Canada

    USGS Publications Warehouse

    Forcey, G.M.; Linz, G.M.; Thogmartin, W.E.; Bleier, W.J.

    2007-01-01

    Bird populations are influenced by a variety of factors at both small and large scales that range from the presence of suitable nesting habitat, predators, and food supplies to climate conditions and land-use patterns. We evaluated the influences of regional climate and land-use variables on wetland breeding birds in the Canada section of Bird Conservation Region 11 (CA-BCR11), the Prairie Potholes. We used bird abundance data from the North American Breeding Bird Survey, land-use data from the Prairie Farm Rehabilitation Administration, and weather data from the National Climatic Data and Information Archive to model effects of regional environmental variables on bird abundance. Models were constructed a priori using information from published habitat associations in the literature, and fitting was performed with WinBUGS using Markov chain Monte Carlo techniques. Both land-use and climate variables contributed to predicting bird abundance in CA-BCR11, although climate predictors contributed the most to improving model fit. Examination of regional effects of climate and land use on wetland birds in CA-BCR11 revealed relationships with environmental covariates that are often overlooked by small-scale habitat studies. Results from these studies can be used to improve conservation and management planning for regional populations of avifauna. ?? 2007 NRC.

  6. Nesting Instincts.

    ERIC Educational Resources Information Center

    Greenman, Geri

    2003-01-01

    Describes an art project where beginning drawing students used values and chiaroscuro techniques to draw bird nests. Explains how the students observed the nest that was displayed in the art classroom. Discusses the steps involved in creating the artworks. (CMK)

  7. Regional Scale Analyses of Climate Change Impacts on Agriculture

    NASA Astrophysics Data System (ADS)

    Wolfe, D. W.; Hayhoe, K.

    2006-12-01

    New statistically downscaled climate modeling techniques provide an opportunity for improved regional analysis of climate change impacts on agriculture. Climate modeling outputs can often simultaneously meet the needs of those studying impacts on natural as well as managed ecosystems. Climate outputs can be used to drive existing forest or crop models, or livestock models (e.g., temperature-humidity index model predicting dairy milk production) for improved information on regional impact. High spatial resolution climate forecasts, combined with knowledge of seasonal temperatures or rainfall constraining species ranges, can be used to predict shifts in suitable habitat for invasive weeds, insects, and pathogens, as well as cash crops. Examples of climate thresholds affecting species range and species composition include: minimum winter temperature, duration of winter chilling (vernalization) hours (e.g., hours below 7.2 C), frost-free period, and frequency of high temperature stress days in summer. High resolution climate outputs can also be used to drive existing integrated pest management models predicting crop insect and disease pressure. Collectively, these analyses can be used to test hypotheses or provide insight into the impact of future climate change scenarios on species range shifts and threat from invasives, shifts in crop production zones, and timing and regional variation in economic impacts.

  8. A hybrid approach to improving the skills of seasonal climate outlook at the regional scale

    NASA Astrophysics Data System (ADS)

    Liu, Shuyan; Wang, Julian X. L.; Liang, Xin-Zhong; Morris, Vernon

    2016-01-01

    A hybrid seasonal forecasting approach was generated by the National Centers for Environmental Prediction operational Climate Forecast System (CFS) and its nesting Climate extension of Weather Research and Forecasting (CWRF) model to improve forecasting skill over the United States. Skills for the three summers of 2011-2013 were evaluated regarding location, timing, magnitude, and frequency. Higher spatial pattern correlation coefficients showed that the hybrid approach substantially improved summer mean precipitation and 2-m temperature geographical distributions compared with the results of the CFS and CWRF models. The area mean temporal correlation coefficients demonstrated that the hybrid approach also consistently improved the timing prediction skills for both variables. In general, the smaller root mean square errors indicated that the hybrid approach reduced the magnitude of the biases for both precipitation and temperature. The greatest improvements were achieved when the individual models had similar skills. The comparison with a North American multi-model ensemble further proved the feasibility of improving real-time seasonal forecast skill by using the hybrid approach, especially for heavy rain forecasting. Based on the complementary advantages of CFS the global model and CWRF the nesting regional model, the hybrid approach showed a substantial enhancement over CFS real-time forecasts during the summer. Future works are needed for further improving the quality of the hybrid approach through CWRF's optimized physics ensemble, which has been proven to be feasible and reliable.

  9. Attributing regional effects of the 2014 Jordanian extreme drought to external climate drivers

    NASA Astrophysics Data System (ADS)

    Bergaoui, Karim; Mitchell, Dann; Zaaboul, Rashyd; Otto, Friederike; McDonnell, Rachael; Dadson, Simon; Allen, Myles

    2015-04-01

    Throughout 2014, the regions of Jordan, Israel, Lebanon and Syria have experienced a persistent draught with clear impacts on the local populations. In this study we perform an extreme event attribution analysis of how such a draught has changed under climate change, with a specific focus on the flow rate of the Upper Jordan river and the water level of Lake Tiberious (AKA the Sea of Galilee). Both of which hold major societal, political and religious importance. To perform the analysis we make use of distributed computing power to run thousands of modelled years of 2014 with slightly different initial conditions. We use an atmosphere only model (HadAM3p) with a nested 50 km regional model covering Africa and the Middle East. The 50 km model atmospheric variables will be used directly to force offline our 1 km LIS surface model. Two separate experiments and simulations are performed, 1. for all known climate forcings that are present in 2014, and 2. for a naturalised 2014 scenario where we assume humans never impacted the climate. We perform sensitivity analyses on the observed precipitation over the regions of interest, and determine that the TRMM data is in good agreement with station data obtained from the Jordanian Ministry of Water. Using a combination of the TRMM and model data we are able to make clear statements on the attribution of a 2014-like extreme draught event to human causal factors.

  10. Impacts on regional climate of Amazon deforestation

    SciTech Connect

    Dickinson, R.E.; Kennedy, P. NCAR, Boulder, CO )

    1992-10-01

    A simulation of the climate response to Amazon deforestation has been carried out. Precipitation is decreased on the average by 25 percent or 1.4 mm/day, with ET and runoff both decreasing by 0.7 mm/day. Modifications of surface energy balance through change of albedo and roughness are complicated by cloud feedbacks. The initial decrease of the absorption of solar radiation by higher surface albedos is largely cancelled by a reduction in cloud cover, but consequent reduction in downward longwave has a substantial impact on surface energy balance. Smoke aerosols might have an effect comparable to deforestation during burning season. 8 refs.

  11. Regional climate model performance in the Lake Victoria basin

    NASA Astrophysics Data System (ADS)

    Williams, Karina; Chamberlain, Jill; Buontempo, Carlo; Bain, Caroline

    2015-03-01

    Lake Victoria, the second largest freshwater lake in the world, plays a crucial role in the hydrology of equatorial eastern Africa. Understanding how climate change may alter rainfall and evaporation patterns is thus of vital importance for the economic development and the livelihood of the region. Regional rainfall distribution appears, up to a large extent, to be controlled by local drivers which may be not well resolved in general circulation model simulations. We investigate the performance over the Lake Victoria basin of an ensemble of UK Met Office Hadley Centre regional climate model (HadRM3P) simulations at 50 km, driven by five members of the Hadley Centre global perturbed-physics ensemble (QUMP). This is part of the validation of an ensemble of simulations that has been used to assess the impacts of climate change over the continent over the period 1950-2099. We find that the regional climate model is able to simulate a lake/land breeze over Lake Victoria, which is a significant improvement over the driving global climate model and a vital step towards reproducing precipitation characteristics in the region. The local precipitation correlates well with large-scale processes in the Pacific Ocean and Indian Ocean, which is in agreement with observations. We find that the spatial pattern of precipitation in the region and the diurnal cycle of convection is well represented although the amount of rainfall over the lake appears to be overestimated in most seasons. Reducing the observational uncertainty in precipitation over the lake through future field campaigns would enable this model bias to be better quantified. We conclude that increasing the spatial resolution of the model significantly improves its ability to simulate the current climate of the Lake Victoria basin. We suggest that, despite the higher computational costs, the inclusion of a model which allows two-way interactions between the lake and its surroundings should be seriously considered for

  12. Size matters: nest colonization patterns for twig-nesting ants.

    PubMed

    Jiménez-Soto, Estelí; Philpott, Stacy M

    2015-08-01

    Understanding the drivers of ant diversity and co-occurrence in agroecosystems is fundamental because ants participate in interactions that influence agroecosystem processes. Multiple local and regional factors influence ant community assembly.We examined local factors that influence the structure of a twig-nesting ant community in a coffee system in Mexico using an experimental approach. We investigated whether twig characteristics (nest entrance size and diversity of nest entrance sizes) and nest strata (canopy shade tree or coffee shrub) affected occupation, species richness, and community composition of twig-nesting ants and whether frequency of occupation of ant species varied with particular nest entrance sizes or strata.We conducted our study in a shaded coffee farm in Chiapas, Mexico, between March and June 2012. We studied ant nest colonization by placing artificial nests (bamboo twigs) on coffee shrubs and shade trees either in diverse or uniform treatments. We also examined whether differences in vegetation (no. of trees, canopy cover and coffee density) influenced nest colonization.We found 33 ant species occupying 73% of nests placed. Nest colonization did not differ with nest strata or size. Mean species richness of colonizing ants was significantly higher in the diverse nest size entrance treatment, but did not differ with nest strata. Community composition differed between strata and also between the diverse and uniform size treatments on coffee shrubs, but not on shade trees. Some individual ant species were more frequently found in certain nest strata and in nests with certain entrance sizes.Our results indicate that twig-nesting ants are nest-site limited, quickly occupy artificial nests of many sizes, and that trees or shrubs with twigs of a diversity of entrance sizes likely support higher ant species richness. Further, individual ant species more frequently occupy nests with different sized entrances promoting ant richness on individual coffee

  13. Size matters: nest colonization patterns for twig-nesting ants

    PubMed Central

    Jiménez-Soto, Estelí; Philpott, Stacy M

    2015-01-01

    Understanding the drivers of ant diversity and co-occurrence in agroecosystems is fundamental because ants participate in interactions that influence agroecosystem processes. Multiple local and regional factors influence ant community assembly. We examined local factors that influence the structure of a twig-nesting ant community in a coffee system in Mexico using an experimental approach. We investigated whether twig characteristics (nest entrance size and diversity of nest entrance sizes) and nest strata (canopy shade tree or coffee shrub) affected occupation, species richness, and community composition of twig-nesting ants and whether frequency of occupation of ant species varied with particular nest entrance sizes or strata. We conducted our study in a shaded coffee farm in Chiapas, Mexico, between March and June 2012. We studied ant nest colonization by placing artificial nests (bamboo twigs) on coffee shrubs and shade trees either in diverse or uniform treatments. We also examined whether differences in vegetation (no. of trees, canopy cover and coffee density) influenced nest colonization. We found 33 ant species occupying 73% of nests placed. Nest colonization did not differ with nest strata or size. Mean species richness of colonizing ants was significantly higher in the diverse nest size entrance treatment, but did not differ with nest strata. Community composition differed between strata and also between the diverse and uniform size treatments on coffee shrubs, but not on shade trees. Some individual ant species were more frequently found in certain nest strata and in nests with certain entrance sizes. Our results indicate that twig-nesting ants are nest-site limited, quickly occupy artificial nests of many sizes, and that trees or shrubs with twigs of a diversity of entrance sizes likely support higher ant species richness. Further, individual ant species more frequently occupy nests with different sized entrances promoting ant richness on individual

  14. Nesting ecology and nest survival of lesser prairie-chickens on the Southern High Plains of Texas

    USGS Publications Warehouse

    Grisham, Blake A.; Borsdorf, Philip K.; Boal, Clint W.; Boydston, Kathy K.

    2014-01-01

    The decline in population and range of lesser prairie-chickens (Tympanuchus pallidicinctus) throughout the central and southern Great Plains has raised concerns considering their candidate status under the United States Endangered Species Act. Baseline ecological data for lesser prairie-chickens are limited, especially for the shinnery oak-grassland communities of Texas. This information is imperative because lesser prairie-chickens in shinnery oak grasslands occur at the extreme southwestern edge of their distribution. This geographic region is characterized by hot, arid climates, less fragmentation, and less anthropogenic development than within the remaining core distribution of the species. Thus, large expanses of open rangeland with less anthropogenic development and a climate that is classified as extreme for ground nesting birds may subsequently influence nest ecology, nest survival, and nest site selection differently compared to the rest of the distribution of the species. We investigated the nesting ecology of 50 radio-tagged lesser prairie-chicken hens from 2008 to 2011 in the shinnery oak-grassland communities in west Texas and found a substantial amount of inter-annual variation in incubation start date and percent of females incubating nests. Prairie-chickens were less likely to nest near unimproved roads and utility poles and in areas with more bare ground and litter. In contrast, hens selected areas dominated by grasses and shrubs and close to stock tanks to nest. Candidate models including visual obstruction best explained daily nest survival; a 5% increase in visual obstruction improved nest survival probability by 10%. The model-averaged probability of a nest surviving the incubation period was 0.43 (SE = 0.006; 95% CI: 0.23, 0.56). Our findings indicate that lesser prairie-chicken reproduction during our study period was dynamic and was correlated with seasonal weather patterns that ultimately promoted greater grass growth earlier in the

  15. Modeled regional climate change and California endemic oak ranges.

    PubMed

    Kueppers, Lara M; Snyder, Mark A; Sloan, Lisa C; Zavaleta, Erika S; Fulfrost, Brian

    2005-11-01

    In the coming century, anthropogenic climate change will threaten the persistence of restricted endemic species, complicating conservation planning. Although most efforts to quantify potential shifts in species' ranges use global climate model (GCM) output, regional climate model (RCM) output may be better suited to predicting shifts by restricted species, particularly in regions with complex topography or other regionally important climate-forcing factors. Using a RCM-based future climate scenario, we found that potential ranges of two California endemic oaks, Quercus douglasii and Quercus lobata, shrink considerably (to 59% and 54% of modern potential range sizes, respectively) and shift northward. This result is markedly different from that obtained by using a comparable GCM-based scenario, under which these species retain 81% and 73% of their modern potential range sizes, respectively. The difference between RCM- and GCM-based scenarios is due to greater warming and larger precipitation decreases during the growing season predicted by the RCM in these species' potential ranges. Based on the modeled regional climate change, <50% of protected land area currently containing these species is expected to contain them under a future midrange "business-as-usual" path of greenhouse gas emissions.

  16. Atmospheric and Climate Aspects of Russian Regions Sustainability

    NASA Astrophysics Data System (ADS)

    Golitsyn, G. S.; Dubovsky, S. V.; Ginzburg, A. S.; Mokhov, I. I.; Khomyakov, P. M.

    Russia is one of the first countries created the national program of sustainable devel- opment. The Presidential Decree SOn the national strategy of the Russian Federation & cedil;in the environment protection and sustainable developmentT was issued by in 1994. Atmospheric and climate aspects play very important roles in the sustainable devel- opment at the regional level in Russia as well as at national one. Last year Russian Academy of Sciences in collaboration with some leaders of the local Russian au- thorities started the Project SSustainable development of Russia and its regionsT. In & cedil; this project the problems of Russian socio-economical development are considered together with regional atmospheric and climate changes, environmental and natural resources, population, urbanization, energetic and new technology development, and so on. The main problems of Russian regions socio-economical development related to global and local climate changes, environmental and natural resources, urbanization will be discussed.

  17. Potential climatic impacts of vegetation change: A regional modeling study

    USGS Publications Warehouse

    Copeland, J.H.; Pielke, R.A.; Kittel, T.G.F.

    1996-01-01

    The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage. Copyright 1996 by the American Geophysical Union.

  18. Variable-Resolution GCMs for Regional Climate Modeling: Stretched-Grid Model Intercomparison Project (SGMIP)

    NASA Astrophysics Data System (ADS)

    Fox-Rabinovitz, M.; Cote, J.; Dugas, B.; Deque, M.; McGregor, J.

    2006-05-01

    Variable-resolution GCMs using a global stretched grid (SG) with enhanced resolution over the region(s) of interest have proven to be an established approach to regional climate modeling providing an efficient regional down-scaling to mesoscales. This approach has been used since the early-mid 90s by the French, U.S., Canadian, Australian and other climate modeling groups along with the widely-used nested-grid approach. The important advantages of SG-GCMs are that they do not require any lateral boundary conditions/forcing and are free of the associated undesirable computational problems. SG-GCMs provide self-consistent interactions between global and regional scales, while a high quality of global circulation is preserved. The international SGMIP-1 (Stretched-Grid Model Intercomparison Project, phase-1), using SG-GCMs developed at the major centers/groups in Australia, Canada, France, and the U.S., has been successfully conducted in 2002-2005. The results of the 12-year (1987-1998) climate simulations for a major part of North America are available at the SGMIP web site: http://essic.umd.edu/~foxrab/sgmip.html, and are described in [1]. The multi-model SGMIP-1 regional climate simulations were conducted with enhanced 0.45 - 0.5 degree regional resolution for SG-GCMs, with the same or a similar number of global grid points as in a 1 x 1 degree global grid. The SGMIP-1 SG-GCM simulations were analyzed in terms of studying the impact of high regional resolution on efficient downscaling to realistic mesoscales and regional climate variability. We focused mostly on studying the quality of the multi-model ensemble results. The SGMIP-1 multi-model ensemble results for the region compare well with reanalysis and observations, in terms of spatial and temporal diagnostics. The next SGMIP phase, SGMIP-2 (phase-2), includes comparisons of high resolution stretched and uniform grid GCMs. These SGMIP-2 experiments provide the possibility for a comprehensive analysis of enhanced

  19. Sensitivity of the climate response to regional aerosol emissions

    NASA Astrophysics Data System (ADS)

    Kasoar, Matthew; Voulgarakis, Apostolos; Shindell, Drew; Lamarque, Jean-Francois; Shawki, Dilshad

    2015-04-01

    Short-lived emissions like aerosols and their precursors have inhomogeneous distributions in the atmosphere. As a result, aerosol radiative forcing of the climate is highly uneven, and depends on both the location of emission as well as circulation patterns. Unlike well-mixed greenhouse gases such as CO2, the climate response to aerosol forcing may therefore be very dependent on the source region, and so understanding how the sensitivity of the climate varies with emission and forcing location has implications for the design of policy regarding short-lived climate forcers, as well as for understanding the coupling between radiative forcing and climate response. Using the UK Met Office's HadGEM3 composition-climate model, we have performed a series of experiments to investigate the climate response to aerosol species from different key anthropogenic emission regions, in particular East Asia, South Asia, the USA, and the whole northern mid-latitude band. Recent results from these simulations will be presented, focusing in particular on the patterns of climate forcing due to Asian anthropogenic emissions, and the resulting responses in surface temperature and precipitation. Large-scale circulation changes, driven by regional temperature gradients, are found to play an important role in explaining the observed climate responses, which can be substantial even in in parts of the world far from the location of the forcing. The correct magnitude of aerosol forcing remains, however, one of the greatest uncertainties in our current understanding of anthropogenic influences on climate. Aerosol radiative forcing varies considerably between different composition-climate models, and to explore the implications of this for climate responses we use the GISS Model-E2 and NCAR CESM1 models in addition to HadGEM3. These reveal a remarkable variation in the simulated climate response as a result of differences in the radiative forcing from identical perturbations to regional sulphate

  20. Regional Climate Model Projections for the State of Washington

    SciTech Connect

    Salathe, E.; Leung, Lai-Yung R.; Qian, Yun; Zhang, Yongxin

    2010-05-05

    Global climate models do not have sufficient spatial resolution to represent the atmospheric and land surface processes that determine the unique regional heterogeneity of the climate of the State of Washington. If future large-scale weather patterns interact differently with the local terrain and coastlines than current weather patterns, local changes in temperature and precipitation could be quite different from the coarse-scale changes projected by global models. Regional climate models explicitly simulate the interactions between the large-scale weather patterns simulated by a global model and the local terrain. We have performed two 100-year climate simulations using the Weather and Research Forecasting (WRF) model developed at the National Center for Atmospheric Research (NCAR). One simulation is forced by the NCAR Community Climate System Model version 3 (CCSM3) and the second is forced by a simulation of the Max Plank Institute, Hamburg, global model (ECHAM5). The mesoscale simulations produce regional changes in snow cover, cloudiness, and circulation patterns associated with interactions between the large-scale climate change and the regional topography and land-water contrasts. These changes substantially alter the temperature and precipitation trends over the region relative to the global model result or statistical downscaling. To illustrate this effect, we analyze the changes from the current climate (1970-1999) to the mid 21st century (2030-2059). Changes in seasonal-mean temperature, precipitation, and snowpack are presented. Several climatological indices of extreme daily weather are also presented: precipitation intensity, fraction of precipitation occurring in extreme daily events, heat wave frequency, growing season length, and frequency of warm nights. Despite somewhat different changes in seasonal precipitation and temperature from the two regional simulations, consistent results for changes in snowpack and extreme precipitation are found in

  1. High resolution simulations of aerosol microphysics in a global and regionally nested chemical transport model

    NASA Astrophysics Data System (ADS)

    Adams, P. J.; Marks, M.

    2015-12-01

    The aerosol indirect effect is the largest source of forcing uncertainty in current climate models. This effect arises from the influence of aerosols on the reflective properties and lifetimes of clouds, and its magnitude depends on how many particles can serve as cloud droplet formation sites. Assessing levels of this subset of particles (cloud condensation nuclei, or CCN) requires knowledge of aerosol levels and their global distribution, size distributions, and composition. A key tool necessary to advance our understanding of CCN is the use of global aerosol microphysical models, which simulate the processes that control aerosol size distributions: nucleation, condensation/evaporation, and coagulation. Previous studies have found important differences in CO (Chen, D. et al., 2009) and ozone (Jang, J., 1995) modeled at different spatial resolutions, and it is reasonable to believe that short-lived, spatially-variable aerosol species will be similarly - or more - susceptible to model resolution effects. The goal of this study is to determine how CCN levels and spatial distributions change as simulations are run at higher spatial resolution - specifically, to evaluate how sensitive the model is to grid size, and how this affects comparisons against observations. Higher resolution simulations are necessary supports for model/measurement synergy. Simulations were performed using the global chemical transport model GEOS-Chem (v9-02). The years 2008 and 2009 were simulated at 4ox5o and 2ox2.5o globally and at 0.5ox0.667o over Europe and North America. Results were evaluated against surface-based particle size distribution measurements from the European Supersites for Atmospheric Aerosol Research project. The fine-resolution model simulates more spatial and temporal variability in ultrafine levels, and better resolves topography. Results suggest that the coarse model predicts systematically lower ultrafine levels than does the fine-resolution model. Significant

  2. Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region

    NASA Astrophysics Data System (ADS)

    Teutschbein, Claudia; Grabs, Thomas; Karlsen, Reinert H.; Laudon, Hjalmar; Bishop, Kevin

    2016-04-01

    It has long been recognized that streamflow-generating processes are not only dependent on climatic conditions, but also affected by physical catchment properties such as topography, geology, soils and land cover. We hypothesize that these landscape characteristics do not only lead to highly variable hydrologic behavior of rather similar catchments under the same stationary climate conditions (Karlsen et al., 2014), but that they also play a fundamental role for the sensitivity of a catchment to a changing climate (Teutschbein et al., 2015). A multi-model ensemble based on 15 regional climate models was combined with a multi-catchment approach to explore the hydrologic sensitivity of 14 partially nested and rather similar catchments in Northern Sweden to changing climate conditions and the importance of small-scale spatial variability. Current (1981-2010) and future (2061-2090) streamflow was simulated with the HBV model. As expected, projected increases in temperature and precipitation resulted in increased total available streamflow, with lower spring and summer flows, but substantially higher winter streamflow. Furthermore, significant changes in flow durations with lower chances of both high and low flows can be expected in boreal Sweden in the future. This overall trend in projected streamflow pattern changes was comparable among the analyzed catchments while the magnitude of change differed considerably. This suggests that catchments belonging to the same region can show distinctly different degrees of hydrological responses to the same external climate change signal. We reason that differences in spatially distributed physical catchment properties at smaller scales are not only of great importance for current streamflow behavior, but also play a major role as first-order control for the sensitivity of catchments to changing climate conditions. References Karlsen, R.H., T. Grabs, K. Bishop, H. Laudon, and J. Seibert (2014). Landscape controls on

  3. Direct and Indirect ENSO Influences on Regional Climate

    NASA Astrophysics Data System (ADS)

    Wu, Renguang

    2016-04-01

    El Niño-Southern Oscillation (ENSO) is one of the strongest signals in the tropics and imposes large influences on climate in many regions, such as the Indian summer monsoon, central American precipitation, and the South China Sea precipitation. ENSO affects regional climate variability both directly and indirectly. The direct influence is through concurrent atmospheric circulation response to anomalous heating associated with equatorial central and eastern Pacific SST anomalies. The indirect influence is by first inducing regional SST anomalies through the so-called "atmospheric bridge" and then atmospheric circulation response to the regional SST anomalies. Previous studies are either focused on the direct influence of ENSO via concurrent atmospheric change or the indirect influence of ENSO via regional SST anomalies. In this talk, the presenter will distinguish the direct and indirect influences of ENSO and demonstrate how the two types of influences may play together in leading to regional climate variability. Summer climate anomalies in three regions will be used for illustration: the Indian summer monsoon, central American summer precipitation, and the South China Sea summer precipitation.

  4. Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models

    NASA Astrophysics Data System (ADS)

    Renault, Lionel; Vizoso, Guillermo; Jansá, Agustin; Wilkin, John; Tintoré, Joaquin

    2011-05-01

    Meteotsunamis are oceanic waves that possess tsunami-like characteristics but are meteorological in origin. In the western Mediterranean, travelling atmospheric pressure oscillations generate these long oceanic surface waves that can become amplified and produce strong seiche oscillations inside harbors. We analyze a June 2006 meteotsunami event in Ciutadella harbor (Menorca Island, Spain), studying numerically the phenomenon during its full life cycle, from the early atmospheric stages to the atmosphere-ocean resonant phase and the final highly amplified harbor oscillation. The Weather Research Forecast (WRF) atmospheric model adequately reproduces the development of a convective nucleus and also reproduces the induced atmospheric pressure oscillations moving at a speed of 27 m/s. The oceanic response is studied using the Regional Ocean Modeling System (ROMS), forced by the WRF pressure field. It shows an inverse barometer wave front in the open ocean progressively amplified through resonant interactions in the different shelf and coastal regions. The predictive capability of this new WRF/ROMS modeling approach is then discussed.

  5. Projections of African drought extremes in CORDEX regional climate simulations

    NASA Astrophysics Data System (ADS)

    Gbobaniyi, Emiola; Nikulin, Grigory; Jones, Colin; Kjellström, Erik

    2013-04-01

    We investigate trends in drought extremes for different climate regions of the African continent over a combined historical and future period 1951-2100. Eight CMIP5 coupled atmospheric global climate models (CanESM2, CNRM-CM5, HadGEM2-ES, NorESM1-M, EC-EARTH, MIROC5, GFDL-ESM2M and MPI-ESM-LR) under two forcing scenarios, the relative concentration pathways (RCP) 4.5 and 8.5, with spatial resolution varying from about 1° to 3° are downscaled to 0.44° resolution by the Rossby Centre (SMHI) regional climate model RCA4. We use data from the ensuing ensembles of CORDEX-Africa regional climate simulations to explore three drought indices namely: standardized precipitation index (SPI), moisture index (MI) and difference in precipitation and evaporation (P-E). Meteorological and agricultural drought conditions are assessed in our analyses and a climate change signal is obtained for the SPI by calculating gamma functions for future SPI with respect to a baseline present climate. Results for the RCP4.5 and RCP8.5 scenarios are inter-compared to assess uncertainties in the future projections. We show that there is a pronounced sensitivity to the choice of forcing GCM which indicates that assessments of future drought conditions in Africa would benefit from large model ensembles. We also note that the results are sensitive to the choice of drought index. We discuss both spatial and temporal variability of drought extremes for different climate zones of Africa and the importance of the ensemble mean. Our study highlights the usefulness of CORDEX simulations in identifying possible future impacts of climate at local and regional scales.

  6. The Rufous Hornero (Furnarius rufus) nest as an incubation chamber.

    PubMed

    Shibuya, Felipe L S; Braga, Talita V; Roper, James J

    2015-01-01

    Foraging and incubation are mutually exclusive activities for parent birds. A trade-off is generated when a combination of food availability and temperature regulation force birds to choose one and neglect the other, at least temporarily. The Rufous Hornero builds large, oven-like, mud nests, the evolutionary cause of which remains unknown. We tested that temperature variation inside the nest is that which is expected if one function of the nest were for temperate regulation. If so, this would suggest that the nest works as an incubation chamber (but which now may serve more than one function). We divided nests into two natural treatments: nests that received more continuous direct sunshine (sun), and those that received less direct sunshine, due to shade from trees or buildings (shade). Thermometer data loggers were placed in the nest cavity and outside, in the shade of the nest, and temperature was measured every 10min. We predicted that temperatures would consistently be higher and less variable in nests than outside nests. Also, at higher ambient temperatures the nest would function better as an incubation chamber as a consequence of having evolved in a hotter climate. Thus, in Curitiba, where temperatures are lower than where the species (and nest) evolved, nests in greater sunshine should have thermal characteristics that support the incubation chamber hypothesis. Predictions were supported: with Repeated Measures ANOVA and t-tests, we found that temperatures were more constant and higher in nests, especially when in the sun, and as the season progressed (hotter ambient temperatures). We conclude that the large mud nest of the Rufous Hornero works as an incubation chamber that likely evolved to help resolve the incubation-foraging trade-off in the very seasonal and hot regions where the bird evolved. Thus, as an incubation chamber, the nest allows the bird to forage rather than incubate thereby resolving the foraging-incubation trade-off and potentially

  7. The Rufous Hornero (Furnarius rufus) nest as an incubation chamber.

    PubMed

    Shibuya, Felipe L S; Braga, Talita V; Roper, James J

    2015-01-01

    Foraging and incubation are mutually exclusive activities for parent birds. A trade-off is generated when a combination of food availability and temperature regulation force birds to choose one and neglect the other, at least temporarily. The Rufous Hornero builds large, oven-like, mud nests, the evolutionary cause of which remains unknown. We tested that temperature variation inside the nest is that which is expected if one function of the nest were for temperate regulation. If so, this would suggest that the nest works as an incubation chamber (but which now may serve more than one function). We divided nests into two natural treatments: nests that received more continuous direct sunshine (sun), and those that received less direct sunshine, due to shade from trees or buildings (shade). Thermometer data loggers were placed in the nest cavity and outside, in the shade of the nest, and temperature was measured every 10min. We predicted that temperatures would consistently be higher and less variable in nests than outside nests. Also, at higher ambient temperatures the nest would function better as an incubation chamber as a consequence of having evolved in a hotter climate. Thus, in Curitiba, where temperatures are lower than where the species (and nest) evolved, nests in greater sunshine should have thermal characteristics that support the incubation chamber hypothesis. Predictions were supported: with Repeated Measures ANOVA and t-tests, we found that temperatures were more constant and higher in nests, especially when in the sun, and as the season progressed (hotter ambient temperatures). We conclude that the large mud nest of the Rufous Hornero works as an incubation chamber that likely evolved to help resolve the incubation-foraging trade-off in the very seasonal and hot regions where the bird evolved. Thus, as an incubation chamber, the nest allows the bird to forage rather than incubate thereby resolving the foraging-incubation trade-off and potentially

  8. Protecting health from climate change in the WHO European Region.

    PubMed

    Wolf, Tanja; Martinez, Gerardo Sanchez; Cheong, Hae-Kwan; Williams, Eloise; Menne, Bettina

    2014-06-01

    "How far are we in implementing climate change and health action in the WHO European Region?" This was the question addressed to representatives of WHO European Member States of the working group on health in climate change (HIC). Twenty-two Member States provided answers to a comprehensive questionnaire that focused around eight thematic areas (Governance; Vulnerability, impact and adaptation (health) assessments; Adaptation strategies and action plans; Climate change mitigation; Strengthening health systems; Raising awareness and building capacity; Greening health services; and Sharing best practices). Strong areas of development are climate change vulnerability and impact assessments, as well as strengthening health systems and awareness raising. Areas where implementation would benefit from further action are the development of National Health Adaptation Plans, greening health systems, sharing best practice and reducing greenhouse gas emissions in other sectors. At the Parma Conference in 2010, the European Ministerial Commitment to Act on climate change and health and the European Regional Framework for Action to protect health from climate change were endorsed by fifty three European Member States. The results of this questionnaire are the most comprehensive assessment so far of the progress made by WHO European Member States to protecting public health from climate change since the agreements in Parma and the World Health Assembly Resolution in 2008.

  9. Regional projections of North Indian climate for adaptation studies.

    PubMed

    Mathison, Camilla; Wiltshire, Andrew; Dimri, A P; Falloon, Pete; Jacob, Daniela; Kumar, Pankaj; Moors, Eddy; Ridley, Jeff; Siderius, Christian; Stoffel, Markus; Yasunari, T

    2013-12-01

    Adaptation is increasingly important for regions around the world where large changes in climate could have an impact on populations and industry. The Brahmaputra-Ganges catchments have a large population, a main industry of agriculture and a growing hydro-power industry, making the region susceptible to changes in the Indian Summer Monsoon, annually the main water source. The HighNoon project has completed four regional climate model simulations for India and the Himalaya at high resolution (25km) from 1960 to 2100 to provide an ensemble of simulations for the region. In this paper we have assessed the ensemble for these catchments, comparing the simulations with observations, to give credence that the simulations provide a realistic representation of atmospheric processes and therefore future climate. We have illustrated how these simulations could be used to provide information on potential future climate impacts and therefore aid decision-making using climatology and threshold analysis. The ensemble analysis shows an increase in temperature between the baseline (1970-2000) and the 2050s (2040-2070) of between 2 and 4°C and an increase in the number of days with maximum temperatures above 28°C and 35°C. There is less certainty for precipitation and runoff which show considerable variability, even in this relatively small ensemble, spanning zero. The HighNoon ensemble is the most complete data for the region providing useful information on a wide range of variables for the regional climate of the Brahmaputra-Ganges region, however there are processes not yet included in the models that could have an impact on the simulations of future climate. We have discussed these processes and show that the range from the HighNoon ensemble is similar in magnitude to potential changes in projections where these processes are included. Therefore strategies for adaptation must be robust and flexible allowing for advances in the science and natural environmental changes.

  10. Regional projections of North Indian climate for adaptation studies.

    PubMed

    Mathison, Camilla; Wiltshire, Andrew; Dimri, A P; Falloon, Pete; Jacob, Daniela; Kumar, Pankaj; Moors, Eddy; Ridley, Jeff; Siderius, Christian; Stoffel, Markus; Yasunari, T

    2013-12-01

    Adaptation is increasingly important for regions around the world where large changes in climate could have an impact on populations and industry. The Brahmaputra-Ganges catchments have a large population, a main industry of agriculture and a growing hydro-power industry, making the region susceptible to changes in the Indian Summer Monsoon, annually the main water source. The HighNoon project has completed four regional climate model simulations for India and the Himalaya at high resolution (25km) from 1960 to 2100 to provide an ensemble of simulations for the region. In this paper we have assessed the ensemble for these catchments, comparing the simulations with observations, to give credence that the simulations provide a realistic representation of atmospheric processes and therefore future climate. We have illustrated how these simulations could be used to provide information on potential future climate impacts and therefore aid decision-making using climatology and threshold analysis. The ensemble analysis shows an increase in temperature between the baseline (1970-2000) and the 2050s (2040-2070) of between 2 and 4°C and an increase in the number of days with maximum temperatures above 28°C and 35°C. There is less certainty for precipitation and runoff which show considerable variability, even in this relatively small ensemble, spanning zero. The HighNoon ensemble is the most complete data for the region providing useful information on a wide range of variables for the regional climate of the Brahmaputra-Ganges region, however there are processes not yet included in the models that could have an impact on the simulations of future climate. We have discussed these processes and show that the range from the HighNoon ensemble is similar in magnitude to potential changes in projections where these processes are included. Therefore strategies for adaptation must be robust and flexible allowing for advances in the science and natural environmental changes. PMID

  11. Impact of regional climate change on human health

    NASA Astrophysics Data System (ADS)

    Patz, Jonathan A.; Campbell-Lendrum, Diarmid; Holloway, Tracey; Foley, Jonathan A.

    2005-11-01

    The World Health Organisation estimates that the warming and precipitation trends due to anthropogenic climate change of the past 30years already claim over 150,000 lives annually. Many prevalent human diseases are linked to climate fluctuations, from cardiovascular mortality and respiratory illnesses due to heatwaves, to altered transmission of infectious diseases and malnutrition from crop failures. Uncertainty remains in attributing the expansion or resurgence of diseases to climate change, owing to lack of long-term, high-quality data sets as well as the large influence of socio-economic factors and changes in immunity and drug resistance. Here we review the growing evidence that climate-health relationships pose increasing health risks under future projections of climate change and that the warming trend over recent decades has already contributed to increased morbidity and mortality in many regions of the world. Potentially vulnerable regions include the temperate latitudes, which are projected to warm disproportionately, the regions around the Pacific and Indian oceans that are currently subjected to large rainfall variability due to the El Niño/Southern Oscillation sub-Saharan Africa and sprawling cities where the urban heat island effect could intensify extreme climatic events.

  12. A regional approach to climate adaptation in the Nile Basin

    NASA Astrophysics Data System (ADS)

    Butts, Michael B.; Buontempo, Carlo; Lørup, Jens K.; Williams, Karina; Mathison, Camilla; Jessen, Oluf Z.; Riegels, Niels D.; Glennie, Paul; McSweeney, Carol; Wilson, Mark; Jones, Richard; Seid, Abdulkarim H.

    2016-10-01

    The Nile Basin is one of the most important shared basins in Africa. Managing and developing the water resources within the basin must not only address different water uses but also the trade-off between developments upstream and water use downstream, often between different countries. Furthermore, decision-makers in the region need to evaluate and implement climate adaptation measures. Previous work has shown that the Nile flows can be highly sensitive to climate change and that there is considerable uncertainty in climate projections in the region with no clear consensus as to the direction of change. Modelling current and future changes in river runoff must address a number of challenges; including the large size of the basin, the relative scarcity of data, and the corresponding dramatic variety of climatic conditions and diversity in hydrological characteristics. In this paper, we present a methodology, to support climate adaptation on a regional scale, for assessing climate change impacts and adaptation potential for floods, droughts and water scarcity within the basin.

  13. Regional analysis of ground and above-ground climate

    SciTech Connect

    Not Available

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  14. Impact of regional climate change on human health.

    PubMed

    Patz, Jonathan A; Campbell-Lendrum, Diarmid; Holloway, Tracey; Foley, Jonathan A

    2005-11-17

    The World Health Organisation estimates that the warming and precipitation trends due to anthropogenic climate change of the past 30 years already claim over 150,000 lives annually. Many prevalent human diseases are linked to climate fluctuations, from cardiovascular mortality and respiratory illnesses due to heatwaves, to altered transmission of infectious diseases and malnutrition from crop failures. Uncertainty remains in attributing the expansion or resurgence of diseases to climate change, owing to lack of long-term, high-quality data sets as well as the large influence of socio-economic factors and changes in immunity and drug resistance. Here we review the growing evidence that climate-health relationships pose increasing health risks under future projections of climate change and that the warming trend over recent decades has already contributed to increased morbidity and mortality in many regions of the world. Potentially vulnerable regions include the temperate latitudes, which are projected to warm disproportionately, the regions around the Pacific and Indian oceans that are currently subjected to large rainfall variability due to the El Niño/Southern Oscillation sub-Saharan Africa and sprawling cities where the urban heat island effect could intensify extreme climatic events.

  15. Regional Analysis of Energy, Water, Land and Climate Interactions

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.

    2014-12-01

    Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Feeding ecology of arctic-nesting sandpipers during spring migration through the prairie pothole region

    USGS Publications Warehouse

    Eldridge, J.L.; Krapu, G.L.; Johnson, D.H.

    2009-01-01

    We evaluated food habits of 4 species of spring-migrant calidrid sandpipers in the Prairie Pothole Region (PPR) of North Dakota. Sandpipers foraged in several wetland classes and fed primarily on aquatic dipterans, mostly larvae, and the midge family Chironomidae was the primary food eaten. Larger sandpiper species foraged in deeper water and took larger larvae than did smaller sandpipers. The diverse wetland habitats that migrant shorebirds use in the PPR suggest a landscape-level approach be applied to wetland conservation efforts. We recommend that managers use livestock grazing and other tools, where applicable, to keep shallow, freshwater wetlands from becoming choked with emergent vegetation limiting chironomid production and preventing shorebird use.

  17. Simulations of the future precipitation climate of the Central Andes using a coupled regional climate model

    NASA Astrophysics Data System (ADS)

    Nicholls, S.; Mohr, K. I.

    2014-12-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. Global climate models, although capable of resolving synoptic-scale South American climate features, are inadequate for fully-resolving the strong gradients between climate regimes and the complex orography which define the Tropical Andes given their low spatial and temporal resolution. Recent computational advances now make practical regional climate modeling with prognostic mesoscale atmosphere-ocean coupled models, such as the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, to climate research. Previous work has shown COAWST to reasonably simulate the both the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data. More recently, COAWST simulations have also been shown to sensibly reproduce the entire annual cycle of rainfall (Oct 2003 - Oct 2004) with historical climate model input. Using future global climate model input for COAWST, the present work involves year-long cycle spanning October to October for the years 2031, 2059, and 2087 assuming the most likely regional climate pathway (RCP): RCP 6.0. COAWST output is used to investigate how global climate change impacts the spatial distribution, precipitation rates, and diurnal cycle of precipitation patterns in the Central Andes vary in these yearly "snapshots". Initial results show little change to precipitation coverage or its diurnal cycle, however precipitation amounts did tend drier over the Brazilian Plateau and wetter over the Western Amazon and Central Andes. These results suggest potential adjustments to large-scale climate features (such as the Bolivian High).

  18. Helminth parasites of the lesser great cormorant Phalacrocorax carbo sinensis from two nesting regions in the Czech Republic.

    PubMed

    Moravec, Frantisek; Scholz, Tomas

    2016-01-01

    Parasitological examinations of 102 specimens of the lesser great cormorant Phalacrocorax carbo sinensis (Blumenbach) from two nesting regions in the Czech Republic (South Bohemia and South Moravia) were carried out at the Institute of Parasitology, Czech Academy of Sciences (previously the Czechoslovak Academy of Sciences) in the years 1987-1992. In them, a total of 19 species of helminth parasites was found, including Trematoda (11 species), Cestoda (2), Nematoda (4) and Acanthocephala (2), which can be divided into three main groups regarding their host specificity: parasites specific for cormorants (Phalacrocorax spp.) (37%), those parasitic mainly in cormorants (16%) and non-specific parasites (47%). Of the 19 species recorded, 100% were found in South Moravia, but only 47% of these 19 species in South Bohemia. The higher number of helminth species in cormorants from South Moravia and a higher proportion of non-specific species may be associated with the presence of the large Nové Mlýny water reservoir, in addition to better ecological and environmental conditions in this warmer region. Scanning electron microscopical examination of three common nematode species parasitising cormorants, Contracaecum rudolphii Hartwich, 1964, Desmidocercella incognita Solonitsin, 1932 and Syncuaria squamata (von Linstow, 1883), revealed some taxonomically important, previously unreported morphological features, such as the cephalic structures, numbers and distribution of male caudal papillae or the shapes of spicules. PMID:27312270

  19. The WASCAL regional climate simulations for West Africa - how to add value to existing climate projections

    NASA Astrophysics Data System (ADS)

    Arnault, J.; Heinzeller, D.; Klein, C.; Dieng, D.; Smiatek, G.; Bliefernicht, J.; Sylla, M. B.; Kunstmann, H.

    2015-12-01

    With climate change being one of the most severe challenges to rural Africa in the 21st century, West Africa is facing an urgent need to develop effective adaptation and mitigation measures to protect its constantly growing population. WASCAL (West African Science Service Center on Climate Change and Adapted Land Use) is a large-scale research-focused program designed to enhance the resilience of human and environmental systems to climate change and increased variability. An integral part of its climate services is the provisioning of a new set of high resolution, ensemble-based regional climate change scenarios for the region of West Africa. In this contribution, we present the overall concept of the WASCAL regional climate projections and provide information on the dissemination of the data. We discuss the model performance over the validation period for two of the three regional climate models employed, the Weather Research & Forecasting Tool (WRF) and the Consortium for Small-scale Modeling Model COSMO in Climate Mode (COSMO-CLM), and give details about a novel precipitation database used to verify the models. Particular attention is paid to the representation of the dynamics of the West African Summer Monsoon and to the added value of our high resolution models over existing data sets. We further present results on the climate change signal obtained from the WRF model runs for the periods 2020-2050 and 2070-2100 and compare them to current state-of-the-art projections from the CORDEX project. As an example, the figure shows the different climate change signals obtained for the total annual rainfall with respect to the 1980-2010 mean (WRF-E: WASCAL 12km high-resolution run MPI-ESM + WRFV3.5.1, CORDEX-E: 50km medium-resolution run MPI-ESM + RCA4, CORDEX-G: 50km medium-resolution run GFDL-ESM + RCA4).

  20. Informing Decisions with a Climate Synthesis Product: Implications for Regional Climate Services

    NASA Astrophysics Data System (ADS)

    Guido, Z.; Hill, D.; Crimmins, M.; Ferguson, D. B.

    2012-12-01

    The demand for regional climate information is increasing and spurring efforts to provide a broad slate of climate services that inform policy and resource management and elevate general knowledge. Routine syntheses of existing climate-related information may be an effective strategy for connecting climate information to decision making, but few studies have formally assessed their contribution to informing decisions. During the 2010-2011 winter, drought conditions expanded and intensified in Arizona and New Mexico, creating an opportunity to develop and evaluate a pithy, monthly regional climate communication product—La Niña Drought Tracker—that synthesized and interpreted drought and climate information. Six issues were published and subsequently evaluated through an online survey. On average, 417 people consulted the publication each month. Many of the survey respondents indicated that they made at least one drought-related decision, and the product at least moderately influenced the majority of those decisions, some of which helped mitigate economic losses and reduce climate vulnerability. The product also improved understanding of climate and drought for more than 90 percent of the respondents and helped the majority of them better prepare for drought. These, and other results demonstrate that routine interpretation and synthesis of existing climate information can help enhance access to and understanding and use of climate information in decision-making. Moreover, developing regional, contextual knowledge within climate service programs can facilitate the implementation of activities like the Tracker that enhance the use of climate information without engaging in time-consuming collaborative processes that can prevent the timely production of the services. We present results from the case study of the Tracker and place it within the context of the challenges and opportunities associated with providing climate services, particularly those services that

  1. Importance of individual species of predators on nesting success of ducks in the Canadian prairie pothole region

    USGS Publications Warehouse

    Johnson, Douglas H.; Sargeant, Alan B.; Greenwood, Raymond J.

    1989-01-01

    We followed 3094 upland nests of several species of ducks. Clutches in most nests were lost to predation. We related daily nest predation rates to indices of activity of eight egg-eating predators, precipitation during the nesting season, and measures of wetland conditions. Activity indices of red fox (Vulpes vulpes), striped skunk (Mephitis mephitis), and raccoon (Procyon lotor) activity were positively correlated, as were activity indices of coyote (Canis latrans), Franklin's ground squirrel (Spermophilus franklinii), and black-billed magpie (Pica pica). Indices of fox and coyote activity were strongly negatively correlated (r = -0.51), as were those of badger (Taxidea taxus) and skunk (r = -0.46). Nest predation rates in the early part of the breeding season were positively related to indices of fox, American crow (Corvus brachyrhynchos), and badger activity. Predation rates in the latter part of the season were positively related to indices of fox and skunk activity. Predation rates on early-season nests were lower in areas and years in which larger fractions of seasonal wetlands contained water. For late-season nests, a similar relationship held involving semipermanent wetlands. We suspect that the wetland measures, which reflect precipitation during some previous period, also indicate vegetation growth and the abundance of buffer prey, factors that may influence nest predation rates.

  2. Determing Credibility of Regional Simulations of Future Climate

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2009-12-01

    Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach

  3. Artificial nest experiments in a fragmented neotropical cloud forest

    USGS Publications Warehouse

    Trujillo, G.; Ahumada, J.A.

    2005-01-01

    We conducted artificial nest experiments in a Neotropical montane forest in the eastern Andes, Colombia, in order to test the effect of placing the nests in forest fragments or continuous forests, at two nest heights and for two different climatic seasons. Predation was not consistently different between nests placed in fragments and controls. However, we found that nests on the ground had a higher daily probability of being predated than nests in the understory. Also, daily nest mortality rate (DNM) was higher in the wet season than in the dry season. Most of the predated nests were attributed to mammals (56%), and predation occurred mostly on the ground (78%). Our estimates of DNM are quite low (= 0.023) and similar to another Neotropical montane forest and other Neotropical sites. Comparisons of DNM between Neotropical and temperate sites suggests that predation rates are similar. Our results suggest that fragmentation may not have a large negative impact in nest predation for bird populations breeding in fragments compared to other sites in tropical and temperate regions. ?? The Neotropical Ornithological Society.

  4. Climate in Context - How partnerships evolve in regions

    NASA Astrophysics Data System (ADS)

    Parris, A. S.

    2014-12-01

    In 2015, NOAA's RISA program will celebrate its 20th year of exploration in the development of usable climate information. In the mid-1990s, a vision emerged to develop interdisciplinary research efforts at the regional scale for several important reasons. Recognizable climate patterns, such as the El Nino Southern Oscillation (ENSO), emerge at the regional level where our understanding of observations and models coalesce. Critical resources for society are managed in a context of regional systems, such as water supply and human populations. Multiple scales of governance (local, state, and federal) with complex institutional relationships can be examined across a region. Climate information (i.e. data, science, research etc) developed within these contexts has greater potential for use. All of this work rests on a foundation of iterative engagement between scientists and decision makers. Throughout these interactions, RISAs have navigated diverse politics, extreme events and disasters, socio-economic and ecological disruptions, and advances in both science and technology. Our understanding of information needs is evolving into a richer understanding of complex institutional, legal, political, and cultural contexts within which people can use science to make informed decisions. The outcome of RISA work includes both cases where climate information was used in decisions and cases where capacity for using climate information and making climate resilient decisions has increased over time. In addition to balancing supply and demand of scientific information, RISAs are engaged in a social process of reconciling climate information use with important drivers of society. Because partnerships are critical for sustained engagement, and because engagement is critically important to the use of science, the rapid development of new capacity in regionally-based science programs focused on providing climate decision support is both needed and challenging. New actors can bolster

  5. Improvement of surface albedo parameterization within a regional climate model (RegCM3)

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Lü, S.

    2009-03-01

    A parameterization for calculating surface albedo of Solar Zenith Angel (SZA) dependence with coefficient for each vegetation type determined on the Moderate Resolution Imaging Spectro-radiometer (MODIS) reformed by the Bidirectional Reflectance Distribution Function (BRDF) is incorporated within the latest Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3), and evaluated with a high resolution one-way nesting simulation in China using the Climate Research Unit (CRU) data and the observations from the Field Experiment on Interaction between Land and Atmosphere in Arid Region of Northwest China (NWC-ALIEX). The performance of the SZA method modeling surface characteristic is investigated.Results indicate, RegCM with SZA method (RCM_SZA) considerably improve the cold bias of original RegCM (RCM_ORI) in air surface temperature in East Asia with 1.2 degree increased in summer due to the lower albedo produced by SZA method which makes more solar radiation absorbed by the surface and used for heating the atmosphere near to the surface. The simulated diurnal cycle of ground temperature conforms fairly well to the observation in the nesting simulation in Northwest China, especially during the noon time when the SZA has the lowest value. However, the modification can not obviously affect the East Asia summer monsoon precipitation simulation although RCM_SZA produce more evapo-transpiration in surface with more than 2 Wm-2 increases in simulated latent heat fluxes both in East Asia and in Northwest China compared to RCM_ORI.

  6. Marsh nesting by mallards

    USGS Publications Warehouse

    Krapu, G.L.; Talent, L.G.; Dwyer, T.J.

    1979-01-01

    Nest-site selection by mallard (Anas platyrhynchos) hens was studied on a 52-km2, privately owned area in the Missouri Coteau of south-central North Dakota during 1974-77. Sixty-six percent of 53 nests initiated by radio-marked and unmarked hens were in wetlands in dense stands of emergent vegetation and usually within 50 m of the wetland edge. These findings and other sources of information suggest that significant numbers of mallards breeding in the Prairie Pothole Region nest in marsh habitat. Potential factors contributing to mallard use of marsh habitat for nesting purposes are discussed. Management considerations associated with marsh nesting by mallards are described and research needs are identified.

  7. Using NMME in Region-Specific Operational Seasonal Climate Forecasts

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Bolinger, R. A.; Fry, L. M.; Kompoltowicz, K.

    2015-12-01

    The National Oceanic and Atmospheric Administration's Climate Prediction Center (NOAA/CPC) provides access to a suite of real-time monthly climate forecasts that comprise the North American Multi-Model Ensemble (NMME) in an attempt to meet increasing demands for monthly to seasonal climate prediction. While the graphical map forecasts of the NMME are informative, there is a need to provide decision-makers with probabilistic forecasts specific to their region of interest. Here, we demonstrate the potential application of the NMME to address regional climate projection needs by developing new forecasts of temperature and precipitation for the North American Great Lakes, the largest system of lakes on Earth. Regional opertional water budget forecasts rely on these outlooks to initiate monthly forecasts not only of the water budget, but of monthly lake water levels as well. More specifically, we present an alternative for improving existing operational protocols that currently involve a relatively time-consuming and subjective procedure based on interpreting the maps of the NMME. In addition, all forecasts are currently presented in the NMME in a probabilistic format, with equal weighting given to each member of the ensemble. In our new evolution of this product, we provide historical context for the forecasts by superimposing them (in an on-line graphical user interface) with the historical range of observations. Implementation of this new tool has already led to noticeable advantages in regional water budget forecasting, and has the potential to be transferred to other regional decision-making authorities as well.

  8. Book Review: Regional Hydrological Response to Climate Change

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    1998-01-01

    The book being reviewed, Regional Hydrological Response to Climate Change, addresses the effects of global climate change, particularly global warming induced by greenhouse gas emissions, on hydrological budgets at the regional scale. As noted in its preface, the book consists of peer-reviewed papers delivered at scientific meetings held by the International Geographical Union Working Group on Regional Hydrological Response to Climate Change and Global Warming, supplemented with some additional chapters that round out coverage of the topic. The editors hope that this book will serve as "not only a record of current achievements, but also a stimulus to further hydrological research as the detail and spatial resolution of Global Climate Models improves". The reviewer found the background material on regional climatology to be valuable and the methodologies presented to be of interest. The value of the book is significantly diminished, however by the dated nature of some of the material and by large uncertainties in the predictions of regional precipitation change. The book would have been improved by a much more extensive documentation of the uncertainty associated with each step of the prediction process.

  9. Influence of the African Great Lakes on the regional climate

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard; Panitz, Hans-Jürgen; Demuzere, Matthias; Lhermitte, Stef; van Lipzig, Nicole

    2015-04-01

    Although the African Great Lakes are important regulators for the East-African climate, their influence on atmospheric dynamics and the regional hydrological cycle remains poorly understood. We aim to assess this impact by conducting a regional climate model simulation which resolves individual lakes and explicitly computes lake temperatures. The regional climate model COSMO-CLM, coupled to a state-of-the-art lake parameterization scheme and land surface model, is used to dynamically downscale the COSMO-CLM CORDEX-Africa evaluation simulation to 7 km grid spacing for the period 1999-2008. Evaluation of the model reveals good performance compared to both in-situ and satellite observations, especially for spatio-temporal variability of lake surface temperatures and precipitation. Model integrations indicate that the four major African Great Lakes almost double precipitation amounts over their surface relative to a simulation without lakes, but hardly exert any influence on precipitation beyond their shores. The largest lakes also cool their near-surface air, this time with pronounced downwind influence. The lake-induced cooling happens during daytime, when the lakes absorb incoming solar radiation and inhibit upward turbulent heat transport. At night, when this heat is released, the lakes warm the near-surface air. Furthermore, Lake Victoria has profound influence on atmospheric dynamics and stability as it induces cellular motion with over-lake convective inhibition during daytime, and the reversed pattern at night. Overall, this study shows the added value of resolving individual lakes and realistically representing lake surface temperatures for climate studies in this region. Thiery, W., Davin, E., Panitz, H.-J., Demuzere, M., Lhermitte, S., van Lipzig, N.P.M., The impact of the African Great Lakes on the regional climate, J. Climate (in review).

  10. The Sensitivity of Precipitation and Snowpack Simulations to Model Resolution via Nesting in Regions of Complex Terrain

    SciTech Connect

    Leung, Lai R.; Qian, Yun

    2003-12-01

    This paper examines sensitivity of regional climate simulations to spatial resolution using a 20-year simulation of the western U.S. at 40 km resolution and two 5-year simulations at 13 km resolution for the Pacific Northwest and California. The regional climate simulation at 40 km resolution shows a lack of precipitation along coastal hills, good agreements with observations on the windward slopes of the Cascades and Sierra, but over-prediction on the leeside and the basins beyond. Snowpack is grossly under-predicted throughout the western U.S. when compared against observations at snotel sites, which are typically located at the higher altitudes. Comparisons of the 40 km and 13 km resolution simulations suggest that during winter, higher spatial resolution mainly improves the simulation of precipitation in the coastal hills and basins. Along the Cascades and the Sierra Range, however, precipitation is strongly amplified at the higher spatial resolution and compares less favorably with observations. Higher resolution generally improves the spatial distribution of precipitation to yield higher spatial correlation when comparing the simulations to observation. During summer, higher resolution improves not only spatial distribution but also regional mean precipitation.

  11. Regional Climate Change Impacts in the United States

    NASA Astrophysics Data System (ADS)

    Hayhoe, K.; Burkett, V.; Grimm, N.; McCarthy, J.; Miles, E.; Overpeck, J.; Shea, E.; Wuebbles, D.

    2009-05-01

    Climate change will affect one region differently from another. For that reason, the U.S. Unified Synthesis Product "Global Climate Change Impacts in the United States" broke down its assessment of climate change impacts on the country into 8 regions. Key highlights include: In the Northeast, agricultural production, including dairy, fruit, and maple syrup, will be increasingly affected as favorable climates shift northward. In the Southeast, accelerated sea-level rise and increased hurricane intensity will have serious impacts. In the Midwest, under higher emissions scenarios, significant reductions in Great Lakes water levels will impact shipping, infrastructure, beaches, and ecosystems. In the Great Plains, projected increases in temperature, evaporation, and drought frequency exacerbate concerns regarding the region's declining water resources. In the Southwest, water supplies will become increasingly scarce, calling for trade-offs among competing uses, and potentially leading to conflict. In the Northwest, salmon and other cold-water species will experience additional stresses as a result of rising water temperatures and declining summer streamflows. In Alaska, thawing permafrost damages roads, runways, water and sewer systems, and other infrastructure. And in the U.S. islands in the Caribbean and Pacific, climate changes affecting coastal and marine ecosystems will have major implications for tourism and fisheries. In addition, significant sea-level rise and storm surge will affect coastal cities and ecosystems around the nation; low-lying and subsiding areas are most vulnerable.

  12. Triangular Nests!

    ERIC Educational Resources Information Center

    Powell, R. I.

    2002-01-01

    Shows how integer-sided triangles can be nested, each nest having a single enclosing isosceles triangle. Brings to light what can be seen as a relatively simple generalization of Pythagoras' theorem, a result that should be readily accessible to many secondary school pupils. (Author/KHR)

  13. Potential Impacts of Climate Change in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.

    2011-12-01

    Climate change is projected to have substantial impacts in the Great Lakes region of the United States. One intent of this presentation is to introduce the Great Lakes Integrated Sciences and Assessments Center (GLISA), a recently-funded NOAA RISA center. The goals and unique organizational structure of GLISA will be described along with core activities that support impact and assessment studies in the region. Additionally, observed trends in temperature, precipitation including lake effect snowfall, and lake temperatures and ice cover will be summarized for the Great Lakes region, and vulnerabilities to, and potential impacts of, climate change will be surveyed for critical natural and human systems. These include forest ecosystems, water resources, traditional and specialized agriculture, and tourism/recreation. Impacts and vulnerabilities unique to the Great Lakes region are emphasized.

  14. Forecasting energy security impacts of biofuels using regional climate models

    NASA Astrophysics Data System (ADS)

    Yang, X.; Campbell, E.; Snyder, M. A.; Sloan, L.; Kueppers, L. M.

    2010-12-01

    Production of biofuels in the U.S. is growing rapidly, with corn providing the dominant feedstock for current production and corn stover potentially providing a critical feedstock source for future cellulosic ethanol production. While production of domestic biofuels is thought to improve energy security, future changes in climate may impact crop yield variability and erode the energy security benefits of biofuels. Here we examine future yield variability for corn and soy using RegCM regional climate data from NARCAPP, historical agronomic data, and statistical models of yield variability. Our simulations of historical yield anomalies using monthly temperature and precipitation data from RegCM show robust relationships to observed yield anomalies. Simulations of future yield anomalies show increased yield variability relative to historical yield variability in the region of high corn production. Since variability in energy supply is a critical concern for energy security we suggest that the climate-induced yield variability on critical biofuels feedstocks be explored more widely.

  15. Alternative ways to evaluate the NARCCAP regional climate forecasts

    NASA Astrophysics Data System (ADS)

    Shin, D.; Cocke, S.; O'Brien, J. J.

    2011-12-01

    Values added by the NARCCAP regional climate models, compared to corresponding global climate models, are explicitly unveiled by using non-traditional skill evaluation statistics. The conventional model evaluation methods, such as temporal correlation of seasonal average rainfall, cannot explain the values of dynamically downscaled data. The hidden values of the NARCCAP regional models can be better exposed by high frequency statistics, e.g., the time series of accumulated rainfall and Lawn-and-Garden Moisture Index. Application (e.g., crop, hydrological) models can also be used to uncover the value because the outcomes of application models include the high-frequency variability of seasonal climate (e.g., dry/wet spell sequences).

  16. Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions

    NASA Astrophysics Data System (ADS)

    Matte, Dominic; Laprise, René; Thériault, Julie M.; Lucas-Picher, Philippe

    2016-09-01

    In regional climate modelling, it is well known that domains should be neither too large to avoid a large departure from the driving data, nor too small to provide a sufficient distance from the lateral inflow boundary to allow the full development of the small-scale (SS) features permitted by the finer resolution. Although most practitioners of dynamical downscaling are well aware that the jump of resolution between the lateral boundary condition (LBC) driving data and the nested regional climate model affects the simulated climate, this issue has not been fully investigated. In principle, as the jump of resolution becomes larger, the region of interest in the limited-area domain should be located further away from the lateral inflow boundary to allow the full development of the SS features. A careless choice of domain might result in a suboptimal use of the full finer resolution potential to develop fine-scale features. To address this issue, regional climate model (RCM) simulations using various resolution driving data are compared following the perfect-prognostic Big-Brother protocol. Several experiments were carried out to evaluate the width of the spin-up region (i.e. the distance between the lateral inflow boundary and the domain of interest required for the full development of SS transient eddies) as a function of the RCM and LBC resolutions, as well as the resolution jump. The spin-up distance turns out to be a function of the LBC resolution only, independent of the RCM resolution. When varying the RCM resolution for a given resolution jump, it is found that the spin-up distance corresponds to a fixed number of RCM grid points that is a function of resolution jump only. These findings can serve a useful purpose to guide the choice of domain and RCM configuration for an optimal development of the small scales allowed by the increased resolution of the nested model.

  17. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    USGS Publications Warehouse

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  18. Land use driven vegetation processes and regional climate change

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Jia, G. J.

    2008-12-01

    Recent reports from the Intergovernmental Panel on Climate Change (2007) confirm that climate change is occurring at a larger and more rapid rate of change than was thought likely only six years ago. Temperatures are increasing, and higher associated rates of evaporation will likely bring drier conditions in large portion of monsoon Asia areas where ecosystems and social-economy are under pressure of water deficit. Human activities have emerged as an important driving force that induces global and regional climatic change. In the past decades, human being have been enhancing their contributions to the trend of global warming at global scale and intensifying their impacts on regional climate by transforming land surface. It is therefore an essential issue to examine land use change to interpret the magnitudes of human impact on regional climate. Here, relationship between climate change and terrestrial ecological processes driven by land use options such as urbanization is discussed with case studies in monsoon Asia region. This study investigated the decadal changes of major land-use types over greater Guangzhou area by analyzing 1980s-2000s land- use raster dataset derived from landsat images, meteorological records, and census data. The results from change detection analysis show a general trend of decrease of cropland and increase of build-up in the past two decades. We then examined the temporal-spatial relationship between thermal climate index and fractional land-use types. Based on water-energy balance equation, calculated how temperature increased as a direct or indirect consequence of land-use change. Our results show that there were positive correlations between temperature and fractional cover of build-up and negative correlation between temperature and fractional cover of cropland. The temperature increased by 0.90°C in the period, and among which 0.37°C may have been contributed by land-use changes in the region. Meanwhile, strong urban heat islands

  19. Coupled terrestrial and aquatic regional responses to land use change and climate variability in a temperate New England watershed

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Samal, N. R.; Zhou, Z.; Zuidema, S.; Stewart, R. J.; Mineau, M.

    2015-12-01

    Climate change and land use interact to alter hydrology, biogeochemistry, and ecosystem function. Regional scale analyses that link terrestrial and aquatic ecosystems across spatial scales are needed to understand the mechanisms of response and tradeoffs among different ecosystem services. We coupled the terrestrial ecosystem model, PnET, with a river network model, FrAMES, to explore how terrestrial and aquatic conditions simultaneously respond to variation and changes in climate and land use. We applied the coupled model to the Merrimack R. watershed, NH/MA, USA, to understand how impacts vary at different nested basin scales. The coupled PnET-FrAMES predicts variables relevant to key ecosystem services including snow pack, runoff, woody biomass accumulation, net carbon sequestration, nitrogen runoff, discharge, conductivity, water temperature, aquatic denitrification, and nitrogen flux. We used statistically downscaled high and low emission scenarios of GCMs (GFDL CM2.1) to explore projected future responses to 2100. Some variables were more sensitive (snowpack, runoff, net carbon sequestration, water temperature) than others (woody biomass, conductivity, nitrogen concentration) to interannual climate variability. Water quality and terrestrial ecosystem responses were more sensitive to land use changes. Water quality responses are buffered in large rivers due to the dilution capacity of forested areas of the watersheds, but this dilution capacity is altered by future climate changes. Coupled terrestrial-aquatic models at regional scales using downscale climate projections will be essential for planning adaption and mitigation strategies in response to future climate and land use change.

  20. Partnerships in the Polar Regions: Climate to Classrooms

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Bartholow, S.

    2013-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a program in which K-12 teachers spend 2-6 weeks participating in hands-on field research experiences in the polar regions which focus heavily on climate change and climate science. The goal of PolarTREC is to invigorate polar science education and understanding by bringing K-12 educators and polar researchers together. Through teachers, climate understanding can be shaped for the future by having scientifically literate students entering the workforce. Alone, PolarTREC reaches a myriad of classrooms throughout the country. With new partnerships of the National Park Service and Alaska Geographic, we developed additional field experiences in climate change education for teachers. Campaigns for climate literacy do impact students but are only effective with well-trained, experienced teachers. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach additional audiences in media, policy, and classrooms. Modeling this program, we designed and conducted teacher trainings on climate science in Denali National Park. Utilizing expert university faculty and park managers in climate science and PolarTREC alumni teachers, the program was touted as 'the best professional opportunity to date". This program gave new teachers the tools to adequately communicate climate science for a generation of scientifically literate students. This presentation will outline the practices used in creating and implementing a climate literacy program for teachers through partnerships that will effectively influence student learning.

  1. Regional Climate Change and Development of Public Health Decision Aids

    NASA Astrophysics Data System (ADS)

    Hegedus, A. M.; Darmenova, K.; Grant, F.; Kiley, H.; Higgins, G. J.; Apling, D.

    2011-12-01

    According to the World Heath Organization (WHO) climate change is a significant and emerging threat to public health, and changes the way we must look at protecting vulnerable populations. Worldwide, the occurrence of some diseases and other threats to human health depend predominantly on local climate patterns. Rising average temperatures, in combination with changing rainfall patterns and humidity levels, alter the lifecycle and regional distribution of certain disease-carrying vectors, such as mosquitoes, ticks and rodents. In addition, higher surface temperatures will bring heat waves and heat stress to urban regions worldwide and will likely increase heat-related health risks. A growing body of scientific evidence also suggests an increase in extreme weather events such as floods, droughts and hurricanes that can be destructive to human health and well-being. Therefore, climate adaptation and health decision aids are urgently needed by city planners and health officials to determine high risk areas, evaluate vulnerable populations and develop public health infrastructure and surveillance systems. To address current deficiencies in local planning and decision making with respect to regional climate change and its effect on human health, our research is focused on performing a dynamical downscaling with the Weather Research and Forecasting (WRF) model to develop decision aids that translate the regional climate data into actionable information for users. WRF model is initialized with the Max Planck Institute European Center/Hamburg Model version 5 (ECHAM5) General Circulation Model simulations forced with the Special Report on Emissions (SRES) A1B emissions scenario. Our methodology involves development of climatological indices of extreme weather, quantifying the risk of occurrence of water/rodent/vector-borne diseases as well as developing various heat stress related decision aids. Our results indicate that the downscale simulations provide the necessary

  2. Downscaled Regional Climate Information for the Southeastern US

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s Office of Research and Development in Research Triangle Park, NC, has been developing regional climate and air quality fields for North America for current and future periods. Research emphasis has been placed on evaluating near-s...

  3. Developing a likely climate scenario from multiple regional climate model simulations with an optimal weighting factor

    NASA Astrophysics Data System (ADS)

    Eum, Hyung-Il; Gachon, Philippe; Laprise, René

    2014-07-01

    This study presents a performance-based comprehensive weighting factor that accounts for the skill of different regional climate models (RCMs), including the effect of the driving lateral boundary condition coming from either atmosphere-ocean global climate models (AOGCMs) or reanalyses. A differential evolution algorithm is employed to identify the optimal relative importance of five performance metrics, and corresponding weighting factors, that include the relative absolute mean error (RAME), annual cycle, spatial pattern, extremes and multi-decadal trend. Based on cumulative density functions built by weighting factors of various RCMs/AOGCMs ensemble simulations, current and future climate projections were then generated to identify the level of uncertainty in the climate scenarios. This study selected the areas of southern Ontario and Québec in Canada as a case study. The main conclusions are as follows: (1) Three performance metrics were found essential, having the greater relative importance: the RAME, annual variability and multi-decadal trend. (2) The choice of driving conditions from the AOGCM had impacts on the comprehensive weighting factor, particularly for the winter season. (3) Combining climate projections based on the weighting factors significantly increased the consistency and reduced the spread among models in the future climate changes. These results imply that the weighting factors play a more important role in reducing the effects of outliers on plausible future climate conditions in regions where there is a higher level of variability in RCM/AOGCM simulations. As a result of weighting, substantial increases in the projected warming were found in the southern part of the study area during summer, and the whole region during winter, compared to the simple equal weighting scheme from RCM runs. This study is an initial step toward developing a likelihood procedure for climate scenarios on a regional scale using equal or different probabilities

  4. ClimateImpactsOnline: A web platform for regional climate impacts

    NASA Astrophysics Data System (ADS)

    Nocke, Thomas

    2013-04-01

    Climate change is widely known but there is often uncertainty about the specific effects. One of the key tasks is - beyond discussing climate change and its impacts in specialist groups - to present these to a wider audience. In that respect, decision-makers in the public sector as well as directly affected professional groups require to obtain easy-to-understand information. These groups are not made up of specialist scientists. This gives rise to two challenges: (1) the complex information must be presented such that it is commonly understood, and (2) access to the information must be easy. Interested parties do not have time to familiarize themselves over a lengthy period, but rather want to immediately work with the information. Beside providing climate information globally, regional information become of increasing interest for local decision making regarding awareness building and adaptation options. In addition, current web portals mainly focus on climate information, considering climate impacts on different sectors only implicitly. As solution, Potsdam Institute for Climate Impact Research and WetterOnline have jointly developed an Internet portal that is easy to use, groups together interesting information about climate impacts and offers it in a directly usable form. This new web portal ClimateImpactsOnline.com provides detailed information, combining multiple sectors for the test case of Germany. For this region, numerous individual studies on climate change have been prepared by various institutions. These studies differ in terms of their aim, region and time period of interest. Thus, the goal of ClimateImpactsOnline.com is to present a synthesized view on regional impacts of global climate change on hydrology, agriculture, forest, energy, tourism and health sector. The climate and impact variables are available on a decadal time resolution for the period from 1901-2100, combining observed data and future projections. Detailed information are presented

  5. Impact of Asia Dust Aerosols on Regional Environment and Climate

    NASA Astrophysics Data System (ADS)

    Huang, J.

    2015-12-01

    East Asia is a major dust source in the world and has great impacts on regional climate in Asia, where the large arid and semi-arid regions are. In this study, the typical transport paths of East Asia dust, which affect regional and global climates, are demonstrated and numerous effects of dust aerosols on clouds and precipitation primarily over East Asian arid and semi-arid regions are discussed. Compared with the dust aerosols of Saharan, those of East Asian are more absorptive of solar radiation, and can influence the cloud properties not only by acting as cloud condensation nuclei and ice nuclei but also through changing the relative humidity and stability of the atmosphere (via semi-direct effect). Converting visible light to thermal energy, dust aerosols can burn clouds to produce a warming effect on climate, which is opposite to the first and second indirect effects of aerosols. Over Asia arid and semi-arid regions, the positive feedback in the aerosol-cloud-precipitation interaction may aggravate drought in its inner land. Impact of Asia dust on regional environment, especially on haze weather, are also presented in this talk.

  6. Assessment of the nested grid model estimates for driving regional visibility models in the southwestern United States.

    PubMed

    Pai, P; Farber, R J; Karamchandani, P; Tombach, I

    2000-05-01

    The Nested Grid Model (NGM) is a primitive-equation meteorological model that is routinely exercised over North America for forecasting purposes by the National Meteorological Center. While prognostic meteorological models are being increasingly used to drive air quality models, their use in conducting annual simulations requires significant resources. NGM estimates of wind fields and other meteorological variables provide an attractive alternative since they are typically archived and readily available for an entire year. Preliminary evaluation of NGM winds during the summer of 1992 for application to the region surrounding the Grand Canyon National Park showed serious shortcomings. The NGM winds along the borders between California, Arizona and Mexico tend to be northwesterly with a speed of about 6 m/sec, while the observed flow is predominantly southerly at about 2-5 m/sec. The mesoscale effect of a thermal low pressure area over the highly heated Southern California and western Arizona deserts does not appear to be represented by the NGM because of its coarse resolution and the use of sparse observations in that region. Tracer simulations and statistical evaluation against special high resolution observations of winds in the southwest United States clearly demonstrate the northwest bias in NGM winds and its adverse effect on predictions of an air quality model. The "enhanced" NGM winds, in which selected wind observations are incorporated in the NGM winds using a diagnostic meteorological model provide additional confirmation on the primary cause of the northwest bias. This study has demonstrated that in situations where limited resources prevent the use of prognostic meteorological models, previously archived coarse resolution wind fields in which additional observations are incorporated to correct known biases provide an attractive option.

  7. Climate Change Projections of the North American Regional Climate Change Assessment Program (NARCCAP)

    SciTech Connect

    Mearns, L. O.; Sain, Steve; Leung, Lai-Yung R.; Bukovsky, M. S.; McGinnis, Seth; Biner, S.; Caya, Daniel; Arritt, R.; Gutowski, William; Takle, Eugene S.; Snyder, Mark A.; Jones, Richard; Nunes, A M B.; Tucker, S.; Herzmann, D.; McDaniel, Larry; Sloan, Lisa

    2013-10-01

    We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.

  8. Local weather, regional climate, and annual survival of the northern spotted owl

    USGS Publications Warehouse

    Glenn, E.M.; Anthony, R.G.; Forsman, E.D.; Olson, G.S.

    2011-01-01

    We used an information-theoretical approach and Cormack-Jolly-Seber models for open populations in program MARK to examine relationships between survival rates of Northern Spotted Owls and a variety of local weather variables and long-term climate variables. In four of the six populations examined, survival was positively associated with wetter than normal conditions during the growing season or high summer temperatures. At the three study areas located at the highest elevations, survival was positively associated with winter temperature but also had a negative or quadratic relation with the number of storms and winter precipitation. A metaanalysis of all six areas combined indicated that annual survival was most strongly associated with phase shifts in the Southern Oscillation and Pacific Decadal Oscillation, which reflect large-scale temperature and precipitation patterns in this region. Climate accounted for a variable amount (1-41%) of the total process variation in annual survival but for more year-to-year variation (3-66%) than did spatial variation among owl territories (0-7%). Negative associations between survival and cold, wet winters and nesting seasons were similar to those found in other studies of the Spotted Owl. The relationships between survival and growing-season precipitation and regional climate patterns, however, had not been reported for this species previously. Climate-change models for the first half of the 21st century predict warmer, wetter winters and hotter, drier summers for the Pacific Northwest. Our results indicate that these conditions could decrease Spotted Owl survival in some areas. Copyright ?? The Cooper Ornithological Society 2011.

  9. Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections

    NASA Astrophysics Data System (ADS)

    Tang, Jianping; Niu, Xiaorui; Wang, Shuyu; Gao, Hongxia; Wang, Xueyuan; Wu, Jian

    2016-03-01

    Statistical downscaling and dynamical downscaling are two approaches to generate high-resolution regional climate models based on the large-scale information from either reanalysis data or global climate models. In this study, these two downscaling methods are used to simulate the surface climate of China and compared. The Statistical Downscaling Model (SDSM) is cross validated and used to downscale the regional climate of China. Then, the downscaled historical climate of 1981-2000 and future climate of 2041-2060 are compared with that from the Weather Research and Forecasting (WRF) model driven by the European Center-Hamburg atmosphere model and the Max Planck Institute Ocean Model (ECHAM5/MPI-OM) and the L'Institut Pierre-Simon Laplace Coupled Model, version 5, coupled with the Nucleus for European Modelling of the ocean, low resolution (IPSL-CM5A-LR). The SDSM can reproduce the surface temperature characteristics of the present climate in China, whereas the WRF tends to underestimate the surface temperature over most of China. Both the SDSM and WRF require further work to improve their ability to downscale precipitation. Both statistical and dynamical downscaling methods produce future surface temperatures for 2041-2060 that are markedly different from the historical climatology. However, the changes in projected precipitation differ between the two downscaling methods. Indeed, large uncertainties remain in terms of the direction and magnitude of future precipitation changes over China.

  10. A framework for estimation of uncertainty in regional climate change

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrei; Monier, Erwan; Gao, Xiang; Schlosser, Adam; Scott, Jeff

    2015-04-01

    In this study we focus on four sources of uncertainties in climate projections: anthropogenic greenhouse gas emission scenarios, climate system response to external forcing, natural variability and inter-model differences in the patterns of regional climate change. The contributions of the first three sources are evaluated using the MIT IGSM-CAM framework, which links the MIT Integrated Global System Model to the NCAR Community Atmospheric Model. The MIT IGSM couples a model of world economy (Emission Prediction and Policy Analysis model, EPPA) with the MIT Earth System Model of intermediate complexity (MESM). The version of the MESM used in this study consists of a two-dimensional (zonaly averaged) atmospheric model with interactive chemistry, an ocean global circulation model and a land system model that simulates both physical and biogeochemical processes. The uncertainties associated with the inter-model differences in the patterns of regional climate change are evaluated using a pattern scaling approach. Namely, regional changes in surface air temperature and precipitation are obtained by scaling changes in the zonal mean simulated by the IGSM using regional patterns from simulations with different AR4 AOGCMs. We present results for two different regions, namely the contiguous United States and Northern Eurasia. Our results show that on short time scales uncertainty in surface warming are primarily caused by uncertainty in climate system response and natural variability. In contrast uncertainties in the changes in surface temperature on a century scale are mainly associated with different emissions scenarios. Different sources play more equal roles in the uncertainties in projected precipitations. In particular, natural variability and inter-model differences have a much large effect on changes in precipitation than on simulated surface warming.

  11. Spatial connectivity of urban clusters and regional climate effects

    NASA Astrophysics Data System (ADS)

    Jia, G.; Hu, Y.; Xu, R.

    2015-12-01

    Rapid urbanization in East Asia in past three decades is considered as a remarkable process that featured with expansion of urban clusters and tightened linkages within and among clusters. Such process could lead to much larger scale climate effects, and could even contribute to sub-regional and regional climate change. In large area of urban clusters with significant expansion of built-up in relatively short period, local urban heat islands could contribute to sub-regional climate forcing. Here we use visible/near infrared and thermal infrared satellite data to estimate multiple scale structure of urban clusters, and to assess effects of urban heat islands at local and regional scales in East Asia. Our estimates of urban extent were greater than previously reported in most global datasets. Strong spatial connection and internal expansion were found in major urban clusters in past 30 years, and was accelerated in past 10 years. Many city clusters were merging into each other, with gradual blurring boundaries and disappearing of gaps among member cities. Cities and towns were more connected with roads and commercial corridors, while wildland and urban greens became more isolated as patches among built-up areas. We would argue that in many cases in this region, urban clusters are no longer "islands", they are now "seas" in term of climate related urban canopy. Urban greens such as parks and plantation were long recognized for their cooling effects that buffer the urban heat island effect, however, such cooling effects tend to be weakened as their patches became smaller and isolated, and over dominated by urban surfaces. There were significant positive relations between urban fraction and urban heat island effects as demonstrated by VNIR and TIR data from multiple satellites. Those new estimates are expected to effectively improve climate simulation for better understanding the impacts of inter-connected urban clusters on air temperature, precipitation, wind speed

  12. Evaluation of a High-Resolution Regional Climate Ensemble

    NASA Astrophysics Data System (ADS)

    Bruyere, C. L.; Tye, M. R.; Keellings, D.; Jaye, A.

    2014-12-01

    A high-resolution Regional Climate Ensemble is used to investigate the limits of predictability of climate simulations, with a focus on high-impact weather. A diverse set of approaches are being applied to examine the impact of the different physics parameterizations on the simulated climate and high-impact weather statistics and to determine the physics combinations that result in realistic scenarios. In this paper we focus on the ensemble members' ability to correctly simulate current climate variability in terms of: 1) extreme temperature and precipitation over different regions, and 2) tropical cyclone statistics. A twenty-four member physics ensemble of climate simulations has been generated using the state-of-the-art Weather Research and Forecasting Model (Skamarock et al. 2008). The ensemble model has been run over an extended North American domain of approximately 25° S to 70° N and from the African coast to the East Pacific, and at sufficient resolution to capture high-impact weather events. Skamarock, W., J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X. Huang, and W. Wang, 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR. Boulder, CO.

  13. Future U.S. ozone projections dependence on regional emissions, climate change, long-range transport and differences in modeling design

    NASA Astrophysics Data System (ADS)

    He, Hao; Liang, Xin-Zhong; Lei, Hang; Wuebbles, Donald J.

    2016-03-01

    A consistent modeling framework with nested global and regional chemical transport models (CTMs) is used to separate and quantitatively assess the relative contributions to projections of future U.S. ozone pollution from the effects of emissions changes, climate change, long-range transport (LRT) of pollutants, and differences in modeling design. After incorporating dynamic lateral boundary conditions (LBCs) from a global CTM, a regional CTM's representation of present-day U.S. ozone pollution is notably improved, especially relative to results from the regional CTM with fixed LBCs or from the global CTM alone. This nested system of global and regional CTMs projects substantial surface ozone trends for the 2050's: 6-10 ppb decreases under the 'clean' A1B scenario and ∼15 ppb increases under the 'dirty' A1Fi scenario. Among the total trends of future ozone, regional emissions changes dominate, contributing negative 25-60% in A1B and positive 30-45% in A1Fi. Comparatively, climate change contributes positive 10-30%, while LRT effects through changing chemical LBCs account for positive 15-20% in both scenarios, suggesting introducing dynamic LBCs could influence projections of the U.S. future ozone pollution with a magnitude comparable to effects of climate change alone. The contribution to future ozone projections due to differences in modeling design, including model formulations, emissions treatments, and other factors between the global and the nested regional CTMs, is regionally dependent, ranging from negative 20% to positive 25%. It is shown that the model discrepancies for present-day simulations between global and regional CTMs can propagate into future U.S. ozone projections systematically but nonlinearly, especially in California and the Southeast. Therefore in addition to representations of emissions change and climate change, accurate treatment of LBCs for the regional CTM is essential for projecting the future U.S. ozone pollution.

  14. Use of multi-model ensembles for regional climate downscaling

    NASA Astrophysics Data System (ADS)

    Reichler, Thomas; Andrade, Marcos; Ohara, Noriaki

    2014-05-01

    Dynamic regional downscaling requires use of a regional model driven at its boundaries by the output from coarse-scale global climate models. But individual members from global multi-model ensembles often lead to contradicting answers, and the important question arises of which of the many global models to select for the downscaling work. The perhaps most obvious solution to downscale various models is usually too expensive. Numerous studies have shown that the performance of the multi-model mean of an ensemble is usually superior to that of any individual model. However, it is unclear how to employ the multi-model mean framework for regional downscaling. We propose a simple method that allows use of a multi-model mean for downscaling work. We demonstrate the performance of our method using the WRF regional model system coupled to CMIP5 output. The system is used to perform high-resolution climate change simulations over our prototypical study region of tropical South America. We use objective criteria to select three CMIP5 models that perform best in terms of simulating present day climate. The outcomes from using these three individual global models are contrasted against that from using the CMIP5 multi-model mean. We discuss the advantages and limitations of the new method, and conclude that it represents a promising and computationally inexpensive alternative to the traditional downscaling of individual models.

  15. Can regional climate engineering save the summer Arctic sea ice?

    NASA Astrophysics Data System (ADS)

    Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois

    2014-02-01

    Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.

  16. Continental-Scale Convection-Permitting Regional Climate Modeling

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Rasmussen, R.; Clark, M. P.; Ikeda, K.; Liu, C.

    2015-12-01

    Convection-permitting regional climate models (CPCMs) have proven to be useful for down scaling large-scale climate information to regional and local scales. They add value to the representation of impact relevant parameters such as near surface temperature, precipitation, and the representation of extremes by improving local scale processes such as soil atmosphere interactions, snowpack dynamics, or the representation of deep convection. Due to their high computational costs most CPCM simulations have been restricted to small domains on the order of a few 100 km. On such small domains CPCMs might not reach their full potential because they are restricted by the lateral boundary forcing and may not be able to spin up properly. In this study we investigate the ability of a continental scale CPCM to simulate climate conditions in the Contiguous United States within the period October 2000 to December 2010. We downscale ERA-Interim reanalysis data to a horizontal grid spacing of 4 km with the Weather Research and Forecasting (WRF) Model that allows an explicit treatment of deep convection. The model performance is analyzed in different synoptic-scale weather regimes, which enables a process-oriented evaluation. The significance of model biases in simulated precipitation and temperature is investigated by including observational uncertainties in the analysis. Significant biases are further investigated and possible error sources are discussed. The goal of this study is to provide a benchmark on the state-of-the-art convection-permitting regional climate modeling and to give guidance for future model development.

  17. Modeling Arctic Climate with a Regional Arctic System Model (RASM)

    NASA Astrophysics Data System (ADS)

    Cassano, J. J.; Duvivier, A.; Hughes, M.; Roberts, A.; Brunke, M.; Fisel, B. J.; Gutowski, W. J.; Maslowski, W.; Nijssen, B.; Osinski, R.; Zeng, X.

    2013-12-01

    A new regional Earth system model of the Arctic, the Regional Arctic System Model (RASM), has recently been developed. The initial version of this model includes atmosphere (WRF), ocean (POP), sea ice (CICE), and land (VIC) component models coupled with the NCAR CESM CPL7 coupler. The model is configured to run on a large pan-Arctic domain that includes all sea ice covered waters in the Northern Hemisphere and all Arctic Ocean draining land areas. Results from multi-decadal (1989 to present) simulations with RASM will be presented and will focus on the model's representation of atmosphere, ocean, sea ice, and land surface climate, emphasizing both strengths and weaknesses of the current model climate and comparisons with atmosphere-only WRF simulations. Results from the model show both areas of improvement and degraded results relative to stand-alone WRF. Improvement in the coupled model climate are related to more physically realistic representation of coupled processes such as energy transfer from the ocean to the atmosphere through leads in the sea ice during winter. Degraded results come from feedbacks in model component biases, such as atmospheric circulation biases resulting in incorrect local sea ice cover that then result in large local atmospheric temperature biases. The issue of spectral nudging in a coupled regional climate model system as well as other lessons learned during the development of RASM will be discussed. The presentation will conclude with future plans for RASM.

  18. Impact of Black Carbon Aerosols on Regional Climate

    NASA Astrophysics Data System (ADS)

    Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y.

    2002-12-01

    We have evaluated the effect of anthropogenic aerosols on the regional climates of China and India: regions where aerosol emissions have been increasing at an alarming rate. We use the Goddard Institute for Space Studies (GISS) climate model to perform simulations that investigate recent trends in summer precipitation observed over China - North drought, South flooding - considered to be the largest observed in several decades. We perform several simulations to differentiate between the climate effects of sulfate and black carbon aerosols and use realistic aerosol distributions obtained from measurements over China, India and the Indian Ocean. The trends in precipitation as well as the summer time surface cooling over China and India have been captured by using aerosols that have a low single scatter albedo (0.85), i.e., by assuming that the aerosols are mostly absorbing. Since black carbon aerosols are absorbing aerosols and cause surface cooling with heating at the top of the atmosphere and in the lower troposphere, the change in the vertical temperature profile causes changes in the large-scale vertical velocity fields, latent heating, convective activity and cloud cover. This change in the large-scale circulation may explain some of the changes in the precipitation and temperature trends observed over China and India in recent decades. Our results suggest that black carbon aerosols can have a significant influence on regional climate through changes in the hydrological cycle and large-scale circulation.

  19. Regional climate change-Science in the Southeast

    USGS Publications Warehouse

    Jones, Sonya A.

    2010-01-01

    Resource managers are at the forefront of a new era of management. They must consider the potential impacts of climate change on the Nation's resources and proactively develop strategies for dealing with those impacts on plants, animals, and ecosystems. This requires rigorous, scientific understanding of environmental change. The role of the U.S. Geological Survey (USGS) in this effort is to analyze climate-change data and develop tools for assessing how changing conditions are likely to impact resources. This information will assist Federal, State, local, and tribal partners manage resources strategically. The 2008 Omnibus Budget Act and Secretarial Order 3289 established a new network of eight Department of Interior Regional Climate Science Centers to provide technical support for resource managers. The Southeast Regional Assessment Project (SERAP) is the first regional assessment to be funded by the USGS National Climate Change and Wildlife Science Center (http://nccw.usgs.gov/). The USGS is working closely with the developing Department of Interior Landscape Conservation Cooperatives to ensure that the project will meet the needs of resource managers in the Southeast. In addition, the U.S. Fish and Wildlife Service is providing resources to the SERAP to expand the scope of the project.

  20. Future meteorological drought: projections of regional climate models for Europe

    NASA Astrophysics Data System (ADS)

    Stagge, James; Tallaksen, Lena; Rizzi, Jonathan

    2015-04-01

    In response to the major European drought events of the last decade, projecting future drought frequency and severity in a non-stationary climate is a major concern for Europe. Prior drought studies have identified regional hotspots in the Mediterranean and Eastern European regions, but have otherwise produced conflicting results with regard to future drought severity. Some of this disagreement is likely related to the relatively coarse resolution of Global Climate Models (GCMs) and regional averaging, which tends to smooth extremes. This study makes use of the most current Regional Climate Models (RCMs) forced with CMIP5 climate projections to quantify the projected change in meteorological drought for Europe during the next century at a fine, gridded scale. Meteorological drought is quantified using the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI), which normalize accumulated precipitation and climatic water balance anomaly, respectively, for a specific location and time of year. By comparing projections for these two indices, the importance of precipitation deficits can be contrasted with the importance of evapotranspiration increases related to temperature changes. Climate projections are based on output from CORDEX (the Coordinated Regional Climate Downscaling Experiment), which provides high resolution regional downscaled climate scenarios that have been extensively tested for numerous regions around the globe, including Europe. SPI and SPEI are then calculated on a gridded scale at a spatial resolution of either 0.44 degrees (~50 km) or 0.11 degrees (~12.5km) for the three projected emission pathways (rcp26, rcp45, rcp85). Analysis is divided into two major sections: first validating the models with respect to observed historical trends in meteorological drought from 1970-2005 and then comparing drought severity and frequency during three future time periods (2011-2040, 2041-2070, 2071-2100) to the

  1. Solar Forcing of Regional Climate Change During the Maunder Minimum

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Schmidt, Gavin A.; Mann, Michael E.; Rind, David; Waple, Anne; Hansen, James E. (Technical Monitor)

    2002-01-01

    We examine the climate response to solar irradiance changes between the late 17th century Maunder Minimum and the late 18th century. Global average temperature changes are small (about 0.3 to 0.4 C) in both a climate model and empirical reconstructions. However, regional temperature changes are quite large. In the model, these occur primarily through a forced shift toward the low index state of the Arctic Oscillation/North Atlantic Oscillation. This leads to colder temperatures over the Northern Hemisphere continents, especially in winter (1 to 2 C), in agreement with historical records and proxy data for surface temperatures.

  2. Tropical deforestation: Modeling local- to regional-scale climate change

    SciTech Connect

    Henderson-Sellers, A.; Durbidge, T.B.; Pitman, A.J. ); Dickinson, R.E. ); Kennedy, P.J. ); McGuffie, K. )

    1993-04-20

    The authors report results from a model study using the National Center for Atmospheric Research Community Climate Model (Version 1) general circulation model to assess the impact of regional scale deforestation on climate change. In the model a large parcel in the Amazon basin is changed from tropical rain forest to scrub grassland. Impacts can include adding CO[sub 2] to the atmosphere by biomass burning, increasing surface albedo, changing precipitation and evaporation rates, impacting soil moisture, and general weather patterns. They compare their model results with earlier work which has looked at this same problem.

  3. A conceptual framework for regional feedbacks in a changing climate

    NASA Astrophysics Data System (ADS)

    Batlle Bayer, L.; van den Hurk, B. J. J. M.; Strengers, B.

    2012-04-01

    Terrestrial ecosystems and climate influence each other through biogeochemical (e.g. carbon cycle) and biogeophysical (e.g. albedo, water fluxes) processes. These interactions might be disturbed when a climate human-induced forcing takes place (e.g. deforestation); and the ecosystem responses to the climate system might amplify (positive feedback) or dampen (negative feedback) the initial forcing. Research on feedbacks has been mainly based on the carbon cycle at the global scale. However, biogeophysical feedbacks might have a great impact at the local or regional scale, which is the main focus of this article. A conceptual framework, with the major interactions and processes between terrestrial ecosystems and climate, is presented to further explore feedbacks at the regional level. Four hot spots with potential changes in land use/management and climate are selected: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, diverse climate human-induced forcings and feedbacks were identified based on relevant published literature. For Europe, the positive soil moisture-evapotranspiration (ET) is important for natural vegetation during a heat wave event, while the positive soil moisture-precipitation feedback plays a more important role for droughts in the Amazon region. Agricultural expansion in SSA will depend on the impacts of the changing climate on crop yields and the adopted agro-technologies. The adoption of irrigation in the commonly rainfed systems might turn the positive soil moisture- ET feedback into a negative one. In contrast, South and Southeast Asia might face water shortage in the future, and thus turning the soil moisture-ET feedback into a positive one. Further research is needed for the major processes that affect the ultimate sign of the feedbacks, as well as for the interactions, which effect remains uncertain, such as ET-precipitation interaction. In addition, socio-economic feedbacks need to be added

  4. Extreme events evaluation over African cities with regional climate simulations

    NASA Astrophysics Data System (ADS)

    Bucchignani, Edoardo; Mercogliano, Paola; Simonis, Ingo; Engelbrecht, Francois

    2013-04-01

    The warming of the climate system in recent decades is evident from observations and is mainly related to the increase of anthropogenic greenhouse gas concentrations (IPCC, 2012). Given the expected climate change conditions on the African continent, as underlined in different publications, and their associated socio-economic impacts, an evaluation of the specific effects on some strategic African cities on the medium and long-term is of crucial importance with regard to the development of adaptation strategies. Assessments usually focus on averages climate properties rather than on variability or extremes, but often these last ones have more impacts on the society than averages values. Global Coupled Models (GCM) are generally used to simulate future climate scenarios as they guarantee physical consistency between variables; however, due to the coarse spatial resolution, their output cannot be used for impact studies on local scales, which makes necessary the generation of higher resolution climate change data. Regional Climate Models (RCM) describe better the phenomena forced by orography or by coastal lines, or that are related to convection. Therefore they can provide more detailed information on climate extremes that are hard to study and even harder to predict because they are, by definition, rare and obey different statistical laws. The normal bias of the RCM to represent the local climatology is reduced using adequate statistical techniques based on the comparison of the simulated results with long observational time series. In the framework of the EU-FP7 CLUVA (Climate Change and Urban Vulnerability in Africa) project, regional projections of climate change at high resolution (about 8 km), have been performed for selected areas surrounding five African cities. At CMCC, the regional climate model COSMO-CLM has been employed: it is a non-hydrostatic model. For each domain, two simulations have been performed, considering the RCP4.5 and RCP8.5 emission

  5. Agricultural pests under future climate conditions: downscaling of regional climate scenarios with a stochastic weather generator

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Stöckli, S.; Dubrovsky, M.; Spirig, C.; Rotach, M. W.; Calanca, P.; Samietz, J.

    2010-09-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously unaffected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests have been developed, which model the infestation depending on actual weather conditions. Assessing the future risk of pest-related damages therefore requires future weather data at high temporal and spatial resolution. In particular, pest forecast models are often not based on screen temperature and precipitation alone (i.e., the most generally projected climate variables), but might require input variables such as soil temperature, in-canopy net radiation or leaf wetness. Here, we use a stochastic weather and a re-sampling procedure for producing site-specific hourly weather data from regional climate change scenarios for 2050 in Switzerland. The climate change scenarios were derived from multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly temperature, precipitation and radiation data were produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather time series were then used for modeling important phases in the lifecycle of codling moth, the major insect pest in apple orchards worldwide. First results indicate a shift in the occurrence and duration of phases relevant for pest disease control for projected as compared to current climate (e.g. the flight of the codling moth starts about ten days earlier in future climate), continuing an already observed trend towards more favorable conditions for this insect during the last 20 years.

  6. Potential for added value in temperature simulated by high-resolution nested RCMs in present climate and in the climate change signal

    NASA Astrophysics Data System (ADS)

    Di Luca, Alejandro; de Elía, Ramón; Laprise, René

    2013-01-01

    Regional Climate Models (RCMs) have been developed in the last two decades in order to produce high-resolution climate information by downscaling Atmosphere-Ocean General Circulation Models (AOGCMs) simulations or analyses of observed data. A crucial evaluation of RCMs worth is given by the assessment of the value added compared to the driving data. This evaluation is usually very complex due to the manifold circumstances that can preclude a fair assessment. In order to circumvent these issues, here we limit ourselves to estimating the potential of RCMs to add value over coarse-resolution data. We do this by quantifying the importance of fine-scale RCM-resolved features in the near-surface temperature, but disregarding their skill. The Reynolds decomposition technique is used to separate the variance of the time-varying RCM-simulated temperature field according to the contribution of large and small spatial scales and of stationary and transient processes. The temperature variance is then approximated by the contribution of four terms, two of them associated with coarse-scales (e.g., corresponding to the scales that can be simulated by AOGCMs) and two of them describing the original contribution of RCM simulations. Results show that the potential added value (PAV) emerges almost exclusively in regions characterised by important surface forcings either due to the presence of fine-scale topography or land-water contrasts. Moreover, some of the processes leading to small-scale variability appear to be related with relatively simple mechanisms such as the distinct physical properties of the Earth surface and the general variation of temperature with altitude in the Earth atmosphere. Finally, the article includes some results of the application of the PAV framework to the future temperature change signal due to anthropogenic greenhouse gasses. Here, contrary to previous studies centred on precipitation, findings suggest for surface temperature a relatively low potential

  7. Impacts of climate change on mangrove ecosystems: A region by region overview

    USGS Publications Warehouse

    Ward, Raymond D.; Friess, Daniel A.; Day, Richard H.; MacKenzie, Richard A.

    2016-01-01

    Inter-related and spatially variable climate change factors including sea level rise, increased storminess, altered precipitation regime and increasing temperature are impacting mangroves at regional scales. This review highlights extreme regional variation in climate change threats and impacts, and how these factors impact the structure of mangrove communities, their biodiversity and geomorphological setting. All these factors interplay to determine spatially variable resiliency to climate change impacts, and because mangroves are varied in type and geographical location, these systems are good models for understanding such interactions at different scales. Sea level rise is likely to influence mangroves in all regions although local impacts are likely to be more varied. Changes in the frequency and intensity of storminess are likely to have a greater impact on N and Central America, Asia, Australia, and East Africa than West Africa and S. America. This review also highlights the numerous geographical knowledge gaps of climate change impacts, with some regions particularly understudied (e.g., Africa and the Middle East). While there has been a recent drive to address these knowledge gaps especially in South America and Asia, further research is required to allow researchers to tease apart the processes that influence both vulnerability and resilience to climate change. A more globally representative view of mangroves would allow us to better understand the importance of mangrove type and landscape setting in determining system resiliency to future climate change.

  8. Nested Cohort

    Cancer.gov

    NestedCohort is an R software package for fitting Kaplan-Meier and Cox Models to estimate standardized survival and attributable risks for studies where covariates of interest are observed on only a sample of the cohort.

  9. The hydrological cycle of the Niger River basin simulated by the CORDEX-Africa regional climate models

    NASA Astrophysics Data System (ADS)

    Mascaro, G.; White, D. D.; Westerhoff, P.; Bliss, N.

    2015-12-01

    The Niger River Basin (NRB) is a large transnational watershed of ~1.5 million km2, whose water resources sustain more than 100 million people of nine countries in West Africa. Evaluating the reliability of climate simulations in the region is essential to support water sustainability and food security under possible future climatic changes and population growth. Here, we assess the ability of a set of state-of-the-art regional climate models (RCMs) of the COordinated Regional climate Downscaling EXperiment (CORDEX)-Africa to reproduce the hydrologic cycle of the NRB. For this aim, we adopt a verification framework based on the mass conservation principle that assumes that the mean annual difference between precipitation and evaporation equals the long-term mean discharge. We focus on four nested sub-basins encompassing different climatic zones with available discharge observations. We found that most RCMs overestimate the mean annual runoff (from +10% to +400%), because of a positive bias in the simulation of precipitation and a weak hydrologic cycle in the evaporation channel. Some exceptions are found in the more humid sub-basin upstream where a few climate simulations are not able to capture the intensity of the West African monsoon. Analyses of the water balance components also revealed that the signature of the RCMs is more significant than that of the driving General Circulation Model, likely due to the specific schemes adopted in the RCMs to parameterize the land-surface processes. This work is useful to increase the utility of regional climate simulations in impact studies supporting the development of water management polices and
planning of hydraulic infrastructures in the basin.

  10. Model experiments on climate change in the Tokyo metropolitan area using regional climate scenarios

    NASA Astrophysics Data System (ADS)

    Tsunematsu, N.; Dairaku, K.

    2011-12-01

    There is a possibility that the future atmospheric warming leads to more frequent heavy rainfall in the metropolitan area, thereby increasing the risk of floods. As part of REsearch Program on Climate Change Adaptation (RECCA) funded by Ministry of Education, Culture, Sports, Science and Technology, Japan, we started numerical model experiments for investigating the vulnerability and adaptation to climate change in water hazard assessments in the metropolitan area by the use of regional climate scenarios. The model experiments adopt dynamical downscaling techniques. Future climate projections obtained from regional climate model simulations at 20 km horizontal grid spacing are downscaled into finer grids (less than 5 km resolutions) of Regional Atmospheric Modeling System Version 6.0 modified by National Research Institute for Earth Science and Disaster Prevention (NIED-RAMS). Prior to performing the dynamical downscaling experiments, the NIED-RAMS model biases are evaluated by comparing long-term surface meteorological observations with results of the model simulations that are carried out by using the Japanese Re-Analysis (JRA) data and Japan Meteorological Agency Meso-Scale Model outputs as the initial and boundary conditions.

  11. Holocene climate changes in the Cape Hatteras region

    NASA Astrophysics Data System (ADS)

    Naughton, F.; Keigwin, L. D.; Peteet, D. M.; Desprat, S.; Oliveira, D.; Abrantes, F.

    2013-12-01

    In the last century many studies have been done in various naturally occurring archives to understand the nature, timing and causes of Holocene natural climate oscillations. Most of the available Holocene climatic reconstructions are however, not based on a direct comparison of terrestrial, marine and ice records making it difficult to obtain an accurate understanding of the interactions of the atmosphere-ocean-land systems and their relationship in global climate variability. Few studies based on direct sea land comparison have been reported for some key areas of the eastern North Atlantic but almost none in the western North Atlantic. Here we present a direct comparison between terrestrial (pollen) and marine (planktonic δ18O) proxies from a well dated (ten AMS 14C dates on planktonic foraminifera and seaweed) slope core (KNR 178-2 JPC 32), retrieved close to Cape Hatteras (35°58.58'N, 74°42.77'W, 1006 m). This study provides information on eastern North America vegetation and on the northwestern Atlantic sea surface response to both Holocene long-term and rapid climate changes. Five intervals, marked mainly by changes in temperate trees are associated with long term climate shifts (12000-9150 ka; 9150-7250 ka; 7250-5350 ka; 5350-2800 ka; 2800-700 ka). Over these intervals, several abrupt cooling events are noted, as well as several indications of shifts in moisture. The comparison of our data with those available and unpublished records from several key sites of the North Atlantic region, gives insights into the nature, timing and causes of Holocene climate oscillations in the North Atlantic region and in particular off Cape Hatteras.

  12. Linking the Weather Generator with Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan

    2013-04-01

    One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102

  13. Geographical patterns in cyanobacteria distribution: climate influence at regional scale.

    PubMed

    Pitois, Frédéric; Thoraval, Isabelle; Baurès, Estelle; Thomas, Olivier

    2014-01-28

    Cyanobacteria are a component of public health hazards in freshwater environments because of their potential as toxin producers. Eutrophication has long been considered the main cause of cyanobacteria outbreak and proliferation, whereas many studies emphasized the effect of abiotic parameters (mainly temperature and light) on cell growth rate or toxin production. In view of the growing concerns of global change consequences on public health parameters, this study attempts to enlighten climate influence on cyanobacteria at regional scale in Brittany (NW France). The results show that homogeneous cyanobacteria groups are associated with climatic domains related to temperature, global radiation and pluviometry, whereas microcystins (MCs) occurrences are only correlated to local cyanobacteria species composition. As the regional climatic gradient amplitude is similar to the projected climate evolution on a 30-year timespan, a comparison between the present NW and SE situations was used to extrapolate the evolution of geographical cyanobacteria distribution in Brittany. Cyanobacteria composition should shift toward species associated with more frequent Microcystins occurrences along a NW/SE axis whereas lakes situated along a SW/NE axis should transition to species (mainly Nostocales) associated with lower MCs detection frequencies.

  14. Sensitivity of Regional Climate to Deforestation in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1994-01-01

    The deforestation results in several adverse effect on the natural environment. The focus of this paper is on the effects of deforestation on land-surface processes and regional climate of the Amazon basin. In general, the effect of deforestation on climate are likely to depend on the scale of the defrosted area. In this study, we are interested in the effects due to deforestation of areas with a scale of about 250 km. Hence, a meso-scale climate model is used in performing numerical experiments on the sensitivity of regional climate to deforestation of areas with that size. It is found that deforestation results in less net surface radiation, less evaporation, less rainfall, and warmer surface temperature. The magnitude of the of the change in temperature is of the order 0.5 C, the magnitudes of the changes in the other variables are of the order of IO%. In order to verify some of he results of the numerical experiments, the model simulations of net surface radiation are compared to recent observations of net radiation over cleared and undisturbed forest in the Amazon. The results of the model and the observations agree in the following conclusion: the difference in net surface radiation between cleared and undisturbed forest is, almost, equally partioned between net solar radiation and net long-wave radiation. This finding contributes to our understanding of the basic physics in the deforestation problem.

  15. Geographical Patterns in Cyanobacteria Distribution: Climate Influence at Regional Scale

    PubMed Central

    Pitois, Frédéric; Thoraval, Isabelle; Baurès, Estelle; Thomas, Olivier

    2014-01-01

    Cyanobacteria are a component of public health hazards in freshwater environments because of their potential as toxin producers. Eutrophication has long been considered the main cause of cyanobacteria outbreak and proliferation, whereas many studies emphasized the effect of abiotic parameters (mainly temperature and light) on cell growth rate or toxin production. In view of the growing concerns of global change consequences on public health parameters, this study attempts to enlighten climate influence on cyanobacteria at regional scale in Brittany (NW France). The results show that homogeneous cyanobacteria groups are associated with climatic domains related to temperature, global radiation and pluviometry, whereas microcystins (MCs) occurrences are only correlated to local cyanobacteria species composition. As the regional climatic gradient amplitude is similar to the projected climate evolution on a 30-year timespan, a comparison between the present NW and SE situations was used to extrapolate the evolution of geographical cyanobacteria distribution in Brittany. Cyanobacteria composition should shift toward species associated with more frequent Microcystins occurrences along a NW/SE axis whereas lakes situated along a SW/NE axis should transition to species (mainly Nostocales) associated with lower MCs detection frequencies. PMID:24476711

  16. Performance of the CORDEX-Africa regional climate simulations in representing the hydrological cycle of the Niger River basin

    NASA Astrophysics Data System (ADS)

    Mascaro, Giuseppe; White, Dave D.; Westerhoff, Paul; Bliss, Nadya

    2015-12-01

    The water resources of the Niger River basin (NRB) in West Africa are crucial to support the socioeconomic development of nine countries. In this study, we compared and evaluated performances of simulations at 0.44° resolution of several regional climate models (RCMs) of the Coordinated Regional climate Downscaling Experiment (CORDEX) in reproducing the statistical properties of the hydrological cycle of the NRB in the current climate. To capture the large range of climatic zones in the region, analyses were conducted by spatially averaging the water balance components in four nested subbasins. Most RCMs overestimate (order of +10% to +400%, depending on model and subbasin) the mean annual difference between precipitation (P) and evaporation (E), whose observed value was assumed equal to the long-term discharge based on the mass conservation principle. This is due to a tendency to simulate larger mean annual P and a weak hydrological cycle in the E channel. Some exceptions appear in the humid most-upstream subbasin, where a few RCMs underestimate P. Overall, the representation of the water balance is mostly sensitive to the parameterized land surface and atmospheric processes of the nested RCMs, with less influence of the driving general circulation model. This finding is supported by further analyses on seasonal cycle and spatial variability of the water balance components and on model performances in reproducing observed climatology. Results of this work should be considered when RCMs are used directly or in impact studies to develop policies and plan investments aimed at ensuring water sustainability in the NRB.

  17. Cloud-resolving regional climate modeling approach in decade-long simulations

    NASA Astrophysics Data System (ADS)

    Ban, Nikolina; Schmidli, Jürg; Schär, Christoph

    2014-05-01

    The uncertainties in current global and regional climate model integrations are partly related to the representation of clouds, moist convection, and complex topography. Reducing the grid spacing down to some few kilometers and switching off the convection parameterization (cloud-resolving models) is thus an attractive approach. On climate time scales, cloud-resolving methods have been used for process studies, but application to long-term scenario simulations has been very limited. Here we present cloud-resolving simulations for 10-year-long periods integrated with the COSMO-CLM model and driven by reanalysis data (for present day climate) and a global climate model (control and scenario run). Two one-way nested grids are used with horizontal resolutions of 2.2 km for a cloud-resolving model (CRM) over an extended Alpine domain (1100 km x 1100 km), and 12 km for a cloud-parameterizing simulation (CPM) covering Europe. The CRM is driven by lateral boundary conditions from the CPM run, while the CPM run is driven by lateral boundary conditions from ERA-Interim reanalysis and the Earth-System Model of the Max-Planck-Institut (MPI-ESM-LR). Validation is conducted against high-resolution surface data. The CRM model strongly improves the simulation of the diurnal cycles of temperature and precipitation, while CPM has a poor diurnal cycle associated with the use of parameterized convection. The assessment of precipitation statistics reveals that both models adequately represent the frequency-intensity distribution for day-long events. For hourly events the CRM has a realistic representation of heavy precipitation events, while the CPM suffers from a strong underestimation. We also present results on the scaling of precipitation extremes with local daily-mean temperature and preliminary results on the projection of heavy precipitation events.

  18. Regional climate impacts of a possible future grand solar minimum

    PubMed Central

    Ineson, Sarah; Maycock, Amanda C.; Gray, Lesley J.; Scaife, Adam A.; Dunstone, Nick J.; Harder, Jerald W.; Knight, Jeff R.; Lockwood, Mike; Manners, James C.; Wood, Richard A.

    2015-01-01

    Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations. PMID:26102364

  19. Regional climate impacts of a possible future grand solar minimum

    NASA Astrophysics Data System (ADS)

    Ineson, Sarah; Maycock, Amanda C.; Gray, Lesley J.; Scaife, Adam A.; Dunstone, Nick J.; Harder, Jerald W.; Knight, Jeff R.; Lockwood, Mike; Manners, James C.; Wood, Richard A.

    2015-06-01

    Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations.

  20. Regional climate impacts of a possible future grand solar minimum.

    PubMed

    Ineson, Sarah; Maycock, Amanda C; Gray, Lesley J; Scaife, Adam A; Dunstone, Nick J; Harder, Jerald W; Knight, Jeff R; Lockwood, Mike; Manners, James C; Wood, Richard A

    2015-01-01

    Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations. PMID:26102364

  1. Regional Risk Assessment for climate change impacts on coastal aquifers.

    PubMed

    Iyalomhe, F; Rizzi, J; Pasini, S; Torresan, S; Critto, A; Marcomini, A

    2015-12-15

    Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality due to the high density of socio-economic activities and human assets in coastal regions and to the projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and groundwater level variation. The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios based on a chain of climate, hydrological, hydraulic and groundwater system models running at different spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 over four seasons (i.e., winter, spring, summer and autumn). Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural environments will be at risk only in a region close to the coastline which covers less than 5% of the total surface of the considered receptors; less than 3.5% of the wells will be exposed in the worst scenario. Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline (only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal aquifer with no consequences on the considered natural and human systems.

  2. NATURAL AND ATHROPOGENIC FACTORS AFFECTING GLOBAL AND REGIONAL CLIMATE

    EPA Science Inventory

    New England weather is highly variable for a number of
    reasons. Our regional climate is also quite variable. The
    winters of the past decade are milder than they were in the
    1960s and 1970s but as the ice-out and snowfall data show
    (Figs 2.5 and 2.6), the patterns of c...

  3. Cenozoic climate and paleogeographic changes in the Pacific region

    USGS Publications Warehouse

    Cronin, T. M.; Ogasawara, K.; Wolfe, J.A.

    1994-01-01

    This special issue represents the proceedings of the symposium, held as part of the 29th International Geological Congress, 1992. Other relevant papers on Cainozoic climate change in Japan are also included. Data is assembled from the Pacific Ocean itself, its marginal seas, in particular the Sea of Japan, and the surrounding coastal states. The palaeoenvironment of the region is reconstructed from the analysis of micropalaeontological, isotopic and stratigraphic data from deep-sea and terrestrial cores. -S.J.Stone

  4. Regional Risk Assessment for climate change impacts on coastal aquifers.

    PubMed

    Iyalomhe, F; Rizzi, J; Pasini, S; Torresan, S; Critto, A; Marcomini, A

    2015-12-15

    Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality due to the high density of socio-economic activities and human assets in coastal regions and to the projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and groundwater level variation. The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios based on a chain of climate, hydrological, hydraulic and groundwater system models running at different spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 over four seasons (i.e., winter, spring, summer and autumn). Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural environments will be at risk only in a region close to the coastline which covers less than 5% of the total surface of the considered receptors; less than 3.5% of the wells will be exposed in the worst scenario. Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline (only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal aquifer with no consequences on the considered natural and human systems. PMID:26282744

  5. Regional differences in climate change of the ionosphere

    NASA Astrophysics Data System (ADS)

    Lastovicka, Jan

    2016-07-01

    The increasing concentration of greenhouse gases, particularly carbon dioxide CO2, in the atmosphere affects not only the troposphere and surface climate, it affects the whole atmosphere-ionosphere system and it induces long-term trends and/or climate change in the ionosphere. The geographic distribution of CO2 in the upper atmosphere/ionosphere is relatively homogeneous and the long-term increase of CO2 concentration in the atmosphere is known to be stable. However, there are some other secondary drivers of long-term trends in the upper atmosphere/ionosphere, whose long-term behavior and/or effects either are not spatially homogeneous or are not stable in time (or both). Geomagnetic activity, solar activity, secular change of the Earth's magnetic field, long-term evolution of stratospheric ozone concentration and atmospheric wave activity are such trend drivers. They are responsible for regional differences in trends and also for their temporal non-stability. Regions of strong trends as a consequence of regional differences of trends represent a specific kind of risk from the point of view of space/ionospheric climate. These features of ionospheric trends will briefly be treated in this presentation.

  6. Serenbe Nest Cottages

    SciTech Connect

    Butler, T.; Curtis, O.; Kim, E.; Roberts, S.; Stephenson, R.

    2012-12-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with Martin Dodson Builders and the Serenbe community on the construction of a new test home in the suburbs of Atlanta, GA in the mixed humid climate zone. The most recent subdivision within the Serenbe community, the Nest, will contain 15 small footprint cottage style homes, and Southface has selected Lot Nine, as the test home for this study. This Nest subdivision serves as a project showcase for both the builder partner and the Serenbe community as a whole. The planning and design incorporated into the Nest cottages will be implemented in each home within the subdivision. These homes addresses Building America Savings targets and serve as a basis of design for other homes Martin Dodson plans to build within the Serenbe community.

  7. Serenbe Nest Cottages

    SciTech Connect

    Butler, T.; Curtis, O.; Kim, E.; Roberts, S.; Stephenson, R.

    2012-12-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with Martin Dodson Builders and the Serenbe community on the construction of a new test home in the suburbs of Atlanta, GA, in the mixed humid climate zone. The most recent subdivision within the Serenbe community, the Nest, will contain 15 small footprint cottage-style homes, and Southface has selected Lot Nine, as the test home for this study. This Nest subdivision serves as a project showcase for both the builder partner and the Serenbe community as a whole. The planning and design incorporated into the Nest cottages will be implemented in each home within the subdivision. These homes addresses Building America savings targets and serve as a basis of design for other homes Martin Dodson plans to build within the Serenbe community.

  8. Verification of regional climates of GISS GCM. Part 2: Summer

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Rind, David

    1989-01-01

    Verification is made of the synoptic fields, sea-level pressure, precipitation rate, 200mb zonal wind and the surface resultant wind generated by two versions of the Goddard Institute for Space Studies (GISS) climate model. The models differ regarding the horizontal resolution of the computation grids and the specification of the sea-surface temperatures. Maps of the regional distributions of seasonal means of the model fields are shown alongside maps that show the observed distributions. Comparisons of the model results with observations are discussed and also summarized in tables according to geographic region.

  9. Verification of regional climates of GISS GCM. Part 1: Winter

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Rind, David

    1988-01-01

    Verification is made of the synoptic fields, sea level pressure, precipitation rate, 200 mb zonal wind and the surface resultant wind, generated by two versions of the GISS climate model. The models differ regarding the horizontal resolution of the computational grids and the specification of the sea surface temperatures. Maps of the regional distributions of seasonal variations of the model fields are shown alongside maps showing the observed distributions. Comparisons of the model results with observations are discussed, and also summarized in tables according to geographic regions.

  10. Adaptation and the Two-Degree Target - Regional Climate Consequences

    NASA Astrophysics Data System (ADS)

    Kreienkamp, F.; Hübener, H.; Spekat, A.; Wolf, H.

    2010-09-01

    In the current debate on climate change, countries are preparing for adaptation to the expected impacts of climate change. For example, Germany has decided its Adaptation Strategy in December 2008. It is the ensuing responsibility of the German Federal States to put this strategy into adaptation measures and specific action. However, to decide on such critical and expensive actions, reliable climate change information is needed. Depending on the relevant sector, this information is required on different scales in time and space. Furthermore, global policy discusses the two-degree target aiming to contain climate change to a warming of less than two degrees relative to pre-industrial values. It is currently discussed, whether or not this goal can be reached at all. However, as governmental bodies, the Environmental Agencies need to address the political aim of the two-degree target and have to respond to the implied climate change signals. At the moment no very high resolution (~10km) climate projections are available for a scenario which stays within the bounds of the two degree target. Therefore, a different approach was taken and will be presented: Global climate simulations with the ECHAM5 model have been evaluated as to the time when the global average warming hits the mark of two degrees above the pre-industrial level. Moreover, this approach is applied for different available SRES scenarios. 30-year time slices were selected centered at these instants in time. The resulting time slices were analyzed in the high resolution RCM simulations of dynamical (CCLM and REMO) as well as statistical (WETTREG) type, driven with the respective GCM scenario run. Thus, a minimum climate change is assessed as the lower bound for which adaptation measures will be definitely necessary. As it turns out, the relevant time frame assessed from the global climate simulations is 2036--2065 for scenario A1B, 2041--2070 for scenario A2 and 2051--2080 for scenario B1. In addition, the

  11. Context Dependent Effect of Landscape on the Occurrence of an Apex Predator across Different Climate Regions

    PubMed Central

    Fujita, Go; Azuma, Atsuki; Nonaka, Jun; Sakai, Yoshiaki; Sakai, Hatsumi; Iseki, Fumitaka; Itaya, Hiroo; Fukasawa, Keita; Miyashita, Tadashi

    2016-01-01

    In studies of habitat suitability at landscape scales, transferability of species-landscape associations among sites are likely to be critical because it is often impractical to collect datasets across various regions. However, limiting factors, such as prey availability, are not likely to be constant across scales because of the differences in species pools. This is particularly true for top predators that are often the target for conservation concern. Here we focus on gray-faced buzzards, apex predators of farmland-dominated landscapes in East Asia. We investigated context dependency of “buzzard-landscape relationship”, using nest location datasets from five sites, each differing in landscape composition. Based on the similarities of prey items and landscape compositions across the sites, we determined several alternative ways of grouping the sites, and then examined whether buzzard-landscape relationship change among groups, which was conducted separately for each way of grouping. As a result, the model of study-sites grouping based on similarities in prey items showed the smallest ΔAICc. Because the terms of interaction between group IDs and areas of broad-leaved forests and grasslands were selected, buzzard-landscape relationship showed a context dependency, i.e., these two landscape elements strengthen the relationship in southern region. The difference in prey fauna, which is associated with the difference in climate, might generate regional differences in the buzzard-landscape associations. PMID:27123930

  12. Context Dependent Effect of Landscape on the Occurrence of an Apex Predator across Different Climate Regions.

    PubMed

    Fujita, Go; Azuma, Atsuki; Nonaka, Jun; Sakai, Yoshiaki; Sakai, Hatsumi; Iseki, Fumitaka; Itaya, Hiroo; Fukasawa, Keita; Miyashita, Tadashi

    2016-01-01

    In studies of habitat suitability at landscape scales, transferability of species-landscape associations among sites are likely to be critical because it is often impractical to collect datasets across various regions. However, limiting factors, such as prey availability, are not likely to be constant across scales because of the differences in species pools. This is particularly true for top predators that are often the target for conservation concern. Here we focus on gray-faced buzzards, apex predators of farmland-dominated landscapes in East Asia. We investigated context dependency of "buzzard-landscape relationship", using nest location datasets from five sites, each differing in landscape composition. Based on the similarities of prey items and landscape compositions across the sites, we determined several alternative ways of grouping the sites, and then examined whether buzzard-landscape relationship change among groups, which was conducted separately for each way of grouping. As a result, the model of study-sites grouping based on similarities in prey items showed the smallest ΔAICc. Because the terms of interaction between group IDs and areas of broad-leaved forests and grasslands were selected, buzzard-landscape relationship showed a context dependency, i.e., these two landscape elements strengthen the relationship in southern region. The difference in prey fauna, which is associated with the difference in climate, might generate regional differences in the buzzard-landscape associations.

  13. Context Dependent Effect of Landscape on the Occurrence of an Apex Predator across Different Climate Regions.

    PubMed

    Fujita, Go; Azuma, Atsuki; Nonaka, Jun; Sakai, Yoshiaki; Sakai, Hatsumi; Iseki, Fumitaka; Itaya, Hiroo; Fukasawa, Keita; Miyashita, Tadashi

    2016-01-01

    In studies of habitat suitability at landscape scales, transferability of species-landscape associations among sites are likely to be critical because it is often impractical to collect datasets across various regions. However, limiting factors, such as prey availability, are not likely to be constant across scales because of the differences in species pools. This is particularly true for top predators that are often the target for conservation concern. Here we focus on gray-faced buzzards, apex predators of farmland-dominated landscapes in East Asia. We investigated context dependency of "buzzard-landscape relationship", using nest location datasets from five sites, each differing in landscape composition. Based on the similarities of prey items and landscape compositions across the sites, we determined several alternative ways of grouping the sites, and then examined whether buzzard-landscape relationship change among groups, which was conducted separately for each way of grouping. As a result, the model of study-sites grouping based on similarities in prey items showed the smallest ΔAICc. Because the terms of interaction between group IDs and areas of broad-leaved forests and grasslands were selected, buzzard-landscape relationship showed a context dependency, i.e., these two landscape elements strengthen the relationship in southern region. The difference in prey fauna, which is associated with the difference in climate, might generate regional differences in the buzzard-landscape associations. PMID:27123930

  14. {open_quotes}Feature{close_quotes} mapping of the HLA-C linked DNA region: Construction by sequencing from nested deletions

    SciTech Connect

    Krishnan, B.R.; Chaplin, D.D. |

    1994-09-01

    The HLA complex located on chromosome 6p spans {approximately}4 Mb and is gene dense. To enable systematic analysis of less well-characterized portions of HLA, we are defining significant {open_quotes}features{close_quotes} of these DNA regions: locations of putative genes (prediction of exons by GRAIL analysis) and Alu elements, regions with homology to the database, and regions of evolutionarily conserved DNA sequence. Initially, we cloned a 35 kb DNA segment adjacent to HLA-C into a transposon {gamma}{delta}-based cosmid vector designed for generating nested deletions in vivo. Over 70 informative nested deletions were obtained and sequenced by fluorescent-automated technology. Islands of DNA sequences were obtained and used to construct a feature map of the 35 kb HLA segment. Our data (i) defined the organization of the previously identified keratinocyte-specific S gene, (ii) generated the DNA sequence of two evolutionarily conserved DNA segments, and (iii) located otherwise undefined putative exons and Alu elements. The construction of such feature maps of large DNA segments using the nested deletion-sequencing approach provides an efficient means to identify DNA segments meriting systematic and detailed analysis.

  15. Climate change and vector-borne diseases: a regional analysis.

    PubMed

    Githeko, A K; Lindsay, S W; Confalonieri, U E; Patz, J A

    2000-01-01

    Current evidence suggests that inter-annual and inter-decadal climate variability have a direct influence on the epidemiology of vector-borne diseases. This evidence has been assessed at the continental level in order to determine the possible consequences of the expected future climate change. By 2100 it is estimated that average global temperatures will have risen by 1.0-3.5 degrees C, increasing the likelihood of many vector-borne diseases in new areas. The greatest effect of climate change on transmission is likely to be observed at the extremes of the range of temperatures at which transmission occurs. For many diseases these lie in the range 14-18 degrees C at the lower end and about 35-40 degrees C at the upper end. Malaria and dengue fever are among the most important vector-borne diseases in the tropics and subtropics; Lyme disease is the most common vector-borne disease in the USA and Europe. Encephalitis is also becoming a public health concern. Health risks due to climatic changes will differ between countries that have developed health infrastructures and those that do not. Human settlement patterns in the different regions will influence disease trends. While 70% of the population in South America is urbanized, the proportion in sub-Saharan Africa is less than 45%. Climatic anomalies associated with the El Niño-Southern Oscillation phenomenon and resulting in drought and floods are expected to increase in frequency and intensity. They have been linked to outbreaks of malaria in Africa, Asia and South America. Climate change has far-reaching consequences and touches on all life-support systems. It is therefore a factor that should be placed high among those that affect human health and survival.

  16. Climate change and vector-borne diseases: a regional analysis.

    PubMed Central

    Githeko, A. K.; Lindsay, S. W.; Confalonieri, U. E.; Patz, J. A.

    2000-01-01

    Current evidence suggests that inter-annual and inter-decadal climate variability have a direct influence on the epidemiology of vector-borne diseases. This evidence has been assessed at the continental level in order to determine the possible consequences of the expected future climate change. By 2100 it is estimated that average global temperatures will have risen by 1.0-3.5 degrees C, increasing the likelihood of many vector-borne diseases in new areas. The greatest effect of climate change on transmission is likely to be observed at the extremes of the range of temperatures at which transmission occurs. For many diseases these lie in the range 14-18 degrees C at the lower end and about 35-40 degrees C at the upper end. Malaria and dengue fever are among the most important vector-borne diseases in the tropics and subtropics; Lyme disease is the most common vector-borne disease in the USA and Europe. Encephalitis is also becoming a public health concern. Health risks due to climatic changes will differ between countries that have developed health infrastructures and those that do not. Human settlement patterns in the different regions will influence disease trends. While 70% of the population in South America is urbanized, the proportion in sub-Saharan Africa is less than 45%. Climatic anomalies associated with the El Niño-Southern Oscillation phenomenon and resulting in drought and floods are expected to increase in frequency and intensity. They have been linked to outbreaks of malaria in Africa, Asia and South America. Climate change has far-reaching consequences and touches on all life-support systems. It is therefore a factor that should be placed high among those that affect human health and survival. PMID:11019462

  17. CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium

    NASA Astrophysics Data System (ADS)

    Termonia, Piet; Van Schaeybroeck, Bert; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick

    2016-04-01

    The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond" is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups eight Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.

  18. On how climate variability influences regional sea level change

    NASA Astrophysics Data System (ADS)

    Brunnabend, Sandra-Esther; Kusche, Jürgen; Rietbroek, Roelof; Forootan, Ehsan

    2016-04-01

    Regional trends in sea level change are strongly influenced by climate variations, such as ENSO (El-Nino Southern Oscillation), the IOD (Indian Ocean Dipole), or the PDO (Pacific Decadal Oscillation). Hence, before computing long term regional sea level change, these sea level variations need to be taken into account as they lead to strong dependencies of computed regional sea level trends on the time period of the investigation. In this study, sea level change during the years 1993 to 2013 is analysed to identify the dominant modes of sea level change caused by climate variations. Here, two different gridded altimetry products are analysed, namely ESA's combined CCI SeaLevel v1.1 ECV product (doi: 10.5270/esa-sea_level_cci-1993_2013-v_1.1-201412), and absolute dynamic topography produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes (http://www.aviso.altimetry.fr/duacs/). Reconstructions using the different decomposition techniques including the standard principle component analysis (PCA), rotated empirical orthogonal functions (REOF) and independent component analysis (ICA) method are analysed. They are compared with sea level change modelled with the global finite-element sea-ice ocean model (FESOM). The results indicate that from the applied methods, ICA is most suitable to separate the individual climate variability signals in independent modes of sea level change. This especially holds for extracting the ENSO contribution in sea level changes, which was better separated by applying ICA, from both altimetry and modelled sea level products. In addition, it is presented how modelled sea level change reflects climate variations compared to that identified in the altimetry products.

  19. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    NASA Technical Reports Server (NTRS)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  20. Probabilistic modeling of climate change impacts in permafrost regions

    NASA Astrophysics Data System (ADS)

    Anisimov, O.

    2009-04-01

    model reanalysis were used to characterize the baseline climate in Northern Eurasia and evaluate regional uncertainties resulting from the differences between the databases. Additional uncertainty in predictive calculations was associated with ensemble climatic projections for the mid-21st century. Another type of uncertainty is imposed by the small-scale stochastic variations of environmental parameters that govern the response of permafrost to climate variations. We simulated the effect it may have on the state of permafrost using the following approach. In different calculations snow depth varied in the range ± 50% from the mean climatological value; lower vegetation (moss) height varied between 5 and 10 cm, and organic layer thickness - in the range 5-20 cm. The range of variation for each of the environmental parameters has been selected using observational data. Performance of the stochastic model was evaluated using the two-step procedure. At the first step calculated for individual years statistics of the seasonal thaw depth was tested against observations at selected 1 x 1 km permafrost sites representing different bioclimatic conditions along the Russian Arctic coast. At each site the calculated ensemble was in good agreement with observations indicating that the model captures the component of small-scale variability associated with the spatial heterogeneity of environmental parameters. In the second test the model successfully reproduces the interannual variability of the ensemble-mean thaw depths at each site in the period 1990-2007. The ultimate result of our study is the set of predictive probabilistic permafrost maps for the Northern Eurasia. Aside from portraying the "average" or "typical" active-layer thickness for the current and projected for the mid-21st century climate, such maps depict the probability of thaw depth exceeding given thresholds within specified regions. Such information has important implication in cold region engineering and risk

  1. "The Effect of Alternative Representations of Lake Temperatures and Ice on WRF Regional Climate Simulations"

    EPA Science Inventory

    Lakes can play a significant role in regional climate, modulating inland extremes in temperature and enhancing precipitation. Representing these effects becomes more important as regional climate modeling (RCM) efforts focus on simulating smaller scales. When using the Weathe...

  2. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    NASA Astrophysics Data System (ADS)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  3. Climate-aerosol interactions over the Mediterranean region: a regional coupled modelling approach

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Somot, Samuel; Mallet, Marc

    2015-04-01

    The Mediterranean basin is affected by numerous and various aerosols which have a high spatio-temporal variability. These aerosols directly interact with solar and thermal radiation, and indirectly with clouds and atmospheric dynamics. Therefore they can have an important impact on the regional climate. This work, located at the boundary between the ChArMEx and HyMeX programs, considers a coupled regional modeling approach in order to address the questions of the aerosol-radiation-cloud interactions with regards to the climate variability over the Mediterranean. In order to improve the characterization of Mediterranean aerosols, a new interannual monthly climatology of aerosol optical depth has been developed from a blended product based on both satellite-derived and model-simulated datasets. This dataset, available for every regional climate model over the Mediterranean for the 1979-2012 period, has been built to obtain the best possible estimate of the atmospheric aerosol content for the five species at stake (sulfate, black carbon, organic matter, desert dust and sea salt particles). Simulation ensembles, which have been carried out over the 2003-2009 period with and without aerosols, show a major impact on the regional climate. The seasonal cycle and the spatial patterns of the Mediterranean climate are significantly modified, as well as some specific situations such as the heat wave in July 2006 strengthened by the presence of desert dust particles. The essential role of the Mediterranean sea surface temperature is highlighted, and enables to understand the induced changes on air-sea fluxes and the consequences on regional climate. Oceanic convection is also strengthened by aerosols. In addition, the decrease in anthropogenic aerosols observed for more than thirty years is shown to significantly contribute to the observed Euro-Mediterranean climatic trends in terms of surface radiation and temperature. Besides, an interactive aerosol scheme has been developed

  4. Potential impact of U.S. biofuels on regional climate

    NASA Astrophysics Data System (ADS)

    Georgescu, M.; Lobell, D. B.; Field, C. B.

    2009-11-01

    Recent work has shown that current bio-energy policy directives may have harmful, indirect consequences, affecting both food security and the global climate system. An additional unintended but direct effect of large-scale biofuel production is the impact on local and regional climate resulting from changes in the energy and moisture balance of the surface upon conversion to biofuel crops. Using the latest version of the WRF modeling system we conducted twenty-four, midsummer, continental-wide, sensitivity experiments by imposing realistic biophysical parameter limits appropriate for bio-energy crops in the Corn Belt of the United States. In the absence of strain/crop-specific parameterizations, a primary goal of this work was to isolate the maximum regional climate impact, for a trio of individual July months, due to land-use change resulting from bio-energy crops and to identify the relative importance of each biophysical parameter in terms of its individual effect. Maximum, local changes in 2 m temperature of the order of 1°C occur for the full breadth of albedo (ALB), minimum canopy resistance (RCMIN), and rooting depth (ROOT) specifications, while the regionally (105°W-75°W and 35°N-50°N) and monthly averaged response of 2 m temperature was most pronounced for the ALB and RCMIN experiments, exceeding 0.2°C. The full range of albedo variability associated with biofuel crops may be sufficient to drive regional changes in summertime rainfall. Individual parameter effects on 2 m temperature are additive, highlight the cooling contribution of higher leaf area index (LAI) and ROOT for perennial grasses (e.g., Miscanthus) versus annual crops (e.g., maize), and underscore the necessity of improving location- and vegetation-specific representation of RCMIN and ALB.

  5. A climate robust integrated modelling framework for regional impact assessment of climate change

    NASA Astrophysics Data System (ADS)

    Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet

    2013-04-01

    Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change

  6. Ensemble of regional climate model projections for Ireland

    NASA Astrophysics Data System (ADS)

    Nolan, Paul; McGrath, Ray

    2016-04-01

    The method of Regional Climate Modelling (RCM) was employed to assess the impacts of a warming climate on the mid-21st-century climate of Ireland. The RCM simulations were run at high spatial resolution, up to 4 km, thus allowing a better evaluation of the local effects of climate change. Simulations were run for a reference period 1981-2000 and future period 2041-2060. Differences between the two periods provide a measure of climate change. To address the issue of uncertainty, a multi-model ensemble approach was employed. Specifically, the future climate of Ireland was simulated using three different RCMs, driven by four Global Climate Models (GCMs). To account for the uncertainty in future emissions, a number of SRES (B1, A1B, A2) and RCP (4.5, 8.5) emission scenarios were used to simulate the future climate. Through the ensemble approach, the uncertainty in the RCM projections can be partially quantified, thus providing a measure of confidence in the predictions. In addition, likelihood values can be assigned to the projections. The RCMs used in this work are the COnsortium for Small-scale MOdeling-Climate Limited-area Modelling (COSMO-CLM, versions 3 and 4) model and the Weather Research and Forecasting (WRF) model. The GCMs used are the Max Planck Institute's ECHAM5, the UK Met Office's HadGEM2-ES, the CGCM3.1 model from the Canadian Centre for Climate Modelling and the EC-Earth consortium GCM. The projections for mid-century indicate an increase of 1-1.6°C in mean annual temperatures, with the largest increases seen in the east of the country. Warming is enhanced for the extremes (i.e. hot or cold days), with the warmest 5% of daily maximum summer temperatures projected to increase by 0.7-2.6°C. The coldest 5% of night-time temperatures in winter are projected to rise by 1.1-3.1°C. Averaged over the whole country, the number of frost days is projected to decrease by over 50%. The projections indicate an average increase in the length of the growing season

  7. A review on regional convection permitting climate modeling

    NASA Astrophysics Data System (ADS)

    van Lipzig, Nicole; Prein, Andreas; Brisson, Erwan; Van Weverberg, Kwinten; Demuzere, Matthias; Saeed, Sajjad; Stengel, Martin

    2016-04-01

    With the increase of computational resources, it has recently become possible to perform climate model integrations where at least part the of convection is resolved. Since convection-permitting models (CPMs) are performing better than models where convection is parameterized, especially for high-impact weather like extreme precipitation, there is currently strong scientific progress in this research domain (Prein et al., 2015). Another advantage of CPMs, that have a horizontal grid spacing <4 km, is that they better resolve complex orography and land use. The regional climate model COSMO-CLM is frequently applied for CPM simulations, due to its non-hydrostatic dynamics and open international network of scientists. This presentation consists of an overview of the recent progress in CPM, with a focus on COSMO-CLM. It consists of three parts, namely the discussion of i) critical components of CPM, ii) the added value of CPM in the present-day climate and iii) the difference in climate sensitivity in CPM compared to coarser scale models. In terms of added value, the CPMs especially improve the representation of precipitation's, diurnal cycle, intensity and spatial distribution. However, an in depth-evaluation of cloud properties with CCLM over Belgium indicates a strong underestimation of the cloud fraction, causing an overestimation of high temperature extremes (Brisson et al., 2016). In terms of climate sensitivity, the CPMs indicate a stronger increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains compared to coarser scale models. In conclusion, CPMs are a very promising tool for future climate research. However, additional efforts are necessary to overcome remaining deficiencies, like improving the cloud characteristics. This will be a challenging task due to compensating deficiencies that currently exist in `state-of-the-art' models, yielding a good representation of average climate conditions. In the light

  8. Regional Climate Downscaling Using a High-resolution Global Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Kunhu Bangalath, Hamza; Stenchikov, Georgiy; Osipov, Sergey

    2013-04-01

    In this study, we used HIRAM, a high-resolution atmospheric model [Zhao et al., 2009] for climate downscaling with the horizontal grid spacing of 25 km. Our simulations followed the CORDEX protocol [Giorgi et al., 2009] and were conducted for historic (1975-2006) and future (2005-2050) periods using both RCP 4.5 and RCP 8.5 scenarios. Compared with the Geophysical Fluid Dynamics Laboratory (GFDL) AM2.0 and AM2.1 [Delworth et al., 2006], HIRAM uses enhanced vertical discretization on 32 vertical layers instead of 24 and replaces the relaxed Arakawa-Schubert convective closure with the one developed at the University of Washington. The model retains the surface flux, boundary layer, large-scale cloud microphysics, and radiative transfer modules from the AM2 family [Delworth et al., 2006]. HIRAM also employs a cubed-sphere implementation (here at 25-km resolution) of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. In our simulations, the Sea Surface Temperatures (SSTs) from the GFDL Earth System Model runs, ESM2M and ESM2G, performed for the International Panel for Climate Change AR5 project with a latitude-longitude grid of 2°x2.5° were adopted as the bottom boundary conditions over the sea. We used prescribed time-varying greenhouse gas and stratospheric/tropospheric aerosol distribution datasets to reproduce the observed radiative forcing in the model as described by Delworth et al. [2006]. Here, we present results for the CORDEX Middle East and North Africa domain and compared them with the coarse-resolution ESM2M/ESM2G simulations as well as with the nested regional model projections. Delworth, T. et al. (2006), GFDL's CM2 Global Coupled Models. Part I: Formulation and Simulation Characteristics, J. Climate, 19, 643-674. Giorgi, F., C. Jones, and G. Asrar (2009), Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175-183 Zhao, M., I. M. Held, S-J. Lin

  9. The UC-LLNL Regional Climate System Model

    SciTech Connect

    Miller, N.L.; Kim, Jinwon

    1996-09-01

    The UC-LLNL Regional Climate System Model has been under development since 1991. The unique system simulates climate from the global scale down to the watershed catchment scale, and consists of data pre- and post- processors, and four model components. The four model components are (1) a mesoscale atmospheric simulation model, (2) a soil-plant-snow model, (3) a watershed hydrology-riverflow model, and (4) a suite of crop response models. The first three model components have been coupled, and the system includes two-way feedbacks between the soil-plant-snow model and the mesoscale atmospheric simulation model. This three-component version of RCSM has been tested, validated, and successfully used for operational quantitative precipitation forecasts and seasonal water resource studies over the southwestern US. We are currently implementation and validating the fourth component, the Decision Support system for Agrotechnology Transfer (DSSAT). A description of the UC-LLNL RCSM and some recent results are presented.

  10. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms.

    PubMed

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-01-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.

  11. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms.

    PubMed

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-01-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions. PMID:24518587

  12. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms

    NASA Astrophysics Data System (ADS)

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; de Lavergne, Jean-Guy Devezeaux; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-02-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.

  13. Regional Water System Vulnerabilities and Strengths for Unavoidable Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.; Palaniappan, M.; Christian-Smith, J.; Cooley, H.

    2011-12-01

    A wide range of options are available to help water systems prepare and adapt for unavoidable climate impacts, but these options vary depending on region, climatic conditions, economic status, and technical infrastructure in place. Drawing on case studies from the United States, India, and elsewhere, and from both urban and agricultural water systems, risks to water supply and quality are evaluated and summarized and categories of responses to help improve the effectiveness of adaptation policies are reviewed. Among the issues to be discussed are characteristics unique to developing country cities, such as the predominance of informal actors in the water sector. The formal, or government sector, which often exclusively manages water access and distribution in developed country cities, is only one among many players in the water sector in developing country cities. Informal access to water includes direct access by individuals through private groundwater systems, private water markets using vendors or sales of bottled water, and rainwater harvesting systems on individual homes. In this environment, with already existing pressures on water availability and use, the impacts of climate change on water will be strongly felt. This complicates planning for water supply and demand and risks increasing already prevalent water insecurity, especially for urban poor. In wealthier countries, any planning for water-related climate impacts tends to take the form of "business as usual" responses, such as efforts to expand supply with new infrastructure, manage demand through conservation programs, or simply put off addressing the problem to the next generation of managers and users. These approaches can be effective, but also risk missing unusual, non-linear, or threshold impacts. Examples of more informed and innovative efforts to substantively address climate change risks will be presented.

  14. Can quantile mapping improve precipitation extremes from regional climate models?

    NASA Astrophysics Data System (ADS)

    Tani, Satyanarayana; Gobiet, Andreas

    2015-04-01

    The ability of quantile mapping to accurately bias correct regard to precipitation extremes is investigated in this study. We developed new methods by extending standard quantile mapping (QMα) to improve the quality of bias corrected extreme precipitation events as simulated by regional climate model (RCM) output. The new QM version (QMβ) was developed by combining parametric and nonparametric bias correction methods. The new nonparametric method is tested with and without a controlling shape parameter (Qmβ1 and Qmβ0, respectively). Bias corrections are applied on hindcast simulations for a small ensemble of RCMs at six different locations over Europe. We examined the quality of the extremes through split sample and cross validation approaches of these three bias correction methods. This split-sample approach mimics the application to future climate scenarios. A cross validation framework with particular focus on new extremes was developed. Error characteristics, q-q plots and Mean Absolute Error (MAEx) skill scores are used for evaluation. We demonstrate the unstable behaviour of correction function at higher quantiles with QMα, whereas the correction functions with for QMβ0 and QMβ1 are smoother, with QMβ1 providing the most reasonable correction values. The result from q-q plots demonstrates that, all bias correction methods are capable of producing new extremes but QMβ1 reproduces new extremes with low biases in all seasons compared to QMα, QMβ0. Our results clearly demonstrate the inherent limitations of empirical bias correction methods employed for extremes, particularly new extremes, and our findings reveals that the new bias correction method (Qmß1) produces more reliable climate scenarios for new extremes. These findings present a methodology that can better capture future extreme precipitation events, which is necessary to improve regional climate change impact studies.

  15. Impact of anthropogenic heat release on regional climate in three vast urban agglomerations in China

    NASA Astrophysics Data System (ADS)

    Feng, Jinming; Wang, Jun; Yan, Zhongwei

    2014-03-01

    We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling. Based on energy consumption and high-quality land use data, we designed two scenarios to represent no-AHR and current-AHR conditions. By comparing the results of the two numerical experiments, changes of surface air temperature and precipitation due to AHR were quantified and analyzed. We concluded that AHR increases the temperature in these urbanized areas by about 0.5°C—1°C, and this increase is more pronounced in winter than in other seasons. The inclusion of AHR enhances the convergence of water vapor over urbanized areas. Together with the warming of the lower troposphere and the enhancement of ascending motions caused by AHR, the average convective available potential energy in urbanized areas is increased. Rainfall amounts in summer over urbanized areas are likely to increase and regional precipitation patterns to be altered to some extent.

  16. Modeling the Impacts of Global Climate and Regional Land Use Change on Regional Climate, Air Quality and Public Health in the New York Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Rosenthal, J. E.; Knowlton, K. M.; Kinney, P. L.

    2002-12-01

    There is an imminent need to downscale the global climate models used by international consortiums like the IPCC (Intergovernmental Panel on Climate Change) to predict the future regional impacts of climate change. To meet this need, a "place-based" climate model that makes specific regional projections about future environmental conditions local inhabitants could face is being created by the Mailman School of Public Health at Columbia University, in collaboration with other researchers and universities, for New York City and the 31 surrounding counties. This presentation describes the design and initial results of this modeling study, aimed at simulating the effects of global climate change and regional land use change on climate and air quality over the northeastern United States in order to project the associated public health impacts in the region. Heat waves and elevated concentrations of ozone and fine particles are significant current public health stressors in the New York metropolitan area. The New York Climate and Health Project is linking human dimension and natural sciences models to assess the potential for future public health impacts from heat stress and air quality, and yield improved tools for assessing climate change impacts. The model will be applied to the NY metropolitan east coast region. The following questions will be addressed: 1. What changes in the frequency and severity of extreme heat events are likely to occur over the next 80 years due to a range of possible scenarios of land use and land cover (LU/LC) and climate change in the region? 2. How might the frequency and severity of episodic concentrations of ozone (O3) and airborne particulate matter smaller than 2.5 æm in diameter (PM2.5) change over the next 80 years due to a range of possible scenarios of land use and climate change in the metropolitan region? 3. What is the range of possible human health impacts of these changes in the region? 4. How might projected future human

  17. A Data Driven Framework for Integrating Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Lansing, C.; Kleese van Dam, K.; Liu, Y.; Elsethagen, T.; Guillen, Z.; Stephan, E.; Critchlow, T.; Gorton, I.

    2012-12-01

    There are increasing needs for research addressing complex climate sensitive issues of concern to decision-makers and policy planners at a regional level. Decisions about allocating scarce water across competing municipal, agricultural, and ecosystem demands is just one of the challenges ahead, along with decisions regarding competing land use priorities such as biofuels, food, and species habitat. Being able to predict the extent of future climate change in the context of introducing alternative energy production strategies requires a new generation of modeling capabilities. We will also need more complete representations of human systems at regional scales, incorporating the influences of population centers, land use, agriculture and existing and planned electrical demand and generation infrastructure. At PNNL we are working towards creating a first-of-a-kind capability known as the Integrated Regional Earth System Model (iRESM). The fundamental goal of the iRESM initiative is the critical analyses of the tradeoffs and consequences of decision and policy making for integrated human and environmental systems. This necessarily combines different scientific processes, bridging different temporal and geographic scales and resolving the semantic differences between them. To achieve this goal, iRESM is developing a modeling framework and supporting infrastructure that enable the scientific team to evaluate different scenarios in light of specific stakeholder questions such as "How do regional changes in mean climate states and climate extremes affect water storage and energy consumption and how do such decisions influence possible mitigation and carbon management schemes?" The resulting capability will give analysts a toolset to gain insights into how regional economies can respond to climate change mitigation policies and accelerated deployment of alternative energy technologies. The iRESM framework consists of a collection of coupled models working with high

  18. Attributing Sources of Variability in Regional Climate Model Experiments

    NASA Astrophysics Data System (ADS)

    Kaufman, C. G.; Sain, S. R.

    2008-12-01

    Variability in regional climate model (RCM) projections may be due to a number of factors, including the choice of RCM itself, the boundary conditions provided by a driving general circulation model (GCM), and the choice of emission scenario. We describe a new statistical methodology, Gaussian Process ANOVA, which allows us to decompose these sources of variability while also taking account of correlations in the output across space. Our hierarchical Bayesian framework easily allows joint inference about high probability envelopes for the functions, as well as decompositions of total variance that vary over the domain of the functions. These may be used to create maps illustrating the magnitude of each source of variability across the domain of the regional model. We use this method to analyze temperature and precipitation data from the Prudence Project, an RCM intercomparison project in which RCMs were crossed with GCM forcings and scenarios in a designed experiment. This work was funded by the North American Regional Climate Change Assessment Program (NARCCAP).

  19. Influence of the Laurentian Great Lakes on Regional Climate

    NASA Astrophysics Data System (ADS)

    Notaro, M.; Holman, K.; Zarrin, A.; Fluck, E.; Vavrus, S. J.; Bennington, V.

    2012-12-01

    The influence of the Laurentian Great Lakes on climate is assessed by comparing two decade-long simulations, with the lakes either included or excluded, using the Abdus Salam International Centre for Theoretical Physics Regional Climate Model Version 4. The Great Lakes dampen the variability in near-surface air temperature across the surrounding region, while reducing the amplitude of the diurnal cycle and annual cycle of air temperature. The impacts of the Great Lakes on the regional surface energy budget include an increase (decrease) in turbulent fluxes during the cold (warm) season and an increase in surface downward shortwave radiation flux during summer due to diminished atmospheric moisture and convective cloud amount. Changes in the hydrologic budget due to the presence of the Great Lakes include increases in evaporation and precipitation during October-March and decreases during May-August, along with springtime reductions in snowmelt-related runoff. Circulation responses consist of a regionwide decrease in sea-level pressure in autumn-winter and an increase in summer, with enhanced ascent and descent in the two seasons, respectively. The most pronounced simulated impact of the Great Lakes on synoptic systems traversing the basin is a weakening of cold-season anticyclones.

  20. Climate change in California - why is this region especially vulnerable?

    NASA Astrophysics Data System (ADS)

    Cayan, D. R.

    2008-12-01

    It is very likely that global warming has already been affecting the California region., and global model projections indicate that much larger changes will unfold over the coming decades. In this talk we review results from two recent State-sponsored assessments of prospective climate change scenarios for California, which indicate that impacts in this region may be particularly challenging. Among the rest of the United States, the annual delivery of precipitation in this region is remarkably volatile, being prone to multi- year droughts and occasional wet spells and large storms-climate change may exacerbate this. An important part of the water supply that historically has come in the form of snow in mountain watersheds will probably shift to rain, which is harder to manage and save for dry summer irrigation and other forms of consumption. Furthermore, much of the water supply is conveyed through the San Franciso Bay/Delta, a complex estuary that will be impacted by bigger floods and rising sea levels.

  1. Regional climate model projections of the South Pacific Convergence Zone

    NASA Astrophysics Data System (ADS)

    Evans, J. P.; Bormann, K.; Katzfey, J.; Dean, S.; Arritt, R.

    2016-08-01

    This study presents results from regional climate model (RCM) projections for the south-west Pacific Ocean. The regional models used bias corrected sea surface temperatures. Six global climate models (GCMs) were used to drive a global variable resolution model on a quasi-uniform 60 km grid. One of these simulations was used to drive three limited area regional models. Thus a four member ensemble was produced by different RCMs downscaling the same GCM (GFDL2.1), and a six member ensemble was produced by the same RCM (Conformal Cubic Atmospheric Model—CCAM) downscaling six different GCMs. Comparison of the model results with precipitation observations shows the differences to be dominated by the choice of RCM, with all the CCAM simulations performing similarly and generally having lower error than the other RCMs. However, evaluating aspects of the model representation of the South Pacific Convergence Zone (SPCZ) does not show CCAM to perform better in this regard. In terms of the future projections of the SPCZ for the December-January-February season, the ensemble showed no consensus change in most characteristics though a majority of the ensemble members project a decrease in the SPCZ strength. Thus, similar to GCM based studies, there is large uncertainty concerning future changes in the SPCZ and there is no evidence to suggest that future changes will be outside the natural variability. These RCM simulations do not support an increase in the frequency of zonal SPCZ events.

  2. Evaluation of Regional Climate Simulations over the Great Lakes Region Driven by Three Global Data Sets

    SciTech Connect

    Zhong, Shiyuan; Li, Xiuping; Bian, Xindi; Heilman, Warren E.; Leung, Lai-Yung R.; Gustafson, William I.

    2012-06-27

    The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990–1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-surface temperatures derived from the NCEP Global Reanalysis and output from the CCSM3 and GISS general circulation models (GCMs). The simulation results are compared to the North American Regional Reanalysis (NARR). The three RCM simulations appeared to be more accurate in winter and least accurate in summer, and more accurate aloft than near the surface. The reanalysis-constrained simulation adequately captured the spatial distribution and seasonal cycle of the observed surface-air temperature and precipitation, but it produced consistently across all seasons a cold bias that is generally larger over the lakes than over land and a wet bias due to an overestimation of nonconvective precipitation. The simulated seasonal cycle of moisture–flux convergence over the region was in very good agreement with NARR. The two GCM-driven runs adequately simulated the spatial and seasonal variation of temperature, but overestimated cold-season precipitation and underestimated summer precipitation, reversing the observed annual precipitation cycle. The GISS-driven run failed to simulate the prevailing low-level flow and moisture convergence patterns. All three RCM simulations successfully captured the impact of the Great Lakes on the region's climate, especially on winter precipitation, a significant improvement over coarse-resolution GCM simulations over the region.

  3. An Evaluation of Drought Indices in Different Climatic Regions

    NASA Astrophysics Data System (ADS)

    Shahabfar, A.; Eitzinger, J.

    2009-04-01

    Drought has become a recurrent phenomenon in Iran in the last few decades. Significant drought conditions were observed during years of late 2000s and the trend continued up to now. The country's agricultural sector and water resources have been under severe constraints from the recurrent droughts. In this study, spatial and temporal dimensions of meteorological droughts in Iran have been investigated from vulnerability concept. The Standardized Precipitation Index (SPI) was developed to detect drought and wet periods at different time scales, an important characteristic that is not accomplished with typical drought indices. More and more users employ the SPI to monitor droughts. Although calculation of the SPI is easier than other drought indices, such as the Palmer Drought Index, it is still relatively complex. Two indices called the China-Z Index (CZI) and Modified China-Z Index (CZI) have been used by many scientists to monitor moisture conditions across their country or their case study area. The calculations of these indices are easier than the SPI. Another indices, the statistical Z-Score and percent of normal (PN), can also be used to monitor droughts. This paper evaluates the SPI, CZI, MCZI, Z-Score and PN on 1-, 3-, 6-, 9- and 12-month time scales using monthly precipitation totals for six climatic regions in Iran from January 2000 to December 2005 as a sever dry period and representing six climatic regions include: mountain, semi mountain, desert, semi-desert, coastal desert and coastal wet. Advantages and disadvantages for the application of each index are compared. Study results indicate that the CZI, MCZI, Z-Score and PN can provide results similar to the SPI for all time scales, and that the calculations of these indices are relatively easy compared with the SPI, possibly offering better tools to monitor moisture conditions. KEY WORDS: drought monitoring, drought indices, soil moisture, climatic regions.

  4. Pacific Northwest Sensitivity Simulated by a Regional Climate Model Driven by a GCM. Part I: Control Simulations

    SciTech Connect

    Leung, Lai R.; Ghan, Steven J.

    1999-07-01

    A model nesting approach has been used to simulate the regional climate over the Pacific Northwest. The present-day global climatology is first simulated using the NCAR Community Climate Model (CCM3) driven by observed sea surface temperature and sea ice distribution at T42 (2.8{sup o}) resolution. This large-scale simulation is used to provide lateral boundary conditions for driving the Pacific Northwest National Laboratory Regional Climate Model (RCM). One notable feature of the RCM is the use of subgrid parameterizations of orographic precipitation and vegetation cover, in which subgrid variations of surface elevation and vegetation are aggregated to a limited number of elevation-vegetation classes. An airflow model and a thermodynamic model are used to parameterize the orographic uplift/descent as air parcels cross over mountain barriers or valleys. The 7-yr climatologies as simulated by CCM3 and RCM are evaluated and compared in terms of large-scale spatial patterns and regional means. Biases are found in the simulation of large-scale circulations, which also affect the regional model simulation. Therefore, the regional simulation is not very different from the CCM3 simulation in terms of large-scale features. However, the regional model greatly improves the simulation of precipitation, surface temperature, and snow cover at the local scales. This is shown by improvements in the spatial correlation between the observations and simulations. The RCM simulation is further evaluated using station observations of surface temperature and precipitation to compare the simulated and observed relationships between surface temperature-precipitation and altitude. The model is found to correctly capture the surface temperature-precipitation variations as functions of surface topography over different mountain ranges, and under different climate regimes.

  5. Applying Multimodel Ensemble from Regional Climate Models for Improving Runoff Projections on Semiarid Regions of Spain

    NASA Astrophysics Data System (ADS)

    Garcia Galiano, S. G.; Olmos, P.; Giraldo Osorio, J. D.

    2015-12-01

    In the Mediterranean area, significant changes on temperature and precipitation are expected throughout the century. These trends could exacerbate the existing conditions in regions already vulnerable to climatic variability, reducing the water availability. Improving knowledge about plausible impacts of climate change on water cycle processes at basin scale, is an important step for building adaptive capacity to the impacts in this region, where severe water shortages are expected for the next decades. RCMs ensemble in combination with distributed hydrological models with few parameters, constitutes a valid and robust methodology to increase the reliability of climate and hydrological projections. For reaching this objective, a novel methodology for building Regional Climate Models (RCMs) ensembles of meteorological variables (rainfall an temperatures), was applied. RCMs ensembles are justified for increasing the reliability of climate and hydrological projections. The evaluation of RCMs goodness-of-fit to build the ensemble is based on empirical probability density functions (PDF) extracted from both RCMs dataset and a highly resolution gridded observational dataset, for the time period 1961-1990. The applied method is considering the seasonal and annual variability of the rainfall and temperatures. The RCMs ensembles constitute the input to a distributed hydrological model at basin scale, for assessing the runoff projections. The selected hydrological model is presenting few parameters in order to reduce the uncertainties involved. The study basin corresponds to a head basin of Segura River Basin, located in the South East of Spain. The impacts on runoff and its trend from observational dataset and climate projections, were assessed. Considering the control period 1961-1990, plausible significant decreases in runoff for the time period 2021-2050, were identified.

  6. Cyclones and extreme windstorm events over Europe under climate change: Global and regional climate model diagnostics

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Ulbrich, U.

    2003-04-01

    More than any changes of the climate system mean state conditions, the development of extreme events may influence social, economic and legal aspects of our society. This linkage results from the impact of extreme climate events (natural hazards) on environmental systems which again are directly linked to human activities. Prominent examples from the recent past are the record breaking rainfall amounts of August 2002 in central Europe which produced widespread floodings or the wind storm Lothar of December 1999. Within the MICE (Modelling the Impact of Climate Extremes) project framework an assessment of the impact of changes in extremes will be done. The investigation is carried out for several different impact categories as agriculture, energy use and property damage. Focus is laid on the diagnostics of GCM and RCM simulations under different climate change scenarios. In this study we concentrate on extreme windstorms and their relationship to cyclone activity in the global HADCM3 as well as in the regional HADRM3 model under two climate change scenarios (SRESA2a, B2a). In order to identify cyclones we used an objective algorithm from Murry and Simmonds which was widely tested under several different conditions. A slight increase in the occurrence of systems is identified above northern parts of central Europe for both scenarios. For more severe systems (core pressure < 990 hPa) we find an increase for western Europe. Strong wind events can be defined via different percentile values of the windspeed (e.g. above the 95 percentile). By this means the relationship between strong wind events and cyclones is also investigated. For several regions (e.g. Germany, France, Spain) a shift to more deep cyclones connected with an increasing number of strong wind events is found.

  7. Integration of climatic indices in an objective probabilistic model for establishing and mapping viticultural climatic zones in a region

    NASA Astrophysics Data System (ADS)

    Moral, Francisco J.; Rebollo, Francisco J.; Paniagua, Luis L.; García, Abelardo; Honorio, Fulgencio

    2016-05-01

    Different climatic indices have been proposed to determine the wine suitability in a region. Some of them are related to the air temperature, but the hydric component of climate should also be considered which, in turn, is influenced by the precipitation during the different stages of the grapevine growing and ripening periods. In this study, we propose using the information obtained from ten climatic indices [heliothermal index (HI), cool night index (CI), dryness index (DI), growing season temperature (GST), the Winkler index (WI), September mean thermal amplitude (MTA), annual precipitation (AP), precipitation during flowering (PDF), precipitation before flowering (PBF), and summer precipitation (SP)] as inputs in an objective and probabilistic model, the Rasch model, with the aim of integrating the individual effects of them, obtaining the climate data that summarize all main climatic indices, which could influence on wine suitability from a climate viewpoint, and utilizing the Rasch measures to generate homogeneous climatic zones. The use of the Rasch model to estimate viticultural climatic suitability constitutes a new application of great practical importance, enabling to rationally determine locations in a region where high viticultural potential exists and establishing a ranking of the climatic indices which exerts an important influence on wine suitability in a region. Furthermore, from the measures of viticultural climatic suitability at some locations, estimates can be computed using a geostatistical algorithm, and these estimates can be utilized to map viticultural climatic zones in a region. To illustrate the process, an application to Extremadura, southwestern Spain, is shown.

  8. Tackling regional climate change by leaf albedo bio-geoengineering.

    PubMed

    Ridgwell, Andy; Singarayer, Joy S; Hetherington, Alistair M; Valdes, Paul J

    2009-01-27

    The likelihood that continuing greenhouse-gas emissions will lead to an unmanageable degree of climate change has stimulated the search for planetary-scale technological solutions for reducing global warming ("geoengineering"), typically characterized by the necessity for costly new infrastructures and industries. We suggest that the existing global infrastructure associated with arable agriculture can help, given that crop plants exert an important influence over the climatic energy budget because of differences in their albedo (solar reflectivity) compared to soils and to natural vegetation. Specifically, we propose a "bio-geoengineering" approach to mitigate surface warming, in which crop varieties having specific leaf glossiness and/or canopy morphological traits are specifically chosen to maximize solar reflectivity. We quantify this by modifying the canopy albedo of vegetation in prescribed cropland areas in a global-climate model, and thereby estimate the near-term potential for bio-geoengineering to be a summertime cooling of more than 1 degrees C throughout much of central North America and midlatitude Eurasia, equivalent to seasonally offsetting approximately one-fifth of regional warming due to doubling of atmospheric CO(2). Ultimately, genetic modification of plant leaf waxes or canopy structure could achieve greater temperature reductions, although better characterization of existing intraspecies variability is needed first.

  9. Climate change: evaluating your local and regional water resources

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Thorne, James H.

    2015-01-01

    The BCM is a fine-scale hydrologic model that uses detailed maps of soils, geology, topography, and transient monthly or daily maps of potential evapotranspiration, air temperature, and precipitation to generate maps of recharge, runoff, snow pack, actual evapotranspiration, and climatic water deficit. With these comprehensive environmental inputs and experienced scientific analysis, the BCM provides resource managers with important hydrologic and ecologic understanding of a landscape or basin at hillslope to regional scales. The model is calibrated using historical climate and streamflow data over the range of geologic materials specific to an area. Once calibrated, the model is used to translate climate-change data into hydrologic responses for a defined landscape, to provide managers an understanding of potential ecological risks and threats to water supplies and managed hydrologic systems. Although limited to estimates of unimpaired hydrologic conditions, estimates of impaired conditions, such as agricultural demand, diversions, or reservoir outflows can be incorporated into the calibration of the model to expand its utility. Additionally, the model can be linked to other models, such as groundwater-flow models (that is, MODFLOW) or the integrated hydrologic model (MF-FMP), to provide information about subsurface hydrologic processes. The model can be applied at a relatively small scale, but also can be applied to large-scale national and international river basins.

  10. Climate variability and wine quality over Portuguese regions

    NASA Astrophysics Data System (ADS)

    Gouveia, Célia M.; Gani, Érico A.; Liberato, Margarida L. R.

    2015-04-01

    The relationship between the characteristics of wine and its geographic origin is frequently used to explain the hierarchy of high-quality wines. Port wine is produced from grapes grown in selected areas of the Douro valley, in Portugal, the so-called Região Demarcada do Douro, the first wine-producing region of the world (dating from 1758). The Douro region presents distinctive climatic, topographic and soil characteristics. Moreover Portugal possesses a large array of native varietals, producing an abundant diversity of different wines. The most protected wines, produced only with some authorised grape varietals in the demarcated regions, are labelled D.O.C. (Denominação de Origem Controlada, similar to the French Appellation d'Origine Contrôlée (AOC)) which secures a superior wine quality. Recent warming trends in Portugal are associated with the significant increase in the frequency and duration of heat waves, and the increase in the frequency of hot days and tropical nights, especially in spring and summer, together with a significant decrease in the frequency of cold waves and frost days (Santo et al., 2014). Moreover a predominantly negative tendency in precipitation indices was also found (de Lima et al., 2014). These trends and associated changes in temperature and precipitation regimes may exert strong influences on agriculture systems. In this work we have performed an analysis of the distinct behaviour of several meteorological fields in vintage versus non-vintage years for Port Wine on one hand and Alentejo and Dão/Bairrada DOC regions on the other hand, during the period spanning from 1964-1995. The relative importance of maximum and minimum temperature, precipitation and frost days is assessed for each individual month of the vegetative cycle and their importance to the wine quality is evaluated. Furthermore, composites of 500 hPa geopotential height and sea level pressure fields over the Euro Atlantic region are also compared for years

  11. Importance of ensembles in projecting regional climate trends

    NASA Astrophysics Data System (ADS)

    Arritt, Raymond; Daniel, Ariele; Groisman, Pavel

    2016-04-01

    We have performed an ensemble of simulations using RegCM4 to examine the ability to reproduce observed trends in precipitation intensity and to project future changes through the 21st century for the central United States. We created a matrix of simulations over the CORDEX North America domain for 1950-2099 by driving the regional model with two different global models (HadGEM2-ES and GFDL-ESM2M, both for RCP8.5), by performing simulations at both 50 km and 25 km grid spacing, and by using three different convective parameterizations. The result is a set of 12 simulations (two GCMs by two resolutions by three convective parameterizations) that can be used to systematically evaluate the influence of simulation design on predicted precipitation. The two global models were selected to bracket the range of climate sensitivity in the CMIP5 models: HadGEM2-ES has the highest ECS of the CMIP5 models, while GFDL-ESM2M has one of the lowestt. Our evaluation metrics differ from many other RCM studies in that we focus on the skill of the models in reproducing past trends rather than the mean climate state. Trends in frequency of extreme precipitation (defined as amounts exceeding 76.2 mm/day) for most simulations are similar to the observed trend but with notable variations depending on RegCM4 configuration and on the driving GCM. There are complex interactions among resolution, choice of convective parameterization, and the driving GCM that carry over into the future climate projections. We also note that biases in the current climate do not correspond to biases in trends. As an example of these points the Emanuel scheme is consistently "wet" (positive bias in precipitation) yet it produced the smallest precipitation increase of the three convective parameterizations when used in simulations driven by HadGEM2-ES. However, it produced the largest increase when driven by GFDL-ESM2M. These findings reiterate that ensembles using multiple RCM configurations and driving GCMs are

  12. Regional Climate Modeling of West African Summer Monsoon Climate: Impact of Historical Boundary Forcing

    NASA Astrophysics Data System (ADS)

    Kebe, I.

    2015-12-01

    In this paper, we analyze and intercompare the performance of an ensemble of three Regional Climate Models (RCMs) driven by three set of Global Climate Models (GCMs), in reproducing seasonal mean climatologies with their annual cycle and the key features of West African summer monsoon over 20 years period (1985-2004) during the present day. The results show that errors in lateral boundary conditions from the GCM members, have an unexpected way on the skill of the RCMs in reproducing regional climate features such as the West African Monsoon features and the annual cycle of precipitation and temperature in terms of outperforming the GCM simulation. It also shows the occurrence of the West African Monsoon jump, the intensification and northward shift of the Saharan Heat Low (SHL) as expressed in some RCMs than the GCMs. Most RCMs also capture the mean annual cycle of precipitation and temperature, including, single and double-peaked during the summer months, in terms of events and amplitude. In a series of RCMs and GCMs experiments between the Sahara region and equatorial Africa, the presence of strong positive meridional temperature gradients at the surface and a strong meridional gradients in the potential temperatures near the surface are obvious, indicating the region of strong vertical shear development enough to establish easterly flow such as the African easterly jet. In addition, the isentropic potential vorticity (IPV) gradient decreases northward in the lower troposphere across northern Africa, with the maximum reversal on the 315-K surface. The region with negative IPV gradient favors the potential instability which has been associated with the growth of easterly waves.

  13. Development of ALARO-Climate regional climate model for a very high resolution

    NASA Astrophysics Data System (ADS)

    Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan

    2014-05-01

    ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main results of the RCM ALARO-Climate model simulations in 25 and 6.25 km resolutions on the longer time-scale (1961-1990). The model was driven by the ERA-40 re-analyses and run on the integration domain of ~ 2500 x 2500 km size covering the central Europe. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version dataset 8. Other simulated parameters (e.g., cloudiness, radiation or components of water cycle) were compared to the ERA-40 re-analyses. The validation of the first ERA-40 simulation in both, 25 km and 6.25 km resolutions, revealed significant cold biases in all seasons and overestimation of precipitation in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The differences between these simulations were small and thus revealed a robustness of the model's physical parameterization on the resolution change. The series of 25 km resolution simulations with several model adaptations was carried out to study their effect on the simulated properties of climate variables and thus possibly identify a source of major errors in the simulated climate. The current investigation suggests the main reason for biases is related to the model physic. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1

  14. Evaluating regional vulnerability to climate change: purposes and methods

    SciTech Connect

    Malone, Elizabeth L.; Engle, Nathan L.

    2011-03-15

    As the emphasis in climate change research, international negotiations, and developing-country activities has shifted from mitigation to adaptation, vulnerability has emerged as a bridge between impacts on one side and the need for adaptive changes on the other. Still, the term vulnerability remains abstract, its meaning changing with the scale, focus, and purpose of each assessment. Understanding regional vulnerability has advanced over the past several decades, with studies using a combination of indicators, case studies and analogues, stakeholder-driven processes, and scenario-building methodologies. As regions become increasingly relevant scales of inquiry for bridging the aggregate and local, for every analysis, it is perhaps most appropriate to ask three “what” questions: “What/who is vulnerable?,” “What is vulnerability?,” and “Vulnerable to what?” The answers to these questions will yield different definitions of vulnerability as well as different methods for assessing it.

  15. Regional-scale simulations of the western US climate

    SciTech Connect

    Bossert, J.E.; Kao, C.Y.J.; Winterkamp, J.; Roads, J.O.; Chen, S.C.; Ueyoshi, K. |

    1991-12-31

    Over the past two decades the meteorological community has witnessed the evolution of general circulation models (GCMs) from studies attempting to simulate realistic large-scale dynamical regimes and energy transports to present investigations examining future climate change scenarios. From these pioneering studies, we were inspired to begin to develop regional climatologies with the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS). Our major goal is to develop a better understanding of the hydrologic cycle in the mountainous, and west. An advantage of using the RAMS code is that we can generate detailed descriptions of precipitation processes, which will hopefully translate into realistic surface yields of both rain and snow. In the ensuing sections, we first describe the model and its microphysics parameterizations, then continue with our methodology for incorporating large-scale data into the model grid. Preliminary results demonstrating the mesoscale variation of precipitation over the mountainous western US are then presented.

  16. Physical processes mediating climate change impacts on regional sea ecosystems

    NASA Astrophysics Data System (ADS)

    Holt, J.; Schrum, C.; Cannaby, H.; Daewel, U.; Allen, I.; Artioli, Y.; Bopp, L.; Butenschon, M.; Fach, B. A.; Harle, J.; Pushpadas, D.; Salihoglu, B.; Wakelin, S.

    2014-02-01

    Regional seas are exceptionally vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas' ecosystems. In this paper we explore these physical processes and their biophysical interactions, and the effects of atmospheric, oceanic and terrestrial change on them. Our aim is to elucidate the controlling dynamical processes and how these vary between and within regional seas. We focus on primary production and consider the potential climatic impacts: on long term changes in elemental budgets, on seasonal and mesoscale processes that control phytoplankton's exposure to light and nutrients, and briefly on direct temperature response. We draw examples from the MEECE FP7 project and five regional models systems using ECOSMO, POLCOMS-ERSEM and BIMS_ECO. These cover the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and a region of the Northeast Atlantic, using a common global ocean-atmosphere model as forcing. We consider a common analysis approach, and a more detailed analysis of the POLCOMS-ERSEM model. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Instead, results show a highly heterogeneous picture of positive and negative change arising from the varying mixing and circulation conditions. Even in the two highly stratified, deep water seas (Black and Baltic Seas) the

  17. Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions.

    PubMed

    Rudokas, Jason; Miller, Paul J; Trail, Marcus A; Russell, Armistead G

    2015-04-21

    We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap. PMID:25803240

  18. Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions.

    PubMed

    Rudokas, Jason; Miller, Paul J; Trail, Marcus A; Russell, Armistead G

    2015-04-21

    We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap.

  19. Application of regional climate data as input for hydrological modelling

    NASA Astrophysics Data System (ADS)

    Sennikovs, J.; Timuhins, A.

    2009-04-01

    The goal of this study was to check the suitability of application of regional climate model (RCM) forcing data for hydrological modelling. The spatially distributed finite volume based hydrological model was set-up for the pilot basin in central Latvia (river Aiviekste, catchment area 9300 sq.km). The primary forcing input for the model consists of the time-series of temperature and precipitation. We considered set of 21 RCM model output data from the PRUDENCE project. They were statisically tested against temperature and precipitation observations for the reference period (1961-1990). The best performing RCM was selected according to penalty function constructed based on monthly average temperature, precipitation and montly standard deviation of temperature and precipitation. The calibrated hydrological model was employed for the run-off calculations of climatic reference period (1961-1990). The first step of the study was to statistically compare (1) observed discharge, (2) modelled discharge using observed temperature and precipitation as the forcing, (3) modelled discharge using the temperature and precipitation time series from the best RCM as the forcing. The monthly average observed discharge agrees well with the modelled discharge in case of usage of the observed forcing. The agreement of observed discharge with modelled discharge using RCM data is rather disappointing, especially during winter and spring snow melt flood periods. Usage of the meteorological forcing from the RCM's reference period overestimates yearly average discharge by approximately 70%. The second step of our study was to modify and use the modified RCM data as an input for hydrological modelling. The modification method relies on equalizing of temperature and precipitation histograms between observed and RCM data for each day of the year and each observation location. We show that monthly average discharges agree quite well with observed in the case of use of modified RCM data as a

  20. Statistical Downscaling Of Local Climate In The Alpine Region

    NASA Astrophysics Data System (ADS)

    Kaspar, Severin; Philipp, Andreas; Jacobeit, Jucundus

    2016-04-01

    The impact of climate change on the alpine region was disproportional strong in the past decades compared to the surrounding areas, which becomes manifest in a higher increase in surface air temperature. Beside the thermal changes also implications for the hydrological cycle may be expected, acting as a very important factor not only for the ecosystem but also for mankind, in the form of water security or considering economical aspects like winter tourism etc. Therefore, in climate impact studies, it is necessary to focus on variables with high influence on the hydrological cycle, for example temperature, precipitation, wind, humidity and radiation. The aim of this study is to build statistical downscaling models which are able to reproduce temperature and precipitation at the mountainous alpine weather stations Zugspitze and Sonnblick and to further project these models into the future to identify possible changes in the behavior of these climate variables and with that in the hydrological cycle. Beside facing a in general very complex terrain in this high elevated regions, we have the advantage of a more direct atmospheric influence on the meteorology of the exposed weather stations from the large scale circulation. Two nonlinear statistical methods are developed to model the station-data series on a daily basis: On the one hand a conditional classification approach was used and on the other hand a model based on artificial neural networks (ANNs) was built. The latter is in focus of this presentation. One of the important steps of developing a new model approach is to find a reliable predictor setup with e.g. informative predictor variables or adequate location and size of the spatial domain. The question is: Can we include synoptic background knowledge to identify an optimal domain for an ANN approach? The yet developed ANN setups and configurations show promising results in downscaling both, temperature (up to 80 % of explained variance) and precipitation (up

  1. Climatic Consequences and Agricultural Impact of Regional Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Robock, Alan; Mills, Michael; Toon, Owen Brian; Xia, Lili

    2013-04-01

    A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, would inject smoke from the resulting fires into the stratosphere. This could produce climate change unprecedented in recorded human history and global-scale ozone depletion, with enhanced ultraviolet (UV) radiation reaching the surface. Simulations with the NCAR Whole Atmosphere Community Climate Model (WACCM), run at higher vertical and horizontal resolution than a previous simulation with the NASA Goddard Institute for Space Studies ModelE, and incorporating ozone chemistry for the first time, show a longer stratospheric residence time for smoke and hence a longer-lasting climate response, with global average surface air temperatures still 1.1 K below normal and global average precipitation 4% below normal after a decade. The erythemal dose from the enhanced UV radiation would greatly increase, in spite of enhanced absorption by the remaining smoke, with the UV index more than 3 units higher in the summer midlatitudes, even after a decade. Scenarios of changes in temperature, precipitation, and downward shortwave radiation from the ModelE and WACCM simulations, applied to the Decision Support System for Agrotechnology Transfer crop model for winter wheat, rice, soybeans, and maize by perturbing observed time series with anomalies from the regional nuclear war simulations, produce decreases of 10-50% in yield averaged over a decade, with larger decreases in the first several years, over several regions in the midlatitudes of the Northern Hemisphere. The impact of the nuclear war simulated here, using much less than 1% of the global nuclear arsenal, would be devastating to world agricultural production and trade, possibly sentencing a billion people now living marginal existences to starvation. The continued environmental threat of the use of even a small number of nuclear weapons must be considered in nuclear policy deliberations in Russia

  2. Climatic trends over Ethiopia: regional signals and drivers

    USGS Publications Warehouse

    Jury, Mark R.; Funk, Christopher C.

    2013-01-01

    This study analyses observed and projected climatic trends over Ethiopia, through analysis of temperature and rainfall records and related meteorological fields. The observed datasets include gridded station records and reanalysis products; while projected trends are analysed from coupled model simulations drawn from the IPCC 4th Assessment. Upward trends in air temperature of + 0.03 °C year−1 and downward trends in rainfall of − 0.4 mm month−1 year−1 have been observed over Ethiopia's southwestern region in the period 1948-2006. These trends are projected to continue to 2050 according to the Geophysical Fluid Dynamics Lab model using the A1B scenario. Large scale forcing derives from the West Indian Ocean where significant warming and increased rainfall are found. Anticyclonic circulations have strengthened over northern and southern Africa, limiting moisture transport from the Gulf of Guinea and Congo. Changes in the regional Walker and Hadley circulations modulate the observed and projected climatic trends. Comparing past and future patterns, the key features spread westward from Ethiopia across the Sahel and serve as an early warning of potential impacts.

  3. Ground-nesting waterbirds and mammalian carnivores in the Virginia barrier island region: Running out of options

    USGS Publications Warehouse

    Erwin, R.M.; Truitt, B.R.; Jimenez, J.E.

    2001-01-01

    We examined changing patterns of distribution of two large mammalian predators, the raccoon (Procyon lotor) and red fox (Vulpes vulpes), and beach-nesting terns and Black Skimmers (Rynchops niger) along ca. 80 km of the Virginia barrier island landscape between the periods 1975-1977 and 1998. Based on evidence from trapping, scent stations, den observations and sightings of the two predators, there has been a marked increase in their island ranges. In 1975-77, only 6 of the 11 surveyed barrier islands definitely harbored at least one of the two mammals, but by 1998, 11 of 14 islands showed evidence of one or both during the spring and summer. Concurrently, annual beach-nesting bird surveys have been conducted since the mid 1970s during June. From 1977 to 1998, the number of colonies of terns [Common (Sterna hirundo), Gull-billed (S. nilotica), Least (S. antillarum), Royal (S. maxima), and Sandwich (S. sandvicensis)] and Black Skimmers declined from 23 colonies on 11 barrier islands to 13 colonies on 10 islands. In addition, the populations decreased dramatically for all species except the marginal Sandwich Tern and Least Tern. This pattern suggests that mammalian predation may be a major factor in colony site selection or success, although we have no data on success at most locations. The only consistently large colony over the years has been the Royal Tern colony on Fisherman Island, one of the few with no resident large mammals. Because these declining waterbirds appear to be running out of options for safe colony sites in coastal Virginia, we discuss the prospects of conducting limited predator removals on certain islands. In addition, considerations of strict management and enforcement of protection at critical manmade colony sites that now attract large numbers of certain species, are timely. Lastly, where dredged material disposal projects are planned, providing nesting sites for these colonial species and roosting sites for migrant birds may be appropriate.

  4. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models

    NASA Astrophysics Data System (ADS)

    Marengo, Jose A.; Ambrizzi, Tercio; Da Rocha, Rosmeri P.; Alves, Lincoln M.; Cuadra, Santiago V.; Valverde, Maria C.; Torres, Roger R.; Santos, Daniel C.; Ferraz, Simone E. T.

    2010-11-01

    Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961-1990) and projections for the IPCC A2 high emission scenario for 2071-2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5°N-15°S band, both in summer and especially in winter, reaching up to 6-8°C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4°C and in winter between 3 and 5°C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of

  5. Regional Climate Modeling of Volcanic Eruptions and the Arctic Climate System: A Baffin Island Case Study

    NASA Astrophysics Data System (ADS)

    Losic, M.; Robock, A.

    2010-12-01

    It is well-understood that the effects of volcanic aerosol loading into the stratosphere are transient, with global cooling lasting only a few years after a single large eruption. Geological evidence collected from Northern Baffin Island, Canada, suggests ice cap growth began soon after a succession of several large eruptions in the 13th century, and they did not start to melt until roughly a century ago. We investigate which feedbacks allowed these ice caps to be maintained long after the transient forcing of the volcanic aerosols, by conducting sensitivity studies with the Weather Research and Forecasting (WRF) Model and Polar WRF, a version of WRF developed specifically for the polar regions. Results from an ensemble of month-long regional simulations over Baffin Island suggest that better treatment of snow and ice in Polar WRF improves our regional climate simulations. Thus, sensitivity test results from decade-long runs with imposed changes to boundary condition temperatures and carbon dioxide concentrations using Polar WRF are presented. Preliminary findings suggest that not only large scale but localized climate feedbacks play an important role in the responses of the ice caps after temperature and carbon dioxide forcings are applied. The results from these and further sensitivity tests will provide insight into the influence of regional feedbacks on the persistence of these ice caps long after the 13th century eruptions.

  6. Two unusual hepatitis C virus subtypes, 2j and 2q, in Spain: Identification by nested-PCR and sequencing of a NS5B region.

    PubMed

    Margall, N; March, F; Español, M; Torras, X; Gallego, A; Coll, P

    2015-10-01

    Many studies have reported the use of the NS5B gene to subtype hepatitis C virus (HCV). Other HCV genes, such as HCV-5' UTR, Core (C) and E1, have also been used. In some studies, NS5B have been used together with 5'-UTR or C genes to improve genotyping results obtained using commercial procedures. Only two studies in Spain have compared molecular techniques versus commercial procedures regarding the efficacy of HCV subtyping. The aim of this study was to determine whether nested PCR and sequencing of a NS5B region was more reliable than commercial procedures to subtype HCV. We analyzed the results of HCV genotyping in [726] serum specimens collected from 2001 to 2013. From 2001 to 2011, we used PCR and INNO-LiPA hybridization or its new version Versant HCV Genotype 2.0 assay (471 samples). From 2012 to 2013, we used nested PCR and sequencing of a NS5B region (255 cases). This method used two pairs of primers to amplify the RNA of the sample converted to DNA by retrotranscription. The amplification product of 270 base pairs was further sequenced. To identify the subtype, the sequences obtained were compared to those in the international database: http://hcv.lanl.gov./content/sequence/, HCV/ToolsOutline.html and Geno2pheno[hcv] http://hcv.bioinf.mpi-inf.mpg.de/index.php. Nested PCR of a NS5B region and sequencing identified all but one subtype (0.4%, 1/255), differentiated all 1a subtypes from 1b subtypes, and characterized all HCV 2-4 subtypes. This approach also distinguished two subtypes, 2j and 2q, that had rarely been detected previously in Spain. However, commercial procedures failed to subtype 12.7% (60/471) of samples and to genotype 0.6% of specimens (3/471). Nested PCR and sequencing of a NS5B region improved the subtyping of HCV in comparison with classical procedures and identified two rare subtypes in Spain: 2j and 2q. However, full length genome sequencing is recommended to confirm HCV 2j and 2q subtypes.

  7. A climatological network for regional climate monitoring in Sardinia.

    NASA Astrophysics Data System (ADS)

    Delitala, Alessandro M. S.

    2016-04-01

    In recent years the Region of Sardinia has been working to set-up a Regional Climatological Network of surface stations, in order to monitor climate (either stationary or changing) at sub-synoptic scale and in order to make robust climatological information available to researchers and to local stake-holders. In order to do that, an analysis of long climatological time series has been performed on the different historical networks of meteorological stations that existed over the past two centuries. A set of some hundreds of stations, with about a century of observations of daily precipitation, was identified. An important subset of them was also defined, having long series of observations of temperature, wind, pressure and other quantities. Specific investments were made on important stations sites where observations had been carried for decades, but where the climatological stations did not exist anymore. In the present talk, the Regional Climatological Network of Sardinia will be presented and its consistency discussed. Specific attention will be given to the most important climatological stations which have got more than a century of observations of meteorological quantities. Critical issues of the Regional Climatological Network, like relocation of stations and inhomogeneity of data due to instrumental changes or environmental modifications, will be discussed.

  8. Feature tracking in high-resolution regional climate data

    NASA Astrophysics Data System (ADS)

    Massey, Neil R.

    2016-08-01

    In this paper, a suite of algorithms are presented which facilitate the identification and tracking of storm-indicative features, such as mean sea-level pressure minima, in high resolution regional climate data. The methods employ a hierarchical triangular mesh, which is tailored to the regional climate data by only subdividing triangles, from an initial icosahedron, within the domain of the data. The regional data is then regridded to this triangular mesh at each level of the grid, producing a compact representation of the data at numerous resolutions. Storm indicative features are detected by first subtracting the background field, represented by a low resolution version of the data, which occurs at a lower level in the mesh. Anomalies from this background field are detected, as feature objects, at a mesh level which corresponds to the spatial scale of the feature being detected and then refined to the highest mesh level. These feature objects are expanded to an outer contour and overlapping objects are merged. The centre points of these objects are tracked across timesteps by applying an optimisation scheme which uses five hierarchical rules. Objects are added to tracks based on the highest rule in the scheme they pass and, if two objects pass the same rule, the cost of adding the object to the track. An object exchange scheme ensures that adding an object to a track is locally optimal. An additional track optimisation phase is performed which exchanges segments between tracks and merges tracks to obtain a globally optimal track set. To validate the suite of algorithms they are applied to the ERA-Interim reanalysis dataset and compared to other storm-indicative feature tracking algorithms.

  9. Climate change scenarios and key climate indices in the Swiss Alpine region

    NASA Astrophysics Data System (ADS)

    Zubler, Elias; Croci-Maspoli, Mischa; Frei, Christoph; Liniger, Mark; Scherrer, Simon; Appenzeller, Christof

    2013-04-01

    For climate adaption and to support climate mitigation policy it is of outermost importance to demonstrate the consequences of climate change on a local level and in user oriented quantities. Here, a framework is presented to apply the Swiss national climate change scenarios CH2011 to climate indices with direct relevance to applications, such as tourism, transportation, agriculture and health. This framework provides results on a high spatial and temporal resolution and can also be applied in mountainous regions such as the Alps. Results are shown for some key indices, such as the number of summer days and tropical nights, growing season length, number of frost days, heating and cooling degree days, and the number of days with fresh snow. Particular focus is given to changes in the vertical distribution for the future periods 2020-2049, 2045-2074 and 2070-2099 relative to the reference period 1980-2009 for the A1B, A2 and RCP3PD scenario. The number of days with fresh snow is approximated using a combination of temperature and precipitation as proxies. Some findings for the latest scenario period are: (1) a doubling of the number of summer days by the end of the century under the business-as-usual scenario A2, (2) tropical nights appear above 1500 m asl, (3) the number of frost days may be reduced by more than 3 months at altitudes higher than 2500 m, (4) an overall reduction of heating degree days of about 30% by the end of the century, but on the other hand an increase in cooling degree days in warm seasons, and (5) the number of days with fresh snow tends to go towards zero at low altitudes. In winter, there is little change in snowfall above 2000 m asl (roughly -3 days) in all scenarios. The largest impact on snowfall is found along the Northern Alpine flank and the Jura (-10 days or roughly -50% in A1B for the winter season). It is also highlighted that the future projections for all indices strongly depend on the chosen scenario and on model uncertainty

  10. An Analysis of Climate Variability and Snowmelt Mechanisms inMountainous Regions

    SciTech Connect

    jimingjin@lbl.gov

    2003-09-26

    The impacts of snowpack on climate variability and themechanisms of snowmelt over the Sierra Nevada, California-Nevadamountainous region was studied using the Penn State-National Center forAtmospheric Research fifth-generation Mesoscale Model (MM5) driven by6-hour reanalysis data from the National Centers for EnvironmentalPrediction. The analyses of a one-way nested 48 km to 12 km model runduring the 1998 snowmelt season (April - June) shows that snowpack isunderestimated when there is stronger precipitation and highertemperature. Model resolution and simulated snowpack are found to affectthe temperature and precipitation. Coarser resolution underestimates thetopographic elevation in the Sierra Nevada, increasing the surface airtemperature and precipitation in light of the lapse rate and the rainshadow effect. An observed daily snowpack dataset, assimilated to MM5,reduces the warm bias, because the energy used to increase temperature ina model run without assimilated snow is consumed by snowmelt. The cooledsurface leads to a more stable simulated atmosphere, leading to areduction in the exaggerated precipitation. An underestimated surfacealbedo weakly contributes to the stronger snowmelt. A more realisticphysically-based land-surface model with sophisticated snow andvegetation physics driven by the MM5 output is shown to significantlyimprove the snowpack simulation.

  11. Simulation of 1986 South China Sea Monsoon with a Regional Climate Model

    NASA Technical Reports Server (NTRS)

    Tao, W. -K.; Lau, W. K.-M.; Jia, Y.; Juang, H.; Wetzel, P.; Qian, J.; Chen, C.

    1999-01-01

    A Regional Land-Atmosphere Climate Simulation System (RELACS) project is being developed at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the IndoChina/South China Sea (SCS) region. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. The original MM5 model (without PLACE) includes the option for either a simple slab soil model or a five-layer soil model (MRF) in which the soil moisture availability evolves over time. However, the MM5 soil models do not include the effects of vegetation, and thus important physical processes such as evapotranspiration and interception are precluded. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. In addition, the Penn State/NCAR MM5 atmospheric modeling system has been: (1) coupled to the Goddard Ice Microphysical scheme; (2) coupled to a turbulent kinetic energy (TKE) scheme; (3) modified to ensure cloud budget balance; and (4) incorporated initialization with the Goddard EOS data sets at NASA/Goddard Laboratory for Atmospheres. The improved MM5 with two nested domains (60 and 20 km horizontal resolution) was used to simulate convective activity over IndoChina and the South China Sea

  12. Attribution of future US ozone pollution to regional emissions, climate change, long-range transport, and model deficiency

    NASA Astrophysics Data System (ADS)

    He, H.; Liang, X.-Z.; Lei, H.; Wuebbles, D. J.

    2014-10-01

    A regional chemical transport model (CTM) is used to quantify the relative contributions of future US ozone pollution from regional emissions, climate change, long-range transport (LRT) of pollutants, and model deficiency. After incorporating dynamic lateral boundary conditions (LBCs) from a global CTM, the representation of present-day US ozone pollution is notably improved. This nested system projects substantial surface ozone trends for 2050's: 6-10 ppbv decreases under the "clean" A1B scenario and ~15 ppbv increases under the "dirty" A1Fi scenario. Among the total trends, regional emissions changes dominate, contributing negative 20-50% in A1B and positive 20-40% in A1Fi, while LRT effects through chemical LBCs and climate changes account for respectively 15-50% and 10-30% in both scenarios. The projection uncertainty due to model biases is region dependent, ranging from -10 to 50%. It is shown that model biases of present-day simulations can propagate into future projections systematically but nonlinearly, and the accurate specification of LBCs is essential for US ozone projections.

  13. U.S. Global Climate Change Impacts Report, Alaska Region

    NASA Astrophysics Data System (ADS)

    McGuire, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts in Alaska. The resulting findings are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Summers are getting hotter and drier, with increasing evaporation outpacing increased precipitation. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Wildfires and insect problems are increasing. Climate plays a key role in determining the extent and severity of insect outbreaks and wildfire. The area burned in North America’s northern forest that spans Alaska and Canada tripled from the 1960s to the 1990s. During the 1990s, south-central Alaska experienced the largest outbreak of spruce bark beetles in the world because of warmer weather in all seasons of the year. Under changing climate conditions, the average area burned per year in Alaska is projected to double by the middle of this century10. By the end of this century, area burned by fire is projected to triple under a moderate greenhouse gas emissions scenario and to quadruple under a higher emissions scenario. Close-bodied lakes are declining in area. A continued decline in the area of surface water would present challenges for the management of natural resources and ecosystems on National Wildlife Refuges in Alaska. These refuges, which cover over 77 million acres (21 percent of Alaska) and comprise 81 percent of the U.S. National Wildlife Refuge System, provide a breeding habitat for millions of waterfowl and shorebirds that winter in the lower 48 states. Permafrost thawing will damage public and private infrastructure. Land subsidence (sinking) associated with the thawing of permafrost presents substantial challenges to engineers attempting to preserve infrastructure in

  14. Impacts of climate change on infrastructure in permafrost regions

    NASA Astrophysics Data System (ADS)

    Beloloutskaia, M.; Anisimov, O.

    2003-04-01

    There is a growing evidence of enhanced warming over the permafrost regions, and significant impacts on natural and human systems are expected. Changes in the temperature, distribution, and depth of seasonal thawing of permafrost will have direct and immediate implications for the infrastructure built upon it. The mechanical strength of permafrost decreases with warming, resulting in damage to and possible failure of buildings, pipelines, and transportation facilities. Extensive infrastructure was developed in the Arctic largely in association with the extraction and transportation industries. Several large cities in Russia with few hundred thousand population are of particular concern since many buildings there have already been affected by the changes in permafrost properties. Detrimental changes in permafrost conditions are often not abrupt. Instead, they evolve gradually and can be predicted and monitored, allowing avoidance of catastrophic events and mitigation of negative consequences. Climate-induced threats to infrastructure in permafrost regions may be evaluated using a numerical "settlement" index, Iset, which allows to classify modern permafrost with respect to its potential for thermokarst development: Iset = dZ * W, where dZ is the relative change in the depth of seasonal thawing predicted by permafrost model for the conditions of the future climate and W is the volumetric proportion of near surface soil occupied by ground ice. Permafrost model of intermediate complexity (Koudriavtcev's model) was used with selected GCM-based scenarios of climate change to construct predictive maps of "settlement" index for the mid-21st century. Circumpolar permafrost area was partitioned into zones of high, moderate, and low hazard potential. Despite discrepancies in details, all scenarios yield a zone in the high-risk category distributed discontinuously around the margins of the Arctic Ocean, indicating high potential for coastal erosion. Several population centers

  15. Central America Regional Climate Change Program: Tools for Your Use

    NASA Technical Reports Server (NTRS)

    Irwin, Dan; Irving, Bill; Yeager, Carey

    2006-01-01

    USAID/E-CAM and EGAT's Global Climate Change Team, in partnership with EPA, NASA, Oak Ridge National Lab, and the Central American Commission for Environment and Development (CCAD), have had a significant impact on the region's ability to monitor, mitigate, and adapt to environmental threats. Environmental decision-making tools and data are posted on a website (SERVIR: http://servir.nsstc.nasa.pov/home.html)that provides satellite and geographic data and maps to anybody with an Internet connection. The SERVIR program has been identified as the model for the Global Earth Observation System of Systems (GEOSS) - a major international effort to develop a 21st century system for environmental management and disaster response. In coordination with the USAID/EPA program, NASA has developed a GIs tool that enables countries to examine their forest cover and document changes on an annual basis. This information is used in calculating carbon emissions as part of greenhouse gas inventories, but also serves a valuable monitoring function. In addition, USAID/E-CAM and EGAT's Global Climate Change Team in collaboration with EPA are helping countries meet their obligations as signatories to the United Nations Framework Convention on Climate Change (UNFCCC). EPA is assisting Central American governments to improve the quality of their greenhouse gas emission inventories reported to the UNFCCC through the development of tools and improvements in data quality. New EPA tools developed include software to automatically calculate greenhouse gas emissions for the agricultural and forestry sector inventories, determine key sources of greenhouse gas emissions, and document institutional arrangements. Several of these tools are state of the art and are comparable to tools currently used in the U.S.

  16. Climatic Consequences and Agricultural Impact of Regional Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Robock, A.; Mills, M. J.; Xia, L.

    2013-05-01

    A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, would inject smoke from the resulting fires into the stratosphere.This could produce climate change unprecedented in recorded human history and global-scale ozone depletion, with enhanced ultraviolet (UV) radiation reaching the surface.Simulations with the Whole Atmosphere Community Climate Model (WACCM), run at higher vertical and horizontal resolution than a previous simulation with the NASA Goddard Institute for Space Studies ModelE, and incorporating ozone chemistry for the first time, show a longer stratospheric residence time for smoke and hence a longer-lasting climate response, with global average surface air temperatures still 1.1 K below normal and global average precipitation 4% below normal after a decade.The erythemal dose from the enhanced UV radiation would greatly increase, in spite of enhanced absorption by the remaining smoke, with the UV index more than 3 units higher in the summer midlatitudes, even after a decade. Scenarios of changes in temperature, precipitation, and downward shortwave radiation from the ModelE and WACCM simulations, applied to the Decision Support System for Agrotechnology Transfer crop model for winter wheat, rice, soybeans, and maize by perturbing observed time series with anomalies from the regional nuclear war simulations, produce decreases of 10-50% in yield averaged over a decade, with larger decreases in the first several years, over the midlatitudes of the Northern Hemisphere. The impact of the nuclear war simulated here, using much less than 1% of the global nuclear arsenal, would be devastating to world agricultural production and trade, possibly sentencing a billion people now living marginal existences to starvation.The continued environmental threat of the use of even a small number of nuclear weapons must be considered in nuclear policy deliberations in Russia, the U.S., and the rest of

  17. Effects of climatic changes on anisakid nematodes in polar regions

    NASA Astrophysics Data System (ADS)

    Rokicki, Jerzy

    2009-11-01

    Anisakid nematodes are common in Antarctic, sub-Antarctic, and Arctic areas. Current distributional knowledge of anisakids in the polar regions is reviewed. Climatic variables influence the occurrence and abundance of anisakids, directly influencing their free-living larval stages and also indirectly influencing their predominantly invertebrate (but also vertebrate) hosts. As these parasites can also be pathogenic for humans, the paucity of information available is a source of additional hazard. As fish are a major human dietary component in Arctic and Antarctic areas, and are often eaten without heat processing, a high risk of infection by anisakid larvae might be expected. The present level of knowledge, particularly relating to anisakid larval stages present in fishes, is far from satisfactory. Preliminary molecular studies have revealed the presence of species complexes. Contemporary climate warming is modifying the marine environment and may result in an extension of time during which anisakid eggs can persist and hatch, and of the time period during which newly hatched larvae remain viable. As a result there may be an increase in the extent of anisakid distribution. Continued warming will modify the composition of the parasitic nematode fauna of marine animals, due to changes in feeding habits, as the warming of the sea and any localised reduction in salinity (from freshwater runoff) can be expected to bring about changes in the species composition of pelagic and benthic invertebrates.

  18. On the importance for climate science communication - the climate office for polar regions and sea level rise

    NASA Astrophysics Data System (ADS)

    Treffeisen, Renate; Lemke, Peter; Dethloff, Klaus

    2010-05-01

    Climate change presents a major challenge for national and international action and cooperation. A wide variation in the vulnerability is to be expected across different regions, due to regional differences in local environmental conditions, preexisting stresses to ecosystems, current resource-use patterns, and the framework of factors affecting decision-making including government policies, prices, preferences, and values. Thus, considerable regional impact differences will be faced as a result of climate change. Being aware will help to prepare for these inevitable consequences in time. Climate change is nowhere more strongly expressed than in the polar regions which respond to even small changes in climate. Given the major role played by these regions within the Earth's climate system the climate office for polar regions and sea level rise is hosted by the Foundation Alfred Wegener Institute for Polar and Marine Research (AWI) which conducts research in the Arctic, the Antarctic and at temperate latitudes since 1980. The major goal of the climate office is to encourage the communication and dialogue between science and public. Primarily, this is done by the unique close contact and cooperation to the research center scientists. A continuous exchange is supported beyond the research center towards universities and authorities at state and federal level. The climate office represents polar aspects of climate related research based on the scientific expertise from the hosting research institute e.g. the understanding of the ocean-ice-atmosphere interactions, the animal and plant kingdoms of the Arctic and Antarctic, and the evolution of the polar continents and seas. The climate office translates the scientific work into English, making complex issues accessible to policymakers and the public. It compiles, evaluates, comprehensively process and transparently communicate the latest findings from polar related climate research. The paper will present different

  19. Twenty-first century changes in snowfall climate in Northern Europe in ENSEMBLES regional climate models

    NASA Astrophysics Data System (ADS)

    Räisänen, Jouni

    2016-01-01

    Changes in snowfall in northern Europe (55-71°N, 5-35°E) are analysed from 12 regional model simulations of twenty-first century climate under the Special Report on Emissions Scenarios A1B scenario. As an ensemble mean, the models suggest a decrease in the winter total snowfall in nearly all of northern Europe. In the middle of the winter, however, snowfall generally increases in the coldest areas. The borderline between increasing and decreasing snowfall broadly coincides with the -11 °C isotherm in baseline (1980-2010) monthly mean temperature, although with variation between models and grid boxes. High extremes of daily snowfall remain nearly unchanged, except for decreases in the mildest areas, where snowfall as a whole becomes much less common. A smaller fraction of the snow in the simulated late twenty-first century climate falls on severely cold days and a larger fraction on days with near-zero temperatures. Not only do days with low temperatures become less common, but they also typically have more positive anomalies of sea level pressure and less snowfall for the same temperature than in the present-day climate.

  20. Climate change and the Portuguese precipitation: ENSEMBLES regional climate models results

    NASA Astrophysics Data System (ADS)

    Soares, Pedro M. M.; Cardoso, Rita M.; Ferreira, João Jacinto; Miranda, Pedro M. A.

    2015-10-01

    In Portugal, the precipitation regimes present one of the highest volumes of extreme precipitation occurrence in Europe, and one of the largest mean precipitation spatial gradient (annual observed values above 2,500 mm in the NW and under 400 mm in the SE). Moreover, southern Europe is one of the most vulnerable regions in the world to climate change. In the ENSEMBLES framework many climate change assessment studies were performed, but none focused on Portuguese precipitation. An extensive evaluation and ranking of the RCMs results addressing the representation of mean precipitation and frequency distributions was performed through the computation of statistical errors and frequency distribution scores. With these results, an ensemble was constructed; giving the same weight to mean precipitation and distribution model skills. This ensemble reveals a good ability to describe the precipitation regime in Portugal, and enables the evaluation of the eventual impact of climate change on Portuguese precipitation according to the A1B scenario. The mean seasonal precipitation is expected to decrease substantially in all seasons, excluding winter. This reduction is statistically significant; it spans from less than 20 % in the north to 40 % in the south in the intermediate seasons, and is above 50 % in the largest portion of mainland in summer. At a basin level the precipitation diminishes in all months for all the basins with exception of December. Total precipitation PDFs reveal an important decrease of the contribution from low to moderate/high precipitation bins, and a striking rise for days with extreme rainfall, up to 30 %.

  1. Regional climate change mitigation with crops: context and assessment.

    PubMed

    Singarayer, J S; Davies-Barnard, T

    2012-09-13

    The intention of this review is to place crop albedo biogeoengineering in the wider picture of climate manipulation. Crop biogeoengineering is considered within the context of the long-term modification of the land surface for agriculture over several thousand years. Biogeoengineering is also critiqued in relation to other geoengineering schemes in terms of mitigation power and adherence to social principles for geoengineering. Although its impact is small and regional, crop biogeoengineering could be a useful and inexpensive component of an ensemble of geoengineering schemes to provide temperature mitigation. The method should not detrimentally affect food security and there may even be positive impacts on crop productivity, although more laboratory and field research is required in this area to understand the underlying mechanisms.

  2. Convection-Permitting Regional Climate Simulations over the Contiguous United States Including Potential Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Liu, Changhai; Rasmussen, Roy; Ikeda, Kyoko; Barlage, Michael; Chen, Fei; Clark, Martyn; Dai, Aiguo; Dudhia, Jimy; Gochis, David; Gutmann, Ethan; Li, Yanping; Newman, Andrew; Thompson, Gregory

    2016-04-01

    The WRF model with a domain size of 1360x1016x51 points, using a 4 km spacing to encompass most of North America, is employed to investigate the water cycle and climate change impacts over the Contiguous United States (CONUS). Four suites of numerical experiments are being conducted, consisting of a 13-year retrospective simulation forced with ERA-I reanalysis, a 13-year climate sensitivity or Pseudo-Global Warming (PGW) simulation, and two 10-year CMIP5-based historical/future period simulations based on a revised bias-correction method. The major objectives are: 1) to evaluate high-resolution WRF's capability to capture orographic precipitation and snow mass balance over the western CONUS and convective precipitation over the eastern CONUS; 2) to assess future changes of seasonal snowfall and snowpack and associated hydrological cycles along with their regional variability across the different mountain barriers and elevation dependency, in response to the CMIP5 projected 2071-2100 climate warming; 3) to examine the precipitation changes under the projected global warming, with an emphasis on precipitation extremes and the warm-season precipitation corridor in association with MCS tracks in the central US; and 4) to provide a valuable community dataset for regional climate change and impact studies. Preliminary analysis of the retrospective simulation shows both seasonal/sub-seasonal precipitation and temperature are well reproduced, with precipitation bias being within 10% of the observations and temperature bias being below 1 degree C in most seasons and locations. The observed annual cycle of snow water equivalent (SWE), such as peak time and disappearance time, is also realistically replicated, even though the peak value is somewhat underestimated. The PGW simulation shows a large cold-season warming in northeast US and eastern Canada, possibly associated with snow albedo feedback, and a strong summer warming in north central US in association with

  3. Climate and chemistry effects of a regional scale nuclear conflict

    NASA Astrophysics Data System (ADS)

    Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.

    2013-05-01

    Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a tremendous self-lofting of the soot particles into the strato- and mesosphere, where they remain for several years. Consequently, the model suggests Earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with massive sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of Northern America and Eurasia to chilling coldness. In the

  4. Developing a Regionally-Based "Next Generation" High School Climate Science Curriculum

    NASA Astrophysics Data System (ADS)

    Bell, M.; Clark, J.; Getty, S. R.; Marks, J.; Hungate, B. A.; Kaufman, D. S.; Coles, R.; Haden, C.; Cooley, N.

    2012-12-01

    Colorado Plateau Carbon Connections is a regionally relevant, culturally responsive, technology-rich high school climate science curriculum for the Colorado Plateau/Four Corners region. Funded by an NSF Climate Change Education Partnership grant, the 10-lesson curriculum supplement is the result of collaboration between Northern Arizona University climate scientists, social scientists and educators and the NASA-funded Biological Sciences Curriculum Study Carbon Connections project. The curriculum includes disciplinary core ideas in Earth Science from A Framework for K-12 Science Education. It integrates cross-cutting relationships and science and engineering practices. Students are introduced to regional and global effects of climate change, and build their understanding of climate science using simulations and climate models. The models are based on authentic data and allow students to explore the roles of carbon dioxide, volcanic forcing, El Niño effects, solar variability, and anthropogenic inputs to the climate system. Students also negate climate misconceptions using climate science, and analyze personal connections to the climate system. They examine their own carbon footprints and propose regionally based solutions for mitigating the effects of climate change. The curriculum was field tested in Spring 2012 with 384 students and ten teachers in seven schools. The evaluation shows strong student engagement and increased knowledge of climate science and solutions. This curriculum also serves as a model for integrating regional issues into climate science education.

  5. The Polar Regions and Martian Climate: Studies with a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Wilson, R. J.; Richardson, M. I.; Smith, M. D.

    2003-01-01

    Much of the interest in the polar regions centers on the fact that they likely contain the best record of Martian climate change on time scales from years to eons. This expectation is based upon the observed occurrence of weathering product deposits and volatile reservoirs that are coupled to the climate. Interpretation and understanding of these records requires understanding of the mechanisms that involve the exchange of dust, water, and carbon dioxide between the surface and atmosphere, and the atmospheric redistribution of these species. We will summarize our use of the GFDL Mars general circulation model (MGCM), to exploration aspects of the interaction between the global climate and the polar regions. For example, our studies have shown that while the northern polar cap is the dominant seasonal source for water, it can act as a net annual source or sink for water, depending upon the cap temperatures and the bulk humidity of the atmosphere. This behavior regulates the annual and global average humidity of the atmosphere, as the cap acts as a sink if the atmosphere is too wet and a source if it is too dry. We will then focus our presentation on the ability of the MGCM to simulate the observed diurnal variations of surface temperature. We are particularly interested in assessing the influence of dust aerosol and water ice clouds on simulated surface temperature and the comparison with observations. Surface thermal inertia and albedo are critical boundary inputs for MGCM simulations. Thermal inertia is also of intrinsic interest as it may be related to properties of the surface such as particle size and surface character.

  6. Building America Best Practices Series: Guide to Determining Climate Regions by County

    SciTech Connect

    Gilbride, Theresa L.

    2008-10-01

    This document describes the eight climate region designations used by the US Department of Energy Building America Program. In addition to describing the climate zones, the document includes a complete list of every county in the United States and their climate region designations. The county lists are grouped by state. The doucment is intended to assist builders to easily identify what climate region they are building in and therefore which climate-specific Building America best practices guide would be most appropriate for them.

  7. Regional Climate Modeling over the Glaciated Regions of the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Gready, Benjamin P.

    The Canadian Arctic Islands (CAI) contain the largest concentration of terrestrial ice outside of the continental ice sheets. Mass loss from this region has recently increased sharply due to above average summer temperatures. Thus, increasing the understanding of the mechanisms responsible for mass loss from this region is critical. Previously, Regional Climate Models (RCMs) have been utilized to estimate climatic balance over Greenland and Antarctica. This method offers the opportunity to study a full suite of climatic variables over extensive spatially distributed grids. However, there are doubts of the applicability of such models to the CAI, given the relatively complex topography of the CAI. To test RCMs in the CAI, the polar version of the regional climate model MM5 was run at high resolution over Devon Ice Cap. At low altitudes, residuals (computed through comparisons with in situ measurements) in the net radiation budget were driven primarily by residuals in net shortwave (NSW) radiation. Residuals in NSW are largely due to inaccuracies in modeled cloud cover and modeled albedo. Albedo on glaciers and ice sheets is oversimplified in Polar MM5 and its successor, the Polar version of the Weather Research and Forecast model (Polar WRF), and is an obvious place for model improvement. Subsequently, an inline parameterization of albedo for Polar WRF was developed as a function of the depth, temperature and age of snow. The parameterization was able to reproduce elevation gradients of seasonal mean albedo derived from satellite albedo measurements (MODIS MOD10A1 daily albedo), on the western slope of the Greenland Ice Sheet for three years. Feedbacks between modelled albedo and modelled surface energy budget components were identified. The shortwave radiation flux feeds back positively with changes to albedo, whereas the longwave, turbulent and ground energy fluxes all feed back negatively, with a maximum combined magnitude of two thirds of the shortwave feedback

  8. Detection and discrimination of Loa loa, Mansonella perstans and Wuchereria bancrofti by PCR-RFLP and nested-PCR of ribosomal DNA ITS1 region.

    PubMed

    Jiménez, Maribel; González, Luis Miguel; Carranza, Cristina; Bailo, Begoña; Pérez-Ayala, Ana; Muro, Antonio; Pérez-Arellano, José Luis; Gárate, Teresa

    2011-01-01

    The ribosomal deoxyribonucleic acid (DNA) internal transcribed spacer region (ITS1) of two filarial nematodes, Loa loa and Mansonella perstans, was amplified and further sequenced to develop an species-specific polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) protocol for the differentiation of both species from Wuchereria bancrofti, three filarial nematodes with blood circulating microfilariae. The ITS1-PCR product digested with the restriction endonuclease Ase I generated an specific diagnostic pattern for each of the three species. Moreover, three new specific nested-PCRs, targeting the ITS1 region, for differential detection of L. loa, M. perstans and W. bancrofti were developed and used when the ITS1-PCR products were insufficient for the Ase I enzymatic digestion. These filarial species-specific molecular protocols were evaluated in forty blood samples from African adult immigrants attending in the Hospital Insular of Gran Canaria, Canarias, Spain. PMID:20599994

  9. Impact of GCM boundary forcing on regional climate modeling of West African summer monsoon precipitation and circulation features

    NASA Astrophysics Data System (ADS)

    Kebe, Ibourahima; Sylla, Mouhamadou Bamba; Omotosho, Jerome Adebayo; Nikiema, Pinghouinde Michel; Gibba, Peter; Giorgi, Filippo

    2016-05-01

    In this study, the latest version of the International Centre for Theoretical Physics Regional Climate Model (RegCM4) driven by three CMIP5 Global Climate Models (GCMs) is used at 25 km grid spacing over West Africa to investigate the impact of lateral boundary forcings on the simulation of monsoon precipitation and its relationship with regional circulation features. We find that the RegCM4 experiments along with their multimodel ensemble generally reproduce the location of the main precipitation characteristics over the region and improve upon the corresponding driving GCMs. However, the provision of different forcing boundary conditions leads to substantially different precipitation magnitudes and spatial patterns. For instance, while RegCM4 nested within GFDL-ESM-2M and HadGEM2-ES exhibits some underestimations of precipitation and an excessively narrow Intertropical Convergence Zone, the MPI-ESM-MR driven run produces precipitation spatial distribution and magnitudes more similar to observations. Such a superior performance originates from a much better simulation of the interactions between baroclinicity, temperature gradient and African Easterly Jet along with an improved connection between the Isentropic Potential Vorticity, its gradient and the African Easterly Waves dynamics. We conclude that a good performing GCM in terms of monsoon dynamical features (in this case MPI-ESM-MR) is needed to drive RCMs in order to achieve a better representation of the West Africa summer monsoon precipitation.

  10. Assessing the Future Climate Change in Amazon Basin as Derived from the PRECIS Regional Climate Modeling System

    NASA Astrophysics Data System (ADS)

    Alves, L. M.; Marengo, J. A.; Fu, R.

    2014-12-01

    A number of extreme climate events, such as severe droughts occurred in 2005 and 2010, and impacts from multiple anthropogenic sources, including deforestation, in the Amazon basin have caused widespread socio-ecological stresses and may contribute as a positive feedback to the global climate change. Climate variability and change over the Amazon basin pose significant challenges for society. This is the case when uncertainties in projections of regional climate changes exist. To assess the climate projections and possible changes in the dry season (strength and duration) over Amazon, we have conducted a suite of experiments using the PRECIS regional climate modeling system driven by four members of an ensemble of the Met Office Hadley Centre Global Coupled climate model HadCM3. The global model ensemble was run over the twenty-first century according to the SRES A1B emissions scenario, but with each member having different climate sensitivity. The four members selected to drive the PRECIS model span the sensitivity range in the global model ensemble. Results presented here focus on austral summer and winter climate of 2011-2040, 2041-2070 and 2071-2100 periods. In additional, we have used one of the new LU scenarios (for 2050) developed within AMAZALERT Project to assess its effects on climate over the Amazon basin relative to the standard PRECIS simulation.

  11. USDA Midwest and Northern Forests Regional Climate Hub: Assessment of climate change vulnerability and adaptation and mitigation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Midwest Regional Climate Hub covers the States of Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin and represents one of the most extensive and intensive agricultural systems in the world. The Northern Forests Climate Sub Hub shares this footprint and represents people...

  12. Simulation of the Arid Climate of the Southern Great Basin Using a Regional Climate Model.

    NASA Astrophysics Data System (ADS)

    Giorgi, Filippo; Bates, Gary T.; Nieman, Steven J.

    1992-11-01

    As part of the development effort of a regional climate model (RCM)for the southern Great Basin, this paper present savalidation analysis of the climatology generated by a high-resolution RCM driven by observations. The RCM is aversion of the National Center for atmospheric Research-Pennsylvania State University mesoscale model, version 4 (MM4), modified for application to regional climate simulation. Two multiyear simulations, for the periods 1 January 1982 to 31 December 1983 and 1 January 1988 to 25 April 1989, were performed over the western United States with the RCM driven by European Centre for Medium-Range Weather Forecasts analyses of observations. The model resolution is 60 km. This validation analysis is the first phase of a project to produce simulations of future climate scenarios over a region surrounding Yucca Mountain, Nevada, the only location currently being considered as a potential high-level nuclear-waste repository site.Model-produced surface air temperatures and precipitation were compared with observations from five southern Nevada stations located in the vicinity of Yucca Mountain. The seasonal cycles of temperature and precipitation were simulated well. Monthly and seasonal temperature biases were generally negative and largely explained by differences in elevation between the observing stations and the model topography. The model-simulated precipitation captured the extreme dryness of the Great Basin. Average yearly precipitation was generally within 30% of observed and the range of monthly precipitation amounts was the same as in the observations. Precipitation biases were mostly negative in the summer and positive in the winter. The number of simulated daily precipitation events for various precipitation intervals was within factors of 1.5-3.5 of observed. Overall, the model tended to overestimate the number of light precipitation events and underestimate the number of heavy precipitation events. At Yucca Mountain, simulated

  13. Decadal-Interdecadal SST Variability and Regional Climate Teleconnections

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Weng, H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Dominant modes of decadal and interdecadal SST variability and their impacts on summertime rainfall variability over East Asia and the North America are studied. Two dominant modes of interdecadal SST variability, one associated with El Nino-like warming in the global oceans and one with an east-west seesaw variation in the equatorial Pacific have been identified. The first mode is associated in part with a long-term warming trend in the topical oceans and cooling over the northern Pacific. The second mode suggests an westward shift and strengthening of the Walker circulation from 1960s to the 1980s. Over East Asian, the first SST mode is correlated with reduced rainfall in northern China and excessive rainfall in central China. This SST mode is also associated with the tendency for increased rainfall over the midwest region, and reduced rainfall over the east Coast of the US. The results suggest a teleconnection pattern which links the occurrences of drought and floods over the Asian monsoon and the US summertime time climate. This teleconnection is likely to be associated with decadal variability of the East Asian jetstream, which are affected by strong land surface heating over the Siberian region, as well as El Nino-like SST forcings. The occurrences of major droughts and floods in the East Asian and US continent in recent decades are discussed in light of the above teleconnection patterns.

  14. California Wintertime Precipitation in Regional and Global Climate Models

    SciTech Connect

    Caldwell, P M

    2009-04-27

    In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

  15. Relating Regional Arctic Sea Ice and climate extremes over Europe

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number

  16. Using climate regionalization to understand Climate Forecast System Version 2 (CFSv2) precipitation performance for the Conterminous United States (CONUS)

    NASA Astrophysics Data System (ADS)

    Regonda, Satish K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Rodell, Matthew

    2016-06-01

    Dynamically based seasonal forecasts are prone to systematic spatial biases due to imperfections in the underlying global climate model (GCM). This can result in low-forecast skill when the GCM misplaces teleconnections or fails to resolve geographic barriers, even if the prediction of large-scale dynamics is accurate. To characterize and address this issue, this study applies objective climate regionalization to identify discrepancies between the Climate Forecast System Version 2 (CFSv2) and precipitation observations across the Contiguous United States (CONUS). Regionalization shows that CFSv2 1 month forecasts capture the general spatial character of warm season precipitation variability but that forecast regions systematically differ from observation in some transition zones. CFSv2 predictive skill for these misclassified areas is systematically reduced relative to correctly regionalized areas and CONUS as a whole. In these incorrectly regionalized areas, higher skill can be obtained by using a regional-scale forecast in place of the local grid cell prediction.

  17. The United States National Climate Assessment - Alaska Technical Regional Report

    USGS Publications Warehouse

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    The Alaskan landscape is changing, both in terms of effects of human activities as a consequence of increased population, social and economic development and their effects on the local and broad landscape; and those effects that accompany naturally occurring hazards such as volcanic eruptions, earthquakes, and tsunamis. Some of the most prevalent changes, however, are those resulting from a changing climate, with both near term and potential upcoming effects expected to continue into the future. Alaska's average annual statewide temperatures have increased by nearly 4°F from 1949 to 2005, with significant spatial variability due to the large latitudinal and longitudinal expanse of the State. Increases in mean annual temperature have been greatest in the interior region, and smallest in the State's southwest coastal regions. In general, however, trends point toward increases in both minimum temperatures, and in fewer extreme cold days. Trends in precipitation are somewhat similar to those in temperature, but with more variability. On the whole, Alaska saw a 10-percent increase in precipitation from 1949 to 2005, with the greatest increases recorded in winter. The National Climate Assessment has designated two well-established scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and others, 2001) as a minimum set that technical and author teams considered as context in preparing portions of this assessment. These two scenarios are referred to as the Special Report on Emissions Scenarios A2 and B1 scenarios, which assume either a continuation of recent trends in fossil fuel use (A2) or a vigorous global effort to reduce fossil fuel use (B1). Temperature increases from 4 to 22°F are predicted (to 2070-2099) depending on which emissions scenario (A2 or B1) is used with the least warming in southeast Alaska and the greatest in the northwest. Concomitant with temperature changes, by the end of the 21st century the growing season is expected

  18. The Alpine snow-albedo feedback in regional climate models

    NASA Astrophysics Data System (ADS)

    Winter, Kevin J.-P. M.; Kotlarski, Sven; Scherrer, Simon C.; Schär, Christoph

    2016-04-01

    The effect of the snow-albedo feedback (SAF) on 2m temperatures and their future changes in the European Alps is investigated in the ENSEMBLES regional climate models (RCMs) with a focus on the spring season. A total of 14 re-analysis-driven RCM experiments covering the period 1961-2000 and 10 GCM-driven transient climate change projections for 1950-2099 are analysed. A positive springtime SAF is found in all RCMs, but the range of the diagnosed SAF is large. Results are compared against an observation-based SAF estimate. For some RCMs, values very close to this estimate are found; other models show a considerable overestimation of the SAF. Net shortwave radiation has the largest influence of all components of the energy balance on the diagnosed SAF and can partly explain its spatial variability. Model deficiencies in reproducing 2m temperatures above snow and ice and associated cold temperature biases at high elevations seem to contribute to a SAF overestimation in several RCMs. The diagnosed SAF in the observational period strongly influences the estimated SAF contribution to twenty first century temperature changes in the European Alps. This contribution is subject to a clear elevation dependency that is governed by the elevation-dependent change in the number of snow days. Elevations of maximum SAF contribution range from 1500 to 2000 m in spring and are found above 2000 m in summer. Here, a SAF contribution to the total simulated temperature change between 0 and 0.5 °C until 2099 (multi-model mean in spring: 0.26 °C) or 0 and 14 % (multi-model mean in spring: 8 %) is obtained for models showing a realistic SAF. These numbers represent a well-funded but only approximate estimate of the SAF contribution to future warming, and a remaining contribution of model-specific SAF misrepresentations cannot be ruled out.

  19. The Atlantic Multi-Decadal Oscillation Impact on Regional Climate

    NASA Astrophysics Data System (ADS)

    Werner, Rolf; Valev, Dimitar; Atanassov, Atanas; Danov, Dimitar; Guineva, Veneta; Kirillov, Andrey S.

    2016-07-01

    The Atlantic multi-decadal oscillation (AMO) shows a period of about 60-70 years. Over the time span from 1860 up to 2014 the AMO has had a strong climate impact on the Northern Hemisphere. The AMO is considered to be related to the Atlantic overturning circulation, but the origin of the oscillation is not fully understood up till now. To study the AMO impact on climate, the Hadcrut4, Crut4 and HadSST3 temperature data sets have been employed in the current study. The influence of the AMO on the zonal and meridional temperature distribution has been investigated in detail. The strongest zonal AMO impact was obtained in the Arctic region. The results indicated that the AMO influence on temperature at Southern latitudes was opposite in phase compared to the temperature influence in the Northern Hemisphere, in agreement with the well known heat transfer phenomenon from South to North Atlantic. In the Northern Hemisphere the strongest AMO temperature impact was found over the Atlantic and America. In the West from American continent, over the Pacific, the AMO impact was the lowest obtained over the whole Northern Hemisphere. The Rocky Mountains and Sierra Madre, connected with it southwards, built up an atmospheric circulation barrier preventing a strong propagation of the AMO temperature signal westerly. The amplitude of the AMO index itself was greater during summer-fall. However stronger AMO influence on the Northern Hemisphere temperatures was found during the fall-winter season, when the differences between the Northern Hemisphere temperatures and the temperatures in the tropics were the greatest.

  20. Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field.

    PubMed

    Renker, Carsten; Heinrichs, Jochen; Kaldorf, Michael; Buscot, François

    2003-08-01

    Identification of arbuscular mycorrhizal fungi (AMF) on roots is almost impossible with morphological methods and, due to the presence of contaminating fungi, it is also difficult with molecular biological techniques. To allow broad investigation of the population structure of AMF in the field, we have established a new method to selectively amplify the internal transcribed spacer (ITS) region of most AMF with a unique primer set. Based on available sequences of the rDNA, one primer pair specific for AMF and a few other fungal groups was designed and combined in a nested PCR with the already established primer pair ITS5/ITS4. Amplification from contaminating organisms was reduced by an AluI restriction after the first reaction of the nested PCR. The method was assessed at five different field sites representing different types of habitats. Members of all major groups within the Glomeromycota (except Archaeosporaceae) were detected at the different sites. Gigasporaceae also proved detectable with the method based on cultivated strains. PMID:12938031

  1. Regional climatic mapping as a tool for sustainable development.

    PubMed

    Katzschner, Lutz; Mülder, Jochen

    2008-04-01

    In the framework of an EU project on sustainable village development in China (SUCCESS), the natural climate resource was evaluated. Climate is seen as a potential for sustainability, an improvement of social life, agricultural production and reduction of air pollution problems. In this respect, thermal comfort conditions, microclimates and ventilation patterns were studied in seven Chinese villages and climate maps were drawn. Following planning recommendations, they can be transferred to decision-makers for their village development. In this framework, the paper presents a general methodology of urban climate mapping, carried out in China, applicable to all countries and climates.

  2. The present-day climate of Greenland : a study with a regional climate model

    NASA Astrophysics Data System (ADS)

    Ettema, J.

    2010-04-01

    Present-day climate of Greenland Over the past 20 years, the Greenland ice sheet (GrIS) has warmed. This temperature increase can be explained by an increase in downwelling longwave radiation due to a warmer overlying atmosphere. These temperature changes are strongly correlated to changes in the large scale circulation over the ice sheet. Since 1990, the melt has also strongly increased along the ice margins, inducing significant increase in runoff. With no significant change found in the total precipitation, the GrIS surface mass balance (SMB) decreased by 12 Gt yr-1 or 7 kg m-2 yr-1 since 1990. Locally, the SMB trend reaches -90 kg m-2 yr-1 at the western and eastern ice margins. These conclusions are drawn from a modelling study by Janneke Ettema, which discusses the present-day climate and surface mass balance of the GrIS. The emphasis of this research is on understanding the underlying physical processes. Using the regional atmospheric climate model RACMO2/GR at high horizontal resolution (11km) has resulted in unprecedented detail in the ice sheet climatology and SMB. By incorporating processes such as percolation, retention and refreezing of meltwater in the surface parameterisation, the model explicitly calculates how these processes affect snow pack temperature, density and surface albedo. RACMO2/GR shows that the GrIS climate is spatially very variable. Characteristic for the ice sheet climate are the persistent katabatic winds and a quasi-permanent surface temperature deficit. Due to strong radiative cooling and turbulent heat transport towards the surface, the atmospheric boundary layer cools, providing optimal conditions for strong katabatic winds to occur. The strongest temperature deficit and wind speeds are found in the northeastern part of the ice sheet, whereas in the lower ablation zone the temperatures are more moderate due to surface melt and warm air advection. The high-resolution climate model revealed that the surface mass balance of the Gr

  3. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge

    NASA Astrophysics Data System (ADS)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.

    2008-12-01

    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector

  4. Regional Climate Simulations of the Hydrological Cycle in the Iberian Peninsula with a Coupled WRF-HYDRO Model

    NASA Astrophysics Data System (ADS)

    Rios-Entenza, A.; Miguez-Macho, G.

    2008-12-01

    Land-atmosphere water exchanges and heat fluxes play an important role in climate and particularly in controlling precipitation in water-limited regions. One of such regions is the Iberian Peninsula, and in this study we examine the relevance of water recycling in convective precipitation regimes of the Fall and Spring there, when rainfall is critical for agriculture and many other human activities. We conducted simulations with WRF-ARW model at 5 km horizontal resolution, using a 1500 km x 1500 km nested grid that covers the Iberian Peninsula, with a parent domain that uses spectral nudging in order to avoid the distortion of the large-scale circulation caused by the interaction of the modeled flow with the lateral boundaries of the nested grid. For land-surface interactions we coupled WRF with the LEAF-HYDRO land surface model, which includes water table dynamics. We use therefore a tool that simulates the entire water cycle, including the water table, which has been reported to be critical for soil moisture dynamics in semi-arid regions like the Iberian Peninsula. For each one of the events that we selected, we performed two simulations: a control one, where all land-atmosphere feedbacks are taken into account, and the experiment, where infiltration of the precipitated water into the soil was suppressed. In this manner we explore the role of upward latent and sensible heat fluxes and evapotranspiration in precipitation dynamics. Preliminary results suggest that water recycling is a key factor in extending convective precipitation during several days, and that the total new water added in the area as a whole is only a fraction of the total measured rainfall. An estimation of this fraction is very important to better understanding the water budget and for hydrological planning in this water-stressed region.

  5. Evaluation of the present climate simulated by the regional Eta model driven by the Brazilian Global coupled ocean-atmosphere Model

    NASA Astrophysics Data System (ADS)

    Chou, Sin Chan; Lyra, André; Juliano Silva, Adan; Nobre, Paulo

    2013-04-01

    The Eta Model is used operationally by INPE at the Centre for Weather Forecasts and Climate Studies (CPTEC) to produce weather forecasts over South America since 1997 and seasonal climate forecasts since 2002. The model has gone through upgrades along these years and is able to produce decadal integrations to downscale climate projections. Likewise, the INPE global atmospheric model has been coupled to MOM4 ocean model and decadal integrations in the period 1960-2105 was produced and contributed to the CMIP5 dataset. The development of the Brazilian Earth System Model (BESM) has been ongoing parallel to the development of the Brazilian regional earth system model (BESM-R). The objective of this work is to evaluate the regional Eta model nested in the BESM in the present climate simulations, from 1961-1990. The Eta model was configured with 20-km horizontal resolution and 38 layers, in a domain covering all South America. In the lower boundary, sea surface temperature was provided by the BESM and was updated daily during the regional integration, whereas the lateral boundaries were updated every 6 hours with the BESM atmospheric conditions. Continuous 30-year integrations were carried out by the regional model. Large scale circulation pattern at upper and low levels are shown in comparison with the respective BESM flow and evaluated against reanalyses. The regional model shows improvement in the precipitation and temperature pattern over the continent. Seasonal cycle of precipitation and temperature are also shown.

  6. IMPACT OF CLIMATE VARIATION AND CHANGE ON MID-ATLANTIC REGION HYDROLOGY AND WATER RESOURCES

    EPA Science Inventory

    The sensitivity of hydrology and water resources to climate variation and climate change is assessed for the Mid-Atlantic Region (MAR) of the United States. Observed streamflow, groundwater, and water-quality data are shown to vary in association with climate variation. Projectio...

  7. Extending Lkn Climate Regionalization with Spatial Regularization: AN Application to Epidemiological Research

    NASA Astrophysics Data System (ADS)

    Liss, Alexander; Gel, Yulia R.; Kulinkina, Alexandra; Naumova, Elena N.

    2016-06-01

    Regional climate is a critical factor in public health research, adaptation studies, climate change burden analysis, and decision support frameworks. Existing climate regionalization schemes are not well suited for these tasks as they rarely take population density into account. In this work, we are extending our recently developed method for automated climate regionalization (LKN-method) to incorporate the spatial features of target population. The LKN method consists of the data limiting step (L-step) to reduce dimensionality by applying principal component analysis, a classification step (K-step) to produce hierarchical candidate regions using k-means unsupervised classification algorithm, and a nomination step (N-step) to determine the number of candidate climate regions using cluster validity indexes. LKN method uses a comprehensive set of multiple satellite data streams, arranged as time series, and allows us to define homogeneous climate regions. The proposed approach extends the LKN method to include regularization terms reflecting the spatial distribution of target population. Such tailoring allows us to determine the optimal number and spatial distribution of climate regions and thus, to ensure more uniform population coverage across selected climate categories. We demonstrate how the extended LKN method produces climate regionalization can be better tailored to epidemiological research in the context of decision support framework.

  8. Climate change and mortality in Vienna--a human biometeorological analysis based on regional climate modeling.

    PubMed

    Muthers, Stefan; Matzarakis, Andreas; Koch, Elisabeth

    2010-07-01

    The potential development of heat-related mortality in the 21th century for Vienna (Austria) was assessed by the use of two regional climate models based on the IPCC emissions scenarios A1B and B1. Heat stress was described with the human-biometeorological index PET (Physiologically Equivalent Temperature). Based on the relation between heat stress and mortality in 1970-2007, we developed two approaches to estimate the increases with and without long-term adaptation. Until 2011-2040 no significant changes will take place compared to 1970-2000, but in the following decades heat-related mortality could increase up to 129% until the end of the century, if no adaptation takes place. The strongest increase occurred due to extreme heat stress (PET >or= 41 degrees C). With long-term adaptation the increase is less pronounced, but still notable. This encourages the requirement for additional adaptation measurements. PMID:20717552

  9. Climate Change and Mortality in Vienna—A Human Biometeorological Analysis Based on Regional Climate Modeling

    PubMed Central

    Muthers, Stefan; Matzarakis, Andreas; Koch, Elisabeth

    2010-01-01

    The potential development of heat-related mortality in the 21th century for Vienna (Austria) was assessed by the use of two regional climate models based on the IPCC emissions scenarios A1B and B1. Heat stress was described with the human-biometeorological index PET (Physiologically Equivalent Temperature). Based on the relation between heat stress and mortality in 1970–2007, we developed two approaches to estimate the increases with and without long-term adaptation. Until 2011–2040 no significant changes will take place compared to 1970–2000, but in the following decades heat-related mortality could increase up to 129% until the end of the century, if no adaptation takes place. The strongest increase occurred due to extreme heat stress (PET ≥ 41 °C). With long-term adaptation the increase is less pronounced, but still notable. This encourages the requirement for additional adaptation measurements. PMID:20717552

  10. Climate and chemistry effects of a regional scale nuclear conflict

    NASA Astrophysics Data System (ADS)

    Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.

    2013-10-01

    Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a

  11. Building America Best Practices Series: Volume 7.1: Guide to Determining Climate Regions by County

    SciTech Connect

    Baechler, Michael C.; Williamson, Jennifer L.; Gilbride, Theresa L.; Cole, Pamala C.; Hefty, Marye G.; Love, Pat M.

    2010-08-30

    This report for DOE's Building America program helps builders identify which Building America climate region they are building in. The guide includes maps comparing the Building America regions with climate designations used in the International Energy Conservation Code for Residential Buildings and lists all U.S. counties by climate zone. A very brief history of the development of the Building America climate map and descriptions of each climate zone are provided. This report is available on the Building America website www.buildingamerica.gov.

  12. Regional Impacts of Climate Change in the Caribou Chilcotin Region, Fraser River Basin, BC, Canada

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Werner, A. T.; Salathé, E. P.; Schnorbus, M.; Nelitz, M.; David, R. R.

    2009-05-01

    The terrain and climate of British Columbia (BC) is some of the most complex in the country, and is likely going to face unprecedented changes in hydrology due to the impacts of climate change. The Pacific Climate Impacts Consortium (PCIC) was formed in 2005 to produce tools to determine how water resources in BC and its surrounding provinces, territories and states are being affected by climate change. PCIC's first large-scale watershed modelling project implemented, in collaboration with the River Forecast Centre and the University of Washington, the Variable Infiltration Capacity (VIC) model in several major BC watersheds. Future scenarios were developed to analyse the impacts of climate change on snowpack, streamflow and soil moisture in these basins. The current study focuses on the methods to develop future scenarios and the results of the hydrologic modelling. Six different GCM emissions scenarios were selected for BC from the AR4 scenarios. A modified bias correction and statistical downscaling (BCSD) technique created at the University of Washington was used to downscale GCM results to the scale of gridded historical forcings data to generate transient-daily time step, regional-scale projections of future climate change. These forcings were then used to drive the VIC macro-scale hydrologic model. A comparison of forcings for the historical period (1961-1990) from the downscaled GCM data to the forcings created from the observed records on the monthly-timescale demonstrated that the downscaled data captured the range of variability present in the 1961-1990 period in large and medium sized basins quite well. Accurately downscaling data for application in small basins was more difficult. Daily results created with the original BCSD technique were unrealistic in places and problematic for application in hydrologic models, such as VIC that depend on an accurate daily temperature range to model evaporation and snowpack. Results for the Fraser Basin study include

  13. Regional influence of climate patterns on the wave climate of the southwestern Pacific: The New Zealand region

    NASA Astrophysics Data System (ADS)

    Godoi, Victor A.; Bryan, Karin R.; Gorman, Richard M.

    2016-06-01

    This work investigates how the wave climate around New Zealand and the southwest Pacific is modulated by the Pacific Decadal Oscillation (PDO), El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), Zonal Wave-number-3 Pattern (ZW3), and Southern Annular Mode (SAM) during the period 1958-2001. Their respective climate indices were correlated with modeled mean wave parameters extracted from a 45 year (1957-2002) wave hindcast carried out with the WAVEWATCH III model using the wind and ice fields from the ERA-40 reanalysis project. The correlation was performed using the Pearson's correlation coefficient and the wavelet spectral analysis. Prior to that, mean annual and interannual variabilities and trends in significant wave height (Hs) were computed over 44 years (1958-2001). In general, higher annual and interannual variabilities were found along the coastline, in regions dominated by local winds. An increasing trend in Hs was found around the country, with values varying between 1 and 6 cm/decade at the shoreline. The greatest Hs trends were identified to the south of 48°S, suggesting a relationship with the positive trend in the SAM. Seasonal to decadal time scales of the SAM strongly influenced wave parameters throughout the period analyzed. In addition, larger waves were observed during extreme ENSO and IOD events at interannual time scale, while they were more evident at seasonal and intraseasonal time scales in the correlations with the ZW3. Negative phases of the ZW3 and ENSO and positive phases of the IOD, PDO, and SAM resulted in larger waves around most parts of New Zealand.

  14. Assessment of Regional Climatic and Hydrological Changes in the Eastern Himalayan Region

    NASA Astrophysics Data System (ADS)

    Agrawal, A.; Tayal, S.

    2014-12-01

    tools for factors affecting glacier melt rates are urgently needed for planning for climate change adaptation. The presentation will link the changing regional climate of Sikkim to the changing area and volume of the glaciers and the hydrology of the region. The results of our work can be used by hydrological modelers to predict the future water availability of the region.

  15. On the effects of constraining atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate model

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Döscher, Ralf; Koenigk, Torben

    2016-06-01

    Impacts of spectral nudging on simulations of Arctic climate in coupled simulations have been investigated in a set of simulations with a regional climate model (RCM). The dominantly circumpolar circulation in the Arctic lead to weak constraints on the lateral boundary conditions (LBCs) for the RCM, which causes large internal variability with strong deviations from the driving model. When coupled to an ocean and sea ice model, this results in sea ice concentrations that deviate from the observed spatial distribution. Here, a method of spectral nudging is applied to the atmospheric model RCA4 in order to assess the potentials for improving results for the sea ice concentrations when coupled to the RCO ocean-sea ice model. The spectral nudging applied to reanalysis driven simulations significantly improves the generated sea ice regarding its temporal evolution, extent and inter-annual trends, compared to simulations with standard LBC nesting. The method is furthermore evaluated with driving data from two CMIP5 GCM simulations for current and future conditions. The GCM biases are similar to the RCA4 biases with ERA-Interim, however, the spectral nudging still improves the surface winds enough to show improvements in the simulated sea ice. For both GCM downscalings, the spectrally nudged version retains a larger sea ice extent in September further into the future. Depending on the sea ice formulation in the GCM, the temporal evolution of the regional sea ice model can deviate strongly.

  16. Regional climatic effects of atmospheric SO2 on Mars

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Fanale, F. P.

    1992-01-01

    The conditions under which the valley networks on Mars may have formed remains controversial. The magnitude of an atmospheric greenhouse effect by an early massive CO2 atmosphere has recently been questioned by Kasting. Recent calculations indicate that if solar luminosity were less than about 86 percent of its current value, formation of CO2 clouds in the Martian atmosphere would depress the atmospheric lapse rate and reduce the magnitude of surface warming. In light of recent revisions of magma generation on Mars during each Martian epoch, and the suggestions by Wanke et al. that the role of liquid SO2 should be more carefully explored, we have recalculated the potential greenhouse warming by atmospheric SO2 on Mars, with an emphasis on more localized effects. In the vicinity of an active eruption, the concentration of atmospheric SO2 will be higher than if it is assumed that the erupted SO2 is instantaneously globally distributed. The local steady-state concentration of SO2 is a function of the rate at which it is released, its atmospheric lifetime, and the rate at which local winds act to disperse the SO2. We have made estimates of eruption rates, length of eruption, and dispersion rates of volcanically released SO2, for a variety of atmospheric conditions and atmospheric lifetimes of SO2 to explore the maximum regional climatic effect of SO2.

  17. Anthropogenic forcings and climate change in the northern Pacific region

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Saito, Hiroaki; Ju, Se-Jong

    2012-04-01

    5th China-Japan-Korea IMBER Symposium and Training; Shanghai, China, 22-25 November 2011 This past November, scientists from China, Japan, and Korea gathered in Shanghai to share and discuss their latest achievements from the international Integrated Marine Biogeochemistry and Ecosystem Research (IMBER) project. The symposium focused on the impact of climate change and anthropogenic forcings on physical processes and biogeochemical cycles, ecosystem structure and functions, and fisheries in the northwestern Pacific region and how these complex interactions, in turn, influence marine ecosystems and human society. Scientists from China, Japan, and Korea have been working actively in the areas of Global Ocean Ecosystem Dynamics (GLOBEC) and IMBER science since the early 1990s. Since 2002 the biennial China- Japan-Korea GLOBEC-IMBER symposia have provided scientists from these countries with the opportunity to collaborate and exchange and compare their research in the northwestern Pacific and marginal seas. Following the GLOBEC-IMBER merger in 2010, the IMBER community decided to continue organizing these symposia.

  18. The United States National Climate Assessment - Alaska Technical Regional Report

    USGS Publications Warehouse

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    The Alaskan landscape is changing, both in terms of effects of human activities as a consequence of increased population, social and economic development and their effects on the local and broad landscape; and those effects that accompany naturally occurring hazards such as volcanic eruptions, earthquakes, and tsunamis. Some of the most prevalent changes, however, are those resulting from a changing climate, with both near term and potential upcoming effects expected to continue into the future. Alaska's average annual statewide temperatures have increased by nearly 4°F from 1949 to 2005, with significant spatial variability due to the large latitudinal and longitudinal expanse of the State. Increases in mean annual temperature have been greatest in the interior region, and smallest in the State's southwest coastal regions. In general, however, trends point toward increases in both minimum temperatures, and in fewer extreme cold days. Trends in precipitation are somewhat similar to those in temperature, but with more variability. On the whole, Alaska saw a 10-percent increase in precipitation from 1949 to 2005, with the greatest increases recorded in winter. The National Climate Assessment has designated two well-established scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and others, 2001) as a minimum set that technical and author teams considered as context in preparing portions of this assessment. These two scenarios are referred to as the Special Report on Emissions Scenarios A2 and B1 scenarios, which assume either a continuation of recent trends in fossil fuel use (A2) or a vigorous global effort to reduce fossil fuel use (B1). Temperature increases from 4 to 22°F are predicted (to 2070-2099) depending on which emissions scenario (A2 or B1) is used with the least warming in southeast Alaska and the greatest in the northwest. Concomitant with temperature changes, by the end of the 21st century the growing season is expected

  19. Identification of Environmental Factors Associated with Inflammatory Bowel Disease in a Southwestern Highland Region of China: A Nested Case-Control Study

    PubMed Central

    Tang, Yuan; Nan, Qiong; Liu, Yan; Yang, Gang; Dong, Xiangqian; Huang, Qi; Xia, Shuxian; Wang, Kunhua; Miao, Yinglei

    2016-01-01

    Background The aim of this study was to examine environmental factors associated with inflammatory bowel disease (IBD) in Yunnan Province, a southwestern highland region of China. Methods In this nested case-control study, newly diagnosed ulcerative colitis (UC) cases in 2 cities in Yunnan Province and Crohn’s disease (CD) cases in 16 cities in Yunnan Province were recruited between 2008 and 2013. Controls were matched by geography, sex and age at a ratio of 1:4. Data were collected using the designed questionnaire. Conditional logistic regression models were used to estimate adjusted odds ratios (ORs). Results A total of 678 UC and 102 CD cases were recruited. For UC, various factors were associated with an increased risk of developing UC: dietary habits, including frequent irregular meal times; consumption of fried foods, salty foods and frozen dinners; childhood factors, including intestinal infectious diseases and frequent use of antibiotics; and other factors, such as mental labor, high work stress, use of non-aspirin non-steroidal anti-inflammatory drugs and allergies (OR > 1, p < 0.05). Other factors showed a protective effect: such as consumption of fruits, current smoking, physical activity, and drinking tea (OR < 1, p < 0.05). For CD, appendectomy and irregular meal times increased the disease risk (OR >1, p < 0.05), whereas physical activity may have reduced this risk (OR < 1, p < 0.05). Conclusions This study is the first nested case-control study to analyze the association between environmental factors and IBD onset in a southwestern highland region of China. Certain dietary habits, lifestyles, allergies and childhood factors may play important roles in IBD, particularly UC. PMID:27070313

  20. REGIONAL COORDINATION OF NOAA/NATIONAL WEATHER SERVICE CLIMATE SERVICES IN THE WEST (Invited)

    NASA Astrophysics Data System (ADS)

    Bair, A.

    2009-12-01

    The climate services program is an important component in the National Weather Service’s (NWS) mission, and is one of the National Oceanic and Atmospheric Administration’s (NOAA) top five priorities. The Western Region NWS started building a regional and local climate services program in late 2001, with input from local NWS offices and key partners. The original goals of the Western Region climate services program were to strive to provide climate services that were useful, easily accessible, well understood, coordinated and supported by partners, and reflect customer needs. While the program has evolved, and lessons have been learned, these goals are still guiding the program. Regional and local level Climate Services are a fundamental part of NOAA/NWS’s current and future role in providing climate services. There is an ever growing demand for climate information and services to aid the public in decision-making and no single entity alone can provide the range of information and services needed. Coordination and building strong partnerships at the local and regional levels is the key to providing optimal climate services. Over the past 8 years, Western Region NWS has embarked on numerous coordination efforts to build the regional and local climate services programs, such as: collaboration (both internally and externally to NOAA) meetings and projects, internal staff training, surveys, and outreach efforts. In order to gain regional and local buy-in from the NWS staff, multiple committees were utilized to plan and develop goals and structure for the program. While the regional and local climate services program in the NWS Western Region has had many successes, there have been several important lessons learned from efforts that have not been as successful. These lessons, along with past experience, close coordination with partners, and the need to constantly improve/change the program as the climate changes, form the basis for future program development and

  1. Reconstructing regional climate networks from irregularly sampled satellite data

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donner, Reik V.; Sykioti, Olga; Papadimitriou, Constantinos; Kurths, Jürgen

    2015-04-01

    With the increasing availability of remote sensing data Earth System Analysis has taken a great step forward. Satellite data with high resolution in time and space allow for an in-depth analysis of small-scale processes in the climate as well as ecosystems. This data type, however, also harbors crucial conceptual complications. First, depending on whether the satellite is orbiting on an ascending or descending path systematic biases are induced into the dataset and both measurements can not be evaluated simultaneously without an appropriate preprocessing. Second, remote sensing data are usually not produced with equidistant temporal sampling, but might contain huge gaps, due to cloud cover or maintenance work and irregular time steps, due to the orbiting time of the satellite. In this work, we utilize sea surface temperature (SST) data obtained from the SMOS satellite as part of ESA's Earth Explorer Mission to study small-scale regional interactions between different parts of the Mediterranean, Aegean and Black Sea. In a first step, we create homogeneous time series for each grid point by combining data from ascending and descending satellite paths by utilizing principal component and singular spectrum analysis. To address the issue of irregular temporal sampling we utilize a kernel weighted version of the linear cross-correlation function to compute lagged correlations between all pairs of grid points in the dataset. By setting a threshold to the thus obtained correlation matrix we obtain a binary matrix which can be interpreted as the adjacency matrix of a complex network. We then use tools from complex network theory to study regional interdependencies in the study area for different time lags of up to forty days. We find that the obtained networks represent well the observed average wind directions and speeds and display interaction structures between small regions in the Aegean Sea, which are in good agreement with earlier observations. The methods presented

  2. Linking the uncertainty of low frequency variability in tropical forcing in regional climate change

    SciTech Connect

    Forest, Chris E.; Barsugli, Joseph J.; Li, Wei

    2015-02-20

    The project utilizes multiple atmospheric general circulation models (AGCMs) to examine the regional climate sensitivity to tropical sea surface temperature forcing through a series of ensemble experiments. The overall goal for this work is to use the global teleconnection operator (GTO) as a metric to assess the impact of model structural differences on the uncertainties in regional climate variability.

  3. CLIMATE IMPACTS ON NUTRIENT FLUXES IN STREAM FLOW IN THE MID-ATLANTIC REGION

    EPA Science Inventory

    As part of a national assessment process, researchers of the Mid-Atlantic Regional Assessment (MARA) are studying the impacts of climate variation and change on the natural and social systems of the Mid-Atlantic Region. This poster presents research investigating climate impacts ...

  4. Mourning Dove nesting habitat and nest success in Central Missouri

    USGS Publications Warehouse

    Drobney, R.D.; Schulz, J.H.; Sheriff, S.L.; Fuemmeler, W.J.

    1998-01-01

    Previous Mourning Dove (Zenaida macroura) nesting studies conducted in areas containing a mixture of edge and continuous habitats have focused on edge habitats. Consequently, little is known about the potential contribution of continuous habitats to dove production. In this study we evaluated the relative importance of these two extensive habitat types by monitoring the habitat use and nest success of 59 radio-marked doves during 1990-1991 in central Missouri. Of 83 nests initiated by our marked sample, most (81.9%) were located in edge habitats. Although continuous habitats were selected less as nest sites, the proportion of successful nests did not differ significantly from that in edge habitats. Our data indicate that continuous habitats should not be considered marginal nesting habitat. If the intensity of use and nest success that we observed are representative regionally or nationally, continuous habitats could contribute substantially to annual Mourning Dove production because of the high availability of these habitats throughout much of the Mourning Dove breeding range.

  5. High and dry: high elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes

    USGS Publications Warehouse

    McCullough, Ian M.; Davis, Frank W.; Dingman, John R.; Flint, Lorraine E.; Flint, Alan L.; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Moritz, Max A.; Hannah, Lee; Franklin, Janet

    2016-01-01

    In moisture-limited, Mediterranean-climate landscapes, high elevations may experience the greatest exposure to climate change in the 21st century. High elevation species may thus be especially vulnerable to continued climate change as habitats shrink and historically energy-limited locations become increasingly moisture-limited in the future.

  6. Evaluation of multiple regional climate models for summer climate extremes over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Min, Seung-Ki; Lee, Donghyun; Cha, Dong-Hyun; Suh, Myoung-Seok; Kang, Hyun-Suk; Hong, Song-You; Lee, Dong-Kyou; Baek, Hee-Jeong; Boo, Kyung-On; Kwon, Won-Tae

    2016-04-01

    In this study, five regional climate models (RCMs) participating in the CORDEX-East Asia project (HadGEM3-RA, RegCM4, SNU-MM5, SNU-WRF, and YSU-RSM) are evaluated in terms of their performances in simulating the climatology of summer extremes in East Asia. Seasonal maxima of daily mean temperature and precipitation are analyzed using the generalized extreme value method. RCMs show systematic bias patterns in both seasonal means and extremes. A cold bias is located along the coast, whereas a warm bias occurs in northern China. Overall, wet bias occurs in East Asia, but with a substantial dry bias centered in South Korea. This dry bias appears to be related to the colder ocean surface around South Korea, positioning the monsoonal front further south compared to observations. Taylor diagram analyses reveal that the models simulate temperature means more accurately compared to extremes because of the higher spatial correlation, whereas precipitation extremes are simulated better than their means because of the higher spatial variability. The latter implies that extreme rainfall events can be captured more accurately by RCMs compared to the driving GCM despite poorer simulation of mean rainfall. Inter-RCM analysis indicates a close relationship between the means and extremes in terms of model skills, but it does not show a clear relationship between temperature and precipitation. Sub-regional analysis largely supports the mean-extreme skill relationship. Analyses of frequency and intensity distributions of daily data for three selected sub-regions suggest that overall shifts of temperature distribution and biases in moderate-heavy precipitations contribute importantly to the seasonal mean biases.

  7. The climate of the Iberian Peninsula during the last five centuries from a regional climate model perspective.

    NASA Astrophysics Data System (ADS)

    Gomez-Navarro, J. J.; Montavez, J. P.; Jerez, S.; Garcia-Valero, J. A.; Jimenez-Guerrero, P.; Zorita, E.; Gonzalez-Rouco, J. F.

    2009-09-01

    During the last years the use of paleoclimate simulations with models of different complexity has become an usual tool in paleoclimate studies. Progress in understanding climate variability leans on simulation and reconstruction efforts. Exercises blending both approaches present a great potential for answering questions relevant for both the simulation and reconstruction of past climate, and depend on the specific peculiarities of proxies and methods involved in climate reconstructions, as well as on the realism and limitations of model simulations. Most of paleoclimate integrations available in the literature covering the last millennium have been performed with relative rough resolution which does not allow to analyze regional climate features that can be of interest in the context of proxies evidence. In this work we present a new high resolution (30 km) regional climate simulation over the Iberian Peninsula of the last five. The regional simulations were performed with a climate version of the MM5 model coupled to the Noah LSM. The driving conditions used follow the Erik1 experiment, performed with the ECHO-G global circulation model. The results indicate that the seasonal modes of variation for near surface air temperature and precipitation obtained within the regional paleoclimate experiment are consistent with the obtained using the observational databases and equivalent to regional climate integrations driven by reanalysis data. On the other hand, the main modes of variation show strong signals in historical periods such as the Maunder and Dalton Minimum. Finally, some preliminary comparisons between the global and the regional model against reconstructions are also reported in this contribution.

  8. Simulation of South Asian aerosols for regional climate studies

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Solmon, Fabien; Giorgi, Filippo; Mariotti, Laura; Babu, S. Suresh; Moorthy, K. Krishna

    2012-02-01

    Extensive intercomparison of columnar and near-surface aerosols, simulated over the South Asian domain using the aerosol module included in the regional climate model (RegCM4) of the Abdus Salam International Centre for Theoretical Physics (ICTP) have been carried out using ground-based network of Sun/sky Aerosol Robotic Network (AERONET) radiometers, satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR), and ground-based black carbon (BC) measurements made at Aerosol Radiative Forcing over India (ARFI) network stations. In general, RegCM4 simulations reproduced the spatial and seasonal characteristics of aerosol optical depth over South Asia reasonably well, particularly over west Asia, where mineral dust is a major contributor to the total aerosol loading. In contrast, RegCM4 simulations drastically underestimated the BC mass concentrations over most of the stations, by a factor of 2 to 5, with a large spatial variability. Seasonally, the discrepancy between the measured and simulated BC tended to be higher during winter and periods when the atmospheric boundary layer is convectively stable (such as nighttime and early mornings), while during summer season and during periods when the boundary layer is convectively unstable (daytime) the discrepancies were much lower, with the noontime values agreeing very closely with the observations. A detailed analysis revealed that the model does not reproduce the nocturnal high in BC, observed at most of the Indian sites especially during winter, because of the excessive vertical transport of aerosols under stable boundary layer conditions. As far as the vertical distribution was concerned, the simulated vertical profiles of BC agreed well with airborne measurements during daytime. This comprehensive validation exercise reveals the strengths and weaknesses of the model in simulating the spatial and temporal heterogeneities of the aerosol fields over

  9. Regional climate modeling of heat stress, frost, and water stress events in the agricultural region of Southwest Western Australia under the current climate and future climate scenarios.

    NASA Astrophysics Data System (ADS)

    Kala, Jatin; Lyons, Tom J.; Abbs, Deborah J.; Foster, Ian J.

    2010-05-01

    Heat stress, frost, and water stress events have significant impacts on grain quality and production within the agricultural region (wheat-belt) of Southwest Western Australia (SWWA) (Cramb, 2000) and understanding how the frequency and intensity of these events will change in the future is crucial for management purposes. Hence, the Regional Atmospheric Modeling System (Pielke et al, 1992) (RAMS Version 6.0) is used to simulate the past 10 years of the climate of SWWA at a 20 km grid resolution by down-scaling the 6-hourly 1.0 by 1.0 degree National Center for Environmental Prediction Final Analyses from December 1999 to Present. Daily minimum and maximum temperatures, as well as daily rainfall are validated against observations. Simulations of future climate are carried out by down-scaling the Commonwealth Scientific and Industrial Research Organization (CSIRO) Mark 3.5 General Circulation Model (Gordon et al, 2002) for 10 years (2046-2055) under the SRES A2 scenario using the Cubic Conformal Atmospheric Model (CCAM) (McGregor and Dix, 2008). The 6-hourly CCAM output is then downscaled to a 20 km resolution using RAMS. Changes in extreme events are discussed within the context of the continued viability of agriculture in SWWA. Cramb, J. (2000) Climate in relation to agriculture in south-western Australia. In: The Wheat Book (Eds W. K. Anderson and J. R. Garlinge). Bulletin 4443. Department of Agriculture, Western Australia. Gordon, H. B., Rotstayn, L. D., McGregor, J. L., Dix, M. R., Kowalczyk, E. A., O'Farrell, S. P., Waterman, L. J., Hirst, A. C., Wilson, S. G., Collier, M. A., Watterson, I. G., and Elliott, T. I. (2002). The CSIRO Mk3 Climate System Model [Electronic publication]. Aspendale: CSIRO Atmospheric Research. (CSIRO Atmospheric Research technical paper; no. 60). 130 p McGregor, J. L., and Dix, M. R., (2008) An updated description of the conformal-cubic atmospheric model. High Resolution Simulation of the Atmosphere and Ocean, Hamilton, K. and Ohfuchi

  10. The Climate Shift and the Climate Variability in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Lopez Parages, Jorge; Rodriguez-Fonseca, Belen

    2010-05-01

    The so-called "climate shift" (CS) was defined at the beginning of the nineties as a dramatic change between 1976-77 in the basic state of the tropical Pacific and in the ENSO dynamics. Nowadays, the 1976-1977 shift is interpreted as a phase change in a decadal scale oscillation (the Pacific Decadal Oscillation, PDO, Mantua et al. 1997) lasting from about 1976 to 1988 (Trenberth and Hurrell 1994, Miller et al. 1994). However, several changes in the global climate have been reported after the CS; as changes in the air-sea interactions and in the tropical and extratropical teleconnection patterns. The climate variability of the Mediterranean area is influenced by the North Atlantic Oscillation (NAO, Hurrell, 2003), which frequency and positive phase intensity has suffered an increase after the CS unprecedented in the instrumental period, in coincidence with extreme drought conditions in the Mediterranean region. This results remark the non-stationary variability of the NAO (Vicente-Serrano and López-Moreno, 2008b) and the existence of changes in the underlying dynamics. In addition, Tropical Atlantic Variability (TAV) and ENSO have also shown to exhibit a strong and non- stationary influence in the Mediterranean basin, with maximum correlations at the beginning of the twenty century and since the CS (Mariotti et al. 2002), in concordance with the Atlantic Multidecadal Oscillation (AMO) evolution. A recent singular discovery show the influence of the Atlantic Niño on its Pacific counterpart (Rodríguez-Fonseca et al. 2009; Losada et al. 2009), a relation that was statistically pointed out in Polo et al. (2008a). These results remark the increasing importance of the TAV on the global climate and on the observed change, from the late 70's, in the global teleconnections. Although some studies point out the seasonal dependence of the leading modes of precipitation variability over Europe (Zveryaev, 2006), in this work, a gridded monthly terrestrial gauge

  11. The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability

    NASA Astrophysics Data System (ADS)

    Déqué, M.; Somot, S.; Sanchez-Gomez, E.; Goodess, C. M.; Jacob, D.; Lenderink, G.; Christensen, O. B.

    2012-03-01

    Various combinations of thirteen regional climate models (RCM) and six general circulation models (GCM) were used in FP6-ENSEMBLES. The response to the SRES-A1B greenhouse gas concentration scenario over Europe, calculated as the difference between the 2021-2050 and the 1961-1990 means can be viewed as an expected value about which various uncertainties exist. Uncertainties are measured here by variance explained for temperature and precipitation changes over eight European sub-areas. Three sources of uncertainty can be evaluated from the ENSEMBLES database. Sampling uncertainty is due to the fact that the model climate is estimated as an average over a finite number of years (30) despite a non-negligible interannual variability. Regional model uncertainty is due to the fact that the RCMs use different techniques to discretize the equations and to represent sub-grid effects. Global model uncertainty is due to the fact that the RCMs have been driven by different GCMs. Two methods are presented to fill the many empty cells of the ENSEMBLES RCM × GCM matrix. The first one is based on the same approach as in FP5-PRUDENCE. The second one uses the concept of weather regimes to attempt to separate the contribution of the GCM and the RCM. The variance of the climate response is analyzed with respect to the contribution of the GCM and the RCM. The two filling methods agree that the main contributor to the spread is the choice of the GCM, except for summer precipitation where the choice of the RCM dominates the uncertainty. Of course the implication of the GCM to the spread varies with the region, being maximum in the South-western part of Europe, whereas the continental parts are more sensitive to the choice of the RCM. The third cause of spread is systematically the interannual variability. The total uncertainty about temperature is not large enough to mask the 2021-2050 response which shows a similar pattern to the one obtained for 2071-2100 in PRUDENCE. The uncertainty

  12. Improvement of snowpack simulations in a regional climate model

    SciTech Connect

    Jin, J.; Miller, N.L.

    2011-01-10

    To improve simulations of regional-scale snow processes and related cold-season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth-generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5–CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5–CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land-surface model. One important cause for the underestimated SWE in Noah is its unrealistic land-surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow-season surface albedo overestimated by MM5–Noah is now more accurately predicted by MM5–CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near-surface cold bias in MM5–Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5–CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5–Noah. In addition, the over-predicted precipitation in the Pacific Northwest as shown in MM5–Noah is significantly decreased in MM5 CLM3 due to the lower evaporation resulting from the

  13. Investigating Downscaling Methods and Evaluating Climate Models for Use in Estimating Regional Water Resources in Mountainous Regions under Changing Climatic Conditions

    NASA Technical Reports Server (NTRS)

    Frei, Allan; Nolin, Anne W.; Serreze, Mark C.; Armstrong, Richard L.; McGinnis, David L.; Robinson, David A.

    2004-01-01

    The purpose of this three-year study is to develop and evaluate techniques to estimate the range of potential hydrological impacts of climate change in mountainous areas. Three main objectives are set out in the proposal. (1) To develop and evaluate transfer functions to link tropospheric circulation to regional snowfall. (2) To evaluate a suite of General Circulation Models (GCMs) for use in estimating synoptic scale circulation and the resultant regional snowfall. And (3) to estimate the range of potential hydrological impacts of changing climate in the two case study areas: the Upper Colorado River basin, and the Catskill Mountains of southeastern New York State. Both regions provide water to large populations.

  14. [Nesting habitat characterization for Amazona oratrix (Psittaciformes: Psittacidae) in the Central Pacific, Mexico].

    PubMed

    Monterrubio-Rico, Tiberio C; Álvarez-Jara, Margarito; Tellez-Garcia, Loreno; Tena-Morelos, Carlos

    2014-09-01

    -deciduous forest for nesting, with fewer nests in deciduous forest, while nesting in transformed agricultural fields was avoided. The main climatic variables associated with the potential distribution of nests were: mean temperature of wettest quarter, mean diurnal temperature range, and precipitation of wettest month. Suitable cli- matic conditions for the potential presence of nesting trees were present in 61% of the region; however, most of the area consisted of tropical deciduous forests (55.8%), while semi-deciduous tropical forests covered only 17% of the region. These results indicated the importance to conserve semi-deciduous forests as breeding habitats for the Yellow-headed Parrot, and revealed the urgent need to implement conservation and restoration actions. These should include a total ban of land use change in tropical semi-deciduous forest areas, and for selective logging of all keystone tree species; besides, we recommend the establishment of wildlife sanctuaries in important nesting areas, and a series of tropical forest restoration programs in the Central Pacific coast.

  15. [Nesting habitat characterization for Amazona oratrix (Psittaciformes: Psittacidae) in the Central Pacific, Mexico].

    PubMed

    Monterrubio-Rico, Tiberio C; Álvarez-Jara, Margarito; Tellez-Garcia, Loreno; Tena-Morelos, Carlos

    2014-09-01

    -deciduous forest for nesting, with fewer nests in deciduous forest, while nesting in transformed agricultural fields was avoided. The main climatic variables associated with the potential distribution of nests were: mean temperature of wettest quarter, mean diurnal temperature range, and precipitation of wettest month. Suitable cli- matic conditions for the potential presence of nesting trees were present in 61% of the region; however, most of the area consisted of tropical deciduous forests (55.8%), while semi-deciduous tropical forests covered only 17% of the region. These results indicated the importance to conserve semi-deciduous forests as breeding habitats for the Yellow-headed Parrot, and revealed the urgent need to implement conservation and restoration actions. These should include a total ban of land use change in tropical semi-deciduous forest areas, and for selective logging of all keystone tree species; besides, we recommend the establishment of wildlife sanctuaries in important nesting areas, and a series of tropical forest restoration programs in the Central Pacific coast. PMID:25412536

  16. Estimation of regional mass anomalies from Gravity Recovery and Climate Experiment (GRACE) over Himalayan region

    NASA Astrophysics Data System (ADS)

    Agrawal, R.; Singh, S. K.; Rajawat, A. S.; Ajai

    2014-11-01

    Time-variable gravity changes are caused by a combination of postglacial rebound, redistribution of water and snow/ice on land and as well as in the ocean. The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides monthly average of the spherical harmonic co-efficient. These spherical harmonic co-efficient describe earth's gravity field with a resolution of few hundred kilometers. Time-variability of gravity field represents the change in mass over regional level with accuracies in cm in terms of Water Equivalent Height (WEH). The WEH reflects the changes in the integrated vertically store water including snow cover, surface water, ground water and soil moisture at regional scale. GRACE data are also sensitive towards interior strain variation, surface uplift and surface subsidence cover over a large area. GRACE data was extracted over the three major Indian River basins, Indus, Ganga and Brahmaputra, in the Himalayas which are perennial source of fresh water throughout the year in Northern Indian Plain. Time series analysis of the GRACE data was carried out from 2003-2012 over the study area. Trends and amplitudes of the regional mass anomalies in the region were estimated using level 3 GRACE data product with a spatial resolution at 10 by 10 grid provided by Center for Space Research (CSR), University of Texas at Austin. Indus basin has shown a subtle decreasing trend from 2003-2012 however it was observed to be statistically insignificant at 95 % confidence level. Ganga and Brahmaputra basins have shown a clear decreasing trend in WEH which was also observed to be statistically significant. The trend analysis over Ganga and Brahamputra basins have shown an average annual change of -1.28 cm and -1.06 cm in terms of WEH whereas Indus basin has shown a slight annual change of -0.07 cm. This analysis will be helpful to understand the loss of mass in terms of WEH over Indian Himalayas and will be crucial for hydrological and

  17. Placing Central European climate archives into a regional tephrochronological framework

    NASA Astrophysics Data System (ADS)

    Lane, C. S.; Blockley, S. P. E.; Lotter, A. F.; Filippi, M. L.; Pollard, A. M.

    2009-04-01

    A number of Lateglacial and Early Holocene lacustrine records from Central and Southern Europe have been shown to contain both visible and micro-tephra deposits, which can be correlated to volcanic eruptions from multiple volcanic sources. Detailed environmental proxy records, which outline local and regional responses to the abrupt climatic changes of the Last Glacial to Interglacial transition (LGIT), are thus constrained within a regional tephrochronological framework. Amongst other volcanic markers, the Laacher See Tephra, erupted from the Eifel region of Germany at 12,880 ±120 varve yrs BP (Brauer et al., 1999), and the Vedde Ash, erupted from Iceland between 12,225 and 11,832 cal. yrs BP (Blockley et al., 2007), are found within some of the same lake cores (e.g., Blockley et al., 2008). These key horizons, which bracket the onset of the Younger Dryas Interstadial, provide precise and absolutely dated tie points around which a detailed picture of the timing of local and regional environmental transitions can be constructed. The presence of the Vedde Ash in the Swiss lake sites allows a direct linkage to the Greenland Ice Core chronology (Mortensen et al., 2005) and highlights the potential for key tephra deposits to be found and correlated across wide geographical areas. This paper summarises the results of tephrochronological investigations into a suite of Central European records, which includes: Soppensee and Rotsee, in Central Switzerland; Rotmeer, in Southern Germany; and Lavarone, in Northern Italy. Chemical analysis of each tephra deposit has been carried out and the sources of the eruption events have been identified. Where appropriate, tephra ages have been transferred from high-precision annually-resolved chronologies and integrated with Bayesian-based radiocarbon age models for the sites. The environmental archives of the LGIT at each site are then compared on a common timescale, and further comparisons are made with other published European tephra

  18. Assessment of dynamical downscaling in Japan using an atmosphere-biosphere-river coupling regional climate model

    NASA Astrophysics Data System (ADS)

    Dairaku, K.; Iizuka, S.; Sasaki, W.; Beltran, A.; Pielke, R. A.

    2008-12-01

    The responses of the climate system to increases in carbon dioxide concentrations and to changes in land use/land cover and the subsequent impacts of climatic variability on humans and natural ecosystems are of fundamental concern. Because regional responses of surface hydrological and biogeochemical changes are particularly complex, it is necessary to add spatial resolution to accurately assess critical interactions within the regional climate system for climate change impacts assessments. We investigated the reproducibility of present climate using two regional climate models with 20km horizontal grid spacing, the atmosphere- biosphere-river coupling regional climate model(GEMRAMS) and the Meteorological Research Institute Nonhydrostatic Model(MRI-NHM), both of which used Japanese 25-year ReAnalysis (JRA-25) as lateral boundary conditions. Two key variables for impact studies, surface air temperature and precipitation, were compared with the Japanese high-resolution surface observation, Automated Meteorological Data Acquisition System (AMeDAS) on 78 river basins. Results simulated by the two models were relatively in good agreement with the observation on the basin scale. The differences of surface air temperature between the models and the observation were less than 2K and the ratio of precipitation of the models to the observation was within 0.5-2 on seasonal averages. By adding other two regional climate models, a multi-model ensemble will be applied in climate change impact studies in combination with additional statistical downscaling approaches.

  19. CLIMATE CHANGE AND ECOSYSTEMS OF THE MID-ATLANTIC REGION

    EPA Science Inventory

    This paper discusses the current status of forested, wetland, freshwater and coastal ecosystems; the combined impacts of habitat alteration, pollution and non-native invasive species on those systems; how climatic changes could interact with existing stresses; potential managemen...

  20. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.

    PubMed

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee. PMID:25875230

  1. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change

    PubMed Central

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee. PMID:25875230

  2. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.

    PubMed

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee.

  3. Regional climate change scenarios over South Asia in the CMIP5 coupled climate model simulations

    NASA Astrophysics Data System (ADS)

    Prasanna, Venkatraman

    2015-10-01

    This paper evaluates the performance of a suite of state-of-art coupled atmosphere-ocean general circulation models (AOGCMs) in their representation of regional characteristics of hydrological cycle and temperature over South Asia. Based on AOGCM experiments conducted for two types of future greenhouse gas emission scenarios (RCP4.5 and RCP8.5) extending up to the end of 21st century, scenarios of temperature and hydrological cycle are presented. The AOGCMs, despite their relatively coarse resolution, have shown a reasonable skill in depicting the hydrological cycle over the South Asian region. However, considerable biases do exist with reference to the observed hydrological cycle and also inter-model differences. The regional climate change scenarios of temperature ( T), atmospheric water balance components, precipitation, moisture convergence and evaporation ( P, C and E) up to the end of the 21st century based on CMIP5 modeling experiments conducted for (RCP4.5 and RCP8.5) indicate marked increase in both rainfall and temperature into the 21st century, particularly becoming conspicuous after the 2050s. The monsoon rainfall and atmospheric water balance changes under RCP4.5 and RCP8.5 scenarios are discussed in detail in this paper. Spatial patterns of rainfall change projections indicate maximum increase over South Asia in most of the models. Model simulations under scenarios of increased greenhouse gas concentrations suggests that the intensification of the hydrological cycle is driven mainly by the increased moisture convergence due to increase in the water holding capacity of the atmosphere in a warmer environment, the intensification of the hydrological cycle is greater for RCP8.5 compared to RCP4.5, also fewer models indicate increased variance of temperature and rainfall in a warmer environment. While the scenarios presented in this study are indicative of the expected range of rainfall and water balance changes, it must be noted that the quantitative

  4. Decadal re-evaluation of contaminant exposure and productivity of ospreys (Pandion haliaetus) nesting in Chesapeake Bay Regions of Concern

    USGS Publications Warehouse

    Lazarus, Rebecca; Rattner, Barnett A.; McGowan, Peter C.; Hale, Robert C.; Schultz, Sandra; Karouna, Natalie; Ottinger, Mary Ann

    2015-01-01

    The last large-scale ecotoxicological study of ospreys (Pandion haliaetus) in Chesapeake Bay was conducted in 2000-2001 and focused on U.S. EPA-designated Regions of Concern (ROCs; Baltimore Harbor/Patapsco, Anacostia/middle Potomac, and Elizabeth Rivers). In 2011-2012, ROCs were re-evaluated to determine spatial and temporal trends in productivity and contaminants. Concentrations of p,p'-DDE were low in eggs and below the threshold associated with eggshell thinning. Eggs from the Anacostia/middle Potomac Rivers had lower total PCB concentrations in 2011 than in 2000; however, concentrations remained unchanged in Baltimore Harbor. Polybrominated diphenyl ether flame retardants declined by 40%, and five alternative brominated flame retardants were detected at low levels. Osprey productivity was adequate to sustain local populations, and there was no relation between productivity and halogenated contaminants. Our findings document continued recovery of the osprey population, declining levels of many persistent halogenated compounds, and modest evidence of genetic damage in nestlings from industrialized regions.

  5. Decadal re-evaluation of contaminant exposure and productivity of ospreys (Pandion haliaetus) nesting in Chesapeake Bay Regions of Concern.

    PubMed

    Lazarus, Rebecca S; Rattner, Barnett A; McGowan, Peter C; Hale, Robert C; Schultz, Sandra L; Karouna-Renier, Natalie K; Ottinger, Mary Ann

    2015-10-01

    The last large-scale ecotoxicological study of ospreys (Pandion haliaetus) in Chesapeake Bay was conducted in 2000-2001 and focused on U.S. EPA-designated Regions of Concern (ROCs; Baltimore Harbor/Patapsco, Anacostia/middle Potomac, and Elizabeth Rivers). In 2011-2012, ROCs were re-evaluated to determine spatial and temporal trends in productivity and contaminants. Concentrations of p,p'-DDE were low in eggs and below the threshold associated with eggshell thinning. Eggs from the Anacostia/middle Potomac Rivers had lower total PCB concentrations in 2011 than in 2000; however, concentrations remained unchanged in Baltimore Harbor. Polybrominated diphenyl ether flame retardants declined by 40%, and five alternative brominated flame retardants were detected at low levels. Osprey productivity was adequate to sustain local populations, and there was no relation between productivity and halogenated contaminants. Our findings document continued recovery of the osprey population, declining levels of many persistent halogenated compounds, and modest evidence of genetic damage in nestlings from industrialized regions.

  6. Decadal re-evaluation of contaminant exposure and productivity of ospreys (Pandion haliaetus) nesting in Chesapeake Bay Regions of Concern.

    PubMed

    Lazarus, Rebecca S; Rattner, Barnett A; McGowan, Peter C; Hale, Robert C; Schultz, Sandra L; Karouna-Renier, Natalie K; Ottinger, Mary Ann

    2015-10-01

    The last large-scale ecotoxicological study of ospreys (Pandion haliaetus) in Chesapeake Bay was conducted in 2000-2001 and focused on U.S. EPA-designated Regions of Concern (ROCs; Baltimore Harbor/Patapsco, Anacostia/middle Potomac, and Elizabeth Rivers). In 2011-2012, ROCs were re-evaluated to determine spatial and temporal trends in productivity and contaminants. Concentrations of p,p'-DDE were low in eggs and below the threshold associated with eggshell thinning. Eggs from the Anacostia/middle Potomac Rivers had lower total PCB concentrations in 2011 than in 2000; however, concentrations remained unchanged in Baltimore Harbor. Polybrominated diphenyl ether flame retardants declined by 40%, and five alternative brominated flame retardants were detected at low levels. Osprey productivity was adequate to sustain local populations, and there was no relation between productivity and halogenated contaminants. Our findings document continued recovery of the osprey population, declining levels of many persistent halogenated compounds, and modest evidence of genetic damage in nestlings from industrialized regions. PMID:26114899

  7. Evaluation of near-surface temperature, humidity, and equivalent temperature from regional climate models applied in type II downscaling

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Schoof, J. T.

    2016-04-01

    Atmosphere-surface interactions are important components of local and regional climates due to their key roles in dictating the surface energy balance and partitioning of energy transfer between sensible and latent heat. The degree to which regional climate models (RCMs) represent these processes with veracity is incompletely characterized, as is their ability to capture the drivers of, and magnitude of, equivalent temperature (Te). This leads to uncertainty in the simulation of near-surface temperature and humidity regimes and the extreme heat events of relevance to human health, in both the contemporary and possible future climate states. Reanalysis-nested RCM simulations are evaluated to determine the degree to which they represent the probability distributions of temperature (T), dew point temperature (Td), specific humidity (q) and Te over the central U.S., the conditional probabilities of Td|T, and the coupling of T, q, and Te to soil moisture and meridional moisture advection within the boundary layer (adv(Te)). Output from all RCMs exhibits discrepancies relative to observationally derived time series of near-surface T, q, Td, and Te, and use of a single layer for soil moisture by one of the RCMs does not appear to substantially degrade the simulations of near-surface T and q relative to RCMs that employ a four-layer soil model. Output from MM5I exhibits highest fidelity for the majority of skill metrics applied herein, and importantly most realistically simulates both the coupling of T and Td, and the expected relationships of boundary layer adv(Te) and soil moisture with near-surface T and q.

  8. The Rossby Centre Regional Atmospheric Climate Model part II: application to the Arctic climate.

    PubMed

    Jones, Colin G; Wyser, Klaus; Ullerstig, Anders; Willén, Ulrika

    2004-06-01

    The Rossby Centre regional climate model (RCA2) has been integrated over the Arctic Ocean as part of the international ARCMIP project. Results have been compared to observations derived from the SHEBA data set. The standard RCA2 model overpredicts cloud cover and downwelling longwave radiation, during the Arctic winter. This error was improved by introducing a new cloud parameterization, which significantly improves the annual cycle of cloud cover. Compensating biases between clear sky downwelling longwave radiation and longwave radiation emitted from cloud base were identified. Modifications have been introduced to the model radiation scheme that more accurately treat solar radiation interaction with ice crystals. This leads to a more realistic representation of cloud-solar radiation interaction. The clear sky portion of the model radiation code transmits too much solar radiation through the atmosphere, producing a positive bias at the top of the frequent boundary layer clouds. A realistic treatment of the temporally evolving albedo, of both sea-ice and snow, appears crucial for an accurate simulation of the net surface energy budget. Likewise, inclusion of a prognostic snow-surface temperature seems necessary, to accurately simulate near-surface thermodynamic processes in the Arctic.

  9. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    PubMed

    Steen, Valerie; Skagen, Susan K; Noon, Barry R

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971-2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981-2000 and projected future distributions to climate scenarios for 2040-2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  10. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    USGS Publications Warehouse

    Steen, Valerie; Skagen, Susan K.; Noon, Barry R.

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  11. Impact of climate Change on Groundwater Recharge in the Tiber River Basin (Central Italy) Using Regional Climate model Outputs

    NASA Astrophysics Data System (ADS)

    Muluneh, F. B.; Setegn, S. G.; Melesse, A. M.; Fiori, A.

    2011-12-01

    Quantification of the various components of hydrological processes in a watershed remains a challenging topic as the hydrological system is altered by many internal and external drivers. Changes in climate variables can affect the quantity and quality of various components of hydrological cycle. Among others, the local effects of climate change on groundwater resources were not fully studied in different part of the world as compared to the surface water. Moreover, understanding the potential impact of climate change on groundwater is more complex than surface water. The main objective of this study is to analyze the potential impact of climate change on Groundwater recharge in the Tiber River Basin using outputs from Regional Climate model. In this study, a physically-based watershed model called Soil Water Assessment Tool (SWAT) was used to estimate recharge characteristics and its response to climate change in Tiber River Basin (central Italy). The SWAT model was successfully calibrated and validated using observed weather and flow data for the period of 1963-1970 and 1971-1978 respectively. During calibration, the model was highly sensitivity to groundwater flow parameters. Dynamically downscaled rainfall and temperature datasets from ten Regional Climate Models (RCM) archived in 'Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects (PRUDENCE)' were used to force the model to assess the climate change impact on the study area. A quantile-mapping statistical correction procedure was applied to the RCM dataset to correct the inherent systematic biases. The climate change analysis indicated that by the end of 2080s the rainfall was found to decrease nearly up to 40% in dry period and there was an increase in temperature that could reach as high as 3 to 5 oC. By the end of 2080s the ground water recharge shows a decreasing trend as a response to changes in rainfall. However as the timing of both precipitation and

  12. Drought and cooler temperatures are associated with higher nest survival in Mountain Plovers

    USGS Publications Warehouse

    Dreitz, V.J.; Conrey, R.Y.; Skagen, S.K.

    2012-01-01

    Native grasslands have been altered to a greater extent than any other biome in North America. The habitats and resources needed to support breeding performance of grassland birds endemic to prairie ecosystems are currently threatened by land management practices and impending climate change. Climate models for the Great Plains prairie region predict a future of hotter and drier summers with strong multiyear droughts and more frequent and severe precipitation events. We examined how fluctuations in weather conditions in eastern Colorado influenced nest survival of an avian species that has experienced recent population declines, the Mountain Plover (Charadrius montanus). Nest survival averaged 27.2% over a 7-yr period (n = 936 nests) and declined as the breeding season progressed. Nest survival was favored by dry conditions and cooler temperatures. Projected changes in regional precipitation patterns will likely influence nest survival, with positive influences of predicted declines in summer rainfall yet negative effects of more intense rain events. The interplay of climate change and land use practices within prairie ecosystems may result in Mountain Plovers shifting their distribution, changing local abundance, and adjusting fecundity to adapt to their changing environment.

  13. Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distributional constraints, and impact of climate change.

    PubMed

    Estrada-Peña, Agustín; Venzal, José M

    2007-11-01

    In this study, we used ecological niche factor analysis (ENFA) and principal components analysis (PCA) of climate variables to define the climate niches and areas of potential colonization of six species of ticks in the Mediterranean region: Dermacentor marginatus Sulzer, Rhipicephalus bursa Canestrini & Fanzago, Rhipicephalus turanicus Pomerantsev, Matikashvili & Lototsky, Hyalomma marginatum Koch, Hyalomma excavatum Koch, and Boophilus annulatus (Say). ENFA generated distribution models that varied in accuracy from high to very high (area under the curve [AUC] = 0.87-0.97), with the lowest AUC obtained for B. annulatus. PCA provided an adequate separation of the climate niches of different species in the reduced space of the variables. Climate scenarios and factorial consensus analysis were used to evaluate the geographic impact of climate change (as turnover in habitat suitability) on the niches of the ticks and net variations in habitat availability. The scenario that was most compatible with estimates of future climate in the Mediterranean region (increase in temperature and decrease in rainfall) was predicted to produce a sharp increase in the extent of suitable habitat for R. bursa, R. turanicus, and H. marginatum. This scenario would result in a northward expansion of suitable habitat areas for these three species. The highest impact (highest species turnover) would be recorded at the margin of the current distribution range of the three species. A sensitivity analysis of the ecological response of the ticks to the climate change scenarios showed that the response is statistically different in different regions of the PCA-derived niche. These results outline the need to further investigate the potential of bioclimate models to obtain accurate estimations of tick species turnover under conditions of climate change over wide areas.

  14. Climatic Instability and Regional Glacial Advances in the Late Ediacaran

    NASA Astrophysics Data System (ADS)

    Hannah, J. L.; Stein, H. J.; Marolf, N.; Bingen, B.

    2014-12-01

    The Ediacaran Period closed out the environmentally raucous Neoproterozoic Era with the last of multiple glacial events and the first ephemeral glimmer of multicellular life. As such, evolution of Earth's biosphere and the marine environments that nurtured this nascent biota are of particular interest. Because the Ediacaran biota appear in the stratigraphic record just above tillites in many localities, inferences are naturally drawn to link glaciation to bioevolution. Here we review known controls on the timing and extent of the late Ediacaran Gaskier and Varanger glacial events, bolstered by new constraints on the Moelv tillite of South Norway. The elusive mid-Ediacaran glacial strata are poorly dated, patchy in distribution, and relatively limited in thickness. The type Gaskier glaciogenic units in Newfoundland are 582 to 584 Ma, based on U-Pb zircon ages from intercalated ash beds [1]. The Varanger glaciogenic deposits in northern Norway, in contrast, remain only roughly constrained to ca. 630 to 560 Ma. Post-Gaskier negative carbon isotope excursions (CIEs) have been reported from multiple localities in both China and SW United States, suggesting climatic instability in the late Ediacaran. Although most localities lack solid geochronology, paleontologic constraints place the Hongtiegou glacial diamictite and accompanying CIE in the Chaidam Basin, NW China, in the latest Ediacaran, ca. 555 Ma [2]. We previously suggested that the Moelv tillite in south Norway was roughly equivalent to the Gaskier, based on an imprecise Re-Os age of ~560 Ma [3] for the underlying Biri shale. Reanalysis of these data shows that the upper part of the shale section was disturbed by a redox front during the Caledonian orogeny. The undisturbed lower part of the section yields a more precise Model 1 isochron age of 559.5 ± 6.2 Ma, clearly post-dating the Gaskier event well outside analytical uncertainty. These new results bolster arguments that the Gaskier glaciation was not a global

  15. Using Different Spatial Scales of Climate Data for Regional Climate Impact Assessment: Effect on Crop Modeling Analysis

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Trabucco, A.; Montesarchio, M.; Mercogliano, P.; Spano, D.

    2015-12-01

    The high vulnerability of the agricultural sector to climate conditions causes serious concern regarding climate change impacts on crop development and production, particularly in vulnerable areas like the Mediterranean Basin. Crop simulation models are the most common tools applied for the assessment of such impacts on crop development and yields, both at local and regional scales. However, the use of these models in regional impact studies requires spatial input data for weather, soil, management, etc, whose resolution could affect simulation results. Indeed, the uncertainty in projecting climate change impacts on crop phenology and yield at the regional scale is affected not only by the uncertainty related to climate models and scenarios, but also by the downscaling methods and the resolution of climate data. The aim of this study was the evaluation of the effects of spatial resolutions of climate projections in estimating maturity date and grain yield for different varieties of durum wheat, common wheat and maize in Italy. The simulations were carried out using the CSM-CERES-Wheat and CSM-CERES-Maize crop models included in the DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, parameterized and evaluated in different experimental sites located in Italy. Dynamically downscaled climate data at different resolutions and different RCP scenarios were used as input in the crop models. A spatial platform, DSSAT-CSM based, developed in R programming language was applied to perform the simulation of maturity date and grain yield for durum wheat, common wheat and maize in each grid cell. Results, analyzed at the national and regional level, will be discussed.

  16. Changes in Soil Temperature Regimes under Regional Climate Change

    NASA Astrophysics Data System (ADS)

    Millar, S. W.

    2013-12-01

    Soil temperatures can provide a smoothed record of regional changes in atmospheric conditions due to soil thermal properties that reduce the annual air and surface temperature amplitude. In areas with seasonal snow cover, however, its insulating effect isolates the soil thermal regime from winter air temperatures. Under changing regional climate patterns, snow cover extent, depth and duration are decreasing. The net effect is thus an expected winter cooling of soil temperature. However, the extent to which this might be mitigated by warmer summer conditions, and changing soil moisture remains to be seen. To examine the relative strength of a cold-season cooling signal versus enhanced summer warming, a network of soil temperature loggers has recorded hourly soil temperatures over the period 2005-2013 within a single watershed experiencing 'lake effect snow'. Elevations range from 168 m to 612 m, on Silurian and Ordovician shale, limestone, and sandstone that have been heavily glaciated. Most of the sites are located on NY Department of Environmental Conservation land in mixed, hardwood and spruce forests. At six sites in varied topographic and land-use setting, two ONSET HOBO Outdoor 4 channel soil temperature loggers are deployed in order to reduce concerns of data reliability and systematic logger drift. Five sites also record air temperature using HOBO Pro Series Temperature loggers at three sites and HOBO Weather Stations at two. Soil temperature data are recorded at hourly intervals at depths of 2-, 5-, 10-, and 25-cm. Several other sites have been operationalized over the 8 year period, but have been tampered with, damaged, stolen, or have failed. These partial records are included to provide greater geographic representation of changing conditions where possible. Data indicate decreasing winter soil temperatures in specific land-use and topographic settings. Only one site, located in a dense spruce plantation, experiences soil freezing within the top 5 cm

  17. Readying Health Services for Climate Change: A Policy Framework for Regional Development

    PubMed Central

    2011-01-01

    Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change. PMID:21421953

  18. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins

    NASA Astrophysics Data System (ADS)

    Marengo, Jose A.; Chou, Sin Chan; Kay, Gillian; Alves, Lincoln M.; Pesquero, José F.; Soares, Wagner R.; Santos, Daniel C.; Lyra, André A.; Sueiro, Gustavo; Betts, Richard; Chagas, Diego J.; Gomes, Jorge L.; Bustamante, Josiane F.; Tavares, Priscila

    2012-05-01

    The objective of this study is to assess the climate projections over South America using the Eta-CPTEC regional model driven by four members of an ensemble of the Met Office Hadley Centre Global Coupled climate model HadCM3. The global model ensemble was run over the twenty-first century according to the SRES A1B emissions scenario, but with each member having a different climate sensitivity. The four members selected to drive the Eta-CPTEC model span the sensitivity range in the global model ensemble. The Eta-CPTEC model nested in these lateral boundary conditions was configured with a 40-km grid size and was run over 1961-1990 to represent baseline climate, and 2011-2100 to simulate possible future changes. Results presented here focus on austral summer and winter climate of 2011-2040, 2041-2070 and 2071-2100 periods, for South America and for three major river basins in Brazil. Projections of changes in upper and low-level circulation and the mean sea level pressure (SLP) fields simulate a pattern of weakening of the tropical circulation and strengthening of the subtropical circulation, marked by intensification at the surface of the Chaco Low and the subtropical highs. Strong warming (4-6°C) of continental South America increases the temperature gradient between continental South America and the South Atlantic. This leads to stronger SLP gradients between continent and oceans, and to changes in moisture transport and rainfall. Large rainfall reductions are simulated in Amazonia and Northeast Brazil (reaching up to 40%), and rainfall increases around the northern coast of Peru and Ecuador and in southeastern South America, reaching up to 30% in northern Argentina. All changes are more intense after 2040. The Precipitation-Evaporation (P-E) difference in the A1B downscaled scenario suggest water deficits and river runoff reductions in the eastern Amazon and São Francisco Basin, making these regions susceptible to drier conditions and droughts in the future.

  19. Eliciting climate experts' knowledge to address model uncertainties in regional climate projections: a case study of Guanacaste, Northwest Costa Rica

    NASA Astrophysics Data System (ADS)

    Grossmann, I.; Steyn, D. G.

    2014-12-01

    Global general circulation models typically cannot provide the detailed and accurate regional climate information required by stakeholders for climate adaptation efforts, given their limited capacity to resolve the regional topography and changes in local sea surface temperature, wind and circulation patterns. The study region in Northwest Costa Rica has a tropical wet-dry climate with a double-peak wet season. During the dry season the central Costa Rican mountains prevent tropical Atlantic moisture from reaching the region. Most of the annual precipitation is received following the northward migration of the ITCZ in May that allows the region to benefit from moist southwesterly flow from the tropical Pacific. The wet season begins with a short period of "early rains" and is interrupted by the mid-summer drought associated with the intensification and westward expansion of the North Atlantic subtropical high in late June. Model projections for the 21st century indicate a lengthening and intensification of the mid-summer drought and a weakening of the early rains on which current crop cultivation practices rely. We developed an expert elicitation to systematically address uncertainties in the available model projections of changes in the seasonal precipitation pattern. Our approach extends an elicitation approach developed previously at Carnegie Mellon University. Experts in the climate of the study region or Central American climate were asked to assess the mechanisms driving precipitation during each part of the season, uncertainties regarding these mechanisms, expected changes in each mechanism in a warming climate, and the capacity of current models to reproduce these processes. To avoid overconfidence bias, a step-by-step procedure was followed to estimate changes in the timing and intensity of precipitation during each part of the season. The questions drew upon interviews conducted with the regions stakeholders to assess their climate information needs. This

  20. Modelling regional variability of irrigation requirements due to climate change in Northern Germany.

    PubMed

    Riediger, Jan; Breckling, Broder; Svoboda, Nikolai; Schröder, Winfried

    2016-01-15

    The question whether global climate change invalidates the efficiency of established land use practice cannot be answered without systemic considerations on a region specific basis. In this context plant water availability and irrigation requirements, respectively, were investigated in Northern Germany. The regions under investigation--Diepholz, Uelzen, Fläming and Oder-Spree--represent a climatic gradient with increasing continentality from West to East. Besides regional climatic variation and climate change, soil conditions and crop management differ on the regional scale. In the model regions, temporal seasonal droughts influence crop success already today, but on different levels of intensity depending mainly on climate conditions. By linking soil water holding capacities, crop management data and calculations of evapotranspiration and precipitation from the climate change scenario RCP 8.5 irrigation requirements for maintaining crop productivity were estimated for the years 1991 to 2070. Results suggest that water requirement for crop irrigation is likely to increase with considerable regional variation. For some of the regions, irrigation requirements might increase to such an extent that the established regional agricultural practice might be hard to retain. Where water availability is limited, agricultural practice, like management and cultivated crop spectrum, has to be changed to deal with the new challenges.

  1. Modelling regional variability of irrigation requirements due to climate change in Northern Germany.

    PubMed

    Riediger, Jan; Breckling, Broder; Svoboda, Nikolai; Schröder, Winfried

    2016-01-15

    The question whether global climate change invalidates the efficiency of established land use practice cannot be answered without systemic considerations on a region specific basis. In this context plant water availability and irrigation requirements, respectively, were investigated in Northern Germany. The regions under investigation--Diepholz, Uelzen, Fläming and Oder-Spree--represent a climatic gradient with increasing continentality from West to East. Besides regional climatic variation and climate change, soil conditions and crop management differ on the regional scale. In the model regions, temporal seasonal droughts influence crop success already today, but on different levels of intensity depending mainly on climate conditions. By linking soil water holding capacities, crop management data and calculations of evapotranspiration and precipitation from the climate change scenario RCP 8.5 irrigation requirements for maintaining crop productivity were estimated for the years 1991 to 2070. Results suggest that water requirement for crop irrigation is likely to increase with considerable regional variation. For some of the regions, irrigation requirements might increase to such an extent that the established regional agricultural practice might be hard to retain. Where water availability is limited, agricultural practice, like management and cultivated crop spectrum, has to be changed to deal with the new challenges. PMID:26410707

  2. Northwest regional climate hub assessment of climate change vulnerability and adaptation and mitigation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This assessment draws from a large bank of information developed by scientists and extension specialists in the Northwest to describe where we need to focus when dealing with climate risks to working landscapes. The changing climate has many secondary effects, such as irrigation water loss, increase...

  3. Modeling and Analysis of Global and Regional Climate Change in Relation to Atmospheric Hydrologic Processes

    NASA Technical Reports Server (NTRS)

    Johnson, Donald R.

    2001-01-01

    This research was directed to the development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. An additional objective was to investigate the accuracy and theoretical limits of global climate predictability which are imposed by the inherent limitations of simulating trace constituent transport and the hydrologic processes of condensation, precipitation and cloud life cycles.

  4. The impacts of land use, radiative forcing, and biological changes on regional climate in Japan

    NASA Astrophysics Data System (ADS)

    Dairaku, K.; Pielke, R. A., Sr.

    2013-12-01

    Because regional responses of surface hydrological and biogeochemical changes are particularly complex, it is necessary to develop assessment tools for regional scale adaptation to climate. We developed a dynamical downscaling method using the regional climate model (NIED-RAMS) over Japan. The NIED-RAMS model includes a plant model that considers biological processes, the General Energy and Mass Transfer Model (GEMTM) which adds spatial resolution to accurately assess critical interactions within the regional climate system for vulnerability assessments to climate change. We digitalized a potential vegetation map that formerly existed only on paper into Geographic Information System data. It quantified information on the reduction of green spaces and the expansion of urban and agricultural areas in Japan. We conducted regional climate sensitivity experiments of land use and land cover (LULC) change, radiative forcing, and biological effects by using the NIED-RAMS with horizontal grid spacing of 20 km. We investigated regional climate responses in Japan for three experimental scenarios: 1. land use and land cover is changed from current to potential vegetation; 2. radiative forcing is changed from 1 x CO2 to 2 x CO2; and 3. biological CO2 partial pressures in plants are doubled. The experiments show good accuracy in reproducing the surface air temperature and precipitation. The experiments indicate the distinct change of hydrological cycles in various aspects due to anthropogenic LULC change, radiative forcing, and biological effects. The relative impacts of those changes are discussed and compared. Acknowledgments This study was conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA), and was supported by the

  5. Assessing climate impacts of planning policies-An estimation for the urban region of Leipzig (Germany)

    SciTech Connect

    Schwarz, Nina Bauer, Annette Haase, Dagmar

    2011-03-15

    Local climate regulation by urban green areas is an important urban ecosystem service, as it reduces the extent of the urban heat island and therefore enhances quality of life. Local and regional planning policies can control land use changes in an urban region, which in turn alter local climate regulation. Thus, this paper describes a method for estimating the impacts of current land uses as well as local and regional planning policies on local climate regulation, using evapotranspiration and land surface emissivity as indicators. This method can be used by practitioners to evaluate their policies. An application of this method is demonstrated for the case study Leipzig (Germany). Results for six selected planning policies in Leipzig indicate their distinct impacts on climate regulation and especially the role of their spatial extent. The proposed method was found to easily produce a qualitative assessment of impacts of planning policies on climate regulation.

  6. The effects of regional climate change on space conditioning needs and the energy industry in the Great Lakes region

    SciTech Connect

    Fernau, M.E.; Maloney, E.D.; Bates, G.T.

    1996-03-01

    To date, studies of the effects of potential climate change on energy use and demand have been done on a macro scale or with coarse model data but it is regional climate change effects that will determine the behavior of energy users. The output from a 3-year simulation (both base case and doubled CO{sub 2} conditions) of the coupled NCAR CCM/MM4 regional (60 km resolution) climate modeling system is used to examine changes in average temperature and temperature variability on a regional scale, the impacts of such change on the need for space conditioning in the Great Lakes region, and the subsequent changes in energy demand. From these results, changes in heating and cooling degree days, and changes in consecutive days above or below various temperature thresholds were calculated. The model results indicate that the changed climate under doubled carbon dioxide conditions would have large impacts on energy use, although it is difficult to determine the balance between decreased heating needs and increased cooling needs. Biases are present in the temperature output of the modeling system. However, the model shows promise for regional studies and the recent successful coupling of a one-dimensional thermal eddy diffusion model to the NCAR modeling system to represent the Great Lakes promises that the next iteration of climate change output from the NCAR system will yield important results when applied to effects studies.

  7. Using High Resolution Regional Climate Models to Quantify the Snow Albedo Feedback in a Region of Complex Terrain

    NASA Astrophysics Data System (ADS)

    Letcher, T.; Minder, J. R.

    2015-12-01

    High resolution regional climate models are used to characterize and quantify the snow albedo feedback (SAF) over the complex terrain of the Colorado Headwaters region. Three pairs of 7-year control and pseudo global warming simulations (with horizontal grid spacings of 4, 12, and 36 km) are used to study how the SAF modifies the regional climate response to a large-scale thermodynamic perturbation. The SAF substantially enhances warming within the Headwaters domain, locally as much as 5 °C in regions of snow loss. The SAF also increases the inter-annual variability of the springtime warming within Headwaters domain under the perturbed climate. Linear feedback analysis is used quantify the strength of the SAF. The SAF attains a maximum value of 4 W m-2 K-1 during April when snow loss coincides with strong incoming solar radiation. On sub-seasonal timescales, simulations at 4 km and 12 km horizontal grid-spacing show good agreement in the strength and timing of the SAF, whereas a 36km simulation shows greater discrepancies that are tired to differences in snow accumulation and ablation caused by smoother terrain. An analysis of the regional energy budget shows that transport by atmospheric motion acts as a negative feedback to regional warming, damping the effects of the SAF. On the mesoscale, this transport causes non-local warming in locations with no snow. The methods presented here can be used generally to quantify the role of the SAF in other regional climate modeling experiments.

  8. Lesser prairie-chicken nest site selection, microclimate, and nest survival in association with vegetation response to a grassland restoration program

    USGS Publications Warehouse

    Boal, Clint W.; Grisham, Blake A.; Haukos, David A.; Zavaleta, Jennifer C.; Dixon, Charles

    2014-01-01

    Climate models predict that the region of the Great Plains Landscape Conservation Cooperative (GPLCC) will experience increased maximum and minimum temperatures, reduced frequency but greater intensity of precipitation events, and earlier springs. These climate changes along with different landscape management techniques may influence the persistence of the lesser prairie-chicken (Tympanuchus pallidicinctus), a candidate for protection under the Endangered Species Act and a priority species under the GPLCC, in positive or negative ways. The objectives of this study were to conduct (1) a literature review of lesser prairie-chicken nesting phenology and ecology, (2) an analysis of thermal aspects of lesser prairie-chicken nest microclimate data, and (3) an analysis of nest site selection, nest survival, and vegetation response to 10 years of tebuthiuron and/or grazing treatments. We found few reports in the literature containing useful data on the nesting phenology of lesser prairie-chickens; therefore, managers must rely on short-term observations and measurements of parameters that provide some predictive insight into climate impacts on nesting ecology. Our field studies showed that prairie-chickens on nests were able to maintain relatively consistent average nest temperature of 31 °C and nest humidities of 56.8 percent whereas average external temperatures (20.3–35.0 °C) and humidities (35.2–74.9 percent) varied widely throughout the 24 hour (hr) cycle. Grazing and herbicide treatments within our experimental areas were designed to be less intensive than in common practice. We determined nest locations by radio-tagging hen lesser prairie-chickens captured at leks, which are display grounds at which male lesser prairie-chickens aggregate and attempt to attract a female for mating. Because nest locations selected by hen lesser prairie-chicken are strongly associated with the lek at which they were captured, we assessed nesting habitat use on the basis of hens

  9. Regional variation in climate elasticity and climate contribution to runoff across China: estimation according to the Budyko hypothesis

    NASA Astrophysics Data System (ADS)

    Yang, Hanbo; Yang, Dawen

    2015-04-01

    Climate elasticity of runoff is an important indicator for evaluating the effects of climate change on runoff. It can be analytically derived based on the Mezentve-Choudhury-Yang equation, with a parameter n representing the impact of the catchment characteristics. In China, both climate and catchment characteristics have large spatial variations. To understand the spatial variation of hydrologic response to climate change, we divided China into 210 catchments, further calculated the parameter n, and then estimated the climate elasticity and evaluated the contribution of climate change to runoff for each catchment. The results show that n ranges from 0.4-3.8 (with a mean of 1.3 and a standard deviation of 0.6), which has a logarithmic relationship with catchment slope; the precipitation elasticity ranges from 1.1-4.8 (with a mean of 1.9 and a standard deviation of 0.6), which shows a large regional variation, smaller values (1.1-2.0) mainly appearing in Southern China, the Songhua River basin and the Northwest, and larger values (2.1-4.8) mainly appearing in the Hai River basin, the Liao River basin and the Yellow River basin. In addition, climate contribution to runoff exhibits a large regional variation, the largest positive values (1.1-3.1%/a) occurring in the Northwest, the largest negative values (-1.0--0.5%/a) occurring in the Hai River basin and the middle reach of the Yellow River basin. In theory, the climate elasticity method is a first-order approximation. The approximation underestimates the precipitation (P) contribution to runoff when P increases and overestimates that when P decreases, and the relative error has a median of ~3% and a maximum of ~20% when 10% precipitations change in those catchments of China.

  10. Equilibrium of vegetation and climate at the European rear edge. A reference for climate change planning in mountainous Mediterranean regions.

    PubMed

    Ruiz-Labourdette, Diego; Martínez, Felipe; Martín-López, Berta; Montes, Carlos; Pineda, Francisco D

    2011-05-01

    Mediterranean mountains harbour some of Europe's highest floristic richness. This is accounted for largely by the mesoclimatic variety in these areas, along with the co-occurrence of a small area of Eurosiberian, Boreal and Mediterranean species, and those of Tertiary Subtropical origin. Throughout the twenty-first century, we are likely to witness a climate change-related modification of the biogeographic scenario in these mountains, and there is therefore a need for accurate climate regionalisations to serve as a reference of the abundance and distribution of species and communities, particularly those of a relictic nature. This paper presents an objective mapping method focussing on climate regions in a mountain range. The procedure was tested in the Cordillera Central Mountains of the Iberian Peninsula, in the western Mediterranean, one of the ranges occupying the largest area of the Mediterranean Basin. This regionalisation is based upon multivariate analyses and upon detailed cartography employing 27 climatic variables. We used spatial interpolation of data based on geographic information. We detected high climatic diversity in the mountain range studied. We identified 13 climatic regions, all of which form a varying mosaic throughout the annual temperature and rainfall cycle. This heterogeneity results from two geographically opposed gradients. The first one is the Mediterranean-Euro-Siberian variation of the mountain range. The second gradient involves the degree of oceanicity, which is negatively related to distance from the Atlantic Ocean. The existing correlation between the climatic regions detected and the flora existing therein enables the results to be situated within the projected trends of global warming, and their biogeographic and ecological consequences to be analysed.

  11. USDA Southwest Regional Hub for Adaptation to and Mitigation of Climate Change

    NASA Astrophysics Data System (ADS)

    Rango, A.; Elias, E.; Steele, C. M.; Havstad, K.

    2014-12-01

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up of six states: New Mexico, Arizona, Utah, Nevada, California and Hawaii (plus the Trust Territories of the Pacific Islands). The SW Climate Hub has a subsidiary hub located in Davis, California. The Southwest region has high climatic diversity, with the lowest and highest average annual rainfall in the U.S.(6.0 cm in Death Valley, CA and 1168 cm at Mt. Waialeale, HI). There are major deserts in five of the six states, yet most of the states, with exception of Hawaii, depend upon the melting of mountain snowpacks for their surface water supply. Additionally, many of the agricultural areas of the SW Regional Hub depend upon irrigation water to maintain productivity. Scientific climate information developed by the Hub will be used for climate-smart decision making. To do this, the SW Regional Hub will rely upon existing infrastructure of the Cooperative Extension Service at Land-Grant State Universities. Extension service and USDA-NRCS personnel have existing networks to communicate with stakeholders (farmers, ranchers, and forest landowners) through meetings and workshops which have already started in the six states. Outreach through the development of a weather and climate impact modules designed for seventh grade students and their teachers will foster education of future generations of rural land managers. We will be synthesizing and evaluating existing reports, literature and information on regional climate projections, water resources, and agricultural adaptation strategies related to climate in the Southwest. The results will be organized in a spatial format and provided through the SW Hub website (http://swclimatehub.info) and peer-reviewed articles.

  12. IMPACTS OF CLIMATE VARIATION AND CHANGE ON MID-ATLANTIC REGION HYDROLOGY

    EPA Science Inventory

    This study analyzes periodic variations in the climate of the mid-Atlantic Region over the last 100 years and uses general circulation models (GCMs) to project major climate trends for the next hundred years. Historical data include the Palmer Drought Severity Index (PDSI) for th...

  13. Climate optimized planting windows for cotton in the lower Mississippi Delta region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unique, variable summer climate of the lower Mississippi Delta region poses a critical challenge to cotton producers in deciding when to plant for optimized production. Traditional 2- to 4-year agronomic field trials conducted in this area fail to capture the effects of long-term climate variabiliti...

  14. Projected climate change for the coastal plain region of Georgia, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climatic patterns for the Coastal Plain region of Georgia, USA, centered on Tifton, Georgia (31 28 30N, 83 31 54W) were examined for long term patterns in precipitation and air temperature. Climate projections based upon output from seven Global Circulation Models (GCMs) and three future Green Hous...

  15. The impact of climate change on soil erosion in Great Lakes Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying changes in potential soil erosion under projections of changing climate is important for the sustainable management of land resources, especially for regions dominated by agricultural land use. One of the expected changes to climate in the future is an increase in the frequency and inten...

  16. OVERVIEW OF THE CLIMATE IMPACT ON REGIONAL AIR QUALITY (CIRAQ) PROJECT

    EPA Science Inventory

    The Climate Impacts on Regional Air Quality (CIRAQ) project will develop model-estimated impacts of global climate changes on ozone and particulate matter (PM) in direct support of the USEPA Global Change Research Program's (GCRP) national air quality assessment. EPA's urban/reg...

  17. Uncertainty in future regional sea level rise due to internal climate variability

    NASA Astrophysics Data System (ADS)

    Hu, Aixue; Deser, Clara

    2013-06-01

    level rise (SLR) is an inescapable consequence of increasing greenhouse gas concentrations, with potentially harmful effects on human populations in coastal and island regions. Observational evidence indicates that global sea level has risen in the 20th century, and climate models project an acceleration of this trend in the coming decades. Here we analyze rates of future SLR on regional scales in a 40-member ensemble of climate change projections with the Community Climate System Model Version 3. This unique ensemble allows us to assess uncertainty in the magnitude of 21st century SLR due to internal climate variability alone. We find that simulated regional SLR at mid-century can vary by a factor of 2 depending on location, with the North Atlantic and Pacific showing the greatest range. This uncertainty in regional SLR results primarily from internal variations in the wind-driven and buoyancy-driven ocean circulations.

  18. Validation of the Regional Climate Model ALARO with different dynamical downscaling approaches and different horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier

    2015-04-01

    At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.

  19. The East African Rift System and the impact of orographic changes on regional climate and the resulting aridification

    NASA Astrophysics Data System (ADS)

    Sommerfeld, Anja; Prömmel, Kerstin; Cubasch, Ulrich

    2016-09-01

    Several proxy data indicate an aridification of the East African climate during the Neogene, which might be influenced by the orographic changes of the East African Rift System (EARS) induced by tectonic forcing during the last 20 million years. To investigate the impact of the orography and especially of the rifts, the regional climate model CCLM is used, covering the EARS with Lake Victoria in the centre of the model domain. CCLM is driven by the ERA-Interim reanalysis and applied with a double-nesting method resulting in a very high spatial resolution of 7 km. The resolution clearly shows the shoulders and rifts of the western and eastern branch of the EARS and the Rwenzoris within the western branch. To analyse the orographic influence on climate, a new technique of modifying the orography is used in this sensitivity study. The shoulders of the branches are lowered and the rifts are elevated, resulting in a smoothed orography structure with less altitude difference between the shoulders and rifts. The changes in 2 m-temperature are very local and associated with the changes in the orography. The vertically integrated moisture transport is characterised by less vortices, and its zonal component is increased over the branches. The resulting amount of precipitation is mainly decreased west of the western branch and increased in the rift of the western branch. In the eastern branch, however, the changes in the amount of precipitation are not significant. The changes in the precipitation and temperature patterns lead to a shift of biomes towards a vegetation coverage characterised by more humid conditions in the northern part of the model domain and more arid conditions in the South. Thus, the aridification found in the proxy data can be attributed to the orographic changes of the rifts only in the northern model domain.

  20. Joint Applications Pilot of the National Climate Predictions and Projections Platform and the North Central Climate Science Center: Delivering climate projections on regional scales to support adaptation planning

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Ojima, D. S.; Morisette, J. T.

    2012-12-01

    The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in

  1. Climate change impact on shallow groundwater conditions in Hungary: Conclusions from a regional modelling study

    NASA Astrophysics Data System (ADS)

    Kovács, Attila; Marton, Annamária; Tóth, György; Szöcs, Teodóra

    2016-04-01

    A quantitative methodology has been developed for the calculation of groundwater table based on measured and simulated climate parameters. The aim of the study was to develop a toolset which can be used for the calculation of shallow groundwater conditions for various climate scenarios. This was done with the goal of facilitating the assessment of climate impact and vulnerability of shallow groundwater resources. The simulated groundwater table distributions are representative of groundwater conditions at the regional scale. The introduced methodology is valid for modelling purposes at various scales and thus represents a versatile tool for the assessment of climate vulnerability of shallow groundwater bodies. The calculation modules include the following: 1. A toolset to calculate climate zonation from climate parameter grids, 2. Delineation of recharge zones (Hydrological Response Units, HRUs) based on geology, landuse and slope conditions, 3. Calculation of percolation (recharge) rates using 1D analytical hydrological models, 4. Simulation of the groundwater table using numerical groundwater flow models. The applied methodology provides a quantitative link between climate conditions and shallow groundwater conditions, and thus can be used for assessing climate impacts. The climate data source applied in our calculation comprised interpolated daily climate data of the Central European CARPATCLIM database. Climate zones were determined making use of the Thorntwaite climate zonation scheme. Recharge zones (HRUs) were determined based on surface geology, landuse and slope conditions. The HELP hydrological model was used for the calculation of 1D water balance for hydrological response units. The MODFLOW numerical groundwater modelling code was used for the calculation of the water table. The developed methodology was demonstrated through the simulation of regional groundwater table using spatially averaged climate data and hydrogeological properties for various time

  2. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national