High-field superconducting nested coil magnet
NASA Technical Reports Server (NTRS)
Laverick, C.; Lobell, G. M.
1970-01-01
Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.
NASA Astrophysics Data System (ADS)
Miyasaka, S.; Uekubo, M.; Tsuji, H.; Nakajima, M.; Tajima, S.; Shiota, T.; Mukuda, H.; Sagayama, H.; Nakao, H.; Kumai, R.; Murakami, Y.
2017-06-01
The phase diagram of the LaFeAs1 -xPxO system has been extensively studied through hole and electron doping as well as As/P substitution. It has been revealed that there are three different superconducting phases with different Fermi surface (FS) topologies and thus with possibly different pairing glues. One of them is well understood as spin fluctuation-mediated superconductivity within a FS nesting scenario. Another one with the FSs in a bad nesting condition must be explained in a different context such as orbital or spin fluctuation in a strongly correlated electronic system. In both phases, T -linear resistivity was commonly observed when the superconducting transition temperature Tc becomes the highest value, indicating that the strength of bosonic fluctuation determines Tc. In the last superconducting phase, the nesting condition of FSs and the related bosonic fluctuation are moderate. Variety of phase diagram characterizes the multiple orbital nature of the iron-based superconductors which are just near the boundary between weak and strong correlation regimes.
Spin-orbit coupling enhanced superconductivity in Bi-rich compounds ABi3 (A = Sr and Ba)
Shao, D. F.; Luo, X.; Lu, W. J.; Hu, L.; Zhu, X. D.; Song, W. H.; Zhu, X. B.; Sun, Y. P.
2016-01-01
Recently, Bi-based compounds have attracted attentions because of the strong spin-orbit coupling (SOC). In this work, we figured out the role of SOC in ABi3 (A = Sr and Ba) by theoretical investigation of the band structures, phonon properties, and electron-phonon coupling. Without SOC, strong Fermi surface nesting leads to phonon instabilities in ABi3. SOC suppresses the nesting and stabilizes the structure. Moreover, without SOC the calculation largely underestimates the superconducting transition temperatures (Tc), while with SOC the calculated Tc are very close to those determined by measurements on single crystal samples. The SOC enhanced superconductivity in ABi3 is due to not only the SOC induced phonon softening, but also the SOC related increase of electron-phonon coupling matrix elements. ABi3 can be potential platforms to construct heterostructure of superconductor/topological insulator to realize topological superconductivity. PMID:26892681
Spin-orbit coupling enhanced superconductivity in Bi-rich compounds ABi₃ (A = Sr and Ba).
Shao, D F; Luo, X; Lu, W J; Hu, L; Zhu, X D; Song, W H; Zhu, X B; Sun, Y P
2016-02-19
Recently, Bi-based compounds have attracted attentions because of the strong spin-orbit coupling (SOC). In this work, we figured out the role of SOC in ABi3 (A = Sr and Ba) by theoretical investigation of the band structures, phonon properties, and electron-phonon coupling. Without SOC, strong Fermi surface nesting leads to phonon instabilities in ABi3. SOC suppresses the nesting and stabilizes the structure. Moreover, without SOC the calculation largely underestimates the superconducting transition temperatures (Tc), while with SOC the calculated Tc are very close to those determined by measurements on single crystal samples. The SOC enhanced superconductivity in ABi3 is due to not only the SOC induced phonon softening, but also the SOC related increase of electron-phonon coupling matrix elements. ABi3 can be potential platforms to construct heterostructure of superconductor/topological insulator to realize topological superconductivity.
Hess, Christian; Sykora, Steffen; Hänke, Torben; Schlegel, Ronny; Baumann, Danny; Zabolotnyy, Volodymyr B; Harnagea, Luminita; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd
2013-01-04
Several angle-resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within holelike bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the holelike bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.
Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe 1 - x Co x As
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yu; Yin, Zhiping; Wang, Xiancheng
We use neutron scattering to study spin excitations in single crystals of LiFe 0.88Co 0.12As, which is located near the boundary of the superconducting phase of LiFe 1-xCo xAs and exhibits non- Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe 0.88Co 0.12As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the dxy orbitals, while high-energy spin excitations arise from the dyz and dxz orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAsmore » family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe 1-xCo xAs are consistent with electron-hole Fermi surface nesting condition for the dxy orbital, the reduced superconductivity in LiFe 0.88Co 0.12As suggests that Fermi surface nesting conditions for the dyz and dxz orbitals are also important for superconductivity in iron pnictides.« less
Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe 1 - x Co x As
Li, Yu; Yin, Zhiping; Wang, Xiancheng; ...
2016-06-17
We use neutron scattering to study spin excitations in single crystals of LiFe 0.88Co 0.12As, which is located near the boundary of the superconducting phase of LiFe 1-xCo xAs and exhibits non- Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe 0.88Co 0.12As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the dxy orbitals, while high-energy spin excitations arise from the dyz and dxz orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAsmore » family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe 1-xCo xAs are consistent with electron-hole Fermi surface nesting condition for the dxy orbital, the reduced superconductivity in LiFe 0.88Co 0.12As suggests that Fermi surface nesting conditions for the dyz and dxz orbitals are also important for superconductivity in iron pnictides.« less
Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe_{1-x}Co_{x}As.
Li, Yu; Yin, Zhiping; Wang, Xiancheng; Tam, David W; Abernathy, D L; Podlesnyak, A; Zhang, Chenglin; Wang, Meng; Xing, Lingyi; Jin, Changqing; Haule, Kristjan; Kotliar, Gabriel; Maier, Thomas A; Dai, Pengcheng
2016-06-17
We use neutron scattering to study spin excitations in single crystals of LiFe_{0.88}Co_{0.12}As, which is located near the boundary of the superconducting phase of LiFe_{1-x}Co_{x}As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe_{0.88}Co_{0.12}As with a combined density functional theory and dynamical mean field theory calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the d_{xy} orbitals, while high-energy spin excitations arise from the d_{yz} and d_{xz} orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in the LiFeAs family cannot be described by an anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe_{1-x}Co_{x}As is consistent with the electron-hole Fermi surface nesting conditions for the d_{xy} orbital, the reduced superconductivity in LiFe_{0.88}Co_{0.12}As suggests that Fermi surface nesting conditions for the d_{yz} and d_{xz} orbitals are also important for superconductivity in iron pnictides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mou, Daixiang; Kong, Tai; Meier, William R.
We use high resolution angle resolved photoemission spectroscopy and density functional theory with measured crystal structure parameters to study the electronic properties of CaKFe 4As 4. In contrast to the related CaFe 2As 2 compounds, CaKFe 4As 4 has a high T c of 35 K at stochiometric composition. This presents a unique opportunity to study the properties of high temperature superconductivity in the iron arsenides in the absence of doping or substitution. The Fermi surface consists of several hole and electron pockets that have a range of diameters. We find that the values of the superconducting gap are nearlymore » isotropic (within the explored portions of the Brillouin zone), but are significantly different for each of the Fermi surface (FS) sheets. Most importantly, we find that the momentum dependence of the gap magnitude plotted across the entire Brillouin zone displays a strong deviation from the simple cos( k x)cos( k y) functional form of the gap function, proposed by the scenario of Cooper pairing driven by a short range antiferromagnetic exchange interaction. Instead, the maximum value of the gap is observed on FS sheets that are closest to the ideal nesting condition, in contrast to previous observations in other ferropnictides. Finally, these results provide strong support for the multiband character of superconductivity in CaKFe 4As 4, in which Cooper pairing forms on the electron and the hole bands interacting via a dominant interband repulsive interaction, enhanced by band nesting.« less
Mou, Daixiang; Kong, Tai; Meier, William R.; ...
2016-12-28
We use high resolution angle resolved photoemission spectroscopy and density functional theory with measured crystal structure parameters to study the electronic properties of CaKFe 4As 4. In contrast to the related CaFe 2As 2 compounds, CaKFe 4As 4 has a high T c of 35 K at stochiometric composition. This presents a unique opportunity to study the properties of high temperature superconductivity in the iron arsenides in the absence of doping or substitution. The Fermi surface consists of several hole and electron pockets that have a range of diameters. We find that the values of the superconducting gap are nearlymore » isotropic (within the explored portions of the Brillouin zone), but are significantly different for each of the Fermi surface (FS) sheets. Most importantly, we find that the momentum dependence of the gap magnitude plotted across the entire Brillouin zone displays a strong deviation from the simple cos( k x)cos( k y) functional form of the gap function, proposed by the scenario of Cooper pairing driven by a short range antiferromagnetic exchange interaction. Instead, the maximum value of the gap is observed on FS sheets that are closest to the ideal nesting condition, in contrast to previous observations in other ferropnictides. Finally, these results provide strong support for the multiband character of superconductivity in CaKFe 4As 4, in which Cooper pairing forms on the electron and the hole bands interacting via a dominant interband repulsive interaction, enhanced by band nesting.« less
Y. M. Dai; Miao, H.; Xing, L. Y.; ...
2015-09-15
A series of LiFe 1–xCo xAs compounds with different Co concentrations by transport, optical spectroscopy, angle-resolved photoemission spectroscopy, and nuclear magnetic resonance. We observe a Fermi-liquid to non-Fermi-liquid to Fermi-liquid (FL-NFL-FL) crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we find that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behavior in LiFe 1–xCo xAs is induced by low-energy spin fluctuations that are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFemore » 1–xCo xAs where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms.« less
Effects of Co and Mn doping in K0.8Fe2-ySe2 revisited.
Zhou, Tingting; Chen, Xiaolong; Guo, Jiangang; Jin, Shifeng; Wang, Gang; Lai, Xiaofang; Ying, Tianping; Zhang, Han; Shen, Shijie; Wang, Shunchong; Zhu, Kaixing
2013-07-10
Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sites in K0.8Fe2-ySe2 within the phase separation scenario. Our results demonstrate that Co and Mn dopants have distinct differences in occupancy and hence in the suppression mechanism of superconductivity upon doping of Fe sites. In K0.8Fe2-xCoxSe2, Co prefers to occupy the lattice of the superconducting phase and suppresses superconductivity very quickly, obeying the magnetic pair-breaking mechanism or the collapse of the Fermi surface nesting mechanism. In contrast, in K0.8Fe1.7-xMnxSe2, Mn shows no preferential occupancy in the superconducting phase or the 245 phase. The suppression of superconductivity can be attributed to restraining of the superconducting phase and meanwhile inducing another non-superconducting phase by Mn doping.
Dynamic nesting and the incommensurate magnetic response in superconducting YBa 2Cu 3O 6+ y
NASA Astrophysics Data System (ADS)
Brinckmann, Jan; Lee, Patrick A.
1999-05-01
The dynamic magnetic susceptibility χ″( q, ω) of the t- t‧- J-model for YBCO compounds is studied in slave-boson mean-field theory. Within a renormalized random-phase approximation χ″ is compared for different fixed energies ω in the superconducting state. At the energy ω= ω0, where χ″(( π, π), ω) shows a sharp peak (the `41 meV resonance'), the response is commensurate in wave vector space. At lower energies around ωi=0.7 ω0, however, we find four peaks at q=( π± δ, π) and ( π, π± δ). The results are in agreement with inelastic neutron scattering experiments, in particular with the incommensurate response recently observed in YBa 2Cu 3O 6.6 by Mook et al. We argue that dynamic nesting in the dispersion of quasi particles causes this effect.
Superconductivity in SnO: a nonmagnetic analog to Fe-based superconductors?
Forthaus, M K; Sengupta, K; Heyer, O; Christensen, N E; Svane, A; Syassen, K; Khomskii, D I; Lorenz, T; Abd-Elmeguid, M M
2010-10-08
We discovered that under pressure SnO with α-PbO structure, the same structure as in many Fe-based superconductors, e.g., β-FeSe, undergoes a transition to a superconducting state for p≳6 GPa with a maximum Tc of 1.4 K at p=9.3 GPa. The pressure dependence of Tc reveals a domelike shape and superconductivity disappears for p≳16 GPa. It is further shown from band structure calculations that SnO under pressure exhibits a Fermi surface topology similar to that reported for some Fe-based superconductors and that the nesting between the hole and electron pockets correlates with the change of Tc as a function of pressure.
NASA Astrophysics Data System (ADS)
Li, Kunkun; Yuan, Duanduan; Guo, Jiangang; Chen, Xiaolong
2018-04-01
We report the structure, antiferromagnetism, and superconductivity in C u1 -xL ixFeAs (0 ≤x ≤1.0 ) samples. A direct evolution from antiferromagnetism to superconductivity is observed as increasing doping level of Li. A phase diagram is constructed to show this evolution, which features no coexistence region between superconductivity and antiferromagnetism. This behavior shows that antiferromagnetic CuFeAs can be regarded as a parent compound to the observed superconductivity by equivalent doping, which is different from the cases with other FeAs-based superconductors. Structural analyses and first-principles calculations indicate that the anion height of F e2A s2 tetrahedral layer plays a crucial role on the physical properties. Moreover, the simple Fermi surface nesting picture adopted to explain the evolution from spin-density wave to superconductor in other FeAs-based superconductors might be not applicable to C u1 -xL ixFeAs .
NASA Technical Reports Server (NTRS)
Baram, Yoram
1988-01-01
Nested neural networks, consisting of small interconnected subnetworks, allow for the storage and retrieval of neural state patterns of different sizes. The subnetworks are naturally categorized by layers of corresponding to spatial frequencies in the pattern field. The storage capacity and the error correction capability of the subnetworks generally increase with the degree of connectivity between layers (the nesting degree). Storage of only few subpatterns in each subnetworks results in a vast storage capacity of patterns and subpatterns in the nested network, maintaining high stability and error correction capability.
The Quantum Socket: Wiring for Superconducting Qubits - Part 3
NASA Astrophysics Data System (ADS)
Mariantoni, M.; Bejianin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.
The implementation of a quantum computer requires quantum error correction codes, which allow to correct errors occurring on physical quantum bits (qubits). Ensemble of physical qubits will be grouped to form a logical qubit with a lower error rate. Reaching low error rates will necessitate a large number of physical qubits. Thus, a scalable qubit architecture must be developed. Superconducting qubits have been used to realize error correction. However, a truly scalable qubit architecture has yet to be demonstrated. A critical step towards scalability is the realization of a wiring method that allows to address qubits densely and accurately. A quantum socket that serves this purpose has been designed and tested at microwave frequencies. In this talk, we show results where the socket is used at millikelvin temperatures to measure an on-chip superconducting resonator. The control electronics is another fundamental element for scalability. We will present a proposal based on the quantum socket to interconnect a classical control hardware to a superconducting qubit hardware, where both are operated at millikelvin temperatures.
LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, A.; Edstrom, D.; Halavanau, A.
2017-07-16
The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altmeyer, Michaela; Guterding, Daniel; Hirschfeld, P. J.
2016-12-21
In the framework of a multiorbital Hubbard model description of superconductivity, a matrix formulation of the superconducting pairing interaction that has been widely used is designed to treat spin, charge, and orbital fluctuations within a random phase approximation (RPA). In terms of Feynman diagrams, this takes into account particle-hole ladder and bubble contributions as expected. It turns out, however, that this matrix formulation also generates additional terms which have the diagrammatic structure of vertex corrections. Furthermore we examine these terms and discuss the relationship between the matrix-RPA superconducting pairing interaction and the Feynman diagrams that it sums.
Magnetic torque on a rotating superconducting sphere
NASA Technical Reports Server (NTRS)
Holdeman, L. B.
1975-01-01
The London theory of superconductivity is used to calculate the torque on a superconducting sphere rotating in a uniform applied magnetic field. The London theory is combined with classical electrodynamics for a calculation of the direct effect of excess charge on a rotating superconducting sphere. Classical electrodynamics, with the assumption of a perfect Meissner effect, is used to calculate the torque on a superconducting sphere rotating in an arbitrary magnetic induction; this macroscopic approach yields results which are correct to first order. Using the same approach, the torque due to a current loop encircling the rotating sphere is calculated.
Dual levitated coils for antihydrogen production
NASA Astrophysics Data System (ADS)
Wofford, J. D.; Ordonez, C. A.
2013-04-01
Two coaxial superconducting magnetic coils that carry currents in the same direction and that are simultaneously levitated may serve for antihydrogen plasma confinement. The configuration may be suitable for use by a collaboration at the CERN Antiproton Decelerator facility to test fundamental symmetries between the properties of hydrogen and antihydrogen. Nested Penning traps are currently used to confine recombining antihydrogen plasma. Symmetry studies require the production of sufficiently cold antihydrogen. However, plasma drifts within nested Penning traps can increase the kinetic energy of antiprotons that form antihydrogen atoms. Dual levitated coils may serve to confine relatively large, cold, dense non-drifting recombining antihydrogen plasmas. A minimum-B magnetic field that is produced by the coils could provide for atom trapping. A toroidal plasma is confined between the coils. High density plasmas may be possible, by allowing plasma pressure to balance mechanical pressure to keep the coils apart. Progress is reported on theoretical and experimental efforts. The theoretical effort includes the development of a classical trajectory Monte Carlo simulation of confinement. The experimental effort includes levitation of a NdFeB permanent ring magnet, which produces a magnetic field that is qualitatively similar to the field that would be produced by the two coaxial superconducting magnetic coils. Liquid-nitrogen-cooled Bi-2223 high-temperature-superconducting components, with a critical temperature of 108 K, were used to levitate the ring magnet. An issue concerning keeping the plane of the levitated ring horizontal is discussed.
Valley density-wave (VDW) and Superconductivity in Iron-Pnictides
NASA Astrophysics Data System (ADS)
Cvetkovic, Vladimir; Tesanovic, Zlatko
2009-03-01
One of the experimentally observed features of iron-pnictide superconductors is the structural transition and SDW ordering occurring at almost the same temperature. Starting from a tight-binding model [1], we construct an effective theory for iron-pnictides with the distinctive two hole and two electron Fermi surfaces. This theory is then mapped onto a negative-U Hubbard model with additional orbital and spin flavors [2]. We demonstrate that the superconducting instability of the attractive Hubbard model --- valley density-wave (VDW) --- corresponds to the observed structural and SDW orders. The deviations from perfect nesting between the hole and electron Fermi surfaces are mapped onto the Zeeman field which causes portions of Fermi surface to remain ungapped. The origin of pnictide superconductivity in this model, and its ties to the VDW are discussed. [1] V. Cvetkovic and Z. Tesanovic, http://arxiv.org/abs/0804.4678. [2] V. Cvetkovic and Z. Tesanovic, http://arxiv.org/abs/0808.3742.
Spin Resonance in the New-Structure-Type Iron-Based Superconductor CaKFe4As4
NASA Astrophysics Data System (ADS)
Iida, Kazuki; Ishikado, Motoyuki; Nagai, Yuki; Yoshida, Hiroyuki; Christianson, Andrew D.; Murai, Naoki; Kawashima, Kenji; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Iyo, Akira
2017-09-01
The dynamical spin susceptibility in the new-structure-type iron-based superconductor CaKFe4As4 was investigated by using a combination of inelastic neutron scattering (INS) measurements and random phase approximation (RPA) calculations. Powder INS measurements show that the spin resonance at Qres = 1.17(1) Å-1, corresponding to the (π ,π ) nesting wave vector in tetragonal notation, evolves below Tc. The characteristic energy of the spin resonance Eres = 12.5 meV is smaller than twice the size of the superconducting gap (2Δ). The broad energy feature of the dynamical susceptibility of the spin resonance can be explained by the RPA calculations, in which the different superconducting gaps on different Fermi surfaces are taken into account. Our INS and PRA studies demonstrate that the superconducting pairing nature in CaKFe4As4 is the s± symmetry.
Chen, Chiao-Min; Lin, Kai-Hui; Su, Hsiu-Ya; Lin, Mei-Hsiang; Hsu, Chu-Ling
2014-04-01
Nesting and positioning is a common nursing skill used in the developmental care of premature infants. This skill maintains premature infants in a comfortable position, facilitates the monitoring of stable vital signs, and enables spontaneous motor activity for normal neuromuscular and skeletal joint function. This project was designed to improve nursing staff cognition and skills regarding nesting and positioning for premature infants in the NICU. Strategies used in this project were: develop an infant position assessment tool; record a demonstration video about nesting and positioning skills to provide learning efficacy among the nursing staff; and modify an education program for new nurses. After implementation, nurse cognition regarding premature infant nesting and positioning increased from 58.3% to 92.3%. The rate of correct technique use similarly rose from 63.3% to 91.4%. This is a valid intervention for improving the correctness of nesting and positioning in nursing care. This project standardized education in terms of nesting and positioning practice goals and enhanced quality care for premature infants.
NASA Astrophysics Data System (ADS)
Chen, Jianyong; Ge, Yanfeng; Zhou, Wenzhe; Peng, Mengqi; Pan, Jiangling; Ouyang, Fangping
2018-06-01
Using first-principles calculations, we find Li-intercalated bilayer arsenene with AB stacking is dynamically stable, which is different from pristine bilayer with AA stacking. Electron–phonon coupling of the stable Li-intercalated bilayer arsenene are dominated by the low frequency vibrational modes (E″(1), (1), E‧(1) and acoustic modes) and lead to an superconductivity with T c = 8.68 K with isotropical Eliashberg function. Small biaxial tensile strain (2%) can improve T c to 11.22 K due to the increase of DOS and phonon softening. By considering the fully anisotropic Migdal–Eliashberg theory, T c are found to be enhanced by 50% and exhibits a single anisotropic gap nature. In addition, considering its nearly flat top valence band which is favorable for high temperature superconductivity, we also explore the superconducting properties of hole-doped monolayer arsenene under different strains. the unstrained monolayer arsenene superconducts at T c = 0.22 K with 0.1 hole/cell doping. By applying 3% biaxial strain, T c can be lifted up strikingly to 6.69 K due to a strong Fermi nesting of the nearly flat band. Then T c decreases slowly with strain. Our findings provide another insight to realize 2D superconductivity and suggest that the strain is crucial to further enhance the transition temperature.
Probing the unconventional superconducting state of LiFeAs by quasiparticle interference.
Hänke, Torben; Sykora, Steffen; Schlegel, Ronny; Baumann, Danny; Harnagea, Luminita; Wurmehl, Sabine; Daghofer, Maria; Büchner, Bernd; van den Brink, Jeroen; Hess, Christian
2012-03-23
A crucial step in revealing the nature of unconventional superconductivity is to investigate the symmetry of the superconducting order parameter. Scanning tunneling spectroscopy has proven a powerful technique to probe this symmetry by measuring the quasiparticle interference (QPI) which sensitively depends on the superconducting pairing mechanism. A particularly well-suited material to apply this technique is the stoichiometric superconductor LiFeAs as it features clean, charge neutral cleaved surfaces without surface states and a relatively high T(c)∼18 K. Our data reveal that in LiFeAs the quasiparticle scattering is governed by a van Hove singularity at the center of the Brillouin zone which is in stark contrast to other pnictide superconductors where nesting is crucial for both scattering and s(±) superconductivity. Indeed, within a minimal model and using the most elementary order parameters, calculations of the QPI suggest a dominating role of the holelike bands for the quasiparticle scattering. Our theoretical findings do not support the elementary singlet pairing symmetries s(++), s(±), and d wave. This brings to mind that the superconducting pairing mechanism in LiFeAs is based on an unusual pairing symmetry such as an elementary p wave (which provides optimal agreement between the experimental data and QPI simulations) or a more complex order parameter (e.g., s+id wave symmetry).
A Note on Multigrid Theory for Non-nested Grids and/or Quadrature
NASA Technical Reports Server (NTRS)
Douglas, C. C.; Douglas, J., Jr.; Fyfe, D. E.
1996-01-01
We provide a unified theory for multilevel and multigrid methods when the usual assumptions are not present. For example, we do not assume that the solution spaces or the grids are nested. Further, we do not assume that there is an algebraic relationship between the linear algebra problems on different levels. What we provide is a computationally useful theory for adaptively changing levels. Theory is provided for multilevel correction schemes, nested iteration schemes, and one way (i.e., coarse to fine grid with no correction iterations) schemes. We include examples showing the applicability of this theory: finite element examples using quadrature in the matrix assembly and finite volume examples with non-nested grids. Our theory applies directly to other discretizations as well.
Preliminary evaluation of a nest usage sensor to detect double nest occupations of laying hens.
Zaninelli, Mauro; Costa, Annamaria; Tangorra, Francesco Maria; Rossi, Luciana; Agazzi, Alessandro; Savoini, Giovanni
2015-01-26
Conventional cage systems will be replaced by housing systems that allow hens to move freely. These systems may improve hens' welfare, but they lead to some disadvantages: disease, bone fractures, cannibalism, piling and lower egg production. New selection criteria for existing commercial strains should be identified considering individual data about laying performance and the behavior of hens. Many recording systems have been developed to collect these data. However, the management of double nest occupations remains critical for the correct egg-to-hen assignment. To limit such events, most systems adopt specific trap devices and additional mechanical components. Others, instead, only prevent these occurrences by narrowing the nest, without any detection and management. The aim of this study was to develop and test a nest usage "sensor", based on imaging analysis, that is able to automatically detect a double nest occupation. Results showed that the developed sensor correctly identified the double nest occupation occurrences. Therefore, the imaging analysis resulted in being a useful solution that could simplify the nest construction for this type of recording system, allowing the collection of more precise and accurate data, since double nest occupations would be managed and the normal laying behavior of hens would not be discouraged by the presence of the trap devices.
Preliminary Evaluation of a Nest Usage Sensor to Detect Double Nest Occupations of Laying Hens
Zaninelli, Mauro; Costa, Annamaria; Tangorra, Francesco Maria; Rossi, Luciana; Agazzi, Alessandro; Savoini, Giovanni
2015-01-01
Conventional cage systems will be replaced by housing systems that allow hens to move freely. These systems may improve hens' welfare, but they lead to some disadvantages: disease, bone fractures, cannibalism, piling and lower egg production. New selection criteria for existing commercial strains should be identified considering individual data about laying performance and the behavior of hens. Many recording systems have been developed to collect these data. However, the management of double nest occupations remains critical for the correct egg-to-hen assignment. To limit such events, most systems adopt specific trap devices and additional mechanical components. Others, instead, only prevent these occurrences by narrowing the nest, without any detection and management. The aim of this study was to develop and test a nest usage “sensor”, based on imaging analysis, that is able to automatically detect a double nest occupation. Results showed that the developed sensor correctly identified the double nest occupation occurrences. Therefore, the imaging analysis resulted in being a useful solution that could simplify the nest construction for this type of recording system, allowing the collection of more precise and accurate data, since double nest occupations would be managed and the normal laying behavior of hens would not be discouraged by the presence of the trap devices. PMID:25629704
Machine Imperfection Studies of the RAON Superconducting Linac
NASA Astrophysics Data System (ADS)
Jeon, D.; Jang, J.-H.; Jin, H.
2018-05-01
Studies of the machine imperfections in the RAON superconducting linac (SCL) that employs normal conducting (NC) quadrupoles were done to assess the tolerable error budgets of the machine imperfections that ensure operation of the beam. The studies show that the beam loss requirement is met even before the orbit correction and that the beam loss requirement is met even without the MHB (multi-harmonic buncher) and VE (velocity equalizer) thanks to the RAON's radio-frequency quadrupole (RFQ) design feature. For the low energy section of the linac (SCL3), a comparison is made between the two superconducting linac lattice types: one lattice that employs NC quadrupoles and the other that employs SC solenoids. The studies show that both lattices meet the beam loss requirement after the orbit correction. However, before the orbit correction, the lattice employing SC solenoids does not meet the beam loss requirement and can cause a significant beam loss, while the lattice employing NC quadrupoles meets the requirement. For the lattice employing SC solenoids, care must be taken during the beam commissioning.
Unconventional superconductivity in iron pnictides: Magnon mediated pairing
NASA Astrophysics Data System (ADS)
kar, Raskesh; Paul, Bikash Chandra; Misra, Anirban
2018-02-01
We study the phenomenon of unconventional superconductivity in iron pnictides on the basis of localized-itinerant model. In this proposed model, superconductivity arises from the itinerant part of electrons, whereas antiferromagnetism arises from the localized part. The itinerant electrons move over the sea of localized electrons in antiferromagnetic alignment and interact with them resulting in excitation of magnons. We find that triplet pairing of itinerant electrons via magnons is possible in checkerboard antiferromagnetic spin configuration of the substances CaFe2As2 and BaFe2As2 in pure form for umklapp scattering with scattering wave vector Q =(1 , 1) , in the unit of π/a where a being one orthorhombic crystal parameter, which is the nesting vector between two Fermi surfaces. The interaction potential figured out in this way, increases with the decrease in nearest neighbour (NN) exchange couplings. Under ambient pressure, with stripe antiferromagnetic spin configuration, a very small value of coupling constant is obtained which does not give rise to superconductivity. The critical temperature of superconductivity of the substances CaFe2As2 and BaFe2As2 in higher pressure checkerboard antiferromagnetic spin configuration are found to be 12.12 K and 29.95 K respectively which are in agreement with the experimental results.
Final report. Superconducting materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Ruvalds
1999-09-11
Our group has discovered a many body effect that explains the surprising divergence of the spin susceptibility which has been measured by neutron scattering experiments on high temperature superconductors and vanadium oxide metals. Electron interactions on nested - i.e., nearly parallel paths - have been analyzed extensively by our group, and such processes provide a physical explanation for many anomalous features that distinguish cuprate superconductors from ordinary metals.
Experiment of low resistance joints for the ITER correction coil.
Liu, Huajun; Wu, Yu; Wu, Weiyue; Liu, Bo; Shi, Yi; Guo, Shuai
2013-01-01
A test method was designed and performed to measure joint resistance of the ITER correction coil (CC) in liquid helium (LHe) temperature. A 10 kA superconducting transformer was manufactured to provide the joints current. The transformer consisted of two concentric layer-wound superconducting solenoids. NbTi superconducting wire was wound in the primary coil and the ITER CC conductor was wound in the secondary coil. The primary and the secondary coils were both immersed in liquid helium of a 300 mm useful bore diameter cryostat. Two ITER CC joints were assembled in the secondary loop and tested. The current of the secondary loop was ramped to 9 kA in several steps. The two joint resistances were measured to be 1.2 nΩ and 1.65 nΩ, respectively.
Kodama, Nao; Setoi, Ayana; Kose, Katsumi
2018-01-01
Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans. PMID:28367906
Kodama, Nao; Setoi, Ayana; Kose, Katsumi
2018-04-10
Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans.
Environmental Assessment: Convert Slow Routes 300 and 301 to Instrument Routes
2007-07-01
in the number of eggs, nestlings , or successful fledglings per nest. Table 4-3 summarizes the success and productivity results from the study. Table...Average eggs per nest 3.47 3.56 Average nestlings per nest 2.27 2.28 Average young/occupied per nest 1.84 1.80 Average young/successful per nest...Gardnervi ll e, State of Nevada, and that the annexed is a full, true and correct copy of # 921278 attached advertisement . Public Meeting - Proposed
Effect of Fermi surface nesting on resonant spin excitations in Ba{<_1-x}K{<_x}Fe{<_2}As{<_2}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellan, J.-P.; Rosenkranz, S.; Goremychkin, E.A.
2011-01-01
We report inelastic neutron scattering measurements of the resonant spin excitations in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s{sub {+-}}-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.
Williams, Gary E.; Wood, P.B.
2002-01-01
We used miniature infrared video cameras to monitor Wood Thrush (Hylocichla mustelina) nests during 1998–2000. We documented nest predators and examined whether evidence at nests can be used to predict predator identities and nest fates. Fifty-six nests were monitored; 26 failed, with 3 abandoned and 23 depredated. We predicted predator class (avian, mammalian, snake) prior to review of video footage and were incorrect 57% of the time. Birds and mammals were underrepresented whereas snakes were over-represented in our predictions. We documented ≥9 nest-predator species, with the southern flying squirrel (Glaucomys volans) taking the most nests (n = 8). During 2000, we predicted fate (fledge or fail) of 27 nests; 23 were classified correctly. Traditional methods of monitoring nests appear to be effective for classifying success or failure of nests, but ineffective at classifying nest predators.
Techniques for identifying predators of goose nests
Anthony, R. Michael; Grand, J.B.; Fondell, T.F.; Miller, David A.
2006-01-01
We used cameras and artificial eggs to identify nest predators of dusky Canada goose Branta canadensis occidentalis nests during 1997-2000. Cameras were set up at 195 occupied goose nests and 60 artificial nests. We placed wooden eggs and domestic goose eggs that were emptied and then filled with wax or foam in an additional 263 natural goose nests to identify predators from marks in the artificial eggs. All techniques had limitations, but each correctly identified predators and estimated their relative importance. Nests with cameras had higher rates of abandonment than natural nests, especially during laying. Abandonment rates were reduced by deploying artificial eggs late in laying and reducing time at nests. Predation rates for nests with cameras were slightly lower than for nests without cameras. Wax-filled artificial eggs caused mortality of embryos in natural nests, but were better for identifying predator marks at artificial nests. Use of foam-filled artificial eggs in natural nests was the most cost effective means of monitoring nest predation. ?? Wildlife Biology (2006).
The upside of noise: engineered dissipation as a resource in superconducting circuits
NASA Astrophysics Data System (ADS)
Kapit, Eliot
2017-09-01
Historically, noise in superconducting circuits has been considered an obstacle to be removed. A large fraction of the research effort in designing superconducting circuits has focused on noise reduction, with great success, as coherence times have increased by four orders of magnitude in the past two decades. However, noise and dissipation can never be fully eliminated, and further, a rapidly growing body of theoretical and experimental work has shown that carefully tuned noise, in the form of engineered dissipation, can be a profoundly useful tool in designing and operating quantum circuits. In this article, I review important applications of engineered dissipation, including state generation, state stabilization, and autonomous quantum error correction, where engineered dissipation can mitigate the effect of intrinsic noise, reducing logical error rates in quantum information processing. Further, I provide a pedagogical review of the basic noise processes in superconducting qubits (photon loss and phase noise), and argue that any dissipative mechanism which can correct photon loss errors is very likely to automatically suppress dephasing. I also discuss applications for quantum simulation, and possible future research directions.
Nakajima, Yasuyuki; Wang, Renxiong; Metz, Tristin; ...
2015-03-09
Here, we report a high-pressure study of simultaneous low-temperature electrical resistivity and Hall effect measurements on high quality single-crystalline KFe 2As 2 using designer diamond anvil cell techniques with applied pressures up to 33 GPa. In the low pressure regime, we show that the superconducting transition temperature T c finds a maximum onset value of 7 K near 2 GPa, in contrast to previous reports that find a minimum T c and reversal of pressure dependence at this pressure. Upon applying higher pressures, this T c is diminished until a sudden drastic enhancement occurs coincident with a first-order structural phasemore » transition into a collapsed tetragonal phase. The appearance of a distinct superconducting phase above 13 GPa is also accompanied by a sudden reversal of dominant charge carrier sign, from hole- to electron-like, which agrees with our band calculations predicting the emergence of an electron pocket and diminishment of hole pockets upon Fermi surface reconstruction. Our results suggest the high-temperature superconducting phase in KFe 2As 2 is substantially enhanced by the presence of nested electron and hole pockets, providing the key ingredient of high-T c superconductivity in iron pnictide superconductors.« less
Effects of spatial disturbance on common loon nest site selection and territory success
McCarthy, K.P.; DeStefano, S.
2011-01-01
The common loon (Gavia immer) breeds during the summer on northern lakes and water bodies that are also often desirable areas for aquatic recreation and human habitation. In northern New England, we assessed how the spatial nature of disturbance affects common loon nest site selection and territory success. We found through classification and regression analysis that distance to and density of disturbance factors can be used to classify observed nest site locations versus random points, suggesting that these factors affect loon nest site selection (model 1: Correct classification = 75%, null = 50%, K = 0.507, P < 0.001; model 2: Correct classification = 78%, null = 50%, K = 0.551, P < 0.001). However, in an exploratory analysis, we were unable to show a relation between spatial disturbance variables and breeding success (P = 0.595, R 2 = 0.436), possibly because breeding success was so low during the breeding seasons of 2007-2008. We suggest that by selecting nest site locations that avoid disturbance factors, loons thereby limit the effect that disturbance will have on their breeding success. Still, disturbance may force loons to use sub-optimal nesting habitat, limiting the available number of territories, and overall productivity. We advise that management efforts focus on limiting disturbance factors to allow breeding pairs access to the best nesting territories, relieving disturbance pressures that may force sub-optimal nest placement. ?? 2011 The Wildlife Society.
High-field double-pancake superconducting coils and a method of winding
Materna, P.A.
1984-01-31
A double-pancake coil having first and second pancakes may comprise a plurality of conductor means, each conductor means having a different grade and having one or more conductors, wherein each pancake of said double-pancake coil is comprised of inner and outer turns; wherein said inner turns are comprised of at least one of said conductor means wound about an axis and nested within one another; wherein said outer turns are comprised of said inner conductor means and at least one other conductor means co-wound about said inner turns and nested within one another; wherein each of said conductor means is wound along said axis from said first pancake to said second pancake at a different turn.
High-field double-pancake superconducting coils and a method of winding
Materna, Peter A.
1985-01-01
A double-pancake coil having first and second pancakes may comprise a plurality of conductor means, each conductor means having a different grade and having one or more conductors, wherein each pancake of said double-pancake coil is comprised of inner and outer turns; wherein said inner turns are comprised of at least one of said conductor means wound about an axis and nested within one another; wherein said outer turns are comprised of said inner conductor means and at least one other conductor means co-wound about said inner turns and nested within one another; wherein each of said conductor means is wound along said axis from said first pancake to said second pancake at a different turn.
TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model
NASA Astrophysics Data System (ADS)
Vučičević, J.; Ayral, T.; Parcollet, O.
2017-09-01
We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.
Gamma-ray bursts from cusps on superconducting cosmic strings at large redshifts
NASA Technical Reports Server (NTRS)
Paczynski, Bohdan
1988-01-01
Babul et al. (1987) proposed that some gamma-ray bursts may be caused by energy released at the cusps of oscillating loops made of superconducting cosmic strings. It is claimed that there were some errors and omissions in that work, which are claimed to be corrected in the present paper. Arguments are presented, that given certain assumptions, the cusps on oscillating superconducting cosmic strings produce highly collimated and energetic electromagnetic bursts and that a fair fraction of electromagnetic energy is likely to come out as gamma rays.
Superconducting quantum circuits at the surface code threshold for fault tolerance.
Barends, R; Kelly, J; Megrant, A; Veitia, A; Sank, D; Jeffrey, E; White, T C; Mutus, J; Fowler, A G; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Neill, C; O'Malley, P; Roushan, P; Vainsencher, A; Wenner, J; Korotkov, A N; Cleland, A N; Martinis, John M
2014-04-24
A quantum computer can solve hard problems, such as prime factoring, database searching and quantum simulation, at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection by distributing a logical state among many physical quantum bits (qubits) by means of quantum entanglement. Superconductivity is a useful phenomenon in this regard, because it allows the construction of large quantum circuits and is compatible with microfabrication. For superconducting qubits, the surface code approach to quantum computing is a natural choice for error correction, because it uses only nearest-neighbour coupling and rapidly cycled entangling gates. The gate fidelity requirements are modest: the per-step fidelity threshold is only about 99 per cent. Here we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4 per cent. This places Josephson quantum computing at the fault-tolerance threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits.
Effects of spatial disturbance on common loon nest site selection and territory success
McCarthy, Kyle P.; DeStefano, Stephen
2011-01-01
The common loon (Gavia immer) breeds during the summer on northern lakes and water bodies that are also often desirable areas for aquatic recreation and human habitation. In northern New England, we assessed how the spatial nature of disturbance affects common loon nest site selection and territory success. We found through classification and regression analysis that distance to and density of disturbance factors can be used to classify observed nest site locations versus random points, suggesting that these factors affect loon nest site selection (model 1: Correct classification = 75%, null = 50%, K = 0.507, P < 0.001; model 2: Correct classification = 78%, null = 50%, K = 0.551, P < 0.001). However, in an exploratory analysis, we were unable to show a relation between spatial disturbance variables and breeding success (P = 0.595, R2 = 0.436), possibly because breeding success was so low during the breeding seasons of 2007–2008. We suggest that by selecting nest site locations that avoid disturbance factors, loons thereby limit the effect that disturbance will have on their breeding success. Still, disturbance may force loons to use sub-optimal nesting habitat, limiting the available number of territories, and overall productivity. We advise that management efforts focus on limiting disturbance factors to allow breeding pairs access to the best nesting territories, relieving disturbance pressures that may force sub-optimal nest placement.
Orbital-dependent electron correlation effects in iron-based superconductors
NASA Astrophysics Data System (ADS)
Yi, Ming
The iron chalcogenide superconductors constitute arguably one of the most intriguing families of the iron-based high temperature superconductors given their ability to superconduct at comparable temperatures as the iron pnictides, despite the lack of similarities in their magnetic structures and Fermi surface topologies. In particular, the lack of hole Fermi pockets at the Brillouin zone center posts a challenge to the previous proposal of spin fluctuation mediated pairing via Fermi surface nesting. In this talk, using angle-resolved photoemission spectroscopy measurements, I will present evidence that show that instead of Fermi surface topology, strong electron correlation observed in electron bandwidth is an important ingredient for superconductivity in the iron chalcogenides. Specifically, I will show i) there exists universal strong orbital-selective renormalization effects and proximity to an orbital-selective Mott phase in Fe1+yTe1-xSex, AxFe2-ySe2, and monolayer FeSe film on SrTiO3, and ii) in RbxFe2(Se1-zSz)2 , where sulfur substitution for selenium continuously suppresses superconductivity down to zero, little change occurs in the Fermi surface topology while a substantial reduction of electron correlation is observed in an expansion of the overall bandwidth, implying that electron correlation is one of the key tuning parameters for superconductivity in these materials.
NASA Astrophysics Data System (ADS)
Langlois, Alexandre; Poirier, Mario; Bourbonnais, Claude; Bechgaard, Klaus
2008-03-01
Through competing electronic instabilities, the anion sublattice plays an important role in the rich phase diagram of the Bechgaard salts. In the quasi-one-dimensional organic conductor (TMTSF)2ClO4, anion ordering at 24 K affects the nesting properties of the Fermi surface and controls the stability of the superconducting phase below 1.2 K at ambient pressure. Moreover, the field induced spin density wave phases FISDW, one of the several features induced by a magnetic field in this compound, are also sensitive to the symmetry of the anions. In order to address the coupling issue between the lattice and these electronic instabilities, we have performed the first ultrasonic measurements on (TMTSF)2ClO4 in the relaxed state below 4 K using longitudinal and transverses waves (30-500 MHz). If low-frequency vibrating reed experiments have revealed magneto-elastic anomalies in the FISDW phases [1], the superconducting one was never investigated by similar techniques. We report anomalies in the ultrasonic velocity and attenuation for the superconducting and the FISDW phases. The coupling of these phases to the lattice is discussed in relation with the known T-B phase diagram. [1] X.D. Shi et al., Phys. Rev. B. 50, 1984 (1994).
Nest site characteristics of three coexisting Accipiter hawks in northeastern Oregon
Moore, K.R.; Henny, C.J.
1983-01-01
Habitat data were evaluated at 34 Goshawk (Accipiter gentilis), 31 Cooper's Hawk (A. cooperii), and 15 Sharp-shinned Hawk (A. striatus) nest sites in coniferous forests of northeastern Oregon. Crown volume profiles indicate a strong similarity in vegetative structure at nest sites of cooperii and striatus; both commonly nest in younger successional stands than gentilis. Habitat separation of nest sites among the three species was illustrated using a stepwise discriminant analysis; 88% of all gentilis sites were correctly classified. Interspecific overlap in nest site habitat was further demonstrated using a canonical analysis of habitat variables. Nest site habitat space of gentilis is distinct and is less variable in structure than that of the other species. Cooperii preferred nesting sites with norhern aspects, whereas striatus and gentilis showed no preference. The use of mistletoe (Arceuthobium sp.) growth by cooperii for nest platforms (64% of all nests) may explain its preference for Douglas fir (Pseudotsuga menziesii) as a nesting tree. Douglas fir is most commonly parasitized by mistletoe.
NASA Astrophysics Data System (ADS)
Vinci, Walter; Lidar, Daniel A.
2018-02-01
Nested quantum annealing correction (NQAC) is an error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. The encoding replaces each logical qubit by a complete graph of degree C . The nesting level C represents the distance of the error-correcting code and controls the amount of protection against thermal and control errors. Theoretical mean-field analyses and empirical data obtained with a D-Wave Two quantum annealer (supporting up to 512 qubits) showed that NQAC has the potential to achieve a scalable effective-temperature reduction, Teff˜C-η , with 0 <η ≤2 . We confirm that this scaling is preserved when NQAC is tested on a D-Wave 2000Q device (supporting up to 2048 qubits). In addition, we show that NQAC can also be used in sampling problems to lower the effective-temperature of a quantum annealer. Such effective-temperature reduction is relevant for machine-learning applications. Since we demonstrate that NQAC achieves error correction via a reduction of the effective-temperature of the quantum annealing device, our results address the problem of the "temperature scaling law for quantum annealers," which requires the temperature of quantum annealers to be reduced as problems of larger sizes are attempted to be solved.
Charpentier, Sophie; Galletti, Luca; Kunakova, Gunta; Arpaia, Riccardo; Song, Yuxin; Baghdadi, Reza; Wang, Shu Min; Kalaboukhov, Alexei; Olsson, Eva; Tafuri, Francesco; Golubev, Dmitry; Linder, Jacob; Bauch, Thilo; Lombardi, Floriana
2018-01-30
The original version of this Article contained an error in Fig. 6b. In the top scattering process, while the positioning of both arrows was correct, the colours were switched: the first arrow was red and the second arrow was blue, rather than the correct order of blue then red.
NASA Astrophysics Data System (ADS)
Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael
The maximum transition temperature Tc observed in the phase diagrams of several unconventional superconductors takes place in the vicinity of a putative antiferromagnetic quantum critical point. This observation motivated the theoretical proposal that superconductivity in these systems may be driven by quantum critical fluctuations, which in turn can also promote non-Fermi liquid behavior. In this talk, we present a combined analytical and sign-problem-free Quantum Monte Carlo investigation of the spin-fermion model - a widely studied low-energy model for the interplay between superconductivity and magnetic fluctuations. By engineering a series of band dispersions that interpolate between near-nested and open Fermi surfaces, and by also varying the strength of the spin-fermion interaction, we find that the hot spots of the Fermi surface provide the dominant contribution to the pairing instability in this model. We show that the analytical expressions for Tc and for the pairing susceptibility, obtained within a large-N Eliashberg approximation to the spin-fermion model, agree well with the Quantum Monte Carlo data, even in the regime of interactions comparable to the electronic bandwidth. DE-SC0012336.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chang; Palczewski, A. D.; Dhaka, R. S.
We used angle-resolved photoemission spectroscopy and thermoelectric power to study the poorly explored, highly overdoped side of the phase diagram of Ba(Fe 1-xCo x)₂As₂ high-temperature superconductor. Our data demonstrate that several Lifshitz transitions—topological changes of the Fermi surface—occur for large x. The central hole barrel changes to ellipsoids that are centered at Z at x~0.11 and subsequently disappear around x~0.2; changes in thermoelectric power occur at similar x values. T c decreases and goes to zero around x~0.15—between the two Lifshitz transitions. Beyond x=0.2 the central pocket becomes electron-like and superconductivity does not exist. Our observations reveal the importance ofmore » the underlying Fermiology in electron-doped iron arsenides. We speculate that a likely necessary condition for superconductivity in these materials is the presence of the central hole pockets rather than nesting between central and corner pockets.« less
Liu, Chang; Palczewski, A. D.; Dhaka, R. S.; ...
2011-07-25
We used angle-resolved photoemission spectroscopy and thermoelectric power to study the poorly explored, highly overdoped side of the phase diagram of Ba(Fe 1-xCo x)₂As₂ high-temperature superconductor. Our data demonstrate that several Lifshitz transitions—topological changes of the Fermi surface—occur for large x. The central hole barrel changes to ellipsoids that are centered at Z at x~0.11 and subsequently disappear around x~0.2; changes in thermoelectric power occur at similar x values. T c decreases and goes to zero around x~0.15—between the two Lifshitz transitions. Beyond x=0.2 the central pocket becomes electron-like and superconductivity does not exist. Our observations reveal the importance ofmore » the underlying Fermiology in electron-doped iron arsenides. We speculate that a likely necessary condition for superconductivity in these materials is the presence of the central hole pockets rather than nesting between central and corner pockets.« less
Error budgeting single and two qubit gates in a superconducting qubit
NASA Astrophysics Data System (ADS)
Chen, Z.; Chiaro, B.; Dunsworth, A.; Foxen, B.; Neill, C.; Quintana, C.; Wenner, J.; Martinis, John. M.; Google Quantum Hardware Team Team
Superconducting qubits have shown promise as a platform for both error corrected quantum information processing and demonstrations of quantum supremacy. High fidelity quantum gates are crucial to achieving both of these goals, and superconducting qubits have demonstrated two qubit gates exceeding 99% fidelity. In order to improve gate fidelity further, we must understand the remaining sources of error. In this talk, I will demonstrate techniques for quantifying the contributions of control, decoherence, and leakage to gate error, for both single and two qubit gates. I will also discuss the near term outlook for achieving quantum supremacy using a gate-based approach in superconducting qubits. This work is supported Google Inc., and by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1605114.
Barão-Nóbrega, José António Lemos; Marioni, Boris; Botero-Arias, Robinson; Nogueira, António José Arsénia; Lima, Emerson Silva; Magnusson, William Ernest; Da Silveira, Ronis; Marcon, Jaydione Luiz
2017-11-13
Although nesting ecology is well studied in several crocodilian species, it is not known how nest attendance influences physiology and body condition of nesting females. In this study, we describe body condition and serum biochemical values of nesting female, non-nesting female and male spectacled caiman (Caiman crocodilus) and black caiman (Melanosuchus niger) in two areas of Central Amazonia. We also evaluated the effect of nest age and nest distance to water on body condition and blood parameters of nesting females. Body condition and plasmatic concentrations of glucose, triglycerides, lactate and uric acid of nesting females were significantly different from those of non-nesting females and males in C. crocodilus, but not in M. niger. Our study also demonstrated that nest age and distance to water had a negative effect on female body condition in C. crocodilus, but not in M. niger. Female C. crocodilus attending older nests or nests built further away from permanent water bodies tended to have lower body condition. Our results demonstrate that the nesting strategy of C. crocodilus has a metabolic cost associated with nest attendance for nesting females, which appear to depend on accumulated energetic reserves during nest attendance. In contrast, nest attendance had little effect on the physiology of female M. niger.
Electron band structure of the high pressure cubic phase of AlH3
NASA Astrophysics Data System (ADS)
Shi, Hongliang; Zarifi, Niliffar; Yim, Wai-Leung; Tse, J. S.
2012-07-01
The electronic band structure of the cubic Pm3n phase of AlH3 stable above 100 GPa is examined with semi-local, Tran-Blaha modified Becke-Johnson local density approximation (TB-mBJLDA), screened hybrid density functionals and GW methods. The shift of the conduction band to higher energy with increasing pressure is predicted by all methods. However, there are significant differences in detail band structure. In the pressure range from 90 to160 GPa, semi-local, hybrid functional and TB-mBJLDA calculations predicted that AlH3 is a poor metal. In comparison, GW calculations show a gap opening at 160 GPa and AlH3 becomes a small gap semi-conductor. From the trends of the calculated band shifts, it can be concluded that the favourable conditions leading to the nesting of Fermi surfaces predicted by semi-local calculation have disappeared if the exchange term is included. The results highlight the importance of the correction to the exchange energy on the band structure of hydrogen dominant dense metal hydrides at high pressure hydrides and may help to rationalize the absence of superconductivity in AlH3 from experimental measurements.
Energy density in the Maxwell-Chern-Simons theory
NASA Astrophysics Data System (ADS)
Wesolowski, Denne; Hosotani, Yutaka; Chakravarty, Sumantra
1994-12-01
A two-dimensional nonrelativistic fermion system coupled to both electromagnetic gauge fields and Chern-Simons gauge fields is analyzed. Polarization tensors relevant in the quantum Hall effect and anyon superconductivity are obtained as simple closed integrals and are evaluated numerically for all momenta and frequencies. The correction to the energy density is evaluated in the random phase approximation (RPA) by summing an infinite series of ring diagrams. It is found that the correction has significant dependence on the particle number density. In the context of anyon superconductivity, the energy density relative to the mean field value is minimized at a hole concentration per lattice plaquette (0.05-0.06)(pca/ħ)2 where pc and a are the momentum cutoff and lattice constant, respectively. At the minimum the correction is about -5% to -25%, depending on the ratio 2mwc/p2c where wc is the frequency cutoff. In the Jain-Fradkin-Lopez picture of the fractional quantum Hall effect the RPA correction to the energy density is very large. It diverges logarithmically as the cutoff is removed, implying that corrections beyond RPA become important at large momentum and frequency.
Superconducting resonators as beam splitters for linear-optics quantum computation.
Chirolli, Luca; Burkard, Guido; Kumar, Shwetank; Divincenzo, David P
2010-06-11
We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.
Non-Fermi-liquid superconductivity: Eliashberg approach versus the renormalization group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huajia; Raghu, Srinivas; Torroba, Gonzalo
Here, we address the problem of superconductivity for non-Fermi liquids using two commonly adopted, yet apparently distinct, methods: (1) the renormalization group (RG) and (2) Eliashberg theory. The extent to which both methods yield consistent solutions for the low-energy behavior of quantum metals has remained unclear. We show that the perturbative RG beta function for the 4-Fermi coupling can be explicitly derived from the linearized Eliashberg equations, under the assumption that quantum corrections are approximately local across energy scales. We apply our analysis to the test case of phonon-mediated superconductivity and show the consistency of both the Eliashberg and RGmore » treatments. We next study superconductivity near a class of quantum critical points and find a transition between superconductivity and a “naked” metallic quantum critical point with finite, critical BCS couplings. We speculate on the applications of our theory to the phenomenology of unconventional metals.« less
Non-Fermi-liquid superconductivity: Eliashberg approach versus the renormalization group
Wang, Huajia; Raghu, Srinivas; Torroba, Gonzalo
2017-04-15
Here, we address the problem of superconductivity for non-Fermi liquids using two commonly adopted, yet apparently distinct, methods: (1) the renormalization group (RG) and (2) Eliashberg theory. The extent to which both methods yield consistent solutions for the low-energy behavior of quantum metals has remained unclear. We show that the perturbative RG beta function for the 4-Fermi coupling can be explicitly derived from the linearized Eliashberg equations, under the assumption that quantum corrections are approximately local across energy scales. We apply our analysis to the test case of phonon-mediated superconductivity and show the consistency of both the Eliashberg and RGmore » treatments. We next study superconductivity near a class of quantum critical points and find a transition between superconductivity and a “naked” metallic quantum critical point with finite, critical BCS couplings. We speculate on the applications of our theory to the phenomenology of unconventional metals.« less
Publisher Correction: Tunnelling spectroscopy of gate-induced superconductivity in MoS2
NASA Astrophysics Data System (ADS)
Costanzo, Davide; Zhang, Haijing; Reddy, Bojja Aditya; Berger, Helmuth; Morpurgo, Alberto F.
2018-06-01
In the version of this Article originally published, an error during typesetting led to the curve in Fig. 2a being shifted to the right, and the curves in the inset of Fig. 2a being displaced. The figure has now been corrected in all versions of the Article; the original and corrected Fig. 2a are shown below.
Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.
2015-01-01
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200
Córcoles, A D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M
2015-04-29
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, T.; Cai, Y.; Smellie, R.
1993-05-01
The basic features of the Superconducting Super Collider lattice are the two beamlines formed by superconducting dipoles (7736) and quadrupoles (1564). The dipoles constraint two 20 TeV proton beams into counterrotating closed orbits of 86.2 km. The quadrupoles (FODO) require cryogenic cooling the LHe temperatures. This requirement isolates the main magnets from the outside world. The interface required, the spool, is a crucial component of superconducting lattice design and machine operation. There are over 1588 spools in the Super Collider. We present hear SSCL spool designs which consist of (1) housing for superconducting closed orbit and multipole correction magnets, (2)more » cryogenic function, magnet quench protection, system power, and instrumentation interfaces, and (3) cold to warm transitions for ware magnet and warm instrumentation drift spaces.« less
Can selection on nest size from nest predation explain the latitudinal gradient in clutch size?
Biancucci, Luis; Martin, Thomas E
2010-09-01
1. Latitudinal variation in clutch sizes of birds is a well described, but poorly understood pattern. Many hypotheses have been proposed, but few have been experimentally tested, and none have been universally accepted by researchers. 2. The nest size hypothesis posits that higher nest predation in the tropics favours selection for smaller nests and thereby constrains clutch size by shrinking available space for eggs and/or nestlings in the nest. We tested this hypothesis with an experiment in a tropical forest and a comparative study between temperate and tropical field sites. 3. Specifically, we tested if: (i) predation increased with nest size; (ii) tropical birds had smaller nests controlled for body size; and (iii) clutch size was explained by nest size controlled for body size. 4. Experimental swapping of nests of different sizes showed that nest predation increased with nest size in the tropical site. Moreover, nest predation rates were higher in species with larger nests in both sites. However, nest size, corrected for body mass and phylogeny, did not differ between sites and was not related to clutch size between sites. 5. Hence, nest predation can exert selection on nest size as predicted by the hypothesis. Nest size increased with adult body mass, such that adult size might indirectly influence reproductive success through effects on nest size and nest predation risk. Ultimately, however, selection from nest predation on nest size does not explain the smaller clutch sizes typical of the tropics.
Can selection on nest size from nest predation explain the latitudinal gradient in clutch size?
Biancucci, L.; Martin, T.E.
2010-01-01
1. Latitudinal variation in clutch sizes of birds is a well described, but poorly understood pattern. Many hypotheses have been proposed, but few have been experimentally tested, and none have been universally accepted by researchers. 2. The nest size hypothesis posits that higher nest predation in the tropics favours selection for smaller nests and thereby constrains clutch size by shrinking available space for eggs and/or nestlings in the nest. We tested this hypothesis with an experiment in a tropical forest and a comparative study between temperate and tropical field sites. 3. Specifically, we tested if: (i) predation increased with nest size; (ii) tropical birds had smaller nests controlled for body size; and (iii) clutch size was explained by nest size controlled for body size. 4. Experimental swapping of nests of different sizes showed that nest predation increased with nest size in the tropical site. Moreover, nest predation rates were higher in species with larger nests in both sites. However, nest size, corrected for body mass and phylogeny, did not differ between sites and was not related to clutch size between sites. 5. Hence, nest predation can exert selection on nest size as predicted by the hypothesis. Nest size increased with adult body mass, such that adult size might indirectly influence reproductive success through effects on nest size and nest predation risk. Ultimately, however, selection from nest predation on nest size does not explain the smaller clutch sizes typical of the tropics.
Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits.
Chow, Jerry M; Gambetta, Jay M; Córcoles, A D; Merkel, Seth T; Smolin, John A; Rigetti, Chad; Poletto, S; Keefe, George A; Rothwell, Mary B; Rozen, J R; Ketchen, Mark B; Steffen, M
2012-08-10
We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.
Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits
NASA Astrophysics Data System (ADS)
Chow, Jerry M.; Gambetta, Jay M.; Córcoles, A. D.; Merkel, Seth T.; Smolin, John A.; Rigetti, Chad; Poletto, S.; Keefe, George A.; Rothwell, Mary B.; Rozen, J. R.; Ketchen, Mark B.; Steffen, M.
2012-08-01
We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.
NASA Astrophysics Data System (ADS)
Saito, Tetsuro; Onari, Seiichiro; Kontani, Hiroshi
2011-04-01
We study the superconducting state in recently discovered high-Tc superconductor KxFe2Se2 based on the ten-orbital Hubbard-Holstein model without hole pockets. When the Coulomb interaction is large, a spin-fluctuation-mediated d-wave state appears due to the nesting between electron pockets. Interestingly, the symmetry of the body-centered tetragonal structure in KxFe2Se2 requires the existence of nodes in the d-wave gap, although a fully gapped d-wave state is realized in the case of a simple tetragonal structure. In the presence of moderate electron-phonon interaction due to Fe-ion optical modes, however, orbital fluctuations give rise to the fully gapped s++-wave state without sign reversal. Therefore, both superconducting states are distinguishable by careful measurements of the gap structure or the impurity effect on Tc.
NASA Astrophysics Data System (ADS)
Cho, Weejee; Platt, Christian; McKenzie, Ross H.; Raghu, Srinivas
2015-10-01
The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin-triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has more sign changes than required by the point-group symmetry.
NASA Astrophysics Data System (ADS)
Platt, Christian; Cho, Weejee; McKenzie, Ross H.; Raghu, Sri
The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four Molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has accidental nodes, i.e. it has more sign changes than required by the point-group symmetry.
Superconductivity in YTE2Ge2 compounds (TE = d-electron transition metal)
NASA Astrophysics Data System (ADS)
Chajewski, G.; Samsel-Czekała, M.; Hackemer, A.; Wiśniewski, P.; Pikul, A. P.; Kaczorowski, D.
2018-05-01
Polycrystalline samples of YTE2Ge2 with TE = Co, Ni, Ru, Rh, Pd and Pt were synthesized and characterized by means of X-ray powder diffraction and low-temperature electrical resistivity and specific heat measurements, supplemented by fully relativistic full-potential local-orbital band structure calculations. We confirm that most of the compounds studied crystallize in a body-centered tetragonal ThCr2S2 -type structure (space group I 4 / mmm) and have three-dimensional Fermi surfaces, while only one of them (YPt2Ge2) forms with a primitive tetragonal CaBe2Ge2 -type unit cell (space group P 4 / nmm) and possesses quasi-two-dimensional Fermi surface sheets with some nesting. Physical properties data show conventional superconductivity in the phases with TE = Co, Pd and Pt, i.e. independently of the structure type (and hence the dimensionality of the Fermi surface).
NASA Astrophysics Data System (ADS)
Guterding, Daniel; Jeschke, Harald; Hirschfeld, Peter; Valenti, Roser
2015-03-01
We present a theoretical investigation of alkali metal/ammonia intercalated iron selenide. Using ab-initio density functional theory we unravel how charge doping and dimensionality of the electronic structure can be controlled through the chemical composition of the intercalated molecules. Within random phase approximation spin fluctuation theory we analyze the impact of intercalation on the superconducting pairing strength. We find that high Tc is to be expected away from perfect nesting. While experimental studies have focused on the intercalation of larger molecules in the spacer layer so far, we argue that no higher Tc can be achieved this way. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SPP 1458, the National Science Foundation under Grant No. PHY11-25915 and the Department of Energy under Grant No. DE-FG02-05ER46236.
NASA Astrophysics Data System (ADS)
Blackburn, Simon; Côté, Michel; Louie, Steven G.; Cohen, Marvin L.
2011-09-01
Using density-functional theory within the local-density approximation, we study the electron-phonon coupling in NbC1-xNx and NbN crystals in the rocksalt structure. The Fermi surface of these systems exhibits important nesting. The associated Kohn anomaly greatly increases the electron-phonon coupling and induces a structural instability when the electronic density of states reaches a critical value. Our results reproduce the observed rise in Tc from 11.2 to 17.3 K as the nitrogen doping is increased in NbC1-xNx. To further understand the contribution of the structural instability to the rise of the superconducting temperature, we develop a model for the Eliashberg spectral function in which the effect of the unstable phonons is set apart. We show that this model together with the McMillan formula can reproduce the increase of Tc near the structural phase transition.
Estimating populations of nesting brant using aerial videography
Anthony, R. Michael; Anderson, W.H.; Sedinger, J.S.; McDonald, L.L.
1995-01-01
We mounted a video camcorder in a single-engine aircraft to estimate nesting density along 10-m wide strip transects in black brant colonies on the Yukon Delta National Wildlife Refuge, Alaska during 1990-1992. A global positioning system (GPS) receiver was connected to the video recorder and a laptop computer to locate transects and annotate video tape with time and latitude-longitude at 1-second intervals. About 4-5 hours of flight time were required to record 30-40 minutes of video tape needed to survey large (>5,000 nests in > 10 km2)colonies. We conducted ground searches along transects to locate and identify nests for determining detection rates of nests in video images. Counts of nests from video transects were correlated with actual numbers of nests. Resolution of images was sufficient to detect 81% of known nests (with and without incubating females). Of these, 68% were correctly identified as brant nests. The most common misidentification of known nests was failure of viewers to see the nest that the detected bird was incubating. Unattended nests with exposed eggs, down-covered nests, and nesting brant, cackling Canada geese, and emperor geese were identified in video images. Flushing of incubating geese by survey aircraft was not significant. About 10% of known nests were unoccupied in video images compared to 16% unoccupied nests observed from tower blinds during periods without aircraft disturbance.
Orbital occupancy and charge doping in iron-based superconductors.
Cantoni, Claudia; Mitchell, Jonathan E; May, Andrew F; McGuire, Michael A; Idrobo, Juan-Carlos; Berlijn, Tom; Dagotto, Elbio; Chisholm, Matthew F; Zhou, Wu; Pennycook, Stephen J; Sefat, Athena S; Sales, Brian C
2014-09-17
The intrinsic Fe local magnetic moment and Fe orbital occupations of iron-based superconductors are unveiled through the local, real-space capability of aberration-corrected scanning transmission electron microscopy/electron energy loss spectroscopy (STEM/EELS). Although the ordering of Fe moments needs to be suppressed for superconductivity to arise, the local, fluctuating Fe magnetic moment is enhanced near optimal superconductivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-fidelity gates towards a scalable superconducting quantum processor
NASA Astrophysics Data System (ADS)
Chow, Jerry M.; Corcoles, Antonio D.; Gambetta, Jay M.; Rigetti, Chad; Johnson, Blake R.; Smolin, John A.; Merkel, Seth; Poletto, Stefano; Rozen, Jim; Rothwell, Mary Beth; Keefe, George A.; Ketchen, Mark B.; Steffen, Matthias
2012-02-01
We experimentally explore the implementation of high-fidelity gates on multiple superconducting qubits coupled to multiple resonators. Having demonstrated all-microwave single and two qubit gates with fidelities > 90% on multi-qubit single-resonator systems, we expand the application to qubits across two resonators and investigate qubit coupling in this circuit. The coupled qubit-resonators are building blocks towards two-dimensional lattice networks for the application of surface code quantum error correction algorithms.
Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure
NASA Astrophysics Data System (ADS)
Ma, Yanbin; Duan, Defang; Shao, Ziji; Yu, Hongyu; Liu, Hanyu; Tian, Fubo; Huang, Xiaoli; Li, Da; Liu, Bingbing; Cui, Tian
2017-10-01
We predict a new ternary hydride MgSiH6 under high pressures, which is a metal with an ionic feature and takes on a simple cubic structure with space group P m -3 above 250 GPa. Our first-principles calculations show that the cubic MgSiH6 is a potential high-temperature superconductor with a superconducting transition temperature Tc of ˜63 K at 250 GPa. Further analysis suggests that phonon softening along mainly Γ -X and Γ -M directions induced by Fermi surface nesting plays a crucial role in the high-temperature superconductivity. Herein we propose the "triangle straight-line method" which provides a clear guide to determine the specific A + B → D type formation routes for ternary hydrides of the Mg-Si-H system and it effectively reveals two divergent paths to obtain MgSiH6 under high pressures: MgH2+SiH4→MgSiH6 and MgSi + 3 H2→MgSiH6 . This method might be applicable to all ternary compounds, which will be very significant for further experimental synthesis.
Superconducting state parameters of bulk amorphous alloys
NASA Astrophysics Data System (ADS)
Vora, A. M.
2012-12-01
Well recognized empty core pseudopotential of Ashcroft is used to investigate the superconducting state parameters viz; electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature T C , isotope effect exponent α and effective interaction strength N O V of some (Ni33Zr67)1- x V x ( x = 0, 0.05, 0.1, 0.15) bulk amorphous alloys. We have incorporated five different types of local field correction functions, proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The T C obtained from local field correction function proposed by Sarkar et al. (S) is in excellent agreement with available theoretical data. Quadratic T C equation has been proposed providing successfully the T C values of bulk amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirm the superconducting phase in the s bulk amorphous alloys.
Gamasoidosis illustrated - from the nest to dermoscopy*
Wambier, Carlos Gustavo; Wambier, Sarah Perillo de Farias
2012-01-01
Gamasoidosis (acariasis, avian-mite dermatitis or bird-mite dermatitis) is a challenging diagnosis that is becoming more common because of the frequent use of window air conditioners in tropical countries. These devices may serve as shelters for nests of urban birds such as pigeons. Dermatologists should become familiar with this infestation to establish the correct diagnosis and treatment. PMID:23197219
Zhang, Ruixin; Yang, Huaixin; Guo, Cong; Tian, Huanfang; Shi, Honglong; Chen, Genfu; Li, Jianqi
2016-12-19
Microstructural analyses based on aberration-corrected scanning transmission electron microscopy (STEM) observations demonstrate that low-dimensional Cs x Bi 4 Te 6 materials, known to be a novel thermoelectric and superconducting system, contain notable structural channels that go directly along the b axis, which can be partially filled by atom clusters depending on the thermal treatment process. We successfully prepared two series of Cs x Bi 4 Te 6 single-crystalline samples using two different sintering processes. The Cs x Bi 4 Te 6 samples prepared using an air-quenching method show superconductivity at approximately 4 K, while the Cs x Bi 4 Te 6 with the same nominal compositions prepared by slowly cooling are nonsuperconductors. Moreover, atomic structural investigations of typical samples reveal that the structural channels are often empty in superconducting materials; thus, we can represent the superconducting phase as Cs 1-y Bi 4 Te 6 with considering the point defects in the Cs layers. In addition, the channels in the nonsuperconducting crystals are commonly partially occupied by triplet Bi clusters. Moreover, the average structures for these two phases are also different in their monoclinic angles (β), which are estimated to be 102.3° for superconductors and 100.5° for nonsuperconductors.
Nesting ecology and behavior of Broad-winged Hawks in moist karst forests of Puerto Rico
Hengstenberg, D.W.; Vilella, F.J.
2005-01-01
The Puerto Rican Broad-winged Hawk (Buteo platypterus brunnescens) is an endemic and endangered subspecies inhabiting upland montane forests of Puerto Rico. The reproductive ecology, behavior, and nesting habitat of the Broad-winged Hawk were studied in Ri??o Abajo Forest, Puerto Rico, from 2001-02. We observed 158 courtship displays by Broad-winged Hawks. Also, we recorded 25 territorial interactions between resident Broad-winged Hawks and intruding Red-tailed Hawks (Buteo jamaicensis jamaicensis). Broad-winged Hawks displaced intruding Red-tailed Hawks from occupied territories (P = 0.009). Mayfield nest survival was 0.67 across breeding seasons (0.81 in 2001, N = 6; 0.51 in 2002, N = 4), and pairs averaged 1.1 young per nest (years combined). The birds nested in mixed species timber plantations and mature secondary forest. Nests were placed in the upper reaches of large trees emerging from the canopy. Nest tree DBH, understory stem density, and distance to karst cliff wall correctly classified (77.8%) nest sites. ?? 2005 The Raptor Research Foundation, Inc.
Nernst effect from fluctuating pairs in the pseudogap phase of the cuprates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levchenko, A.; Norman, M. R.; Varlamov, A. A.
2011-01-31
The observation of a large Nernst signal in cuprates above the superconducting transition temperature has attracted much attention. A potential explanation is that it originates from superconducting fluctuations. Although the Nernst signal is indeed consistent with Gaussian fluctuations for overdoped cuprates, Gaussian theory fails to describe the temperature dependence seen for underdoped cuprates. Here, we consider the vertex correction to Gaussian theory resulting from the pseudogap. This yields a Nernst signal in good agreement with the data.
Freas, Cody A.; Wystrach, Antione; Narendra, Ajay; Cheng, Ken
2018-01-01
Solitary foraging ants commonly use visual cues from their environment for navigation. Foragers are known to store visual scenes from the surrounding panorama for later guidance to known resources and to return successfully back to the nest. Several ant species travel not only on the ground, but also climb trees to locate resources. The navigational information that guides animals back home during their descent, while their body is perpendicular to the ground, is largely unknown. Here, we investigate in a nocturnal ant, Myrmecia midas, whether foragers travelling down a tree use visual information to return home. These ants establish nests at the base of a tree on which they forage and in addition, they also forage on nearby trees. We collected foragers and placed them on the trunk of the nest tree or a foraging tree in multiple compass directions. Regardless of the displacement location, upon release ants immediately moved to the side of the trunk facing the nest during their descent. When ants were released on non-foraging trees near the nest, displaced foragers again travelled around the tree to the side facing the nest. All the displaced foragers reached the correct side of the tree well before reaching the ground. However, when the terrestrial cues around the tree were blocked, foragers were unable to orient correctly, suggesting that the surrounding panorama is critical to successful orientation on the tree. Through analysis of panoramic pictures, we show that views acquired at the base of the foraging tree nest can provide reliable nest-ward orientation up to 1.75 m above the ground. We discuss, how animals descending from trees compare their current scene to a memorised scene and report on the similarities in visually guided behaviour while navigating on the ground and descending from trees. PMID:29422880
Freas, Cody A; Wystrach, Antione; Narendra, Ajay; Cheng, Ken
2018-01-01
Solitary foraging ants commonly use visual cues from their environment for navigation. Foragers are known to store visual scenes from the surrounding panorama for later guidance to known resources and to return successfully back to the nest. Several ant species travel not only on the ground, but also climb trees to locate resources. The navigational information that guides animals back home during their descent, while their body is perpendicular to the ground, is largely unknown. Here, we investigate in a nocturnal ant, Myrmecia midas , whether foragers travelling down a tree use visual information to return home. These ants establish nests at the base of a tree on which they forage and in addition, they also forage on nearby trees. We collected foragers and placed them on the trunk of the nest tree or a foraging tree in multiple compass directions. Regardless of the displacement location, upon release ants immediately moved to the side of the trunk facing the nest during their descent. When ants were released on non-foraging trees near the nest, displaced foragers again travelled around the tree to the side facing the nest. All the displaced foragers reached the correct side of the tree well before reaching the ground. However, when the terrestrial cues around the tree were blocked, foragers were unable to orient correctly, suggesting that the surrounding panorama is critical to successful orientation on the tree. Through analysis of panoramic pictures, we show that views acquired at the base of the foraging tree nest can provide reliable nest-ward orientation up to 1.75 m above the ground. We discuss, how animals descending from trees compare their current scene to a memorised scene and report on the similarities in visually guided behaviour while navigating on the ground and descending from trees.
Study on superconducting state parameters of Cu1-xZrx metallic glasses using model potentials
NASA Astrophysics Data System (ADS)
Jambusarwala, Tasneem S.; Gajjar, P. N.
2018-05-01
The superconducting state parameters (SSP) of Cu1-xZrx metallic glasses over the full range of concentration x of Zr have been investigated to study influence of various local pseudopotentials. The study includes the computation of electron-phonon coupling strength (λ), transition temperature (TC), isotope effect exponent (α) and effective interaction strength (N0V) using fourteen different forms of local model potentials. The local field correction function proposed by Taylor (T) is used. The influence of model potential on various parameters is ranging from 6% to 83% for pure Zr and 28% to 84% for pure Cu. The present study confirms that the identification of model potential is vital in studying Superconducting State Parameters.
Disentangling superconducting and magnetic orders in NaFe1 -xNixAs using muon spin rotation
NASA Astrophysics Data System (ADS)
Cheung, Sky C.; Guguchia, Zurab; Frandsen, Benjamin A.; Gong, Zizhou; Yamakawa, Kohtaro; Almeida, Dalson E.; Onuorah, Ifeanyi J.; Bonfá, Pietro; Miranda, Eduardo; Wang, Weiyi; Tam, David W.; Song, Yu; Cao, Chongde; Cai, Yipeng; Hallas, Alannah M.; Wilson, Murray N.; Munsie, Timothy J. S.; Luke, Graeme; Chen, Bijuan; Dai, Guangyang; Jin, Changqing; Guo, Shengli; Ning, Fanlong; Fernandes, Rafael M.; De Renzi, Roberto; Dai, Pengcheng; Uemura, Yasutomo J.
2018-06-01
Muon spin rotation and relaxation studies have been performed on a "111" family of iron-based superconductors, NaFe1 -xNixAs , using single crystalline samples with Ni concentrations x =0 , 0.4, 0.6, 1.0, 1.3, and 1.5%. Static magnetic order was characterized by obtaining the temperature and doping dependences of the local ordered magnetic moment size and the volume fraction of the magnetically ordered regions. For x =0 and 0.4%, a transition to a nearly-homogeneous long range magnetically ordered state is observed, while for x ≳0.4 % magnetic order becomes more disordered and is completely suppressed for x =1.5 % . The magnetic volume fraction continuously decreases with increasing x . Development of superconductivity in the full volume is inferred from Meissner shielding results for x ≳0.4 % . The combination of magnetic and superconducting volumes implies that a spatially-overlapping coexistence of magnetism and superconductivity spans a large region of the T -x phase diagram for NaFe1 -xNixAs . A strong reduction of both the ordered moment size and the volume fraction is observed below the superconducting TC for x =0.6 , 1.0, and 1.3%, in contrast to other iron pnictides in which one of these two parameters exhibits a reduction below TC, but not both. The suppression of magnetic order is further enhanced with increased Ni doping, leading to a reentrant nonmagnetic state below TC for x =1.3 % . The reentrant behavior indicates an interplay between antiferromagnetism and superconductivity involving competition for the same electrons. These observations are consistent with the sign-changing s± superconducting state, which is expected to appear on the verge of microscopic coexistence and phase separation with magnetism. We also present a universal linear relationship between the local ordered moment size and the antiferromagnetic ordering temperature TN across a variety of iron-based superconductors. We argue that this linear relationship is consistent with an itinerant-electron approach, in which Fermi surface nesting drives antiferromagnetic ordering. In studies of superconducting properties, we find that the T =0 limit of superfluid density follows the linear trend observed in underdoped cuprates when plotted against TC. This paper also includes a detailed theoretical prediction of the muon stopping sites and provides comparisons with experimental results.
Physical implementation of protected qubits
NASA Astrophysics Data System (ADS)
Douçot, B.; Ioffe, L. B.
2012-07-01
We review the general notion of topological protection of quantum states in spin models and its relation with the ideas of quantum error correction. We show that topological protection can be viewed as a Hamiltonian realization of error correction: for a quantum code for which the minimal number of errors that remain undetected is N, the corresponding Hamiltonian model of the effects of the environment noise appears only in the Nth order of the perturbation theory. We discuss the simplest model Hamiltonians that realize topological protection and their implementation in superconducting arrays. We focus on two dual realizations: in one the protected state is stored in the parity of the Cooper pair number, in the other, in the parity of the flux number. In both cases the superconducting arrays allow a number of fault-tolerant operations that should make the universal quantum computation possible.
Electrons at the monkey saddle: A multicritical Lifshitz point
NASA Astrophysics Data System (ADS)
Shtyk, A.; Goldstein, G.; Chamon, C.
2017-01-01
We consider two-dimensional interacting electrons at a monkey saddle with dispersion ∝px3-3 pxpy2 . Such a dispersion naturally arises at the multicritical Lifshitz point when three Van Hove saddles merge in an elliptical umbilic elementary catastrophe, which we show can be realized in biased bilayer graphene. A multicritical Lifshitz point of this kind can be identified by its signature Landau level behavior Em∝(Bm ) 3 /2 and related oscillations in thermodynamic and transport properties, such as de Haas-Van Alphen and Shubnikov-de Haas oscillations, whose period triples as the system crosses the singularity. We show, in the case of a single monkey saddle, that the noninteracting electron fixed point is unstable to interactions under the renormalization-group flow, developing either a superconducting instability or non-Fermi-liquid features. Biased bilayer graphene, where there are two non-nested monkey saddles at the K and K' points, exhibits an interplay of competing many-body instabilities, namely, s -wave superconductivity, ferromagnetism, and spin- and charge-density waves.
Phenology largely explains taller grass at successful nests in greater sage-grouse.
Smith, Joseph T; Tack, Jason D; Doherty, Kevin E; Allred, Brady W; Maestas, Jeremy D; Berkeley, Lorelle I; Dettenmaier, Seth J; Messmer, Terry A; Naugle, David E
2018-01-01
Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground-nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage-grouse ( Centrocercus urophasianus ; sage-grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage-grouse, we reanalyzed existing datasets comprising >800 sage-grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage-grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage-grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited.
Publisher Correction: Studying light-harvesting models with superconducting circuits.
Potočnik, Anton; Bargerbos, Arno; Schröder, Florian A Y N; Khan, Saeed A; Collodo, Michele C; Gasparinetti, Simone; Salathé, Yves; Creatore, Celestino; Eichler, Christopher; Türeci, Hakan E; Chin, Alex W; Wallraff, Andreas
2018-06-08
The original HTML version of this Article contained an error in the second mathematical expression in the fourth sentence of the fourth paragraph of the 'Excitation transfer with uniform white noise' section of the Results. This has been corrected in the HTML version of the Article.The original PDF version of this Article incorrectly stated that 'Correspondence and requests for materials should be addressed to A. Pčn.', instead of the correct 'Correspondence and requests for materials should be addressed to A. Potočnik'. This has been corrected in the PDF version of the Article.
Huang, H. Y.; Jia, C. J.; Chen, Z. Y.; ...
2016-01-22
Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O8+δ. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast,more » the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors.« less
NASA Astrophysics Data System (ADS)
Bruno, A.; Michalak, D. J.; Poletto, S.; Clarke, J. S.; Dicarlo, L.
Large-scale quantum computation hinges on the ability to preserve and process quantum information with higher fidelity by increasing redundancy in a quantum error correction code. We present the realization of a scalable footprint for superconducting surface code based on planar circuit QED. We developed a tileable unit cell for surface code with all I/O routed vertically by means of superconducting through-silicon vias (TSVs). We address some of the challenges encountered during the fabrication and assembly of these chips, such as the quality of etch of the TSV, the uniformity of the ALD TiN coating conformal to the TSV, and the reliability of superconducting indium contact between the chips and PCB. We compare measured performance to a detailed list of specifications required for the realization of quantum fault tolerance. Our demonstration using centimeter-scale chips can accommodate the 50 qubits needed to target the experimental demonstration of small-distance logical qubits. Research funded by Intel Corporation and IARPA.
Protecting quantum information in superconducting circuits
NASA Astrophysics Data System (ADS)
Devoret, Michel
Can we prolong the coherence of a two-state manifold in a complex quantum system beyond the coherence of its longest-lived component? This question is the starting point in the construction of a scalable quantum computer. It translates in the search for processes that operate as some sort of Maxwell's demon and reliably correct the errors resulting from the coupling between qubits and their environment. The presentation will review recent experiments that test the dynamical protection by Josephson circuits of a logical qubit memory based on superpositions of particular coherent states of a superconducting resonator.
One-way coupling of an atmospheric and a hydrologic model in Colorado
Hay, L.E.; Clark, M.P.; Pagowski, M.; Leavesley, G.H.; Gutowski, W.J.
2006-01-01
This paper examines the accuracy of high-resolution nested mesoscale model simulations of surface climate. The nesting capabilities of the atmospheric fifth-generation Pennsylvania State University (PSU)-National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5) were used to create high-resolution, 5-yr climate simulations (from 1 October 1994 through 30 September 1999), starting with a coarse nest of 20 km for the western United States. During this 5-yr period, two finer-resolution nests (5 and 1.7 km) were run over the Yampa River basin in northwestern Colorado. Raw and bias-corrected daily precipitation and maximum and minimum temperature time series from the three MM5 nests were used as input to the U.S. Geological Survey's distributed hydrologic model [the Precipitation Runoff Modeling System (PRMS)] and were compared with PRMS results using measured climate station data. The distributed capabilities of PRMS were provided by partitioning the Yampa River basin into hydrologic response units (HRUs). In addition to the classic polygon method of HRU definition, HRUs for PRMS were defined based on the three MM5 nests. This resulted in 16 datasets being tested using PRMS. The input datasets were derived using measured station data and raw and bias-corrected MM5 20-, 5-, and 1.7-km output distributed to 1) polygon HRUs and 2) 20-, 5-, and 1.7-km-gridded HRUs, respectively. Each dataset was calibrated independently, using a multiobjective, stepwise automated procedure. Final results showed a general increase in the accuracy of simulated runoff with an increase in HRU resolution. In all steps of the calibration procedure, the station-based simulations of runoff showed higher accuracy than the MM5-based simulations, although the accuracy of MM5 simulations was close to station data for the high-resolution nests. Further work is warranted in identifying the causes of the biases in MM5 local climate simulations and developing methods to remove them. ?? 2006 American Meteorological Society.
NASA Astrophysics Data System (ADS)
Nagai, Yuki
2015-02-01
We study the robustness against nonmagnetic impurities in the topological superconductor with point nodes, focusing on an effective model of CuxBi2Se3 . We find that the topological superconductivity with point nodes is not fragile against nonmagnetic impurities, although the superconductivity with nodes in past studies is usually fragile. Exchanging the role of spin with the one of orbital, and vice versa, we find that in the "dual" space the topological superconductor with point nodes is regarded as the intraorbital spin-singlet s -wave one. From the viewpoint of the dual space, we deduce that the point-node state is not fragile against nonmagnetic impurity, when the orbital imbalance in the normal states is small. Since the spin imbalance is induced by the Zeeman magnetic field, we shall name this key quantity for the impurity effects the Zeeman "orbital" field. The numerical calculations support that the deduction is correct. If the Zeeman orbital field is small, the topological superconductivity is not fragile in dirty materials, even with nodes. Thus, the topological superconductors cannot be simply regarded as one of the conventional unconventional superconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaka, R. S.; Jiang, Rui; Ran, S.
2014-01-31
We use angle-resolved photoemission spectroscopy and density functional theory calculations to study the electronic structure of CaFe 2As 2 in the collapsed tetragonal (CT) phase. This unusual phase of iron arsenic high-temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the postgrowth thermal treatment of single crystals, we were able to stabilize the CT phase at ambient pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks belowmore » the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase, along with an apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.« less
An aerial sightability model for estimating ferruginous hawk population size
Ayers, L.W.; Anderson, S.H.
1999-01-01
Most raptor aerial survey projects have focused on numeric description of visibility bias without identifying the contributing factors or developing predictive models to account for imperfect detection rates. Our goal was to develop a sightability model for nesting ferruginous hawks (Buteo regalis) that could account for nests missed during aerial surveys and provide more accurate population estimates. Eighteen observers, all unfamiliar with nest locations in a known population, searched for nests within 300 m of flight transects via a Maule fixed-wing aircraft. Flight variables tested for their influence on nest-detection rates included aircraft speed, height, direction of travel, time of day, light condition, distance to nest, and observer experience level. Nest variables included status (active vs. inactive), condition (i.e., excellent, good, fair, poor, bad), substrate type, topography, and tree density. A multiple logistic regression model identified nest substrate type, distance to nest, and observer experience level as significant predictors of detection rates (P < 0.05). The overall model was significant (??26 = 124.4, P < 0.001, n = 255 nest observations), and the correct classification rate was 78.4%. During 2 validation surveys, observers saw 23.7% (14/59) and 36.5% (23/63) of the actual population. Sightability model predictions, with 90% confidence intervals, captured the true population in both tests. Our results indicate standardized aerial surveys, when used in conjunction with the predictive sightability model, can provide unbiased population estimates for nesting ferruginous hawks.
NASA Astrophysics Data System (ADS)
Mehrotra, Rajeshwar; Sharma, Ashish
2012-12-01
The quality of the absolute estimates of general circulation models (GCMs) calls into question the direct use of GCM outputs for climate change impact assessment studies, particularly at regional scales. Statistical correction of GCM output is often necessary when significant systematic biasesoccur between the modeled output and observations. A common procedure is to correct the GCM output by removing the systematic biases in low-order moments relative to observations or to reanalysis data at daily, monthly, or seasonal timescales. In this paper, we present an extension of a recently published nested bias correction (NBC) technique to correct for the low- as well as higher-order moments biases in the GCM-derived variables across selected multiple time-scales. The proposed recursive nested bias correction (RNBC) approach offers an improved basis for applying bias correction at multiple timescales over the original NBC procedure. The method ensures that the bias-corrected series exhibits improvements that are consistently spread over all of the timescales considered. Different variations of the approach starting from the standard NBC to the more complex recursive alternatives are tested to assess their impacts on a range of GCM-simulated atmospheric variables of interest in downscaling applications related to hydrology and water resources. Results of the study suggest that three to five iteration RNBCs are the most effective in removing distributional and persistence related biases across the timescales considered.
Underlying Information Technology Tailored Quantum Error Correction
2006-07-28
typically constructed by using an optical beam splitter . • We used a decoherence-free-subspace encoding to reduce the sensitivity of an optical Deutsch...simplification of design constraints in solid state QC (incl. quantum dots and superconducting qubits), hybrid quantum error correction and prevention methods...process tomography on one- and two-photon polarisation states, from full and partial data "• Accomplished complete two-photon QPT. "• Discovered surprising
Pfaller, Joseph B; Bjorndal, Karen A; Chaloupka, Milani; Williams, Kristina L; Frick, Michael G; Bolten, Alan B
2013-01-01
Assessments of population trends based on time-series counts of individuals are complicated by imperfect detection, which can lead to serious misinterpretations of data. Population trends of threatened marine turtles worldwide are usually based on counts of nests or nesting females. We analyze 39 years of nest-count, female-count, and capture-mark-recapture (CMR) data for nesting loggerhead turtles (Caretta caretta) on Wassaw Island, Georgia, USA. Annual counts of nests and females, not corrected for imperfect detection, yield significant, positive trends in abundance. However, multistate open robust design modeling of CMR data that accounts for changes in imperfect detection reveals that the annual abundance of nesting females has remained essentially constant over the 39-year period. The dichotomy could result from improvements in surveys or increased within-season nest-site fidelity in females, either of which would increase detection probability. For the first time in a marine turtle population, we compare results of population trend analyses that do and do not account for imperfect detection and demonstrate the potential for erroneous conclusions. Past assessments of marine turtle population trends based exclusively on count data should be interpreted with caution and re-evaluated when possible. These concerns apply equally to population assessments of all species with imperfect detection.
Better cancer biomarker discovery through better study design.
Rundle, Andrew; Ahsan, Habibul; Vineis, Paolo
2012-12-01
High-throughput laboratory technologies coupled with sophisticated bioinformatics algorithms have tremendous potential for discovering novel biomarkers, or profiles of biomarkers, that could serve as predictors of disease risk, response to treatment or prognosis. We discuss methodological issues in wedding high-throughput approaches for biomarker discovery with the case-control study designs typically used in biomarker discovery studies, especially focusing on nested case-control designs. We review principles for nested case-control study design in relation to biomarker discovery studies and describe how the efficiency of biomarker discovery can be effected by study design choices. We develop a simulated prostate cancer cohort data set and a series of biomarker discovery case-control studies nested within the cohort to illustrate how study design choices can influence biomarker discovery process. Common elements of nested case-control design, incidence density sampling and matching of controls to cases are not typically factored correctly into biomarker discovery analyses, inducing bias in the discovery process. We illustrate how incidence density sampling and matching of controls to cases reduce the apparent specificity of truly valid biomarkers 'discovered' in a nested case-control study. We also propose and demonstrate a new case-control matching protocol, we call 'antimatching', that improves the efficiency of biomarker discovery studies. For a valid, but as yet undiscovered, biomarker(s) disjunctions between correctly designed epidemiologic studies and the practice of biomarker discovery reduce the likelihood that true biomarker(s) will be discovered and increases the false-positive discovery rate. © 2012 The Authors. European Journal of Clinical Investigation © 2012 Stichting European Society for Clinical Investigation Journal Foundation.
Comparing Error Correction Procedures for Children Diagnosed with Autism
ERIC Educational Resources Information Center
Townley-Cochran, Donna; Leaf, Justin B.; Leaf, Ronald; Taubman, Mitchell; McEachin, John
2017-01-01
The purpose of this study was to examine the effectiveness of two error correction (EC) procedures: modeling alone and the use of an error statement plus modeling. Utilizing an alternating treatments design nested into a multiple baseline design across participants, we sought to evaluate and compare the effects of these two EC procedures used to…
Ultrafast IR detector response in high Tc superconducting thin films
NASA Technical Reports Server (NTRS)
Lindgren, Mikael; Ahlberg, Henrik; Danerud, Martin; Larsson, Anders; Eng, Sverre T.
1991-01-01
The response from a high Tc superconducting multielement optical detector made of a laser deposited Y-Ba-Cu-O thin film has been evaluated. Several microscopic and spectroscopic techniques were used to establish the presence of the correct phase of the thin film. Optical pulses from a laser diode at 830 nm and from a Q-switched CO2-laser at 10.6 microns were used. The detector responded to 50 ps (FWHM) pulses. A comparison between dR/dT of the film and the response amplitude as a function of temperature indicated a bolometric response.
Superconducting state parameters of monovalent and polyvalent amorphous
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonvane, Y. A., E-mail: yas@ashd.svnit.ac.in; Patel, H. P., E-mail: patel.harshal2@gmail.com; Thakor, P. B., E-mail: pbthakor@rediffmail.com
2015-08-28
In the present study deals, we have calculated superconducting state parameter (SSP) like electron-phonon coupling strength λ, coulomb pseudo potential, μ*, transition temperature Tc, isotope effect exponent α and effective interaction strength N{sub 0}V of monovalent (Li), divalent (Zn), trivalent (In) and tetravalent (Pb) amorphous. To carry out this work we have used our newly constructed model pseudo potential to describe electron ion interaction along with three different local field correction functions like Hartree, Taylor and Sarkar et al. The present results are found in good agreement with other available theoretical as well as experimental data.
Superconducting state parameters of monovalent and polyvalent amorphous
NASA Astrophysics Data System (ADS)
Sonvane, Y. A.; Patel, H. P.; Thakor, P. B.
2015-08-01
In the present study deals, we have calculated superconducting state parameter (SSP) like electron-phonon coupling strength λ, coulomb pseudo potential, μ*, transition temperature Tc, isotope effect exponent α and effective interaction strength N0V of monovalent (Li), divalent (Zn), trivalent (In) and tetravalent (Pb) amorphous. To carry out this work we have used our newly constructed model pseudo potential to describe electron ion interaction along with three different local field correction functions like Hartree, Taylor and Sarkar et al. The present results are found in good agreement with other available theoretical as well as experimental data.
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2008-04-01
A theoretical investigation on the screening dependence of the superconducting state parameters (SSPs) viz. the electron-phonon coupling strength λ, the Coulomb pseudopotential μ*, the transition temperature TC, the isotope effect exponent α and the effective interaction strength N0V of some ternary metallic glasses such as Ti50Be34Zr10, (Mo0.6Ru0.4)78B22, (Mo0.6Ru0.4)80B20, (Mo0.4Ru0.6)80P20, (Mo0.6Ru0.4)70Si30, (Mo0.6Ru0.4)84B16, (Mo0.6Ru0.4)72Si28, (Mo0.6Ru0.4)86B14, (Mo0.6Ru0.4)76Si24, (Mo0.6Ru0.4)78Si22, (Mo0.6Ru0.4)80Si20, (Mo0.6Ru0.4)82Si18 and (Mo0.6Ru0.4)80P20 is reported for the first time using Ashcroft's empty core (EMC) model potential. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used in the present investigation to study the effect of screening on the aforesaid properties. It is observed that λ and TC are reasonably sensitive to the selection of the local field correction functions, whereas μ*, α and N0V show weak dependences on the local field correction functions. The transition temperature TC obtained from the H-local field correction function is found to be in excellent agreement with available experimental data. Also, the present results are found to be in qualitative agreement with other earlier reported data, which confirms the existence of the superconducting phase in the above ternary metallic glasses.
NASA Astrophysics Data System (ADS)
Fathi, K.; Galer, S.; Kirkby, K. J.; Palmans, H.; Nisbet, A.
2017-11-01
The high uncertainty in the Relative Biological Effectiveness (RBE) values of particle therapy beam, which are used in combination with the quantity absorbed dose in radiotherapy, together with the increase in the number of particle therapy centres worldwide necessitate a better understating of the biological effect of such modalities. The present novel study is part of performance testing and development of a micro-calorimeter based on Superconducting QUantum Interference Devices (SQUIDs). Unlike other microdosimetric detectors that are used for investigating the energy distribution, this detector provides a direct measurement of energy deposition at the micrometre scale, that can be used to improve our understanding of biological effects in particle therapy application, radiation protection and environmental dosimetry. Temperature rises of less than 1μK are detectable and when combined with the low specific heat capacity of the absorber at cryogenic temperature, extremely high energy deposition sensitivity of approximately 0.4 eV can be achieved. The detector consists of 3 layers: tissue equivalent (TE) absorber, superconducting (SC) absorber and silicon substrate. Ideally all energy would be absorbed in the TE absorber and heat rise in the superconducting layer would arise due to heat conduction from the TE layer. However, in practice direct particle absorption occurs in all 3 layers and must be corrected for. To investigate the thermal behaviour within the detector, and quantify any possible correction, particle tracks were simulated employing Geant4 (v9.6) Monte Carlo simulations. The track information was then passed to the COMSOL Multiphysics (Finite Element Method) software. The 3D heat transfer within each layer was then evaluated in a time-dependent model. For a statistically reliable outcome, the simulations had to be repeated for a large number of particles. An automated system has been developed that couples Geant4 Monte Carlo output to COMSOL for determining the expected distribution of proton tracks and their thermal contribution within the detector. The correction factor for a 3.8 MeV proton pencil beam was determined and applied to the expected spectra. The corrected microdosimetric spectra was shown to have a good agreement with the ideal spectra.
Creating raptor benefits from powerline problems
Kochert, Michael N.; Olendorff, R.R.
1999-01-01
Powerlines benefit raptors by providing enhanced nesting and roosting sites. However, they also can kill raptors by electrocution and raptors can interfere with power transmission. The electrocution problem has been reduced by correcting existing lethal lines and implementing electrocution safe designs for new lines. Remedial actions include pole modifications, perch management and insulation of wires and hardware. New line designs provide for proper insulation and adequate spacing of conductors and grounded hardware. Nesting platforms can reduce power transmission problems and enhance the benefits of nesting on powerlines. A combination of perch deterrents and insulator shields is a positive, cost-effective approach to managing bird contamination that allows birds to continue roosting on the towers.
Probability of detection of nests and implications for survey design
Smith, P.A.; Bart, J.; Lanctot, Richard B.; McCaffery, B.J.; Brown, S.
2009-01-01
Surveys based on double sampling include a correction for the probability of detection by assuming complete enumeration of birds in an intensively surveyed subsample of plots. To evaluate this assumption, we calculated the probability of detecting active shorebird nests by using information from observers who searched the same plots independently. Our results demonstrate that this probability varies substantially by species and stage of the nesting cycle but less by site or density of nests. Among the species we studied, the estimated single-visit probability of nest detection during the incubation period varied from 0.21 for the White-rumped Sandpiper (Calidris fuscicollis), the most difficult species to detect, to 0.64 for the Western Sandpiper (Calidris mauri), the most easily detected species, with a mean across species of 0.46. We used these detection probabilities to predict the fraction of persistent nests found over repeated nest searches. For a species with the mean value for detectability, the detection rate exceeded 0.85 after four visits. This level of nest detection was exceeded in only three visits for the Western Sandpiper, but six to nine visits were required for the White-rumped Sandpiper, depending on the type of survey employed. Our results suggest that the double-sampling method's requirement of nearly complete counts of birds in the intensively surveyed plots is likely to be met for birds with nests that survive over several visits of nest searching. Individuals with nests that fail quickly or individuals that do not breed can be detected with high probability only if territorial behavior is used to identify likely nesting pairs. ?? The Cooper Ornithological Society, 2009.
The Quantum Socket: Wiring for Superconducting Qubits - Part 2
NASA Astrophysics Data System (ADS)
Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.
Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, C.; Tillman, M.E.; Kim, H.
2009-07-31
The superconducting penetration depth {lambda}(T) has been measured in RFeAsO{sub 0.9}F{sub 0.1} (R=La, Nd) single crystals (R-1111). In Nd-1111, we find an upturn in {lambda}(T) upon cooling and attribute it to the paramagnetism of the Nd ions, similar to the case of the electron-doped cuprate Nd-Ce-Cu-O. After the correction for paramagnetism, the London penetration depth variation is found to follow a power-law behavior, {Delta}{lambda}L(T) {proportional_to} T{sup 2} at low temperatures. The same T{sup 2} variation of {lambda}(T) was found in nonmagnetic La-1111 crystals. Analysis of the superfluid density and of penetration depth anisotropy over the full temperature range is consistentmore » with two-gap superconductivity. Based on this and on our previous work, we conclude that both the RFeAsO (1111) and BaFe{sub 2}As{sub 2} (122) families of pnictide superconductors exhibit unconventional two-gap superconductivity.« less
Endohedral gallide cluster superconductors and superconductivity in ReGa5.
Xie, Weiwei; Luo, Huixia; Phelan, Brendan F; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph
2015-12-22
We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures.
NASA Astrophysics Data System (ADS)
Li, J.
2010-01-01
High-sensitivity superconducting SIS (superconductor-insulator-superconductor) mixers are playing an increasingly important role in the terahertz (THz) astronomical observation, which is an emerging research frontier in modern astrophysics. Superconducting SIS mixers with niobium (Nb) tunnel junctions have reached a sensitivity close to the quantum limit, but have a frequency limit about 0.7 THz (i.e., gap frequency of Nb tunnel junctions). Beyond this frequency Nb superconducting films will absorb energetic photons (i.e., energy loss) to break Cooper pairs, thereby resulting in significant degradation of the mixer performance. Therefore, it is of particular interest to develop THz superconducting SIS mixers incorporating tunnel junctions with a larger energy gap. Niobium-nitride (NbN) superconducting tunnel junctions have been long known for their large energy gap, almost double that of Nb ones. With the introduction of epitaxially grown NbN films, the fabrication technology of NbN superconducting tunnel junctions has been considerably improved in the recent years. Nevertheless, their performances are still not as good as Nb ones, and furthermore they are not yet demonstrated in real astronomical applications. Given the facts mentioned above, in this paper we systematically study the quantum mixing behaviors of NbN superconducting tunnel junctions in the THz regime and demonstrate an astronomical testing observation with a 0.5 THz superconducting SIS mixer developed with NbN tunnel junctions. The main results of this study include: (1) successful design and fabrication of a 0.4˜0.6 THz waveguide mixing circuit with the high-dielectric-constant MgO substrate; (2) successful fabrication of NbN superconducting tunnel junctions with the gap voltage reaching 5.6 mV and the quality factor as high as 15; (3) demonstration of a 0.5 THz waveguide NbN superconducting SIS mixer with a measured receiver noise temperature (no correction) as low as five times the quantum limit (5hω/kB), which is the best among NbN superconducting SIS mixers developed in this frequency band; (4) demonstration of high sensitivity for NbN superconducting SIS mixers operated at temperatures as high as 10 K, and demonstration of much less interference resulting from the Josephson effect; (5) demonstration of the first astronomical observation ever done with an NbN superconducting SIS mixer. This study has provided further understanding of the quantum mixing behaviors of NbN superconducting SIS mixers. It has been demonstrated that NbN superconducting SIS mixers can reach nearly quantum-limited sensitivity and have good stability. Furthermore, NbN superconducting SIS mixers have less stringent requirement for cooling and magnetic field compared with Nb ones. Hence they can be used in astronomical applications, especially for space-borne projects and complex systems such as multi-beam receivers.
Electrons at the monkey saddle: a multicritical Lifshitz point
NASA Astrophysics Data System (ADS)
Shtyk, Alex; Goldstein, Garry; Chamon, Claudio
We consider 2D interacting electrons at a monkey saddle with dispersion px3 - 3pxpy2 . Such a dispersion naturally arises at the multicritical Lifshitz point when three van Hove saddles merge in an elliptical umbilic elementary catastrophe, which we show can be realized in biased bilayer graphene. A multicritical Lifshitz point of this kind can be identified by its signature Landau level behavior Em (Bm) 3 / 2 and related oscillations in thermodynamic and transport properties, such as de Haas-van Alphen and Shubnikov-de Haas oscillations, whose period triples as the system crosses the singularity. We show, in the case of a single monkey saddle, that the non-interacting electron fixed point is unstable to interactions under the renormalization group flow, developing either a superconducting instability or non-Fermi liquid features. Biased bilayer graphene, where there are two non-nested monkey saddles at the K and K' points, exhibits an interplay of competing many-body instabilities, namely s-wave superconductivity, ferromagnetism, and spin- and charge-density wave. DOE DE-FG02-06ER46316.
NASA Astrophysics Data System (ADS)
Tam, David W.; Song, Yu; Man, Haoran; Cheung, Sky C.; Yin, Zhiping; Lu, Xingye; Wang, Weiyi; Frandsen, Benjamin A.; Liu, Lian; Gong, Zizhou; Ito, Takashi U.; Cai, Yipeng; Wilson, Murray N.; Guo, Shengli; Koshiishi, Keisuke; Tian, Wei; Hitti, Bassam; Ivanov, Alexandre; Zhao, Yang; Lynn, Jeffrey W.; Luke, Graeme M.; Berlijn, Tom; Maier, Thomas A.; Uemura, Yasutomo J.; Dai, Pengcheng
2017-02-01
We use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe2As2 and its Co- and Ni-substituted members near optimal superconductivity. In the low-temperature AF ordered state, uniaxial pressure necessary to detwin the orthorhombic crystals also increases the magnetic ordered moment, reaching an 11% increase under 40 MPa for BaFe1.9Co0.1As2 , and a 15% increase for BaFe1.915Ni0.085As2 . We also observe an increase of the AF ordering temperature (TN) of about 0.25 K/MPa in all compounds, consistent with density functional theory calculations that reveal better Fermi surface nesting for itinerant electrons under uniaxial pressure. The doping dependence of the magnetic ordered moment is captured by combining dynamical mean field theory with density functional theory, suggesting that the pressure-induced moment increase near optimal superconductivity is closely related to quantum fluctuations and the nearby electronic nematic phase.
Repulsive force support system feasibility study
NASA Technical Reports Server (NTRS)
Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.
1987-01-01
A new concept in magnetic levitation and control is introduced for levitation above a plane. A set of five vertical solenoid magnets mounted flush below the plane supports and controls the model in five degrees of freedom. The compact system of levitation coils is contained in a space 2.4 m (96 in) diameter by 1 m (40 in) deep with the top of the levitation system 0.9 m (36 in) below the center line of the suspended model. The levitated model has a permanent magnet core held in position by the five parallel superconductive solenoids symmetrically located in a circle. The control and positioning system continuously corrects for model position in five dimensions using computer current pulses superimposed on the levitation coil base currents. The conceptual designs include: superconductive and Nd-Fe-B permanent magnet model cores and levitation solenoids of either superconductive, cryoresistive, or room temperature windings.
Wang, S.T.
1994-11-01
A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.
Lee, Pei-Wen; Ji, Dar-Der; Liu, Chia-Tai; Rampao, Herodes S; do Rosario, Virgilio E; Lin, I-Feng; Shaio, Men-Fang
2012-12-06
A reliable and simple test for the detection of malaria parasite is crucial in providing effective treatment and therapeutic follow-up, especially in malaria elimination programmes. A comparison of four methods, including nested polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) were used for the malaria diagnosis and treatment follow-up in São Tomé and Príncipe, during a successful pre-elimination campaign. During the period September to November 2009, blood samples from 128 children (five to 14 years old) with temperature ≥38°C (tympanic) in the District of Agua Grande were examined using four different methods, i.e., histidine-rich protein 2 (HRP-2) based rapid diagnostic tests (HRP-2-RDTs), optical microscopy, nested PCR, and LAMP. First-line treatment with artesunate-amodiaquine was given for uncomplicated malaria and intravenous quinine was given for complicated malaria. Children with persistent positivity for malaria by microscopy, or either by nested PCR, or by LAMP on day 7 were given second-line treatment with artemether-lumefantrine. Treatment follow-up was made weekly, for up to four weeks. On day 0, positive results for HRP-2-RDTs, microscopy, nested PCR, and LAMP, were 68(53%), 47(37%), 64(50%), and 65(51%), respectively. When nested PCR was used as a reference standard, only LAMP was comparable; both HRP-2-RDTs and microscopy had moderate sensitivity; HRP-2-RDTs had poor positive predictive value (PPV) and a moderate negative predictive value (NPV) for the treatment follow-up. Seventy-one children with uncomplicated malaria and eight children with complicated falciparum malaria were diagnosed based on at least one positive result from the four tests as well as clinical criteria. Twelve of the 79 children receiving first-line treatment had positive results by nested PCR on day 7 (nested PCR-corrected day 7 cure rate was 85%). After the second-line treatment, nested PCR/LAMP-corrected day 28 cure rate was 83% for these 12 children. HRP-2-RDTs have similar sensitivity as microscopy but less specificity. However, as compared to nested PCR, the poor sensitivity of HRP-2-RDTs indicates that low parasitaemia may not be detected after treatment, as well as the low specificity of HRP-2-RDTs indicates it cannot be applied for treatment follow-up. LAMP has similar sensitivity and specificity to nested PCR. With high PPV and NPV, LAMP is simpler and faster as compared to nested PCR with the advantage of detecting low parasitaemia becoming a potential point-of-care test for treatment follow-up.
2012-01-01
Background A reliable and simple test for the detection of malaria parasite is crucial in providing effective treatment and therapeutic follow-up, especially in malaria elimination programmes. A comparison of four methods, including nested polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) were used for the malaria diagnosis and treatment follow-up in São Tomé and Príncipe, during a successful pre-elimination campaign. Method During the period September to November 2009, blood samples from 128 children (five to 14 years old) with temperature ≥38°C (tympanic) in the District of Agua Grande were examined using four different methods, i.e., histidine-rich protein 2 (HRP-2) based rapid diagnostic tests (HRP-2-RDTs), optical microscopy, nested PCR, and LAMP. First-line treatment with artesunate-amodiaquine was given for uncomplicated malaria and intravenous quinine was given for complicated malaria. Children with persistent positivity for malaria by microscopy, or either by nested PCR, or by LAMP on day 7 were given second-line treatment with artemether-lumefantrine. Treatment follow-up was made weekly, for up to four weeks. Results On day 0, positive results for HRP-2-RDTs, microscopy, nested PCR, and LAMP, were 68(53%), 47(37%), 64(50%), and 65(51%), respectively. When nested PCR was used as a reference standard, only LAMP was comparable; both HRP-2-RDTs and microscopy had moderate sensitivity; HRP-2-RDTs had poor positive predictive value (PPV) and a moderate negative predictive value (NPV) for the treatment follow-up. Seventy-one children with uncomplicated malaria and eight children with complicated falciparum malaria were diagnosed based on at least one positive result from the four tests as well as clinical criteria. Twelve of the 79 children receiving first-line treatment had positive results by nested PCR on day 7 (nested PCR-corrected day 7 cure rate was 85%). After the second-line treatment, nested PCR/LAMP-corrected day 28 cure rate was 83% for these 12 children. Conclusions HRP-2-RDTs have similar sensitivity as microscopy but less specificity. However, as compared to nested PCR, the poor sensitivity of HRP-2-RDTs indicates that low parasitaemia may not be detected after treatment, as well as the low specificity of HRP-2-RDTs indicates it cannot be applied for treatment follow-up. LAMP has similar sensitivity and specificity to nested PCR. With high PPV and NPV, LAMP is simpler and faster as compared to nested PCR with the advantage of detecting low parasitaemia becoming a potential point-of-care test for treatment follow-up. PMID:23217163
NASA Astrophysics Data System (ADS)
Bianconi, Antonio; Jarlborg, Thomas
2015-11-01
Emerets's experiments on pressurized sulfur hydride have shown that H3S metal has the highest known superconducting critical temperature Tc = 203 K. The Emerets data show pressure induced changes of the isotope coefficient between 0.25 and 0.5, in disagreement with Eliashberg theory which predicts a nearly constant isotope coefficient.We assign the pressure dependent isotope coefficient to Lifshitz transitions induced by pressure and zero point lattice fluctuations. It is known that pressure could induce changes of the topology of the Fermi surface, called Lifshitz transitions, but were neglected in previous papers on the H3S superconductivity issue. Here we propose thatH3S is a multi-gap superconductor with a first condensate in the BCS regime (located in the large Fermi surface with high Fermi energy) which coexists with second condensates in the BCS-BEC crossover regime (located on the Fermi surface spots with small Fermi energy) near the and Mpoints.We discuss the Bianconi-Perali-Valletta (BPV) superconductivity theory to understand superconductivity in H3S since the BPV theory includes the corrections of the chemical potential due to pairing and the configuration interaction between different condensates, neglected by the Eliashberg theory. These two terms in the BPV theory give the shape resonance in superconducting gaps, similar to Feshbach resonance in ultracold fermionic gases, which is known to amplify the critical temperature. Therefore this work provides some key tools useful in the search for new room temperature superconductors.
Hatching and fledging times from grassland passerine nests
Pietz, Pamela J.; Granfors, Diane A.; Grant, Todd A.; Ribic, Christine A.; Thompson, Frank R.; Pietz, Pamela J.
2012-01-01
1 day and was positively correlated with clutch size. Length of the fledging period for a brood was usually Accurate estimates of fledging age are needed in field studies to avoid inducing premature fledging or missing the fledging event. Both may lead to misinterpretation of nest fate. Correctly assessing nest fate and length of the nestling period can be critical for accurate calculation of nest survival rates. For researchers who mark nestlings, knowing the age at which their activities may cause young to leave nests prematurely could prevent introducing bias to their studies. We obtained estimates of fledging age using data from grassland bird nests monitored from hatching through fledging with video-surveillance systems in North Dakota and Minnesota during 1996–2001. We compared these values to those obtained from traditional nest visits and from available literature. Mean and modal fledging ages for video-monitored nests were generally similar to those for visited nests, although Clay-colored Sparrows (Spizella pallida) typically fledged 1 day earlier from visited nests. Average fledging ages from both video and nest visits occurred within ranges reported in the literature, but expanded by 1–2 days the upper age limit for Clay-colored Sparrows and the lower age limit for Bobolinks (Dolichonyx oryzivorus). Video showed that eggs hatched throughout the day whereas most young fledged in the morning (06:30–12:30 CDT). Length of the hatching period for a clutch was usually >1 day and was positively correlated with clutch size. Length of the fledging period for a brood was usually <1 day, and in nearly half the nests, fledging was completed within <2 hr. Video surveillance has proven to be a useful tool for providing new information and for corroborating published statements related to hatching and fledging chronology. Comparison of data collected from video and nest visits showed that carefully conducted nest visits generally can provide reliable data for deriving estimates of survival.
Towards the simulation of molecular collisions with a superconducting quantum computer
NASA Astrophysics Data System (ADS)
Geller, Michael
2013-05-01
I will discuss the prospects for the use of large-scale, error-corrected quantum computers to simulate complex quantum dynamics such as molecular collisions. This will likely require millions qubits. I will also discuss an alternative approach [M. R. Geller et al., arXiv:1210.5260] that is ideally suited for today's superconducting circuits, which uses the single-excitation subspace (SES) of a system of n tunably coupled qubits. The SES method allows many operations in the unitary group SU(n) to be implemented in a single step, bypassing the need for elementary gates, thereby making large computations possible without error correction. The method enables universal quantum simulation, including simulation of the time-dependent Schrodinger equation, and we argue that a 1000-qubit SES processor should be capable of achieving quantum speedup relative to a petaflop supercomputer. We speculate on the utility and practicality of such a simulator for atomic and molecular collision physics. Work supported by the US National Science Foundation CDI program.
Superconducting fluctuations at arbitrary disorder strength
NASA Astrophysics Data System (ADS)
Stepanov, Nikolai A.; Skvortsov, Mikhail A.
2018-04-01
We study the effect of superconducting fluctuations on the conductivity of metals at arbitrary temperatures T and impurity scattering rates τ-1. Using the standard diagrammatic technique but in the Keldysh representation, we derive the general expression for the fluctuation correction to the dc conductivity applicable for any space dimensionality and analyze it in the case of the film geometry. We observe that the usual classification in terms of the Aslamazov-Larkin, Maki-Thompson, and density-of-states diagrams is to some extent artificial since these contributions produce similar terms, which partially cancel each other. In the diffusive limit, our results fully coincide with recent calculations in the Keldysh technique. In the ballistic limit near the transition, we demonstrate the absence of a divergent term (Tτ ) 2 attributed previously to the density-of-states contribution. In the ballistic limit far above the transition, the temperature-dependent part of the conductivity correction is shown to grow as T τ /ln(T /Tc) , where Tc is the critical temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guguchia, Z.; Adachi, T.; Shermadini, Z.
High-pressure neutron powder diffraction, muon-spin rotation, and magnetization studies of the structural, magnetic, and the superconducting properties of the Ce-underdoped superconducting (SC) electron-doped cuprate system with the Nd 2 CuO 4 (the so-called T ' ) structure T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 with x = 0.1 are reported. A strong reduction of the in-plane and out-of-plane lattice constants is observed under pressure. However, no indication of any pressure-induced phase transition from T ' to the K 2 NiF 4 (the so-called T) structure is observed up to the maximum applied pressure ofmore » p = 11 GPa. Large and nonlinear increase of the short-range magnetic order temperature T so in T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 ( x = 0.1 ) was observed under pressure. Simultaneous pressure causes a nonlinear decrease of the SC transition temperature T c . All these experiments establish the short-range magnetic order as an intrinsic and competing phase in SC T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 ( x = 0.1 ). The observed pressure effects may be interpreted in terms of the improved nesting conditions through the reduction of the in-plane and out-of-plane lattice constants upon hydrostatic pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R.X.; Yang, H.X., E-mail: hxyang@iphy.ac.cn; Tian, H.F.
2015-12-15
Experimental measurements clearly reveal the presence of bulk superconductivity in the CsPb{sub x}Bi{sub 4−x}Te{sub 6} (0.3≤x≤1.0) materials, i.e. the first member of the thermoelectric series of Cs[Pb{sub m}Bi{sub 3}Te{sub 5+m}], these materials have the layered orthorhombic structure containing infinite anionic [PbBi{sub 3}Te{sub 6}]{sup −} slabs separated with Cs{sup +} cations. Temperature dependences of electrical resistivity, magnetic susceptibility, and specific heat have consistently demonstrated that the superconducting transition in Cs{sub 0.96}Pb{sub 0.25}Bi{sub 3.75}Te{sub 6.04} occurs at T{sub c}=3.1 K, with a superconducting volume fraction close to 100% at 1.8 K. Structural study using aberration-corrected STEM/TEM reveals a rich variety of microstructuralmore » phenomena in correlation with the Pb-ordering and chemical inhomogeneity. The superconducting material Cs{sub 0.96}Pb{sub 0.25}Bi{sub 3.75}Te{sub 6.04} with the highest T{sub c} shows a clear ordered structure with a modulation wave vector of q≈a*/2+c*/1.35 on the a–c plane. Our study evidently demonstrates that superconductivity deriving upon doping of narrow-gap semiconductor is a viable approach for exploration of novel superconductors. - Graphical abstract: Bulk superconductivity is discovered in the orthorhombic Cs{sub 0.96}Pb{sub 0.22}Bi{sub 3.80}Te{sub 6.02} materials with the superconducting transition T{sub c}=3.1 K. The compound shows a clear ordered structure with a modulation wave vector of q≈a*/2+c*/1.35 on the a–c plane. - Highlights: • Bulk superconductivity is discovered in the orthorhombic CsPb{sub x}Bi{sub 4−x}Te{sub 6} materials. • The superconducting transition in Cs{sub 0.96}Pb{sub 0.22}Bi{sub 3.80}Te{sub 6.02} occurs at T{sub c}=3.1 K. • Physical property measurements concerning the bulk superconductivity were present. • Structural modulation due to Pb-ordering was observed.« less
Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon
NASA Astrophysics Data System (ADS)
Brun, Christophe
2015-03-01
It is well known that conventional superconductivity is very robust against non-magnetic disorder. Nevertheless for thin and ultrathin films the structural properties play a major role in determining the superconducting properties, through a subtle interplay between disorder and Coulomb interactions. Unexpectedly, in 2010 superconductivity was discovered in single atomic layers of lead and indium grown on silicon substrate using scanning tunneling spectroscopy and confirmed later on by macroscopic transport measurements. Such well-controlled and tunable crystalline monolayers are ideal systems for studying the influence of various kinds of structural defects on the superconducting properties at the atomic and mesoscopic scale. In particular, Pb monolayers offer the opportunity of probing new effects of disorder because not only superconductivity is 2D but also the electronic wave functions are 2D. Our study of two Pb monolayers of different crystal structures by very-low temperature STM (300 mK) under magnetic field reveals unexpected results involving new spatial spectroscopic variations. Our results show that although the sheet resistance of the Pb monolayers is much below the resistance quantum, strong non-BCS corrections appear leading to peak heights fluctuations in the dI/dV tunneling spectra at a spatial scale much smaller than the superconducting coherence length. Furthermore, strong local evidence of the signature of Rashba effect on the superconductivity of the Pb/Si(111) monolayer is revealed through filling of in gap states and local spatial variations of this filling. Finally the nature of vortices in a monolayer is found to be very sensitive to the properties of step edges areas. This work was supported by University Pierre et Marie Curie UPMC `Emergence' project, French ANR Project `ElectroVortex,' ANR-QuDec and Templeton Foundation (40381), ARO (W911NF-13-1-0431) and CNRS PICS funds. Partial funding by US-DOE Grant DE-AC02-07CH1.
Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries
Wan, Weishi; Brouwer, Lucas; Caspi, Shlomo; ...
2015-10-23
We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT) concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law) from the actual windings of the AG-CCT combined with the full equationsmore » of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench) associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.« less
Endohedral gallide cluster superconductors and superconductivity in ReGa5
Xie, Weiwei; Luo, Huixia; Phelan, Brendan F.; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph
2015-01-01
We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures. PMID:26644566
Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries
NASA Astrophysics Data System (ADS)
Wan, Weishi; Brouwer, Lucas; Caspi, Shlomo; Prestemon, Soren; Gerbershagen, Alexander; Schippers, Jacobus Maarten; Robin, David
2015-10-01
We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT) concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law) from the actual windings of the AG-CCT combined with the full equations of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench) associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.
Turki, Habibollah; Raeisi, Ahmad; Malekzadeh, Kianoosh; Ghanbarnejad, Amin; Zoghi, Samaneh; Yeryan, Masoud; Abedi Nejad, Masoumeh; Mohseni, Fatemeh; Shekari, Mohammad
2015-01-01
The aim of this study was to detect low parasite and asymptomatic malaria infections by means of three malaria diagnostic tests, in a low transmission region of Minab district, Hormozgan Province, southern Iran. Blood samples of 200 healthy volunteers from Bagh-e-Malek area were evaluated using microscopic, rapid diagnostic tests (RDT) and nested-PCR to inspect malaria parasite. The results showed no Plasmodium parasite in subjects by means of microscopy and RDT. However, 3 P. vivax positive samples (1.5%) were discovered by Nested-PCR while microscopy and RDT missed the cases. Microscopy as the gold standard method and RDT correctly identified 98.5% of cases, and molecular analysis is sensitive and reliable, especially in the detection of "asymptomatic" infections for active case surveillance. Regarding the existence of asymptomatic malaria in endemic area of Hormozgan, Iran, nested-PCR could be considered as a sensitive tool to interrupt malaria transmission in the country, beside the microscopic and RDT methods.
Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms
NASA Astrophysics Data System (ADS)
Rigetti, Chad; Gambetta, Jay M.; Poletto, Stefano; Plourde, B. L. T.; Chow, Jerry M.; Córcoles, A. D.; Smolin, John A.; Merkel, Seth T.; Rozen, J. R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, M.
2012-09-01
We report a superconducting artificial atom with a coherence time of T2*=92 μs and energy relaxation time T1=70 μs. The system consists of a single Josephson junction transmon qubit on a sapphire substrate embedded in an otherwise empty copper waveguide cavity whose lowest eigenmode is dispersively coupled to the qubit transition. We attribute the factor of four increase in the coherence quality factor relative to previous reports to device modifications aimed at reducing qubit dephasing from residual cavity photons. This simple device holds promise as a robust and easily produced artificial quantum system whose intrinsic coherence properties are sufficient to allow tests of quantum error correction.
Vortex matter stabilized by many-body interactions
NASA Astrophysics Data System (ADS)
Wolf, S.; Vagov, A.; Shanenko, A. A.; Axt, V. M.; Aguiar, J. Albino
2017-10-01
This work investigates interactions of vortices in superconducting materials between standard types I and II, in the domain of the so-called intertype (IT) superconductivity. Contrary to common expectations, the many-body (many-vortex) contribution is not a correction to the pair-vortex interaction here but plays a crucial role in the formation of the IT vortex matter. In particular, the many-body interactions stabilize vortex clusters that otherwise could not exist. Furthermore, clusters with large numbers of vortices become more stable when approaching the boundary between the intertype domain and type I. This indicates that IT superconductors develop a peculiar unconventional type of the vortex matter governed by the many-body interactions of vortices.
NASA Astrophysics Data System (ADS)
Starosta, K.; Vaman, C.; Miller, D.; Voss, P.; Bazin, D.; Glasmacher, T.; Crawford, H.; Mantica, P.; Tan, H.; Hennig, W.; Walby, M.; Fallu-Labruyere, A.; Harris, J.; Breus, D.; Grudberg, P.; Warburton, W. K.
2009-11-01
A 624-channel Digital Data Acquisition System capable of instrumenting the Segmented Germanium Array at National Superconducting Cyclotron Laboratory has been implemented using Pixie-16 Digital Gamma Finder modules by XIA LLC. The system opens an opportunity for determination of the first interaction position of a γ ray in a SeGA detector from implementation of γ-ray tracking. This will translate into a significantly improved determination of angle of emission, and in consequence much better Doppler corrections for experiments with fast beams. For stopped-beam experiments the system provides means for zero dead time measurements of rare decays, which occur on time scales of microseconds.
2010-01-01
Background Accurate malaria diagnosis is mandatory for the treatment and management of severe cases. Moreover, individuals with asymptomatic malaria are not usually screened by health care facilities, which further complicates disease control efforts. The present study compared the performances of a malaria rapid diagnosis test (RDT), the thick blood smear method and nested PCR for the diagnosis of symptomatic malaria in the Brazilian Amazon. In addition, an innovative computational approach was tested for the diagnosis of asymptomatic malaria. Methods The study was divided in two parts. For the first part, passive case detection was performed in 311 individuals with malaria-related symptoms from a recently urbanized community in the Brazilian Amazon. A cross-sectional investigation compared the diagnostic performance of the RDT Optimal-IT, nested PCR and light microscopy. The second part of the study involved active case detection of asymptomatic malaria in 380 individuals from riverine communities in Rondônia, Brazil. The performances of microscopy, nested PCR and an expert computational system based on artificial neural networks (MalDANN) using epidemiological data were compared. Results Nested PCR was shown to be the gold standard for diagnosis of both symptomatic and asymptomatic malaria because it detected the major number of cases and presented the maximum specificity. Surprisingly, the RDT was superior to microscopy in the diagnosis of cases with low parasitaemia. Nevertheless, RDT could not discriminate the Plasmodium species in 12 cases of mixed infections (Plasmodium vivax + Plasmodium falciparum). Moreover, the microscopy presented low performance in the detection of asymptomatic cases (61.25% of correct diagnoses). The MalDANN system using epidemiological data was worse that the light microscopy (56% of correct diagnoses). However, when information regarding plasma levels of interleukin-10 and interferon-gamma were inputted, the MalDANN performance sensibly increased (80% correct diagnoses). Conclusions An RDT for malaria diagnosis may find a promising use in the Brazilian Amazon integrating a rational diagnostic approach. Despite the low performance of the MalDANN test using solely epidemiological data, an approach based on neural networks may be feasible in cases where simpler methods for discriminating individuals below and above threshold cytokine levels are available. PMID:20459613
Andrade, Bruno B; Reis-Filho, Antonio; Barros, Austeclino M; Souza-Neto, Sebastião M; Nogueira, Lucas L; Fukutani, Kiyoshi F; Camargo, Erney P; Camargo, Luís M A; Barral, Aldina; Duarte, Angelo; Barral-Netto, Manoel
2010-05-06
Accurate malaria diagnosis is mandatory for the treatment and management of severe cases. Moreover, individuals with asymptomatic malaria are not usually screened by health care facilities, which further complicates disease control efforts. The present study compared the performances of a malaria rapid diagnosis test (RDT), the thick blood smear method and nested PCR for the diagnosis of symptomatic malaria in the Brazilian Amazon. In addition, an innovative computational approach was tested for the diagnosis of asymptomatic malaria. The study was divided in two parts. For the first part, passive case detection was performed in 311 individuals with malaria-related symptoms from a recently urbanized community in the Brazilian Amazon. A cross-sectional investigation compared the diagnostic performance of the RDT Optimal-IT, nested PCR and light microscopy. The second part of the study involved active case detection of asymptomatic malaria in 380 individuals from riverine communities in Rondônia, Brazil. The performances of microscopy, nested PCR and an expert computational system based on artificial neural networks (MalDANN) using epidemiological data were compared. Nested PCR was shown to be the gold standard for diagnosis of both symptomatic and asymptomatic malaria because it detected the major number of cases and presented the maximum specificity. Surprisingly, the RDT was superior to microscopy in the diagnosis of cases with low parasitaemia. Nevertheless, RDT could not discriminate the Plasmodium species in 12 cases of mixed infections (Plasmodium vivax + Plasmodium falciparum). Moreover, the microscopy presented low performance in the detection of asymptomatic cases (61.25% of correct diagnoses). The MalDANN system using epidemiological data was worse that the light microscopy (56% of correct diagnoses). However, when information regarding plasma levels of interleukin-10 and interferon-gamma were inputted, the MalDANN performance sensibly increased (80% correct diagnoses). An RDT for malaria diagnosis may find a promising use in the Brazilian Amazon integrating a rational diagnostic approach. Despite the low performance of the MalDANN test using solely epidemiological data, an approach based on neural networks may be feasible in cases where simpler methods for discriminating individuals below and above threshold cytokine levels are available.
Perturbation Theory of Spin-Triplet Superconductivity for Sr 2RuO 4
NASA Astrophysics Data System (ADS)
Nomura, Takuji; Yamada, Kosaku
2000-11-01
We discuss the possibility of spin-triplet superconductivity within the third order perturbation theory with respect to on-site Coulomb repulsion U. Critical temperature T c for spin-triplet pairing state is calculated in a single-band two-dimensional Hubbard modeland relatively high T c is obtained for moderately large U. The present situation considered here is particularly intended for the main branch γ in Sr2RuO4. According to the calculation, third order vertex correction terms, which are not direct contribution from spin fluctuation, are important, while the bare susceptibility χ0(q) need not always have a prominent peak at q=0 for the spin-triplet pairing state. The picture that strong ferromagnetic spin fluctuations mainly induce the spin-triplet superconductivity in Sr2RuO4 may not be appropriate, and such momentum dependence of renormalized effective interaction between quasi-particles as is not sufficiently taken into accountin spin fluctuation mediated interaction is essential for realizing the spin-triplet pairing.
NASA Astrophysics Data System (ADS)
Ofek, N.; Petrenko, A.; Liu, Y.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.
2015-03-01
Real-time feedback offers not just the convenience of streamlined data acquisition, but is an essential element in any quantum computational architecture that requires branching based on measurement outcomes. State-preparation, mitigating the effects of qubit decoherence, and recording the trajectories of quantum systems are just a few of the many potential applications of real-time feedback. Photon number parity measurements of cat states in superconducting resonators are a particularly useful platform for demonstrating the clear advantages of having sophisticated feedback schemes to enhance the performance a proposed error-correction protocol [Leghtas et.al. PRL 2013]. In a cQED architecture, where a transmon qubit is coupled to two superconducting cavities, we present a field-programmable gate array (FPGA) device capable of making decisions and calculations with latency times far shorter than the lifetimes of any of the system's constituents. This level of performance opens the door to realizing many complex, previously unfeasible, experiments in superconducting qubit systems.
NASA Astrophysics Data System (ADS)
Karzig, Torsten; Knapp, Christina; Lutchyn, Roman M.; Bonderson, Parsa; Hastings, Matthew B.; Nayak, Chetan; Alicea, Jason; Flensberg, Karsten; Plugge, Stephan; Oreg, Yuval; Marcus, Charles M.; Freedman, Michael H.
2017-06-01
We present designs for scalable quantum computers composed of qubits encoded in aggregates of four or more Majorana zero modes, realized at the ends of topological superconducting wire segments that are assembled into superconducting islands with significant charging energy. Quantum information can be manipulated according to a measurement-only protocol, which is facilitated by tunable couplings between Majorana zero modes and nearby semiconductor quantum dots. Our proposed architecture designs have the following principal virtues: (1) the magnetic field can be aligned in the direction of all of the topological superconducting wires since they are all parallel; (2) topological T junctions are not used, obviating possible difficulties in their fabrication and utilization; (3) quasiparticle poisoning is abated by the charging energy; (4) Clifford operations are executed by a relatively standard measurement: detection of corrections to quantum dot energy, charge, or differential capacitance induced by quantum fluctuations; (5) it is compatible with strategies for producing good approximate magic states.
NASA Astrophysics Data System (ADS)
Wallace, John Paul
2011-03-01
Hydrogen is a difficult impurity to physically deal with in superconducting radio frequency (SRF) niobium, therefore, its properties in the metals should be well understood to allow the metal's superconducting properties to be optimized for minimum loss in the construction of resonant accelerator cavities. It is known that hydrogen is a paramagnetic impurity in niobium from NMR studies. This paramagnetism and its effect on superconducting properties are important to understand. To that end analytical induction measurements aimed at isolating the magnetic properties of hydrogen in SRF niobium are introduced along with optical reflection spectroscopy which is also sensitive to the presence of hydrogen. From the variety, magnitude and rapid kinetics found in the optical and magnetic properties of niobium contaminated with hydrogen forced a search for an atomic model. This yielded quantum mechanical description that correctly generates the activation energy for diffusion of the proton and its isotopes not only in niobium but the remaining metals for which data is available. This interpretation provides a frame work for understanding the individual and collective behavior of protons in metals.
Onari, Seiichiro; Yamakawa, Youichi; Kontani, Hiroshi
2014-05-09
The isostructural transition in the tetragonal phase with a sizable change in the anion height, is realized in heavily H-doped LaFeAsO and (La,P) codoped CaFe2As2. In these compounds, the superconductivity with higher Tc (40-50 K) is realized near the isostructural transition. To find the origin of the anion-height instability and the role in realizing the higher-Tc state, we develop the orbital-spin fluctuation theory by including the vertex correction. We analyze LaFeAsO(1-x)H(x) and find that the non-nematic orbital fluctuations, which induce the anion-height instability, are automatically obtained at x∼0.5, in addition to the conventional nematic orbital fluctuations at x∼0. The non-nematic orbital order triggers the isostructural transition, and its fluctuation would be a key ingredient to realize higher-Tc superconductivity of order 50 K.
NCEP Air Quality Forecast(AQF) Graphics
NAM-CMAQ Experimental Run predictions 00 03 06 09 12 15 18 21 24 27 30 33 36 39 42 45 48 Select experimental bias correction predictions NAM vs Nest forecasts Change Variable Type: Hourly CMAQ Forecasts
The role of pleural fluid MAGE RT-nested PCR in the diagnosis of malignant pleural effusion.
Jeon, Eun Ju; Park, Hye Kyeong; Jeon, Kyeongman; Koh, Won-Jung; Suh, Gee Young; Chung, Man Pyo; Kim, Hojoong; Kwon, O Jung; Ki, Chang-Seok; Kim, Jong-Won; Shim, Young Mog; Um, Sang-Won
2012-11-01
Melanoma antigen (MAGE) genes are expressed in tumor cells, the testis and the placenta. The purpose of this prospective study was to investigate the sensitivity, specificity, and accuracy of the carcinoembryonic antigen (CEA), MAGE reverse transcriptase-nested polymerase chain reaction (RT-nested PCR), and cytology of pleural fluid in the diagnosis of malignant pleural effusion. Patients in whom unilateral pleural effusion was identified on chest radiography from January to December 2009 were included in the study. MAGE genes were analyzed by RT-nested PCR using MAGE A1-6 common primers. Of 81 enrolled patients, 46 were diagnosed as malignant pleural effusion, and 24 were diagnosed as benign pleural effusion. The diagnoses of 11 patients were not confirmed in this study. The diagnostic sensitivity, specificity, and accuracy of MAGE RT-nested PCR were 61.4%, 95.7%, and 73.1%, respectively. The diagnostic sensitivities of cytology and CEA (>5 ng/mL) were 61.4% and 75.0%, respectively. Among 17 patients with negative cytology who had malignant pleural effusion, 12 and 10 patients were positive for CEA (>5.0 ng/mL) and MAGE RT-nested PCR, respectively. However, of five patients with malignant pleural effusion that was not recognized by cytology and CEA, MAGE RT-nested PCR correctly predicted a malignant etiology in only one additional patient (20%). MAGE RT-nested PCR seems to add little on the combination of conventional methods in the diagnosis of malignant effusion. © 2012 Tianjin Lung Cancer Institute and Wiley Publishing Asia Pty. Ltd.
Spin-resolved band structure of a densely packed Pb monolayer on Si(111)
NASA Astrophysics Data System (ADS)
Brand, C.; Muff, S.; Fanciulli, M.; Pfnür, H.; Tringides, M. C.; Dil, J. H.; Tegenkamp, C.
2017-07-01
Monolayer structures of Pb on Si(111) attracted recently considerable interest as superconductivity was found in these truly two-dimensional (2D) structures. In this study, we analyzed the electronic surface band structure of the so-called striped incommensurate Pb phase with 4/3 ML coverage by means of spin-resolved photoemission spectroscopy. Our results fully agree with density functional theory calculations done by Ren et al. [Phys. Rev. B 94, 075436 (2016), 10.1103/PhysRevB.94.075436]. We observe a local Zeeman-type splitting of a fully occupied and spin-polarized surface band at the K¯√{3} points. The growth of this densely packed Pb structure results in the formation of imbalanced rotational domains, which triggered the detection of C3 v symmetry forbidden spin components for surface states around the Fermi energy. Moreover, the Fermi surface of the metallic surface state of this phase is Rashba spin split and revealed a pronounced warping. However, the 2D nesting vectors are incommensurate with the atomic structure, thus keeping this system rather immune against charge density wave formation and possibly enabling a superconducting behavior.
Enhanced superconductivity in surface-electron-doped iron pnictide Ba(Fe 1.94Co 0.06) 2As 2
Kyung, W. S.; Huh, S. S.; Koh, Y. Y.; ...
2016-08-15
The transition critical temperature (TC ) in a FeSe monolayer on SrTiO 3 is enhanced up to 100 K. High TC is also found in bulk iron chalcogenides with similar electronic structure to that of monolayer FeSe, which suggests that higher TC may be achieved through electron doping, pushing the Fermi surface (FS) topology towards leaving only electron pockets. Such observation, however, has been limited to chalcogenides and is in contrast with the iron pnictides for which the maximum TC is achieved with both hole and electron pockets forming considerable FS nesting instability. Here, we report angle-resolved photoemission (ARPES) characterizationmore » revealing a monotonic increase of TC from 24 to 41.5 K upon surface doping on optimally doped Ba(Fe 1-xCo x) 2As 2 . The doping changes the overall FS topology towards that of chalcogenides through a rigid downward band shift. Our findings suggest that higher electron doping and concomitant changes in FS topology are favorable conditions for the superconductivity, not only for iron chalcogenides but also for iron pnictides.« less
Tam, David W.; Song, Yu; Man, Haoran; ...
2017-02-17
In this paper, we use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe 2As 2 and its Co- and Ni-substituted members near optimal superconductivity. In the low-temperature AF ordered state, uniaxial pressure necessary to detwin the orthorhombic crystals also increases the magnetic ordered moment, reaching an 11% increase under 40 MPa for BaFe 1.9Co 0.1As 2, and a 15% increase for BaFe 1.915Ni 0.085As 2. We also observe an increase of the AF ordering temperature (T N) of about 0.25 K/MPa in all compounds, consistent withmore » density functional theory calculations that reveal better Fermi surface nesting for itinerant electrons under uniaxial pressure. Finally, the doping dependence of the magnetic ordered moment is captured by combining dynamical mean field theory with density functional theory, suggesting that the pressure-induced moment increase near optimal superconductivity is closely related to quantum fluctuations and the nearby electronic nematic phase.« less
The dependability of medical students' performance ratings as documented on in-training evaluations.
van Barneveld, Christina
2005-03-01
To demonstrate an approach to obtain an unbiased estimate of the dependability of students' performance ratings during training, when the data-collection design includes nesting of student in rater, unbalanced nest sizes, and dependent observations. In 2003, two variance components analyses of in-training evaluation (ITE) report data were conducted using urGENOVA software. In the first analysis, the dependability for the nested and unbalanced data-collection design was calculated. In the second analysis, an approach using multiple generalizability studies was used to obtain an unbiased estimate of the student variance component, resulting in an unbiased estimate of dependability. Results suggested that there is bias in estimates of the dependability of students' performance on ITEs that are attributable to the data-collection design. When the bias was corrected, the results indicated that the dependability of ratings of student performance was almost zero. The combination of the multiple generalizability studies method and the use of specialized software provides an unbiased estimate of the dependability of ratings of student performance on ITE scores for data-collection designs that include nesting of student in rater, unbalanced nest sizes, and dependent observations.
Using the network to achieve energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giglio, M.
1995-12-01
Novell, the third largest software company in the world, has developed Netware Embedded Systems Technology (NEST). NEST will take the network deeper into non-traditional computing environments and will imbed networking into more intelligent devices. Ultimately, this will lead to energy efficiencies in the office. NEST can make point-of-sale terminals, alarm systems, televisions, traffic controls, printers, lights, fax machines, copiers, HVAC controls, PBX machines, etc., either intelligent or more intelligent than they are currently. The mission statement for this particular group is to integrate over 30 million new intelligent devices into the workplace and the home with Novell networks by 1997.more » Computing trends have progressed from mainframes in the 1960s to keys, security systems, and airplanes in the year 2000. In fact, the new Boeing 777 has NEST in it, and it also has network servers on board. NEST enables the embedded network with the ability to put intelligence into devices. This gives one more control of the devices from wherever one is. For example, the pharmaceutical industry could use NEST to coordinate what the consumer is buying, what is in the warehouse, what the manufacturing plant is tooled for, and so on. Through NEST technology, the pharmaceutical industry now uses a camera that takes pictures of the pills. It can see whether an {open_quotes}overdose{close_quotes} or {open_quotes}underdose{close_quotes} of a particular type of pill is being manufactured. The plant can be shut down and corrections made immediately.« less
Magnetic excitations in iron chalcogenide superconductors.
Kotegawa, Hisashi; Fujita, Masaki
2012-10-01
Nuclear magnetic resonance and neutron scattering experiments in iron chalcogenide superconductors are reviewed to make a survey of the magnetic excitations in FeSe, FeSe 1- x Te x and alkali-metal-doped A x Fe 2- y Se 2 ( A = K, Rb, Cs, etc). In FeSe, the intimate relationship between the spin fluctuations and superconductivity can be seen universally for the variations in the off-stoichiometry, the Co-substitution and applied pressure. The isovalent compound FeTe has a magnetic ordering with different wave vector from that of other Fe-based magnetic materials. The transition temperature T c of FeSe increases with Te substitution in FeSe 1- x Te x with small x , and decreases in the vicinity of the end member FeTe. The spin fluctuations are drastically modified by the Te substitution. In the vicinity of the end member FeTe, the low-energy part of the spin fluctuation is dominated by the wave vector of the ordered phase of FeTe; however, the reduction of T c shows that it does not support superconductivity. The presence of same wave vector as that of other Fe-based superconductors in FeSe 1- x Te x and the observation of the resonance mode demonstrate that FeSe 1- x Te x belongs to the same group as most of other Fe-based superconductors in the entire range of x , where superconductivity is mediated by the spin fluctuations whose wave vector is the same as the nesting vector between the hole pockets and the electron pockets. On the other hand, the spin fluctuations differ for alkali-metal-doped A x Fe 2- y Se 2 and FeSe or other Fe-based superconductors in their wave vector and strength in the low-energy part, most likely because of the different Fermi surfaces. The resonance mode with different wave vector suggests that A x Fe 2- y Se 2 has an exceptional superconducting symmetry among Fe-based superconductors.
Structure and superconductivity in the ternary silicide CaAlSi
NASA Astrophysics Data System (ADS)
Ma, Rong; Huang, Gui-Qin; Liu, Mei
2007-06-01
Using the linear response-linearized Muffin-tin orbital (LR-LMTO) method, we study the electronic band structure, phonon spectra, electron-phonon coupling and superconductivity for c-axis ferromagnetic-like (F-like) and antiferromagnetic-like (AF-like) structures in ternary silicide CaAlSi. The following conclusions are drawn from our calculations. If Al and Si atoms are assumed to arrange along the c axis in an F-like long-range ordering (-Al-Al-Al-and-Si-Si-Si-), one could obtain the ultrasoft B1g phonon mode and thus very strong electron-phonon coupling in CaAlSi. However, the appearance of imaginary frequency phonon modes indicates the instability of such a structure. For Al and Si atoms arranging along the c axis in an AF-like long-range ordering (-Al-Si-Al-), the calculated electron-phonon coupling constant is equal to 0.8 and the logarithmically averaged frequency is 146.8 K. This calculated result can correctly yield the superconducting transition temperature of CaAlSi by the standard BCS theory in the moderate electron-phonon coupling strength. We propose that an AF-like superlattice model for Al (or Si) atoms along the c direction may mediate the inconsistency estimated from theory and experiment, and explain the anomalous superconductivity in CaAlSi.
Fermionic entanglement in superconducting systems
NASA Astrophysics Data System (ADS)
Di Tullio, M.; Gigena, N.; Rossignoli, R.
2018-06-01
We examine distinct measures of fermionic entanglement in the exact ground state of a finite superconducting system. It is first shown that global measures such as the one-body entanglement entropy, which represents the minimum relative entropy between the exact ground state and the set of fermionic Gaussian states, exhibit a close correlation with the BCS gap, saturating in the strong superconducting regime. The same behavior is displayed by the bipartite entanglement between the set of all single-particle states k of positive quasimomenta and their time-reversed partners k ¯. In contrast, the entanglement associated with the reduced density matrix of four single-particle modes k ,k ¯ , k',k¯' , which can be measured through a properly defined fermionic concurrence, exhibits a different behavior, showing a peak in the vicinity of the superconducting transition for states k ,k' close to the Fermi level and becoming small in the strong coupling regime. In the latter, such reduced state exhibits, instead, a finite mutual information and quantum discord. While the first measures can be correctly estimated with the BCS approximation, the previous four-level concurrence lies strictly beyond the latter, requiring at least a particle-number projected BCS treatment for its description. Formal properties of all previous entanglement measures are as well discussed.
Preparation and measurement of three-qubit entanglement in a superconducting circuit.
Dicarlo, L; Reed, M D; Sun, L; Johnson, B R; Chow, J M; Gambetta, J M; Frunzio, L; Girvin, S M; Devoret, M H; Schoelkopf, R J
2010-09-30
Traditionally, quantum entanglement has been central to foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830 ± 80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.
Kohn Anomaly and Phase Stability in Group VB Transition Metals
Landa, Alexander; Soderlind, Per; Naumov, Ivan; ...
2018-03-26
In the periodic table, only a few pure metals exhibit lattice or magnetic instabilities associated with Fermi surface nesting, the classical examples being α-U and Cr. Whereas α-U displays a strong Kohn anomaly in the phonon spectrum that ultimately leads to the formation of charge density waves (CDWs), Cr is known for its nesting-induced spin density waves (SDWs). Recently, it has become clear that a pronounced Kohn anomaly and the corresponding softening in the elastic constants is also the key factor that controls structural transformations and mechanical properties in compressed group VB metals—materials with relatively high superconducting critical temperatures. Thismore » article reviews the current understanding of the structural and mechanical behavior of these metals under pressure with an introduction to the concept of the Kohn anomaly and how it is related to the important concept of Peierls instability. We review both experimental and theoretical results showing different manifestations of the Kohn anomaly in the transverse acoustic phonon mode TA (ξ00) in V, Nb, and Ta. Specifically, in V the anomaly triggers a structural transition to a rhombohedral phase, whereas in Nb and Ta it leads to an anomalous reduction in yield strength.« less
Kohn Anomaly and Phase Stability in Group VB Transition Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landa, Alexander; Soderlind, Per; Naumov, Ivan
In the periodic table, only a few pure metals exhibit lattice or magnetic instabilities associated with Fermi surface nesting, the classical examples being α-U and Cr. Whereas α-U displays a strong Kohn anomaly in the phonon spectrum that ultimately leads to the formation of charge density waves (CDWs), Cr is known for its nesting-induced spin density waves (SDWs). Recently, it has become clear that a pronounced Kohn anomaly and the corresponding softening in the elastic constants is also the key factor that controls structural transformations and mechanical properties in compressed group VB metals—materials with relatively high superconducting critical temperatures. Thismore » article reviews the current understanding of the structural and mechanical behavior of these metals under pressure with an introduction to the concept of the Kohn anomaly and how it is related to the important concept of Peierls instability. We review both experimental and theoretical results showing different manifestations of the Kohn anomaly in the transverse acoustic phonon mode TA (ξ00) in V, Nb, and Ta. Specifically, in V the anomaly triggers a structural transition to a rhombohedral phase, whereas in Nb and Ta it leads to an anomalous reduction in yield strength.« less
History-dependent dissipative vortex dynamics in superconducting arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durkin, Malcolm; Mondragon-Shem, Ian; Eley, Serena Merteen
In this study, we perform current (I)-voltage (V) measurements on low resistance superconductor-normal-superconductor arrays in finite magnetic fields, focusing on the dilute vortex population regime. We observe significant deviations from predicted behavior, notably the absence of a differential resistance peak near the vortex depinning current, and a broad linear I-V region with an extrapolated I intercept equal to the depinning current. Comparing these results to an overdamped molecular vortex model, we find that this behavior can be explained by the presence of a history-dependent dissipative force. Lastly, this approach has not been considered previously, to our knowledge, yet it ismore » crucial for obtaining a correct description of the vortex dynamics in superconducting arrays.« less
History-dependent dissipative vortex dynamics in superconducting arrays
Durkin, Malcolm; Mondragon-Shem, Ian; Eley, Serena Merteen; ...
2016-07-14
In this study, we perform current (I)-voltage (V) measurements on low resistance superconductor-normal-superconductor arrays in finite magnetic fields, focusing on the dilute vortex population regime. We observe significant deviations from predicted behavior, notably the absence of a differential resistance peak near the vortex depinning current, and a broad linear I-V region with an extrapolated I intercept equal to the depinning current. Comparing these results to an overdamped molecular vortex model, we find that this behavior can be explained by the presence of a history-dependent dissipative force. Lastly, this approach has not been considered previously, to our knowledge, yet it ismore » crucial for obtaining a correct description of the vortex dynamics in superconducting arrays.« less
Cross-Talk in Superconducting Transmon Quantum Computing Architecture
NASA Astrophysics Data System (ADS)
Abraham, David; Chow, Jerry; Corcoles, Antonio; Rothwell, Mary; Keefe, George; Gambetta, Jay; Steffen, Matthias; IBM Quantum Computing Team
2013-03-01
Superconducting transmon quantum computing test structures often exhibit significant undesired cross-talk. For experiments with only a handful of qubits this cross-talk can be quantified and understood, and therefore corrected. As quantum computing circuits become more complex, and thereby contain increasing numbers of qubits and resonators, it becomes more vital that the inadvertent coupling between these elements is minimized. The task of accurately controlling each single qubit to the level of precision required throughout the realization of a quantum algorithm is difficult by itself, but coupled with the need of nulling out leakage signals from neighboring qubits or resonators would quickly become impossible. We discuss an approach to solve this critical problem. We acknowledge support from IARPA under contract W911NF-10-1-0324.
Crucial nesting habitat for gunnison sage-grouse: A spatially explicit hierarchical approach
Aldridge, Cameron L.; Saher, D.J.; Childers, T.M.; Stahlnecker, K.E.; Bowen, Z.H.
2012-01-01
Gunnison sage-grouse (Centrocercus minimus) is a species of special concern and is currently considered a candidate species under Endangered Species Act. Careful management is therefore required to ensure that suitable habitat is maintained, particularly because much of the species' current distribution is faced with exurban development pressures. We assessed hierarchical nest site selection patterns of Gunnison sage-grouse inhabiting the western portion of the Gunnison Basin, Colorado, USA, at multiple spatial scales, using logistic regression-based resource selection functions. Models were selected using Akaike Information Criterion corrected for small sample sizes (AIC c) and predictive surfaces were generated using model averaged relative probabilities. Landscape-scale factors that had the most influence on nest site selection included the proportion of sagebrush cover >5%, mean productivity, and density of 2 wheel-drive roads. The landscape-scale predictive surface captured 97% of known Gunnison sage-grouse nests within the top 5 of 10 prediction bins, implicating 57% of the basin as crucial nesting habitat. Crucial habitat identified by the landscape model was used to define the extent for patch-scale modeling efforts. Patch-scale variables that had the greatest influence on nest site selection were the proportion of big sagebrush cover >10%, distance to residential development, distance to high volume paved roads, and mean productivity. This model accurately predicted independent nest locations. The unique hierarchical structure of our models more accurately captures the nested nature of habitat selection, and allowed for increased discrimination within larger landscapes of suitable habitat. We extrapolated the landscape-scale model to the entire Gunnison Basin because of conservation concerns for this species. We believe this predictive surface is a valuable tool which can be incorporated into land use and conservation planning as well the assessment of future land-use scenarios. ?? 2011 The Wildlife Society.
A novel behavioral paradigm for assessing concept of nests in mice
Kuang, Hui; Mei, Bing; Cui, Zhenzhong; Lin, Longnian; Tsien, Joe Z.
2013-01-01
Abstract concepts in the brain enable humans to efficiently and correctly recognize and categorize a seemingly infinite amount of objects and daily events. Such abstract generalization abilities are traditionally considered to be unique to humans and perhaps non-human primates. However, emerging neurophysiological recordings indicate the existence of neural correlates for the abstract concept of nests in the mouse brain. To facilitate the molecular and genetic analyses of concepts in the mouse model, we have developed a nest generalization test based on mice’s natural behavior. We show that inducible and forebrain-specific NMDA receptor knockout results in pronounced impairment in this test. Interestingly, this generalization deficit could be gradually compensated for over time by repeated experiences even in face of the continued deficit in object recognition memory. On the contrast, the forebrain-specific presenilin-1 knockout mice, which have subtle phenotypes, were normal in performing this test. Therefore, our study not only establishes a quantitative method for assessing the nest concept in mice, but also demonstrates its great potential in combining powerful mouse genetics for dissecting the molecular basis of concept formation in the brain. PMID:20350568
Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng
2010-11-15
Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression canmore » be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.« less
Haghani, I; Amirinia, F; Nowroozpoor-Dailami, K; Shokohi, T
2015-06-01
Fungal keratitis is a suppurative, ulcerative, and sight-threatening infection of the cornea that sometimes leads to blindness. The aims of this study were: recuperating facilities for laboratory diagnosis, determining the causative microorganisms, and comparing conventional laboratory diagnostic tools and semi-nested PCR. Sampling was conducted in patients with suspected fungal keratitis. Two corneal scrapings specimens, one for direct smear and culture and the other for semi- nested PCR were obtained. Of the 40 expected cases of mycotic keratitis, calcofluor white staining showed positivity in 25%, culture in 17.5%, KOH in 10%, and semi-nested PCR in 27.5%. The sensitivities of semi-nested PCR, KOH, and CFW were 57.1%, 28.5%, and 42% while the specificities were 78.7%, 94%, and 78.7%, respectively. The time taken for PCR assay was 4 to 8 hours, whereas positive fungal cultures took at least 5 to 7 days. Due to the increasing incidence of fungal infections in people with weakened immune systems, uninformed using of topical corticosteroids and improper use of contact lens, fast diagnosis and accurate treatment of keratomycosis seems to be essential . Therefore, according to the current study, molecular methods can detect mycotic keratitis early and correctly leading to appropriate treatment.
Thermodynamics of the magnetic-field-induced "normal" state in an underdoped high Tc superconductor
NASA Astrophysics Data System (ADS)
Riggs, Scott Chandler
High magnetic fields are used to kill superconductivity and probe what happens to system when it cannot reach the ideal ground state, i.e. what is the normal-state ground state? Early work in High-Tc, where the application of magnetic field destroyed the zero resistance state and recovered a resistivity value that connected continuously with the zero field curve, lead people to believe this magnetic-field-induced-state had fully driven the system normal, revealing the true underlying ground state, without any vestige of superconductivity. Many experiments done in this region of phase space have results interpreted as coming from the low energy ground state excitations. With the emergence of ultra-clean crystals in a unique family of hole doped high-Tc superconductors, YBa2Cu3O 7-delta, YBCO, a new and highly unexpected phenomena of quantum oscillations were discovered, and they followed the standard Liftshitz-Kosevich (LK) theory for a normal metal. The results suddenly made the problem of high-T c appear to be analogous to superconductivity in the organics, which is brought about by a wave-vector nesting and Fermi surface reconstruction. The only problem, it appeared, that needed to be reconciled was with Angle Resolved Photo-Emission Spectroscopy (ARPES) and Scanning Tunneling Microscopy (STM) data that claimed to see no such Fermi surface, instead only "arcs", a set of disconnected segments in the Brillouin zone which quasiparticle peaks are observed at the Fermi energy, which in a mean field description does not allow for a continuous Fermi surface contour. These two discrepancies led to the "arc vs pocket" debate, which is still unresolved. The other kink in the quantum oscillation armor is that, to this date, quantum oscillations in the hole-doped cuprates have only been seen in YBCO, the only cuprate structure to have CuO chains, which conduct and are located in between two CuO2 superconducting planes in the unit cell. In an attempt to reconcile the "arc vs pocket" debate we measure specific heat on an ultra-clean de-twinned single crystal of underdoped YBCO 6.56 with a Tc = 60 K, up to fields twice irreversibility field, define as the onset of the resistive transition. The zero temperature extrapolation of the electronic contribution to the specific heat, gamma, is the total quasiparticle density of states. For a two-dimensional system with parabolic energy bands, gamma is simply the sum of each pocket multiplied by its effective mass. Therefore, by determining gamma at high fields and using previously determined values for the effective mass from quantum oscillation transport measurements we can simply play a counting game to determine the number of pockets in the Fermi surface. Furthermore, at low fields the response to the specific heat as a function of magnetic field in a d-wave superconductor is known to have a (H) dependence, and we can look for deviations from this (H) , which are expected to happen when the system is no longer in a superconducting state. Results from our specific heat experiment shed new light on the true nature of the magnetic field induced "normal" state, and should force reinterpretation of many experimental findings. The specific heat measurements foremost show a smooth evolution of gamma from low to high magnetic fields which follows a Ac (H) dependence, with the prefactor, Ac giving the correct magnitude for the anisotropy of the d-wave superconducting gap. This means with the application of magnetic fields strong enough to restore the resistive state, the superconducting gap still exits. Additionally, we see quantum oscillations that follow conventional LK formalism and can determine an effective mass uniquely, where no fitting parameters are required. Interestingly, these oscillations fit on top of the (H) finding. How can the (H) and quantum oscillation whose phenomena arise from very different physics be reconciled? Looking at our own zero field gamma value of 1.85 mJ mol-1 K-2, which is intrinsic for YBCO, allows the pocket counting game to begin. Coupling bandstructure calculations, angle dependent quantum oscillation measurements, which determine the shape of the pocket, with the zero field gamma value leads to the simplest interpretation; quantum oscillatory phenomena is a manifestation of the CuO chain and BaO insulating layer orbital hybridization band and is likely not relevant to high temperature superconductivity.
Wang, Sou-Tien
1994-11-01
A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).
Reply to "Comment on `Particle path through a nested Mach-Zehnder interferometer' "
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2017-06-01
The correctness of the consistent histories analysis of weakly interacting probes, related to the path of a particle, is maintained against the criticisms in the Comment, and against the alternative approach described there, which receives no support from standard (textbook) quantum mechanics.
Reproducible Operating Margins on a 72800-Device Digital Superconducting Chip (Open Access)
2015-10-28
superconductor digital logic. Keywords: flux trapping, yield, digital Superconductor digital technology offers fundamental advantages over conventional...trapping in the superconductor films can degrade or preclude correct circuit operation. Scaling superconductor technology is now possible due to recent...advances in circuit design embodied in reciprocal quantum logic (RQL) [2, 3] and recent advances in superconductor integrated circuit fabrication, which
Quantum networks in divergence-free circuit QED
NASA Astrophysics Data System (ADS)
Parra-Rodriguez, A.; Rico, E.; Solano, E.; Egusquiza, I. L.
2018-04-01
Superconducting circuits are one of the leading quantum platforms for quantum technologies. With growing system complexity, it is of crucial importance to develop scalable circuit models that contain the minimum information required to predict the behaviour of the physical system. Based on microwave engineering methods, divergent and non-divergent Hamiltonian models in circuit quantum electrodynamics have been proposed to explain the dynamics of superconducting quantum networks coupled to infinite-dimensional systems, such as transmission lines and general impedance environments. Here, we study systematically common linear coupling configurations between networks and infinite-dimensional systems. The main result is that the simple Lagrangian models for these configurations present an intrinsic natural length that provides a natural ultraviolet cutoff. This length is due to the unavoidable dressing of the environment modes by the network. In this manner, the coupling parameters between their components correctly manifest their natural decoupling at high frequencies. Furthermore, we show the requirements to correctly separate infinite-dimensional coupled systems in local bases. We also compare our analytical results with other analytical and approximate methods available in the literature. Finally, we propose several applications of these general methods to analogue quantum simulation of multi-spin-boson models in non-perturbative coupling regimes.
Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits.
Takita, Maika; Cross, Andrew W; Córcoles, A D; Chow, Jerry M; Gambetta, Jay M
2017-11-03
Robust quantum computation requires encoding delicate quantum information into degrees of freedom that are hard for the environment to change. Quantum encodings have been demonstrated in many physical systems by observing and correcting storage errors, but applications require not just storing information; we must accurately compute even with faulty operations. The theory of fault-tolerant quantum computing illuminates a way forward by providing a foundation and collection of techniques for limiting the spread of errors. Here we implement one of the smallest quantum codes in a five-qubit superconducting transmon device and demonstrate fault-tolerant state preparation. We characterize the resulting code words through quantum process tomography and study the free evolution of the logical observables. Our results are consistent with fault-tolerant state preparation in a protected qubit subspace.
Kodama, Nao; Kose, Katsumi
2016-10-11
Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (~54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach.
Design of magnets inside cylindrical superconducting shields
NASA Technical Reports Server (NTRS)
Rigby, K. W.
1988-01-01
The design of magnets inside closed, cylindrical, superconducting shields is discussed. The Green function is given for the magnetic vector potential for cylindrically symmetric currents inside such a shield. The magnetic field everywhere inside the shield can be obtained from this function, which includes the effects of the induced shield currents exactly. The field is given for a thin solenoid as an example and the convergence of the series solution for this case is discussed. The shield can significantly reduce the strength and improve the homogeneity of a magnet. The improvement in homogeneity is of particular importance in the design of correction coils. These effects, and the maximum field on the shield, are examined for a typical solenoid. The results given are also useful, although not exact, for long shields with one or two open ends.
Digital Signal Processing Based on a Clustering Algorithm for Ir/Au TES Microcalorimeter
NASA Astrophysics Data System (ADS)
Zen, N.; Kunieda, Y.; Takahashi, H.; Hiramoto, K.; Nakazawa, M.; Fukuda, D.; Ukibe, M.; Ohkubo, M.
2006-02-01
In recent years, cryogenic microcalorimeters using their superconducting transition edge have been under development for possible application to the research for astronomical X-ray observations. To improve the energy resolution of superconducting transition edge sensors (TES), several correction methods have been developed. Among them, a clustering method based on digital signal processing has recently been proposed. In this paper, we applied the clustering method to Ir/Au bilayer TES. This method resulted in almost a 10% improvement in the energy resolution. Conversely, from the point of view of imaging X-ray spectroscopy, we applied the clustering method to pixellated Ir/Au-TES devices. We will thus show how a clustering method which sorts signals by their shapes is also useful for position identification
Suppressing relaxation in superconducting qubits by quasiparticle pumping.
Gustavsson, Simon; Yan, Fei; Catelani, Gianluigi; Bylander, Jonas; Kamal, Archana; Birenbaum, Jeffrey; Hover, David; Rosenberg, Danna; Samach, Gabriel; Sears, Adam P; Weber, Steven J; Yoder, Jonilyn L; Clarke, John; Kerman, Andrew J; Yoshihara, Fumiki; Nakamura, Yasunobu; Orlando, Terry P; Oliver, William D
2016-12-23
Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70% reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability. Copyright © 2016, American Association for the Advancement of Science.
Enhanced superconductivity in the high pressure phase of SnAs studied from first principles
NASA Astrophysics Data System (ADS)
Sreenivasa Reddy, P. V.; Kanchana, V.; Millichamp, T. E.; Vaitheeswaran, G.; Dugdale, S. B.
2017-01-01
First principles calculations are performed using density functional theory and density functional perturbation theory for SnAs. Total energy calculations show the first order phase transition from an NaCl structure to a CsCl one at around 37 GPa, which is also confirmed from enthalpy calculations and agrees well with experimental work. Calculations of the phonon structure and hence the electron-phonon coupling, λep, and superconducting transition temperature, Tc, across the phase diagram are performed. These calculations give an ambient pressure Tc, in the NaCl structure, of 3.08 K, in good agreement with experiment whilst at the transition pressure, in the CsCl structure, a drastically increased value of Tc = 12.2 K is found. Calculations also show a dramatic increase in the electronic density of states at this pressure. The lowest energy acoustic phonon branch in each structure also demonstrates some softening effects. Electronic structure calculations of the Fermi surface in both phases are presented for the first time as well as further calculations of the generalised susceptibility with the inclusion of matrix elements. These calculations indicate that the softening is not derived from Fermi surface nesting and it is concluded to be due to a wavevector-dependent enhancement of the electron-phonon coupling.
Electron doping evolution of the magnetic excitations in NaFe 1-xCo xAs
Carr, Scott V.; Zhang, Chenglin; Song, Yu; ...
2016-06-13
We use time-of-flight (TOF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe 1-xCo xAs with x = 0, 0.0175, 0.0215, 0.05, and 0.11. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy (E 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy (E > 80 meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility "(!) of NaFe 1-xCo xAs reveals a total fluctuating moment ofmore » 3.6 μ2 B/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Cooverdoped nonsuperconducting NaFe0.89Co0.11As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe 2-xNi xAs 2, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.« less
NASA Astrophysics Data System (ADS)
Oreiro, F. A.; Wziontek, H.; Fiore, M. M. E.; D'Onofrio, E. E.; Brunini, C.
2018-05-01
The Argentinean-German Geodetic Observatory is located 13 km from the Río de la Plata, in an area that is frequently affected by storm surges that can vary the level of the river over ±3 m. Water-level information from seven tide gauge stations located in the Río de la Plata are used to calculate every hour an empirical model of water heights (tidal + non-tidal component) and an empirical model of storm surge (non-tidal component) for the period 01/2016-12/2016. Using the SPOTL software, the gravimetric response of the models and the tidal response are calculated, obtaining that for the observatory location, the range of the tidal component (3.6 nm/s2) is only 12% of the range of the non-tidal component (29.4 nm/s2). The gravimetric response of the storm surge model is subtracted from the superconducting gravimeter observations, after applying the traditional corrections, and a reduction of 7% of the RMS is obtained. The wavelet transform is applied to the same series, before and after the non-tidal correction, and a clear decrease in the spectral energy in the periods between 2 and 12 days is identify between the series. Using the same software East, North and Up displacements are calculated, and a range of 3, 2, and 11 mm is obtained, respectively. The residuals obtained after applying the non-tidal correction allow to clearly identify the influence of rain events in the superconducting gravimeter observations, indicating the need of the analysis of this, and others, hydrological and geophysical effects.
Modelling Student Misconceptions Using Nested Logit Item Response Models
ERIC Educational Resources Information Center
Yildiz, Mustafa
2017-01-01
Student misconceptions have been studied for decades from a curricular/instructional perspective and from the assessment/test level perspective. Numerous misconception assessment tools have been developed in order to measure students' misconceptions relative to the correct content. Often, these tools are used to make a variety of educational…
Palkowski, Marek; Bielecki, Wlodzimierz
2017-06-02
RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.
Hopken, Matthew W; Orning, Elizabeth K; Young, Julie K; Piaggio, Antoinette J
2016-01-07
The greater sage-grouse (Centrocercus urophasianus) is a ground-nesting bird from the Northern Rocky Mountains and a species at risk of extinction in in multiple U.S. states and Canada. Herein we report results from a proof of concept that mitochondrial and nuclear DNAs from mammalian predator saliva could be non-invasively collected from depredated greater sage-grouse eggshells and carcasses and used for predator species identification. Molecular forensic approaches have been applied to identify predators from depredated remains as one strategy to better understand predator-prey dynamics and guide management strategies. This can aid conservation efforts by correctly identifying predators most likely to impact threatened and endangered species. DNA isolated from non-invasive samples around nesting sites (e.g. fecal or hair samples) is one method that can increase the success and accuracy of predator species identification when compared to relying on nest remains alone. Predator saliva DNA was collected from depredated eggshells and carcasses using swabs. We sequenced two partial fragments of two mitochondrial genes and obtained microsatellite genotypes using canid specific primers for species and individual identification, respectively. Using this multilocus approach we were able to identify predators, at least down to family, from 11 out of 14 nests (79%) and three out of seven carcasses (47%). Predators detected most frequently were canids (86%), while other taxa included rodents, a striped skunk, and cattle. We attempted to match the genotypes of individual coyotes obtained from eggshells and carcasses with those obtained from fecal samples and coyotes collected in the areas, but no genotype matches were found. Predation is a main cause of nest failure in ground-nesting birds and can impact reproduction and recruitment. To inform predator management for ground-nesting bird conservation, accurate identification of predator species is necessary. Considering predation can have a high impact on recruitment, predation events are very difficult to observe, and predator species are difficult to identify visually from nest remains, molecular approaches that reduce the need to observe or handle animals offer an additional tool to better understand predator-prey dynamics at nesting sites.
Deterministic quantum teleportation with feed-forward in a solid state system.
Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A
2013-08-15
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.
Temperature Dependence of the Upper Critical Field in Disordered Hubbard Model with Attraction
NASA Astrophysics Data System (ADS)
Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.
2017-12-01
We study disorder effects upon the temperature behavior of the upper critical magnetic field in an attractive Hubbard model within the generalized DMFT+Σ approach. We consider the wide range of attraction potentials U—from the weak coupling limit, where superconductivity is described by BCS model, up to the strong coupling limit, where superconducting transition is related to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures significantly higher than superconducting transition temperature, as well as the wide range of disorder—from weak to strong, when the system is in the vicinity of Anderson transition. The growth of coupling strength leads to the rapid growth of H c2( T), especially at low temperatures. In BEC limit and in the region of BCS-BEC crossover H c2( T), dependence becomes practically linear. Disordering also leads to the general growth of H c2( T). In BCS limit of weak coupling increasing disorder lead both to the growth of the slope of the upper critical field in the vicinity of the transition point and to the increase of H c2( T) in the low temperature region. In the limit of strong disorder in the vicinity of the Anderson transition localization corrections lead to the additional growth of H c2( T) at low temperatures, so that the H c2( T) dependence becomes concave. In BCS-BEC crossover region and in BEC limit disorder only slightly influences the slope of the upper critical field close to T c . However, in the low temperature region H c2 ( T may significantly grow with disorder in the vicinity of the Anderson transition, where localization corrections notably increase H c2 ( T = 0) also making H c2( T) dependence concave.
Magazzù, L; Forn-Díaz, P; Belyansky, R; Orgiazzi, J-L; Yurtalan, M A; Otto, M R; Lupascu, A; Wilson, C M; Grifoni, M
2018-06-07
The original PDF and HTML versions of this Article omitted the ORCID ID of the authors L. Magazzù and P. Forn-Díaz. (L. Magazzù: 0000-0002-4377-8387; P. Forn-Diaz: 0000-0003-4365-5157).The original PDF version of this Article contained errors in Eqs. (2), (6), (13), (14), (25), (26). These equations were missing all instances of 'Γ' and 'Δ', which are correctly displayed in the HTML version.Similarly, the inline equation in the third sentence of the caption of Fig. 2 was missing the left hand term 'Ω'.The original HTML version of this Article contained errors in Table 1. The correct version of the sixth row of the first column states 'Figure 2' instead of the original, incorrect 'Figure'. And the correction version of the ninth row of the first column states 'Figure 3' instead of the original, incorrect 'Figure'.This has been corrected in both the PDF and HTML versions of the Article.
A Blueprint for Demonstrating Quantum Supremacy with Superconducting Qubits
NASA Technical Reports Server (NTRS)
Kechedzhi, Kostyantyn
2018-01-01
Long coherence times and high fidelity control recently achieved in scalable superconducting circuits paved the way for the growing number of experimental studies of many-qubit quantum coherent phenomena in these devices. Albeit full implementation of quantum error correction and fault tolerant quantum computation remains a challenge the near term pre-error correction devices could allow new fundamental experiments despite inevitable accumulation of errors. One such open question foundational for quantum computing is achieving the so called quantum supremacy, an experimental demonstration of a computational task that takes polynomial time on the quantum computer whereas the best classical algorithm would require exponential time and/or resources. It is possible to formulate such a task for a quantum computer consisting of less than a 100 qubits. The computational task we consider is to provide approximate samples from a non-trivial quantum distribution. This is a generalization for the case of superconducting circuits of ideas behind boson sampling protocol for quantum optics introduced by Arkhipov and Aaronson. In this presentation we discuss a proof-of-principle demonstration of such a sampling task on a 9-qubit chain of superconducting gmon qubits developed by Google. We discuss theoretical analysis of the driven evolution of the device resulting in output approximating samples from a uniform distribution in the Hilbert space, a quantum chaotic state. We analyze quantum chaotic characteristics of the output of the circuit and the time required to generate a sufficiently complex quantum distribution. We demonstrate that the classical simulation of the sampling output requires exponential resources by connecting the task of calculating the output amplitudes to the sign problem of the Quantum Monte Carlo method. We also discuss the detailed theoretical modeling required to achieve high fidelity control and calibration of the multi-qubit unitary evolution in the device. We use a novel cross-entropy statistical metric as a figure of merit to verify the output and calibrate the device controls. Finally, we demonstrate the statistics of the wave function amplitudes generated on the 9-gmon chain and verify the quantum chaotic nature of the generated quantum distribution. This verifies the implementation of the quantum supremacy protocol.
Linear beam dynamics and ampere class superconducting RF cavities at RHIC
NASA Astrophysics Data System (ADS)
Calaga, Rama R.
The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half-cell electron gun and a five-cell SRF linac cavity are presented. Several RF and beam dynamics issues ultimately resulting in an optimum cavity design are discussed in detail.
Li, Ying
2016-09-16
Fault-tolerant quantum computing in systems composed of both Majorana fermions and topologically unprotected quantum systems, e.g., superconducting circuits or quantum dots, is studied in this Letter. Errors caused by topologically unprotected quantum systems need to be corrected with error-correction schemes, for instance, the surface code. We find that the error-correction performance of such a hybrid topological quantum computer is not superior to a normal quantum computer unless the topological charge of Majorana fermions is insusceptible to noise. If errors changing the topological charge are rare, the fault-tolerance threshold is much higher than the threshold of a normal quantum computer and a surface-code logical qubit could be encoded in only tens of topological qubits instead of about 1,000 normal qubits.
NASA Astrophysics Data System (ADS)
Khodas, M.; Levchenko, A.; Catelani, G.
2012-06-01
We study the transport in ultrathin disordered film near the quantum critical point induced by the Zeeman field. We calculate corrections to the normal state conductivity due to quantum pairing fluctuations. The fluctuation-induced transport is mediated by virtual rather than real quasiparticle excitations. We find that at zero temperature, where the corrections come from purely quantum fluctuations, the Aslamazov-Larkin paraconductivity term, the Maki-Thompson interference contribution, and the density of states effects are all of the same order. The total correction leads to the negative magnetoresistance. This result is in qualitative agreement with the recent transport observations in the parallel magnetic field of the homogeneously disordered amorphous films and superconducting two-dimensional electron gas realized at the oxide interfaces.
Russian Doll Genes and Complex Chromosome Rearrangements in Oxytricha trifallax
Braun, Jasper; Nabergall, Lukas; Neme, Rafik; Landweber, Laura F.; Saito, Masahico; Jonoska, Nataša
2018-01-01
Ciliates have two different types of nuclei per cell, with one acting as a somatic, transcriptionally active nucleus (macronucleus; abbr. MAC) and another serving as a germline nucleus (micronucleus; abbr. MIC). Furthermore, Oxytricha trifallax undergoes extensive genome rearrangements during sexual conjugation and post-zygotic development of daughter cells. These rearrangements are necessary because the precursor MIC loci are often both fragmented and scrambled, with respect to the corresponding MAC loci. Such genome architectures are remarkably tolerant of encrypted MIC loci, because RNA-guided processes during MAC development reorganize the gene fragments in the correct order to resemble the parental MAC sequence. Here, we describe the germline organization of several nested and highly scrambled genes in Oxytricha trifallax. These include cases with multiple layers of nesting, plus highly interleaved or tangled precursor loci that appear to deviate from previously described patterns. We present mathematical methods to measure the degree of nesting between precursor MIC loci, and revisit a method for a mathematical description of scrambling. After applying these methods to the chromosome rearrangement maps of O. trifallax we describe cases of nested arrangements with up to five layers of embedded genes, as well as the most scrambled loci in O. trifallax. PMID:29545465
First-cut design of an all-superconducting 100-T direct current magnet
Iwasa, Yukikazu; Hahn, Seungyong
2013-01-01
A 100-T magnetic field has heretofore been available only in pulse mode. This first-cut design demonstrates that a 100-T DC magnet (100 T) is possible. We base our design on: Gadolinium-based coated superconductor; a nested-coil formation, each a stack of double-pancake coils with the no-insulation technique; a band of high-strength steel over each coil; and a 12-T radial-field limit. The 100 T, a 20 mm cold bore, 6-m diameter, 17-m height, with a total of 12 500-km long superconductor, stores an energy of 122 GJ at its 4.2-K operating current of 2400 A. It requires a 4.2-K cooling power of 300 W. PMID:24399859
First-cut design of an all-superconducting 100-T direct current magnet.
Iwasa, Yukikazu; Hahn, Seungyong
2013-12-16
A 100-T magnetic field has heretofore been available only in pulse mode. This first-cut design demonstrates that a 100-T DC magnet (100 T) is possible. We base our design on: Gadolinium-based coated superconductor; a nested-coil formation, each a stack of double-pancake coils with the no-insulation technique; a band of high-strength steel over each coil; and a 12-T radial-field limit. The 100 T, a 20 mm cold bore, 6-m diameter, 17-m height, with a total of 12 500-km long superconductor, stores an energy of 122 GJ at its 4.2-K operating current of 2400 A. It requires a 4.2-K cooling power of 300 W.
PERSISTENT CURRENT EFFECT IN 15-16 T NB3SN ACCELERATOR DIPOLES AND ITS CORRECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashikhin, V. V.; Zlobin, A. V.
2016-11-08
Nb3Sn magnets with operating fields of 15-16 T are considered for the LHC Energy Doubler and a future Very High Energy pp Collider. Due to large coil volume, high critical current density and large superconducting (SC) filament size the persistent current effect is very large in Nb3Sn dipoles al low fields. This paper presents the results of analysis of the persistent current effect in the 15 T Nb3Sn dipole demonstrator being developed at FNAL, and describes different possibilities of its correction including passive SC wires, iron shims and coil geometry.
Novel insights into the ontogeny of nestmate recognition in Polistes social wasps.
Signorotti, Lisa; Cappa, Federico; d'Ettorre, Patrizia; Cervo, Rita
2014-01-01
The importance of early experience in animals' life is unquestionable, and imprinting-like phenomena may shape important aspects of behaviour. Early learning typically occurs during a sensitive period, which restricts crucial processes of information storage to a specific developmental phase. The characteristics of the sensitive period have been largely investigated in vertebrates, because of their complexity and plasticity, both in behaviour and neurophysiology, but early learning occurs also in invertebrates. In social insects, early learning appears to influence important social behaviours such as nestmate recognition. Yet, the mechanisms underlying recognition systems are not fully understood. It is currently believed that Polistes social wasps are able to discriminate nestmates from non-nestmates following the perception of olfactory cues present on the paper of their nest, which are learned during a strict sensitive period, immediately after emergence. Here, through differential odour experience experiments, we show that workers of Polistes dominula develop correct nestmate recognition abilities soon after emergence even in absence of what have been so far considered the necessary cues (the chemicals spread on nest paper). P. dominula workers were exposed for the first four days of adult life to paper fragments from their nest, or from a foreign conspecific nest or to a neutral condition. Wasps were then transferred to their original nests where recognition abilities were tested. Our results show that wasps do not alter their recognition ability if exposed only to nest material, or in absence of nest material, during the early phase of adult life. It thus appears that the nest paper is not used as a source of recognition cues to be learned in a specific time window, although we discuss possible alternative explanations. Our study provides a novel perspective for the study of the ontogeny of nestmate recognition in Polistes wasps and in other social insects.
NASA Astrophysics Data System (ADS)
Bieniek, Maciej; Korkusiński, Marek; Szulakowska, Ludmiła; Potasz, Paweł; Ozfidan, Isil; Hawrylak, Paweł
2018-02-01
We present here the minimal tight-binding model for a single layer of transition metal dichalcogenides (TMDCs) MX 2(M , metal; X , chalcogen) which illuminates the physics and captures band nesting, massive Dirac fermions, and valley Landé and Zeeman magnetic field effects. TMDCs share the hexagonal lattice with graphene but their electronic bands require much more complex atomic orbitals. Using symmetry arguments, a minimal basis consisting of three metal d orbitals and three chalcogen dimer p orbitals is constructed. The tunneling matrix elements between nearest-neighbor metal and chalcogen orbitals are explicitly derived at K ,-K , and Γ points of the Brillouin zone. The nearest-neighbor tunneling matrix elements connect specific metal and sulfur orbitals yielding an effective 6 ×6 Hamiltonian giving correct composition of metal and chalcogen orbitals but not the direct gap at K points. The direct gap at K , correct masses, and conduction band minima at Q points responsible for band nesting are obtained by inclusion of next-neighbor Mo-Mo tunneling. The parameters of the next-nearest-neighbor model are successfully fitted to MX 2(M =Mo ; X =S ) density functional ab initio calculations of the highest valence and lowest conduction band dispersion along K -Γ line in the Brillouin zone. The effective two-band massive Dirac Hamiltonian for MoS2, Landé g factors, and valley Zeeman splitting are obtained.
New class of photonic quantum error correction codes
NASA Astrophysics Data System (ADS)
Silveri, Matti; Michael, Marios; Brierley, R. T.; Salmilehto, Juha; Albert, Victor V.; Jiang, Liang; Girvin, S. M.
We present a new class of quantum error correction codes for applications in quantum memories, communication and scalable computation. These codes are constructed from a finite superposition of Fock states and can exactly correct errors that are polynomial up to a specified degree in creation and destruction operators. Equivalently, they can perform approximate quantum error correction to any given order in time step for the continuous-time dissipative evolution under these errors. The codes are related to two-mode photonic codes but offer the advantage of requiring only a single photon mode to correct loss (amplitude damping), as well as the ability to correct other errors, e.g. dephasing. Our codes are also similar in spirit to photonic ''cat codes'' but have several advantages including smaller mean occupation number and exact rather than approximate orthogonality of the code words. We analyze how the rate of uncorrectable errors scales with the code complexity and discuss the unitary control for the recovery process. These codes are realizable with current superconducting qubit technology and can increase the fidelity of photonic quantum communication and memories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breznay, Nicholas P.; Tendulkar, Mihir; Zhang, Li
Here, we study the two-dimensional superconductor-insulator transition (SIT) in thin films of tantalum nitride. At zero magnetic field, films can be disorder-tuned across the SIT by adjusting thickness and film stoichiometry; insulating films exhibit classical hopping transport. Superconducting films exhibit a magnetic-field-tuned SIT, whose insulating ground state at high field appears to be a quantum-corrected metal. Scaling behavior at the field-tuned SIT shows classical percolation critical exponents zν ≈ 1.3, with a corresponding critical field H c << H c2, the upper critical field. The Hall effect exhibits a crossing point near H c, but with a nonuniversal critical valuemore » ρ c xy comparable to the normal-state Hall resistivity. We propose that high-carrier-density metals will always exhibit this pattern of behavior at the boundary between superconducting and (trivially) insulating ground states.« less
KODAMA, Nao; KOSE, Katsumi
2016-01-01
Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (∼54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach. PMID:27001398
Enabling cost-effective high-current burst-mode operation in superconducting accelerators
Sheffield, Richard L.
2015-06-01
Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less
Superconductor to weak-insulator transitions in disordered tantalum nitride films
NASA Astrophysics Data System (ADS)
Breznay, Nicholas P.; Tendulkar, Mihir; Zhang, Li; Lee, Sang-Chul; Kapitulnik, Aharon
2017-10-01
We study the two-dimensional superconductor-insulator transition (SIT) in thin films of tantalum nitride. At zero magnetic field, films can be disorder-tuned across the SIT by adjusting thickness and film stoichiometry; insulating films exhibit classical hopping transport. Superconducting films exhibit a magnetic-field-tuned SIT, whose insulating ground state at high field appears to be a quantum-corrected metal. Scaling behavior at the field-tuned SIT shows classical percolation critical exponents z ν ≈1.3 , with a corresponding critical field Hc≪Hc 2 , the upper critical field. The Hall effect exhibits a crossing point near Hc, but with a nonuniversal critical value ρxy c comparable to the normal-state Hall resistivity. We propose that high-carrier-density metals will always exhibit this pattern of behavior at the boundary between superconducting and (trivially) insulating ground states.
Analysis of astronomical data from optical superconducting tunnel junctions
NASA Astrophysics Data System (ADS)
de Bruijne, J. H.; Reynolds, A. P.; Perryman, Michael A.; Favata, Fabio; Peacock, Anthony J.
2002-06-01
Currently operating optical superconducting tunnel junction (STJ) detectors, developed at the European Space Agency (ESA), can simultaneously measure the wavelength ((Delta) (gamma) equals 50 nm at 500 nm) and arrival time (to within approximately 5 microsecond(s) ) of individual photons in the range 310 to 720 nm with an efficiency of approximately 70%, and with count rates of the order of 5000 photons s-1 per junction. A number of STJs placed in an array format generates 4-D data: photon arrival time, energy, and array element (X,Y). Such STJ cameras are ideally suited for, e.g., high-time-resolution spectrally resolved monitoring of variable sources or low- resolution spectroscopy of faint extragalactic objects. The reduction of STJ data involves detector efficiency correction, atmospheric extinction correction, sky background subtraction, and, unlike that of data from CCD-based systems, a more complex energy calibration, barycentric arrival time correction, energy range selection, and time binning; these steps are, in many respects, analogous to procedures followed in high-energy astrophysics. We discuss these calibration steps in detail using a representative observation of the cataclysmic variable UZ Fornacis; these data were obtained with ESA's S-Cam2 6 X 6-pixel device. We furthermore discuss issues related to telescope pointing and guiding, differential atmospheric refraction, and atmosphere-induced image motion and image smearing (`seeing') in the focal plane. We also present a simple and effective recipe for extracting the evolution of atmospheric seeing with time from any science exposure and discuss a number of caveats in the interpretation of STJ-based time-binned data, such as light curves and hardness ratio plots.
ERIC Educational Resources Information Center
Carter, Robert E.
2016-01-01
Conventional wisdom holds that research-productive faculty are also the finest instructors. But, is this commonly held belief correct? In the current study, the notion that faculty scholarship exhibits a positive association with teaching evaluations is investigated. Reflecting the data structure of faculty nested within university, the current…
Correction of bias in belt transect studies of immotile objects
Anderson, D.R.; Pospahala, R.S.
1970-01-01
Unless a correction is made, population estimates derived from a sample of belt transects will be biased if a fraction of, the individuals on the sample transects are not counted. An approach, useful for correcting this bias when sampling immotile populations using transects of a fixed width, is presented. The method assumes that a searcher's ability to find objects near the center of the transect is nearly perfect. The method utilizes a mathematical equation, estimated from the data, to represent the searcher's inability to find all objects at increasing distances from the center of the transect. An example of the analysis of data, formation of the equation, and application is presented using waterfowl nesting data collected in Colorado.
Observation of non-Fermi liquid behavior in hole-doped LiFe 1-x V xAs
Xing, L. Y.; Shi, X.; Richard, P.; ...
2016-09-28
Here we synthesized a series of V-doped LiFe 1₋xV xAs single crystals. The superconducting transition temperature T c of LiFeAs decreases rapidly at a rate of 7 K per 1% V. The Hall coefficient of LiFeAs switches from negative to positive with 4.2% V doping, showing that V doping introduces hole carriers. This observation is further confirmed by the evaluation of the Fermi surface volume measured by angle-resolved photoemission spectroscopy (ARPES), from which a 0.3 hole doping per V atom introduced is deduced. Interestingly, the introduction of holes does not follow a rigid band shift. We also show that themore » temperature evolution of the electrical resistivity as a function of doping is consistent with a crossover from a Fermi liquid to a non-Fermi liquid. Our ARPES data indicate that the non-Fermi liquid behavior is mostly enhanced when one of the hole d xz/dyz Fermi surfaces is well nested by the antiferromagnetic wave vector to the inner electron Fermi surface pocket with the d xy orbital character. In conclusion, the magnetic susceptibility of LiFe 1₋xV xAs suggests the presence of strong magnetic impurities following V doping, thus providing a natural explanation to the rapid suppression of superconductivity upon V doping.« less
Observation of non-Fermi liquid behavior in hole-doped LiFe 1-x V xAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, L. Y.; Shi, X.; Richard, P.
Here we synthesized a series of V-doped LiFe 1₋xV xAs single crystals. The superconducting transition temperature T c of LiFeAs decreases rapidly at a rate of 7 K per 1% V. The Hall coefficient of LiFeAs switches from negative to positive with 4.2% V doping, showing that V doping introduces hole carriers. This observation is further confirmed by the evaluation of the Fermi surface volume measured by angle-resolved photoemission spectroscopy (ARPES), from which a 0.3 hole doping per V atom introduced is deduced. Interestingly, the introduction of holes does not follow a rigid band shift. We also show that themore » temperature evolution of the electrical resistivity as a function of doping is consistent with a crossover from a Fermi liquid to a non-Fermi liquid. Our ARPES data indicate that the non-Fermi liquid behavior is mostly enhanced when one of the hole d xz/dyz Fermi surfaces is well nested by the antiferromagnetic wave vector to the inner electron Fermi surface pocket with the d xy orbital character. In conclusion, the magnetic susceptibility of LiFe 1₋xV xAs suggests the presence of strong magnetic impurities following V doping, thus providing a natural explanation to the rapid suppression of superconductivity upon V doping.« less
NASA Astrophysics Data System (ADS)
Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P. M.; Milošević, M. V.
2018-01-01
We present an advanced method to study spin fluctuations in superconductors quantitatively and entirely from first principles. This method can be generally applied to materials where electron-phonon coupling and spin fluctuations coexist. We employ it here to examine the recently synthesized superconductor iron tetraboride (FeB4) with experimental Tc˜2.4 K [H. Gou et al., Phys. Rev. Lett. 111, 157002 (2013), 10.1103/PhysRevLett.111.157002]. We prove that FeB4 is particularly prone to ferromagnetic spin fluctuations due to the presence of iron, resulting in a large Stoner interaction strength, I =1.5 eV, as calculated from first principles. The other important factor is its Fermi surface that consists of three separate sheets, among which two are nested ellipsoids. The resulting susceptibility has a ferromagnetic peak around q =0 , from which we calculated the repulsive interaction between Cooper pair electrons using the random phase approximation. Subsequently, we combined the electron-phonon interaction calculated from first principles with the spin fluctuation interaction in fully anisotropic Eliashberg theory calculations. We show that the resulting superconducting gap spectrum is conventional, yet very strongly depleted due to coupling to the spin fluctuations. The critical temperature decreases from Tc=41 K, if they are not taken into account, to Tc=1.7 K, in good agreement with the experimental value.
London equation for monodromy inflation
NASA Astrophysics Data System (ADS)
Kaloper, Nemanja; Lawrence, Albion
2017-03-01
We focus on the massive gauge theory formulation of axion monodromy inflation. We argue that a gauge symmetry hidden in these models is the key mechanism protecting inflation from dangerous field theory and quantum gravity corrections. The effective theory of large-field inflation is dual to a massive U (1 ) 4-form gauge theory, which is similar to a massive gauge theory description of superconductivity. The gauge theory explicitly realizes the old Julia-Toulouse proposal for a low-energy description of a gauge theory in a defect condensate. While we work mostly with the example of quadratic axion potential induced by flux monodromy, we discuss how other types of potentials can arise from the inclusion of gauge-invariant corrections to the theory.
Cooper, Caren B
2014-09-01
Accurate phenology data, such as the timing of migration and reproduction, is important for understanding how climate change influences birds. Given contradictory findings among localized studies regarding mismatches in timing of reproduction and peak food supply, broader-scale information is needed to understand how whole species respond to environmental change. Citizen science-participation of the public in genuine research-increases the geographic scale of research. Recent studies, however, showed weekend bias in reported first-arrival dates for migratory songbirds in databases created by citizen-science projects. I investigated whether weekend bias existed for clutch-initiation dates for common species in US citizen-science projects. Participants visited nests on Saturdays more frequently than other days. When participants visited nests during the laying stage, biased timing of visits did not translate into bias in estimated clutch-initiation dates, based on back-dating with the assumption of one egg laid per day. Participants, however, only visited nests during the laying stage for 25% of attempts of cup-nesting species and 58% of attempts in nest boxes. In some years, in lieu of visit data, participants provided their own estimates of clutch-initiation dates and were asked "did you visit the nest during the laying period?" Those participants who answered the question provided estimates of clutch-initiation dates with no day-of-week bias, irrespective of their answer. Those who did not answer the question were more likely to estimate clutch initiation on a Saturday. Data from citizen-science projects are useful in phenological studies when temporal biases can be checked and corrected through protocols and/or analytical methods.
NASA Astrophysics Data System (ADS)
Cooper, Caren B.
2014-09-01
Accurate phenology data, such as the timing of migration and reproduction, is important for understanding how climate change influences birds. Given contradictory findings among localized studies regarding mismatches in timing of reproduction and peak food supply, broader-scale information is needed to understand how whole species respond to environmental change. Citizen science—participation of the public in genuine research—increases the geographic scale of research. Recent studies, however, showed weekend bias in reported first-arrival dates for migratory songbirds in databases created by citizen-science projects. I investigated whether weekend bias existed for clutch-initiation dates for common species in US citizen-science projects. Participants visited nests on Saturdays more frequently than other days. When participants visited nests during the laying stage, biased timing of visits did not translate into bias in estimated clutch-initiation dates, based on back-dating with the assumption of one egg laid per day. Participants, however, only visited nests during the laying stage for 25 % of attempts of cup-nesting species and 58 % of attempts in nest boxes. In some years, in lieu of visit data, participants provided their own estimates of clutch-initiation dates and were asked "did you visit the nest during the laying period?" Those participants who answered the question provided estimates of clutch-initiation dates with no day-of-week bias, irrespective of their answer. Those who did not answer the question were more likely to estimate clutch initiation on a Saturday. Data from citizen-science projects are useful in phenological studies when temporal biases can be checked and corrected through protocols and/or analytical methods.
Multi-band magnetotransport in exfoliated thin films of Cu x Bi2Se3
NASA Astrophysics Data System (ADS)
Alexander-Webber, J. A.; Huang, J.; Beilsten-Edmands, J.; Čermák, P.; Drašar, Č.; Nicholas, R. J.; Coldea, A. I.
2018-04-01
We report magnetotransport studies in thin (<100 nm) exfoliated films of Cu x Bi2Se3 and we detect an unusual electronic transition at low temperatures. Bulk crystals show weak superconductivity with T_c∼3.5 K and a possible electronic phase transition around 200 K. Following exfoliation, superconductivity is supressed and a strongly temperature dependent multi-band conductivity is observed for T < 30 K. This transition between competing conducting channels may be enhanced due to the presence of electronic ordering, and could be affected by the presence of an effective internal stress due to Cu intercalation. By fitting to the weak antilocalisation conductivity correction at low magnetic fields we confirm that the low temperature regime maintains a quantum phase coherence length Lφ> 100 nm indicating the presence of topologically protected surface states.
Superconductor to weak-insulator transitions in disordered tantalum nitride films
Breznay, Nicholas P.; Tendulkar, Mihir; Zhang, Li; ...
2017-10-31
Here, we study the two-dimensional superconductor-insulator transition (SIT) in thin films of tantalum nitride. At zero magnetic field, films can be disorder-tuned across the SIT by adjusting thickness and film stoichiometry; insulating films exhibit classical hopping transport. Superconducting films exhibit a magnetic-field-tuned SIT, whose insulating ground state at high field appears to be a quantum-corrected metal. Scaling behavior at the field-tuned SIT shows classical percolation critical exponents zν ≈ 1.3, with a corresponding critical field H c << H c2, the upper critical field. The Hall effect exhibits a crossing point near H c, but with a nonuniversal critical valuemore » ρ c xy comparable to the normal-state Hall resistivity. We propose that high-carrier-density metals will always exhibit this pattern of behavior at the boundary between superconducting and (trivially) insulating ground states.« less
Holographic superconductivity from higher derivative theory
NASA Astrophysics Data System (ADS)
Wu, Jian-Pin; Liu, Peng
2017-11-01
We construct a 6 derivative holographic superconductor model in the 4-dimensional bulk spacetimes, in which the normal state describes a quantum critical (QC) phase. The phase diagram (γ1 ,Tˆc) and the condensation as the function of temperature are worked out numerically. We observe that with the decrease of the coupling parameter γ1, the critical temperature Tˆc decreases and the formation of charged scalar hair becomes harder. We also calculate the optical conductivity. An appealing characteristic is a wider extension of the superconducting energy gap, comparing with that of 4 derivative theory. It is expected that this phenomena can be observed in the real materials of high temperature superconductor. Also the Homes' law in our present models with 4 and 6 derivative corrections is explored. We find that in certain range of parameters γ and γ1, the experimentally measured value of the universal constant C in Homes' law can be obtained.
Reconstructive correction of aberrations in nuclear particle spectrographs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berz, M.; Joh, K.; Nolen, J.A.
A method is presented that allows the reconstruction of trajectories in particle spectrographs and the reconstructive correction of residual aberrations that otherwise limit the resolution. Using a computed or fitted high order transfer map that describes the uncorrected aberrations of the spectrograph, it is possible to calculate a map via an analytic recursion relation that allows the computation of the corrected data of interest such as reaction energy and scattering angle as well as the reconstructed trajectories in terms of position measurements in two planes near the focal plane. The technique is only limited by the accuracy of the positionmore » measurements, the incoherent spot sizes, and the accuracy of the transfer map. In practice the method can be expressed as an inversion of a nonlinear map and implemented in the differential algebraic framework. The method is applied to correct residual aberrations in the S800 spectrograph which is under construction at the National Superconducting Cyclotron Laboratory at Michigan State University and to two other high resolution spectrographs.« less
Inferring Foraging Areas of Nesting Loggerhead Turtles Using Satellite Telemetry and Stable Isotopes
Ceriani, Simona A.; Roth, James D.; Evans, Daniel R.; Weishampel, John F.; Ehrhart, Llewellyn M.
2012-01-01
In recent years, the use of intrinsic markers such as stable isotopes to link breeding and foraging grounds of migratory species has increased. Nevertheless, several assumptions still must be tested to interpret isotopic patterns found in the marine realm. We used a combination of satellite telemetry and stable isotope analysis to (i) identify key foraging grounds used by female loggerheads nesting in Florida and (ii) examine the relationship between stable isotope ratios and post-nesting migration destinations. We collected tissue samples for stable isotope analysis from 14 females equipped with satellite tags and an additional 57 untracked nesting females. Telemetry identified three post-nesting migratory pathways and associated non-breeding foraging grounds: (1) a seasonal continental shelf–constrained migratory pattern along the northeast U.S. coastline, (2) a non-breeding residency in southern foraging areas and (3) a residency in the waters adjacent to the breeding area. Isotopic variability in both δ13C and δ15N among individuals allowed identification of three distinct foraging aggregations. We used discriminant function analysis to examine how well δ13C and δ15N predict female post-nesting migration destination. The discriminant analysis classified correctly the foraging ground used for all but one individual and was used to predict putative feeding areas of untracked turtles. We provide the first documentation that the continental shelf of the Mid- and South Atlantic Bights are prime foraging areas for a large number (61%) of adult female loggerheads from the largest loggerhead nesting population in the western hemisphere and the second largest in the world. Our findings offer insights for future management efforts and suggest that this technique can be used to infer foraging strategies and residence areas in lieu of more expensive satellite telemetry, enabling sample sizes that are more representative at the population level. PMID:23028943
Kozhevnikov, V.; Valente-Feliciano, A. -M.; Curran, P. J.; ...
2017-05-17
The standard interpretation of the phase diagram of type-II superconductors was developed in the 1960s and has since been considered a well-established part of classical superconductivity. However, upon closer examination a number of fundamental issues arises that leads one to question this standard picture. To address these issues we studied equilibrium properties of niobium samples near and above the upper critical field H c2 in parallel and perpendicular magnetic fields. The samples investigated were very high quality films and single-crystal disks with the Ginzburg-Landau parameters 0.8 and 1.3, respectively. A range of complementary measurements has been performed, which include dcmore » magnetometry, electrical transport, muon spin rotation spectroscopy, and scanning Hall-probe microscopy. Contrary to the standard scenario, we observed that a superconducting phase is present in the sample bulk above H c2 and the field H c3 is the same in both parallel and perpendicular fields. Our findings suggest that above H c2 the superconducting phase forms filaments parallel to the field regardless of the field orientation. Near H c2 the filaments preserve the hexagonal structure of the preceding vortex lattice of the mixed state, and the filament density continuously falls to zero at H c3. Finally, our paper has important implications for the correct interpretation of the properties of type-II superconductors and can be essential for practical applications of these materials.« less
A simplified method for correcting contaminant concentrations in eggs for moisture loss.
Heinz, Gary H.; Stebbins, Katherine R.; Klimstra, Jon D.; Hoffman, David J.
2009-01-01
We developed a simplified and highly accurate method for correcting contaminant concentrations in eggs for the moisture that is lost from an egg during incubation. To make the correction, one injects water into the air cell of the egg until overflowing. The amount of water injected corrects almost perfectly for the amount of water lost during incubation or when an egg is left in the nest and dehydrates and deteriorates over time. To validate the new method we weighed freshly laid chicken (Gallus gallus) eggs and then incubated sets of fertile and dead eggs for either 12 or 19 d. We then injected water into the air cells of these eggs and verified that the weights after water injection were almost identical to the weights of the eggs when they were fresh. The advantages of the new method are its speed, accuracy, and simplicity: It does not require the calculation of a correction factor that has to be applied to each contaminant residue.
NASA Astrophysics Data System (ADS)
Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O.
2015-12-01
In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.
Population trends and survival of nesting green sea turtles Chelonia mydas on Aves Island, Venezuela
Garcia-Cruz, Marco A.; Lampo, Margarita; Peñaloza, Claudia L.; Kendall, William L.; Solé, Genaro; Rodriguez-Clark, Kathryn M.
2015-01-01
Long-term demographic data are valuable for assessing the effect of anthropogenic impacts on endangered species and evaluating recovery programs. Using a 2-state open robust design model, we analyzed mark-recapture data from green turtles Chelonia mydas sighted between 1979 and 2009 on Aves Island, Venezuela, a rookery heavily impacted by human activities before it was declared a wildlife refuge in 1972. Based on the encounter histories of 7689 nesting females, we estimated the abundance, annual survival, and remigration intervals for this population. Female survival varied from 0.14-0.91, with a mean of 0.79, which is low compared to survival of other populations from the Caribbean (mean = 0.84) and Australia (mean = 0.95), even though we partially corrected for tag loss, which is known to negatively bias survival estimates. This supports prior suggestions that Caribbean populations in general, and the Aves Island population in particular, may be more strongly impacted than populations elsewhere. It is likely that nesters from this rookery are extracted while foraging in remote feeding grounds where hunting still occurs. Despite its relatively low survival, the nesting population at Aves Island increased during the past 30 years from approx. 500 to >1000 nesting females in 2009. Thus, this population, like others in the Caribbean and the Atlantic, seems to be slowly recovering following protective management. Although these findings support the importance of long-term conservation programs aimed at protecting nesting grounds, they also highlight the need to extend management actions to foraging grounds where human activities may still impact green turtle populations.
Kowalski, Karol
2009-05-21
In this article we discuss the problem of proper balancing of the noniterative corrections to the ground- and excited-state energies obtained with approximate coupled cluster (CC) and equation-of-motion CC (EOMCC) approaches. It is demonstrated that for a class of excited states dominated by single excitations and for states with medium doubly excited component, the newly introduced nested variant of the method of moments of CC equations provides mathematically rigorous way of balancing the ground- and excited-state correlation effects. The resulting noniterative methodology accounting for the effect of triples is tested using its parallel implementation on the systems, for which iterative CC/EOMCC calculations with full inclusion of triply excited configurations or their most important subset are numerically feasible.
Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation
NASA Astrophysics Data System (ADS)
Touzard, S.; Grimm, A.; Leghtas, Z.; Mundhada, S. O.; Reinhold, P.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.
2018-04-01
Manipulating the state of a logical quantum bit (qubit) usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.
Gieder, Katherina D.; Karpanty, Sarah M.; Fraser, James D.; Catlin, Daniel H.; Gutierrez, Benjamin T.; Plant, Nathaniel G.; Turecek, Aaron M.; Thieler, E. Robert
2014-01-01
Sea-level rise and human development pose significant threats to shorebirds, particularly for species that utilize barrier island habitat. The piping plover (Charadrius melodus) is a federally-listed shorebird that nests on barrier islands and rapidly responds to changes in its physical environment, making it an excellent species with which to model how shorebird species may respond to habitat change related to sea-level rise and human development. The uncertainty and complexity in predicting sea-level rise, the responses of barrier island habitats to sea-level rise, and the responses of species to sea-level rise and human development necessitate a modelling approach that can link species to the physical habitat features that will be altered by changes in sea level and human development. We used a Bayesian network framework to develop a model that links piping plover nest presence to the physical features of their nesting habitat on a barrier island that is impacted by sea-level rise and human development, using three years of data (1999, 2002, and 2008) from Assateague Island National Seashore in Maryland. Our model performance results showed that we were able to successfully predict nest presence given a wide range of physical conditions within the model’s dataset. We found that model predictions were more successful when the range of physical conditions included in model development was varied rather than when those physical conditions were narrow. We also found that all model predictions had fewer false negatives (nests predicted to be absent when they were actually present in the dataset) than false positives (nests predicted to be present when they were actually absent in the dataset), indicating that our model correctly predicted nest presence better than nest absence. These results indicated that our approach of using a Bayesian network to link specific physical features to nest presence will be useful for modelling impacts of sea-level rise- or human-related habitat change on barrier islands. We recommend that potential users of this method utilize multiple years of data that represent a wide range of physical conditions in model development, because the model performed less well when constructed using a narrow range of physical conditions. Further, given that there will always be some uncertainty in predictions of future physical habitat conditions related to sea-level rise and/or human development, predictive models will perform best when developed using multiple, varied years of data input.
Facilitating normative judgments of conditional probability: frequency or nested sets?
Yamagishi, Kimihiko
2003-01-01
Recent probability judgment research contrasts two opposing views. Some theorists have emphasized the role of frequency representations in facilitating probabilistic correctness; opponents have noted that visualizing the probabilistic structure of the task sufficiently facilitates normative reasoning. In the current experiment, the following conditional probability task, an isomorph of the "Problem of Three Prisoners" was tested. "A factory manufactures artificial gemstones. Each gemstone has a 1/3 chance of being blurred, a 1/3 chance of being cracked, and a 1/3 chance of being clear. An inspection machine removes all cracked gemstones, and retains all clear gemstones. However, the machine removes 1/2 of the blurred gemstones. What is the chance that a gemstone is blurred after the inspection?" A 2 x 2 design was administered. The first variable was the use of frequency instruction. The second manipulation was the use of a roulette-wheel diagram that illustrated a "nested-sets" relationship between the prior and the posterior probabilities. Results from two experiments showed that frequency alone had modest effects, while the nested-sets instruction achieved a superior facilitation of normative reasoning. The third experiment compared the roulette-wheel diagram to tree diagrams that also showed the nested-sets relationship. The roulette-wheel diagram outperformed the tree diagrams in facilitation of probabilistic reasoning. Implications for understanding the nature of intuitive probability judgments are discussed.
Stripe Antiferromagnetic Spin Fluctuations in SrCo 2As 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasekara, Wageesha; Lee, Young-Jin; Pandey, Abhishek
Inelastic neutron scattering measurements of paramagnetic SrCo 2As 2 at T = 5 K reveal antiferromagnetic (AFM) spin fluctuations that are peaked at a wave vector of Q AFM = (1/2, 1/2, 1) and possess a large energy scale. These stripe spin fluctuations are similar to those found in AFe 2As 2 compounds, where spin-density wave AFM is driven by Fermi surface nesting between electron and hole pockets separated by Q AFM. SrCo 2As 2 has a more complex Fermi surface and band-structure calculations indicate a potential instability toward either a ferromagnetic or stripe AFM ground state. The results suggestmore » that stripe AFM magnetism is a general feature of both iron and cobalt-based arsenides and the search for spin fluctuation-induced unconventional superconductivity should be expanded to include cobalt-based compounds.« less
Electronic structure of ruthenium-doped iron chalcogenides
NASA Astrophysics Data System (ADS)
Winiarski, M. J.; Samsel-Czekała, M.; Ciechan, A.
2014-12-01
The structural and electronic properties of hypothetical RuxFe1-xSe and RuxFe1-xTe systems have been investigated from first principles within the density functional theory (DFT). Reasonable values of lattice parameters and chalcogen atomic positions in the tetragonal unit cell of iron chalcogenides have been obtained with the use of norm-conserving pseudopotentials. The well known discrepancies between experimental data and DFT-calculated results for structural parameters of iron chalcogenides are related to the semicore atomic states which were frozen in the used here approach. Such an approach yields valid results of the electronic structures of the investigated compounds. The Ru-based chalcogenides exhibit the same topology of the Fermi surface (FS) as that of FeSe, differing only in subtle FS nesting features. Our calculations predict that the ground states of RuSe and RuTe are nonmagnetic, whereas those of the solid solutions RuxFe1-xSe and RuxFe1-xTe become the single- and double-stripe antiferromagnetic, respectively. However, the calculated stabilization energy values are comparable for each system. The phase transitions between these magnetic arrangements may be induced by slight changes of the chalcogen atom positions and the lattice parameters a in the unit cell of iron selenides and tellurides. Since the superconductivity in iron chalcogenides is believed to be mediated by the spin fluctuations in single-stripe magnetic phase, the RuxFe1-xSe and RuxFe1-xTe systems are good candidates for new superconducting iron-based materials.
Simulation of the injection damping and resonance correction systems for the HEB of the SSC
NASA Astrophysics Data System (ADS)
Li, M.; Zhang, P.; Machida, S.
1993-12-01
An injection damping and resonance correction system for the High Energy Booster (HEB) of the Superconducting Super Collider (SSC) was investigated by means of multiparticle tracking. For an injection damping study, the code Simpsons is modified to utilize two Beam Position Monitors (BPM) and two dampers. The particles of 200 Gev/c, numbered 1024 or more, with Gaussian distribution in 6-D phase space are injected into the HEB with certain injection offsets. The whole bunch of particles is then kicked in proportion to the BPM signals with some upper limit. Tracking these particles up to several hundred turns while the damping system is acting shows the turn-by-turn emittance growth, which is caused by the tune spread due to nonlinearity of the lattice and residual chromaticity with synchrotron oscillations. For a resonance correction study, the operating tune is scanned as a function of time so that a bunch goes through a resonance. The performance of the resonance correction system is demonstrated. We optimize the system parameters which satisfy the emittance budget of the HEB, taking into account the realistic hardware requirement.
Characterizing a four-qubit planar lattice for arbitrary error detection
NASA Astrophysics Data System (ADS)
Chow, Jerry M.; Srinivasan, Srikanth J.; Magesan, Easwar; Córcoles, A. D.; Abraham, David W.; Gambetta, Jay M.; Steffen, Matthias
2015-05-01
Quantum error correction will be a necessary component towards realizing scalable quantum computers with physical qubits. Theoretically, it is possible to perform arbitrarily long computations if the error rate is below a threshold value. The two-dimensional surface code permits relatively high fault-tolerant thresholds at the ~1% level, and only requires a latticed network of qubits with nearest-neighbor interactions. Superconducting qubits have continued to steadily improve in coherence, gate, and readout fidelities, to become a leading candidate for implementation into larger quantum networks. Here we describe characterization experiments and calibration of a system of four superconducting qubits arranged in a planar lattice, amenable to the surface code. Insights into the particular qubit design and comparison between simulated parameters and experimentally determined parameters are given. Single- and two-qubit gate tune-up procedures are described and results for simultaneously benchmarking pairs of two-qubit gates are given. All controls are eventually used for an arbitrary error detection protocol described in separate work [Corcoles et al., Nature Communications, 6, 2015].
The Quantum Socket: Wiring for Superconducting Qubits - Part 1
NASA Astrophysics Data System (ADS)
McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.
Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.
Properties of the superconducting state in a two-band model
NASA Astrophysics Data System (ADS)
Nicol, E. J.; Carbotte, J. P.
2005-02-01
Eliashberg theory is used to investigate the range of thermodynamic properties possible within a two-band model for s -wave superconductivity and to identify signatures of its two-band nature. We emphasize dimensionless BCS ratios [those for the energy gaps, the specific heat jump, and the negative of its slope near Tc , the thermodynamic critical field Hc(0) , and the normalized slopes of the critical field and the penetration depth near Tc ], which are no longer universal even in weak coupling. We also give results for temperature-dependent quantities, such as the penetration depth and the energy gap. Results are presented both for microscopic parameters appropriate to MgB2 and for variations away from these. Strong coupling corrections are identified and found to be significant. Analytic formulas are provided that show the role played by the anisotropy in coupling in some special limits. Particular emphasis is placed on small interband coupling and on the opposite limit of no diagonal coupling. The effect of impurity scattering is considered, particularly for the interband case.
The role of geomagnetic cues in green turtle open sea navigation.
Benhamou, Simon; Sudre, Joël; Bourjea, Jérome; Ciccione, Stéphane; De Santis, Angelo; Luschi, Paolo
2011-01-01
Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls. In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24-48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues.
Regional Model Nesting Within GFS Daily Forecasts Over West Africa
NASA Technical Reports Server (NTRS)
Druyan, Leonard M.; Fulakeza, Matthew; Lonergan, Patrick; Worrell, Ruben
2010-01-01
The study uses the RM3, the regional climate model at the Center for Climate Systems Research of Columbia University and the NASA/Goddard Institute for Space Studies (CCSR/GISS). The paper evaluates 30 48-hour RM3 weather forecasts over West Africa during September 2006 made on a 0.5 grid nested within 1 Global Forecast System (GFS) global forecasts. September 2006 was the Special Observing Period #3 of the African Monsoon Multidisciplinary Analysis (AMMA). Archived GFS initial conditions and lateral boundary conditions for the simulations from the US National Weather Service, National Oceanographic and Atmospheric Administration were interpolated four times daily. Results for precipitation forecasts are validated against Tropical Rainfall Measurement Mission (TRMM) satellite estimates and data from the Famine Early Warning System (FEWS), which includes rain gauge measurements, and forecasts of circulation are compared to reanalysis 2. Performance statistics for the precipitation forecasts include bias, root-mean-square errors and spatial correlation coefficients. The nested regional model forecasts are compared to GFS forecasts to gauge whether nesting provides additional realistic information. They are also compared to RM3 simulations driven by reanalysis 2, representing high potential skill forecasts, to gauge the sensitivity of results to lateral boundary conditions. Nested RM3/GFS forecasts generate excessive moisture advection toward West Africa, which in turn causes prodigious amounts of model precipitation. This problem is corrected by empirical adjustments in the preparation of lateral boundary conditions and initial conditions. The resulting modified simulations improve on the GFS precipitation forecasts, achieving time-space correlations with TRMM of 0.77 on the first day and 0.63 on the second day. One realtime RM3/GFS precipitation forecast made at and posted by the African Centre of Meteorological Application for Development (ACMAD) in Niamey, Niger is shown.
Colombara, Danny V; Manhart, Lisa E; Carter, Joseph J; Hawes, Stephen E; Weiss, Noel S; Hughes, James P; Barnett, Matt J; Goodman, Gary E; Smith, Jennifer S; Qiao, You-Lin; Galloway, Denise A
2015-12-01
To test whether infection with select human polyomaviruses (HPyV) and human papillomaviruses (HPV) is associated with incident lung cancer. We performed a nested case-control study, testing serum from the carotene and retinol efficacy trial, conducted 1985-2005, for antibodies to Merkel cell (MCV), KI (KIV), and WU (WUV) HPyVs as well as to six high-risk and two low-risk HPV types. Incident lung cancer cases (n = 200) were frequency-matched with controls (n = 200) on age, enrollment and blood draw dates, intervention arm assignment, and the number of serum freeze/thaw cycles. Sera were tested using multiplex liquid bead microarray antibody assays. We used logistic regression to assess the association between HPyV and HPV antibodies and lung cancer. There was no evidence of a positive association between levels of MCV, KIV, or WUV antibodies and incident lung cancer (p corrected >0.10 for all trend tests; odds ratio (OR) range 0.72-1.09, p corrected >0.10 for all). There was also no evidence for a positive association between HPV 16 or 18 infection and incident lung cancer (p corrected ≥0.10 for all trend tests; OR range 0.25-2.54, p > 0.05 for all OR > 1), but the number of persons with serologic evidence of these infections was small. Prior infection with any of several types of HPyV or HPV was not associated with subsequent diagnosis of lung cancer. Infection with these viruses likely does not influence a person's risk of lung cancer in Western smoking populations.
Favaro, Livio; Gamba, Marco; Alfieri, Chiara; Pessani, Daniela; McElligott, Alan G
2015-11-25
The African penguin is a nesting seabird endemic to southern Africa. In penguins of the genus Spheniscus vocalisations are important for social recognition. However, it is not clear which acoustic features of calls can encode individual identity information. We recorded contact calls and ecstatic display songs of 12 adult birds from a captive colony. For each vocalisation, we measured 31 spectral and temporal acoustic parameters related to both source and filter components of calls. For each parameter, we calculated the Potential of Individual Coding (PIC). The acoustic parameters showing PIC ≥ 1.1 were used to perform a stepwise cross-validated discriminant function analysis (DFA). The DFA correctly classified 66.1% of the contact calls and 62.5% of display songs to the correct individual. The DFA also resulted in the further selection of 10 acoustic features for contact calls and 9 for display songs that were important for vocal individuality. Our results suggest that studying the anatomical constraints that influence nesting penguin vocalisations from a source-filter perspective, can lead to a much better understanding of the acoustic cues of individuality contained in their calls. This approach could be further extended to study and understand vocal communication in other bird species.
Favaro, Livio; Gamba, Marco; Alfieri, Chiara; Pessani, Daniela; McElligott, Alan G.
2015-01-01
The African penguin is a nesting seabird endemic to southern Africa. In penguins of the genus Spheniscus vocalisations are important for social recognition. However, it is not clear which acoustic features of calls can encode individual identity information. We recorded contact calls and ecstatic display songs of 12 adult birds from a captive colony. For each vocalisation, we measured 31 spectral and temporal acoustic parameters related to both source and filter components of calls. For each parameter, we calculated the Potential of Individual Coding (PIC). The acoustic parameters showing PIC ≥ 1.1 were used to perform a stepwise cross-validated discriminant function analysis (DFA). The DFA correctly classified 66.1% of the contact calls and 62.5% of display songs to the correct individual. The DFA also resulted in the further selection of 10 acoustic features for contact calls and 9 for display songs that were important for vocal individuality. Our results suggest that studying the anatomical constraints that influence nesting penguin vocalisations from a source-filter perspective, can lead to a much better understanding of the acoustic cues of individuality contained in their calls. This approach could be further extended to study and understand vocal communication in other bird species. PMID:26602001
Improving sub-grid scale accuracy of boundary features in regional finite-difference models
Panday, Sorab; Langevin, Christian D.
2012-01-01
As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.
Super-resolution pupil filtering for visual performance enhancement using adaptive optics
NASA Astrophysics Data System (ADS)
Zhao, Lina; Dai, Yun; Zhao, Junlei; Zhou, Xiaojun
2018-05-01
Ocular aberration correction can significantly improve visual function of the human eye. However, even under ideal aberration correction conditions, pupil diffraction restricts the resolution of retinal images. Pupil filtering is a simple super-resolution (SR) method that can overcome this diffraction barrier. In this study, a 145-element piezoelectric deformable mirror was used as a pupil phase filter because of its programmability and high fitting accuracy. Continuous phase-only filters were designed based on Zernike polynomial series and fitted through closed-loop adaptive optics. SR results were validated using double-pass point spread function images. Contrast sensitivity was further assessed to verify the SR effect on visual function. An F-test was conducted for nested models to statistically compare different CSFs. These results indicated CSFs for the proposed SR filter were significantly higher than the diffraction correction (p < 0.05). As such, the proposed filter design could provide useful guidance for supernormal vision optical correction of the human eye.
Demography of a breeding population of whimbrel (Numenius phaeopus) near Churchill, Manitoba, Canada
NASA Astrophysics Data System (ADS)
Perz, Johanna
I used a GIS raster layer of an area in the Churchill, Manitoba region to investigate the effect of breeding habitat on demography and density of Whimbrel from 2010 through 2013. Program MARK was used to quantify adult and daily nest survival. Apparent annual survival of 0.73 +/- 0.06 SE (95% CI = 0.60-0.83) did not significantly differ between sexes or habitats and was lower than expected based on longevity records and estimates for other large-bodied shorebirds. Nest success, corrected for exposure days, was highly variable, ranging from a low of 3% (95% CI = 0-12%) in 2011 to a high of 71% (95% CI = 54-83%) in 2013. The highest rate of nest survival occurred in the spring with the warmest mean temperature. I developed a generalized linear model (GLM) with a negative-binomial distribution from random plots that were surveyed for abundance to extrapolate a local breeding population size of 410 +/- 230 SE and density of 3.2 birds per square km +/- 1.8 SE. The result of my study suggests that other aspects of habitat not captured by the land cover categories may be more important to population dynamics.
Rosemartin, Alyssa; van Riper, Charles
2011-01-01
Least terns (Sternula antillarum) are threatened by rapid human development on the northern coast of Sonora, Mexico. Terns are bellwethers for changes along the world's coastlines, as their coastal breeding habitat is vulnerable to flooding and development. We conducted targeted ground and aerial surveys for least tern colonies along 160 kilometers of coast, and document our findings on colony sizes at nine sites over 3 years in the first portion of this report. Like many taxa, terns lay larger clutches at higher latitudes. In the second portion of this report, we evaluate least tern breeding lifespan, food availability, and nest predation as potential ecological reasons behind this differing clutch-size pattern. After correcting for phylogenetic relationships, we found that food availability, not breeding lifespan or nest predation rate, was related to reproductive investment across 46 species and populations of terns. We conclude that coastal development may have a greater impact on nesting terns in tropical regions as compared to temperate breeding locations, because global oceanic patterns of decreased food availability reduce reproductive investment in the tropics.
NASA Astrophysics Data System (ADS)
Sánchez, Daniel; Nieh, James C.; Hénaut, Yann; Cruz, Leopoldo; Vandame, Rémy
Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least +/-6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least +/-5 m or +/-10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.
An engineer's view on genetic information and biological evolution.
Battail, Gérard
2004-01-01
We develop ideas on genome replication introduced in Battail [Europhys. Lett. 40 (1997) 343]. Starting with the hypothesis that the genome replication process uses error-correcting means, and the auxiliary one that nested codes are used to this end, we first review the concepts of redundancy and error-correcting codes. Then we show that these hypotheses imply that: distinct species exist with a hierarchical taxonomy, there is a trend of evolution towards complexity, and evolution proceeds by discrete jumps. At least the first two features above may be considered as biological facts so, in the absence of direct evidence, they provide an indirect proof in favour of the hypothesized error-correction system. The very high redundancy of genomes makes it possible. In order to explain how it is implemented, we suggest that soft codes and replication decoding, to be briefly described, are plausible candidates. Experimentally proven properties of long-range correlation of the DNA message substantiate this claim.
Reply to "Comment on `Particle path through a nested Mach-Zehnder interferometer' "
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2018-02-01
While much of the technical analysis in the preceding Comment is correct, in the end it confirms the conclusion reached in my previous work [Phys. Rev. A 94, 032115 (2016), 10.1103/PhysRevA.94.032115]: A consistent histories analysis provides no support for the claim of counterfactual quantum communication put forward by Salih et al. [Phys. Rev. Lett. 110, 170502 (2013), 10.1103/PhysRevLett.110.170502].
Hydro-gravimetry in West-Africa: First results from the Djougou (Benin) superconducting gravimeter
NASA Astrophysics Data System (ADS)
Hector, Basile; Hinderer, Jacques; Séguis, Luc; Boy, Jean-Paul; Calvo, Marta; Descloitres, Marc; Rosat, Séverine; Galle, Sylvie; Riccardi, Umberto
2014-10-01
The increasing number of hydro-gravimetry studies proves the rising interest of the hydrology community toward this monitoring method. The accuracy of superconducting gravimeters (SG) potentially allows the retrieval of small water storage changes (WSC) down to a few millimeters of equivalent water thickness. However, the importance of corrections applied to SG data to achieve such a precision in gravity residuals should be recalled. The Djougou permanent gravity station presented in this paper and located in northern Benin, West-Africa, provides a good opportunity to review these considerations. This station is equipped since July 2010 with the superconducting gravimeter SG-060 aimed at deriving WSC at different time-scales, daily to inter-annual. In this area, WSC are (1) part of the control system for evapotranspiration (ET) process, a key variable of the West-African monsoon cycle and (2) the state variable for resource management, a critical issue in storage-poor hard rock basement contexts such as in northern Benin. The potential for deriving WSC from time-lapse gravity data partly depends on environmental features such as topography and the instrument shelter. Therefore, this issue is addressed first, with the background idea that such sensitivity analysis should be undertaken before setting up any new instrument. In Djougou, local topography is quite flat leading to a theoretical straightforward relationship between gravity changes and WSC, close to the standard Bouguer value. However, the shelter plays a significant masking role, which is the principal limitation to the retrieval of fast hydrological processes such as ET following a rain event. Several issues concerning classical gravity corrections are also addressed in the paper. These include gap-filling procedures during rain-events and drift estimates for short time series. Special attention is provided to atmospheric corrections, and different approaches are tested: a simple scalar admittance, a filtered scalar admittance, a frequency-dependent admittance and direct atmospheric loading calculations. It is shown that the physically based approach of direct loading calculations performs better in both residual minimization and ET retrieval. Moreover, non-local hydrological effects are investigated and account for about 20% of the gravity residuals. Finally, gravity residuals are briefly analyzed at two distinct time scales: rapid (up to a few days) and seasonal. At the rapid time-scale, it is shown that ET retrieval is hardly achievable given shelter size and state-of-the-art atmospheric corrections. Still, mean values retrieved from this study are in accordance with known values of potential ET and lateral flow. Direct comparison of gravity changes with hydrological data (neutron probe monitoring and water table levels) show some discrepancies, particularly for the hydrological year of 2011, for which all hydrological data show a deficit, but SG and FG5 data do not. This preliminary analysis both provides a basis and call for further hydro-gravity modeling, to comprehensively investigate the water-cycle at the Djougou station.
Lead burdens and behavioral impairments of the lined shore crab Pachygrapsus crassipes
Hui, Clifford A.
2002-01-01
Unless a correction is made, population estimates derived from a sample of belt transects will be biased if a fraction of, the individuals on the sample transects are not counted. An approach, useful for correcting this bias when sampling immotile populations using transects of a fixed width, is presented. The method assumes that a searcher's ability to find objects near the center of the transect is nearly perfect. The method utilizes a mathematical equation, estimated from the data, to represent the searcher's inability to find all objects at increasing distances from the center of the transect. An example of the analysis of data, formation of the equation, and application is presented using waterfowl nesting data collected in Colorado.
Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E
2005-05-01
Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (<0.15 T) due to the extremely high polarizations available from optical pumping. The fringe field of many superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.
Deterministic entanglement of superconducting qubits by parity measurement and feedback.
Ristè, D; Dukalski, M; Watson, C A; de Lange, G; Tiggelman, M J; Blanter, Ya M; Lehnert, K W; Schouten, R N; DiCarlo, L
2013-10-17
The stochastic evolution of quantum systems during measurement is arguably the most enigmatic feature of quantum mechanics. Measuring a quantum system typically steers it towards a classical state, destroying the coherence of an initial quantum superposition and the entanglement with other quantum systems. Remarkably, the measurement of a shared property between non-interacting quantum systems can generate entanglement, starting from an uncorrelated state. Of special interest in quantum computing is the parity measurement, which projects the state of multiple qubits (quantum bits) to a state with an even or odd number of excited qubits. A parity meter must discern the two qubit-excitation parities with high fidelity while preserving coherence between same-parity states. Despite numerous proposals for atomic, semiconducting and superconducting qubits, realizing a parity meter that creates entanglement for both even and odd measurement results has remained an outstanding challenge. Here we perform a time-resolved, continuous parity measurement of two superconducting qubits using the cavity in a three-dimensional circuit quantum electrodynamics architecture and phase-sensitive parametric amplification. Using postselection, we produce entanglement by parity measurement reaching 88 per cent fidelity to the closest Bell state. Incorporating the parity meter in a feedback-control loop, we transform the entanglement generation from probabilistic to fully deterministic, achieving 66 per cent fidelity to a target Bell state on demand. These realizations of a parity meter and a feedback-enabled deterministic measurement protocol provide key ingredients for active quantum error correction in the solid state.
NNLO QCD corrections to associated W H production and H →b b ¯ decay
NASA Astrophysics Data System (ADS)
Caola, Fabrizio; Luisoni, Gionata; Melnikov, Kirill; Röntsch, Raoul
2018-04-01
We present a computation of the next-to-next-to-leading-order (NNLO) QCD corrections to the production of a Higgs boson in association with a W boson at the LHC and the subsequent decay of the Higgs boson into a b b ¯ pair, treating the b quarks as massless. We consider various kinematic distributions and find significant corrections to observables that resolve the Higgs decay products. We also find that a cut on the transverse momentum of the W boson, important for experimental analyses, may have a significant impact on kinematic distributions and radiative corrections. We show that some of these effects can be adequately described by simulating QCD radiation in Higgs boson decays to b quarks using parton showers. We also describe contributions to Higgs decay to a b b ¯ pair that first appear at NNLO and that were not considered in previous fully differential computations. The calculation of NNLO QCD corrections to production and decay sub-processes is carried out within the nested soft-collinear subtraction scheme presented by some of us earlier this year. We demonstrate that this subtraction scheme performs very well, allowing a computation of the coefficient of the second-order QCD corrections at the level of a few per mill.
Intertwined order in a frustrated four-leg t - J cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodaro, John F.; Jiang, Hong -Chen; Kivelson, Steven A.
Here, we report a density-matrix renormalization group study of the t–J model with nearest (t 1 and J 1) and next-nearest (t 2 and J 2) interactions on a four-leg cylinder with concentration δ=1/8 of doped holes. We observe an astonishingly complex interplay between uniform d-wave superconductivity (SC) and strong spin and charge-density wave ordering tendencies (SDW and CDW). Depending on parameters, the CDWs can be commensurate with period 4 or 8. By comparing the charge ordering vectors with 2k F, we rule out Fermi surface nesting-induced density wave order in our model. Magnetic frustration (i.e., J 2/J 1~1/2) significantlymore » quenches SDW correlations with little effect on the CDW. Typically, the SC order is strongly modulated at the CDW ordering vector and exhibits d-wave symmetry around the cylinder. There is no evidence of a near-degenerate tendency to pair-density wave (PDW) ordering, charge 4e SC, or orbital current order.« less
Intertwined order in a frustrated four-leg t - J cylinder
Dodaro, John F.; Jiang, Hong -Chen; Kivelson, Steven A.
2017-04-12
Here, we report a density-matrix renormalization group study of the t–J model with nearest (t 1 and J 1) and next-nearest (t 2 and J 2) interactions on a four-leg cylinder with concentration δ=1/8 of doped holes. We observe an astonishingly complex interplay between uniform d-wave superconductivity (SC) and strong spin and charge-density wave ordering tendencies (SDW and CDW). Depending on parameters, the CDWs can be commensurate with period 4 or 8. By comparing the charge ordering vectors with 2k F, we rule out Fermi surface nesting-induced density wave order in our model. Magnetic frustration (i.e., J 2/J 1~1/2) significantlymore » quenches SDW correlations with little effect on the CDW. Typically, the SC order is strongly modulated at the CDW ordering vector and exhibits d-wave symmetry around the cylinder. There is no evidence of a near-degenerate tendency to pair-density wave (PDW) ordering, charge 4e SC, or orbital current order.« less
First flux surface measurements on W7-X
NASA Astrophysics Data System (ADS)
Pedersen, Thomas Sunn; Otte, Matthias; Biedermann, Christoph; Bozhenkov, Sergey; Braeuer, Torsten; Lazerson, Samuel; W7-X Team
2015-11-01
Wendelstein 7-X is rapidly approaching first plasma operation. The full operational B-field of 2.5 T has been reached using the 70 superconducting coils. The first flux surface measurements have recently been successfully performed. This talk will describe the W7-X flux surface measurement system, and show and analyze the first results from this diagnostic, which, at the time of writing this abstract, can be summarized as follows: Confirmation of the existence of nested, closed flux surfaces, first measurements of iota, and detection of the expected internal 5/6 island chain of the OP1.1 configuration. The data obtained so far agree with expectations, and provide a first confirmation of the accuracy of the coil geometry and assembly, as well as diagnostic installation. They also confirm that, with respect to the magnetic topology, plasma operation can start. Plans for, and potentially first results of, measurements of any remnant field errors, will be reported separately at this meeting.
Geometry-dependent penetration fields of superconducting Bi2Sr2CaCu2O8+δ platelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, P. J.; Clem, J. R.; Bending, S. J.
Magneto-optical imaging has been used to study vortex penetration into regular polygon-shaped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} platelets with various geometries (disks, pentagons, squares, and triangles) but known fixed areas. In all cases we observe an exponential dependence of the field of first penetration, H{sub p}, on temperature, consistent with a dominant Bean-Livingston barrier for pancake vortices at our measurement temperatures (45-80 K). However, the penetration field consistently decreases with decreasing degree of sample symmetry, in stark contrast to conventional estimates of demagnetization factors using equivalent ellipsoids based on inscribed circles, which predict the reverse trend. Surprisingly, this observation doesmore » not appear to have been reported in the literature before. We demonstrate empirically that estimates using equivalent ellipsoids based on circumscribed circles predict the correct qualitative experimental trend in Hp. Our work has important implications for the estimation of appropriate effective demagnetization factors for flux penetration into arbitrarily shaped superconducting bodies.« less
Geometry-dependent penetration fields in superconducting Bi2Sr2CaCu2O8+δ platelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
By: Curran, P. J.; Clem, J. R.; Bending, S. J.
Magneto-optical imaging has been used to study vortex penetration into regular polygon-shaped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} platelets with various geometries (disks, pentagons, squares, and triangles) but known fixed areas. In all cases we observe an exponential dependence of the field of first penetration, H{sub p}, on temperature, consistent with a dominant Bean-Livingston barrier for pancake vortices at our measurement temperatures (45-80 K). However, the penetration field consistently decreases with decreasing degree of sample symmetry, in stark contrast to conventional estimates of demagnetization factors using equivalent ellipsoids based on inscribed circles, which predict the reverse trend. Surprisingly, this observation doesmore » not appear to have been reported in the literature before. We demonstrate empirically that estimates using equivalent ellipsoids based on circumscribed circles predict the correct qualitative experimental trend in H{sub p}. Our work has important implications for the estimation of appropriate effective demagnetization factors for flux penetration into arbitrarily shaped superconducting bodies.« less
Mechanical Design of the LHC Standard Half-Cell
NASA Astrophysics Data System (ADS)
Poncet, A.; Brunet, J. C.; Cruikshank, P.; Genet, M.; Parma, V.; Rohmig, P.; Saban, R.; Tavian, L.; Veness, R.; Vlogaert, J.; Williams, L. R.
1997-05-01
The LHC Conceptual Design Report issued on 20th October 1995 (CERN/AC/95-05 (LHC) - nicknamed "Yellow Book") introduced significant changes to some fundamental features of the LHC standard half-cell, composed of one quadrupole, 3 dipoles and a set of corrector magnets. A separate cryogenic distribution line was introduced, which was previously inside the main cryostat. The dipole length has been increased from 10 to 15 m and independent powering of the focusing and defocusing quadrupole magnets was chosen. Individual quench protection diodes were introduced in magnets interconnects and many auxiliary bus bars were added to feed in series the various families of correcting superconducting magnets. The various highly intricate basic systems such as: cryostats and cryogenics feeders, superconducting magnets and their electrical feeding and protection, vacuum beam screen and its cooling, support and alignment devices have been redesigned, taking into account the very tight space available. These space constraints are given by the necessity to have maximum integral bending field strength for maximum LHC energy, and the existing LHC tunnel. Finally, cryogenic and vacuum sectorisation have been introduced to reduce downtimes and facilitate commissioning.
Astié, Andrea A; Scardamaglia, Romina C; Muzio, Rubén N; Reboreda, Juan C
2015-10-01
Females of avian brood parasites, like the shiny cowbird (Molothrus bonariensis), locate host nests and on subsequent days return to parasitize them. This ecological pressure for remembering the precise location of multiple host nests may have selected for superior spatial memory abilities. We tested the hypothesis that shiny cowbirds show sex differences in spatial memory abilities associated with sex differences in host nest searching behavior and relative hippocampus volume. We evaluated sex differences during acquisition, reversal and retention after extinction in a visual and a spatial discrimination learning task. Contrary to our prediction, females did not outperform males in the spatial task in either the acquisition or the reversal phases. Similarly, there were no sex differences in either phase in the visual task. During extinction, in both tasks the retention of females was significantly higher than expected by chance up to 50 days after the last rewarded session (∼85-90% of the trials with correct responses), but the performance of males at that time did not differ than that expected by chance. This last result shows a long-term memory capacity of female shiny cowbirds, which were able to remember information learned using either spatial or visual cues after a long retention interval. Copyright © 2015 Elsevier B.V. All rights reserved.
Simulating correction of adjustable optics for an x-ray telescope
NASA Astrophysics Data System (ADS)
Aldcroft, Thomas L.; Schwartz, Daniel A.; Reid, Paul B.; Cotroneo, Vincenzo; Davis, William N.
2012-10-01
The next generation of large X-ray telescopes with sub-arcsecond resolution will require very thin, highly nested grazing incidence optics. To correct the low order figure errors resulting from initial manufacture, the mounting process, and the effects of going from 1 g during ground alignment to zero g on-orbit, we plan to adjust the shapes via piezoelectric "cells" deposited on the backs of the reflecting surfaces. This presentation investigates how well the corrections might be made. We take a benchmark conical glass element, 410×205 mm, with a 20×20 array of piezoelectric cells 19×9 mm in size. We use finite element analysis to calculate the influence function of each cell. We then simulate the correction via pseudo matrix inversion to calculate the stress to be applied by each cell, considering distortion due to gravity as calculated by finite element analysis, and by putative low order manufacturing distortions described by Legendre polynomials. We describe our algorithm and its performance, and the implications for the sensitivity of the resulting slope errors to the optimization strategy.
Protective link for superconducting coil
Umans, Stephen D [Belmont, MA
2009-12-08
A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.
The Role of Geomagnetic Cues in Green Turtle Open Sea Navigation
Benhamou, Simon; Sudre, Joël; Bourjea, Jérome; Ciccione, Stéphane; De Santis, Angelo; Luschi, Paolo
2011-01-01
Background Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls. Methodology/Principal Findings In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24–48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. Conclusions/Significance While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues. PMID:22046329
Superconducting fault current-limiter with variable shunt impedance
Llambes, Juan Carlos H; Xiong, Xuming
2013-11-19
A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.
The Improved Hydrological Gravity Model for Moxa Observatory, Germany
NASA Astrophysics Data System (ADS)
Weise, A.; Jahr, Th.
2017-04-01
The gravity variations observed by the superconducting gravimeter (SG) CD-034 at Moxa Geodynamic Observatory/Germany were compared with the GRACE results some years ago. The combination of a local hydrological model of a catchment area with a 3D-gravimetric model had been applied successfully for correcting the SG record of Moxa which is especially necessary due to the strong topography nearest to the SG location. Now, the models have been corrected and improved considerably by inserting several details in the very near surrounding. Mainly these are: the observatory building is inserted with the roof covered by a soil layer above the gravity sensor where humidity is varying, snow is placed on top of the roof and on topography (steep slope), and ground water is taken into account, additionally. The result is that the comparison of the corrected gravity residuals with gravity variations of the satellite mission GRACE, now using RL5 data, shows higher agreement, not only in amplitude but also the formerly apparent phase shift is obviously not realistic. The agreement between terrestrial gravity variations (SG) and the GRACE data is improved considerably which is discussed widely.
The Improved Hydrological Gravity Model for Moxa Observatory, Germany
NASA Astrophysics Data System (ADS)
Weise, A.; Jahr, Th.
2018-05-01
The gravity variations observed by the superconducting gravimeter (SG) CD-034 at Moxa Geodynamic Observatory/Germany were compared with the GRACE results some years ago. The combination of a local hydrological model of a catchment area with a 3D-gravimetric model had been applied successfully for correcting the SG record of Moxa which is especially necessary due to the strong topography nearest to the SG location. Now, the models have been corrected and improved considerably by inserting several details in the very near surrounding. Mainly these are: the observatory building is inserted with the roof covered by a soil layer above the gravity sensor where humidity is varying, snow is placed on top of the roof and on topography (steep slope), and ground water is taken into account, additionally. The result is that the comparison of the corrected gravity residuals with gravity variations of the satellite mission GRACE, now using RL5 data, shows higher agreement, not only in amplitude but also the formerly apparent phase shift is obviously not realistic. The agreement between terrestrial gravity variations (SG) and the GRACE data is improved considerably which is discussed widely.
Superconducting transmission line particle detector
Gray, K.E.
1988-07-28
A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.
Superconducting transmission line particle detector
Gray, Kenneth E.
1989-01-01
A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.
Process for producing clad superconductive materials
Cass, Richard B.; Ott, Kevin C.; Peterson, Dean E.
1992-01-01
A process for fabricating superconducting composite wire by the steps of placing a superconductive precursor admixture capable of undergoing a self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within a metal tube, sealing one end of said tube, igniting said superconductive precursor admixture whereby said superconductive precursor admixture endburns along the length of the admixture, and cross-section reducing said tube at a rate substantially equal to the rate of burning of said superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ, the product characterized as superconductive without a subsequent sintering stage, is disclosed.
Superconducting transmission line particle detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, K.E.
This paper describes a microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plusmore » the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N{sup 2} ambiguity of charged particle events.« less
Superconducting transmission line particle detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, K.E.
A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slowmore » electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.« less
High field superconducting magnets
NASA Technical Reports Server (NTRS)
Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)
2011-01-01
A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.
Superconducting wires and methods of making thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xingchen; Sumption, Michael D.; Peng, Xuan
Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current densitymore » (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.« less
Superconducting coil and method of stress management in a superconducting coil
McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.
1999-01-01
A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).
Deciphering the physics and chemistry of perovskites with transmission electron microscopy.
Polking, Mark J
2016-03-28
Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials.
Armored spring-core superconducting cable and method of construction
McIntyre, Peter M.; Soika, Rainer H.
2002-01-01
An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).
Observation of quantum jumps in a superconducting quantum bit
NASA Astrophysics Data System (ADS)
Vijay, R.
2011-03-01
Superconducting qubit technology has made great advances since the first demonstration of coherent oscillations more than 10 years ago. Coherence times have improved by several orders of magnitude and significant progress has been made in qubit state readout fidelity. However, a fast, high-fidelity, quantum non-demolition measurement scheme which is essential to implement quantum error correction has so far been missing. We demonstrate such a scheme for the first time where we continuously measure the state of a superconducting quantum bit using a fast, ultralow-noise parametric amplifier. This arrangement allows us to observe quantum jumps between the qubit states in real time. The key development enabling this experiment is the use of a low quality factor (Q), nonlinear resonator to implement a phase-sensitive parametric amplifier operating near the quantum limit. The nonlinear resonator was constructed using a two junction SQUID shunted with an on-chip capacitor. The SQUID allowed us to tune the operating band of the amplifier and the low Q provided us with a bandwidth greater than 10 MHz, sufficient to observe jumps in the qubit state in real time. I will briefly describe the operation of the parametric amplifier and discuss how it was used to measure the state of a transmon qubit in the circuit QED architecture. I will discuss measurement fidelity and the statistics of the quantum jumps. I will conclude by discussing the implications of this development for quantum information processing and further improvements to the measurement technique. We acknowledge support from AFOSR and the Hertz Foundation.
Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures.
Bar Sadan, Maya; Houben, Lothar; Wolf, Sharon G; Enyashin, Andrey; Seifert, Gotthard; Tenne, Reshef; Urban, Knut
2008-03-01
We present the advancement of electron tomography for three-dimensional structure reconstruction of fullerene-like particles toward atomic-scale resolution. The three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is achieved by the combination of low voltage operation of the electron microscope with aberration-corrected phase contrast imaging. The method enables the study of defects and irregularities in the three-dimensional structure of individual fullerene-like particles on the scale of 2-3 A. Control over shape, size, and atomic architecture is a key issue in synthesis and design of functional nanoparticles. Transmission electron microscopy (TEM) is the primary technique to characterize materials down to the atomic level, albeit the images are two-dimensional projections of the studied objects. Recent advancements in aberration-corrected TEM have demonstrated single atom sensitivity for light elements at subångström resolution. Yet, the resolution of tomographic schemes for three-dimensional structure reconstruction has not surpassed 1 nm3, preventing it from becoming a powerful tool for characterization in the physical sciences on the atomic scale. Here we demonstrate that negative spherical aberration imaging at low acceleration voltage enables tomography down to the atomic scale at reduced radiation damage. First experimental data on the three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is presented. The method is applicable to the analysis of the atomic architecture of a wide range of nanostructures where strong electron channeling is absent, in particular to carbon fullerenes and inorganic fullerenes.
Apparatus and method for critical current measurements
Martin, Joe A.; Dye, Robert C.
1992-01-01
An apparatus for the measurement of the critical current of a superconductive sample, e.g., a clad superconductive sample, the apparatus including a conductive coil, a means for maintaining the coil in proximity to a superconductive sample, an electrical connection means for passing a low amplitude alternating current through the coil, a cooling means for maintaining the superconductive sample at a preselected temperature, a means for passing a current through the superconductive sample, and, a means for monitoring reactance of the coil, is disclosed, together with a process of measuring the critical current of a superconductive material, e.g., a clad superconductive material, by placing a superconductive material into the vicinity of the conductive coil of such an apparatus, cooling the superconductive material to a preselected temperature, passing a low amplitude alternating current through the coil, the alternating current capable of generating a magnetic field sufficient to penetrate, e.g., any cladding, and to induce eddy currents in the superconductive material, passing a steadily increasing current through the superconductive material, the current characterized as having a different frequency than the alternating current, and, monitoring the reactance of the coil with a phase sensitive detector as the current passed through the superconductive material is steadily increased whereby critical current of the superconductive material can be observed as the point whereat a component of impedance deviates.
Apparatus and process for making a superconducting magnet for particle accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarabak, A.J.; Sunderman, W.H.; Mendola, E.G.
1992-03-10
This patent describes an apparatus for manufacturing a coil of superconducting material. It comprises a horizontally disposed winding mandrel; an adjustable support for receiving a spool of superconducting material, the spool having a vertical axis; means for translating the spool of superconducting material in a generally oval path around the winding mandrel so that the superconducting material is de-reeled from the spool, in order to wind a predetermined amount of superconducting material onto the mandrel, such that a coil of superconducting material is formed; means for guiding the superconducting material from the spool so as to deliver the superconducting materialmore » to the winding mandrel on a plane perpendicular to the vertical axis of the spool and parallel with a winding plane on the winding mandrel; means for imparting a tensioning force on the superconducting material as it is guided from the spool; means for rotating the winding mandrel about the horizontal axis thereof; means for clamping the superconducting material against the winding mandrel as the wire is wound thereon; means for securing the coil to the winding mandrel for lifting mandrel with the coil thereon; and means for curing the coil of superconducting material whereby a finished coil of superconducting material is formed.« less
Golner, Thomas M.; Mehta, Shirish P.
2005-07-26
A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.
Zhao, Jun; Kong, Fanrong; Li, Ruoyu; Wang, Xiaohong; Wan, Zhe; Wang, Duanli
2001-01-01
Aspergillus fumigatus is the most common species that causes invasive aspergillosis. In order to identify A. fumigatus, partial ribosomal DNA (rDNA) from two to six strains of five different Aspergillus species was sequenced. By comparing sequence data from GenBank, we designed specific primer pairs targeting rDNA internal transcribed spacer (ITS) regions of A. fumigatus. A nested PCR method for identification of other A. fumigatus-related species was established by using the primers. To evaluate the specificities and sensitivities of those primers, 24 isolates of A. fumigatus and variants, 8 isolates of Aspergillus nidulans, 7 isolates of Aspergillus flavus and variants, 8 isolates of Aspergillus terreus, 9 isolates of Aspergillus niger, 1 isolate each of Aspergillus parasiticus, Aspergillus penicilloides, Aspergillus versicolor, Aspergillus wangduanlii, Aspergillus qizutongii, Aspergillus beijingensis, and Exophiala dermatitidis, 4 isolates of Candida, 4 isolates of bacteria, and human DNA were used. The nested PCR method specifically identified the A. fumigatus isolates and closely related species and showed a high degree of sensitivity. Additionally, four A. fumigatus strains that were recently isolated from our clinic were correctly identified by this method. Our results demonstrate that these primers are useful for the identification of A. fumigatus and closely related species in culture and suggest further studies for the identification of Aspergillus fumigatus species in clinical specimens. PMID:11376067
National Action Plan on Superconductivity Research and Development
NASA Astrophysics Data System (ADS)
1989-12-01
The Superconductivity Action Plan pursuant to the Superconductivity and Competitiveness Act of 1988 is presented. The plan draws upon contributions from leaders in the technical community of the Federal Government responsible for research and development in superconductivity programs, as well as from the report of the Committee to Advise the President on Superconductivity. Input from leaders in the private sector was obtained during the formulation and review of the plan. Some contents: Coordination of the plan; Technical areas (high temperature superconductivity materials in general, high temperature superconductivity films for sensors and electronics, magnets, large area high temperature superconductivity films, bulk conductors); and Policy areas.
Keumo Tsiaze, R M; Wirngo, A V; Mkam Tchouobiap, S E; Fotue, A J; Baloïtcha, E; Hounkonnou, M N
2016-06-01
We report on a study of the superconducting order parameter thermodynamic fluctuations in YBa_{2}Cu_{3}O_{7-δ},Bi_{2}Sr_{2}CaCu_{2}O_{8+δ}, and KOs_{2}O_{6} compounds. A nonperturbative technique within the framework of the renormalized Gaussian approach is proposed. The essential features are reported (analytically and numerically) through Ginzburg-Landau (GL) model-based calculations which take into account both the dimension and the microscopic parameters of the system. By presenting a self-consistent approach improvement on the GL theory, a technique for obtaining corrections to the asymptotic critical behavior in terms of nonuniversal parameters is developed. Therefore, corrections to the specific heat and the critical transition temperature for one-, two-, and three-dimensional samples are found taking into account the fact that fluctuations occur at all length scales as the critical point of a system is approached. The GL model in the free-field approximation and the 3D-XY model are suitable for describing the weak and strong fluctuation regimes respectively. However, with a modified quadratic coefficient, the renormalized GL model is able to explain certain experimental observations including the specific heat of complicated systems, such as the cup-rate superconductors and the β-pyrochlore oxides. It is clearly shown that the enhancement, suppression, or rounding of the specific heat jump of high-T_{c} cup-rate superconductors at the transition are indicative of the order parameter thermodynamic fluctuations according to the dimension and the nature of interactions.
22 CFR Appendix - Supplement No. 1 to Part 126
Code of Federal Regulations, 2014 CFR
2014-04-01
... by superconducting windings, provided those windings are the only superconducting component in the... by superconducting windings, provided those windings are the only superconducting component in the... normal metal armatures which rotate in a magnetic field produced by superconducting windings, provided...
NASA Astrophysics Data System (ADS)
Harmon, T. C.; Fernandez Bou, A. S.; Dierick, D.; Oberbauer, S. F.; Schwendenmann, L.; Swanson, A. C.; Zelikova, T. J.
2016-12-01
This project focuses on the role of leaf cutter ants (LCA) Atta cepholotes in carbon cycling in neotropical wet forests. LCA are abundant in these forests and workers cut and carry vegetation fragments to their nests, where symbiotic fungi break down the plant material and produce the fungal hyphae on which the ants feed. LCA are the dominant herbivores in tropical forest ecosystems, removing 10-50% of vegetation annually. Their nests can achieve large sizes, extending several meters belowground and covering 50 square meters or more of the forest floor. We monitored soil moisture, temperature, and soil CO2 concentrations continuously in nest and control sites at La Selva Biological Station, Costa Rica. Intermittently, we also assessed soil respiration and LCA nest vent fluxes. Observed soil CO2 concentrations varied markedly with soil moisture conditions, ranging from a few thousand to over 60,000 ppm(v). Accordingly, soil CO2 surface efflux varied temporally by an order of magnitude or more (typical range 0.5 to 5 mmol CO2 m-2 s-1) for the same location as a consequence of soil moisture fluctuations. LCA nest vents equivalent CO2 efflux rates (accounting for vent diameter) can be substantially greater than soil surface values, with observed values ranging from about 1 to 50 mmol m-2 s-1 (it is worth noting that correcting for vent diameters yields equivalent CO2 efflux rates greater than 1000 mmol m-2 s-1). Similar to the soil surface efflux, vent efflux varied temporally by factors of 3 or more, suggesting a potential link between the vent productivity and nest activity, moisture content of surrounding soil, and atmospheric conditions (e.g., air temperature, wind). Using a soil model (Hydrus-1D) to account for unsaturated flow, heat transfer, CO2 production and diffusive transport, we captured moisture and temperature dynamics and the order of magnitude of observed CO2 concentration. Modelled surface fluxes also agreed well with observed soil surface CO2 efflux. These results contribute to our understanding of CO2 production and transport in tropical soils, and the role played by the LCA in the soil carbon cycle.
Compact magnetic energy storage module
Prueitt, M.L.
1994-12-20
A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.
Compact magnetic energy storage module
Prueitt, Melvin L.
1994-01-01
A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.
Superconductor-normal-superconductor with distributed Sharvin point contacts
Holcomb, Matthew J.; Little, William A.
1994-01-01
A non-linear superconducting junction device comprising a layer of high transient temperature superconducting material which is superconducting at an operating temperature, a layer of metal in contact with the layer of high temperature superconducting material and which remains non-superconducting at the operating temperature, and a metal material which is superconducting at the operating temperature and which forms distributed Sharvin point contacts with the metal layer.
Van Hove singularities and spectral smearing in high-temperature superconducting H3S
NASA Astrophysics Data System (ADS)
Quan, Yundi; Pickett, Warren E.
2016-03-01
The superconducting phase of hydrogen sulfide at Tc=200 K observed by Drozdov and collaborators at pressures around 200 GPa is simple bcc I m 3 ¯m H3S from a combination of theoretical and experimental confirmation. The various "extremes" that are involved—high pressure implying extreme reduction of volume, extremely high H phonon energy scale around 1400 K, extremely high temperature for a superconductor—necessitates a close look at new issues raised by these characteristics in relation to high Tc itself. First principles methods are applied to analyze the H3S electronic structure, beginning with the effect of sulfur and then focusing on the origin and implications of the two van Hove singularities (vHs) providing an impressive peak in the density of states near the Fermi energy. Implications arising from strong coupling Migdal-Eliashberg theory are studied. It becomes evident that electron spectral density smearing due to virtual phonon emission and absorption must be accounted for in a correct understanding of this unusual material and to obtain accurate theoretical predictions. Means for increasing Tc in H3S -like materials are noted.
van Hove Singularities and Spectral Smearing in High Temperature Superconducting H3S
NASA Astrophysics Data System (ADS)
Quan, Yundi; Pickett, Warren E.
The superconducting phase of hydrogen sulfide at Tc=200 K observed by Drozdov and collaborators at pressures around 200 GPa is simple bcc Im 3 m H3S reopens questions about what is achievable in high Tc. The various ''extremes'' that are involved - pressure, implying extreme reduction of volume, extremely high H phonon energy scale around 1400K, extremely high temperature for a superconductor - necessitate a close look at new issues raised by these characteristics in relation to high Tc. We have applied first principles methods to analyze the H3S electronic structure, particularly the van Hove singularities (vHs) and the effect of sulfur. Focusing on the two closely spaced vHs near the Fermi level that give rise to the impressively sharp peak in the density of states, the implications of strong coupling Migdal-Eliashberg theory are assessed. The electron spectral density smearing due to virtual phonon emission and absorption, as done in earlier days for A15 superconductors, must be included explicitly to obtain accurate theoretical predictions and a correct understanding. Means for increasing Tc in H3S-like materials will be mentioned. NSF DMR Grant 1207622.
Static and dynamic parasitic magnetizations and their control in superconducting accelerator dipoles
NASA Astrophysics Data System (ADS)
Collings, E. W.; Sumption, M. D.
2001-05-01
Long dipole magnets guide the particle beams in synchrotron-type high energy accelerators. In principal Cu-wound DC-excited dipoles could be designed to deliver a very uniform transverse bore field, i.e. with small or negligible harmonic (multipolar) distortion. But if the Cu is replaced by (a) superconducting strand that is (b) wound into a Rutherford cable carrying a time-varying transport current, extra magnetizations present within the windings cause distortions of the otherwise uniform field. The static (persistent-current) strand magnetization can be reduced by reducing the filament diameter, and the residue compensated or corrected by strategically placed active or passive components. The cable’s interstrand coupling currents can be controlled by increasing the interstrand contact resistance by: adjusting the level of native oxidation of the strand, coating it, or by inserting a ribbon-like core into the cable itself. Methods of locally compensating the magnetization of NbTi and Nb 3Sn strand and cable are discussed, progress in coupling-current suppression through the use of coatings and cores is reviewed, and a method of simultaneously reducing both the static and dynamic magnetizations of a NbTi cable by means of a thin Ni core is suggested.
Structural differences between superconducting and non-superconducting CaCuO2/SrTiO3 interfaces
NASA Astrophysics Data System (ADS)
Zarotti, Francesca; Di Castro, Daniele; Felici, Roberto; Balestrino, Giuseppe
2018-06-01
A study of the interface structure of superconducting and non-superconducting CaCuO2/SrTiO3 heterostructures grown on NdGaO3(110) substrates is reported. Using the combination of high resolution x-ray reflectivity and surface diffraction, the crystallographic structure of superconducting and non-superconducting samples has been investigated. The analysis has demonstrated the excellent sharpness of the CaCuO2/SrTiO3 interface (roughness smaller than one perovskite unit cell). Furthermore, we were able to discriminate between the superconducting and the non-superconducting phase. In the former case, we found an increase of the spacing between the topmost Ca plane of CaCuO2 block and the first TiO2 plane of the overlaying STO block, relative to the non-superconducting case. These results are in agreement with the model that foresees a strong oxygen incorporation in the interface Ca plane in the superconducting heterostructures.
NASA Technical Reports Server (NTRS)
Agrawal, Bal K.; Agrawal, Savitri
1995-01-01
The electronic structure and the hole concentrations in the high Tc superconductor HgBa2CuO(4+delta) (delta = O, 1) has been investigated by employing a first principles full potential self-consistent LMTO method with the local density functional theory. The scalar relativistic effects have been considered. The hole concentrations of the Cu-d and O-p(x,y) orbitals are seen to be larger for the HgBaCuO5 system than those of the HgBaCuO4 solid. However, the van Hove singularity (vHs) induced Cu-d and O-p peak which is seen to lie comparatively away and above the Fermi level in the delta = 1 system shifts towards the Fermi level in the delta = 0 system. Thus, the superconducting behavior appears to originate from the occurrence of the vHs peak at the Fermi level. The Fermi surface nesting area in the delta = 0 compound is seen to be larger than in the delta = 1 compound. The calculation reveals that the increase in pressure on the crystal enhances the hole concentrations but without showing any optimum value, On the other hand, the vHs peak approaches to-wards the Fermi level with pressure and crosses the Fermi surface near V/Vo approximately equals 0.625 (V and Vo are the crystal volumes at high and normal pressures, respectively). Our calculated value of the bulk modulus equal to 0.626 Mbar predicts the occurrence of this crossover at about 24 GPa which is in complete agreement with the experimental value. At this pressure the compound has maximum nesting area and self-doped behavior.
Kamlapure, Anand; Das, Tanmay; Ganguli, Somesh Chandra; Parmar, Jayesh B.; Bhattacharyya, Somnath; Raychaudhuri, Pratap
2013-01-01
The notion of spontaneous formation of an inhomogeneous superconducting state is at the heart of most theories attempting to understand the superconducting state in the presence of strong disorder. Using scanning tunneling spectroscopy and high resolution scanning transmission electron microscopy, we experimentally demonstrate that under the competing effects of strong homogeneous disorder and superconducting correlations, the superconducting state of a conventional superconductor, NbN, spontaneously segregates into domains. Tracking these domains as a function of temperature we observe that the superconducting domains persist across the bulk superconducting transition, Tc, and disappear close to the pseudogap temperature, T*, where signatures of superconducting correlations disappear from the tunneling spectrum and the superfluid response of the system. PMID:24132046
Kamlapure, Anand; Das, Tanmay; Ganguli, Somesh Chandra; Parmar, Jayesh B; Bhattacharyya, Somnath; Raychaudhuri, Pratap
2013-10-17
The notion of spontaneous formation of an inhomogeneous superconducting state is at the heart of most theories attempting to understand the superconducting state in the presence of strong disorder. Using scanning tunneling spectroscopy and high resolution scanning transmission electron microscopy, we experimentally demonstrate that under the competing effects of strong homogeneous disorder and superconducting correlations, the superconducting state of a conventional superconductor, NbN, spontaneously segregates into domains. Tracking these domains as a function of temperature we observe that the superconducting domains persist across the bulk superconducting transition, Tc, and disappear close to the pseudogap temperature, T*, where signatures of superconducting correlations disappear from the tunneling spectrum and the superfluid response of the system.
Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell
1995-01-01
A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.
Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.
1995-07-18
A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.
Conservation laws, vertex corrections, and screening in Raman spectroscopy
NASA Astrophysics Data System (ADS)
Maiti, Saurabh; Chubukov, Andrey V.; Hirschfeld, P. J.
2017-07-01
We present a microscopic theory for the Raman response of a clean multiband superconductor, with emphasis on the effects of vertex corrections and long-range Coulomb interaction. The measured Raman intensity, R (Ω ) , is proportional to the imaginary part of the fully renormalized particle-hole correlator with Raman form factors γ (k ⃗) . In a BCS superconductor, a bare Raman bubble is nonzero for any γ (k ⃗) and diverges at Ω =2 Δmax , where Δmax is the largest gap along the Fermi surface. However, for γ (k ⃗) = constant, the full R (Ω ) is expected to vanish due to particle number conservation. It was sometimes stated that this vanishing is due to the singular screening by long-range Coulomb interaction. In our general approach, we show diagrammatically that this vanishing actually holds due to vertex corrections from the same short-range interaction that gives rise to superconductivity. We further argue that long-range Coulomb interaction does not affect the Raman signal for any γ (k ⃗) . We argue that vertex corrections eliminate the divergence at 2 Δmax . We also argue that vertex corrections give rise to sharp peaks in R (Ω ) at Ω <2 Δmin (the minimum gap along the Fermi surface), when Ω coincides with the frequency of one of the collective modes in a superconductor, e.g., Leggett and Bardasis-Schrieffer modes in the particle-particle channel, and an excitonic mode in the particle-hole channel.
Holographic conductivity of holographic superconductors with higher-order corrections
NASA Astrophysics Data System (ADS)
Sheykhi, Ahmad; Ghazanfari, Afsoon; Dehyadegari, Amin
2018-02-01
We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω /T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature.
Efficient Z gates for quantum computing
NASA Astrophysics Data System (ADS)
McKay, David C.; Wood, Christopher J.; Sheldon, Sarah; Chow, Jerry M.; Gambetta, Jay M.
2017-08-01
For superconducting qubits, microwave pulses drive rotations around the Bloch sphere. The phase of these drives can be used to generate zero-duration arbitrary virtual Z gates, which, combined with two Xπ /2 gates, can generate any SU(2) gate. Here we show how to best utilize these virtual Z gates to both improve algorithms and correct pulse errors. We perform randomized benchmarking using a Clifford set of Hadamard and Z gates and show that the error per Clifford is reduced versus a set consisting of standard finite-duration X and Y gates. Z gates can correct unitary rotation errors for weakly anharmonic qubits as an alternative to pulse-shaping techniques such as derivative removal by adiabatic gate (DRAG). We investigate leakage and show that a combination of DRAG pulse shaping to minimize leakage and Z gates to correct rotation errors realizes a 13.3 ns Xπ /2 gate characterized by low error [1.95 (3 ) ×10-4] and low leakage [3.1 (6 ) ×10-6] . Ultimately leakage is limited by the finite temperature of the qubit, but this limit is two orders of magnitude smaller than pulse errors due to decoherence.
FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors
NASA Astrophysics Data System (ADS)
Takano, Yoshihiko
2008-12-01
Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high-TC superconductors (Tamegai et al), and the mechanism of superconductivity is discussed. Last but not least, a novel highest-density phase of boron is produced and characterized (Zarechnaya et al). We hope that this focus issue will help readers to understand the frontiers of superconductivity in semiconductors and assist in the application of new devices using a combination of superconductivity and semiconductivity.
Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture.
Takita, Maika; Córcoles, A D; Magesan, Easwar; Abdo, Baleegh; Brink, Markus; Cross, Andrew; Chow, Jerry M; Gambetta, Jay M
2016-11-18
We present parity measurements on a five-qubit lattice with connectivity amenable to the surface code quantum error correction architecture. Using all-microwave controls of superconducting qubits coupled via resonators, we encode the parities of four data qubit states in either the X or the Z basis. Given the connectivity of the lattice, we perform a full characterization of the static Z interactions within the set of five qubits, as well as dynamical Z interactions brought along by single- and two-qubit microwave drives. The parity measurements are significantly improved by modifying the microwave two-qubit gates to dynamically remove nonideal Z errors.
NbN single-photon detectors with saturated dependence of quantum efficiency
NASA Astrophysics Data System (ADS)
Smirnov, Konstantin; Divochiy, Alexander; Vakhtomin, Yury; Morozov, Pavel; Zolotov, Philipp; Antipov, Andrey; Seleznev, Vitaliy
2018-07-01
The possibility of creating NbN superconducting single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current was investigated. It was shown that the saturation increases for the detectors based on finer films with a lower value of R s300/R s20. The decreasing of R s300/R s20 was related to the increasing influence of quantum corrections to conductivity of superconductors and, in turn, to the decrease of the electron diffusion coefficient. The best samples have a constant value of system QE 94% at I b /I c ∼ 0.8 and wavelength 1310 nm.
Joshi, Darshan G; Bhattacharyay, A
2011-08-31
We present an important correction to the Langer-Ambegaokar-McCumber-Halperin theory for the resistive state of a 1D superconductor. We establish that the identification of the saddle on the free energy surface over which Langer and Ambegaokar had claimed the system to move in order to form thermally excited phase slip centres is wrong. With the help of an exact solution we show that the system has to overcome a similar free energy barrier but can actually have vanishing amplitude of the superconducting phase at a point, unlike the Langer-Ambegaokar solution.
System and method for quench and over-current protection of superconductor
Huang, Xianrui; Laskaris, Evangelos Trifon; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas; Fogarty, James Michael; Steinbach, Albert Eugene
2005-05-31
A system and method for protecting a superconductor. The system may comprise a current sensor operable to detect a current flowing through the superconductor. The system may comprise a coolant temperature sensor operable to detect the temperature of a cryogenic coolant used to cool the superconductor to a superconductive state. The control circuit is operable to estimate the superconductor temperature based on the current flow and the coolant temperature. The system may also be operable to compare the estimated superconductor temperature to at least one threshold temperature and to initiate a corrective action when the superconductor temperature exceeds the at least one threshold temperature.
Oxide-based platform for reconfigurable superconducting nanoelectronics.
Veazey, Joshua P; Cheng, Guanglei; Irvin, Patrick; Cen, Cheng; Bogorin, Daniela F; Bi, Feng; Huang, Mengchen; Bark, Chung-Wung; Ryu, Sangwoo; Cho, Kwang-Hwan; Eom, Chang-Beom; Levy, Jeremy
2013-09-20
We report quasi-1D superconductivity at the interface of LaAlO3 and SrTiO3. The material system and nanostructure fabrication method supply a new platform for superconducting nanoelectronics. Nanostructures having line widths w ~ 10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3, placing them in the quasi-1D regime. Broad superconducting transitions versus temperature and finite resistances in the superconducting state well below Tc ≈ 200 mK are observed, suggesting the presence of fluctuation- and heating-induced resistance. The superconducting resistances and V-I characteristics are tunable through the use of a back gate. Four-terminal resistances in the superconducting state show an unusual dependence on the current path, varying by as much as an order of magnitude. This new technology, i.e., the ability to 'write' gate-tunable superconducting nanostructures on an insulating LaAlO3/SrTiO3 'canvas', opens possibilities for the development of new families of reconfigurable superconducting nanoelectronics.
Seifert, Bernhard; Csösz, Sandor
2015-01-01
Abstract The paper integrates two independent studies of numeric morphology-based alpha-taxonomy of the cryptic ant species Temnothorax crassispinus (Karavajev, 1926) and Temnothorax crasecundus sp. n. conducted by different investigators, using different equipment, considering different character combinations and evaluating different samples. Samples investigated included 603 individual workers from 203 nests – thereof 104 nest samples measured by Seifert and 99 by Csösz. The material originated from Europe, Asia Minor and Caucasia. There was a very strong interspecific overlap in any of the 29 shape characters recorded and subjective expert determination failed in many cases. Primary classification hypotheses were formed by the exploratory data analysis Nest Centroid (NC) clustering and corrected to final species hypotheses by an iterative linear discriminant analysis algorithm. The evaluation of Seifert’s and Csösz’s data sets arrived at fully congruent conclusions. NC-Ward and NC-K-means clustering disagreed from the final species hypothesis in only 1.9 and 1.9% of the samples in Seifert’s data set and by 1.1 and 2.1% in Csösz’s data set which is a strong argument for heterospecificity. The type series of Temnothorax crassispinus and Temnothorax crasecundus sp. n. were allocated to different clusters with p = 0.9851 and p = 0.9912 respectively. The type series of the junior synonym Temnothorax slavonicus (Seifert, 1995) was allocated to the Temnothorax crassispinus cluster with p = 0.9927. Temnothorax crasecundus sp. n. and Temnothorax crassispinus are parapatric species with a long contact zone stretching from the Peloponnisos peninsula across Bulgaria northeast to the southern Ukraine. There is no indication for occurrence of interspecifically mixed nests or intraspecific polymorphism. However, a significant reduction of interspecific morphological distance at sites with syntopic occurrence of both species indicates local hybridization. The results are discussed within the context of the Pragmatic Species Concept of Seifert (2014). The taxonomic description and a differential diagnosis of Temnothorax crasecundus sp. n. are given. PMID:25685016
NASA Technical Reports Server (NTRS)
Denis, Kevin L. (Inventor)
2018-01-01
Disclosed are systems, methods, and non-transitory computer-readable storage media for fabrication of silicon on insulator (SOI) wafers with a superconductive via for electrical connection to a groundplane. Fabrication of the SOI wafer with a superconductive via can involve depositing a superconducting groundplane onto a substrate with the superconducting groundplane having an oxidizing layer and a non-oxidizing layer. A layer of monocrystalline silicon can be bonded to the superconducting groundplane and a photoresist layer can be applied to the layer of monocrystalline silicon and the SOI wafer can be etched with the oxygen rich etching plasma, resulting in a monocrystalline silicon top layer with a via that exposes the superconducting groundplane. Then, the fabrication can involve depositing a superconducting surface layer to cover the via.
Superconductivity in highly disordered dense carbon disulfide.
Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav
2013-07-16
High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.
NASA Astrophysics Data System (ADS)
Chhabria, Deepika
This thesis has two major topics: (1) Electrostatic Separation of Superconducting Particles from a Mixture of Non-Superconducting Particles. (2) Improvement in fuel atomization by Electrorheology. (1) Based on the basic science research, the interactions between electric field and superconductors, we have developed a new technology, which can separate superconducting granular particles from their mixture with non-superconducting particles. The electric-field induced formation of superconducting balls is important aspect of the interaction between superconducting particles and electric field. When the applied electric field exceeds a critical value, the induced positive surface energy on the superconducting particles forces them to aggregate into balls or cling to the electrodes. In fabrication of superconducting materials, especially HTSC materials, it is common to come across materials with multiple phases: some grains are in superconducting state while the others are not. Our technology is proven to be very useful in separating superconducting grains from the rest non-superconducting materials. To separate superconducting particles from normal conducting particles, we apply a suitable strong electric field. The superconducting particles cling to the electrodes, while normal conducting particles bounce between the electrodes. The superconducting particles could then be collected from the electrodes. To separate superconducting particles from insulating ones, we apply a moderate electric field to force insulating particles to the electrodes to form short chains while the superconducting particles are collected from the middle of capacitor. The importance of this technology is evidenced by the unsuccessful efforts to utilize the Meissner effect to separate superconducting particles from nonsuperconducting ones. Because the Meissner effect is proportional to the particle volume, it has been found that the Meissner effect is not useful when the superconducting particles are smaller than 45mum. One always come across multiphase superconducting materials where most superconducting grains are much smaller than 45mum. On the other hand, since our technology is based on the surface effect, it gets stronger when the particles become smaller. Our technology is thus perfect for small superconducting particles and for fabrication of HTSC materials. The area of superconductivity is expected to be very important for 21 st Century energy industry. The key for this development is the HTSC materials. We, therefore, expect that our technology will have strong impact in the area. (2) Improving engine efficiency and reducing pollutant emissions are extremely important. Here we report our fuel injection technology based on new physics principle that proper application of electrorheology can reduce the viscosity of petroleum fuels. A small device is thus introduced just before the fuel injection for the engine, producing a strong electric field to reduce the fuel viscosity, resulting in much smaller fuel droplets in atomization. As combustion starts at the interface between fuel and air and most harmful emissions are coming from incomplete burning, reducing the size of fuel droplets would increase the total surface area to start burning, leading to a cleaner and more efficient engine. This concept has been widely accepted as the discussions about future engine for efficient and clean combustion are focused on ultra-dilute mixtures at extremely high pressure to produce much finer mist of fuel for combustion. The technology is expected to have broad applications, applicable to current internal combustion engines and future engines as well.
Phonon Dispersion and the Competition between Pairing and Charge Order
NASA Astrophysics Data System (ADS)
Costa, N. C.; Blommel, T.; Chiu, W.-T.; Batrouni, G.; Scalettar, R. T.
2018-05-01
The Holstein model describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective superconducting (SC) and charge-density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature Tcdw for CDW order and also uncover several novel features of diagonal long-range order in the phase diagram, including a competition between charge patterns at momenta q =(π ,π ) and q =(0 ,π ) which lends insight into the relationship between Fermi surface nesting and the wave vector at which charge order occurs. We also demonstrate SC order at half filling in situations where a nonzero bandwidth sufficiently suppresses Tcdw.
NASA Technical Reports Server (NTRS)
Itoh, Tatsuo
1991-01-01
The analysis and modeling of superconducting planar transmission lines were performed. Theoretically, the highest possible Q values of superconducting microstrip line was calculated and, as a result, it provided the Q value that the experiment can aim for. As an effort to search for a proper superconducting transmission line structure, the superconducting microstrip line and coplanar waveguide were compared in terms of loss characteristics and their design aspects. Also, the research was expanded to a superconducting coplanar waveguide family in the microwave packaging environment. Theoretically, it was pointed out that the substrate loss is critical in the superconducting transmission line structures.
Method and composition for improving flux pinning and critical current in superconductors
Morris, Donald E.
1995-01-01
Superconducting materials and methods of forming superconducting materials are disclosed. Highly oxidized superconductors are heated at a relatively high temperature so as to release oxygen, which migrates out of the material, and form a non-superconducting phase which does not diffuse out of grains of the material. The material is then reoxidized at a lower temperature, leaving the non-superconducting inclusions inside a superconducting phase. The non-superconducting inclusions act as pinning centers in the superconductor, increasing the critical current thereof.
Method and composition for improving flux pinning and critical current in superconductors
Morris, D.E.
1995-07-04
Superconducting materials and methods of forming superconducting materials are disclosed. Highly oxidized superconductors are heated at a relatively high temperature so as to release oxygen, which migrates out of the material, and form a non-superconducting phase which does not diffuse out of grains of the material. The material is then reoxidized at a lower temperature, leaving the non-superconducting inclusions inside a superconducting phase. The non-superconducting inclusions act as pinning centers in the superconductor, increasing the critical current thereof. 14 figs.
Controlled initialization of superconducting π-phaseshifters and possible applications
NASA Astrophysics Data System (ADS)
Mielke, Olaf; Ortlepp, Thomas; Kunert, Juergen; Meyer, Hans-Georg; Toepfer, Hannes
2010-05-01
The rapid single-flux quantum electronics (RSFQ) is a superconducting, naturally digital circuit family which is currently close to being commercially applied. RSFQ is outstanding because of its very low switching energy resulting in very low power consumption. This advantage causes, however, a significant influence of thermal noise. For industrial applications, a certain noise immunity is required which is still a challenge, especially for circuits of higher complexity. Integrating phase-shifting elements is a new concept for further improvements concerning stability against the influence of thermal noise. We have already shown that the implementation of phase-shifting elements significantly reduces the influence of thermal noise on circuit behavior by experimentally analyzing the bit-error rate (Mielke et al 2009 IEEE Trans. Appl. Supercond. 19 621-5). Concepts which are easily implementable in standard niobium technology are especially promising. The π-phaseshifter consists of a superconducting loop which is able to store a single flux quantum. The loop current related to the stored flux creates a well-defined phase shift. To achieve the correct functionality of complex circuits it is essential to store exactly one flux quantum in each π-phaseshifter during the cooling down of the chip. Thus, for studying the feasibility of this new approach, the initialization reliability of the π-phaseshifter needs to be verified. We present an experimental investigation of this reliability to obtain a general assessment for the application of the π-phaseshifter in niobium technology. Furthermore, we compare the configuration shielded by a solid ground plane with a configuration with a ground-plane hole below the π-phaseshifter. Justified by the experimental results we suggest programmable RSFQ circuits based on π-phaseshifters. The characteristics of these devices can be influenced by a controlled initialization of the π-phaseshifter. The fabrication was performed by FLUXONICS Foundry.
Magnetoresistance in the superconducting state at the (111) LaAlO3/SrTiO3 interface
NASA Astrophysics Data System (ADS)
Davis, S.; Huang, Z.; Han, K.; Ariando, Venkatesan, T.; Chandrasekhar, V.
2017-10-01
Condensed-matter systems that simultaneously exhibit superconductivity and ferromagnetism are rare due the antagonistic relationship between conventional spin-singlet superconductivity and ferromagnetic order. In materials in which superconductivity and magnetic order are known to coexist (such as some heavy-fermion materials), the superconductivity is thought to be of an unconventional nature. Recently, the conducting gas that lives at the interface between the perovskite band insulators LaAlO3 (LAO) and SrTiO3 (STO) has also been shown to host both superconductivity and magnetism. Most previous research has focused on LAO/STO samples in which the interface is on the (001) crystal plane. Relatively little work has focused on the (111) crystal orientation, which has hexagonal symmetry at the interface, and has been predicted to have potentially interesting topological properties, including unconventional superconducting pairing states. Here we report measurements of the magnetoresistance of (111) LAO/STO heterostructures at temperatures at which they are also superconducting. As with the (001) structures, the magnetoresistance is hysteretic, indicating the coexistence of magnetism and superconductivity, but in addition, we find that this magnetoresistance is anisotropic. Such an anisotropic response is completely unexpected in the superconducting state and suggests that (111) LAO/STO heterostructures may support unconventional superconductivity.
Method for making mirrored surfaces comprising superconducting material
Early, J.T.; Hargrove, R.S.
1989-12-12
Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.
Shen, Tengming
2016-11-15
A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.
Shen, Tengming
2018-01-02
A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.
Ullom, Joel N.
2003-06-24
A normal-insulator-superconductor (NIS) microrefrigerator in which a superconducting single crystal is both the substrate and the superconducting electrode of the NIS junction. The refrigerator consists of a large ultra-pure superconducting single crystal and a normal metal layer on top of the superconducting crystal, separated by a thin insulating layer. The superconducting crystal can be either cut from bulk material or grown as a thick epitaxial film. The large single superconducting crystal allows quasiparticles created in the superconducting crystal to easily diffuse away from the NIS junction through the lattice structure of the crystal to normal metal traps to prevent the quasiparticles from returning across the NIS junction. In comparison to thin film NIS refrigerators, the invention provides orders of magnitude larger cooling power than thin film microrefrigerators. The superconducting crystal can serve as the superconducting electrode for multiple NIS junctions to provide an array of microrefrigerators. The normal electrode can be extended and supported by microsupports to provide support and cooling of sensors or arrays of sensors.
Large enhancement of superconductivity in Zr point contacts.
Aslam, Mohammad; Singh, Chandan; Das, Shekhar; Kumar, Ritesh; Datta, Soumya; Halder, Soumyadip; Gayen, Sirshendu; Kabir, Mukul; Sheet, Goutam
2018-04-30
For certain complex superconducting systems, the superconducting properties get enhanced under mesoscopic point contacts made of elemental non-superconducting metals. However, understanding of the mechanism through which such contact induced local enhancement of superconductivity happens has been limited due to the complex nature of such compounds. In this paper we present a large enhancement of superconducting transition temperature (T<sub>c</sub>) and superconducting energy gap (Δ) in a simple elemental superconductor Zr. While bulk Zr shows a critical temperature around 0.6K, superconductivity survives at Ag/Zr and Pt/Zr point contacts up to 3K with a corresponding five-fold enhancement of Δ. Further, the first-principles calculations on a model system provide useful insights. We show that the enhancement in superconducting properties can be attributed to a modification in the electron-phonon coupling accompanied by an enhancement of the density of states which involves the appearance of a new electron band at the Ag/Zr interfaces. © 2018 IOP Publishing Ltd.
Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.
Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J
2012-07-03
The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.
High Temperature Superconducting Materials Database
National Institute of Standards and Technology Data Gateway
SRD 62 NIST High Temperature Superconducting Materials Database (Web, free access) The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.
Superconductivity driven by pairing of the coherent parts of the physical electrons
NASA Astrophysics Data System (ADS)
Su, Yuehua; Zhang, Chao
2018-03-01
How the superconductivity in unconventional superconductors emerges from the diverse mother normal states is still a big puzzle. Whatever the mother normal states are the superconductivity is normal with BCS-like behaviours of the paired quasiparticles in condensation. To reconcile the diverse mother normal states and the normal superconductivity in unconventional superconductors, we revisit a proposal that the emergence of the low-energy coherent parts of the physical electrons, which survive from the interaction correlations, is an essential prerequisite for superconductivity. The superconductivity is driven by the pair condensation of these coherent parts of the physical electrons. Moreover the incoherent parts of the physical electrons can enhance the superconducting transition temperature Tc although they are not in driving role in the emergence of the superconductivity. Some experimental responses of the coherent parts of the physical electrons are predicted.
Discovery of superconductivity in quasicrystal.
Kamiya, K; Takeuchi, T; Kabeya, N; Wada, N; Ishimasa, T; Ochiai, A; Deguchi, K; Imura, K; Sato, N K
2018-01-11
Superconductivity is ubiquitous as evidenced by the observation in many crystals including carrier-doped oxides and diamond. Amorphous solids are no exception. However, it remains to be discovered in quasicrystals, in which atoms are ordered over long distances but not in a periodically repeating arrangement. Here we report electrical resistivity, magnetization, and specific-heat measurements of Al-Zn-Mg quasicrystal, presenting convincing evidence for the emergence of bulk superconductivity at a very low transition temperature of [Formula: see text] K. We also find superconductivity in its approximant crystals, structures that are periodic, but that are very similar to quasicrystals. These observations demonstrate that the effective interaction between electrons remains attractive under variation of the atomic arrangement from periodic to quasiperiodic one. The discovery of the superconducting quasicrystal, in which the fractal geometry interplays with superconductivity, opens the door to a new type of superconductivity, fractal superconductivity.
Unconventional superconductivity in heavy-fermion compounds
White, B. D.; Thompson, J. D.; Maple, M. B.
2015-02-27
Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less
Superconductivity in highly disordered dense carbon disulfide
Dias, Ranga P.; Yoo, Choong-Shik; Struzhkin, Viktor V.; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav
2013-01-01
High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ∼6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity. PMID:23818624
Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles.
Zhu, Zhonghua; Gao, Daqiang; Dong, Chunhui; Yang, Guijin; Zhang, Jing; Zhang, Jinlin; Shi, Zhenhua; Gao, Hua; Luo, Honggang; Xue, Desheng
2012-03-21
Nanoparticles of superconducting YBa(2)Cu(3)O(7-δ) were synthesized via a citrate pyrolysis technique. Room temperature ferromagnetism was revealed in the samples by a vibrating sample magnetometer. Electron spin resonance spectra at selected temperatures indicated that there is a transition from the normal to the superconducting state at temperatures below 100 K. The M-T curves with various applied magnetic fields showed that the superconducting transition temperatures are 92 K and 55 K for the air-annealed and the post-annealed samples, respectively. Compared to the air-annealed sample, the saturation magnetization of the sample by reheating the air-annealed one in argon atmosphere is enhanced but its superconductivity is weakened, which implies that the ferromagnetism maybe originates from the surface oxygen defects. By superconducting quantum interference device measurements, we further confirmed the ferromagnetic behavior at high temperatures and interesting upturns in field cooling magnetization curves within the superconducting region are found. We attributed the upturn phenomena to the coexistence of ferromagnetism and superconductivity at low temperatures. Room temperature ferromagnetism of superconducting YBa(2)Cu(3)O(7-δ) nanoparticles has been observed in some previous related studies, but the issue of the coexistence of ferromagnetism and superconductivity within the superconducting region is still unclear. In the present work, it will be addressed in detail. The cooperation phenomena found in the spin-singlet superconductors will help us to understand the nature of superconductivity and ferromagnetism in more depth.
Gate-Induced Interfacial Superconductivity in 1T-SnSe2.
Zeng, Junwen; Liu, Erfu; Fu, Yajun; Chen, Zhuoyu; Pan, Chen; Wang, Chenyu; Wang, Miao; Wang, Yaojia; Xu, Kang; Cai, Songhua; Yan, Xingxu; Wang, Yu; Liu, Xiaowei; Wang, Peng; Liang, Shi-Jun; Cui, Yi; Hwang, Harold Y; Yuan, Hongtao; Miao, Feng
2018-02-14
Layered metal chalcogenide materials provide a versatile platform to investigate emergent phenomena and two-dimensional (2D) superconductivity at/near the atomically thin limit. In particular, gate-induced interfacial superconductivity realized by the use of an electric-double-layer transistor (EDLT) has greatly extended the capability to electrically induce superconductivity in oxides, nitrides, and transition metal chalcogenides and enable one to explore new physics, such as the Ising pairing mechanism. Exploiting gate-induced superconductivity in various materials can provide us with additional platforms to understand emergent interfacial superconductivity. Here, we report the discovery of gate-induced 2D superconductivity in layered 1T-SnSe 2 , a typical member of the main-group metal dichalcogenide (MDC) family, using an EDLT gating geometry. A superconducting transition temperature T c ≈ 3.9 K was demonstrated at the EDL interface. The 2D nature of the superconductivity therein was further confirmed based on (1) a 2D Tinkham description of the angle-dependent upper critical field B c2 , (2) the existence of a quantum creep state as well as a large ratio of the coherence length to the thickness of superconductivity. Interestingly, the in-plane B c2 approaching zero temperature was found to be 2-3 times higher than the Pauli limit, which might be related to an electric field-modulated spin-orbit interaction. Such results provide a new perspective to expand the material matrix available for gate-induced 2D superconductivity and the fundamental understanding of interfacial superconductivity.
Superconducting levitating bearing
NASA Technical Reports Server (NTRS)
Moon, Francis C. (Inventor)
1996-01-01
A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.
119Sn-NMR investigations on superconducting Ca 3Ir 4Sn 13: Evidence for multigap superconductivity
Sarkar, R.; Petrovic, C.; Bruckner, F.; ...
2015-09-25
In this study, we report bulk superconductivity (SC) in Ca 3Ir 4Sn 13 by means of 119Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T 1), namely the Hebel–Slichter coherence peak just below the T c, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of 119Sn Knight shift below T c indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate 119(1/T 1) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.
Thermal expansion of coexistence of ferromagnetism and superconductivity
NASA Astrophysics Data System (ADS)
Hatayama, Nobukuni; Konno, Rikio
2010-01-01
The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature Tc↑ of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.
Tunable high-q superconducting notch filter
Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.
1979-11-29
A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.
The role of local repulsion in superconductivity in the Hubbard-Holstein model
NASA Astrophysics Data System (ADS)
Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo
2017-01-01
We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.
Free-standing oxide superconducting articles
Wu, X.D.; Muenchausen, R.E.
1993-12-14
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.
High temperature superconducting composite conductor and method for manufacturing the same
Holesinger, Terry G.; Bingert, John F.
2002-01-01
A high temperature superconducting composite conductor is provided including a high temperature superconducting material surrounded by a noble metal layer, the high temperature superconducting composite conductor characterized as having a fill factor of greater than about 40. Additionally, the conductor can be further characterized as containing multiple cores of high temperature superconducting material surrounded by a noble metal layer, said multiple cores characterized as having substantially uniform geometry in the cross-sectional dimensions. Processes of forming such a high temperature superconducting composite conductor are also provided.
Plasmon and exciton superconductivity mechanisms in layered structures
NASA Technical Reports Server (NTRS)
Gabovich, A. M.; Pashitskiy, E. A.; Uvarova, S. K.
1977-01-01
Plasmon and exciton superconductivity mechanisms are discussed. Superconductivity in a three layer metal semiconductor metal and insulator semimetal insulator sandwich structure was described in terms of the temperature dependent Green function of the longitudinal (Coulomb) field. The dependences of the superconducting transition temperature on structure parameters were obtained. In a semiconducting film, as a result of interactions of degenerate free carriers with excitons, superconductivity exists only in a certain range of parameter values, and the corresponding critical temperature is much lower than in the plasmon mechanism of superconductivity.
Toward Large-Area Sub-Arcsecond X-Ray Telescopes II
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Allured, Ryan; Ames, Andrew O.; Biskach, Michael P.; Broadway David M.; Bruni, Ricardo J.; Burrows, David; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing;
2016-01-01
In order to advance significantly scientific objectives, future x-ray astronomy missions will likely call for x-ray telescopes with large aperture areas (approx. = 3 sq m) and fine angular resolution (approx. = 1"). Achieving such performance is programmatically and technologically challenging due to the mass and envelope constraints of space-borne telescopes and to the need for densely nested grazing-incidence optics. Such an x-ray telescope will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 sq m) of lightweight (approx. = 2 kg/sq m areal density) high-quality mirrors, at an acceptable cost (approx. = 1 M$/sq m of mirror surface area). This paper reviews relevant programmatic and technological issues, as well as possible approaches for addressing these issues-including direct fabrication of monocrystalline silicon mirrors, active (in-space adjustable) figure correction of replicated mirrors, static post-fabrication correction using ion implantation, differential erosion or deposition, and coating-stress manipulation of thin substrates.
Taxonomic changes in Oenothera sections Gaura and Calylophus (Onagraceae).
Wagner, Warren L; Krakos, Kyra N; Hoch, Peter C
2013-01-01
The long-recognized genus Gaura was shown recently to be deeply nested within one of two major clades of Oenothera. New molecular data indicate further taxonomic changes are necessary in Oenothera sect. Gaura. We make these changes here, including three new combinations, in advance of the Onagraceae treatment for the Flora of North America. The new phylogenetic studies show that several pairs of taxa treated as subspecies in the most recent revision by Raven and Gregory (1972) had independent origins within sect. Gaura, and are here elevated to species level (Oenothera nealleyi for Gaura suffulta subsp. nealleyi; Oenothera dodgeniana for Gaura neomexicana subsp. neomexicana; and Oenothera podocarpa for Gaura hexandra subsp. gracilis). Also, a nomenclatural problem in Oenothera sect. Calylophus is corrected by adopting the name Oenothera capillifolia Scheele for the species known previously, and nomenclaturally correct, as Calylophus berlandieri Spach. This problem necessitates a new combination Oenothera capillifolia subsp. berlandieri.
Taxonomic changes in Oenothera sections Gaura and Calylophus (Onagraceae)
Wagner, Warren L.; Krakos, Kyra N.; Hoch, Peter C.
2013-01-01
Abstract The long-recognized genus Gaura was shown recently to be deeply nested within one of two major clades of Oenothera. New molecular data indicate further taxonomic changes are necessary in Oenothera sect. Gaura. We make these changes here, including three new combinations, in advance of the Onagraceae treatment for the Flora of North America. The new phylogenetic studies show that several pairs of taxa treated as subspecies in the most recent revision by Raven and Gregory (1972) had independent origins within sect. Gaura, and are here elevated to species level (Oenothera nealleyi for Gaura suffulta subsp. nealleyi; Oenothera dodgeniana for Gaura neomexicana subsp. neomexicana; and Oenothera podocarpa for Gaura hexandra subsp. gracilis). Also, a nomenclatural problem in Oenothera sect. Calylophus is corrected by adopting the name Oenothera capillifolia Scheele for the species known previously, and nomenclaturally correct, as Calylophus berlandieri Spach. This problem necessitates a new combination Oenothera capillifolia subsp. berlandieri. PMID:24399892
Multiscale habitat selection by burrowing owls in black-tailed prairie dog colonies
Lantz, S.J.; Conway, C.J.; Anderson, S.H.
2007-01-01
Some populations of western burrowing owls (Athene cunicularia hypugaea) have declined in recent decades. To design and implement effective recovery efforts, we need a better understanding of how distribution and demographic traits are influenced by habitat quality. To this end, we measured spatial patterns of burrowing owl breeding habitat selection within black-tailed prairie dog (Cynomys ludovicianus) colonies in northeastern Wyoming, USA. We compared burrow-, site-, colony-, and landscape-scale habitat parameters between burrowing owl nest burrows (n = 105) and unoccupied burrows (n = 85). We sampled 4 types of prairie dog colonies: 1) owl-occupied, active with prairie dogs (n = 16); 2) owl-occupied, inactive (n = 13); 3) owl-unoccupied, active (n = 14); and 4) owl-unoccupied, inactive (n = 14). We used an information-theoretic approach to examine a set of candidate models of burrowing owl nest-site selection. The model with the most support included variables at all 4 spatial scales, and results were consistent among the 4 types of prairie dog colonies. Nest burrows had longer tunnels, more available burrows within 30 m, and less shrub cover within 30 m, more prairie dog activity within 100 m, and were closer to water than unoccupied burrows. The model correctly classified 76% of cases, all model coefficients were stable, and the model had high predictive ability. Based on our results, we recommend actions to ensure persistence of the remaining prairie dog colonies as an important management strategy for burrowing owl conservation in the Great Plains of North America.
Procedures for offline grid nesting in regional ocean models
NASA Astrophysics Data System (ADS)
Mason, Evan; Molemaker, Jeroen; Shchepetkin, Alexander F.; Colas, Francois; McWilliams, James C.; Sangrà, Pablo
One-way offline nesting of a primitive-equation regional ocean numerical model (ROMS) is investigated, with special attention to the boundary forcing file creation process. The model has a modified open boundary condition which minimises false wave reflections, and is optimised to utilise high-frequency boundary updates. The model configuration features a previously computed solution which supplies boundary forcing data to an interior domain with an increased grid resolution. At the open boundaries of the interior grid (the child) the topography is matched to that of the outer grid (the parent), over a narrow transition region. A correction is applied to the normal baroclinic and barotropic velocities at the open boundaries of the child to ensure volume conservation. It is shown that these steps, together with a carefully constructed interpolation of the parent data, lead to a high-quality child solution, with minimal artifacts such as persistent rim currents and wave reflections at the boundaries. Sensitivity experiments provide information about the robustness of the model open boundary condition to perturbations in the surface wind stress forcing field, to the perturbation of the volume conservation enforcement in the boundary forcing, and to perturbation of the vertical density structure in the boundary forcing. This knowledge is important when extending the nesting technique to include external data from alien sources, such as ocean models with physics and/or numerics different from ROMS, or from observed climatologies of temperature, salinity and sea level.
Probst, Thomas; Pryss, Rüdiger C.; Langguth, Berthold; Rauschecker, Josef P.; Schobel, Johannes; Reichert, Manfred; Spiliopoulou, Myra; Schlee, Winfried; Zimmermann, Johannes
2017-01-01
Only few previous studies used ecological momentary assessments to explore the time-of-day-dependence of tinnitus. The present study used data from the mobile application “TrackYourTinnitus” to explore whether tinnitus loudness and tinnitus distress fluctuate within a 24-h interval. Multilevel models were performed to account for the nested structure of assessments (level 1: 17,209 daily life assessments) nested within days (level 2: 3,570 days with at least three completed assessments), and days nested within participants (level 3: 350 participants). Results revealed a time-of-day-dependence of tinnitus. In particular, tinnitus was perceived as louder and more distressing during the night and early morning hours (from 12 a.m. to 8 a.m.) than during the upcoming day. Since previous studies suggested that stress (and stress-associated hormones) show a circadian rhythm and this might influence the time-of-day-dependence of tinnitus, we evaluated whether the described results change when statistically controlling for subjectively reported stress-levels. Correcting for subjective stress-levels, however, did not change the result that tinnitus (loudness and distress) was most severe at night and early morning. These results show that time-of-day contributes to the level of both tinnitus loudness and tinnitus distress. Possible implications of our results for the clinical management of tinnitus are that tailoring the timing of therapeutic interventions to the circadian rhythm of individual patients (chronotherapy) might be promising. PMID:28824415
Improving Barotropic Tides by Two-way Nesting High and Low Resolution Domains
NASA Astrophysics Data System (ADS)
Jeon, C. H.; Buijsman, M. C.; Wallcraft, A. J.; Shriver, J. F.; Hogan, P. J.; Arbic, B. K.; Richman, J. G.
2017-12-01
In a realistically forced global ocean model, relatively large sea-surface-height root-mean-square (RMS) errors are observed in the North Atlantic near the Hudson Strait. These may be associated with large tidal resonances interacting with coastal bathymetry that are not correctly represented with a low resolution grid. This issue can be overcome by using high resolution grids, but at a high computational cost. In this paper we apply two-way nesting as an alternative solution. This approach applies high resolution to the area with large RMS errors and a lower resolution to the rest. It is expected to improve the tidal solution as well as reduce the computational cost. To minimize modification of the original source codes of the ocean circulation model (HYCOM), we apply the coupler OASIS3-MCT. This coupler is used to exchange barotropic pressures and velocity fields through its APIs (Application Programming Interface) between the parent and the child components. The developed two-way nesting framework has been validated with an idealized test case where the parent and the child domains have identical grid resolutions. The result of the idealized case shows very small RMS errors between the child and parent solutions. We plan to show results for a case with realistic tidal forcing in which the resolution of the child grid is three times that of the parent grid. The numerical results of this realistic case are compared to TPXO data.
Phase slips in superconducting weak links
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.
2017-01-01
Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires andmore » slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.« less
Design optimization of superconducting coils based on asymmetrical characteristics of REBCO tapes
NASA Astrophysics Data System (ADS)
Hong, Zhiyong; Li, Wenrong; Chen, Yanjun; Gömöry, Fedor; Frolek, Lubomír; Zhang, Min; Sheng, Jie
2018-07-01
Angle dependence Ic(B,θ) of superconducting tape is a crucial parameter to calculate the influence of magnetic field during the design of superconducting applications,. This paper focuses on the asymmetrical characteristics found in REBCO tapes and further applications based on this phenomenon. This paper starts with angle dependence measurements of different HTS tapes, asymmetrical characteristics are found in some of the testing samples. On basis of this property, optimization of superconducting coils in superconducting motor, transformer and insert magnet is discussed by simulation. Simplified experiments which represent the structure of insert magnet were carried out to prove the validity of numerical studies. Conclusions obtained in this paper show that the asymmetrical property of superconducting tape is quite important in design of superconducting applications, and optimized winding technique based on this property can be used to improve the performance of superconducting devices.
Conceptual design of the superconducting magnet for the 250 MeV proton cyclotron.
Ren, Yong; Liu, Xiaogang; Gao, Xiang
2016-01-01
The superconducting cyclotron is of great importance to treat cancer parts of the body. To reduce the operation costs, a superconducting magnet system for the 250 MeV proton cyclotron was designed to confirm the feasibility of the superconducting cyclotron. The superconducting magnet system consists of a pair of split coils, the cryostat and a pair of binary high temperature superconductor current leads. The superconducting magnet can reach a central magnetic field of about 1.155 T at 160 A. The three GM cryocooler with cooling capacities of 1.5 W at 4.5 K and 35 W at 50 K and one GM cryocooler of 100 W at 50 K were adopted to cool the superconducting magnet system through the thermosiphon technology. The four GM cryocoolers were used to cool the superconducting magnet to realize zero evaporation of the liquid helium.
Visualizing domain wall and reverse domain superconductivity.
Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D
2014-08-28
In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.
Structure for HTS composite conductors and the manufacture of same
Cotton, J.D.; Riley, G.N. Jr.
1999-06-01
A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.
Structure for hts composite conductors and the manufacture of same
Cotton, James D.; Riley, Jr., Gilbert Neal
1999-01-01
A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.
Method for forming bismuth-based superconducting ceramics
Maroni, Victor A.; Merchant, Nazarali N.; Parrella, Ronald D.
2005-05-17
A method for reducing the concentration of non-superconducting phases during the heat treatment of Pb doped Ag/Bi-2223 composites having Bi-2223 and Bi-2212 superconducting phases is disclosed. A Pb doped Ag/Bi-2223 composite having Bi-2223 and Bi-2212 superconducting phases is heated in an atmosphere having an oxygen partial pressure not less than about 0.04 atmospheres and the temperature is maintained at the lower of a non-superconducting phase take-off temperature and the Bi-2223 superconducting phase grain growth take-off temperature. The oxygen partial pressure is varied and the temperature is varied between about 815.degree. C. and about 835.degree. C. to produce not less than 80 percent conversion to Pb doped Bi-2223 superconducting phase and not greater than about 20 volume percent non-superconducting phases. The oxygen partial pressure is preferably varied between about 0.04 and about 0.21 atmospheres. A product by the method is disclosed.
Superconductivity in transition metals.
Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P
2015-03-13
A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Visualizing domain wall and reverse domain superconductivity
Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.
2014-01-01
In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004
Spin-orbit-coupled superconductivity
Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C.-T.
2014-01-01
Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature Tc, clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < Tc, the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity. PMID:24961726
Barker, J A T; Singh, D; Thamizhavel, A; Hillier, A D; Lees, M R; Balakrishnan, G; Paul, D McK; Singh, R P
2015-12-31
The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25 K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials.
Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.
2005-03-08
In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.
Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.
2005-07-22
In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.
Growth And Patterning Of High-Tc Superconducting Films
NASA Technical Reports Server (NTRS)
Warner, J. D.; Bhasin, K. B.; Varaljay, N. C.; Bohman, D. Y.; Chorey, C. M.
1992-01-01
Superconducting films of YBa(2)Cu(3)O(7-delta), having high superconducting-transition temperatures (Tc's), deposited on LaAlO3 substrates and etched into patterns representative of passive microwave devices, with no deterioration of superconducting properties.
Jeon, I.; Huang, K.; Yazici, D.; ...
2016-03-07
We report a study of the superconducting and normal-state properties of the filled-skutterudite system PrPt 4Ge 12 - x Sb x. Polycrystalline samples with Sb concentrations up to x = 5 were synthesized and investigated by means of x-ray diffraction, electrical resistivity, magnetic susceptibility, and specific heat measurements. We observed a suppression of superconductivity with increasing Sb substitution up to x = 4 , above which no signature of superconductivity was observed down to 140 mK. The Sommerfeld coefficient, γ , of superconducting specimens decreases with increasing x up to x = 3 , suggesting that superconductivity may depend onmore » the density of electronic states in this system. Finally, the specific heat for x = 0.5 exhibits an exponential temperature dependence in the superconducting state, reminiscent of a nodeless superconducting energy gap. Here we observed evidence for a weak “rattling” mode associated with the Pr ions, characterized by an Einstein temperature Θ E ~ 60 K for 0 ≤ x ≤ 5 ; however, the rattling mode may not play any role in suppressing superconductivity.« less
Superconducting Continuous Graphene Fibers via Calcium Intercalation.
Liu, Yingjun; Liang, Hui; Xu, Zhen; Xi, Jiabin; Chen, Genfu; Gao, Weiwei; Xue, Mianqi; Gao, Chao
2017-04-25
Superconductors are important materials in the field of low-temperature magnet applications and long-distance electrical power transmission systems. Besides metal-based superconducting materials, carbon-based superconductors have attracted considerable attention in recent years. Up to now, five allotropes of carbon, including diamond, graphite, C 60 , CNTs, and graphene, have been reported to show superconducting behavior. However, most of the carbon-based superconductors are limited to small size and discontinuous phases, which inevitably hinders further application in macroscopic form. Therefore, it raises a question of whether continuously carbon-based superconducting wires could be accessed, which is of vital importance from viewpoints of fundamental research and practical application. Here, inspired by superconducting graphene, we successfully fabricated flexible graphene-based superconducting fibers via a well-established calcium (Ca) intercalation strategy. The resultant Ca-intercalated graphene fiber (Ca-GF) shows a superconducting transition at ∼11 K, which is almost 2 orders of magnitude higher than that of early reported alkali metal intercalated graphite and comparable to that of commercial superconducting NbTi wire. The combination of lightness and easy scalability makes Ca-GF highly promising as a lightweight superconducting wire.
Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J
2016-02-08
The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.
New Class of Quantum Error-Correcting Codes for a Bosonic Mode
NASA Astrophysics Data System (ADS)
Michael, Marios H.; Silveri, Matti; Brierley, R. T.; Albert, Victor V.; Salmilehto, Juha; Jiang, Liang; Girvin, S. M.
2016-07-01
We construct a new class of quantum error-correcting codes for a bosonic mode, which are advantageous for applications in quantum memories, communication, and scalable computation. These "binomial quantum codes" are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the time step between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes, but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to "cat codes" based on superpositions of the coherent states but offer several advantages such as smaller mean boson number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology, and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.
Stable superconducting magnet. [high current levels below critical temperature
NASA Technical Reports Server (NTRS)
Boom, R. W. (Inventor)
1967-01-01
Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.
Monolithic mm-wave phase shifter using optically activated superconducting switches
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R. (Inventor); Bhasin, Kul B. (Inventor)
1992-01-01
A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.
Enhanced superconductivity of fullerenes
Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy
2017-06-20
Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.
Te vacancy-driven superconductivity in orthorhombic molybdenum ditelluride
NASA Astrophysics Data System (ADS)
Cho, Suyeon; Kang, Se Hwang; Yu, Ho Sung; Kim, Hyo Won; Ko, Wonhee; Hwang, Sung Woo; Han, Woo Hyun; Choe, Duk-Hyun; Jung, Young Hwa; Chang, Kee Joo; Lee, Young Hee; Yang, Heejun; Wng Kim, Sung
2017-06-01
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have received great attentions because of diverse quantum electronic states such as topological insulating (TI), Weyl semimetallic (WSM) and superconducting states. Recently, the superconducting states emerged in pressurized semimetallic TMDs such as MoTe2 and WTe2 have become one of the central issues due to their predicted WSM states. However, the difficulty in synthetic control of chalcogen vacancies and the ambiguous magneto transport properties have hindered the rigorous study on superconducting and WSM states. Here, we report the emergence of superconductivity at 2.1 K in Te-deficient orthorhombic T d-MoTe2-x with an intrinsic electron-doping, while stoichiometric monoclinic 1T‧-MoTe2 shows no superconducting state down to 10 mK, but exhibits a large magnetoresistance of 32 000% at 2 K in a magnetic field of 14 T originating from nearly perfect compensation of electron and hole carriers. Scanning tunnelling spectroscopy and synchrotron x-ray diffraction combined with theoretical calculations clarify that Te vacancies trigger superconductivity via intrinsic electron doping and the evolution of the T d phase from the 1T‧ phase below 200 K. Unlike the pressure-induced superconducting state of monoclinic MoTe2, this Te vacancy-induced superconductivity is emerged in orthorhombic MoTe2, which is predicted as Weyl semimetal, via electron-doping. This chalcogen vacancy induced-superconductivity provides a new route for cultivating superconducting state together with WSM state in 2D van der Waals materials.
Superconductivity in graphite intercalation compounds
Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; ...
2015-02-26
This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less
Superconducting Cable Having A Felexible Former
Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.
2005-03-15
In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.
Superconducting Cable Having A Flexible Former
Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.
2005-08-30
In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.
Superconductivity of lanthanum revisited
NASA Astrophysics Data System (ADS)
Loeptien, Peter; Zhou, Lihui; Wiebe, Jens; Khajetoorians, Alexander Ako; Wiesendanger, Roland
2014-03-01
The thickness dependence of the superconductivity in clean hexagonal lanthanum films grown on tungsten (110) is studied by means of scanning tunneling microscopy (STM) and spectroscopy (STS). Fitting of the measured spectra to BCS theory yields the superconducting energy gaps from which the critical temperatures are determined. For the case of thick, bulk-like films, the bulk energy gap and critical temperature of dhcp lanthanum turn out to be considerably higher as compared to values from the literature measured by other techniques. In thin films the superconductivity is quenched by the boundary condition for the superconducting wavefunction imposed by the substrate and surface, leading to a linear decrease of the superconducting transition temperature as a function of the inverse film thickness. This opens up the possibility to grow lanthanum films with defined superconducting properties.
Electro-deposition of superconductor oxide films
Bhattacharya, Raghu N.
2001-01-01
Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.
Sacépé, B; Chapelier, C; Baturina, T I; Vinokur, V M; Baklanov, M R; Sanquer, M
2008-10-10
Scanning tunneling spectroscopy at very low temperatures on homogeneously disordered superconducting titanium nitride thin films reveals strong spatial inhomogeneities of the superconducting gap Delta in the density of states. Upon increasing disorder, we observe suppression of the superconducting critical temperature Tc towards zero, enhancement of spatial fluctuations in Delta, and growth of the Delta/Tc ratio. These findings suggest that local superconductivity survives across the disorder-driven superconductor-insulator transition.
Error field measurement, correction and heat flux balancing on Wendelstein 7-X
Lazerson, Samuel A.; Otte, Matthias; Jakubowski, Marcin; ...
2017-03-10
The measurement and correction of error fields in Wendelstein 7-X (W7-X) is critical to long pulse high beta operation, as small error fields may cause overloading of divertor plates in some configurations. Accordingly, as part of a broad collaborative effort, the detection and correction of error fields on the W7-X experiment has been performed using the trim coil system in conjunction with the flux surface mapping diagnostic and high resolution infrared camera. In the early commissioning phase of the experiment, the trim coils were used to open an n/m = 1/2 island chain in a specially designed magnetic configuration. Themore » flux surfacing mapping diagnostic was then able to directly image the magnetic topology of the experiment, allowing the inference of a small similar to 4 cm intrinsic island chain. The suspected main sources of the error field, slight misalignment and deformations of the superconducting coils, are then confirmed through experimental modeling using the detailed measurements of the coil positions. Observations of the limiters temperatures in module 5 shows a clear dependence of the limiter heat flux pattern as the perturbing fields are rotated. Plasma experiments without applied correcting fields show a significant asymmetry in neutral pressure (centered in module 4) and light emission (visible, H-alpha, CII, and CIII). Such pressure asymmetry is associated with plasma-wall (limiter) interaction asymmetries between the modules. Application of trim coil fields with n = 1 waveform correct the imbalance. Confirmation of the error fields allows the assessment of magnetic fields which resonate with the n/m = 5/5 island chain.« less
Inductively-Charged High-Temperature Superconductors And Methods Of Use
Bromberg, Leslie
2003-09-16
The invention provides methods of charging superconducting materials and, in particular, methods of charging high-temperature superconducting materials. The methods generally involve cooling a superconducting material to a temperature below its critical temperature. Then, an external magnetic field is applied to charge the material at a nearly constant temperature. The external magnetic field first drives the superconducting material to a critical state and then penetrates into the material. When in the critical state, the superconducting material loses all the pinning ability and therefore is in the flux-flow regime. In some embodiments, a first magnetic field may be used to drive the superconducting material to the critical state and then a second magnetic field may be used to penetrate the superconducting material. When the external field or combination of external fields are removed, the magnetic field that has penetrated into the material remains trapped. The charged superconducting material may be used as solenoidal magnets, dipole magnets, or other higher order multipole magnets in many applications.
Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S
2014-02-28
Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.
Conventional magnetic superconductors
Wolowiec, C. T.; White, B. D.; Maple, M. B.
2015-07-01
We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less
Vinson, S B; Frankie, G W; Rao, A
2011-01-01
The more common lodger bee occurring in the dry forest of Costa Rica, Centris bicornuta Muscáry), has been observed nesting in new nest cavities drilled into wooden blocks placed next to cavities used by another female within 2-3 days. In contrast, new nest cavities placed in similar areas with no nesting Centris nearby were not used for weeks. These observations suggest that the presence of nesting bees may play a role in nest site selection. To confirm our observations, new nest cavities were placed in areas with or without nesting. We found nest initiation in newly placed nest cavities only in areas where bees were actively nesting. To examine the possibility that nesting locations are not unique, we placed new nest cavities in new locations either with (a) a number of completed nest cavities or (b) placed alone. Within three days we only found bees nesting in the newly placed nest cavities in situation "a". The results suggested that odor might be involved. We next compared nesting in new cavities placed alone with cavities contaminated with either (a) nest entrance plug material, (b) nest nectar, (c) nest pollen or (d) a combination of pollen and nectar. Nesting was significantly low in cavities placed next to cavities with nest entrance plug material (a), and high in cavities placed next to cavities "b, c, or d". The results suggest that pollen and /or nectar odor play a role in the location of potential nest sites.
Peterson, Sean M.; Streby, Henry M.; Lehman, Justin A.; Kramer, Gunnar R.; Fish, Alexander C.; Andersen, David E.
2015-01-01
We compared the efficacy of standard nest-searching methods with finding nests via radio-tagged birds to assess how search technique influenced our determination of nest-site characteristics and nest success for Golden-winged Warblers (Vermivora chrysoptera). We also evaluated the cost-effectiveness of using radio-tagged birds to find nests. Using standard nest-searching techniques for 3 populations, we found 111 nests in locations with habitat characteristics similar to those described in previous studies: edges between forest and relatively open areas of early successional vegetation or shrubby wetlands, with 43% within 5 m of forest edge. The 83 nests found using telemetry were about half as likely (23%) to be within 5 m of forest edge. We spent little time searching >25 m into forest because published reports state that Golden-winged Warblers do not nest there. However, 14 nests found using telemetry (18%) were >25 m into forest. We modeled nest success using nest-searching method, nest age, and distance to forest edge as explanatory variables. Nest-searching method explained nest success better than nest age alone; we estimated that nests found using telemetry were 10% more likely to fledge young than nests found using standard nest-searching methods. Although radio-telemetry was more expensive than standard nest searching, the cost-effectiveness of both methods differed depending on searcher experience, amount of equipment owned, and bird population density. Our results demonstrate that telemetry can be an effective method for reducing bias in Golden-winged Warbler nest samples, can be cost competitive with standard nest-searching methods in some situations, and is likely to be a useful approach for finding nests of other forest-nesting songbirds.
Free-standing oxide superconducting articles
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.
2003-04-01
A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.
Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.
2005-09-13
A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.
Observation of enhanced superconductivity in the vicinity of Ar-induced nano-cavities in Pb(111).
Song, Sang Yong; Seo, Jungpil
2017-09-22
Local variations of superconductivity have been studied using scanning tunneling microscopy around nano-cavities formed by Ar ions embedded in Pb(111). Various factors including the density of states at Fermi energy, electron-phonon couplings, and quantum well states, which are known to affect superconductivity, have been examined. We show that the superconductivity is enhanced near the nano-cavities and propose that quantum effects such as quantum confinement, proximity effect and multi-gap effect are possibly involved in determining the superconducting gap of this system. These results have important implications for the characterization and understanding of superconductivity at a nanometer scale.
NASA Astrophysics Data System (ADS)
Fang, Jun; Duan, Wenye; Liu, Junfeng; Zhang, Chao; Ma, Zhongshui
2018-04-01
We study superconductivity states mediated by the BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairings in superconducting Weyl semimetals. It is found that a mixture of BCS and FFLO pairings results in a distinctive double-gap structure for superconducting states. With a heterojunction of a Weyl semimetal and a superconducting Weyl semimetal, we demonstrate the nonholonomic Andreev reflection and show that the intra- and internode Andreev reflections increase at the edges of the effective gap. The influence of interface potentials on the Andreev reflections is investigated. The conductance spectra arising from the mixed superconducting pairings is also analyzed.
Superconductivity in Potassium-Doped Metallic Polymorphs of MoS2.
Zhang, Renyan; Tsai, I-Ling; Chapman, James; Khestanova, Ekaterina; Waters, John; Grigorieva, Irina V
2016-01-13
Superconducting layered transition metal dichalcogenides (TMDs) stand out among other superconductors due to the tunable nature of the superconducting transition, coexistence with other collective electronic excitations (charge density waves), and strong intrinsic spin-orbit coupling. Molybdenum disulfide (MoS2) is the most studied representative of this family of materials, especially since the recent demonstration of the possibility to tune its critical temperature, Tc, by electric-field doping. However, just one of its polymorphs, band-insulator 2H-MoS2, has so far been explored for its potential to host superconductivity. We have investigated the possibility to induce superconductivity in metallic polytypes, 1T- and 1T'-MoS2, by potassium (K) intercalation. We demonstrate that at doping levels significantly higher than that required to induce superconductivity in 2H-MoS2, both 1T and 1T' phases become superconducting with Tc = 2.8 and 4.6 K, respectively. Unusually, K intercalation in this case is responsible both for the structural and superconducting phase transitions. By adding new members to the family of superconducting TMDs, our findings open the way to further manipulate and enhance the electronic properties of these technologically important materials.
Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X. J.
2016-01-01
The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors. PMID:26853801
Dimensionality Driven Enhancement of Ferromagnetic Superconductivity in URhGe.
Braithwaite, Daniel; Aoki, Dai; Brison, Jean-Pascal; Flouquet, Jacques; Knebel, Georg; Nakamura, Ai; Pourret, Alexandre
2018-01-19
In most unconventional superconductors, like the high-T_{c} cuprates, iron pnictides, or heavy-fermion systems, superconductivity emerges in the proximity of an electronic instability. Identifying unambiguously the pairing mechanism remains nevertheless an enormous challenge. Among these systems, the orthorhombic uranium ferromagnetic superconductors have a unique position, notably because magnetic fields couple directly to ferromagnetic order, leading to the fascinating discovery of the reemergence of superconductivity in URhGe at a high field. Here we show that uniaxial stress is a remarkable tool allowing the fine-tuning of the pairing strength. With a relatively small stress, the superconducting phase diagram is spectacularly modified, with a merging of the low- and high-field superconducting states and a significant enhancement of the superconductivity. The superconducting critical temperature increases both at zero field and under a field, reaching 1 K, more than twice higher than at ambient pressure. This enhancement of superconductivity is shown to be directly related to a change of the magnetic dimensionality detected from an increase of the transverse magnetic susceptibility: In addition to the Ising-type longitudinal ferromagnetic fluctuations, transverse magnetic fluctuations also play an important role in the superconducting pairing.
Full-switching FSF-type superconducting spin-triplet magnetic random access memory element
NASA Astrophysics Data System (ADS)
Lenk, D.; Morari, R.; Zdravkov, V. I.; Ullrich, A.; Khaydukov, Yu.; Obermeier, G.; Müller, C.; Sidorenko, A. S.; von Nidda, H.-A. Krug; Horn, S.; Tagirov, L. R.; Tidecks, R.
2017-11-01
In the present work a superconducting Co/CoOx/Cu41Ni59 /Nb/Cu41Ni59 nanoscale thin film heterostructure is investigated, which exhibits a superconducting transition temperature, Tc, depending on the history of magnetic field applied parallel to the film plane. In more detail, around zero applied field, Tc is lower when the field is changed from negative to positive polarity (with respect to the cooling field), compared to the opposite case. We interpret this finding as the result of the generation of the odd-in-frequency triplet component of superconductivity arising at noncollinear orientation of the magnetizations in the Cu41Ni59 layer adjacent to the CoOx layer. This interpretation is supported by superconducting quantum interference device magnetometry, which revealed a correlation between details of the magnetic structure and the observed superconducting spin-valve effects. Readout of information is possible at zero applied field and, thus, no permanent field is required to stabilize both states. Consequently, this system represents a superconducting magnetic random access memory element for superconducting electronics. By applying increased transport currents, the system can be driven to the full switching mode between the completely superconducting and the normal state.
NASA Astrophysics Data System (ADS)
Petrenko, A.; Ofek, N.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.
2015-03-01
Realizing a working quantum computer requires overcoming the many challenges that come with coupling large numbers of qubits to perform logical operations. These include improving coherence times, achieving high gate fidelities, and correcting for the inevitable errors that will occur throughout the duration of an algorithm. While impressive progress has been made in all of these areas, the difficulty of combining these ingredients to demonstrate an error-protected logical qubit, comprised of many physical qubits, still remains formidable. With its large Hilbert space, superior coherence properties, and single dominant error channel (single photon loss), a superconducting 3D resonator acting as a resource for a quantum memory offers a hardware-efficient alternative to multi-qubit codes [Leghtas et.al. PRL 2013]. Here we build upon recent work on cat-state encoding [Vlastakis et.al. Science 2013] and photon-parity jumps [Sun et.al. 2014] by exploring the effects of sequential measurements on a cavity state. Employing a transmon qubit dispersively coupled to two superconducting resonators in a cQED architecture, we explore further the application of parity measurements to characterizing such a hybrid qubit/cat state architecture. In so doing, we demonstrate the promise of integrating cat states as central constituents of future quantum codes.
Spontaneous and persistent currents in superconductive and mesoscopic structures (Review)
NASA Astrophysics Data System (ADS)
Kulik, I. O.
2004-07-01
We briefly review aspects of superconductive persistent currents in Josephson junctions of the S/I/S, S/O/S and S/N/S types, focusing on the origin of jumps in the current versus phase dependences, and discuss in more detail the persistent and the "spontaneous" currents in Aharonov-Bohm mesoscopic and nanoscopic (macromolecular) structures. A fixed-number-of-electrons mesoscopic or macromolecular conducting ring is shown to be unstable against structural transformation removing spatial symmetry (in particular, azimuthal periodicity) of its electron-lattice Hamiltonian. In the case when the transformation is blocked by strong coupling to an external azimuthally symmetric environment, the system becomes bistable in its electronic configuration at a certain number of electrons. Under such a condition, the persistent current has a nonzero value even at an (almost) zero applied Aharonov-Bohm flux and results in very high magnetic susceptibility dM/dH at small nonzero fields, followed by an oscillatory dependence at larger fields. We tentatively assume that previously observed oscillatory magnetization in cyclic metallo-organic molecules by Gatteschi et al. can be attributed to persistent currents. If this proves correct, it may present an opportunity for (and, more generally, macromolecular cyclic structures may suggest the possibility of) engineering quantum computational tools based on the Aharonov-Bohm effect in ballistic nanostructures and macromolecular cyclic aggregates.
Testing the Ginzburg-Landau approximation for three-flavor crystalline color superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannarelli, Massimo; Sharma, Rishi; Rajagopal, Krishna
2006-06-01
It is an open challenge to analyze the crystalline color superconducting phases that may arise in cold dense, but not asymptotically dense, three-flavor quark matter. At present the only approximation within which it seems possible to compare the free energies of the myriad possible crystal structures is the Ginzburg-Landau approximation. Here, we test this approximation on a particularly simple 'crystal' structure in which there are only two condensates
Ultrasonic studies of aluminium-substituted Bi(Pb)-2223 superconductors
NASA Astrophysics Data System (ADS)
Solunke, M. B.; Sharma, P. U.; Pandya, M. P.; Lakhani, V. K.; Modi, K. B.; Venugopal Reddy, P.; Shah, S. S.
2005-09-01
The compositional dependence of elastic properties of Al^{3+}-substitu- ted Bi(Pb)-2223 superconducting system with the general formula Bi_{1.7-x}Al_xPb_{0.3}Sr_2Ca_2- Cu_3O_y (x = 0.0, 0.1, 0.2 and 0.3) have been studied by means of ultrasonic pulse transmission (UPT) technique at 1 MHz (300 K). The elastic moduli of the specimens are computed and corrected to zero porosity. The observed variation of elastic constants with aluminium substitution has been explained on the basis of the strength of interatomic bonding. The applicability of heterogeneous metal mixture rule for estimating elastic constants and transition temperature has been tested.
Ion and electron temperatures in the SUMMA mirror device by emission spectroscopy
NASA Technical Reports Server (NTRS)
Patch, R. W.; Voss, D. E.; Reinmann, J. J.; Snyder, A.
1974-01-01
Ion and electron temperatures, and ion drift were measured in a superconducting magnetic mirror apparatus by observing the Doppler-broadened charge-exchange component of the 667.8 and 587.6 nanometer He lines in He plasma, and the H sub alpha and H sub beta lines in H2 plasma. The second moment of the line profiles was used as the parameter for determining ion temperature. Corrections for magnetic splitting, fine structure, monochromator slit function, and variation in charge-exchange cross section with energy are included. Electron temperatures were measured by the line ratio method for the corona model, and correlations of ion and electron temperatures with plasma parameters are presented.
Efficient and robust analysis of complex scattering data under noise in microwave resonators.
Probst, S; Song, F B; Bushev, P A; Ustinov, A V; Weides, M
2015-02-01
Superconducting microwave resonators are reliable circuits widely used for detection and as test devices for material research. A reliable determination of their external and internal quality factors is crucial for many modern applications, which either require fast measurements or operate in the single photon regime with small signal to noise ratios. Here, we use the circle fit technique with diameter correction and provide a step by step guide for implementing an algorithm for robust fitting and calibration of complex resonator scattering data in the presence of noise. The speedup and robustness of the analysis are achieved by employing an algebraic rather than an iterative fit technique for the resonance circle.
NASA Astrophysics Data System (ADS)
Magelschots, I.; Andersen, N. H.; Lebech, B.; Wisniewski, A.; Jacobsen, C. S.
1992-12-01
An experimental study of superconducting and non-superconducting Nd 1.85Ce 0.15CuO 4+ y, including structure determination by neutron powder diffraction, recording of oxygen changes by gas volumetry, and susceptibility and thermoelectric measurements, is reported. Difference neutron diffraction patterns from samples prepared on-line at the spectrometer show that the structures of superconducting and non-superconducting samples are identical within the limits set by the statistical errors of our data. Simultaneous gas volumetric measurements reveal that Δy<0.03 (1) when the sample is oxidized from the superconducting to the non-superconducting state. Structural refinements confirm that Nd 1.85Ce 0.15CuO 4+ y has the T‧-type tetragonal structure reported in the literature, but additional oxygen may be located on the apical O(3) oxygen site of the T-type structure, with a total oxygen content of 4+ y=4.03 (5). Consistent with this result, we find very small values of the thermoelectric power indicating that Nd 1.85Ce 0.15CuO 4+ y is close to the formal threshold, yc=0.075, between electron and hole conduction, but surprisingly, the thermoelectric power of the superconducting sample is positive, while it is negative in the non-superconducting sample below 210 K.
Canada goose nest survival at rural wetlands in north-central Iowa
Ness, Brenna N.; Klaver, Robert W.
2016-01-01
The last comprehensive nest survival study of the breeding giant Canada goose (Branta canadensis maxima) population in Iowa, USA, was conducted >30 years ago during a period of population recovery, during which available nesting habitat consisted primarily of artificial nest structures. Currently, Iowa's resident goose population is stable and nests in a variety of habitats. We analyzed the effects of available habitat on nest survival and how nest survival rates compared with those of the expanding goose population studied previously to better understand how to maintain a sustainable Canada goose population in Iowa. We documented Canada goose nest survival at rural wetland sites in north-central Iowa. We monitored 121 nests in 2013 and 149 nests in 2014 at 5 Wildlife Management Areas (WMAs) with various nesting habitats, including islands, muskrat (Ondatra zibethicus) houses, and elevated nest structures. We estimated daily nest-survival rate using the nest survival model in Program MARK. Survival was influenced by year, site, stage, presence of a camera, nest age, and an interaction between nest age and stage. Nest success rates for the 28-day incubation period by site and year combination ranged from 0.10 to 0.84. Nest survival was greatest at sites with nest structures (β = 17.34). Nest survival was negatively affected by lowered water levels at Rice Lake WMA (2013 β = −0.77, nest age β = −0.07). Timing of water-level drawdowns for shallow lake restorations may influence nest survival rates.
Ackerman, Joshua T.; Ringelman, Kevin M.; Eadie, J.M.
2012-01-01
When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for “dispersion-dependent” predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.
NASA Astrophysics Data System (ADS)
Xie, S. F.; Wang, Y.; Wang, D. Y.; Zhang, X. J.; Zhao, B.; Zhang, Y. Y.; Li, L.; Li, Y. N.; Chen, P. M.
2013-03-01
The superconducting motor is now the focus of the research on the application of high temperature superconducting (HTS) materials. In this manuscript, we mainly introduce the recent progress on the fabrication technique and property research of the superconducting motor magnet in Luoyang Ship Material Research Institute (LSMRI) in China, including the materials, the winding and impregnation technique, and property measurement of magnet. Several techniques and devices were developed to manufacture the magnet, including the technique of insulation and thermal conduction, the device for winding the racetrack-type magnet, etc. At last, the superconducting magnet used for the MW class motor were successfully developed, which is the largest superconducting motor magnet in china at present. The critical current of the superconducting magnet exceeds the design value (90 A at 30 K).
Schemm, E R; Gannon, W J; Wishne, C M; Halperin, W P; Kapitulnik, A
2014-07-11
Models of superconductivity in unconventional materials can be experimentally differentiated by the predictions they make for the symmetries of the superconducting order parameter. In the case of the heavy-fermion superconductor UPt3, a key question is whether its multiple superconducting phases preserve or break time-reversal symmetry (TRS). We tested for asymmetry in the phase shift between left and right circularly polarized light reflected from a single crystal of UPt3 at normal incidence and found that this so-called polar Kerr effect appears only below the lower of the two zero-field superconducting transition temperatures. Our results provide evidence for broken TRS in the low-temperature superconducting phase of UPt3, implying a complex two-component order parameter for superconductivity in this system. Copyright © 2014, American Association for the Advancement of Science.
Interface-Induced Zeeman-Protected Superconductivity in Ultrathin Crystalline Lead Films
NASA Astrophysics Data System (ADS)
Liu, Yi; Wang, Ziqiao; Zhang, Xuefeng; Liu, Chaofei; Liu, Yongjie; Zhou, Zhimou; Wang, Junfeng; Wang, Qingyan; Liu, Yanzhao; Xi, Chuanying; Tian, Mingliang; Liu, Haiwen; Feng, Ji; Xie, X. C.; Wang, Jian
2018-04-01
Two-dimensional (2D) superconducting systems are of great importance for exploring exotic quantum physics. The recent development of fabrication techniques has stimulated studies of high-quality single-crystalline 2D superconductors, where intrinsic properties give rise to unprecedented physical phenomena. Here, we report the observation of Zeeman-type spin-orbit interaction protected superconductivity (Zeeman-protected superconductivity) in 4-monolayer (ML) to 6-ML crystalline Pb films grown on striped incommensurate Pb layers on Si(111) substrates by molecular beam epitaxy. An anomalously large in-plane critical field far beyond the Pauli limit is detected, which can be attributed to the Zeeman-protected superconductivity due to the in-plane inversion symmetry breaking at the interface. Our work demonstrates that, in superconducting heterostructures, the interface can induce Zeeman-type spin-orbit interactions and modulate the superconductivity.
[Fleas from the nests of Passer domesticus and Passer montanus].
Kaczmarek, S
1991-01-01
In the years 1986-1988 102 nests of Passer domesticus and 113 nests of P. montanus were collected from Słupsk, Warszawa and its surrounding. Ceratophyllus gallinae was found in 55 nests of P. domesticus and in 74 nests of P. montanus: C. fringillae in 13 nests of P. domesticus. The highest mean number of C. gallinae per nest was recorded in nest of P. domesticus (11.9), lower in nest of P. montanus (5.9). The highest percentage of nests with fleas and the highest mean number of fleas per nest were recorded in September in P. domesticus and in June, July and September in P. montanus. The highest (111) nests to be inhabited by 1-10 specimens. Number of specimens in nests was not depending on the weight nests.
Individual variation in nest size and nest site features of the Bornean orangutans (Pongo pygmaeus).
Rayadin, Yaya; Saitoh, Takashi
2009-05-01
Nest construction is a daily habit of independent orangutans for sleeping or resting. Data on their nests have been used in various ecological studies (e.g., density estimation, ranging behavior, evolution of material culture) because they are the most observable field signs. We investigated nest size and nest site features of Bornean orangutans in the wild during 10 months' fieldwork at three sites in East Kalimantan, Indonesia: Kutai National Park, Birawa, and Meratus. To examine individual variation, we followed 31 individual orangutans and recorded the 92 nests they made for nest size (diameter) and nest site features (height of nest above ground, tree species used for the nest site, the diameter and height of the tree, whether the nest was new or reused, and nest location within the tree). Analyses taking age-sex classes of the focal individuals into consideration showed significant age-sex differences in nest size and location, but not in nest height or nest tree features (diameter, height of tree, and height of lowest branch). Mature orangutans (adult females, unflanged and flanged males) made larger nests than immatures (juveniles and adolescents). Flanged male orangutans with larger nests used stable locations for nesting sites and reused old nests more frequently than immatures. The overall proportion of nests in open (exposed) locations was higher than in closed (sheltered) locations. Flanged males and immatures frequently made open nests, whereas adult females with an infant preferred closed locations. The good correspondence between nest size and age-sex classes indicates that nest size variation may reflect body size and therefore age-sex variation in the population. (c) 2009 Wiley-Liss, Inc.
Superconductivity in Al-substituted Ba8Si46 clathrates
NASA Astrophysics Data System (ADS)
Li, Yang; Garcia, Jose; Chen, Ning; Liu, Lihua; Li, Feng; Wei, Yuping; Bi, Shanli; Cao, Guohui; Feng, Z. S.
2013-05-01
There is a great deal of interest vested in the superconductivity of Si clathrate compounds with sp3 network, in which the structure is dominated by strong covalent bonds among silicon atoms, rather than the metallic bonding that is more typical of traditional superconductors. A joint experimental and theoretical investigation of superconductivity in Al-substituted type-I silicon clathrates is reported. Samples of the general formula Ba8Si46-xAlx, with different values of x were prepared. With an increase in the Al composition, the superconducting transition temperature TC was observed to decrease systematically. The resistivity measurement revealed that Ba8Si42Al4 is superconductive with transition temperature at TC = 5.5 K. The magnetic measurements showed that the bulk superconducting Ba8Si42Al4 is a type II superconductor. For x = 6 sample Ba8Si40Al6, the superconducting transition was observed down to TC = 4.7 K which pointed to a strong suppression of superconductivity with increasing Al content as compared with TC = 8 K for Ba8Si46. Suppression of superconductivity can be attributed primarily to a decrease in the density of states at the Fermi level, caused by reduced integrity of the sp3 hybridized networks as well as the lowering of carrier concentration. These results corroborated by first-principles calculations showed that Al substitution results in a large decrease of the electronic density of states at the Fermi level, which also explains the decreased superconducting critical temperature within the BCS framework. The work provided a comprehensive understanding of the doping effect on superconductivity of clathrates.
The importance of illumination in nest site choice and nest characteristics of cavity nesting birds.
Podkowa, Paweł; Surmacki, Adrian
2017-05-02
Light has a significant impact on many aspects of avian biology, physiology and behaviour. An increasing number of studies show that illumination may positively influences birds' offspring fitness by e.g. acceleration of embryo development, stimulation of skeleton growth or regulation of circadian rhythm. Because nest cavities have especially low illumination, suitable light levels may be especially important for species which nest there. We may therefore expect that birds breeding in relatively dim conditions should prefer brighter nest sites and/or evolve behavioral mechanisms to secure sufficient light levels in the nest. Using nest boxes with modified internal illumination, we experimentally tested whether light regime is a cue for nest site selection of secondary cavity-nesting species. Additionally, we investigated whether nest building strategies are tuned to internal illumination. Our results demonstrate that, nest boxes with elevated illumination were chosen twice as often as dark nest boxes. Moreover, birds built higher nests in dark nest boxes than birds in boxes with elevated illumination, which suggests a mechanism of compensating for low light conditions. Our results provide the first experimental support for the idea that nest site choice and nest building behaviour in cavity-nesting birds are influenced by ambient illumination.
Barão-Nóbrega, José António Lemos; Marioni, Boris; Botero-Arias, Robinson; Nogueira, António José Arsénia; Lima, Emerson Silva; Magnusson, William Ernest; Da Silveira, Ronis; Marcon, Jaydione Luiz
2018-01-01
Although nesting ecology is well studied in several crocodilian species, it is not known how nest attendance influences physiology and body condition of nesting females. In this study, we describe body condition and serum biochemical values of nesting female, non-nesting female and male spectacled caiman (Caiman crocodilus) and black caiman (Melanosuchus niger) in two areas of Central Amazonia. We also evaluated the effect of nest age and nest distance to water on body condition and blood parameters of nesting females. Body condition and plasmatic concentrations of glucose, triglycerides, lactate and uric acid of nesting females were significantly different from those of non-nesting females and males in C. crocodilus, but not in M. niger. Our study also demonstrated that nest age and distance to water had a negative effect on female body condition in C. crocodilus, but not in M. niger. Female C. crocodilus attending older nests or nests built further away from permanent water bodies tended to have lower body condition. Our results demonstrate that the nesting strategy of C. crocodilus has a metabolic cost associated with nest attendance for nesting females, which appear to depend on accumulated energetic reserves during nest attendance. In contrast, nest attendance had little effect on the physiology of female M. niger.
NASA Astrophysics Data System (ADS)
Weber, Torsten; Haensler, Andreas; Jacob, Daniela
2017-12-01
Regional climate models (RCMs) have been used to dynamically downscale global climate projections at high spatial and temporal resolution in order to analyse the atmospheric water cycle. In southern Africa, precipitation pattern were strongly affected by the moisture transport from the southeast Atlantic and southwest Indian Ocean and, consequently, by their sea surface temperatures (SSTs). However, global ocean models often have deficiencies in resolving regional to local scale ocean currents, e.g. in ocean areas offshore the South African continent. By downscaling global climate projections using RCMs, the biased SSTs from the global forcing data were introduced to the RCMs and affected the results of regional climate projections. In this work, the impact of the SST bias correction on precipitation, evaporation and moisture transport were analysed over southern Africa. For this analysis, several experiments were conducted with the regional climate model REMO using corrected and uncorrected SSTs. In these experiments, a global MPI-ESM-LR historical simulation was downscaled with the regional climate model REMO to a high spatial resolution of 50 × 50 km2 and of 25 × 25 km2 for southern Africa using a double-nesting method. The results showed a distinct impact of the corrected SST on the moisture transport, the meridional vertical circulation and on the precipitation pattern in southern Africa. Furthermore, it was found that the experiment with the corrected SST led to a reduction of the wet bias over southern Africa and to a better agreement with observations as without SST bias corrections.
Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.
Hollander, Franck A; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas
2015-01-01
In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.
Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird
Hollander, Franck A.; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas
2015-01-01
In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments. PMID:26624619
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltyn, Stephen R; Jia, Quanxi; Arendt, Paul N
A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.
High temperature superconducting magnetic energy storage for future NASA missions
NASA Technical Reports Server (NTRS)
Faymon, Karl A.; Rudnick, Stanley J.
1988-01-01
Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.
Method and means for separating and classifying superconductive particles
Park, Jin Y.; Kearney, Robert J.
1991-01-01
The specification and drawings describe a series of devices and methods for classifying and separating superconductive particles. The superconductive particles may be separated from non-superconductive particles, and the superconductive particles may be separated by degrees of susceptibility to the Meissner effect force. The particles may also be simultaneously separated by size or volume and mass to obtain substantially homogeneous groups of particles. The separation techniques include levitation, preferential sedimentation and preferential concentration. Multiple separation vector forces are disclosed.
Superconductive articles including cerium oxide layer
Wu, X.D.; Muenchausen, R.E.
1993-11-16
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.
High-Field Superconductivity on Iron Chalcogenide FeSe
NASA Astrophysics Data System (ADS)
Shi, Anlu; Kitagawa, Shunsaku; Ishida, Kenji; Böhmer, Anna E.; Meingast, Christoph; Wolf, Thomas
2018-06-01
We have performed ac-susceptibility and 77Se-NMR measurements on single-crystal FeSe in the field range from 12.5 to 14.75 T below 1.6 K in order to investigate the superconducting properties of the B phase. Our results show that although superconductivity persists beyond the A-B transition line (H*), the broadening of the 77Se-NMR linewidth arising from the superconducting diamagnetic effect decreases at around H*, suggesting that superconducting character is changed at H*.
Passive Superconducting Shielding: Experimental Results and Computer Models
NASA Technical Reports Server (NTRS)
Warner, B. A.; Kamiya, K.
2003-01-01
Passive superconducting shielding for magnetic refrigerators has advantages over active shielding and passive ferromagnetic shielding in that it is lightweight and easy to construct. However, it is not as easy to model and does not fail gracefully. Failure of a passive superconducting shield may lead to persistent flux and persistent currents. Unfortunately, modeling software for superconducting materials is not as easily available as is software for simple coils or for ferromagnetic materials. This paper will discuss ways of using available software to model passive superconducting shielding.
Superconductive articles including cerium oxide layer
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.
Development of a superconducting claw-pole linear test-rig
NASA Astrophysics Data System (ADS)
Radyjowski, Patryk; Keysan, Ozan; Burchell, Joseph; Mueller, Markus
2016-04-01
Superconducting generators can help to reduce the cost of energy for large offshore wind turbines, where the size and mass of the generator have a direct effect on the installation cost. However, existing superconducting generators are not as reliable as the alternative technologies. In this paper, a linear test prototype for a novel superconducting claw-pole topology, which has a stationary superconducting coil that eliminates the cryocooler coupler will be presented. The issues related to mechanical, electromagnetic and thermal aspects of the prototype will be presented.
Superconductivity in LaPd2Al2-xGax compounds
NASA Astrophysics Data System (ADS)
Klicpera, M.; Pásztorová, J.; Javorský, P.
2014-08-01
The superconductivity in LaPd2Al2-xGax compounds was studied by means of electrical resistivity and specific heat measurements. The concentration development of the superconducting properties was revealed. The measured data deviate significantly from the Bardeen-Cooper-Schrieffer theory predictions and are discussed in the context of unconventional superconductivity. The electronic specific heat below {{T}_{SC}} follows almost quadratic temperature dependence, which might indicate an axial state with line nodes in the superconducting gap structure.
Superconductivity in CVD diamond films.
Takano, Yoshihiko
2009-06-24
A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.
Superconducting molybdenum-rhenium electrodes for single-molecule transport studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudenzi, R.; Island, J. O.; Bruijckere, J. de
2015-06-01
We demonstrate that electronic transport through single molecules or molecular ensembles, commonly based on gold (Au) electrodes, can be extended to superconducting electrodes by combining gold with molybdenum-rhenium (MoRe). This combination induces proximity-effect superconductivity in the gold to temperatures of at least 4.6 K and magnetic fields of 6 T, improving on previously reported aluminum based superconducting nanojunctions. As a proof of concept, we show three-terminal superconductive transport measurements through an individual Fe{sub 4} single-molecule magnet.
NASA Astrophysics Data System (ADS)
Francis, Olivier; Baumann, Henri; Volarik, Tomas; Rothleitner, Christian; Klein, Gilbert; Seil, Marc; Dando, Nicolas; Tracey, Ray; Ullrich, Christian; Castelein, Stefaan; Hua, Hu; Kang, Wu; Chongyang, Shen; Songbo, Xuan; Hongbo, Tan; Zhengyuan, Li; Pálinkás, Vojtech; Kostelecký, Jakub; Mäkinen, Jaakko; Näränen, Jyri; Merlet, Sébastien; Farah, Tristan; Guerlin, Christine; Pereira Dos Santos, Franck; Le Moigne, Nicolas; Champollion, Cédric; Deville, Sabrina; Timmen, Ludger; Falk, Reinhard; Wilmes, Herbert; Iacovone, Domenico; Baccaro, Francesco; Germak, Alessandro; Biolcati, Emanuele; Krynski, Jan; Sekowski, Marcin; Olszak, Tomasz; Pachuta, Andrzej; Agren, Jonas; Engfeldt, Andreas; Reudink, René; Inacio, Pedro; McLaughlin, Daniel; Shannon, Geoff; Eckl, Marc; Wilkins, Tim; van Westrum, Derek; Billson, Ryan
2013-06-01
We present the results of the third European Comparison of Absolute Gravimeters held in Walferdange, Grand Duchy of Luxembourg, in November 2011. Twenty-two gravimeters from both metrological and non-metrological institutes are compared. For the first time, corrections for the laser beam diffraction and the self-attraction of the gravimeters are implemented. The gravity observations are also corrected for geophysical gravity changes that occurred during the comparison using the observations of a superconducting gravimeter. We show that these corrections improve the degree of equivalence between the gravimeters. We present the results for two different combinations of data. In the first one, we use only the observations from the metrological institutes. In the second solution, we include all the data from both metrological and non-metrological institutes. Those solutions are then compared with the official result of the comparison published previously and based on the observations of the metrological institutes and the gravity differences at the different sites as measured by non-metrological institutes. Overall, the absolute gravity meters agree with one another with a standard deviation of 3.1 µGal. Finally, the results of this comparison are linked to previous ones. We conclude with some important recommendations for future comparisons.
Kantrud, Harold A.; Higgins, Kenneth F.
1992-01-01
We summarized biological and ecologic characteristics of 2490 nests of 16 species of upland-nesting, non-passerine birds of northern grasslands found during 1963 through 1991. Nest initiation and hatch dates, clutch sizes, nest fates, causes of failure, success rates of nests among major habitat types and land uses, and vegetation measurements at nest sites are analyzed.
NASA Technical Reports Server (NTRS)
Shelton, Duane; Gamota, George
1989-01-01
The Japanese regard success in R and D in high temperature superconductivity as an important national objective. The results of a detailed evaluation of the current state of Japanese high temperature superconductivity development are provided. The analysis was performed by a panel of technical experts drawn from U.S. industry and academia, and is based on reviews of the relevant literature and visits to Japanese government, academic and industrial laboratories. Detailed appraisals are presented on the following: Basic research; superconducting materials; large scale applications; processing of superconducting materials; superconducting electronics and thin films. In all cases, comparisons are made with the corresponding state-of-the-art in the United States.
Martin, Thomas E.; Boyce, Andy J.; Fierro-Calderon, Karolina; Mitchell, Adam E.; Armstad, Connor E.; Mouton, James C.; Bin Soudi, Evertius E.
2017-01-01
Nest structure is thought to provide benefits that have fitness consequences for several taxa. Traditionally, reduced nest predation has been considered the primary benefit underlying evolution of nest structure, whereas thermal benefits have been considered a secondary or even non-existent factor. Yet, the relative roles of these factors on nest structures remain largely unexplored.Enclosed nests have a constructed or natural roof connected to sides that allow a restricted opening or tube entrance that provides cover in all directions except the entrance, whereas open nests are cups or platforms that are open above. We show that construction of enclosed nests is more common among songbirds (Passeriformes) in tropical and southern hemisphere regions than in north temperate regions. This geographic pattern may reflect selection from predation risk, under long-standing assumptions that nest predation rates are higher in southern regions and that enclosed nests reduce predation risk compared with open cup nests. We therefore compared nest predation rates between enclosed vs. open nests in 114 songbird species that do not nest in tree holes among five communities of coexisting birds, and for 205 non-hole-nesting species from the literature, across northern temperate, tropical, and southern hemisphere regions.Among coexisting species, enclosed nests had lower nest predation rates than open nests in two south temperate sites, but not in either of two tropical sites or a north temperate site. Nest predation did not differ between nest types at any latitude based on literature data. Among 319 species from both our field studies and the literature, enclosed nests did not show consistent benefits of reduced predation and, in fact, predation was not consistently higher in the tropics, contrary to long-standing perspectives.Thermal benefits of enclosed nests were indicated based on three indirect results. First, species that built enclosed nests were smaller than species using open nests both among coexisting species and among species from the literature. Smaller species lose heat fastest and thereby may gain important thermal benefits from reduced convective cooling. Second, eggs were warmed by parents for less time in species with enclosed nests, as can be expected if egg cooling rates are slower. Finally, species using enclosed nests exhibited enhanced growth of mass and wings compared with species using open nests, suggesting reduced thermoregulatory costs allowed increased energy for growth.Enclosed nests may therefore provide more consistent thermal than nest predation benefits, counter to long-standing perspectives.
Superconducting generators and motors and methods for employing same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomsic, Michael J.; Long, Larry
A superconducting electrical generator or motor having a plurality of cryostats is described. The cryostats contain coolant and a first cryostat encloses at least one of a plurality of superconducting coils. A first coil is in superconducting electrical communication with a second coil contained in a second cryostat through a superconducting conduction cooling cable enclosing a conductor. The first cryostat and the second cryostat may be in fluid communication through at least one cryogen channel within the at least one superconducting conduction cooling cable. In other embodiments, none of the plurality of cryostats may be in fluid communication and themore » cable may be cooled by conduction along the conductor from the first or second cryostat, or from both. The conductor may have different segments at temperatures equal to or above the temperature of the coolant and the superconducting conduction cooling cables may be connected through quick connect fittings.« less
μ SR Investigation of Superconducting PbTaSe2
NASA Astrophysics Data System (ADS)
Wilson, Murray; Hallas, Alannah; Cai, Yipeng; Guo, Shengli; Gong, Zizhou; Ali, Mazhar; Cava, Robert; Uemura, Yasutomo; Luke, Graeme
Noncentrosymmetric superconductors are a topic of considerable interest in the condensed matter physics community. These materials have the potential to exhibit exotic superconducting states, particularly in the presence of strong spin orbit coupling. PbTaSe2 is a noncentrosymmetric material which has very strong spin orbit coupling, and is superconducting with a TC of 3.6 K. Previous studies of this material have identified exotic properties such as Dirac cones gapped by spin-orbit coupling, a topological semi-metal state, and possible multi-band superconductivity. To further explore this material, it is of considerable interest to investigate the pairing symmetry of the superconducting state, and determine whether odd-parity superconductivity may exist. In this talk we will present a μSR investigation of the penetration depth temperature dependece to infer the pairing symmetry. We will also present zero field μSR measurements which suggest that this material has an even-parity superconducting state.
Conventional superconductivity in the type-II Dirac semimetal PdTe2
NASA Astrophysics Data System (ADS)
Das, Shekhar; Amit, Sirohi, Anshu; Yadav, Lalit; Gayen, Sirshendu; Singh, Yogesh; Sheet, Goutam
2018-01-01
The transition metal dichalcogenide PdTe2 was recently shown to be a unique system where a type-II Dirac semimetallic phase and a superconducting phase coexist. This observation has led to wide speculation on the possibility of the emergence of an unconventional topological superconducting phase in PdTe2. Here, through direct measurement of the superconducting energy gap by scanning tunneling spectroscopy, and temperature and magnetic-field evolution of same, we show that the superconducting phase in PdTe2 is conventional in nature. The superconducting energy gap is measured to be 326 μ eV at 0.38 K, and it follows a temperature dependence that is well described within the framework of Bardeen-Cooper-Schrieffer's theory of conventional superconductivity. This is surprising because our quantum oscillation measurements confirm that at least one of the bands participating in transport has topologically nontrivial character.
Correlation-induced superconductivity dynamically stabilized and enhanced by laser irradiation.
Ido, Kota; Ohgoe, Takahiro; Imada, Masatoshi
2017-08-01
Studies on out-of-equilibrium dynamics have paved a way to realize a new state of matter. Superconductor-like properties above room temperatures recently suggested to be in copper oxides achieved by selectively exciting vibrational phonon modes by laser have inspired studies on an alternative and general strategy to be pursued for high-temperature superconductivity. We show that the superconductivity can be enhanced by irradiating laser to correlated electron systems owing to two mechanisms: First, the effective attractive interaction of carriers is enhanced by the dynamical localization mechanism, which drives the system into strong coupling regions. Second, the irradiation allows reaching uniform and enhanced superconductivity dynamically stabilized without deteriorating into equilibrium inhomogeneities that suppress superconductivity. The dynamical superconductivity is subject to the Higgs oscillations during and after the irradiation. Our finding sheds light on a way to enhance superconductivity that is inaccessible in equilibrium in strongly correlated electron systems.
NASA Astrophysics Data System (ADS)
Talantsev, E. F.; Crump, W. P.; Tallon, J. L.
2018-01-01
Proximity-induced superconductivity in single-layer graphene (SLG) and in topological insulators represent almost ideal examples of superconductivity in two dimensions. Fundamental mechanisms governing superconductivity in the 2D limit are of central interest for modern condensed-matter physics. To deduce fundamental parameters of superconductor/graphene/superconductor and superconductor/bismuth selenide/superconductor junctions we investigate the self-field critical currents in these devices using the formalism of the Ambegaokar-Baratoff model. Our central finding is that the induced superconducting state in SLG and bismuth selenide each exhibits gapping on two superconducting bands. Based on recent results obtained on ultra-thin films of natural superconductors, including single-atomic layer of iron selenide, double and triple atomic layers of gallium, and several atomic layer tantalum disulphide, we conclude that a two-band induced superconducting state in SLG and bismuth selenide is part of a wider, more general multiple-band phenomenology of currently unknown origin.
Superconductive radiofrequency window assembly
Phillips, Harry Lawrence; Elliott, Thomas S.
1998-01-01
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.
Superconductive radiofrequency window assembly
Phillips, H.L.; Elliott, T.S.
1998-05-19
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.
Superconducting radiofrequency window assembly
Phillips, Harry L.; Elliott, Thomas S.
1997-01-01
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.
Superconducting radiofrequency window assembly
Phillips, H.L.; Elliott, T.S.
1997-03-11
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.
2017 Gordon Conference on Superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubukov, Andrey
The DOE award was for a 2017 Gordon Research conference on Superconductivity (GRC). The objective of GRC is to interchange the information about the latest theoretical and experimental developments in the area of superconductivity and to select most perspective directions for future research in this area.The goal of the Gordon Conference on Superconductivity is to present and discuss the latest results in the field of modern superconductivity, discuss new ideas and new directions of research in the area. It is a long-standing tradition of the Gordon conference on Superconductivity that the vast majority of participants are junior scientists. Funding formore » the conference would primarily be used to support junior researchers, particularly from under-represented groups. We had more 10 female speakers, some of them junior researchers, and some funding was used to support these speakers. The conference was held together with Gordon Research Seminar on Superconductivity, where almost all speakers and participants were junior scientists.« less
Technical issues of a high-Tc superconducting bulk magnet
NASA Astrophysics Data System (ADS)
Fujimoto, Hiroyuki
2000-06-01
Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.
Spiral magnetic order and pressure-induced superconductivity in transition metal compounds.
Wang, Yishu; Feng, Yejun; Cheng, J-G; Wu, W; Luo, J L; Rosenbaum, T F
2016-10-06
Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity.
Status and future perspective of applications of high temperature superconductors
NASA Astrophysics Data System (ADS)
Tanaka, Shoji
The material research on the high temperature superconductivity for the past ten years gave us sufficient information on the new phenomena of these new materials. It seems that new applications in a very wide range of industries are increasing rapidly. In this report three main topics of the applications are given ; [a] progress of the superconducting bulk materials and their applications to the flywheel electricity storage system and others, [b] progress in the development of superconducting tapes and their applications to power cables, the high field superconducting magnet for the SMES and for the pulling system of large silicon single crystal, and [c] development of new superconducting electronic devices (SFQ) and the possiblity of the application to next generation supercomputers. These examples show the great capability of the superconductivity technology and it is expected that the real superconductivity industry will take off around the year of 2005.
NASA Astrophysics Data System (ADS)
Rizwan, C. L. Ahmed; Vaid, Deepak
2018-05-01
We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.
Optimization of superconducting tiling pattern for superconducting bearings
Hull, John R.
1996-01-01
An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.
Superconducting wire with improved strain characteristics
Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David
1982-01-01
A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.
Superconducting wire with improved strain characteristics
Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David
1982-01-01
A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.
Superconducting wire with improved strain characteristics
Luhman, T.; Klamut, C.J.; Suenaga, M.; Welch, D.
1979-12-19
A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.
Electronic disorder and magnetic-field-induced superconductivity enhancement in Fe1+y(Te1-xSex)
NASA Astrophysics Data System (ADS)
Hu, Jin; Liu, Tijiang; Qian, Bin; Mao, Zhiqiang
2012-02-01
The iron chalcogenide Fe1+y(Te1-xSex) superconductor system exhibits a unique electronic and magnetic phase diagram distinct from those seen in iron pnictides: bulk superconductivity does not appear immediately following the suppression of long-range (π,0) AFM order. Instead, an intermediate phase with weak charge carrier localization appears between AFM order and bulk superconductivity (Liu et al., Nat. Mater. 9, 719 (2010)). In this talk, we report our recent studies on the relationship between the normal state and superconducting properties in Fe1+y(Te1-xSex). We show that the superconducting volume fraction VSC and normal state metallicity significantly increase while the normal state Sommerfeld coefficient γ and Hall coefficient RH drop drastically with increasing Se content in the underdoped superconducting region. Additionally, VSC is surprisingly enhanced by magnetic field in heavily underdoped superconducting samples. The implications of these results will be discussed. Our analyses suggest that the suppression of superconductivity in the underdoped region is associated with electronic disorder caused by incoherent magnetic scattering arising from (π,0) magnetic fluctuations.
Holcomb, Matthew J.
1999-01-01
A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.
STM/STS study of the superconducting gap in SmFeAsO1-xFx
NASA Astrophysics Data System (ADS)
Kawashima, Yuki; Ichimura, Koichi; Katono, Kazuhiro; Kurosawa, Tohru; Oda, Migaku; Tanda, Satoshi; Kamihara, Yoichi; Hosono, Hideo
2015-02-01
We report an electron tunneling study of SmFeAsO1-xFx in the low doping region (x=0, 0.045, 0.046, 0.069) by low temperature UHV-STM/STS. Superconducting gaps are observed for each superconducting sample x=0.045 (Tc=12.9 K), x=0.046 (Tc=32.9 K) and x=0.069 (Tc=46.9 K). We obtained corresponding superconducting gap size of ΔSC = 9.5 ± 0.5 meV, 9.75±0.25 meV and 11±1 meV. While Tc increases, ΔSC is kept the same. This suggests that the effective attractive interaction is the same and that there is some mechanism that suppresses the superconductivity in the low doping region. On the other hand, similar gap structures were found in a non-superconducting sample with x=0 at 7.8 K. The obtained gap size was ΔN = 8.5 ± 1.5 meV, which is almost the same as the superconducting gap in the superconducting samples (x=0.045, 0.046, 0.069).
Superconductivity in doped Dirac semimetals
NASA Astrophysics Data System (ADS)
Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi
2016-07-01
We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodie, J.R.; Burke, V.J.; Smith, K.R.
1996-07-01
Diel nest temperature profiles were recorded form natural nests of eastern mud turtles (Kinosternon subrubrum) and Florida cooters (Pseudemys floridana) to determine whether nest microhabitat selection compensates for the effect of interspecific differences in nest depth on nest temperature. Kinosternon subrubrum nest depths were significantly shallower than those of P. floridana (t = 2.93, P < 0.01). We predicted that differences in nest depth would result in K. subrubrum nests being cooler at night and warmer during daylight than the deeper P. floridana nests. Diel temperature patterns agreed with out predictions at night, but P. floridana nest temperatures were notmore » lower than K. subrubrum nest temperatures during the day. Soil composition, slope and soil moisture were similar for the nest of both species. However, the amount of sunlight reaching the soil above K. subrubrum nest sites was substantially less than the amount above P. floridana nest sites. We suggest that these species select habitats for oviposition that differ in the amount and types of vegetative cover, which in turn affect exposure to sunlight and ultimately nest temperature. 27 refs., 2 figs.« less
Koops, Kathelijne; Humle, Tatyana; Sterck, Elisabeth H M; Matsuzawa, Tetsuro
2007-04-01
The chimpanzees (Pan troglodytes verus) of the Nimba Mountains, Guinea, West Africa, commonly make both elaborate ("night") and simple ("day") nests on the ground. In this study we investigated which factors might influence ground-nesting in this population, and tested two ecological hypotheses: 1) climatic conditions, such as high wind speeds at high altitudes, may deter chimpanzees from nesting in trees; and 2) a lack of appropriate arboreal nesting opportunities may drive the chimpanzees to nest on the ground. In addition to testing these two hypotheses, we explored whether ground-nesting is a sex-linked behavior. Data were collected monthly between August 2003 and May 2004 along transects and ad libitum. To identify the sex of ground-nesting individuals, we used DNA extracted from hair samples. The results showed that the occurrence and distribution of ground nests were not affected by climatic conditions or a lack of appropriate nest trees. Support was found for the notion that ground-nesting is a sex-linked behavior, as males were responsible for building all of the elaborate ground nests and most of the simple ground nests sampled. Elaborate ground nests occurred mostly in nest groups associated with tree nests, whereas simple ground nests usually occurred without tree nests in their vicinity. These results suggest that ground-nesting may be socially, rather than ecologically, determined.
Flores-Prado, Luis; Aguilera-Olivares, Daniel; Niemeyer, Hermann M
2008-02-07
In eusocial Hymenoptera, females are more tolerant towards nest-mate than towards non-nest-mate females. In solitary Hymenoptera, females are generally aggressive towards any conspecific female. Field observations of the nest biology of Manuelia postica suggested nest-mate recognition. Experiments were performed involving two live interacting females or one live female interacting with a dead female. Live females from different nests were more intolerant to each other than females from the same nest. Females were more intolerant towards non-nest-mate than towards nest-mate dead females. When dead females were washed with pentane, no differences in tolerant and intolerant behaviours were detected between non-nest-mate and nest-mate females. Females were more intolerant towards nest-mate female carcasses coated with the cuticular extract from a non-nest-mate than towards non-nest-mate female carcasses coated with the cuticular extract from a nest-mate. The compositions of the cuticular extracts was more similar between females from the same nest than between females from different nests. The results demonstrate for the first time nest-mate recognition mediated by cuticular chemicals in a largely solitary species of Apidae. The position of Manuelia at the base of the Apidae phylogeny suggests that nest-mate recognition in eusocial species apical to Manuelia represents the retention of a primitive capacity in Apidae.
Møller, Anders Pape; Nielsen, Jan Tøttrup
2015-11-01
Many animals build extravagant nests that exceed the size required for successful reproduction. Large nests may signal the parenting ability of nest builders suggesting that nests may have a signaling function. In particular, many raptors build very large nests for their body size. We studied nest size in the goshawk Accipiter gentilis, which is a top predator throughout most of the Nearctic. Both males and females build nests, and males provision their females and offspring with food. Nest volume in the goshawk is almost three-fold larger than predicted from their body size. Nest size in the goshawk is highly variable and may reach more than 600 kg for a bird that weighs ca. 1 kg. While 8.5% of nests fell down, smaller nests fell down more often than large nests. There was a hump-shaped relationship between nest volume and female age, with a decline in nest volume late in life, as expected for senescence. Clutch size increased with nest volume. Nest volume increased during 1977-2014 in an accelerating fashion, linked to increasing spring temperature during April, when goshawks build and start reproduction. These findings are consistent with nest size being a reliable signal of parental ability, with large nest size signaling superior parenting ability and senescence, and also indicating climate warming.
Ceramic superconductor/metal composite materials employing the superconducting proximity effect
Holcomb, Matthew J.
2002-01-01
Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.
Noad, Hilary; Spanton, Eric M.; Nowack, Katja C.; ...
2016-11-28
Strontium titanate is a low-temperature, non–Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO 3 embedded in undoped SrTiO 3. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconductingmore » transition temperature T c ≳ 10% higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Some regions are too wide to originate on twin boundaries; therefore, we propose that the orientation of the tetragonal unit cell with respect to the doped plane affects T c. Finally, our results suggest that the anisotropic dielectric properties of SrTiO 3 are important for its superconductivity and need to be considered in any theory of the mechanism of the superconductivity.« less
NASA Astrophysics Data System (ADS)
Wen, Jinsheng; Xu, Guangyong; Gu, Genda; Tranquada, J. M.; Birgeneau, R. J.
2011-12-01
In this review, we present a summary of results on single crystal growth of two types of iron-chalcogenide superconductors, Fe1+yTe1-xSex (11), and AxFe2-ySe2 (A = K, Rb, Cs, Tl, Tl/K, Tl/Rb), using Bridgman, zone-melting, vapor self-transport and flux techniques. The superconducting and magnetic properties (the latter gained mainly from neutron scattering measurements) of these materials are reviewed to demonstrate the connection between magnetism and superconductivity. It will be shown that for the 11 system, while static magnetic order around the reciprocal lattice position (0.5, 0) competes with superconductivity, spin excitations centered around (0.5, 0.5) are closely coupled to the materials' superconductivity; this is made evident by the strong correlation between the spectral weight around (0.5, 0.5) and the superconducting volume fraction. The observation of a spin resonance below the superconducting temperature, Tc, and the magnetic-field dependence of the resonance emphasize the close interplay between spin excitations and superconductivity, similar to cuprate superconductors. In AxFe2-ySe2, superconductivity with Tc ~ 30 K borders an antiferromagnetic insulating phase; this is closer to the behavior observed in the cuprates but differs from that in other iron-based superconductors.
NASA Astrophysics Data System (ADS)
Harada, T.; Shiogai, J.; Miyakawa, T.; Nojima, T.; Tsukazaki, A.
2018-05-01
The framework of phase transition, such as superconducting transition, occasionally depends on the dimensionality of materials. Superconductivity is often weakened in the experimental conditions of two-dimensional thin films due to the fragile superconducting state against defects and interfacial effects. In contrast to this general trend, superconductivity in the thin limit of FeSe exhibits an opposite trend, such as an increase in critical temperature (T c) and the superconducting gap exceeding the bulk values; however, the dominant mechanism is still under debate. Here, we measured thickness-dependent electrical transport properties of the ion-gated FeSe thin films to evaluate the superconducting critical current (I c) in the ultrathin FeSe. Upon systematically decreasing the FeSe thickness by the electrochemical etching technique in the Hall bar-shaped electric double-layer transistors, we observed a dramatic enhancement of I c reaching about 10 mA and corresponding to about 107 A cm‑2 in the thinnest condition. By analyzing the transition behavior, we clarify that the suppressed superconducting fluctuation is one of the origins of the large I c in the ion-gated ultrathin FeSe films. These results indicate the existence of a robust superconducting state possibly with dense Cooper pairs at the thin limit of FeSe.
Superconductivity and spin-orbit coupling in non-centrosymmetric materials: a review
NASA Astrophysics Data System (ADS)
Smidman, M.; Salamon, M. B.; Yuan, H. Q.; Agterberg, D. F.
2017-03-01
In non-centrosymmetric superconductors, where the crystal structure lacks a centre of inversion, parity is no longer a good quantum number and an electronic antisymmetric spin-orbit coupling (ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has profound consequences on the superconducting state. For example, it generally leads to a superconducting pairing state which is a mixture of spin-singlet and spin-triplet components. The possibility of such novel pairing states, as well as the potential for observing a variety of unusual behaviors, led to intensive theoretical and experimental investigations. Here we review the experimental and theoretical results for superconducting systems lacking inversion symmetry. Firstly we give a conceptual overview of the key theoretical results. We then review the experimental properties of both strongly and weakly correlated bulk materials, as well as two dimensional systems. Here the focus is on evaluating the effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet-triplet mixing. This is followed by a more detailed overview of theoretical aspects of non-centrosymmetric superconductivity. This includes the effects of the ASOC on the pairing symmetry and the superconducting magnetic response, magneto-electric effects, superconducting finite momentum pairing states, and the potential for non-centrosymmetric superconductors to display topological superconductivity.
Newmark, W.D.; Stanley, T.R.
2011-01-01
Ecologists have long hypothesized that fragmentation of tropical landscapes reduces avian nest success. However, this hypothesis has not been rigorously assessed because of the difficulty of finding large numbers of well-hidden nests in tropical forests. Here we report that in the East Usambara Mountains in Tanzania, which are part of the Eastern Arc Mountains, a global biodiversity hotspot, that daily nest survival rate and nest success for seven of eight common understory bird species that we examined over a single breeding season were significantly lower in fragmented than in continuous forest, with the odds of nest failure for these seven species ranging from 1.9 to 196.8 times higher in fragmented than continuous forest. Cup-shaped nests were particularly vulnerable in fragments. We then examined over six breeding seasons and 14 study sites in a multivariable survival analysis the influence of landscape structure and nest location on daily nest survival for 13 common species representing 1,272 nests and four nest types (plate, cup, dome, and pouch). Across species and nest types, area, distance of nest to edge, and nest height had a dominant influence on daily nest survival, with area being positively related to nest survival and distance of nest to edge and nest height being both positively and negatively associated with daily nest survival. Our results indicate that multiple environmental factors contribute to reduce nest survival within a tropical understory bird community in a fragmented landscape and that maintaining large continuous forest is important for enhancing nest survival for Afrotropical understory birds.
Newmark, William D; Stanley, Thomas R
2011-07-12
Ecologists have long hypothesized that fragmentation of tropical landscapes reduces avian nest success. However, this hypothesis has not been rigorously assessed because of the difficulty of finding large numbers of well-hidden nests in tropical forests. Here we report that in the East Usambara Mountains in Tanzania, which are part of the Eastern Arc Mountains, a global biodiversity hotspot, that daily nest survival rate and nest success for seven of eight common understory bird species that we examined over a single breeding season were significantly lower in fragmented than in continuous forest, with the odds of nest failure for these seven species ranging from 1.9 to 196.8 times higher in fragmented than continuous forest. Cup-shaped nests were particularly vulnerable in fragments. We then examined over six breeding seasons and 14 study sites in a multivariable survival analysis the influence of landscape structure and nest location on daily nest survival for 13 common species representing 1,272 nests and four nest types (plate, cup, dome, and pouch). Across species and nest types, area, distance of nest to edge, and nest height had a dominant influence on daily nest survival, with area being positively related to nest survival and distance of nest to edge and nest height being both positively and negatively associated with daily nest survival. Our results indicate that multiple environmental factors contribute to reduce nest survival within a tropical understory bird community in a fragmented landscape and that maintaining large continuous forest is important for enhancing nest survival for Afrotropical understory birds.
Newmark, William D.; Stanley, Thomas R.
2011-01-01
Ecologists have long hypothesized that fragmentation of tropical landscapes reduces avian nest success. However, this hypothesis has not been rigorously assessed because of the difficulty of finding large numbers of well-hidden nests in tropical forests. Here we report that in the East Usambara Mountains in Tanzania, which are part of the Eastern Arc Mountains, a global biodiversity hotspot, that daily nest survival rate and nest success for seven of eight common understory bird species that we examined over a single breeding season were significantly lower in fragmented than in continuous forest, with the odds of nest failure for these seven species ranging from 1.9 to 196.8 times higher in fragmented than continuous forest. Cup-shaped nests were particularly vulnerable in fragments. We then examined over six breeding seasons and 14 study sites in a multivariable survival analysis the influence of landscape structure and nest location on daily nest survival for 13 common species representing 1,272 nests and four nest types (plate, cup, dome, and pouch). Across species and nest types, area, distance of nest to edge, and nest height had a dominant influence on daily nest survival, with area being positively related to nest survival and distance of nest to edge and nest height being both positively and negatively associated with daily nest survival. Our results indicate that multiple environmental factors contribute to reduce nest survival within a tropical understory bird community in a fragmented landscape and that maintaining large continuous forest is important for enhancing nest survival for Afrotropical understory birds. PMID:21709237
Korea's developmental program for superconductivity
NASA Technical Reports Server (NTRS)
Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul
1995-01-01
Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.
Korea's developmental program for superconductivity
NASA Astrophysics Data System (ADS)
Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul
1995-04-01
Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.
Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5.
Park, Tuson; Ronning, F; Yuan, H Q; Salamon, M B; Movshovich, R; Sarrao, J L; Thompson, J D
2006-03-02
With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases. A maximum in the superconducting transition temperature T(c) develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T < T(c), preventing proof of a magnetic quantum-critical point. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T --> 0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model developed to explain field-induced magnetism in the high-T(c) copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn5.
Nest-site preference of northern goshawks in southcentral Wyoming
John R. Squires; Leonard F. Ruggiero
1996-01-01
In 1992, we studied the nest-site preference of goshawks (Accipiter gentilis atricapillus) nesting in lodgepole pine (Pinus contorta) forests of the Medicine Bow National Forest, southcentral Wyoming. For 39 active pairs of goshawks, we described nesting habitat at 3 spatial scales: nest tree, nest-tree area (0.04 ha circle centered at nest tree), and nest stand (...
Longstaffe, Fred J.; Zazula, Grant
2018-01-01
A magnificent repository of Late Pleistocene terrestrial megafauna fossils is contained in ice-rich loess deposits of Alaska and Yukon, collectively eastern Beringia. The stable carbon (δ13C) and nitrogen (δ15N) isotope compositions of bone collagen from these fossils are routinely used to determine paleodiet and reconstruct the paleoecosystem. This approach requires consideration of changes in C- and N-isotope dynamics over time and their effects on the terrestrial vegetation isotopic baseline. To test for such changes between the Late Pleistocene and modern time, we compared δ13C and δ15N for vegetation and bone collagen and structural carbonate of some modern, Yukon, arctic ground squirrels with vegetation and bones from Late Pleistocene fossil arctic ground squirrel nests preserved in Yukon loess deposits. The isotopic discrimination between arctic ground squirrel bone collagen and their diet was measured using modern samples, as were isotopic changes during plant decomposition; Over-wintering decomposition of typical vegetation following senescence resulted in a minor change (~0–1 ‰) in δ13C of modern Yukon grasses. A major change (~2–10 ‰) in δ15N was measured for decomposing Yukon grasses thinly covered by loess. As expected, the collagen-diet C-isotope discrimination measured for modern samples confirms that modern vegetation δ13C is a suitable proxy for the Late Pleistocene vegetation in Yukon Territory, after correction for the Suess effect. The N-isotope composition of vegetation from the fossil arctic ground squirrel nests, however, is determined to be ~2.8 ‰ higher than modern grasslands in the region, after correction for decomposition effects. This result suggests a change in N dynamics in this region between the Late Pleistocene and modern time. PMID:29447202
Solid cell nests of the thyroid gland: morphological, immunohistochemical and genetic features.
Manzoni, Marco; Roversi, Gaia; Di Bella, Camillo; Pincelli, Angela I; Cimino, Vincenzo; Perotti, Mario; Garancini, Mattia; Pagni, Fabio
2016-05-01
The correct identification of solid cell nests (SCNs) is an important issue in thyroid pathology because of the spectrum of differential diagnoses of this type of lesion. Ten cases of 295 consecutive thyroidectomies showed the presence of SCNs at histological examination. The identification of the exact SCN type required the distinction of the cystic and solid pattern; SCNs were usually composed of a mixture of main cells (MCs) and C-cells (CCs). The immunohistochemical calcitonin stain identified CCs easily, both inside SCNs and dispersed in islets at the periphery. For the characterization of MCs, we added the utility of p40 to p63. The use of thyroid transcription factor-1 (TTF-1) helped in their identification, as MCs did not react with this marker; the combination of TTF-1 and p40 or p63 IHC stains was useful for the characterization of cystic SCNs of both types 3 and 4. The negativity of mouse monoclonal mesothelioma antibody (HMBE-1) and a very low proliferative index (MIB-1) supported the diagnosis. [Correction added on 23 November 2015, after online publication: MIB-1 was incorrectly defined, the expanded form was deleted.] We discourage the use of galectin-3 (Gal-3) and cytokeratin-19 (CK-19), as they have an important overlap with papillary thyroid carcinoma. The complete absence of any B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations is an additional fundamental finding. We reviewed the most relevant morphological and immunohistochemical features of SCNs and have provided a genetic analysis of the BRAF gene because of its expanding use in thyroid pathology. © 2015 John Wiley & Sons Ltd.
Tahmasebi, Farnoush; Longstaffe, Fred J; Zazula, Grant
2018-01-01
A magnificent repository of Late Pleistocene terrestrial megafauna fossils is contained in ice-rich loess deposits of Alaska and Yukon, collectively eastern Beringia. The stable carbon (δ13C) and nitrogen (δ15N) isotope compositions of bone collagen from these fossils are routinely used to determine paleodiet and reconstruct the paleoecosystem. This approach requires consideration of changes in C- and N-isotope dynamics over time and their effects on the terrestrial vegetation isotopic baseline. To test for such changes between the Late Pleistocene and modern time, we compared δ13C and δ15N for vegetation and bone collagen and structural carbonate of some modern, Yukon, arctic ground squirrels with vegetation and bones from Late Pleistocene fossil arctic ground squirrel nests preserved in Yukon loess deposits. The isotopic discrimination between arctic ground squirrel bone collagen and their diet was measured using modern samples, as were isotopic changes during plant decomposition; Over-wintering decomposition of typical vegetation following senescence resulted in a minor change (~0-1 ‰) in δ13C of modern Yukon grasses. A major change (~2-10 ‰) in δ15N was measured for decomposing Yukon grasses thinly covered by loess. As expected, the collagen-diet C-isotope discrimination measured for modern samples confirms that modern vegetation δ13C is a suitable proxy for the Late Pleistocene vegetation in Yukon Territory, after correction for the Suess effect. The N-isotope composition of vegetation from the fossil arctic ground squirrel nests, however, is determined to be ~2.8 ‰ higher than modern grasslands in the region, after correction for decomposition effects. This result suggests a change in N dynamics in this region between the Late Pleistocene and modern time.
Etude de l'halogénation de EuBa2Cu3O6
NASA Astrophysics Data System (ADS)
Tshimanga Kabeya, D.; Mokhtari, M.; Perrin, C.; Sergent, M.; Grushko, Yu.; Kokovina, L.; Rozhniakova, N.
1994-11-01
Sintered samples of EuBa2Cu3O6 have been halogenated at low temperature (t < 300 ^circC) by treatments under NF3 or CCl4 flow diluted in nitrogen, or by reaction with iodine in sealed tubes. Such mild conditions of synthesis allowed to avoid the decomposition of the material during the reactions. The incorporation of the halogen in the sample has been evidenced by the weight gain, by the evolution of the unit-cell parameters and by SEM and EDS analyses. After fluorination and chlorination, the samples become superconducting, but no superconducting behaviour is observed after iodination. These results are compared to the ones previously obtained during the halogenation of YBa2Cu3O6. Des échantillons frittés de EuBa2Cu3O6 ont été halogénés à basse température (t < 300 ^circC) par traitement sous courant de NF3 ou de CCl4 dilué dans de l'azote, ou par réaction avec de l'iode en tube scellé. De telles conditions de synthèse ont permis de limiter la décomposition du matériau au cours de la réaction. L'incorporation de l'halogène dans l'échantillon est mise en évidence par variation de masse, par l'évolution des paramètres de maille, par observations au MEB et analyses EDS. Après fluoration et chloration l'échantillon devient supraconducteur, tandis qu'aucun comportement supraconducteur n'est observé après iodation. Ces résultats sont comparés avec ceux qui avaient été obtenus préalablement lors de l'halogénation de YBa2Cu3O6.
Variation in clutch size in relation to nest size in birds
Møller, Anders P; Adriaensen, Frank; Artemyev, Alexandr; Bańbura, Jerzy; Barba, Emilio; Biard, Clotilde; Blondel, Jacques; Bouslama, Zihad; Bouvier, Jean-Charles; Camprodon, Jordi; Cecere, Francesco; Charmantier, Anne; Charter, Motti; Cichoń, Mariusz; Cusimano, Camillo; Czeszczewik, Dorota; Demeyrier, Virginie; Doligez, Blandine; Doutrelant, Claire; Dubiec, Anna; Eens, Marcel; Eeva, Tapio; Faivre, Bruno; Ferns, Peter N; Forsman, Jukka T; García-Del-Rey, Eduardo; Goldshtein, Aya; Goodenough, Anne E; Gosler, Andrew G; Góźdź, Iga; Grégoire, Arnaud; Gustafsson, Lars; Hartley, Ian R; Heeb, Philipp; Hinsley, Shelley A; Isenmann, Paul; Jacob, Staffan; Järvinen, Antero; Juškaitis, Rimvydas; Korpimäki, Erkki; Krams, Indrikis; Laaksonen, Toni; Leclercq, Bernard; Lehikoinen, Esa; Loukola, Olli; Lundberg, Arne; Mainwaring, Mark C; Mänd, Raivo; Massa, Bruno; Mazgajski, Tomasz D; Merino, Santiago; Mitrus, Cezary; Mönkkönen, Mikko; Morales-Fernaz, Judith; Morin, Xavier; Nager, Ruedi G; Nilsson, Jan-Åke; Nilsson, Sven G; Norte, Ana C; Orell, Markku; Perret, Philippe; Pimentel, Carla S; Pinxten, Rianne; Priedniece, Ilze; Quidoz, Marie-Claude; Remeš, Vladimir; Richner, Heinz; Robles, Hugo; Rytkönen, Seppo; Senar, Juan Carlos; Seppänen, Janne T; da Silva, Luís P; Slagsvold, Tore; Solonen, Tapio; Sorace, Alberto; Stenning, Martyn J; Török, János; Tryjanowski, Piotr; van Noordwijk, Arie J; von Numers, Mikael; Walankiewicz, Wiesław; Lambrechts, Marcel M
2014-01-01
Nests are structures built to support and protect eggs and/or offspring from predators, parasites, and adverse weather conditions. Nests are mainly constructed prior to egg laying, meaning that parent birds must make decisions about nest site choice and nest building behavior before the start of egg-laying. Parent birds should be selected to choose nest sites and to build optimally sized nests, yet our current understanding of clutch size-nest size relationships is limited to small-scale studies performed over short time periods. Here, we quantified the relationship between clutch size and nest size, using an exhaustive database of 116 slope estimates based on 17,472 nests of 21 species of hole and non-hole-nesting birds. There was a significant, positive relationship between clutch size and the base area of the nest box or the nest, and this relationship did not differ significantly between open nesting and hole-nesting species. The slope of the relationship showed significant intraspecific and interspecific heterogeneity among four species of secondary hole-nesting species, but also among all 116 slope estimates. The estimated relationship between clutch size and nest box base area in study sites with more than a single size of nest box was not significantly different from the relationship using studies with only a single size of nest box. The slope of the relationship between clutch size and nest base area in different species of birds was significantly negatively related to minimum base area, and less so to maximum base area in a given study. These findings are consistent with the hypothesis that bird species have a general reaction norm reflecting the relationship between nest size and clutch size. Further, they suggest that scientists may influence the clutch size decisions of hole-nesting birds through the provisioning of nest boxes of varying sizes. PMID:25478150
Variation in clutch size in relation to nest size in birds.
Møller, Anders P; Adriaensen, Frank; Artemyev, Alexandr; Bańbura, Jerzy; Barba, Emilio; Biard, Clotilde; Blondel, Jacques; Bouslama, Zihad; Bouvier, Jean-Charles; Camprodon, Jordi; Cecere, Francesco; Charmantier, Anne; Charter, Motti; Cichoń, Mariusz; Cusimano, Camillo; Czeszczewik, Dorota; Demeyrier, Virginie; Doligez, Blandine; Doutrelant, Claire; Dubiec, Anna; Eens, Marcel; Eeva, Tapio; Faivre, Bruno; Ferns, Peter N; Forsman, Jukka T; García-Del-Rey, Eduardo; Goldshtein, Aya; Goodenough, Anne E; Gosler, Andrew G; Góźdź, Iga; Grégoire, Arnaud; Gustafsson, Lars; Hartley, Ian R; Heeb, Philipp; Hinsley, Shelley A; Isenmann, Paul; Jacob, Staffan; Järvinen, Antero; Juškaitis, Rimvydas; Korpimäki, Erkki; Krams, Indrikis; Laaksonen, Toni; Leclercq, Bernard; Lehikoinen, Esa; Loukola, Olli; Lundberg, Arne; Mainwaring, Mark C; Mänd, Raivo; Massa, Bruno; Mazgajski, Tomasz D; Merino, Santiago; Mitrus, Cezary; Mönkkönen, Mikko; Morales-Fernaz, Judith; Morin, Xavier; Nager, Ruedi G; Nilsson, Jan-Åke; Nilsson, Sven G; Norte, Ana C; Orell, Markku; Perret, Philippe; Pimentel, Carla S; Pinxten, Rianne; Priedniece, Ilze; Quidoz, Marie-Claude; Remeš, Vladimir; Richner, Heinz; Robles, Hugo; Rytkönen, Seppo; Senar, Juan Carlos; Seppänen, Janne T; da Silva, Luís P; Slagsvold, Tore; Solonen, Tapio; Sorace, Alberto; Stenning, Martyn J; Török, János; Tryjanowski, Piotr; van Noordwijk, Arie J; von Numers, Mikael; Walankiewicz, Wiesław; Lambrechts, Marcel M
2014-09-01
Nests are structures built to support and protect eggs and/or offspring from predators, parasites, and adverse weather conditions. Nests are mainly constructed prior to egg laying, meaning that parent birds must make decisions about nest site choice and nest building behavior before the start of egg-laying. Parent birds should be selected to choose nest sites and to build optimally sized nests, yet our current understanding of clutch size-nest size relationships is limited to small-scale studies performed over short time periods. Here, we quantified the relationship between clutch size and nest size, using an exhaustive database of 116 slope estimates based on 17,472 nests of 21 species of hole and non-hole-nesting birds. There was a significant, positive relationship between clutch size and the base area of the nest box or the nest, and this relationship did not differ significantly between open nesting and hole-nesting species. The slope of the relationship showed significant intraspecific and interspecific heterogeneity among four species of secondary hole-nesting species, but also among all 116 slope estimates. The estimated relationship between clutch size and nest box base area in study sites with more than a single size of nest box was not significantly different from the relationship using studies with only a single size of nest box. The slope of the relationship between clutch size and nest base area in different species of birds was significantly negatively related to minimum base area, and less so to maximum base area in a given study. These findings are consistent with the hypothesis that bird species have a general reaction norm reflecting the relationship between nest size and clutch size. Further, they suggest that scientists may influence the clutch size decisions of hole-nesting birds through the provisioning of nest boxes of varying sizes.
Fogarty, Dillon T; Elmore, R Dwayne; Fuhlendorf, Samuel D; Loss, Scott R
2017-08-01
Habitat selection by animals is influenced by and mitigates the effects of predation and environmental extremes. For birds, nest site selection is crucial to offspring production because nests are exposed to extreme weather and predation pressure. Predators that forage using olfaction often dominate nest predator communities; therefore, factors that influence olfactory detection (e.g., airflow and weather variables, including turbulence and moisture) should influence nest site selection and survival. However, few studies have assessed the importance of olfactory cover for habitat selection and survival. We assessed whether ground-nesting birds select nest sites based on visual and/or olfactory cover. Additionally, we assessed the importance of visual cover and airflow and weather variables associated with olfactory cover in influencing nest survival. In managed grasslands in Oklahoma, USA, we monitored nests of Northern Bobwhite ( Colinus virginianus ), Eastern Meadowlark ( Sturnella magna ), and Grasshopper Sparrow ( Ammodramus savannarum ) during 2015 and 2016. To assess nest site selection, we compared cover variables between nests and random points. To assess factors influencing nest survival, we used visual cover and olfactory-related measurements (i.e., airflow and weather variables) to model daily nest survival. For nest site selection, nest sites had greater overhead visual cover than random points, but no other significant differences were found. Weather variables hypothesized to influence olfactory detection, specifically precipitation and relative humidity, were the best predictors of and were positively related to daily nest survival. Selection for overhead cover likely contributed to mitigation of thermal extremes and possibly reduced detectability of nests. For daily nest survival, we hypothesize that major nest predators focused on prey other than the monitored species' nests during high moisture conditions, thus increasing nest survival on these days. Our study highlights how mechanistic approaches to studying cover informs which dimensions are perceived and selected by animals and which dimensions confer fitness-related benefits.
Facial bristle feather histology and morphology in New Zealand birds: implications for function.
Cunningham, Susan J; Alley, Maurice R; Castro, Isabel
2011-01-01
Knowledge of structure in biology may help inform hypotheses about function. Little is known about the histological structure or the function of avian facial bristle feathers. Here we provide information on morphology and histology, with inferences for function, of bristles in five predominantly insectivorous birds from New Zealand. We chose species with differing ecologies, including: brown kiwi (Apteryx mantelli), morepork (Ninox novaezealandae), hihi (Notiomystis cincta), New Zealand robin (Petroica australis), and New Zealand fantail (Rhipidura fuliginosa). Average bristle length corrected for body size was similar across species. Bristles occurred in distinct groups on different parts of the head and upper rictal bristles were generally longest. The lower rictal bristles of the fantail were the longest possessed by that species and were long compared to bristles of other species. Kiwi were the only species with forehead bristles, similar in length to the upper rictal bristles of other species, and the lower rictal bristles of fantails. Herbst corpuscles (vibration and pressure sensitive mechanoreceptors) were found in association with bristle follicles in all species. Nocturnal and hole-nesting birds had more heavily encapsulated corpuscles than diurnal open-nesting species. Our results suggest that avian facial bristles generally have a tactile function in both nocturnal and diurnal species, perhaps playing a role in prey handling, gathering information during flight, navigating in nest cavities and on the ground at night and possibly in prey-detection. These differing roles may help explain the observed differences in capsule thickness of the corpuscles. Copyright © 2010 Wiley-Liss, Inc.
Fournier, Denis; Tindo, Maurice; Kenne, Martin; Mbenoun Masse, Paul Serge; Van Bossche, Vanessa; De Coninck, Eliane; Aron, Serge
2012-01-01
Biological invasions are recognized as a major cause of biodiversity decline and have considerable impact on the economy and human health. The African big-headed ant Pheidole megacephala is considered one of the world's most harmful invasive species. To better understand its ecological and demographic features, we combined behavioural (aggression tests), chemical (quantitative and qualitative analyses of cuticular lipids) and genetic (mitochondrial divergence and polymorphism of DNA microsatellite markers) data obtained for eight populations in Cameroon. Molecular data revealed two cryptic species of P. megacephala, one inhabiting urban areas and the other rainforests. Urban populations belong to the same phylogenetic group than those introduced in Australia and in other parts of the world. Behavioural analyses show that the eight populations sampled make up four mutually aggressive supercolonies. The maximum distance between nests from the same supercolony was 49 km and the closest distance between two nests belonging to two different supercolonies was 46 m. The genetic data and chemical analyses confirmed the behavioural tests as all of the nests were correctly assigned to their supercolony. Genetic diversity appears significantly greater in Africa than in introduced populations in Australia; by contrast, urban and Australian populations are characterized by a higher chemical diversity than rainforest ones. Overall, our study shows that populations of P. megacephala in Cameroon adopt a unicolonial social structure, like invasive populations in Australia. However, the size of the supercolonies appears several orders of magnitude smaller in Africa. This implies competition between African supercolonies and explains why they persist over evolutionary time scales.
Feldman, Debbie E; Vinet, Évelyne; Bérard, Anick; Duffy, Ciarán; Hazel, Beth; Meshefedjian, Garbis; Sylvestre, Marie-Pierre; Bernatsky, Sasha
2017-02-01
To determine whether women with a history of juvenile arthritis are at higher risk for heart disease and hypertension and for developing adverse maternal outcomes: gestational diabetes mellitus, maternal hypertension, and preeclampsia/eclampsia. We designed a nested case-control study from a cohort of first-time mothers with prior physician billing codes suggesting juvenile arthritis, and a matched comparison group without juvenile arthritis. For the nested case-control design, we selected 3 controls for each case for the outcomes of heart disease (n = 403), prepregnancy hypertension (n = 66), gestational diabetes mellitus (n = 285), maternal hypertension (n = 561), and preeclampsia/eclampsia (n = 236). We used conditional logistic regression, adjusting for maternal age and education. Having juvenile arthritis was associated with heart disease (odds ratio [OR] 2.44 [95% confidence interval (95% CI) 1.15-5.15]) but not with gestational hypertension, diabetes mellitus, or preeclampsia/eclampsia. All 66 cases of prepregnancy hypertension had juvenile arthritis. Having prepregnancy hypertension was strongly associated with preeclampsia/eclampsia (OR 8.05 [95% CI 2.69-24.07]). Women with a history of juvenile arthritis had a higher risk of heart disease. This risk signals the potential importance of cardiac prevention strategies in juvenile arthritis. As this was a retrospective study, it was not possible to correct for some relevant potential confounders. Further studies should assess the impact of medications, disease severity, and other factors (e.g., obesity) on cardiac outcomes in juvenile arthritis. © 2016, American College of Rheumatology.
Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket
NASA Astrophysics Data System (ADS)
Béjanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Earnest, C. T.; McRae, C. R. H.; Shiri, D.; Bateman, J. D.; Rohanizadegan, Y.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.; Mariantoni, M.
2016-10-01
Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error-correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and the measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: the quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum socket is based on spring-mounted microwires—the three-dimensional wires—that push directly on a microfabricated chip, making electrical contact. A small wire cross section (approximately 1 mm), nearly nonmagnetic components, and functionality at low temperatures make the quantum socket ideal for operating solid-state qubits. The wires have a coaxial geometry and operate over a frequency range from dc to 8 GHz, with a contact resistance of approximately 150 m Ω , an impedance mismatch of approximately 10 Ω , and minimal cross talk. As a proof of principle, we fabricate and use a quantum socket to measure high-quality superconducting resonators at a temperature of approximately 10 mK. Quantum error-correction codes such as the surface code will largely benefit from the quantum socket, which will make it possible to address qubits located on a two-dimensional lattice. The present implementation of the socket could be readily extended to accommodate a quantum processor with a (10 ×10 )-qubit lattice, which would allow for the realization of a simple quantum memory.
Testing common assumptions in studies of songbird nest success
Streby, Henry M.; Andersen, David
2013-01-01
We studied Ovenbird Seiurus aurocapilla and Golden-winged Warbler Vermivora chrysopterapopulations in northern Minnesota, USA, to test two common assumptions in studies of songbird nest success: (1) that the condition of an empty nest on or near its expected fledge date is an indicator of nest fate; and (2) that the presence of a fledgling or family group within a territory confirms a successful nest in that territory. We monitored the condition of nests and used radiotelemetry to monitor juveniles through the expected fledging date and early post-fledging period. Of nests that contained nestlings 1–2 days before the expected fledge date, fates were misidentified using nest condition alone for 9.5% of Ovenbird nests, but those misidentifications were made in both directions (succeeded or failed), yielding only a small bias in estimated nest success. However, 20% of Golden-winged Warbler nests were misidentified as successful using nest condition during the final visit interval, biasing the nest success estimate upward by 21–28% depending on the treatment of uncertain nest fates. Fledgling Ovenbirds from 58% of nests travelled beyond their natal territory within 24 h, rising to 98% after 5 days, and those fledglings travelled up to 390 m from nests within 10 days of fledging. Fledgling Golden-winged Warblers from 13% of nests travelled beyond their natal territory within 24 h, rising to 85% after 5 days, and those fledglings travelled up to 510 m from nests within 10 days of fledging. We conclude that nest condition and fledgling presence can be misleading indicators of nest fate, probably commonly biasing nest success estimates upward, and we recommend that these assumptions should be tested in additional species.
Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics
Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R
2014-01-01
Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds’ Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures. PMID:24683466
Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics.
Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R
2014-03-01
Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds' Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures.
Site selection and nest survival of the Bar-Headed Goose (Anser indicus) on the Mongolian Plateau
Batbayar, Nyambayar; Takekawa, John Y.; Natsagdorj, Tseveenmyadag; Spragens, Kyle A.; Xiao, Xiamgming
2014-01-01
Waterbirds breeding on the Mongolian Plateau in Central Asia must find suitable wetland areas for nesting in a semiarid region characterized by highly variable water conditions. The first systematic nesting study of a waterbird dependent on this region for breeding was conducted on the Bar-headed Goose (Anser indicus). The purpose of this study was to document Bar-headed Goose nesting locations, characterize nests and nesting strategies, and estimate daily nest survival (n = 235 nests) from eight areas of west-central Mongolia across three summers (2009–2011) using a modified Mayfield estimator. Bar-headed Goose daily nest survival ranged from 0.94 to 0.98, with a 3-year average nest success of 42.6% during incubation. Bar-headed Geese were found to primarily nest on isolated pond and lake islands as previously reported, but were also documented regularly, though less frequently, along rocky cliffs in several regions of west-central Mongolia. Daily nest survival was higher for cliff nests than for island nests. Information-theoretic models indicated that nest survival decreased with nest age and varied annually with changing environmental conditions. Results of this study suggest that while Bar-headed Geese primarily rely on nesting island sites these sites may be more susceptible to anthropogenic disturbance and predation events influenced by seasonal variation in environmental conditions, and that higher daily nest survival values documented for the less frequent cliff nest strategy may provide an important alternative strategy during poor island nest success years. Thus, conservation efforts for this and other waterbird species in the semiarid region should be focused on conserving nesting islands and protecting them from disturbance in areas of high livestock densities experiencing a rapidly warming climate.
Identifying predators and fates of grassland passerine nests using miniature video cameras
Pietz, Pamela J.; Granfors, Diane A.
2000-01-01
Nest fates, causes of nest failure, and identities of nest predators are difficult to determine for grassland passerines. We developed a miniature video-camera system for use in grasslands and deployed it at 69 nests of 10 passerine species in North Dakota during 1996-97. Abandonment rates were higher at nests 1 day or night (22-116 hr) at 6 nests, 5 of which were depredated by ground squirrels or mice. For nests without cameras, estimated predation rates were lower for ground nests than aboveground nests (P = 0.055), but did not differ between open and covered nests (P = 0.74). Open and covered nests differed, however, when predation risk (estimated by initial-predation rate) was examined separately for day and night using camera-monitored nests; the frequency of initial predations that occurred during the day was higher for open nests than covered nests (P = 0.015). Thus, vulnerability of some nest types may depend on the relative importance of nocturnal and diurnal predators. Predation risk increased with nestling age from 0 to 8 days (P = 0.07). Up to 15% of fates assigned to camera-monitored nests were wrong when based solely on evidence that would have been available from periodic nest visits. There was no evidence of disturbance at nearly half the depredated nests, including all 5 depredated by large mammals. Overlap in types of sign left by different predator species, and variability of sign within species, suggests that evidence at nests is unreliable for identifying predators of grassland passerines.
Superconducting Metallic Glass Transition-Edge-Sensors
NASA Technical Reports Server (NTRS)
Hays, Charles C. (Inventor)
2013-01-01
A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.
Optimization of superconducting tiling pattern for superconducting bearings
Hull, J.R.
1996-09-17
An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.
Norem, James H.; Pellin, Michael J.
2013-06-11
Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.
Sr 2IrO 4: Gateway to cuprate superconductivity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, J. F.
High temperature superconductivity in cuprates remains a defining challenge in condensed matter physics. Recently, a new set of related compounds based on Ir rather than Cu has been discovered that may be on the verge of superconductivity themselves or be able to shed new light on the underlying interactions responsible for superconductivity in the cuprates.
Superconducting Properties of Lead-Bismuth Films Controlled by Ferromagnetic Nanowire Arrays
NASA Astrophysics Data System (ADS)
Ye, Zuxin; Lyuksyutov, Igor F.; Wu, Wenhao; Naugle, Donald G.
2011-03-01
Superconducting properties of lead-bismuth (82% Pb and 18% Bi) alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb 82 Bi 18 films are then quench-condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb 82 Bi 18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and the material variety was observed.
Superconducting properties of Pb82Bi18 films controlled by ferromagnetic nanowire arrays
NASA Astrophysics Data System (ADS)
Ye, Zuxin; Lyuksyutov, Igor F.; Wu, Wenhao; Naugle, Donald G.
2011-02-01
The superconducting properties of Pb82Bi18 alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb82Bi18 films are then quench condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb82Bi18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and material variety was observed.
Damping and support in high-temperature superconducting levitation systems
Hull, John R [Sammamish, WA; McIver, Carl R [Everett, WA; Mittleider, John A [Kent, WA
2009-12-15
Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.
Gao, Wei; Vander Sande, John B.
1998-01-01
A method is provided for fabrication of superconducting oxides and superconducting oxide composites and for joining superconductors to other materials. A coating of a molten alloy containing the metallic elements of the oxide is applied to a substrate surface and oxidized to form the superconducting oxide. A material can be contacted to the molten alloy which is subsequently oxidized joining the material to the resulting superconducting oxide coating. Substrates of varied composition and shape can be coated or joined by this method.
Gao, W.; Vander Sande, J.B.
1998-07-28
A method is provided for fabrication of superconducting oxides and superconducting oxide composites and for joining superconductors to other materials. A coating of a molten alloy containing the metallic elements of the oxide is applied to a substrate surface and oxidized to form the superconducting oxide. A material can be contacted to the molten alloy which is subsequently oxidized joining the material to the resulting superconducting oxide coating. Substrates of varied composition and shape can be coated or joined by this method. 5 figs.
A high-temperature superconducting transformer with localized magnetic field
NASA Astrophysics Data System (ADS)
Volkov, E. P.; Dzhafarov, E. A.
2013-12-01
This paper describes a high-temperature superconducting transformer with a bar-type magnetic core and concentric windings with alternating layers, with single-channel and multi-channel arrangements. There is given the design concept of high-temperature superconducting windings of the transformer, made in the form of newly developed first-generation high-temperature superconducting ribbon wires, with localized magnetic field intended for producing maximum transport currents in the windings, as well as for reducing the consumption of a high-temperature superconducting material, cooling agent, and energy losses in these windings.
High Tc superconducting bolometric and nonbolometric infrared (IR) detectors
NASA Technical Reports Server (NTRS)
Lakeou, Samuel
1994-01-01
The original workplan for the first year of the project includes the following: establishment of a pilot superconductivity application laboratory at UDC to support the research component of the project; research on the source of electrical noise in High Tc superconducting films in order to optimize the film microstructure and lower the NEP; and lay the foundation of an academic support for exposing UDC students to the theory and application of High Tc superconductivity. Attached to this status report are abstracts and the course description for Introduction to Applications of Superconductivity.
Superconducting fault current limiter for railway transport
NASA Astrophysics Data System (ADS)
Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.
2015-12-01
A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.
Superconductive imaging surface magnetometer
Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.
1991-01-01
An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.
Superconductivity-related insulating behavior.
Sambandamurthy, G; Engel, L W; Johansson, A; Shahar, D
2004-03-12
We present the results of an experimental study of superconducting, disordered, thin films of amorphous indium oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (B). We find that the high-B insulator exhibits activated transport with a characteristic temperature, TI. TI has a maximum value (TpI) that is close to the superconducting transition temperature (Tc) at B=0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. Tp(I) and Tc display opposite dependences on the disorder strength.
Pressure-induced reinforcement of interfacial superconductivity in a Bi2Te3/Fe1+yTe heterostructure
NASA Astrophysics Data System (ADS)
Shen, Junying; Heuckeroth, Claire; Deng, Yuhang; He, Qinglin; Liu, Hong Chao; Liang, Jing; Wang, Jiannong; Sou, Iam Keong; Schilling, James S.; Lortz, Rolf
2017-12-01
We investigate the hydrostatic pressure dependence of interfacial superconductivity occurring at the atomically sharp interface between two non-superconducting materials: the topological insulator (TI) Bi2Te3 and the parent compound Fe1+yTe of the chalcogenide iron-based superconductors. Under pressure, a significant increase in the superconducting transition temperature Tc is observed. We interpret our data in the context of a pressure-induced enhanced coupling of the Fe1+yTe interfacial layer with the Bi2Te3 surface state, which modifies the electronic properties of the interface layer in a way that superconductivity emerges and becomes further enhanced under pressure. This demonstrates the important role of the TI in the interfacial superconducting mechanism.
Multiband superconductivity and nanoscale inhomogeneity at oxide interfaces
NASA Astrophysics Data System (ADS)
Caprara, S.; Biscaras, J.; Bergeal, N.; Bucheli, D.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Lesueur, J.; Grilli, M.
2013-07-01
The two-dimensional electron gas at the LaTiO3/SrTiO3 or LaAlO3/SrTiO3 oxide interfaces becomes superconducting when the carrier density is tuned by gating. The measured resistance and superfluid density reveal an inhomogeneous superconductivity resulting from percolation of filamentary structures of superconducting “puddles” with randomly distributed critical temperatures, embedded in a nonsuperconducting matrix. Following the evidence that superconductivity is related to the appearance of high-mobility carriers, we model intrapuddle superconductivity by a multiband system within a weak coupling BCS scheme. The microscopic parameters, extracted by fitting the transport data with a percolative model, yield a consistent description of the dependence of the average intrapuddle critical temperature and superfluid density on the carrier density.
Superconducting FeSe0.1Te0.9 thin films integrated on Si-based substrates
NASA Astrophysics Data System (ADS)
Huang, Jijie; Chen, Li; Li, Leigang; Qi, Zhimin; Sun, Xing; Zhang, Xinghang; Wang, Haiyan
2018-05-01
With the goal of integrating superconducting iron chalcogenides with Si-based electronics, superconducting FeSe0.1Te0.9 thin films were directly deposited on Si and SiOx/Si substrates without any buffer layer by a pulsed laser deposition (PLD) method. Microstructural characterization showed excellent film quality with mostly c-axis growth on both types of substrates. Superconducting properties (such as superconducting transition temperature T c and upper critical field H c2) were measured to be comparable to that of the films on single crystal oxide substrates. The work demonstrates the feasibility of integrating superconducting iron chalcogenide (FeSe0.1Te0.9) thin films with Si-based microelectronics.
Sorting it out: bedding particle size and nesting material processing method affect nest complexity.
Robinson-Junker, Amy; Morin, Amelia; Pritchett-Corning, Kathleen; Gaskill, Brianna N
2017-04-01
As part of routine husbandry, an increasing number of laboratory mice receive nesting material in addition to standard bedding material in their cages. Nesting material improves health outcomes and physiological performance in mice that receive it. Providing usable nesting material uniformly and efficiently to various strains of mice remains a challenge. The aim of this study was to determine how bedding particle size, method of nesting material delivery, and processing of the nesting material before delivery affected nest building in mice of strong (BALB/cAnNCrl) and weak (C3H/HeNCrl) gathering abilities. Our data suggest that processing nesting material through a grinder in conjunction with bedding material, although convenient for provision of bedding with nesting material 'built-in', negatively affects the integrity of the nesting material and subsequent nest-building outcomes. We also found that C3H mice, previously thought to be poor nest builders, built similarly scored nests to those of BALB/c mice when provided with unprocessed nesting material. This was true even when nesting material was mixed into the bedding substrate. We also observed that when nesting material was mixed into the bedding substrate, mice of both strains would sort their bedding by particle size more often than if it were not mixed in. Our findings support the utility of the practice of distributing nesting material mixed in with bedding substrate, but not that of processing the nesting material with the bedding in order to mix them.
Variation in nesting behavior of eight species of spider mites, Stigmaeopsis having sociality
NASA Astrophysics Data System (ADS)
Saito, Yutaka; Zhang, Yan-Xuan; Mori, Kotaro; Ito, Katsura; Sato, Yukie; Chittenden, Anthony R.; Lin, Jian-Zhen; Chae, Younghae; Sakagami, Takane; Sahara, Ken
2016-10-01
Nesting behavior is considered to be an important element of social living in animals. The spider mites belonging to the genus Stigmaeopsis spend their lives within nests produced from silk threads. Several of these species show cooperative sociality, while the others are subsocial. In order to identify the origins of this social behavior, comparisons of nest sizes, nesting behaviors (making nests continuously or separately), and their associated traits (fecal deposition patterns) were made for eight cogeneric Stigmaeopsis species showing various levels of social development. All of these species inhabit bamboo plants (Poaceae). We initially addressed the proximate factor of nest size variation. The variation in nest size of the eight species corresponded well with the variation in dorsal seta sc1 length, suggesting that nest size variation among species may have a genetic basis. The time spent within a nest (nest duration) increased with nest size on the respective host plants. Nest arrangement patterns varied among species showing different sized nests: Large nest builders continuously extended their nests, while middle and small nest-building species built new separate nests, which resulted in different social interaction times among species, and is thought to be closely related to social development. Fecal deposition behaviors also varied among Stigmaeopsis species, suggesting diversity in anti-predatory adaptations. Finally, we discuss how the variation in sociality observed within this genus is likely the result of nest size variation that initially evolved as anti-predator strategies.
Variation in nesting behavior of eight species of spider mites, Stigmaeopsis having sociality.
Saito, Yutaka; Zhang, Yan-Xuan; Mori, Kotaro; Ito, Katsura; Sato, Yukie; Chittenden, Anthony R; Lin, Jian-Zhen; Chae, Younghae; Sakagami, Takane; Sahara, Ken
2016-10-01
Nesting behavior is considered to be an important element of social living in animals. The spider mites belonging to the genus Stigmaeopsis spend their lives within nests produced from silk threads. Several of these species show cooperative sociality, while the others are subsocial. In order to identify the origins of this social behavior, comparisons of nest sizes, nesting behaviors (making nests continuously or separately), and their associated traits (fecal deposition patterns) were made for eight cogeneric Stigmaeopsis species showing various levels of social development. All of these species inhabit bamboo plants (Poaceae). We initially addressed the proximate factor of nest size variation. The variation in nest size of the eight species corresponded well with the variation in dorsal seta sc1 length, suggesting that nest size variation among species may have a genetic basis. The time spent within a nest (nest duration) increased with nest size on the respective host plants. Nest arrangement patterns varied among species showing different sized nests: Large nest builders continuously extended their nests, while middle and small nest-building species built new separate nests, which resulted in different social interaction times among species, and is thought to be closely related to social development. Fecal deposition behaviors also varied among Stigmaeopsis species, suggesting diversity in anti-predatory adaptations. Finally, we discuss how the variation in sociality observed within this genus is likely the result of nest size variation that initially evolved as anti-predator strategies.
Effects of nest density, location, and timing on breeding success of Caspian Terns
Antolos, Michelle; Roby, D.D.; Lyons, Donald E.; Anderson, Scott K.; Collis, K.
2006-01-01
One of the proposed benefits of colonial nesting in birds is the protection afforded against avian predators. This advantage may be counter-balanced by the negative effects of intraspecific aggression on breeding success. Effects of nest density, nest location within the colony, and timing of nest initiation on productivity of Caspian Terns (Sterna caspia) were investigated on Crescent Island in the mid-Columbia River, Washington, USA. In the absence of intense nest predation at the Crescent Island tern colony, it was hypothesized that nest density would be negatively associated with productivity. A rangefinder was used to determine spatial distribution of Caspian Tern nests, and these data used to calculate nest characteristics (nest density, nearest neighbor distance, and distance to colony edge) for a randomly-selected subset of nests monitored for nest chronology and productivity. Productivity did not differ between nests in high- and low-density areas of the colony, and was positively associated with earlier nest initiation. Early nests were more productive, were located in areas of higher nest density, and were further from the colony edge than late nests. The strong effect of timing may have been attributable to seasonal declines in prey resources for terns at this site. Our results suggest that Caspian Terns nesting at the highest densities observed in this study did not incur immediate reproductive costs, despite increased potential for encounters between chicks and aggressive conspecific adults.
Individual variation in prelaying behaviour and the incidence of floor eggs.
Cooper, J J; Appleby, M C
1996-05-01
1. Floor eggs are a problem in non-cage systems for laying hens, as they require secondary egg collecting. Failure to lay in a well-defined nest site may also be a welfare problem for the hens, but only if their nesting motivation has been thwarted. We investigated the relationships between a hen's prelaying behaviour and its tendency to lay on the floor by recording the behaviour of 20 hens housed individually in wire cages with single littered nest boxes. 3. Most floor eggs (80%) were laid by the same 6 hens. These 6 "floor-layers" performed more nest seeking behaviour, less nest-building behaviour and less sitting prior to oviposition than the 14 hens that consistently laid in nest boxes. 4. The incidence of floor eggs declined with age. Both nest and floor laying hens performed less nest seeking behaviour with age. Floor layers, however, increased their performance of nesting behaviour, whilst nest layers performed less nesting behaviour with age. 5. Floor laying hens behaved as if they found the nest box less attractive than nest-laying hens; perhaps because they had lower nesting motivation, or perhaps because their nesting motivation was as high, but they less readily perceived the nest box as an appropriate nest site.
Conservation significance of alternative nests of golden eagles
Brian A. Millsap; Teryl G. Grubb; Robert K. Murphy; Ted Swem; James W. Watson
2015-01-01
Golden eagles (Aquila chrysaetos) are long-lived raptors that maintain nesting territories that may be occupied for a century or longer. Within occupied nesting territories there is one nest in which eagles lay their eggs in a given year (i.e., the used nest), but there are usually other nests (i.e., alternative nests). Conservation plans often protect used nests, but...
Joseph L. Ganey; William M. Block; Jamie S. Sanderlin; Jose M. Iniguez
2015-01-01
Conservation of avian species requires understanding their nesting habitat requirements. We compared 3 aspects of habitat at nest sites (topographic characteristics of nest sites, nest placement within nest sites, and canopy stratification within nest sites) of 2 related species of ground-nesting warblers (Red-faced Warblers, Cardellina rubrifrons, n = 17...
Predators of Greater Sage-Grouse nests identified by video monitoring
Coates, P.S.; Connelly, J.W.; Delehanty, D.J.
2008-01-01
Nest predation is the primary cause of nest failure for Greater Sage-Grouse (Centrocercus urophasianus), but the identity of their nest predators is often uncertain. Confirming the identity of these predators may be useful in enhancing management strategies designed to increase nest success. From 2002 to 2005, we monitored 87 Greater Sage-Grouse nests (camera, N = 55; no camera, N = 32) in northeastern Nevada and south-central Idaho and identified predators at 17 nests, with Common Ravens (Corvus corax) preying on eggs at 10 nests and American badgers (Taxidea taxis) at seven. Rodents were frequently observed at grouse nests, but did not prey on grouse eggs. Because sign left by ravens and badgers was often indistinguishable following nest predation, identifying nest predators based on egg removal, the presence of egg shells, or other sign was not possible. Most predation occurred when females were on nests. Active nest defense by grouse was rare and always unsuccessful. Continuous video monitoring of Sage-Grouse nests permitted unambiguous identification of nest predators. Additional monitoring studies could help improve our understanding of the causes of Sage-Grouse nest failure in the face of land-use changes in the Intermountain West. ?? 2008 Association of Field Ornithologists.
Covariate Measurement Error Correction Methods in Mediation Analysis with Failure Time Data
Zhao, Shanshan
2014-01-01
Summary Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This paper focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error and error associated with temporal variation. The underlying model with the ‘true’ mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling design. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. PMID:25139469
Covariate measurement error correction methods in mediation analysis with failure time data.
Zhao, Shanshan; Prentice, Ross L
2014-12-01
Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This article focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error, and error associated with temporal variation. The underlying model with the "true" mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling designs. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. © 2014, The International Biometric Society.
Matias, Denise Margaret S; Borgemeister, Christian; von Wehrden, Henrik
2018-02-24
One of the traditional livelihood practices of indigenous Tagbanuas in Palawan, Philippines is wild honey hunting and gathering from the giant honey bee (Apis dorsata F.). In order to analyze the linkages of the social and ecological systems involved in this indigenous practice, we conducted spatial, quantitative, and qualitative analyses on field data gathered through mapping of global positioning system coordinates, community surveys, and key informant interviews. We found that only 24% of the 251 local community members surveyed could correctly identify the giant honey bee. Inferential statistics showed that a lower level of formal education strongly correlates with correct identification of the giant honey bee. Spatial analysis revealed that mean NDVI of sampled nesting tree areas has dropped from 0.61 in the year 1988 to 0.41 in 2015. However, those who correctly identified the giant honey bee lived in areas with high vegetation cover. Decreasing vegetation cover limits the presence of wild honey bees and this may also be limiting direct experience of the community with wild honey bees. However, with causality yet to be established, we recommend conducting further studies to concretely model feedbacks between ecological changes and local knowledge.
Frequency of nest use by golden eagles in southwestern Idaho
Kochert, Michael N.; Steenhof, Karen
2012-01-01
We studied nest use by Golden Eagles (Aquila chrysaetos) from 1966 to 2011 to assess nest reuse within territories, ascertain the length of time that elapses between uses of nests, and test the hypotheses that reproductive success and adult turnover influence nest switching. Golden Eagles used 454 nests in 66 territories and used individual nests 1 to 26 times during 45 continuous years of observation. Time between reuse ranged from 1 to 39 yr. Distances between nearest adjacent alternative nests within territories ranged between 5 times. Two nests were unused for 21 and 27 yr after 1971 before being used every 1 to 3 yr thereafter. Eagles used 43% of the nests in series of consecutive years (range 3 to 20 consecutive nestings). Protecting unused nests for a proposed 10 yr after the last known use would not have protected 34% of all 300 nests that were reused during the study and 49% of 37 reused nests monitored consistently for 41 yr. The 102 nests that would not have received protection were in 56 of the 66 territories.
Factors influencing depredation of artificial duck nests
Esler, Daniel N.; Grand, James B.
1993-01-01
Because artificial nests can facilitate controlled experiments of nest success, we used them to assess whether human visitation, nest density, vegetation structure, and proximity to habitat edge could affect depredation of duck nests on Yukon Flats National Wildlife Refuge, Alaska. More (P < 0.01) nests in a plot visited daily (100%) were depredated than those in plots visited at intervals of 7 (40%), 14 (35%), or 28 days (45%). More (P < 0.01) nests were depredated in a plot with 10 nests/ha (95%) than nests in a plot of a lower density (2/ha; 40%). Vegetation height, vegetation density, distance to a wetland, distance to forest edge, or distance to the nearest ecotone did not differ (P > 0.05) between depredated and undisturbed nests. We suggest that daily visitation of duck nests increases depredation, but longer intervals, typical of most nest studies, do not. High nesting densities, which could occur when flooding limits nesting habitat, may result in higher depredation rates.
Waterbird nest-site selection is influenced by neighboring nests and island topography
Hartman, Christopher; Ackerman, Joshua T.; Takekawa, John Y.; Herzog, Mark
2016-01-01
Avian nest-site selection is influenced by factors operating across multiple spatial scales. Identifying preferred physical characteristics (e.g., topography, vegetation structure) can inform managers to improve nesting habitat suitability. However, social factors (e.g., attraction, territoriality, competition) can complicate understanding physical characteristics preferred by nesting birds. We simultaneously evaluated the physical characteristics and social factors influencing selection of island nest sites by colonial-nesting American avocets (Recurvirostra americana) and Forster's terns (Sterna forsteri) at 2 spatial scales in San Francisco Bay, 2011–2012. At the larger island plot (1 m2) scale, we used real-time kinematics to produce detailed topographies of nesting islands and map the distribution of nests. Nesting probability was greatest in island plots between 0.5 m and 1.5 m above the water surface, at distances <10 m from the water's edge, and of moderately steep (avocets) or flat (terns) slopes. Further, avocet and tern nesting probability increased as the number of nests initiated in adjacent plots increased up to a peak of 11–12 tern nests, and then decreased thereafter. Yet, avocets were less likely to nest in plots adjacent to plots with nesting avocets, suggesting an influence of intra-specific territoriality. At the smaller microhabitat scale, or the area immediately surrounding the nest, we compared topography, vegetation, and distance to nearest nest between nest sites and paired random sites. Topography had little influence on selection of the nest microhabitat. Instead, nest sites were more likely to have vegetation present, and greater cover, than random sites. Finally, avocet, and to a lesser extent tern, nest sites were closer to other active conspecific or heterospecific nests than random sites, indicating that social attraction played a role in selection of nest microhabitat. Our results demonstrate key differences in nest-site selection between co-occurring avocets and terns, and indicate the effects of physical characteristics and social factors on selection of nesting habitat are dependent on the spatial scale examined. Moreover, these results indicate that islands with abundant area between 0.5 m and 1.5 m above the water surface, within 10 m of the water's edge, and containing a mosaic of slopes ranging from flat to moderately steep would provide preferred nesting habitat for avocets and terns. © 2016 The Wildlife Society.
Do Predation Rates on Artificial Nests Accurately Reflect Predation Rates on Natural Bird Nests?
David I. King; Richard M. DeGraaf; Curtice R. Griffin; Thomas J. Maier
1999-01-01
Artificial nests are widely used in avian field studies. However, it is unclear how well predation rates on artificial nests reflect predation rates on natural nests. Therefore, we compared survival rates of artificial nests (unused natural nests baited with House Sparrow eggs) with survival rates of active bird nests in the same habitat at the same sites. Survival...
"Fluctuoscopy" of Superconductors
NASA Astrophysics Data System (ADS)
Varlamov, A. A.
Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg-Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the " fluctuoscopy" of superconductive systems. In review, we present the qualitative picture both of thermodynamic fluctuations close to critical temperature T c0and quantum fluctuations at zero temperature and in vicinity of the second critical field H c2(0). Then in the frameworks of the Ginzburg-Landau theory, we discuss the characteristic crossovers in fluctuation properties of superconductive nanoparticles and layered superconductors. We present the general expression for fluctuation magneto-conductivity valid through all phase diagram of superconductor and apply it to study of the quantum phase transition close to H c2(0). Fluctuation analysis of this transition allows us to present the scenario of fluctuation defragmentation of the Abrikosov lattice.