Sample records for net cl secretion

  1. Enteropathogenic E. coli attenuates secretagogue-induced net intestinal ion transport but not Cl- secretion.

    PubMed

    Hecht, G; Koutsouris, A

    1999-03-01

    Enteric bacterial pathogens often increase intestinal Cl- secretion. Enteropathogenic Escherichia coli (EPEC) does not stimulate active ion secretion. In fact, EPEC infection decreases net ion transport in response to classic secretagogues. This has been presumed to reflect diminished Cl- secretion. The aim of this study was to investigate the influence of EPEC infection on specific intestinal epithelial ion transport processes. T84 cell monolayers infected with EPEC were used for these studies. EPEC infection significantly decreased short-circuit current (Isc) in response to carbachol and forskolin, yet 125I efflux studies revealed no difference in Cl- channel activity. There was also no alteration in basolateral K+ channel or Na+-K+-2Cl- cotransport activity. Furthermore, net 36Cl- flux was not decreased by EPEC. No alterations in either K+ or Na+ transport could be demonstrated. Instead, removal of basolateral bicarbonate from uninfected monolayers yielded an Isc response approximating that observed with EPEC infection, whereas bicarbonate removal from EPEC-infected monolayers further diminished Isc. These studies suggest that the reduction in stimulated Isc is not secondary to diminished Cl- secretion. Alternatively, bicarbonate-dependent transport processes appear to be perturbed.

  2. Lubiprostone stimulates duodenal bicarbonate secretion in rats.

    PubMed

    Mizumori, Misa; Akiba, Yasutada; Kaunitz, Jonathan D

    2009-10-01

    Lubiprostone, a bicyclic fatty acid, is used for the treatment of chronic constipation. No published study has addressed the effect of lubiprostone on intestinal ion secretion in vivo. The aim of this study was to test the hypothesis that lubiprostone augments duodenal HCO(3) (-) secretion (DBS). Rat proximal duodenal loops were perfused with pH 7.0 Krebs, control vehicle (medium-chain triglycerides), or lubiprostone (0.1-10 microM). We measured DBS with flow-through pH and CO(2) electrodes, perfusate [Cl(-)] with a Cl(-) electrode, and water flux using a non-absorbable ferrocyanide marker. Some rats were pretreated with a potent, selective CFTR antagonist, CFTR(inh)-172 (1 mg/kg, ip), 1 h before experiments. Perfusion of lubiprostone concentration dependently increased DBS, whereas net Cl(-) output and net water output were only increased at 0.1 microM, compared with vehicle. CFTR(inh)-172 reduced lubiprostone (10 microM)-induced DBS increase, whereas net Cl(-) output was also unchanged. Nevertheless, CFTR(inh)-172 reduced basal net water output, which was reversed by lubiprostone. Furthermore, lubiprostone-induced DBS was inhibited by EP4 receptor antagonist, not by an EP1/2 receptor antagonist or by indomethacin pretreatment. In this first study of the effect of lubiprostone on intestinal ion secretion in vivo, lubiprostone stimulated CFTR-dependent DBS without changing net Cl(-) secretion. This effect supports the hypothesis that Cl(-) secreted by CFTR is recycled across the apical membrane by anion exchangers. Recovery of water output during CFTR inhibition suggests that lubiprostone may improve the intestinal phenotype in CF patients. Furthermore, increased DBS suggests that lubiprostone may protect the duodenum from acid-induced injury via EP4 receptor activation.

  3. Gastrointestinal processing of Na+, Cl-, and K+ during digestion: implications for homeostatic balance in freshwater rainbow trout.

    PubMed

    Bucking, Carol; Wood, Chris M

    2006-12-01

    The role of the gastrointestinal tract in maintaining ionic homeostasis during digestion, as well as the relative contribution of the diet for providing electrolytes, has been generally overlooked in many aquatic species. An experimental diet that contained an inert reference marker (lead-glass beads) was used to quantify the net transport of Na(+), K(+), and Cl(-) during the digestion and absorption of a single meal (3% ration) by freshwater rainbow trout (Oncorhynchus mykiss). Secretion of Cl(-) into the stomach peaked at 8 and 12 h following feeding at a rate of 1.1 mmol.kg(-1).h(-1), corresponding to a theoretical pH of 0.6 in the secreted fluid (i.e., 240 mmol/l HCl). The majority ( approximately 90%) of dietary Na(+) and K(+) was absorbed in the stomach, whereas subsequent large fluxes of Na(+) and Cl(-) into the anterior intestine corresponded to a large flux of water previously observed. The estimated concentration of Na(+) in fluids secreted into the anterior intestine was approximately 155 mmol/l, equivalent to reported hepatic bile values, whereas the estimated concentration of Cl(-) ( approximately 285 mmol/l) suggested seepage of HCl acid from the stomach in advance of the chyme front. Net absorption of K(+) in the stomach occurred following the cessation of Cl(-) secretion, providing indirect evidence of K(+) involvement with HCl acid production. Overall, 80-90% of the K(+) and Cl(-) contents of the meal were absorbed on a net basis, whereas net Na(+) absorption was negligible. Chyme-to-plasma ion concentration gradients were often opposed to the direction of ion transport, especially for Na(+) and Cl(-).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.F.

    The ratio of Cl absorbed to HCO3 secreted by the in vitro small intestine of Amphiuma was measured using TWCl and titration. The aim was to estimate the stoichiometry and thereby elucidate the underlying transport mechanisms. For every mole of HCO3 secreted 1.8 mol of Cl underwent net absorption. Indirect measures of net Cl absorption and HCO3 secretion were validated. Several known and putative Cl transport inhibitors were examined for their ability to inhibit the anion transport events. Disulfonic stilbenes (DIDS) and the diuretics piretanide and furosemide inhibited the Cl absorptive flux (J/sub m s/sup Cl/) and simultaneously the HCO3more » secretory flux (J/sup HCO3 /). The diuretics acetazolamide and bumetanide also reduced J/sup HCO3 and J/sub m s/sup Cl/, although the latter effect was not statistically significant. The ratio of inhibition, J/sub m s/sup Cl// J/sup HCO3 /, varied from 1.2 to 1.8 for the different inhibitors. The presence of Cl -HCO3 exchange at the serosal membrane was deduced from 1) the reduction of J/sub m s/sup Cl/ and J/sup HCO3 / by serosally added stilbenes, 2) the reduction of Cl absorption when serosal Cl was replaced, 3) inhibition of the secretory-to-mucosal Cl flux by serosal stilbenes, and 4) enhancement of J/sup HCO3 when serosal medium HCO3 was elevated. The observations are not consistent with one-for-one exchange of Cl for HCO3 at the mucosal membrane. The observed coupling ratio is compatible with a one-for-one exchange of Cl for HCO3 at the serosal membrane.« less

  5. Bicarbonate secretion by rabbit cortical collecting tubules in vitro.

    PubMed

    McKinney, T D; Burg, M B

    1978-06-01

    We previously reported that rabbit renal cortical collecting tubules can secrete bicarbonate in vitro (i.e., there can be net transport from bath to lumen, causing the concentration in the lumen to increase). Net bicarbonate secretion was observed most often when rabbits had been pretreated with NaHCO(3) and were excreting alkaline urine before being killed for experiments. The purpose of the present studies was to elucidate the mechanism involved by testing the effects of ion substitutions and drugs on collecting tubules that were secreting bicarbonate. Acetazolamide inhibited net bicarbonate secretion, suggesting that the process is dependent upon carbonic anhydrase. Net bicarbonate secretion also decreased when sodium in the perfusate and bath was replaced by choline, but not when chloride was replaced by nitrate or methylsulfate. Ouabain had no significant effect. Amiloride caused net bicarbonate secretion to increase. The rate of net secretion did not correlate with transepithelial voltage. The results are compared to those in turtle urinary bladders that also secrete bicarbonate. There are no direct contradictions between the results in the two tissues, i.e., in turtle bladders acetazolamide also inhibited bicarbonate secretion and ouabain had no effect. Nevertheless, it seems unlikely that net secretion of bicarbonate by collecting tubules involves specific exchange for chloride, as has been proposed for turtle bladders, because replacement of chloride by other anions did not inhibit bicarbonate secretion by collecting tubules. It was previously shown that the collecting tubules in vitro also may absorb bicarbonate, especially when the rabbits have been treated with NH(4)Cl and are excreting acid urine before being killed. The effects of drugs on net bicarbonate secretion found in the present studies are compared to their previously reported effects on net bicarbonate absorption and the possibility is discussed that bicarbonate absorption and secretion are independent processes, as was previously proposed for turtle bladders.

  6. Bicarbonate Secretion by Rabbit Cortical Collecting Tubules in Vitro

    PubMed Central

    McKinney, Thurman D.; Burg, Maurice B.

    1978-01-01

    We previously reported that rabbit renal cortical collecting tubules can secrete bicarbonate in vitro (i.e., there can be net transport from bath to lumen, causing the concentration in the lumen to increase). Net bicarbonate secretion was observed most often when rabbits had been pretreated with NaHCO3 and were excreting alkaline urine before being killed for experiments. The purpose of the present studies was to elucidate the mechanism involved by testing the effects of ion substitutions and drugs on collecting tubules that were secreting bicarbonate. Acetazolamide inhibited net bicarbonate secretion, suggesting that the process is dependent upon carbonic anhydrase. Net bicarbonate secretion also decreased when sodium in the perfusate and bath was replaced by choline, but not when chloride was replaced by nitrate or methylsulfate. Ouabain had no significant effect. Amiloride caused net bicarbonate secretion to increase. The rate of net secretion did not correlate with transepithelial voltage. The results are compared to those in turtle urinary bladders that also secrete bicarbonate. There are no direct contradictions between the results in the two tissues, i.e., in turtle bladders acetazolamide also inhibited bicarbonate secretion and ouabain had no effect. Nevertheless, it seems unlikely that net secretion of bicarbonate by collecting tubules involves specific exchange for chloride, as has been proposed for turtle bladders, because replacement of chloride by other anions did not inhibit bicarbonate secretion by collecting tubules. It was previously shown that the collecting tubules in vitro also may absorb bicarbonate, especially when the rabbits have been treated with NH4Cl and are excreting acid urine before being killed. The effects of drugs on net bicarbonate secretion found in the present studies are compared to their previously reported effects on net bicarbonate absorption and the possibility is discussed that bicarbonate absorption and secretion are independent processes, as was previously proposed for turtle bladders. PMID:659604

  7. Endogenous cyclo-oxygenase activity regulates mouse gastric surface pH

    PubMed Central

    Baumgartner, Heidi K; Kirbiyik, Uzay; Coskun, Tamer; Chu, Shaoyou; Montrose, Marshall H

    2002-01-01

    In the stomach, production of prostaglandins by cyclo-oxygenase (COX) is believed to be important in mucosal defence. We tested the hypothesis that endogenous COX activity is required for protective gastric surface pH control. Intact stomachs of anaesthetized mice were perfused with a weakly buffered solution (150 mmNaCl + 4 mm Homopipes) at pH values from 2.5 to 7.0. Gastric effluents were collected to measure pH and estimate amounts of acid or alkali secretion in nanomoles secreted per minute. A switch from net acid to net alkali secretion was seen in response to acidifying luminal pH with an apparent ‘set point’ between pH 4 and 5. At luminal pH 3, the net alkali secretion (12.7 ± 2.8 nmol OH− equivalents min−1) was abolished (2.2 ± 1.7 nmol OH− min−1) by the non-specific COX inhibitor indomethacin (5 mg kg−1 I.P.). Similar inhibition was observed using a COX-1 inhibitor (SC-560; 10 mg kg−1 I.P.), but not a COX-2 inhibitor (NS-398; 10 mg kg−1 I.P.). Subsequent treatment with 16,16-dimethyl prostaglandin E2 (dm-PGE2; 1 mg kg−1 I.P.) rescued the alkali secretion (21.8 ± 2.7 nmol OH− min−1). In either the absence or presence of the H+,K+-ATPase inhibitor omeprazole (60 mg kg−1 I.P.), indomethacin blocked similar amounts of net alkali secretion (10.5 ± 2.7 and 16.4 ± 3.4 nmol OH− min−1, respectively). We also used in vivo confocal microscopy to examine pH near the mucosal surface. The gastric mucosal surface of anaesthetized mice was exposed and mucosal surface pH was imaged using the fluorescence intensity ratio of Cl-NERF as a pH indicator. Results showed a switch from a continuous net acid to net alkali secretion by the stomach in response to changing superfusate pH from 5 to 3. At luminal pH 3, the relatively alkaline surface pH (4.3 ± 0.1) was acidified (3.6 ± 0.2) by indomethacin, and subsequent dm-PGE2 restored surface pH (4.2 ± 0.2). We conclude that the pre-epithelial alkaline layer is regulated by endogenous COX activity. PMID:12411530

  8. Acid-base responses to feeding and intestinal Cl- uptake in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus, an agastric euryhaline teleost.

    PubMed

    Wood, Chris M; Bucking, Carol; Grosell, Martin

    2010-08-01

    Marine teleosts generally secrete basic equivalents (HCO(3)(-)) and take up Na(+) and Cl(-) in the intestine so as to promote absorption of H(2)O. However, neither the integration of these functions with feeding nor the potential role of the gut in ionoregulation and acid-base balance in freshwater have been well studied. The euryhaline killifish (Fundulus heteroclitus) is unusual in lacking both an acid-secreting stomach and a mechanism for Cl(-) uptake at the gills in freshwater. Responses to a satiation meal were evaluated in both freshwater- and seawater-acclimated killifish. In intact animals, there was no change in acid or base flux to the external water after the meal, in accord with the absence of any post-prandial alkaline tide in the blood. Indeed, freshwater animals exhibited a post-prandial metabolic acidosis ('acidic tide'), whereas seawater animals showed no change in blood acid-base status. In vitro gut sac experiments revealed a substantially higher rate of Cl(-) absorption by the intestine in freshwater killifish, which was greatest at 1-3 h after feeding. The Cl(-) concentration of the absorbate was higher in preparations from freshwater animals than from seawater killifish and increased with fasting. Surprisingly, net basic equivalent secretion rates were also much higher in preparations from freshwater animals, in accord with the 'acidic tide'; in seawater preparations, they were lowest after feeding and increased with fasting. Bafilomycin (1 micromol l(-1)) promoted an 80% increase in net base secretion rates, as well as in Cl(-) and fluid absorption, at 1-3 h post-feeding in seawater preparations only, explaining the difference between freshwater and seawater fish. Preparations from seawater animals at 1-3 h post-feeding also acidified the mucosal saline, and this effect was associated with a marked rise in P(CO(2)), which was attenuated by bafilomycin. Measurements of chyme pH from intact animals confirmed that intestinal fluid (chyme) pH and basic equivalent concentration were lowest after feeding in seawater killifish, whereas P(CO(2)) was greatly elevated (80-95 Torr) in chyme from both seawater and freshwater animals but declined to lower levels (13 Torr) after 1-2 weeks fasting. There were no differences in pH, P(CO(2)) or the concentrations of basic equivalents in intestinal fluid from seawater versus freshwater animals at 12-24 h or 1-2 weeks post-feeding. The results are interpreted in terms of the absence of gastric HCl secretion, the limitations of the gills for acid-base balance and Cl(-) transport, and therefore the need for intestinal Cl(-) uptake in freshwater killifish, and the potential for O(2) release from the mucosal blood flow by the high P(CO(2)) in the intestinal fluids. At least in seawater killifish, H(+)-ATPase running in parallel to HCO(3)(-):Cl(-) exchange in the apical membranes of teleost enterocytes might reduce net base secretion and explain the high P(CO(2)) in the chyme after feeding.

  9. Regulation of net bicarbonate transport in rabbit cortical collecting tubule by peritubular pH, carbon dioxide tension, and bicarbonate concentration.

    PubMed Central

    Breyer, M D; Kokko, J P; Jacobson, H R

    1986-01-01

    The effects of changes in peritubular pH, carbon dioxide tension (PCO2), and HCO3- concentration on net HCO3- transport was examined in in vitro perfused cortical collecting tubules (CCTs) from unpretreated New Zealand white rabbits. Lowering peritubular HCO3- concentration and pH by reciprocal replacement of HCO3- with Cl-, significantly stimulated net HCO3- absorption. Lowering peritubular HCO3- concentration and pH, by substitution of HCO3- with gluconate, while keeping Cl- concentration constant, also stimulated net HCO3- absorption. Raising peritubular HCO3- concentration and pH, by reciprocal replacement of Cl- with HCO3-, inhibited net HCO3- absorption (or stimulated net HCO3- secretion). When the tubule was cooled, raising peritubular HCO3- concentration had no effect on net HCO3- transport, suggesting these results are not due to the passive flux of HCO3- down its concentration gradient. The effect of changes in ambient PCO2 on net HCO3- transport were also studied. Increasing the ambient PCO2 from 40 mmHg to either 80 or 120 mmHg, allowing pH to fall, had no effect on net HCO3- transport. Similarly, lowering ambient PCO2 to 14 mmHg had no effect on net HCO3- transport. Simultaneously increasing peritubular HCO3- concentration and PCO2, without accompanying changes in peritubular pH, i.e., isohydric changes, stimulated net HCO3- secretion to the same degree as nonisohydric increases in peritubular HCO3- concentration. Likewise, isohydric lowering of peritubular HCO3- concentration and PCO2 stimulated net HCO3- absorption. We conclude that: acute changes in peritubular HCO3- concentration regulate acidification in the CCT and these effects are mediated by a transcellular process; acute changes in ambient PCO2 within the physiologic range have no effect on HCO3- transport in the in vitro perfused CCT; and acute in vitro regulation of CCT acidification is independent of peritubular pH. PMID:3084564

  10. Jejunal permeability to water and electrolytes in patients with chronic intrahepatic hypertension: evidence for a role of aldosterone.

    PubMed Central

    Duclos, B; Bories, P; Mathieu-Daude, J C; Michel, H

    1991-01-01

    Acute prehepatic portal hypertension induces intestinal secretion in animal models. In the course of chronic liver disease, however, these changes are not observed, despite higher portal pressures than those found in experimental studies. Eight patients without diarrhoea and with chronic alcoholic liver disease were examined for evidence of increased jejunal secretion; their suprahepatic wedge pressure was raised from 21 to 45 mmHg (mean 34.6 mmHg). Jejunal perfusion with a triple lumen catheter and a proximal occluding balloon was used to study net flows of water and chloride as well as net and unidirectional flows of sodium and potassium. No statistical difference in intestinal flows of water and electrolytes was noted between cirrhotic patients and control subjects after infusion with a 30 mmol/l glucose solution. Infusion with a 30 mmol/l mannitol solution resulted in a lower absorption of water, Na, K, and Cl than with the glucose solution. A higher rate of Na secretion was observed in cirrhotic patients than control subjects after infusion with 30 mmol/l mannitol (p less than 0.01). In addition, the rate of Na secretion was higher in cirrhotic patients than in control subjects (p less than 0.05). There was no correlation between the net flow of Na and the suprahepatic wedge pressure. A second perfusion with a 30 mmol/l glucose solution was given 75 minutes after a bolus injection of spironolactone (400 mg). Net flows of Na and Cl were lower in cirrhotic patients than in control subjects (p less than 0.05) because of a lower absorption of Na. Patients with gradually developing portal hypertension have moderate jejunal secretions of H2O and electrolytes which we assume are partly masked by increased absorption resulting from hyperaldosteronism. In contrast to animal models, this mechanism may be part of the jejunal adaptation to permeability in acute portal hypertension. PMID:2060871

  11. Mechanism of ion transport by avian salt gland primary cell cultures.

    PubMed

    Lowy, R J; Dawson, D C; Ernst, S A

    1989-06-01

    Confluent sheets formed from primary culture of avian salt gland secretory cells exhibit a short-circuit current (Isc) in response to cholinergic and beta-adrenergic stimulation [Lowy, R. J., D. C. Dawson, and S. A. Ernst. Am J. Physiol. 249 (Cell Physiol. 18): C41-C47, 1985]. To establish the ionic basis for the Isc, transmural fluxes of 22Na and 36Cl were measured. Under short-circuit conditions there was little net flux of either ion in the absence of agonists. Addition of carbachol elevated net serosal-to-mucosal Cl flux to 1.71 mu eq.h-1.cm-2, whereas a smaller increase to 0.85 mu eq.h-1.cm-2 occurred with isoproterenol. Neither agonist altered net Na flux. The stimulated Isc accounted for 70% of the net Cl flux induced by carbachol and nearly 100% of that induced by isoproterenol. Replacement of Cl by gluconate or Na by choline abolished (carbachol) or greatly reduced (isoproterenol) the Isc, which could be restored in a dose-dependent fashion by ion restitution. Active ion transport was preferentially inhibited by basal (vs. apical) addition of ouabain, furosemide, or barium. The results provide evidence that cholinergic and beta-adrenergic agonists elicit active transmural Cl secretion. They further suggest that transport is dependent on the Na+-K+-adenosine-triphosphatase, a Na-Cl cotransport process, and a basal K conductance, all features of a secondary active Cl secretory mechanism.

  12. The ethanol-induced stimulation of rat duodenal mucosal bicarbonate secretion in vivo is critically dependent on luminal Cl-.

    PubMed

    Sommansson, Anna; Wan Saudi, Wan Salman; Nylander, Olof; Sjöblom, Markus

    2014-01-01

    Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS) is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v.) did not change the secretory response to ethanol, while removing Cl- from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v.) but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl- and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms.

  13. Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport.

    PubMed

    Cooper, Christopher A; Whittamore, Jonathan M; Wilson, Rod W

    2010-04-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO(3)(-)) secretion and Cl(-) absorption via Cl(-)/HCO(3)(-) exchange fueled by metabolic CO(2); and 3) alkaline precipitation of Ca(2+) as insoluble CaCO(3), which aids H(2)O absorption). The latter two processes involve high rates of epithelial HCO(3)(-) secretion stimulated by intestinal Ca(2+) and can drive a major portion of water absorption. At higher salinities and ambient Ca(2+) concentrations the osmoregulatory role of intestinal HCO(3)(-) secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO(2)) and acid-base regulation (as intestinal cells must export H(+) into the blood to balance apical HCO(3)(-) secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca(2+). Increasing the luminal Ca(2+) concentration caused a large elevation in intestinal HCO(3)(-) production and excretion. Additionally, blood pH decreased (-0.13 pH units) and plasma partial pressure of CO(2) (Pco(2)) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca(2+)] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO(3)(-) production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca(2+) independent of any other ion or overall osmolality in marine teleost fish.

  14. Effects of butyrate on active sodium and chloride transport in rat and rabbit distal colon

    PubMed Central

    Vidyasagar, S; Ramakrishna, B S

    2002-01-01

    Short chain fatty acids, particularly butyrate, stimulate electroneutral NaCl absorption from the colon. Their effect in colonic epithelia lacking basal electroneutral NaCl absorption is unknown. Butyrate is also reported to inhibit active Cl− secretion in the colon. The present studies were undertaken to investigate the inter-relationships between the effects of butyrate on active Na+ and Cl− transport in the colon. Studies were carried out in rabbit distal colon (known to have predominant electrogenic Na+ absorption), rat distal colon (characterised by electroneutral Na+ absorption), and hyperaldosteronaemic rat distal colon (characterised by electrogenic Na+ absorption). The effect of cholera toxin (CT) was also noted. Potential difference, short-circuit current (ISC) and fluxes of Na+ and Cl− were measured in stripped mucosa under voltage-clamp conditions. Butyrate stimulated electroneutral Na+ and Cl− absorption in distal colon of normal and salt-depleted rats, and stimulated Na+ absorption in rabbit distal colon. Amiloride (10−4m) or CT did not inhibit this process. In rabbit distal colon, stimulation of Na+ absorption by butyrate was not dependent on the presence of Cl− in the medium. Butyrate significantly decreased conductance, decreased flux of sodium from serosa to mucosa (particularly in rabbit distal colon), and decreased ISC. Net Cl− secretion, induced by CT, was completely inhibited by butyrate. Stimulation of Na+ absorption was independent of exposure to CT. Bumetanide reversed net Cl− secretion to net absorption, but did not alter Na+ or Cl− fluxes in tissues exposed to butyrate. Thus butyrate stimulates active Na+ absorption in colonic epithelia, with or without expression of basal Na+-H+ exchange. Independently, butyrate inhibits active Cl− secretion induced by cAMP in these epithelia. PMID:11850510

  15. IGF-1 and insulin exert opposite actions on ClC-K2 activity in the cortical collecting ducts.

    PubMed

    Zaika, Oleg; Mamenko, Mykola; Boukelmoune, Nabila; Pochynyuk, Oleh

    2015-01-01

    Despite similar stimulatory actions on the epithelial sodium channel (ENaC)-mediated sodium reabsorption in the distal tubule, insulin promotes kaliuresis, whereas insulin-like growth factor-1 (IGF-1) causes a reduction in urinary potassium levels. The factors contributing to this phenomenon remain elusive. Electrogenic distal nephron ENaC-mediated Na(+) transport establishes driving force for Cl(-) reabsorption and K(+) secretion. Using patch-clamp electrophysiology, we document that a Cl(-) channel is highly abundant on the basolateral plasma membrane of intercalated cells in freshly isolated mouse cortical collecting duct (CCD) cells. The channel has characteristics attributable to the ClC-K2: slow gating kinetics, conductance ∼10 pS, voltage independence, Cl(-)>NO3 (-) anion selectivity, and inhibition/activation by low/high pH, respectively. IGF-1 (100 and 500 nM) acutely stimulates ClC-K2 activity in a reversible manner. Inhibition of PI3-kinase (PI3-K) with LY294002 (20 μM) abrogates activation of ClC-K2 by IGF-1. Interestingly, insulin (100 nM) reversibly decreases ClC-K2 activity in CCD cells. This inhibitory action is independent of PI3-K and is mediated by stimulation of a mitogen-activated protein kinase-dependent cascade. We propose that IGF-1, by stimulating ClC-K2 channels, promotes net Na(+) and Cl(-) reabsorption, thus reducing driving force for potassium secretion by the CCD. In contrast, inhibition of ClC-K2 by insulin favors coupling of Na(+) reabsorption with K(+) secretion at the apical membrane contributing to kaliuresis. Copyright © 2015 the American Physiological Society.

  16. An in vitro study of urea, water, ion and CO2/HCO3- transport in the gastrointestinal tract of the dogfish shark (Squalus acanthias): the influence of feeding.

    PubMed

    Liew, Hon Jung; De Boeck, Gudrun; Wood, Chris M

    2013-06-01

    In vitro gut sac preparations made from the cardiac stomach (stomach 1), pyloric stomach (stomach 2), intestine (spiral valve) and colon were used to examine the impact of feeding on transport processes in the gastrointestinal tract of the dogfish shark. Preparations were made from animals that were euthanized after 1-2 weeks of fasting, or at 24-48 h after voluntary feeding on a 3% ration of teleost fish (hake). Sacs were incubated under initially symmetrical conditions with dogfish saline on both surfaces. In comparison to an earlier in vivo study, the results confirmed that feeding caused increases in H(+) secretion in both stomach sections, but an increase in Cl(-) secretion only in stomach 2. Na(+) absorption, rather than Na(+) secretion, occurred in both stomach sections after feeding. All sections of the tract absorbed water and the intestine strongly absorbed Na(+) and Cl(-), regardless of feeding condition. The results also confirmed that feeding increased water absorption in the intestine (but not in the colon), and had little influence on the handling of Ca(2+) and Mg(2+), which exhibited negligible absorption across the tract. However, K(+) was secreted in the intestine in both fasted and fed preparations. Increased intestinal water absorption occurred despite net osmolyte secretion into the mucosal saline. The largest changes occurred in urea and CO2/HCO3(-) fluxes. In fasted preparations, urea was absorbed at a low rate in all sections except the intestine, where it was secreted. Instead of an increase in intestinal urea secretion predicted from in vivo data, feeding caused a marked switch to net urea absorption. This intestinal urea transport occurred at a rate comparable to urea reabsorption rates reported at gills and kidney, and was apparently active, establishing a large serosal-to-mucosal concentration gradient. Feeding also greatly increased intestinal CO2/HCO3(-) secretion; if interpreted as HCO3(-) transport, the rates were in the upper range of those reported in marine teleosts. Phloretin (0.25 mmol l(-1), applied mucosally) completely blocked the increases in intestinal urea absorption and CO2/HCO3(-) secretion caused by feeding, but had no effect on Na(+), Cl(-) or water absorption.

  17. Assimilation of water and dietary ions by the gastrointestinal tract during digestion in seawater-acclimated rainbow trout.

    PubMed

    Bucking, Carol; Fitzpatrick, John L; Nadella, Sunita R; McGaw, Iain J; Wood, Chris M

    2011-07-01

    Recent studies focusing on the consequences of feeding for ion and water balance in freshwater fish have revealed the need for similar comparative studies in seawater fish. A detailed time course sampling of gastrointestinal (GI) tract contents following the ingestion of a single meal of a commercial diet revealed the assimilation of both water and dietary ions (Na(+), Cl(-), K(+), Ca(2+), Mg(2+)) along the GI tract of seawater-acclimated rainbow trout (Oncorhynchus mykiss) which had been fasted for 1 week. Consumption of the meal did not change the drinking rate. There was a large secretion of fluid into the anterior intestine and caecae (presumably bile and/or pancreatic secretions). As a result, net assimilation (63%) of the ingested water along the GI tract was lower than generally reported for fasted trout. Mg(2+) was neither secreted into nor absorbed from the GI tract on a net basis. Only K(+) (93% assimilated) and Ca(2+) (43% assimilated) were absorbed in amounts in excess of those provided by ingested seawater, suggesting that dietary sources of K(+) and Ca(2+) may be important to seawater teleosts. The oesophagus-stomach served as a major site of absorption for Na(+), Cl(-), K(+), Ca(2+), and Mg(2+), and the anterior intestine and caecae as a major site of net secretion for all of these ions, except Cl(-). Despite large absorptive fluxes of these ions, the ionic composition of the plasma was maintained during the digestion of the meal. The results of the present study were compared with previous work on freshwater-acclimated rainbow trout, highlighting some important differences, but also several similarities on the assimilation of water and ions along the gastrointestinal tract during digestion. This study highlights the complicated array of ion and water transport that occurs in the intestine during digestion while revealing the importance of dietary K(+) and Ca(2+) to seawater-acclimated rainbow trout. Additionally, this study reveals that digestion in seawater-acclimated rainbow trout appears to compromise intestinal water absorption.

  18. Effect of systemic acid-base disorders on colonic intracellular pH and ion transport.

    PubMed

    Wagner, J D; Kurtin, P; Charney, A N

    1985-07-01

    We have previously reported that changes in colonic net Na and Cl absorption correlate with arterial CO2 partial pressure (PCO2) and that changes in colonic net Cl absorption and HCO3 secretion correlate with the plasma HCO3 concentration during the systemic acid-base disorders. To determine whether changes in intracellular pH (pHi) and HCO3 concentration [( HCO3]i) mediate these effects, we measured pHi and calculated [HCO3] in the distal colonic mucosa of anesthetized, mechanically ventilated Sprague-Dawley rats using 5,5-[14C]dimethyloxazolidine-2,4-dione and [3H]inulin. Rats were studied during normocapnia, acute respiratory acidosis and alkalosis, and uncompensated and pH-compensated acute metabolic acidosis and alkalosis. When animals in all groups were considered, there were strong correlations between mucosal pHi and both arterial PCO2 (r = -0.76) and pH (r = 0.82) and between mucosal [HCO3]i and both arterial PCO2 (r = 0.98) and HCO3 concentration (r = 0.77). When we considered the rates of colonic electrolyte transport that characterized these acid-base disorders [A. N. Charney and L. P. Haskell. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G159-G165, 1984], we found strong correlations between mucosal pHi and net Na absorption (r = -0.86) and between mucosal [HCO3]i and both net Cl absorption (r = 0.98) and net HCO3 secretion (r = 0.83). These findings suggest that the systemic acid-base disorders cause changes in colonic mucosal pHi and [HCO3]i as a consequence of altered arterial PCO2 and HCO3 concentration. In addition, the effects of these disorders on colonic electrolyte transport may be mediated by changes in mucosal pHi and [HCO3]i.

  19. Intestinal bicarbonate secretion in Amphiuma measured by pH stat in vitro: relationship with metabolism and transport of sodium and chloride ions.

    PubMed Central

    Imon, M A; White, J F

    1981-01-01

    1. Isolated Amphiuma small intestine exposed on both surfaces to buffered or unbuffered media generated gradients of pH under short-circuited conditions consistent with secretion of HCO3(-). 2. When unbuffered mucosal medium was maintained at pH 7.4 by addition of acid, alkalinization of the mucosal medium occurred at a rate of 1-2 microequiv/hr cm2 under short-circuit conditions (Isc) and was reduced by anoxia, acetazolamide or removal of CO2. 3. The rate of HCO3(-) secretion (JHCO3(-)) was reduced at a mucosal pH above or below 7.4 and was proportional to serosal HCO3(-). 4. JHCO3(-) was reduced in Na+-free (choline) and Cl-free (SO4(2-) media and after exposure to the stilbene SITS. 5. The difference JHCO3(-)--Isc was consistent with net Cl- absorption. 6. The tissue resistance (Rt) was elevated upon exposure to serosal HCO3(-) and lowered by mucosal HCO3(-). 7. The intestinal mucosa exhibited carbonic anhydrase activity that was sensitive to ethoxazolamide. 8. It is concluded that HCO3(-) secretion is active, influenced by intracellular carbonic anhydrase activity and coupled to Cl- and possibly Na+ absorption. PMID:7310697

  20. Intestinal bicarbonate secretion in Amphiuma measured by pH stat in vitro: relationship with metabolism and transport of sodium and chloride ions.

    PubMed

    Imon, M A; White, J F

    1981-05-01

    1. Isolated Amphiuma small intestine exposed on both surfaces to buffered or unbuffered media generated gradients of pH under short-circuited conditions consistent with secretion of HCO3(-). 2. When unbuffered mucosal medium was maintained at pH 7.4 by addition of acid, alkalinization of the mucosal medium occurred at a rate of 1-2 microequiv/hr cm2 under short-circuit conditions (Isc) and was reduced by anoxia, acetazolamide or removal of CO2. 3. The rate of HCO3(-) secretion (JHCO3(-)) was reduced at a mucosal pH above or below 7.4 and was proportional to serosal HCO3(-). 4. JHCO3(-) was reduced in Na+-free (choline) and Cl-free (SO4(2-) media and after exposure to the stilbene SITS. 5. The difference JHCO3(-)--Isc was consistent with net Cl- absorption. 6. The tissue resistance (Rt) was elevated upon exposure to serosal HCO3(-) and lowered by mucosal HCO3(-). 7. The intestinal mucosa exhibited carbonic anhydrase activity that was sensitive to ethoxazolamide. 8. It is concluded that HCO3(-) secretion is active, influenced by intracellular carbonic anhydrase activity and coupled to Cl- and possibly Na+ absorption.

  1. IGF-1 and insulin exert opposite actions on ClC-K2 activity in the cortical collecting ducts

    PubMed Central

    Zaika, Oleg; Mamenko, Mykola; Boukelmoune, Nabila

    2014-01-01

    Despite similar stimulatory actions on the epithelial sodium channel (ENaC)-mediated sodium reabsorption in the distal tubule, insulin promotes kaliuresis, whereas insulin-like growth factor-1 (IGF-1) causes a reduction in urinary potassium levels. The factors contributing to this phenomenon remain elusive. Electrogenic distal nephron ENaC-mediated Na+ transport establishes driving force for Cl− reabsorption and K+ secretion. Using patch-clamp electrophysiology, we document that a Cl− channel is highly abundant on the basolateral plasma membrane of intercalated cells in freshly isolated mouse cortical collecting duct (CCD) cells. The channel has characteristics attributable to the ClC-K2: slow gating kinetics, conductance ∼10 pS, voltage independence, Cl−>NO3− anion selectivity, and inhibition/activation by low/high pH, respectively. IGF-1 (100 and 500 nM) acutely stimulates ClC-K2 activity in a reversible manner. Inhibition of PI3-kinase (PI3-K) with LY294002 (20 μM) abrogates activation of ClC-K2 by IGF-1. Interestingly, insulin (100 nM) reversibly decreases ClC-K2 activity in CCD cells. This inhibitory action is independent of PI3-K and is mediated by stimulation of a mitogen-activated protein kinase-dependent cascade. We propose that IGF-1, by stimulating ClC-K2 channels, promotes net Na+ and Cl− reabsorption, thus reducing driving force for potassium secretion by the CCD. In contrast, inhibition of ClC-K2 by insulin favors coupling of Na+ reabsorption with K+ secretion at the apical membrane contributing to kaliuresis. PMID:25339702

  2. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for fluid secretion. PMID:22777674

  3. Spontaneous water secretion in T84 cells: effects of STa enterotoxin, bumetanide, VIP, forskolin, and A-23187.

    PubMed

    Toriano, R; Kierbel, A; Ramirez, M A; Malnic, G; Parisi, M

    2001-09-01

    The regulated Cl(-) secretory apparatus of T84 cells responds to several pharmacological agents via different second messengers (Ca(2+), cAMP, cGMP). However, information about water movements in T84 cells has not been available. In the absence of osmotic or chemical gradient, we observed a net secretory transepithelial volume flux (J(w) = -0.16 +/- 0.02 microl.min(-1).cm(-2)) in parallel with moderate short-circuit current values (I(sc) = 1.55 +/- 0.23 microA/cm(2)). The secretory J(w) reversibly reverted to an absorptive value when A-23187 was added to the serosal bath. Vasoactive intestinal polypeptide increased I(sc), but, unexpectedly, J(w) was not affected. Bumetanide, an inhibitor of basolateral Na(+)-K(+)-2Cl(-) cotransporter, completely blocked secretory J(w) with no change in I(sc). Conversely, serosal forskolin increased I(sc), but J(w) switched from secretory to absorptive values. Escherichia coli heat-stable enterotoxin increased secretory J(w) and I(sc). No difference between the absorptive and secretory unidirectional Cl(-) fluxes was observed in basal conditions, but after STa stimulation, a significant net secretory Cl(-) flux developed. We conclude that, under these conditions, the presence of secretory or absorptive J(w) values cannot be shown by I(sc) and ion flux studies. Furthermore, RT-PCR experiments indicate that aquaporins were not expressed in T84 cells. The molecular pathway for water secretion appears to be transcellular, moving through the lipid bilayer or, as recently proposed, through water-solute cotransporters.

  4. Tumour necrosis factor alpha changes porcine intestinal ion transport through a paracrine mechanism involving prostaglandins.

    PubMed Central

    Kandil, H M; Berschneider, H M; Argenzio, R A

    1994-01-01

    Prostaglandins stimulate electrogenic anion secretion and inhibit sodium chloride absorption in cryptosporidium induced pig diarrhoea. Because tumour necrosis factor alpha (TNF alpha) is an early mediator of inflammation and stimulates prostaglandin secretion, we investigated its effect on intestinal ion transport. Cryptosporidium infected pig ileum showed higher macrophage infiltration and tissue TNF alpha-like activity than uninfected tissues (p < 0.05, n = 4 and p < 0.05, n = 12, respectively). TNF alpha treatment of control porcine ileal mucosa increased the short circuit current (Isc), a measurement of net anion secretion in this model (p < 0.001, n = 23). This effect was blocked by 10(-6) M indomethacin and Cl- replacement. Neither acute treatment nor preincubation of colonic intestinal epithelial cell monolayers (T84) with TNF alpha stimulated the Isc. However, co-mounting of TNF alpha preincubated pig jejunal fibroblasts (P2JF) monolayers back to back with untreated T84 monolayers dose-dependently induced an indomethacin sensitive increase in Isc compared with values in untreated co-mounted monolayers (p < 0.001, n = 11). These data suggest that in infectious diarrhoea, TNF alpha may induce Cl- secretion through a paracrine mechanism involving prostaglandin release from subepithelial cells, for example fibroblasts. PMID:8063221

  5. Species variation in biology and physiology of the ciliary epithelium: similarities and differences.

    PubMed

    Do, Chi Wai; Civan, Mortimer M

    2009-04-01

    Glaucoma is a leading cause of irreversible blindness worldwide. Lowering intraocular pressure (IOP) is the only strategy documented to delay the appearance and retard the progression of vision loss. One major approach for lowering IOP is to slow the rate of aqueous humor formation by the ciliary epithelium. As discussed in the present review, the transport basis for this secretion is largely understood. However, several substantive issues are yet to be resolved, including the integrated regulation of secretion, the functional topography of the ciliary epithelium, and the degree and significance of species variation in aqueous humor inflow. This review discusses species differences in net secretion, particularly of Cl(-) and HCO(3)(-) secretion. Identifying animal models most accurately mimicking aqueous humor formation in the human will facilitate development of future novel initiatives to lower IOP.

  6. Gastrointestinal transport of Ca2+ and Mg2+ during the digestion of a single meal in the freshwater rainbow trout.

    PubMed

    Bucking, Carol; Wood, Chris M

    2007-04-01

    A diet containing an inert marker (ballotini beads, quantified by X-radiography) was used to quantify the transport of two essential minerals, Ca(2+) and Mg(2+) from the diet during the digestion and absorption of a single meal of commercial trout food (3% ration). Initially, net uptake of Ca(2+) was observed in the stomach followed by subsequent Ca(2+) fluxes along the intestine which were variable, but for the most part secretory. This indicated a net secretion of Ca(2+) along the intestinal tract resulting in a net assimilation of dietary Ca(2+) of 28%. Similar handling of Ca(2+) and Mg(2+) was observed along the gastrointestinal tract (GI), although net assimilation differed substantially between the cations, with Mg(2+) assimilation being close to 60%, mostly a result of greater uptake by the stomach. The stomach displayed the highest net uptake rates for both cations (1.5 and 1.3 mmol kg(-1) fish body mass for Ca(2+) and Mg(2+), respectively), occurring within 2 h following ingestion of the meal. Substantial secretions of both Ca(2+) and Mg(2+) were observed in the anterior intestine, which were attributed to bile and other intestinal secretions, while fluxes in the mid and posterior intestine were small and variable. The overall patterns of Ca(2+) and Mg(2+) handling in the GI tract were similar to those observed for Na(+) and K(+) (but not Cl(-)) in a previous study. Overall, these results emphasize the importance of dietary electrolytes in ionoregulatory homeostasis.

  7. Secretory NaCl and volume flow in renal tubules.

    PubMed

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  8. Attenuation of primary nonfunction for syngeneic islet graft using sodium 4-phenylbutyrate.

    PubMed

    Fu, S-H; Chen, S-T; Hsu, B R-S

    2005-05-01

    Sodium 4-phenylbutyrate (4-SPB), an aromatic derivative of butyric acid, was examined to elucidate its effect on islet engraftment in a syngeneic transplantation model using C57BL/6 mice. Diabetic mice that received subrenal implantation of 150 islets on day 0 and oral administration of twice daily 4-SPB (500 mg/kg body weight) on days -2 through 28 displayed a significantly shorter duration of posttransplantation temporary hyperglycemia than diabetic mice that received islets in isotonic sodium chloride solution (NaCl), namely 16 +/- 2 (n = 12) vs 23 +/- 2 days (n = 7; P < .05). Four weeks after transplantation, the insulin content (IC) of grafts from mice treated with islets and 4-SPB was substantially higher than that of grafts from mice treated with islets and NaCl, namely 2.59 +/- 0.37 (n = 8) vs 1.36 +/- 0.36 mug (n = 13; P < .01). The IC of pancreatic remnants showed no significant difference between groups after 2 and 4 weeks of incubation. In vitro studies demonstrated that the net glucose-stimulated insulin secretion (GSIS) and the ratio of net GSIS to the IC of islets cultured with 4-SPB (1 mM) did not differ significantly from those cultured with NaCl. The lipopolysaccharide-stimulated secretions of IL-1beta, IL-10, and IFNgamma from peritoneal exudate monocytes were significantly reduced by co-incubation with 4-SPB (1 mM). In conclusion, our data suggest that daily administration of 4-SPB reduces primary nonfunction and enhances islet engraftment in a syngeneic mouse transplantation model.

  9. Glucocorticoid activity and metabolism with NaCl-induced low-grade metabolic acidosis and oral alkalization: results of two randomized controlled trials.

    PubMed

    Buehlmeier, Judith; Remer, Thomas; Frings-Meuthen, Petra; Maser-Gluth, Christiane; Heer, Martina

    2016-04-01

    Low-grade metabolic acidosis (LGMA), as induced by high dietary acid load or sodium chloride (NaCl) intake, has been shown to increase bone and protein catabolism. Underlying mechanisms are not fully understood, but from clinical metabolic acidosis interactions of acid-base balance with glucocorticoid (GC) metabolism are known. We aimed to investigate GC activity/metabolism under alkaline supplementation and NaCl-induced LGMA. Eight young, healthy, normal-weight men participated in two crossover designed interventional studies. In Study A, two 10-day high NaCl diet (32 g/d) periods were conducted, one supplemented with 90 mmol KHCO3/day. In Study B, participants received a high and a low NaCl diet (31 vs. 3 g/day), each for 14 days. During low NaCl, the diet was moderately acidified by replacement of a bicarbonate-rich mineral water (consumed during high NaCl) with a non-alkalizing drinking water. In repeatedly collected 24-h urine samples, potentially bioactive-free GCs (urinary-free cortisol + free cortisone) were analyzed, as well as tetrahydrocortisol (THF), 5α-THF, and tetrahydrocortisone (THE). With supplementation of 90 mmol KHCO3, the marker of total adrenal GC secretion (THF + 5α-THF + THE) dropped (p = 0.047) and potentially bioactive-free GCs were reduced (p = 0.003). In Study B, however, GC secretion and potentially bioactive-free GCs did not exhibit the expected fall with NaCl-reduction as net acid excretion was raised by 30 mEq/d. Diet-induced acidification/alkalization affects GC activity and metabolism, which in case of long-term ingestion of habitually acidifying western diets may constitute an independent risk factor for bone degradation and cardiometabolic diseases.

  10. HCO3− secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo

    PubMed Central

    Cooper, Christopher A.; Wilson, Rod W.

    2010-01-01

    The intestine of marine teleosts must effectively absorb fluid from ingested seawater to avoid dehydration. This fluid transport has been almost exclusively characterized as driven by NaCl absorption. However, an additional feature of the osmoregulatory role of the intestine is substantial net HCO3− secretion. This is suggested to drive additional fluid absorption directly (via Cl−/HCO3− exchange) and indirectly by precipitating ingested Ca2+ as CaCO3, thus creating the osmotic gradient for additional fluid absorption. The present study tested this hypothesis by perfusing the intestine of the European flounder in vivo with varying [Ca2+]: 10 (control), 40, and 90 mM. Fractional fluid absorption increased from 47% (control) to 73% (90 mM Ca2+), where almost all secreted HCO3− was excreted as CaCO3. This additional fluid absorption could not be explained by NaCl cotransport. Instead, a significant positive relationship between Na+-independent fluid absorption and total HCO3− secretion was consistent with the predicted roles for anion exchange and CaCO3 precipitation. Further analysis suggested that Na+-independent fluid absorption could be accounted for by net Cl− and H+ absorption (from Cl−/HCO3− exchange and CO2 hydration, respectively). There was no evidence to suggest that CaCO3 alone was responsible for driving fluid absorption. However, by preventing the accumulation of luminal Ca2+ it played a vital role by dynamically maintaining a favorable osmotic gradient all along the intestine, which permits substantially higher rates of solute-linked fluid absorption. To overcome the resulting hyperosmotic and highly acidic absorbate, it is proposed that plasma HCO3− buffers the absorbed H+ (from HCO3− production), and consequently reduces the osmolarity of the absorbed fluid entering the body. PMID:20130226

  11. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.

    PubMed

    Chang-Lin, Joan-En; Kim, Kwang-Jin; Lee, Vincent H L

    2005-06-01

    Previously, we reported the development of a primary culture model of tight rabbit corneal epithelial cell layers (RCrECL) characterizing bioelectric parameters, morphology, cytokeratin, and passive permeability. In the present study, we specifically evaluated the active ion transport processes of RCrECL cultured from either pigmented or albino rabbits. Primary cultured RCrECL were grown at an air-interface on Clear-Snapwells precoated with collagen/fibronectin/laminin and mounted in a modified Ussing-type chamber for the evaluation of their active ion transport processes under short-circuited conditions. Contribution of active Na(+) and Cl(-) transport to overall short-circuit current (I(sc)) was evaluated by removing Na(+) and Cl(-), respectively, from bathing fluids of RCrECL and measurements of net fluxes of Na(+) and Cl(-) using (22)Na and (36)Cl, respectively. Amiloride and benzamil were used to determine the role of apical Na(+)-channel activities to net Na(+) fluxes. N-phenylanthranilic acid (NPAA), ouabain, BaCl(2) and bumetanide were used to determine the role of basolateral Na,K-ATPase, apical Cl(-)-channel, and basolateral K(+)-channel and Na(+)(K(+))2Cl(-)-cotransporter activities, respectively, in active ion transport across RCrECL. I(sc) of RCrECL derived from pigmented rabbits was comprised of 64+/-2% and 44+/-5% for active Na(+) and Cl(-) transport, respectively, consistent with net Na(+) absorption and Cl(-) secretion of 0.062+/-0.006 and 0.046+/-0.008 muEq/cm(2)/hr estimated from radionuclide fluxes. Apical amiloride and benzamil inhibited I(sc) by up to approximately 50% with an IC(50) of 1 and 0.1 microm, respectively, consistent with participation of apical epithelial Na(+)-channels to net Na(+) absorption across RCrECL cultured from pigmented rabbits. Addition of ouabain to the basolateral, NPAA to the apical, BaCl(2) to the basolateral and bumetanide to basolateral fluid decreased I(sc) by 86+/-1.5%, 53+/-3%, 18+/-1.8% and 13+/-1.9% in RCrECL cultured from pigmented rabbits, while 85+/-0.7%, 36+/-1.6%, 38+/-1.8% and 15+/-3.5% decreases are observed for RCrECL from albino rabbits, respectively. Air-interface cultured RCrECL from either pigmented or albino rabbits exhibited active ion transport properties similar to those present in excised tissues. This primary culture system may be a reliable in-vitro model for mechanistic characterization of corneal epithelial function and regulation of transport properties.

  12. Using omeprazole to link the components of the post-prandial alkaline tide in the spiny dogfish, Squalus acanthias.

    PubMed

    Wood, Chris M; Schultz, Aaron G; Munger, R Stephen; Walsh, Patrick J

    2009-03-01

    After a meal, dogfish exhibit a metabolic alkalosis in the bloodstream and a marked excretion of basic equivalents across the gills to the external seawater. We used the H(+), K(+)-ATPase pump inhibitor omeprazole to determine whether these post-prandial alkaline tide events were linked to secretion of H(+) (accompanied by Cl(-)) in the stomach. Sharks were fitted with indwelling stomach tubes for pretreatment with omeprazole (five doses of 5 mg omeprazole per kilogram over 48 h) or comparable volumes of vehicle (saline containing 2% DMSO) and for sampling of gastric chyme. Fish were then fed an involuntary meal by means of the stomach tube consisting of minced flatfish muscle (2% of body mass) suspended in saline (4% of body mass total volume). Omeprazole pre-treatment delayed the post-prandial acidification of the gastric chyme, slowed the rise in Cl(-) concentration of the chyme and altered the patterns of other ions, indicating inhibition of H(+) and accompanying Cl(-) secretion. Omeprazole also greatly attenuated the rise in arterial pH and bicarbonate concentrations and reduced the net excretion of basic equivalents to the water by 56% over 48 h. Arterial blood CO(2) pressure (Pa(CO(2))) and plasma ions were not substantially altered. These results indicate that elevated gastric H(+) secretion (as HCl) in the digestive process is the major cause of the systemic metabolic alkalosis and the accompanying rise in base excretion across the gills that constitute the alkaline tide in the dogfish.

  13. Prevention of duodenal ileus reveals functional differences in the duodenal response to luminal hypertonicity in Sprague-Dawley and Dark Agouti rats.

    PubMed

    Sedin, J; Sjöblom, M; Nylander, O

    2014-03-01

    The mechanism by which the duodenum adjusts the luminal osmolality remains unclear. The aim was to compare the duodenal osmoregulation in response to different hyperosmolar solutions in Sprague-Dawley and Dark Agouti rats and to elucidate whether cyclooxygenase-2 inhibition affects these responses. The duodenum was perfused in situ with a 700-milliosmolar solution (NaCl alone, D-glucose ± NaCl, D-mannitol ± NaCl or orange juice), and the effects on the duodenal motility, mucosal permeability, luminal alkalinization, fluid flux and osmoregulation were assessed in anaesthetized rats. The change in net fluid flux and luminal osmolality, in response to a given hyperosmolar solution, was almost identical in control rats of both strains. In control rats, hypertonic D-glucose-NaCl induced fluid secretion only in the presence of phlorizin, an inhibitor of SGLT1. Cyclooxygenase-2 inhibition potentiated the hypertonicity-induced fluid secretion and increased the osmolality-adjusting capability in both strains, but the responses were greater in Dark Agouti rats. While cyclooxygenase-2-inhibited Dark Agouti rats responded to the hyperosmolar solutions with depression of motility and increased mucosal permeability, these effects were absent or smaller in the Sprague-Dawley strain. In contrast, orange juice induced the same duodenal responses in cyclooxygenase-2-inhibited Dark Agouti and Sprague-Dawley rats. The duodenum possesses the ability to absorb fluid despite a very high luminal osmolality. Inhibition of cyclooxygenase-2 markedly enhanced the capability of the duodenum to secrete fluid and to decrease luminal osmolality, irrespective of the hyperosmolar solution or the rat strain used, and revealed notable differences between the two strains with regard to their osmolality-adjusting capability. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Regulation of Cl(-) secretion by AMPK in vivo.

    PubMed

    Kongsuphol, Patthara; Hieke, Bernhard; Ousingsawat, Jiraporn; Almaca, Joana; Viollet, Benoit; Schreiber, Rainer; Kunzelmann, Karl

    2009-03-01

    Previous in vitro studies suggested that Cl(-) currents produced by the cystic fibrosis transmembrane conductance regulator (CFTR; ABCC7) are inhibited by the alpha1 isoform of the adenosine monophosphate (AMP)-stimulated kinase (AMPK). AMPK is a serine/threonine kinase that is activated during metabolic stress. It has been proposed as a potential mediator for transport-metabolism coupling in epithelial tissues. All previous studies have been performed in vitro and thus little is known about the regulation of Cl(-) secretion by AMPK in vivo. Using AMPKalpha1(-/-) mice and wild-type littermates, we demonstrate that phenformin, an activator of AMPK, strongly inhibits cAMP-activated Cl(-) secretion in mouse airways and colon, when examined in ex vivo in Ussing chamber recordings. However, phenformin was equally effective in AMPKalpha1(-/-) and wild-type animals, suggesting additional AMPK-independent action of phenformin. Phenformin inhibited CFTR Cl(-) conductance in basolaterally permeabilized colonic epithelium from AMPKalpha1(+/+) but not AMPKalpha1(-/-) mice. The inhibitor of AMPK compound C enhanced CFTR-mediated Cl(-) secretion in epithelial tissues of AMPKalpha1(-/-) mice, but not in wild-type littermates. There was no effect on Ca(2+)-mediated Cl(-) secretion, activated by adenosine triphosphate or carbachol. Moreover CFTR-dependent Cl(-) secretion was enhanced in the colon of AMPKalpha1(-/-) mice, as indicated in Ussing chamber ex vivo and rectal PD measurements in vivo. Taken together, these data suggest that epithelial Cl(-) secretion mediated by CFTR is controlled by AMPK in vivo.

  15. Fluoroquinolone (ciprofloxacin) secretion by human intestinal epithelial (Caco-2) cells

    PubMed Central

    Cavet, M E; West, M; Simmons, N L

    1997-01-01

    Human intestinal epithelial Caco-2 cells were used to investigate the mechanistic basis of transepithelial secretion of the fluoroquinolone antibiotic ciprofloxacin. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to competitive inhibition by sulphate, thiosulphate, oxalate, succinate and para-amino hippurate, probenecid (10 mM), taurocholate (100 μM) or bromosulphophthalein (100 μM). Similarly tetraethylammonium and N-′methylnicotinamide (10 mM) were without effect. Net secretion of ciprofloxacin was inhibited by the organic exchange inhibitor 4,4′-diisothiocyanostilbene-2-2′-disulphonic acid (DIDS, 400 μM). Net secretion of ciprofloxacin was partially inhibited by 100 μM verapamil, whilst net secretion of the P-glycoprotein substrate vinblastine was totally abolished under these conditions. Ciprofloxacin secretion was unaltered after preincubation of cells with two anti-P-glycoprotein antibodies (UIC2 and MRK16), which both significantly reduced secretory vinblastine flux (measured in the same cell batch). Ciprofloxacin (3 mM) failed to inhibit vinblastine net secretion in Caco-2 epithelia, and was not itself secreted by the P-glycoprotein expressing and vinblastine secreting dog kidney cell line, MDCK. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to alterations of either cytosolic or medium pH, or dependent on the presence of medium Na+, Cl− or K+ in the bathing media. The substrate specificity of the ciprofloxacin secretory transport in Caco-2 epithelia is distinct from both the renal organic anion and cation transport. A role for P-glycoprotein in ciprofloxacin secretion may also be excluded. A novel transport mechanism, sensitive to both DIDS and verapamil mediates secretion of ciprofloxacin by human intestinal Caco-2 epithelia. PMID:9283689

  16. Cellular mechanisms underlying the inhibitory effect of flufenamic acid on chloride secretion in human intestinal epithelial cells.

    PubMed

    Pongkorpsakol, Pawin; Yimnual, Chantapol; Chatsudthipong, Varanuj; Rukachaisirikul, Vatcharin; Muanprasat, Chatchai

    2017-06-01

    Intestinal Cl - secretion is involved in the pathogenesis of secretory diarrheas including cholera. We recently demonstrated that flufenamic acid (FFA) suppressed Vibrio cholerae El Tor variant-induced intestinal fluid secretion via mechanisms involving AMPK activation and NF-κB-suppression. The present study aimed to investigate the effect of FFA on transepithelial Cl - secretion in human intestinal epithelial (T84) cells. FFA inhibited cAMP-dependent Cl - secretion in T84 cell monolayers with IC 50 of ∼8 μM. Other fenamate drugs including tolfenamic acid, meclofenamic acid and mefenamic acid exhibited the same effect albeit with lower potency. FFA also inhibited activities of CFTR, a cAMP-activated apical Cl - channel, and KCNQ1/KCNE3, a cAMP-activated basolateral K + channel. Mechanisms of CFTR inhibition by FFA did not involve activation of its negative regulators. Interestingly, FFA inhibited Ca 2+ -dependent Cl - secretion with IC 50 of ∼10 μM. FFA inhibited activities of Ca 2+ -activated Cl - channels and K Ca 3.1, a Ca 2+ -activated basolateral K + channels, but had no effect on activities of Na + -K + -Cl - cotransporters and Na + -K + ATPases. These results indicate that FFA inhibits both cAMP and Ca 2+ -dependent Cl - secretion by suppressing activities of both apical Cl - channels and basolateral K + channels. FFA and other fenamate drugs may be useful in the treatment of secretory diarrheas. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  17. Mechanisms of bicarbonate secretion: lessons from the airways.

    PubMed

    Bridges, Robert J

    2012-08-01

    Early studies showed that airway cells secrete HCO(3)(-) in response to cAMP-mediated agonists and HCO(3)(-) secretion was impaired in cystic fibrosis (CF). Studies with Calu-3 cells, an airway serous model with high expression of CFTR, also show the secretion of HCO(3)(-) when cells are stimulated with cAMP-mediated agonists. Activation of basolateral membrane hIK-1 K(+) channels inhibits HCO(3)(-) secretion and stimulates Cl(-) secretion. CFTR mediates the exit of both HCO(3)(-) and Cl(-) across the apical membrane. Entry of HCO(3)(-) on a basolateral membrane NBC or Cl(-) on the NKCC determines which anion is secreted. Switching between these two secreted anions is determined by the activity of hIK-1 K(+) channels.

  18. Ca2+-driven intestinal HCO3− secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport

    PubMed Central

    Cooper, Christopher A.; Whittamore, Jonathan M.

    2010-01-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO3−) secretion and Cl− absorption via Cl−/HCO3− exchange fueled by metabolic CO2; and 3) alkaline precipitation of Ca2+ as insoluble CaCO3, which aids H2O absorption). The latter two processes involve high rates of epithelial HCO3− secretion stimulated by intestinal Ca2+ and can drive a major portion of water absorption. At higher salinities and ambient Ca2+ concentrations the osmoregulatory role of intestinal HCO3− secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO2) and acid-base regulation (as intestinal cells must export H+ into the blood to balance apical HCO3− secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca2+. Increasing the luminal Ca2+ concentration caused a large elevation in intestinal HCO3− production and excretion. Additionally, blood pH decreased (−0.13 pH units) and plasma partial pressure of CO2 (Pco2) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca2+] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO3− production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca2+ independent of any other ion or overall osmolality in marine teleost fish. PMID:20130227

  19. Histamine stimulates chloride secretion in omeprazole-inhibited frog gastric mucosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGreevy, J.; Barton, R.; Housinger, T.

    1986-03-05

    Omeprazole (OME) stops hydrogen ion (H) secretion in the histamine (HIST)-stimulated gastric mucosa while the chloride (Cl) which had accompanied the H continues to be pumped into the lumen. This finding suggests that the Cl pump is independent of the H/K ATP-ase driven H pump. To test this hypothesis, 16 Ussing-chambered frog mucosas were exposed to OME prior to HIST stimulation. If the Cl pump is independent, HIST should stimulate Cl secretion in the OME-inhibited mucosa. A 1 hr control (CON) interval preceded exposure to OME (10/sup -4/M) in the nutrient solution. Potential difference (PD), short-circuit current (Isc), resistance (R),more » H flux (J/sup H/) and Cl flux (J/sup Cl/ with /sup 36/Cl) were measured every 15 min. After 1 hr of OME exposure, HIST (10/sup -5/M) was added to the nutrient solution. The findings demonstrate that HIST stimulates Cl secretion in the OME-inhibited bullfrog gastric mucosa.« less

  20. Regulation of Cl^- Channels in Normal and Cystic Fibrosis Airway Epithelial Cells by Extracellular ATP

    NASA Astrophysics Data System (ADS)

    Stutts, M. J.; Chinet, T. C.; Mason, S. J.; Fullton, J. M.; Clarke, L. L.; Boucher, R. C.

    1992-03-01

    The rate of Cl^- secretion by human airway epithelium is determined, in part, by apical cell membrane Cl^- conductance. In cystic fibrosis airway epithelia, defective regulation of Cl^- conductance decreases the capability to secrete Cl^-. Here we report that extracytosolic ATP in the luminal bath of cultured human airway epithelia increased transepithelial Cl^- secretion and apical membrane Cl^- permeability. Single-channel studies in excised membrane patches revealed that ATP increased the open probability of outward rectifying Cl^- channels. The latter effect occurs through a receptor mechanism that requires no identified soluble second messengers and is insensitive to probes of G protein function. These results demonstrate a mode of regulation of anion channels by binding ATP at the extracellular surface. Regulation of Cl^- conductance by external ATP is preserved in cystic fibrosis airway epithelia.

  1. Fractalkine (CX3CL1), a new factor protecting β-cells against TNFα.

    PubMed

    Rutti, Sabine; Arous, Caroline; Schvartz, Domitille; Timper, Katharina; Sanchez, Jean-Charles; Dermitzakis, Emmanouil; Donath, Marc Y; Halban, Philippe A; Bouzakri, Karim

    2014-10-01

    We have previously shown the existence of a muscle-pancreas intercommunication axis in which CX3CL1 (fractalkine), a CX3C chemokine produced by skeletal muscle cells, could be implicated. It has recently been shown that the fractalkine system modulates murine β-cell function. However, the impact of CX3CL1 on human islet cells especially regarding a protective role against cytokine-induced apoptosis remains to be investigated. Gene expression was determined using RNA sequencing in human islets, sorted β- and non-β-cells. Glucose-stimulated insulin secretion (GSIS) and glucagon secretion from human islets was measured following 24 h exposure to 1-50 ng/ml CX3CL1. GSIS and specific protein phosphorylation were measured in rat sorted β-cells exposed to CX3CL1 for 48 h alone or in the presence of TNFα (20 ng/ml). Rat and human β-cell apoptosis (TUNEL) and rat β-cell proliferation (BrdU incorporation) were assessed after 24 h treatment with increasing concentrations of CX3CL1. Both CX3CL1 and its receptor CX3CR1 are expressed in human islets. However, CX3CL1 is more expressed in non-β-cells than in β-cells while its receptor is more expressed in β-cells. CX3CL1 decreased human (but not rat) β-cell apoptosis. CX3CL1 inhibited human islet glucagon secretion stimulated by low glucose but did not impact human islet and rat sorted β-cell GSIS. However, CX3CL1 completely prevented the adverse effect of TNFα on GSIS and on molecular mechanisms involved in insulin granule trafficking by restoring the phosphorylation (Akt, AS160, paxillin) and expression (IRS2, ICAM-1, Sorcin, PCSK1) of key proteins involved in these processes. We demonstrate for the first time that human islets express and secrete CX3CL1 and CX3CL1 impacts them by decreasing glucagon secretion without affecting insulin secretion. Moreover, CX3CL1 decreases basal apoptosis of human β-cells. We further demonstrate that CX3CL1 protects β-cells from the adverse effects of TNFα on their function by restoring the expression and phosphorylation of key proteins of the insulin secretion pathway.

  2. Bicarbonate-rich fluid secretion predicted by a computational model of guinea-pig pancreatic duct epithelium.

    PubMed

    Yamaguchi, Makoto; Steward, Martin C; Smallbone, Kieran; Sohma, Yoshiro; Yamamoto, Akiko; Ko, Shigeru B H; Kondo, Takaharu; Ishiguro, Hiroshi

    2017-03-15

    The ductal system of the pancreas secretes large volumes of alkaline fluid containing HCO 3 - concentrations as high as 140 mm during hormonal stimulation. A computational model has been constructed to explore the underlying ion transport mechanisms. Parameters were estimated by fitting the model to experimental data from guinea-pig pancreatic ducts. The model was readily able to secrete 140 mm HCO 3 - . Its capacity to do so was not dependent upon special properties of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels and solute carrier family 26 member A6 (SLC26A6) anion exchangers. We conclude that the main requirement for secreting high HCO 3 - concentrations is to minimize the secretion of Cl - ions. These findings help to clarify the mechanism responsible for pancreatic HCO 3 - secretion, a vital process that prevents the formation of protein plugs and viscous mucus in the ducts, which could otherwise lead to pancreatic disease. A computational model of guinea-pig pancreatic duct epithelium was developed to determine the transport mechanism by which HCO 3 - ions are secreted at concentrations in excess of 140 mm. Parameters defining the contributions of the individual ion channels and transporters were estimated by least-squares fitting of the model predictions to experimental data obtained from isolated ducts and intact pancreas under a range of experimental conditions. The effects of cAMP-stimulated secretion were well replicated by increasing the activities of the basolateral Na + -HCO 3 - cotransporter (NBC1) and apical Cl - /HCO 3 - exchanger (solute carrier family 26 member A6; SLC26A6), increasing the basolateral K + permeability and apical Cl - and HCO 3 - permeabilities (CFTR), and reducing the activity of the basolateral Cl - /HCO 3 - exchanger (anion exchanger 2; AE2). Under these conditions, the model secreted ∼140 mm HCO 3 - at a rate of ∼3 nl min -1  mm -2 , which is consistent with experimental observations. Alternative 1:2 and 1:1 stoichiometries for Cl - /HCO 3 - exchange via SLC26A6 at the apical membrane were able to support a HCO 3 - -rich secretion. Raising the HCO 3 - /Cl - permeability ratio of CFTR from 0.4 to 1.0 had little impact upon either the secreted HCO 3 - concentration or the volume flow. However, modelling showed that a reduction in basolateral AE2 activity by ∼80% was essential in minimizing the intracellular Cl - concentration following cAMP stimulation and thereby maximizing the secreted HCO 3 - concentration. The addition of a basolateral Na + -K + -2Cl - cotransporter (NKCC1), assumed to be present in rat and mouse ducts, raised intracellular Cl - and resulted in a lower secreted HCO 3 - concentration, as is characteristic of those species. We conclude therefore that minimizing the driving force for Cl - secretion is the main requirement for secreting 140 mm HCO 3 - . © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  3. Modulation of insulin secretion by fatty acyl analogs.

    PubMed

    Las, Guy; Mayorek, Nina; Dickstein, Kobie; Bar-Tana, Jacob

    2006-12-01

    The secretagogue, the incretin-like, and the suppressive activities of long-chain fatty acids (LCFAs) in modulating insulin secretion in vivo and in cultured islets were simulated here by beta,beta'-tetramethyl-hexadecanedioic acid (M16) and alpha,alpha'-tetrachloro-tetradecanedioic acid (Cl-DICA). M16, but not Cl-DICA, serves as a substrate for ATP-dependent CoA thioesterification but is not further metabolized. M16, but not Cl-DICA, acted as a potent insulin secretagogue in islets cultured in basal but not high glucose. Short-term exposure to M16 or Cl-DICA resulted in activation of glucose- but not arginine-stimulated insulin secretion. Long-term exposure to M16, but not to Cl-DICA, resulted in suppression of glucose-, arginine-, and K(+)-stimulated insulin secretion; inhibition of glucose-induced proinsulin biosynthesis; and depletion of islets insulin. beta-Cell mass and islet ATP content remained unaffected. Hence, nonmetabolizable LCFA analogs may highlight discrete LCFA metabolites and pathways involved in modulating insulin secretion, which could be overlooked due to the rapid turnover of natural LCFA.

  4. Modulation of secretagogue-induced chloride secretion by intracellular bicarbonate.

    PubMed

    Dagher, P C; Morton, T Z; Joo, C S; Taglietta-Kohlbrecher, A; Egnor, R W; Charney, A N

    1994-05-01

    We have previously demonstrated inhibition of basal Cl- secretion by intracellular bicarbonate concentration ([HCO3-]i) in rat distal colon. We now examined whether secretagogue-induced Cl- secretion is inhibited by [HCO3-]i as well. Stripped segments of distal colon from male Sprague-Dawley rats and the colon tumor cell line T84 were studied. Flux measurements were performed in the Ussing chamber under short-circuit conditions. [HCO3-]i was calculated from intracellular pH (pHi) values that were estimated with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) and carbachol were used as secretagogues. In both distal colon and T84 cells, [HCO3-]i did not affect cAMP-induced Cl- secretion. However, carbachol-induced secretion was inhibited by [HCO3-]i; in rat colon, Cl- secretion decreased from 2.3 to 1.5 mueq.cm-2.h-1 when [HCO3-]i was increased from 15.0 to 28.4 mM (P < 0.05). In T84 cells, the change in short-circuit current decreased from 8.1 to 1.1 microA/cm2 over a range of [HCO3-]i from 0 to 15.6 mM (P < 0.001). We conclude that [HCO3-]i is an important modulator of carbachol-stimulated Cl- secretion in both rat distal colon and the T84 cell line. cAMP-mediated secretion is not affected by [HCO3-]i.

  5. Computer modeling of gastric parietal cell: significance of canalicular space, gland lumen, and variable canalicular [K+].

    PubMed

    Crothers, James M; Forte, John G; Machen, Terry E

    2016-05-01

    A computer model, constructed for evaluation of integrated functioning of cellular components involved in acid secretion by the gastric parietal cell, has provided new interpretations of older experimental evidence, showing the functional significance of a canalicular space separated from a mucosal bath by a gland lumen and also shedding light on basolateral Cl(-) transport. The model shows 1) changes in levels of parietal cell secretion (with stimulation or H-K-ATPase inhibitors) result mainly from changes in electrochemical driving forces for apical K(+) and Cl(-) efflux, as canalicular [K(+)] ([K(+)]can) increases or decreases with changes in apical H(+)/K(+) exchange rate; 2) H-K-ATPase inhibition in frog gastric mucosa would increase [K(+)]can similarly with low or high mucosal [K(+)], depolarizing apical membrane voltage similarly, so electrogenic H(+) pumping is not indicated by inhibition causing similar increase in transepithelial potential difference (Vt) with 4 and 80 mM mucosal K(+); 3) decreased H(+) secretion during strongly mucosal-positive voltage clamping is consistent with an electroneutral H-K-ATPase being inhibited by greatly decreased [K(+)]can (Michaelis-Menten mechanism); 4) slow initial change ("long time-constant transient") in current or Vt with clamping of Vt or current involves slow change in [K(+)]can; 5) the Na(+)-K(+)-2Cl(-) symporter (NKCC) is likely to have a significant role in Cl(-) influx, despite evidence that it is not necessary for acid secretion; and 6) relative contributions of Cl(-)/HCO3 (-) exchanger (AE2) and NKCC to Cl(-) influx would differ greatly between resting and stimulated states, possibly explaining reported differences in physiological characteristics of stimulated open-circuit Cl(-) secretion (≈H(+)) and resting short-circuit Cl(-) secretion (>H(+)). Copyright © 2016 the American Physiological Society.

  6. Water dynamics in the digestive tract of the freshwater rainbow trout during the processing of a single meal.

    PubMed

    Bucking, Carol; Wood, Chris M

    2006-05-01

    The temporal effects of feeding and digestion on chyme composition, specifically water and solid content, and net fluxes across the gastrointestinal tract, as well as plasma parameters, were examined in freshwater rainbow trout. A single meal of commercial dry pellets, incorporating ballotini beads as inert reference markers, was employed. Plasma Na+ levels increased by 15-20% at 2 h post-feeding, where Cl- levels did not change. Plasma osmolality was well regulated despite an initial chyme osmolality (775 mOsm) 2.8-fold higher than that in the blood plasma. Chyme osmolality throughout the gastrointestinal tract remained significantly higher than plasma osmolality for the duration of the 72 h period. Solid material was absorbed along the entire intestinal tract, although not in the stomach, necessitating the incorporation of an inert marker. A similar temporal pattern of transit between the ballotini beads (solid phase marker) and 3[H]-PEG 4000 (fluid phase marker), provided support for the use of ballotini beads. Large additions of water to the chyme were seen in the stomach, the largest occurring within 2 h following feeding (7.1+/-1.4 ml kg(-1)), and amounted to approximately 16 ml kg(-1) over the first 12 h. As the chyme entered the anterior intestine, a further large water secretion (3.5+/-0.5 ml kg(-1)) was seen. Thereafter the water fluxes into the chyme of the anterior intestine decreased steadily over time, but remained positive, whereas the mid-intestine exhibited net absorption of water at all time points, and the posterior intestine demonstrated little water handling at any time. The endogenous water that was secreted into the anterior intestine was absorbed along the tract, which showed a net water flux close to zero. However, assuming that the water secreted into the stomach was endogenous in nature, the processing of a single meal resulted in net loss of endogenous water (0.24 ml kg(-1) h(-1)) to the environment, a beneficial consequence of the osmotic challenge offered by the food for a freshwater hyperosmotic regulator.

  7. Diet, evolution and aging--the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet.

    PubMed

    Frassetto, L; Morris, R C; Sellmeyer, D E; Todd, K; Sebastian, A

    2001-10-01

    Theoretically, we humans should be better adapted physiologically to the diet our ancestors were exposed to during millions of years of hominid evolution than to the diet we have been eating since the agricultural revolution a mere 10,000 years ago, and since industrialization only 200 years ago. Among the many health problems resulting from this mismatch between our genetically determined nutritional requirements and our current diet, some might be a consequence in part of the deficiency of potassium alkali salts (K-base), which are amply present in the plant foods that our ancestors ate in abundance, and the exchange of those salts for sodium chloride (NaCl), which has been incorporated copiously into the contemporary diet, which at the same time is meager in K-base-rich plant foods. Deficiency of K-base in the diet increases the net systemic acid load imposed by the diet. We know that clinically-recognized chronic metabolic acidosis has deleterious effects on the body, including growth retardation in children, decreased muscle and bone mass in adults, and kidney stone formation, and that correction of acidosis can ameliorate those conditions. Is it possible that a lifetime of eating diets that deliver evolutionarily superphysiologic loads of acid to the body contribute to the decrease in bone and muscle mass, and growth hormone secretion, which occur normally with age? That is, are contemporary humans suffering from the consequences of chronic, diet-induced low-grade systemic metabolic acidosis? Our group has shown that contemporary net acid-producing diets do indeed characteristically produce a low-grade systemic metabolic acidosis in otherwise healthy adult subjects, and that the degree of acidosis increases with age, in relation to the normally occurring age-related decline in renal functional capacity. We also found that neutralization of the diet net acid load with dietary supplements of potassium bicarbonate (KHCO3) improved calcium and phosphorus balances, reduced bone resorption rates, improved nitrogen balance, and mitigated the normally occurring age-related decline in growth hormone secretion--all without restricting dietary NaCl. Moreover, we found that co-administration of an alkalinizing salt of potassium (potassium citrate) with NaCl prevented NaCl from increasing urinary calcium excretion and bone resorption, as occurred with NaCl administration alone. Earlier studies estimated dietary acid load from the amount of animal protein in the diet, inasmuch as protein metabolism yields sulfuric acid as an end-product. In cross-cultural epidemiologic studies, Abelow found that hip fracture incidence in older women correlated with animal protein intake, and they suggested a causal relation to the acid load from protein. Those studies did not consider the effect of potential sources of base in the diet. We considered that estimating the net acid load of the diet (i. e., acid minus base) would require considering also the intake of plant foods, many of which are rich sources of K-base, or more precisely base precursors, substances like organic anions that the body metabolizes to bicarbonate. In following up the findings of Abelow et al., we found that plant food intake tended to be protective against hip fracture, and that hip fracture incidence among countries correlated inversely with the ratio of plant-to-animal food intake. These findings were confirmed in a more homogeneous population of white elderly women residents of the U.S. These findings support affirmative answers to the questions we asked above. Can we provide dietary guidelines for controlling dietary net acid loads to minimize or eliminate diet-induced and age-amplified chronic low-grade metabolic acidosis and its pathophysiological sequelae. We discuss the use of algorithms to predict the diet net acid and provide nutritionists and clinicians with relatively simple and reliable methods for determining and controlling the net acid load of the diet. A more difficult question is what level of acidosis is acceptable. We argue that any level of acidosis may be unacceptable from an evolutionarily perspective, and indeed, that a low-grade metabolic alkalosis may be the optimal acid-base state for humans.

  8. HCO3(-) secretion by murine nasal submucosal gland serous acinar cells during Ca2+-stimulated fluid secretion.

    PubMed

    Lee, Robert J; Harlow, Janice M; Limberis, Maria P; Wilson, James M; Foskett, J Kevin

    2008-07-01

    Airway submucosal glands contribute to airway surface liquid (ASL) composition and volume, both important for lung mucociliary clearance. Serous acini generate most of the fluid secreted by glands, but the molecular mechanisms remain poorly characterized. We previously described cholinergic-regulated fluid secretion driven by Ca(2+)-activated Cl(-) secretion in primary murine serous acinar cells revealed by simultaneous differential interference contrast (DIC) and fluorescence microscopy. Here, we evaluated whether Ca(2+)-activated Cl(-) secretion was accompanied by secretion of HCO(3)(-), possibly a critical ASL component, by simultaneous measurements of intracellular pH (pH(i)) and cell volume. Resting pH(i) was 7.17 +/- 0.01 in physiological medium (5% CO(2)-25 mM HCO(3)(-)). During carbachol (CCh) stimulation, pH(i) fell transiently by 0.08 +/- 0.01 U concomitantly with a fall in Cl(-) content revealed by cell shrinkage, reflecting Cl(-) secretion. A subsequent alkalinization elevated pH(i) to above resting levels until agonist removal, whereupon it returned to prestimulation values. In nominally CO(2)-HCO(3)(-)-free media, the CCh-induced acidification was reduced, whereas the alkalinization remained intact. Elimination of driving forces for conductive HCO(3)(-) efflux by ion substitution or exposure to the Cl(-) channel inhibitor niflumic acid (100 microM) strongly inhibited agonist-induced acidification by >80% and >70%, respectively. The Na(+)/H(+) exchanger (NHE) inhibitor dimethylamiloride (DMA) increased the magnitude (greater than twofold) and duration of the CCh-induced acidification. Gene expression profiling suggested that serous cells express NHE isoforms 1-4 and 6-9, but pharmacological sensitivities demonstrated that alkalinization observed during both CCh stimulation and pH(i) recovery from agonist-induced acidification was primarily due to NHE1, localized to the basolateral membrane. These results suggest that serous acinar cells secrete HCO(3)(-) during Ca(2+)-evoked fluid secretion by a mechanism that involves the apical membrane secretory Cl(-) channel, with HCO(3)(-) secretion sustained by activation of NHE1 in the basolateral membrane. In addition, other Na(+)-dependent pH(i) regulatory mechanisms exist, as evidenced by stronger inhibition of alkalinization in Na(+)-free media.

  9. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conducemore » to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.« less

  10. Loss of the anion exchanger DRA (Slc26a3), or PAT1 (Slc26a6), alters sulfate transport by the distal ileum and overall sulfate homeostasis.

    PubMed

    Whittamore, Jonathan M; Hatch, Marguerite

    2017-09-01

    The ileum is considered the primary site of inorganic sulfate ([Formula: see text]) absorption. In the present study, we explored the contributions of the apical chloride/bicarbonate (Cl - /[Formula: see text]) exchangers downregulated in adenoma (DRA; Slc26a3), and putative anion transporter 1 (PAT1; Slc26a6), to the underlying transport mechanism. Transepithelial 35 [Formula: see text] and 36 Cl - fluxes were determined across isolated, short-circuited segments of the distal ileum from wild-type (WT), DRA-knockout (KO), and PAT1-KO mice, together with measurements of urine and plasma sulfate. The WT distal ileum supported net sulfate absorption [197.37 ± 13.61 (SE) nmol·cm -2 ·h -1 ], but neither DRA nor PAT1 directly contributed to the unidirectional mucosal-to-serosal flux ([Formula: see text]), which was sensitive to serosal (but not mucosal) DIDS, dependent on Cl - , and regulated by cAMP. However, the absence of DRA significantly enhanced net sulfate absorption by one-third via a simultaneous rise in [Formula: see text] and a 30% reduction to the secretory serosal-to-mucosal flux ([Formula: see text]). We propose that DRA, together with PAT1, contributes to [Formula: see text] by mediating sulfate efflux across the apical membrane. Associated with increased ileal sulfate absorption in vitro, plasma sulfate was 61% greater, and urinary sulfate excretion ( U SO4 ) 2.2-fold higher, in DRA-KO mice compared with WT controls, whereas U SO4 was increased 1.8-fold in PAT1-KO mice. These alterations to sulfate homeostasis could not be accounted for by any changes to renal sulfate handling suggesting that the source of this additional sulfate was intestinal. In summary, we characterized transepithelial sulfate fluxes across the mouse distal ileum demonstrating that DRA (and to a lesser extent, PAT1) secretes sulfate with significant implications for intestinal sulfate absorption and overall homeostasis. NEW & NOTEWORTHY Sulfate is an essential anion that is actively absorbed from the small intestine involving members of the Slc26 gene family. Here, we show that the main intestinal chloride transporter Slc26a3, known as downregulated in adenoma (DRA), also handles sulfate and contributes to its secretion into the lumen. In the absence of functional DRA (as in the disease congenital chloride diarrhea), net intestinal sulfate absorption was significantly enhanced resulting in substantial alterations to overall sulfate homeostasis. Copyright © 2017 the American Physiological Society.

  11. Chloride retention and release in a boreal forest soil: effects of soil water residence time and nitrogen and chloride loads.

    PubMed

    Bastviken, David; Sandén, Per; Svensson, Teresia; Ståhlberg, A Carina; Magounakis, Malin; Oberg, Gunilla

    2006-05-01

    The common assumption that chloride (Cl-) is conservative in soils and can be used as a groundwater tracer is currently being questioned, and an increasing number of studies indicate that Cl- can be retained in soils. We performed lysimeter experiments with soil from a coniferous forest in southeast Sweden to determine whether pore water residence time and nitrogen and Cl- loads affected Cl- retention. Over the first 42 days there was a net retention of Cl- with retention rates averaging 3.1 mg CI- m(-2) d(-1) (68% of the added Cl- retained over 42 days). Thereafter, a net release of Cl- at similar rates was observed for the remaining experimental period (85 d). Longer soil water residence time and higher Cl- load gave higher initial retention and subsequent release rates than shorter residence time and lower Cl- load did. Nitrogen load did not affect Cl transformation rates. This study indicates that simultaneous retention and release of Cl- can occur in soils, and that rates may be considerable relative to the load. The retention of Cl- observed was probably due to chlorination of soil organic matter or ion exchange. The cause of the shift between net retention and net release is unclear, but we hypothesize that the presence of O2 or the presence of microbially available organic matter regulates Cl- retention and release rates.

  12. Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: functional and molecular aspects.

    PubMed

    Woda, Craig B; Miyawaki, Nobuyuki; Ramalakshmi, Santhanam; Ramkumar, Mohan; Rojas, Raul; Zavilowitz, Beth; Kleyman, Thomas R; Satlin, Lisa M

    2003-10-01

    High urinary flow rates stimulate K secretion in the fully differentiated but not neonatal or weanling rabbit cortical collecting duct (CCD). Both small-conductance secretory K and high-conductance Ca2+/stretch-activated maxi-K channels have been identified in the apical membrane of the mature CCD by patch-clamp analysis. We reported that flow-stimulated net K secretion in the adult rabbit CCD is 1) blocked by TEA and charybdotoxin, inhibitors of intermediate- and high-conductance (maxi-K) Ca2+-activated K channels, and 2) associated with increases in net Na absorption and intracellular Ca2+ concentration ([Ca2+]i). The present study examined whether the absence of flow-stimulated K secretion early in life is due to a 1) limited flow-induced rise in net Na absorption and/or [Ca2+]i and/or 2) paucity of apical maxi-K channels. An approximately sixfold increase in tubular fluid flow rate in CCDs isolated from 4-wk-old rabbits and microperfused in vitro led to an increase in net Na absorption and [Ca2+]i, similar in magnitude to the response observed in 6-wk-old tubules, but it failed to generate an increase in net K secretion. By 5 wk of age, there was a small, but significant, flow-stimulated rise in net K secretion that increased further by 6 wk of life. Luminal perfusion with iberiotoxin blocked the flow stimulation of net K secretion in the adult CCD, confirming the identity of the maxi-K channel in this response. Maxi-K channel alpha-subunit message was consistently detected in single CCDs from animals >/=4 wk of age by RT-PCR. Indirect immunofluorescence microscopy using antibodies directed against the alpha-subunit revealed apical labeling of intercalated cells in cryosections from animals >/=5 wk of age; principal cell labeling was generally intracellular and punctate. We speculate that the postnatal appearance of flow-dependent K secretion is determined by the transcriptional/translational regulation of expression of maxi-K channels. Furthermore, our studies suggest a novel function for intercalated cells in mediating flow-stimulated K secretion.

  13. Loss of Cystic Fibrosis Transmembrane Regulator Impairs Intestinal Oxalate Secretion.

    PubMed

    Knauf, Felix; Thomson, Robert B; Heneghan, John F; Jiang, Zhirong; Adebamiro, Adedotun; Thomson, Claire L; Barone, Christina; Asplin, John R; Egan, Marie E; Alper, Seth L; Aronson, Peter S

    2017-01-01

    Patients with cystic fibrosis have an increased incidence of hyperoxaluria and calcium oxalate nephrolithiasis. Net intestinal absorption of dietary oxalate results from passive paracellular oxalate absorption as modified by oxalate back secretion mediated by the SLC26A6 oxalate transporter. We used mice deficient in the cystic fibrosis transmembrane conductance regulator gene (Cftr) to test the hypothesis that SLC26A6-mediated oxalate secretion is defective in cystic fibrosis. We mounted isolated intestinal tissue from C57BL/6 (wild-type) and Cftr -/- mice in Ussing chambers and measured transcellular secretion of [ 14 C]oxalate. Intestinal tissue isolated from Cftr -/- mice exhibited significantly less transcellular oxalate secretion than intestinal tissue of wild-type mice. However, glucose absorption, another representative intestinal transport process, did not differ in Cftr -/- tissue. Compared with wild-type mice, Cftr -/- mice showed reduced expression of SLC26A6 in duodenum by immunofluorescence and Western blot analysis. Furthermore, coexpression of CFTR stimulated SLC26A6-mediated Cl - -oxalate exchange in Xenopus oocytes. In association with the profound defect in intestinal oxalate secretion, Cftr -/- mice had serum and urine oxalate levels 2.5-fold greater than those of wild-type mice. We conclude that defective intestinal oxalate secretion mediated by SLC26A6 may contribute to the hyperoxaluria observed in this mouse model of cystic fibrosis. Future studies are needed to address whether similar mechanisms contribute to the increased risk for calcium oxalate stone formation observed in patients with cystic fibrosis. Copyright © 2016 by the American Society of Nephrology.

  14. Structural Basis of Chemokine Sequestration by CrmD, a Poxvirus-Encoded Tumor Necrosis Factor Receptor

    PubMed Central

    Wang, Dongli; Chen, Dongwei; He, Guangjun; Huang, Li; Wang, Hanzhong; Wang, Xinquan

    2011-01-01

    Pathogens have evolved sophisticated mechanisms to evade detection and destruction by the host immune system. Large DNA viruses encode homologues of chemokines and their receptors, as well as chemokine-binding proteins (CKBPs) to modulate the chemokine network in host response. The SECRET domain (smallpox virus-encoded chemokine receptor) represents a new family of viral CKBPs that binds a subset of chemokines from different classes to inhibit their activities, either independently or fused with viral tumor necrosis factor receptors (vTNFRs). Here we present the crystal structures of the SECRET domain of vTNFR CrmD encoded by ectromelia virus and its complex with chemokine CX3CL1. The SECRET domain adopts a β-sandwich fold and utilizes its β-sheet I surface to interact with CX3CL1, representing a new chemokine-binding manner of viral CKBPs. Structure-based mutagenesis and biochemical analysis identified important basic residues in the 40s loop of CX3CL1 for the interaction. Mutation of corresponding acidic residues in the SECRET domain also affected the binding for other chemokines, indicating that the SECRET domain binds different chemokines in a similar manner. We further showed that heparin inhibited the binding of CX3CL1 by the SECRET domain and the SECRET domain inhibited RAW264.7 cell migration induced by CX3CL1. These results together shed light on the structural basis for the SECRET domain to inhibit chemokine activities by interfering with both chemokine-GAG and chemokine-receptor interactions. PMID:21829356

  15. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells

    PubMed Central

    Stanton, Bruce A.; Coutermarsh, Bonita; Barnaby, Roxanna; Hogan, Deborah

    2015-01-01

    Background P. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF). Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE) cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second) by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770. Methods and Results F508del-CFBE cells and primary cultures of CF-HBE cells (F508del/F508del) were exposed to VX-809 alone or a combination of VX-809 + VX-770 for 48 hours and the effect of P. aeruginosa on F508del-CFTR Cl secretion was measured in Ussing chambers. The effect of VX-809 on F508del-CFTR abundance was measured by cell surface biotinylation and western blot analysis. PAO1, PA14, PAK and 6 clinical isolates of P. aeruginosa (3 mucoid and 3 non-mucoid) significantly reduced drug stimulated F508del-CFTR Cl secretion, and plasma membrane F508del-CFTR. Conclusion The observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials. PMID:26018799

  16. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells.

    PubMed

    Stanton, Bruce A; Coutermarsh, Bonita; Barnaby, Roxanna; Hogan, Deborah

    2015-01-01

    P. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF). Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE) cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second) by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770. F508del-CFBE cells and primary cultures of CF-HBE cells (F508del/F508del) were exposed to VX-809 alone or a combination of VX-809 + VX-770 for 48 hours and the effect of P. aeruginosa on F508del-CFTR Cl secretion was measured in Ussing chambers. The effect of VX-809 on F508del-CFTR abundance was measured by cell surface biotinylation and western blot analysis. PAO1, PA14, PAK and 6 clinical isolates of P. aeruginosa (3 mucoid and 3 non-mucoid) significantly reduced drug stimulated F508del-CFTR Cl secretion, and plasma membrane F508del-CFTR. The observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials.

  17. Activation of intestinal Cl- secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator.

    PubMed

    Bijvelds, Marcel J C; Bot, Alice G M; Escher, Johanna C; De Jonge, Hugo R

    2009-09-01

    Lubiprostone alleviates constipation by stimulating intestinal fluid secretion, purportedly through activation of ClC-2-type Cl(-) channels. Intestinal obstruction is also a recurrent cause of distress in cystic fibrosis (CF) patients, caused by loss of CF transmembrane conductance regulator (CFTR) Cl(-) channel activity. Because ClC-2 recruitment might be beneficial to CF patients, we investigated lubiprostone's mode of action. Cl(-) transport was measured in an Ussing chamber, in 3 model systems: (1) T84 colonocytes, (2) intestinal epithelium of wild-type and CF mice, and (3) intestinal epithelium of CF patients and controls. In T84 monolayers, lubiprostone induced a robust secretory response. Selective permeabilization of the basolateral plasma membrane revealed that lubiprostone activated an apical Cl(-) conductance. The lubiprostone response was attenuated by H89, an inhibitor of the cAMP-dependent protein kinase, and lubiprostone precluded responsiveness to the cAMP agonist forskolin. CFTR blockage by CFTRinh172, but not ClC-2 blockage by CdCl(2), inhibited the lubiprostone response. Lubiprostone induced a CdCl(2)-insensitive secretory response in mouse intestine, but failed to induce intestinal Cl(-) secretion in Cftr-null mice. Correspondingly, lubiprostone induced a secretory response in human intestinal epithelium, but not in tissue of CF patients. The EP(4)-type prostanoid receptor antagonist L-161,982 blocked the lubiprostone response in all 3 models studied. In T84 cells, lubiprostone induced a rise in cAMP levels that was sensitive to EP(4)-receptor blockage. Lubiprostone enhances intestinal Cl(-) and fluid secretion via prostanoid receptor signaling, triggering activation of CFTR. Therefore, it is of limited use for treatment of CF-related intestinal disease.

  18. Effect of somatostatin-14 on duodenal mucosal bicarbonate secretion in guinea pigs.

    PubMed

    Odes, H S; Muallem, R; Reimer, R; Ioffe, S; Beil, W; Schwenk, M; Sewing, K F

    1995-03-01

    The role of somatostatin-14 in duodenal mucosal HCO3- secretion was investigated in anesthetized, indomethacin-treated guinea pigs. Net HCO3- output from the isolated, perfused (24 mM NaHCO3 + 130 mM NaCl) proximal duodenum was measured during intravenous infusion (alone or in combination) of somatostatin-14, carbachol, vasoactive intestinal peptide (VIP), and prostaglandin E2 (PGE2). In homogenates of duodenal enterocytes, the effect of these agents on adenylate cyclase activity was studied. Basal duodenal HCO3- secretion (3.5 +/- 0.2 mumol/cm/10 min) was reduced dose dependently by somatostatin-14 (10(-11) mol/kg, 10(-9) mol/kg, and 10(-7) mol/kg). Carbachol, VIP, and PGE2 (all 10(-8) mol/kg) increased basal duodenal HCO3- secretion two- to threefold. Somatostatin-14 (10(-7) mol/kg) abolished the stimulatory effect of carbachol and VIP, but not that of PGE2. Basal adenylate cyclase activity in isolated duodenal enterocytes (9.4 +/- 1.0 pmol cAMP/mg protein/min) was unaltered by somatostatin (10(-6) mol/liter) or carbachol (10(-3) mol/liter). VIP (10(-8) mol/liter) and PGE2 (10(-7) mol/liter) increased adenylate cyclase activity two- to threefold, and these effects were unchanged by somatostatin-14 (10(-6) mol/liter). In conclusion, somatostatin-14 inhibits basal and carbachol- and VIP-stimulated duodenal HCO3- secretion, and its mechanism of action is not via inhibition of adenylate cyclase activity in duodenal enterocytes.

  19. The selective cyclooxygenase-2 inhibitor parecoxib markedly improves the ability of the duodenum to regulate luminal hypertonicity in anaesthetized rats.

    PubMed

    Sedin, J; Sjöblom, M; Nylander, O

    2012-07-01

    To examine whether the prevention of post-operative duodenal ileus by treatment with parecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, affects the ability of the duodenum to respond to luminal hypertonicity. The proximal duodenums of anaesthetized rats were perfused with hypertonic NaCl solutions with osmolalities of 400, 500, 600 or 700 mOsm kg(-1) , and the effects on mucosal permeability, motility, transepithelial net fluid flux and effluent osmolality were assessed in the absence (control) and presence of parecoxib. Parecoxib-treated, but not control animals, exhibited duodenal contractions, which were reduced by the nicotinic receptor antagonists mecamylamine and hexamethonium and by perfusion with 700 mOsm kg(-1) . All animals responded to luminal hypertonicity with induction of net fluid secretion, which peaked at an osmolality of 500 mOsm kg(-1) . The hypertonicity-induced increases in fluid secretion were twofold greater in parecoxib-treated than in control rats and attenuated by nicotinic receptor blockade. The decrease in luminal osmolality correlated with the osmolality of the perfusion solution in both control and parecoxib-treated animals but the osmolality-adjusting capability was markedly better in the latter group. Rats exposed to duodenal luminal distension responded to hypertonicity with a greater fluid secretion and a larger decrease in luminal osmolality than control rats. Perfusion with 700 mOsm kg(-1) increased mucosal permeability in parecoxib-treated animals only, an effect abolished by nicotinic receptor blockade. Parecoxib markedly improved the ability of the duodenum to sense and to decrease luminal hypertonicity by a mechanism most probably involving inhibition of COX-2 and stimulation of nicotinic acetylcholine receptors. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  20. MiR-29b affects the secretion of PROG and promotes the proliferation of bovine corpus luteum cells

    PubMed Central

    Zhang, Li-Qun; Sun, Xu-Lei; Luo, Dan; Fu, Yao; Gao, Yan; Zhang, Jia-Bao

    2018-01-01

    The regulatory role of miRNAs has been explored in ovarian cells, and their effects on gonadal development, apoptosis, ovulation, steroid production and corpus luteum (CL) development have been revealed. In this study, we analyzed the expression of miR-29b at different stages of bovine CL development and predicted the target genes of miR-29b. We confirmed that miR-29b reduces the expression of the oxytocin receptor (OXTR), affects progesterone (PROG) secretion and regulates the function of the CL. RT-PCR showed that the expression of miR-29b was significantly higher in functional CL phases than in the regressed CL phase. Immunohistochemistry showed that OXTR was expressed in both large and small CL cells and was mainly located in the cell membrane and cytoplasm of these cells. We analyzed the expression levels of OXTR and found that transfection with a miR-29b mimic decreased OXTR expression, but transfection with the inhibitor had a limited effect on the expression of the OXTR protein. At the same time, the secretion of PROG was significantly increased in the miR-29b mimic-transfected group. We also analyzed the effect of miR-29b on the apoptosis of CL cells. Finally, we found that miR-29b could promote the proliferation of bovine CL cells. In conclusion, we found that miR-29b reduces the expression of OXTR and can promote PROG secretion and the proliferation of CL cells via OXTR. PMID:29617446

  1. The role of the kidney in compensating the alkaline tide, electrolyte load, and fluid balance disturbance associated with feeding in the freshwater rainbow trout, Oncorhynchus mykiss.

    PubMed

    Bucking, Carol; Landman, Michael J; Wood, Chris M

    2010-05-01

    The effect in freshwater rainbow trout of digesting a commercial pellet meal on the renal handling of water, ions and acid-base equivalents was investigated through urine collection over a 48 h period following meal ingestion. The glomerular filtration rate (GFR) and urine flow rate (UFR) were reduced in fed fish between 12 and 24h following the meal, likely reflecting a loss of endogenous water across the gastric epithelium as a result of ingesting dry, ion-rich food pellets. The kidney was also responsible for the excretion of some excess dietary Ca(2+), and, to a much lesser extent, Na(+) and Cl(-), while the urinary excretion of K(+) was unaffected. The most dramatic effect of feeding was the elevation of renal Mg(2+) excretion, with the kidney transitioning from net Mg(2+) reabsorption to net Mg(2+) secretion during digestion. The renal handling of dietary ions accounted for 3-27% of the total ions absorbed from the diet, indicating that a majority of the ions are excreted extra-renally or incorporated into growth. However this does highlight the underestimation of renal ion handling when using unfed fish models. The metabolic alkalosis created by digestion (the alkaline tide) resulted in an increase in urine pH as well as a transition from net acidic equivalent excretion in the urine to net basic equivalent excretion. This was due to a decrease in the titratable acidity minus bicarbonate component of urine as well as a decrease in ammonia secretion. Additionally, the experimental separation of the urinary component of acid-base excretion from that of the gills highlighted the substantially larger contribution of the latter. During the alkaline tide, renal excretion accounted for approximately 5% of the total basic equivalent excretion to the external water. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion.

    PubMed

    Stiernet, Patrick; Guiot, Yves; Gilon, Patrick; Henquin, Jean-Claude

    2006-08-04

    Glucose-induced insulin secretion requires a rise in beta-cell cytosolic Ca2+ ([Ca2+]c) that triggers exocytosis and a mechanistically unexplained amplification of the action of [Ca2+]c. Insulin granules are kept acidic by luminal pumping of protons with simultaneous Cl- uptake to maintain electroneutrality. Experiments using patched, dialyzed beta-cells prompted the suggestion that acute granule acidification by glucose underlies amplification of insulin secretion. However, others found glucose to increase granular pH in intact islets. In this study, we measured islet granular pH with Lysosensor DND-160, a fluorescent dye that permits ratiometric determination of pH < 6 in acidic compartments. Stimulation of mouse islets with glucose reversibly decreased granular pH by mechanisms that are dependent on metabolism and Cl- ions but independent of changes in [Ca2+]c and protein kinase A or C activity. Granular pH was increased by concanamycin (blocker of the vesicular type H+-ATPase) > methylamine (weak base) > Cl- omission. Concanamycin and methylamine did not alter glucose-induced [Ca2+]c increase in islets but strongly inhibited the two phases of insulin secretion. Omission of Cl- did not affect the first phase but decreased the second phase of both [Ca2+]c and insulin responses. Neither experimental condition affected the [Ca2+]c rise induced by 30 mM KCl, but the insulin responses were inhibited by concanamycin > methylamine and not affected by Cl- omission. The amplification of insulin secretion by glucose was not suppressed. We conclude that an acidic granular pH is important for insulin secretion but that the acute further acidification produced by glucose is not essential for the augmentation of secretion via the amplifying pathway.

  3. Separate Cl^- Conductances Activated by cAMP and Ca2+ in Cl^--Secreting Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Cliff, William H.; Frizzell, Raymond A.

    1990-07-01

    We studied the cAMP- and Ca2+-activated secretory Cl^- conductances in the Cl^--secreting colonic epithelial cell line T84 using the whole-cell patch-clamp technique. Cl^- and K^+ currents were measured under voltage clamp. Forskolin or cAMP increased Cl^- current 2-15 times with no change in K^+ current. The current-voltage relation for cAMP-activated Cl^- current was linear from -100 to +100 mV and showed no time-dependent changes in current during voltage pulses. Ca2+ ionophores or increased pipette Ca2+ increased both Cl^- and K^+ currents 2-30 times. The Ca2+-activated Cl^- current was outwardly rectified, activated during depolarizing voltage pulses, and inactivated during hyperpolarizing voltage pulses. Addition of ionophore after forskolin further increased Cl^- conductance 1.5-5 times, and the current took on the time-dependent characteristics of that stimulated by Ca2+. Thus, cAMP and Ca2+ activate Cl^- conductances with different properties, implying that these second messengers activate different Cl^- channels or that they induce different conductive and kinetic states in the same Cl^- channel.

  4. Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research.

    PubMed

    Hahn, Anne; Salomon, Johanna J; Leitz, Dominik; Feigenbutz, Dennis; Korsch, Lisa; Lisewski, Ina; Schrimpf, Katrin; Millar-Büchner, Pamela; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2018-06-02

    Physiological processes of vital importance are often safeguarded by compensatory systems that substitute for primary processes in case these are damaged by gene mutation. Ca 2+ -dependent Cl - secretion in airway epithelial cells may provide such a compensatory mechanism for impaired Cl - secretion via cystic fibrosis transmembrane conductance regulator (CFTR) channels in cystic fibrosis (CF). Anoctamin 1 (ANO1) Ca 2+ -gated Cl - channels are known to contribute to calcium-dependent Cl - secretion in tracheal and bronchial epithelia. In the present study, two mouse models of CF were examined to assess a potential protective function of Ca 2+ -dependent Cl - secretion, a CFTR deletion model (cftr -/- ), and a CF pathology model that overexpresses the epithelial Na + channel β-subunit (βENaC), which is encoded by the Scnn1b gene, specifically in airway epithelia (Scnn1b-Tg). The expression levels of ANO1 were examined by mRNA and protein content, and the channel protein distribution between ciliated and non-ciliated epithelial cells was analyzed. Moreover, Ussing chamber experiments were conducted to compare Ca 2+ -dependent Cl - secretion between wild-type animals and the two mouse models. Our results demonstrate that CFTR and ANO1 channels were co-expressed with ENaC in non-ciliated cells of mouse tracheal and bronchial epithelia. Ciliated cells did not express these proteins. Despite co-localization of CFTR and ANO1 in the same cell type, cells in cftr -/- mice displayed no altered expression of ANO1. Similarly, ANO1 expression was unaffected by βENaC overexpression in the Scnn1b-Tg line. These results suggest that the CF-related environment in the two mouse models did not induce ANO1 overexpression as a compensatory system.

  5. Reduced active transcellular intestinal oxalate secretion contributes to the pathogenesis of obesity-associated hyperoxaluria.

    PubMed

    Amin, Ruhul; Asplin, John; Jung, Daniel; Bashir, Mohamed; Alshaikh, Altayeb; Ratakonda, Sireesha; Sharma, Sapna; Jeon, Sohee; Granja, Ignacio; Matern, Dietrich; Hassan, Hatim

    2018-05-01

    Most kidney stones are composed of calcium oxalate, and minor changes in urine oxalate affect the stone risk. Obesity is a risk factor for kidney stones and a positive correlation of unknown etiology between increased body size, and elevated urinary oxalate excretion has been reported. Here, we used obese ob/ob (ob) mice to elucidate the pathogenesis of obesity-associated hyperoxaluria. These ob mice have significant hyperoxaluria (3.3-fold) compared with control mice, which is not due to overeating as shown by pair-feeding studies. Dietary oxalate removal greatly ameliorated this hyperoxaluria, confirming that it is largely enteric in origin. Transporter SLC26A6 (A6) plays an essential role in active transcellular intestinal oxalate secretion, and ob mice have significantly reduced jejunal A6 mRNA (- 80%) and total protein (- 62%) expression. While net oxalate secretion was observed in control jejunal tissues mounted in Ussing chambers, net absorption was seen in ob tissues, due to significantly reduced secretion. We hypothesized that the obesity-associated increase in intestinal and systemic inflammation, as reflected by elevated proinflammatory cytokines, suppresses A6-mediated intestinal oxalate secretion and contributes to obesity-associated hyperoxaluria. Indeed, proinflammatory cytokines (elevated in ob mice) significantly decreased intestinal oxalate transport in vitro by reducing A6 mRNA and total protein expression. Proinflammatory cytokines also significantly reduced active mouse jejunal oxalate secretion, converting oxalate transport from net secretion in vehicle-treated tissues to net absorption in proinflammatory cytokines-treated tissues. Thus, reduced active intestinal oxalate secretion, likely secondary to local and systemic inflammation, contributes to the pathogenesis of obesity-associated hyperoxaluria. Hence, proinflammatory cytokines represent potential therapeutic targets. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  6. Na(+)/Ca(2+) exchange regulates Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(-) secretion in mice.

    PubMed

    Dong, Hui; Sellers, Zachary M; Smith, Anders; Chow, Jimmy Y C; Barrett, Kim E

    2005-03-01

    Stimulation of muscarinic receptors in duodenal mucosa raises intracellular Ca(2+), which regulates ion transport, including HCO(3)(-) secretion. However, the underlying Ca(2+) handling mechanisms are poorly understood. The aim of the present study was to determine whether Na(+)/Ca(2+) exchanger (NCX) plays a role in the regulation of duodenal mucosal ion transport and HCO(3)(-) secretion by controlling Ca(2+) homeostasis. Mouse duodenal mucosa was mounted in Ussing chambers. Net ion transport was assessed as short-circuit current (I(sc)), and HCO(3)(-) secretion was determined by pH-stat. Expression of NCX in duodenal mucosae was analyzed by Western blot, and cytosolic Ca(2+) in duodenocytes was measured by fura 2. Carbachol (100 muM) increased I(sc) in a biphasic manner: an initial transient peak within 2 min and a later sustained plateau starting at 10 min. Carbachol-induced HCO(3)(-) secretion peaked at 10 min. 2-Aminoethoxydiphenylborate (2-APB, 100 muM) or LiCl (30 mM) significantly reduced the initial peak in I(sc) by 51 or 47%, respectively, and abolished the plateau phase of I(sc) without affecting HCO(3)(-) secretion induced by carbachol. Ryanodine (100 muM), caffeine (10 mM), and nifedipine (10 muM) had no effect on either response to carbachol. In contrast, nickel (5 mM) and KB-R7943 (10-30 muM) significantly inhibited carbachol-induced increases in duodenal mucosal I(sc) and HCO(3)(-) secretion. Western blot analysis showed expression of NCX1 proteins in duodenal mucosae, and functional NCX in duodenocytes was demonstrated in Ca(2+) imaging experiments where Na(+) depletion elicited Ca(2+) entry via the reversed mode of NCX. These results indicate that NCX contributes to the regulation of Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(-) secretion that results from stimulation of muscarinic receptors.

  7. Modulation of chloride secretion in the rat ileum by intracellular bicarbonate.

    PubMed

    Dagher, P C; Chawla, H; Michael, J; Egnor, R W; Charney, A N

    1997-05-01

    Increasing intracellular bicarbonate concentration ([HCO3-]i) inhibits calcium-mediated Cl- secretion in rat distal colon and T84 cells. We investigated the effect of [HCO3-]i on Cl- secretion in rat ileum. Segments of intact ileum from Sprague-Dawley rats were studied in Ussing chambers and villus and crypt intracellular pH and [HCO3-]i were determined using BCECF. A range of crypt and villus [HCO3-]i from 0 to 31 mM was obtained by varying Ringer's composition. Basal serosal-to-mucosal Cl- flux (JsmCl) averaged 8.5 +/- 0.2 mu eq.h-1.cm-2 and was unaffected by changing [HCO3-]i or serosal bumetanide. Carbachol increased JsmCl by 3.9 +/- 0.5 mu eq.h-1.cm-2 at [HCO3-]i = 0 mM but only by 1.0 +/- 0.3 mu eq.h-1.cm-2 at high crypt and villus [HCO3-]i. Dibutyryl-cAMP increased JsmCl by 2.5 +/- 0.2 mu eq.h-1.cm-2 at all [HCO3-]i. Carbachol and db-cAMP showed mutual antagonism at low [HCO3-]i and near-additivity at high [HCO3-]i. We conclude that like rat colon and T84 cells, calcium-mediated but not cAMP-mediated Cl- secretion in the ileum is inhibited by increasing [HCO3-]i. Mutual antagonism between carbachol and db-cAMP at low [HCO3-]i was present in ileum and distal colon but not in T84 cells.

  8. Cyclic movement stimulates hyaluronan secretion into the synovial cavity of rabbit joints

    PubMed Central

    Ingram, K R; Wann, A K T; Angel, C K; Coleman, P J; Levick, J R

    2008-01-01

    The novel hypothesis that the secretion of the joint lubricant hyaluronan (HA) is coupled to movement has implications for normal function and osteoarthritis, and was tested in the knee joints of anaesthetized rabbits. After washing out the endogenous synovial fluid HA (miscibility coefficient 0.4), secretion into the joint cavity was measured over 5 h in static joints and in passively cycled joints. The net static secretion rate (11.2 ± 0.7 μg h−1, mean ± s.e.m., n = 90) correlated with the variable endogenous HA mass (mean 367 ± 8 μg), with a normalized value of 3.4 ± 0.2 μg h−1 (100 μg)−1 . Cyclic joint movement approximately doubled the net HA secretion rate to 22.6 ± 1.2 μg h−1 (n = 77) and raised the normalized percentage to 5.9 ± 0.3 μg h−1 (100 μg)−1. Secretion was inhibited by 2-deoxyglucose and iodoacetate, confirming active secretion. The net accumulation rate underestimated true secretion rate due to some trans-synovial loss. HA turnover time (endogenous mass/secretion rate) was 17–30 h (static) to 8–15 h (moved) The results demonstrate for the first time that the active secretion of HA is coupled to joint usage. Movement–secretion coupling may protect joints against the damaging effects of repetitive joint use, replace HA lost during periods of immobility (overnight), and contribute to the clinical benefit of exercise therapy in moderate osteoarthritis. PMID:18202097

  9. GLP1 and glucagon co-secreting pancreatic neuroendocrine tumor presenting as hypoglycemia after gastric bypass

    PubMed Central

    Guimarães, Marta; Rodrigues, Pedro; Pereira, Sofia S; Nora, Mário; Gonçalves, Gil; Albrechtsen, Nicolai Wewer; Hartmann, Bolette; Holst, Jens Juul

    2015-01-01

    Summary Post-prandial hypoglycemia is frequently found after bariatric surgery. Although rare, pancreatic neuroendocrine tumors (pNET), which occasionally are mixed hormone secreting, can lead to atypical clinical manifestations, including reactive hypoglycemia. Two years after gastric bypass surgery for the treatment of severe obesity, a 54-year-old female with previous type 2 diabetes, developed post-prandial sweating, fainting and hypoglycemic episodes, which eventually led to the finding by ultrasound of a 1.8-cm solid mass in the pancreatic head. The 72-h fast test and the plasma chromogranin A levels were normal but octreotide scintigraphy showed a single focus of abnormal radiotracer uptake at the site of the nodule. There were no other clinical signs of hormone secreting pNET and gastrointestinal hormone measurements were not performed. The patient underwent surgical enucleation with complete remission of the hypoglycemic episodes. Histopathology revealed a well-differentiated neuroendocrine carcinoma with low-grade malignancy with positive chromogranin A and glucagon immunostaining. An extract of the resected tumor contained a high concentration of glucagon (26.707 pmol/g tissue), in addition to traces of GLP1 (471 pmol/g), insulin (139 pmol/g) and somatostatin (23 pmol/g). This is the first report of a GLP1 and glucagon co-secreting pNET presenting as hypoglycemia after gastric bypass surgery. Although pNET are rare, they should be considered in the differential diagnosis of the clinical approach to the post-bariatric surgery hypoglycemia patient. Learning points pNETs can be multihormonal-secreting, leading to atypical clinical manifestations.Reactive hypoglycemic episodes are frequent after gastric bypass.pNETs should be considered in the differential diagnosis of hypoglycemia after bariatric surgery. PMID:26266036

  10. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium.

    PubMed

    Hahn, Anne; Faulhaber, Johannes; Srisawang, Lalita; Stortz, Andreas; Salomon, Johanna J; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2017-06-01

    Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca 2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca 2+ - dependent and cAMP- dependent Cl - secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca 2+ -gated Cl - channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel, the epithelial Na + channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl - secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl - secretion and Na + absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca 2+ -dependent Cl - secretion in this tissue. These characteristic features of Cl - -dependent secretion reveal similarities and distinct differences to secretory processes in human airways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Stimulation of Intestinal Cl- Secretion Through CFTR by Caffeine Intake in Salt-Sensitive Hypertensive Rats.

    PubMed

    Wei, Xiao; Lu, Zongshi; Yang, Tao; Gao, Peng; Chen, Sijiao; Liu, Daoyan; Zhu, Zhiming

    2018-03-16

    High salt consumption is a major risk factor for hypertension, and sodium homeostasis is regulated by both intestinal sodium absorption and urinary sodium excretion. Chronic caffeine intake has been reported to attenuate salt-sensitive hypertension by promoting urinary sodium excretion; however, its exact role in intestinal sodium absorption remains unknown. Here, we investigated whether and how chronic caffeine consumption antagonizes salt-sensitive hypertension by inhibiting intestinal sodium absorption. Dahl salt-sensitive rats were fed 8% NaCl chow and 0.1% caffeine in their drinking water for 15 days. The blood pressure and fecal sodium content were measured. The effect of caffeine on the movement of Cl- in enterocyte cells was determined with the Ussing chamber assay. Rats that were treated with caffeine displayed significantly lower mean blood pressure and higher fecal sodium content than the controls. Consistent with these findings, caffeine intake decreased fluid absorption by the intestine in the fluid perfusion experiment. Further, the results from the Ussing chamber assay indicated that caffeine promoted Cl- secretion through enterocyte apical cystic fibrosis transmembrane conductance regulator (CFTR), and thus inhibited sodium absorption. Moreover, depletion of cAMP or inhibition of CFTR completely abolished the effect of caffeine on Cl- secretion. The results indicate that chronic caffeine consumption reduces sodium absorption by promoting CFTR-mediated Cl- secretion in the intestine, which contributes to the anti-hypertensive effect of caffeine in salt-sensitive rats. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. Hydrogen peroxide stimulates rat colonic prostaglandin production and alters electrolyte transport.

    PubMed Central

    Karayalcin, S S; Sturbaum, C W; Wachsman, J T; Cha, J H; Powell, D W

    1990-01-01

    The changes in short circuit current (electrogenic Cl- secretion) of rat colon brought about by xanthine/xanthine oxidase in the Ussing chamber were inhibited by catalase and diethyldithiocarbamate, but not by superoxide dismutase. These results, the reproduction of the response with glucose/glucose oxidase and with exogenous H2O2, and the lack of effect of preincubation with deferoxamine or thiourea implicate H2O2, and not O2- or OH., as the important reactive oxygen metabolite altering intestinal electrolyte transport. 1 mM H2O2 stimulated colonic PGE2 and PGI2 production 8- and 15-fold, respectively, inhibited neutral NaCl absorption, and stimulated biphasic electrogenic Cl secretion with little effect on enterocyte lactic dehydrogenase release, epithelial conductance, or histology. Cl- secretion was reduced by cyclooxygenase inhibition. Also, the Cl- secretion, but not the increase in prostaglandin production, was reduced by enteric nervous system blockade with tetrodotoxin, hexamethonium, or atropine. Thus, H2O2 appears to alter electrolyte transport by releasing prostaglandins that activate the enteric nervous system. The change in short circuit current in response to Iloprost, but not PGE2, was blocked by tetrodotoxin. Therefore, PGI2 may be the mediator of the H2O2 response. H2O2 produced in nontoxic concentrations in the inflamed gut could have significant physiologic effects on intestinal water and electrolyte transport. Images PMID:2164049

  13. Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.

    PubMed Central

    Davis, G R; Morawski, S G; Santa Ana, C A; Fordtran, J S

    1983-01-01

    During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption. PMID:6401766

  14. Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.

    PubMed

    Davis, G R; Morawski, S G; Santa Ana, C A; Fordtran, J S

    1983-02-01

    During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption.

  15. A novel extract SB-300 from the stem bark latex of Croton lechleri inhibits CFTR-mediated chloride secretion in human colonic epithelial cells.

    PubMed

    Fischer, Horst; Machen, Terry E; Widdicombe, Jonathan H; Carlson, Thomas J S; King, Steven R; Chow, John W S; Illek, Beate

    2004-08-01

    An oligomeric proanthocyanidin (SP-303) extracted from the bark latex of the tree Croton lechleri (family Euphorbiaceae) is a potent inhibitor of cholera toxin-induced fluid accumulation and chloride secretion. The manufacturing process for SP-303 was optimized and simplified to produce an increased yield of the herbal extract. The novel extract (named SB-300) contained on average 70.6+/-7.2% SP-303 by weight (mean +/- S.D.; n=56 lots). Here, we describe the effectiveness of SB-300 on cAMP-regulated chloride secretion, which is mediated by the cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) in human colonic T84 cells. Exposure of the apical surface to SB-300 blocked forskolin-stimulated Cl- secretion by 92.2+/-3.0% with a half-maximal inhibition constant (KB) of 4.8+/-0.8 microM. For SP-303, stimulated Cl- currents were decreased by 98.0+/-7.2 % and KB averaged 4.1+/-1.3 microM. There was no significant difference between the blocking kinetics of SP-303 and SB-300. Forskolin-stimulated whole cell Cl- currents were effectively blocked by extracellular addition of SB-300 (63+/-8.5%; n=3) and to a similar extent by SP-303 (83 +/- 0.6%; n=2; at 50 microM each). Both extracts inhibited a time- and voltage-independent Cl- conductance, which indicated the involvement of CFTR Cl- channels. We conclude that both SP-303 (used in Provir) and SB-300 (used in NSF Normal Stool Formula) are novel natural products that target the CFTR Cl- channel. SB-300 is a low cost herbal extract and may present a complementary and alternative medicine approach for the treatment of fluid loss in watery diarrhea.

  16. A critical analysis of carbonic anhydrase function, respiratory gas exchange, and the acid-base control of secretion in the rectal gland of Squalus acanthias.

    PubMed

    Shuttleworth, Trevor J; Thompson, Jill; Munger, R Stephen; Wood, Chris M

    2006-12-01

    We compared in vivo responses of rectal gland secretion to carbonic anhydrase (CA) inhibition (10(-4) mol l(-1) acetazolamide) in volume-loaded dogfish with in vitro responses in an isolated-perfused gland stimulated with 5 x 10(-6) mol l(-1) forskolin and removed from systemic influences. We also measured respiratory gas exchange in the perfused gland, described the acid-base status of the secreted fluid, and determined the relative importance of various extracellular and intracellular acid-base parameters in controlling rectal gland secretion in vitro. In vivo, acetazolamide inhibited Cl(-) secretion and decreased pHi in the rectal gland, but interpretation was confounded by an accompanying systemic respiratory acidosis, which would also have contributed to the inhibition. In the perfused gland, M(CO(2)) and M(O(2)) increased in linear relation to increases in Cl(-) secretion rate. CA inhibition (10(-4) mol l(-1) acetazolamide) had no effect on Cl(-) secretion rate or pHi in the perfused gland, in contrast to in vivo, but caused a transitory 30% inhibition of M(CO(2)) (relative to stable M(O(2))) and elevation in secretion P(CO(2)) effects, which peaked at 2 h and attenuated by 3.5-4 h. Secretion was inhibited by acidosis and stimulated by alkalosis; the relationship between relative Cl(-) secretion rate and pHe was almost identical to that seen in vivo. Experimental manipulations of perfusate pH, P(CO(2)) and HCO(3)(-) concentration, together with measurements of pHi, demonstrated that these responses were most strongly correlated with changes in pHe, and were not related to changes in P(CO(2)), extracellular HCO(3)(-), or intracellular HCO(3)(-) levels, though changes in pHi may also have played a role. The acid-base status of the secreted fluid varied with that of the perfusate, secretion pH remaining about 0.3-0.5 units lower, and changing in concert with pHe rather than pHi; secretion HCO(3)(-) concentrations remained low, even in the face of greatly elevated perfusate HCO(3)(-) concentrations. We conclude that pH effects on rectal gland secretion rate are adaptive, that CA functions to catalyze the hydration of CO(2), thereby maintaining a gradient for diffusive efflux of CO(2) from the working cells, and that differences in response to CA inhibition likely reflect the higher perfusion-to-secretion ratio in vitro than in vivo.

  17. New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells.

    PubMed

    Almássy, János; Siguenza, Elias; Skaliczki, Marianna; Matesz, Klara; Sneyd, James; Yule, David I; Nánási, Péter P

    2018-04-01

    The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl - efflux and the subsequent paracellular Na + transport. In this model, the Na + -K + pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl - transport via basolateral Na + -K + -2Cl - cotransport is generated by the Na + -K + pump. In addition, the continuous electrochemical gradient for Cl - flow during acinar cell stimulation is maintained by the basolateral K + efflux. However, using a combination of single-cell electrophysiology and Ca 2+ -imaging, we demonstrate that photolysis of Ca 2+ close to the apical membrane of parotid acinar cells triggered significant K + current, indicating that a substantial amount of K + is secreted into the lumen during stimulation. Nevertheless, the K + content of the primary saliva is relatively low, suggesting that K + might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na + -K + pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K + from and secretes Na + to the lumen, which can partially supplement the paracellular Na + pathway.

  18. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus

    PubMed Central

    Knight, Jason S.; Zhao, Wenpu; Luo, Wei; Subramanian, Venkataraman; O’Dell, Alexander A.; Yalavarthi, Srilakshmi; Hodgin, Jeffrey B.; Eitzman, Daniel T.; Thompson, Paul R.; Kaplan, Mariana J.

    2013-01-01

    Recent evidence suggests that enhanced neutrophil extracellular trap (NET) formation activates plasmacytoid dendritic cells and serves as a source of autoantigens in SLE. We propose that aberrant NET formation is also linked to organ damage and to the premature vascular disease characteristic of human SLE. Here, we demonstrate enhanced NET formation in the New Zealand mixed 2328 (NZM) model of murine lupus. NZM mice also developed autoantibodies to NETs as well as the ortholog of human cathelicidin/LL37 (CRAMP), a molecule externalized in the NETs. NZM mice were treated with Cl-amidine, an inhibitor of peptidylarginine deiminases (PAD), to block NET formation and were evaluated for lupus-like disease activity, endothelial function, and prothrombotic phenotype. Cl-amidine treatment inhibited NZM NET formation in vivo and significantly altered circulating autoantibody profiles and complement levels while reducing glomerular IgG deposition. Further, Cl-amidine increased the differentiation capacity of bone marrow endothelial progenitor cells, improved endothelium-dependent vasorelaxation, and markedly delayed time to arterial thrombosis induced by photochemical injury. Overall, these findings suggest that PAD inhibition can modulate phenotypes crucial for lupus pathogenesis and disease activity and may represent an important strategy for mitigating cardiovascular risk in lupus patients. PMID:23722903

  19. Involvement of the anion exchanger SLC26A6 in prostaglandin E2- but not forskolin-stimulated duodenal HCO3- secretion.

    PubMed

    Tuo, Biguang; Riederer, Brigitte; Wang, Zhaohui; Colledge, William H; Soleimani, Manoocher; Seidler, Ursula

    2006-02-01

    SLC26A6 is a recently identified apical Cl(-)/HCO(3)(-) exchanger with strong expression in murine duodenum. The present study was designed to examine the role of SLC26A6 in prostaglandin E(2) (PGE(2))-, forskolin-, and carbachol-induced duodenal HCO(3)(-) secretion. Murine duodenal mucosal HCO(3)(-) secretion was examined in vitro in Ussing chambers and mucosal SLC26A6 expression levels were analyzed by semiquantitative reverse-transcription polymerase chain reaction. Basal HCO(3)(-) secretion was diminished by 20%, PGE(2)-stimulated HCO(3)(-) secretory response by 59%, and carbachol-stimulated response was reduced by 35% in SLC26A6-/- compared with +/+ duodenal mucosa, whereas the forskolin-stimulated HCO(3)(-) secretory response was not different. In Cl(-)-free solutions, PGE(2)- and carbachol-stimulated HCO(3)(-) secretion was reduced by 81% and 44%, respectively, whereas forskolin-stimulated HCO(3)(-) secretion was not altered significantly. PGE(2) and carbachol, but not forskolin, were able to elicit a Cl(-)-dependent HCO(3)(-) secretory response in the absence of short-circuit current changes in cystic fibrosis transmembrane conductance regulator knockout mice. In murine duodenum, PGE(2)-mediated HCO(3)(-) secretion is strongly SLC26A6 dependent and cystic fibrosis transmembrane conductance regulator independent, whereas forskolin-stimulated HCO(3)(-) secretion is completely SLC26A6 independent and cystic fibrosis transmembrane conductance regulator dependent. Carbachol-induced secretion is less pronounced, but occurs via both transport pathways. This suggests that PGE(2) and forskolin activate distinct HCO(3)(-) transport pathways in the murine duodenum.

  20. [Effect of somatostatin-14 in simple mechanical obstruction of the small intestine].

    PubMed

    Jimenez-Garcia, A; Ahmad Araji, O; Balongo Garcia, R; Nogales Munoz, A; Salguero Villadiego, M; Cantillana Martinez, J

    1994-02-01

    In order to investigate the properties of somatostatin-14 we studied an experimental model of simple mechanical and closed loop occlusion. Forty-eight New Zealand rabbits were assigned randomly to three groups of 16: group C (controls) was operated and treated with saline solution (4 cc/Kg/h); group A was operated and initially treated with saline solution and an equal dose of somatostatin-14 (3.5 micrograms/Kg/h; and group B was operated and treated in the same manner as group A, but later, 8 hours after the laparotomy. The animals were sacrificed 24 hours later; intestinal secretion was quantified, blood and intestinal fluid chemistries were performed and specimens of the intestine were prepared for histological examination. Descriptive statistical analysis of the results was performed with the ANOVA, a semi-quantitative test and the covariance test. Somatostatin-14 produced an improvement in the volume of intestinal secretion in the treated groups compared with the control group. The results were statistically significant in group B treated after an 8-hour delay: closed loop (ml): 6.40 +/- 1.12, 2.50 +/- 0.94, 1.85 +/- 0.83 and simple mechanical occlusion (ml): 175 +/- 33.05, 89.50 +/- 9.27, 57.18 +/- 21.23, p < 0.01 for groups C, A and B C, A and B respectively. Net secretion of Cl and Na ions was also improved, p < 0.01.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Vibrio cholerae ACE stimulates Ca(2+)-dependent Cl(-)/HCO(3)(-) secretion in T84 cells in vitro.

    PubMed

    Trucksis, M; Conn, T L; Wasserman, S S; Sears, C L

    2000-09-01

    ACE, accessory cholera enterotoxin, the third enterotoxin in Vibrio cholerae, has been reported to increase short-circuit current (I(sc)) in rabbit ileum and to cause fluid secretion in ligated rabbit ileal loops. We studied the ACE-induced change in I(sc) and potential difference (PD) in T84 monolayers mounted in modified Ussing chambers, an in vitro model of a Cl(-) secretory cell. ACE added to the apical surface alone stimulated a rapid increase in I(sc) and PD that was concentration dependent and immediately reversed when the toxin was removed. Ion replacement studies established that the current was dependent on Cl(-) and HCO(3)(-). ACE acted synergistically with the Ca(2+)-dependent acetylcholine analog, carbachol, to stimulate secretion in T84 monolayers. In contrast, the secretory response to cAMP or cGMP agonists was not enhanced by ACE. The ACE-stimulated secretion was dependent on extracellular and intracellular Ca(2+) but was not associated with an increase in intracellular cyclic nucleotides. We conclude that the mechanism of secretion by ACE involves Ca(2+) as a second messenger and that this toxin stimulates a novel Ca(2+)-dependent synergy.

  2. Functional differences in the acinar cells of the murine major salivary glands.

    PubMed

    Kondo, Y; Nakamoto, T; Jaramillo, Y; Choi, S; Catalan, M A; Melvin, J E

    2015-05-01

    In humans, approximately 90% of saliva is secreted by the 3 major salivary glands: the parotid (PG), the submandibular (SMG), and the sublingual glands (SLG). Even though it is known that all 3 major salivary glands secrete saliva by a Cl(-)-dependent mechanism, salivary secretion rates differ greatly among these glands. The goal of this study was to gain insight into the properties of the ion-transporting pathways in acinar cells that might account for the differences among the major salivary glands. Pilocarpine-induced saliva was simultaneously collected in vivo from the 3 major salivary glands of mice. When normalized by gland weight, the amount of saliva secreted by the PG was more than 2-fold larger than that obtained from the SMG and SLG. At the cellular level, carbachol induced an increase in the intracellular [Ca(2+)] that was more than 2-fold larger in PG and SMG than in SLG acinar cells. Carbachol-stimulated Cl(-) efflux and the protein levels of the Ca(2+)-activated Cl(-) channel TMEM16A, the major apical Cl(-) efflux pathway in salivary acinar cells, were significantly greater in PG compared with SMG and SLG. In addition, we evaluated the transporter activity of the Na(+)-K(+)-2Cl(-) cotransporters (NKCC1) and anion exchangers (AE), the 2 primary basolateral Cl(-) uptake mechanisms in acinar cells. The SMG NKCC1 activity was about twice that of the PG and more than 12-fold greater than that of the SLG. AE activity was similar in PG and SLG, and both PG and SLG AE activity was about 2-fold larger than that of SMG. In summary, the salivation kinetics of the 3 major glands are distinct, and these differences can be explained by the unique functional properties of each gland related to Cl(-) movement, including the transporter activities of the Cl(-) uptake and efflux pathways, and intracellular Ca(2+) mobilization. © International & American Associations for Dental Research 2015.

  3. Lubiprostone activates Cl- secretion via cAMP signaling and increases membrane CFTR in the human colon carcinoma cell line, T84.

    PubMed

    Ao, Mei; Venkatasubramanian, Jayashree; Boonkaewwan, Chaiwat; Ganesan, Nivetha; Syed, Asma; Benya, Richard V; Rao, Mrinalini C

    2011-02-01

    Lubiprostone, used clinically (b.i.d.) to treat constipation, has been reported to increase transepithelial Cl(-) transport in T84 cells by activating ClC-2 channels. To identify the underlying signaling pathway, we explored the effects of short-term and overnight lubiprostone treatment on second messenger signaling and Cl(-) transport. Cl(-) transport was assessed either as I(sc) across T84 monolayers grown on Transwells and mounted in Ussing chambers or by the iodide efflux assay. [cAMP](i) was measured by enzyme immunoassay, and [Ca(2+)](i) by Fluo-3 fluorescence. Quantitation of apical cell surface CFTR protein levels was assessed by Western blotting and biotinylation with the EZ-Link Sulfo-NHS-LC-LC-Biotin. ClC-2 mRNA level was studied by RT-PCR. Lubiprostone and the cAMP stimulator, forskolin, caused comparable and maximal increases of I(sc) in T84 cells. The I(sc) effects of lubiprostone and forskolin were each suppressed if the tissue had previously been treated with the other agent. These responses were unaltered even if the monolayers were treated with lubiprostone overnight. Lubiprostone-induced increases in iodide efflux were ~80% of those obtained with forskolin. Lubiprostone increased [cAMP](i). H89, bumetanide, or CFTR(inh)-172 greatly attenuated lubiprostone-stimulated Cl(-) secretion, whereas the ClC-2 inhibitor CdCl(2) did not. Compared to controls, FSK-treatment increased membrane-associated CFTR by 1.9 fold, and lubiprostone caused a 2.6-fold increase in apical membrane CFTR as seen by immunoblotting following cell surface biotinylation. Lubiprostone activates Cl(-) secretion in T84 cells via cAMP, protein kinase A, and by increasing apical membrane CFTR protein.

  4. Effects of ion exchange on stream solute fluxes in a basin receiving highway deicing salts

    USGS Publications Warehouse

    Shanley, J.B.

    1994-01-01

    At Fever Brook, a 1260-ha forested basin in central Massachusetts, highway deicing salt application increased the solute flux in streamflow by 120% above background flux (equivalent basis) during a 2-yr period. Attempts to isolate the nonsalt component of stream solute fluxes have commonly subtracted salt contributions based on the net Cl flux (Cl output in streamflow minus Cl input in precipitation). In these studies, any net Na flux in excess of the amount needed to balance the net Cl flux has been attributed to weathering. At Fever Brook, however, the net output of Na was less than the net output of Cl, suggesting a loss of Na within the basin. The Na sink was inferred to be cation exchange of Na for Ca and Mg in the soil. A method was developed to quantify the exchange based on a Na budget, which included an independent estimate of the Na flux from weathering. The amount of exchange was apportioned to Ca and Mg based on their relative concentrations in the stream. The background fluxes of Ca and Mg (i.e., those that would occur in the absence of deicing salts) were calculated by subtracting the amounts from ion exchange plus the much smaller direct contributions in deicing salts from the observed fluxes. Ion exchange and direct salt contributions increased the net output fluxes of Ca and Mg, each by 44% above background. In basins that receive deicing salts, failure to account for cation exchange thus may result in an underestimate of the flux of Na from weathering and overestimates of the fluxes of Ca and Mg from weathering.

  5. GTP-Binding Proteins Inhibit cAMP Activation of Chloride Channels in Cystic Fibrosis Airway Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Schwiebert, Erik M.; Kizer, Neil; Gruenert, Dieter C.; Stanton, Bruce A.

    1992-11-01

    Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl^- secretion by airway epithelial cells. In CF, cAMP does not activate Cl^- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors, and guanosine 5'-[β-thio]diphosphate, which prevents G proteins from interacting with their effectors, increase Cl^- currents and restore cAMP-activated Cl^- currents in airway epithelial cells isolated from CF patients. In contrast, the G protein activators guanosine 5'-[γ-thio]triphosphate and AlF^-_4 reduce Cl^- currents and inhibit cAMP from activating Cl^- currents in normal airway epithelial cells. In CF cells treated with pertussis toxin or guanosine 5'-[β-thio]diphosphate and in normal cells, cAMP activates a Cl^- conductance that has properties similar to CF transmembrane-conductance regulator Cl^- channels. We conclude that heterotrimeric G proteins inhibit cAMP-activated Cl^- currents in airway epithelial cells and that modulation of the inhibitory G protein signaling pathway may have the therapeutic potential for improving cAMP-activated Cl^- secretion in CF.

  6. Proteinases secreted by Fasciola hepatica degrade extracellular matrix and basement membrane components.

    PubMed

    Berasaín, P; Goñi, F; McGonigle, S; Dowd, A; Dalton, J P; Frangione, B; Carmona, C

    1997-02-01

    The invasive stages of the parasitic trematode Fasciola hepatica release proteinases into the medium in which they are maintained. In this study, we investigated the interaction of F. hepatica excretory/secretory (E/S) products and 2 cysteine proteinases (CL1 and CL2) purified from these products with extracellular matrix and basement membrane macromolecules. Fasciola hepatica E/S products contained collagenolytic activity on fibrillar types I and III collagen as well as basement membrane type IV collagen. CL1 and CL2 were capable of degrading acid-soluble type III and type IV collagen but not insoluble type I collagen. In contrast, neither the E/S products nor the purified CL1 and CL2 showed elastinolytic activity. Fibronectin and laminin were degraded by E/S products and by CL1 and CL2. Sequence analysis of fibronectin degradation products showed that the fragments obtained corresponded to complete biologically active domains. These results indicate that the cysteine proteinases secreted by F. hepatica may be involved in the process of tissue invasion by the parasite.

  7. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice.

    PubMed

    MacDonald, Kelvin D; McKenzie, Karen R; Henderson, Mark J; Hawkins, Charles E; Vij, Neeraj; Zeitlin, Pamela L

    2008-11-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl(-) transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 muM lubiprostone was -5.8 +/- 2.1 mV (CF, n = 12), -8.1 +/- 2.6 mV (C57Bl/6 wild-type, n = 12), and -5.3 +/- 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 muM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.

  8. Casein phosphopeptides and CaCl2 increase penicillin production and cause an increment in microbody/peroxisome proteins in Penicillium chrysogenum.

    PubMed

    Domínguez-Santos, Rebeca; Kosalková, Katarina; García-Estrada, Carlos; Barreiro, Carlos; Ibáñez, Ana; Morales, Alejandro; Martín, Juan-Francisco

    2017-03-06

    Transport of penicillin intermediates and penicillin secretion are still poorly characterized in Penicillium chrysogenum (re-identified as Penicillium rubens). Calcium (Ca 2+ ) plays an important role in the metabolism of filamentous fungi, and casein phosphopeptides (CPP) are involved in Ca 2+ internalization. In this study we observe that the effect of CaCl 2 and CPP is additive and promotes an increase in penicillin production of up to 10-12 fold. Combination of CaCl 2 and CPP greatly promotes expression of the three penicillin biosynthetic genes. Comparative proteomic analysis by 2D-DIGE, identified 39 proteins differentially represented in P. chrysogenum Wisconsin 54-1255 after CPP/CaCl 2 addition. The most interesting group of overrepresented proteins were a peroxisomal catalase, three proteins of the methylcitrate cycle, two aminotransferases and cystationine β-synthase, which are directly or indirectly related to the formation of penicillin amino acid precursors. Importantly, two of the enzymes of the penicillin pathway (isopenicillin N synthase and isopenicillin N acyltransferase) are clearly induced after CPP/CaCl 2 addition. Most of these overrepresented proteins are either authentic peroxisomal proteins or microbody-associated proteins. This evidence suggests that addition of CPP/CaCl 2 promotes the formation of penicillin precursors and the penicillin biosynthetic enzymes in peroxisomes and vesicles, which may be involved in transport and secretion of penicillin. Penicillin biosynthesis in Penicillium chrysogenum is one of the best characterized secondary metabolism processes. However, the mechanism by which penicillin is secreted still remains to be elucidated. Taking into account the role played by Ca 2+ and CPP in the secretory pathway and considering the positive effect that Ca 2+ exerts on penicillin production, the analysis of global protein changes produced after CPP/CaCl 2 addition is very helpful to decipher the processes related to the biosynthesis and secretion of penicillin. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. High expression of dopamine receptor subtype 2 in a large series of neuroendocrine tumors.

    PubMed

    Grossrubatscher, Erika; Veronese, Silvio; Ciaramella, Paolo Dalino; Pugliese, Raffaele; Boniardi, Marco; De Carlis, Luciano; Torre, Massimo; Ravini, Mario; Gambacorta, Marcello; Loli, Paola

    2008-12-01

    To evaluate by immumohistochemistry the presence of DR subtype 2 (D2R) in well differentiated NETs of different sites and in normal islet cells. Recent data in vitro and in vivo support that dopaminergic drugs might exert an inhibitory effect on hormone secretion and, possibly, on tumor growth in neuroendocrine tumors (NET)s. Their potential therapeutic role needs the demonstration of dopamine receptors (DR) in tumor cells. Little is known on the expression of DR in NETs. 85% of samples (100% of bronchial carcinoids and 93% of islet cell tumors) showed positivity for D2R; intensity of immunoreaction in NETs was similar or higher than in pituitary (54% and respectively 31% of cases). D2R positivity in more than 70% of tumor cells was observed in 46% of samples. Same intensity of D2R-immunoreactivity was found in pituitary and normal islet cells. No differences in D2R expression were recorded on considering tumor grading, size, proliferative activity, presence of metastases, endocrine activity and gender. A significant difference (62.5% vs 96.4%, p = 0.039) was observed in the prevalence of D2R expression between patients with more aggressive tumors and patients without recurrence/progression of disease during follow-up. 46 NET samples from 44 patients and normal endocrine pancreatic tissue were studied. D2R-staining was performed on NETs and compared with six non-secreting pituitary adenomas and related to clinical-pathological data. The present data demonstrate a high expression of D2R in NETs; this finding is of clinical relevance in view of the potential role of dopaminergic drugs in inhibiting secretion and/or cell proliferation in NETs.

  10. The role of KCNQ1/KCNE1 K(+) channels in intestine and pancreas: lessons from the KCNE1 knockout mouse.

    PubMed

    Warth, R; Garcia Alzamora, M; Kim, J K; Zdebik, A; Nitschke, R; Bleich, M; Gerlach, U; Barhanin, J; Kim, S J

    2002-03-01

    KCNE1 (IsK, minK) co-assembles with KCNQ1 (KvLQT1) to form voltage-dependent K(+) channels. Both KCNQ1 and KCNE1 are expressed in epithelial cells of gut and exocrine pancreas. We examined the role of KCNQ1/KCNE1 in Cl(-) secretion in small and large intestine and exocrine pancreas using the KCNE1 knockout mouse. Immunofluorescence revealed a similar basolateral localization of KCNQ1 in jejunum and colon of KCNE1 wild-type and knockout mice. Electrogenic Cl(-) secretion in the colon was not affected by gene disruption of KCNE1; in jejunum forskolin-induced short-circuit current was some 40% smaller but without being significantly different. Inhibition of KCNQ1 channels by 293B (IC(50) 1 micromol l(-1)) and by IKS224 (IC(50) 14 nmol l(-1)) strongly diminished intestinal Cl(-) secretion. In exocrine pancreas of wild-type mice, KCNQ1 was predominantly located at the basolateral membrane. In KCNE1 knockout mice, however, the basolateral staining was less pronounced and the distribution of secretory granules was irregular. A slowly activating and 293B-sensitive K(+) current was activated via cholinergic stimulation in pancreatic acinar cells of wild-type mice. In KCNE1 knockout mice this K(+) current was strongly reduced. In conclusion intestinal Cl(-) secretion is independent from KCNE1 but requires KCNQ1. In mouse pancreatic acini KCNQ1 probably co-assembled with KCNE1 leads to a voltage-dependent K(+) current that might be of importance for electrolyte and enzyme secretion.

  11. Competitive inhibition of thyroidal uptake of dietary iodide by perchlorate does not describe perturbations in rat serum total T4 and TSH.

    PubMed

    McLanahan, Eva D; Andersen, Melvin E; Campbell, Jerry L; Fisher, Jeffrey W

    2009-05-01

    Perchlorate (ClO4(-)) is an environmental contaminant known to disrupt the thyroid axis of many terrestrial and aquatic species. ClO4(-) competitively inhibits iodide uptake into the thyroid at the sodium/iodide symporter and disrupts hypothalamic-pituitary-thyroid (HPT) axis homeostasis in rodents. We evaluated the proposed mode of action for ClO4(-)-induced rat HPT axis perturbations using a biologically based dose-response (BBDR) model of the HPT axis coupled with a physiologically based pharmacokinetic model of ClO4(-). We configured a BBDR-HPT/ClO4(-) model to describe competitive inhibition of thyroidal uptake of dietary iodide by ClO4(-) and used it to simulate published adult rat drinking water studies. We compared model-predicted serum thyroid-stimulating hormone (TSH) and total thyroxine (TT4) concentrations with experimental observations reported in these ClO4(-) drinking water studies. The BBDR-HPT/ClO4(-) model failed to predict the ClO4(-)-induced onset of disturbances in the HPT axis. Using ClO4(-) inhibition of dietary iodide uptake into the thyroid, the model underpredicted both the rapid decrease in serum TT4 concentrations and the rise in serum TSH concentrations. Assuming only competitive inhibition of thyroidal uptake of dietary iodide, BBDR-HPT/ClO4(-) model calculations were inconsistent with the rapid decrease in serum TT4 and the corresponding increase in serum TSH. Availability of bound iodide in the thyroid gland governed the rate of hormone secretion from the thyroid. ClO4(-) is translocated into the thyroid gland, where it may act directly or indirectly on thyroid hormone synthesis/secretion in the rat. The rate of decline in serum TT4 in these studies after 1 day of treatment with ClO4(-) appeared consistent with a reduction in thyroid hormone production/secretion. This research demonstrates the utility of a biologically based model to evaluate a proposed mode of action for ClO4(-) in a complex biological process.

  12. Characteristics of injury and recovery of net NO3- transport of barley seedlings from treatments of NaCl

    NASA Technical Reports Server (NTRS)

    Klobus, G.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The nature of the injury and recovery of nitrate uptake (net uptake) from NaCl stress in young barley (Hordeum vulgare L, var CM 72) seedlings was investigated. Nitrate uptake was inhibited rapidly by NaCl, within 1 minute after exposure to 200 millimolar NaCl. The duration of exposure to saline conditions determined the time of recovery of NO3- uptake from NaCl stress. Recovery was dependent on the presence of NO3- and was inhibited by cycloheximide, 6-methylpurine, and cerulenin, respective inhibitors of protein, RNA, and sterol/fatty acid synthesis. These inhibitors also prevented the induction of the NO3- uptake system in uninduced seedlings. Uninduced seedlings exhibited endogenous NO3- transport activity that appeared to be constitutive. This constitutive activity was also inhibited by NaCl. Recovery of constitutive NO3- uptake did not require the presence of NO3-.

  13. Molecular Mechanism of Pancreatic and Salivary Glands Fluid and HCO3− Secretion

    PubMed Central

    Lee, Min Goo; Ohana, Ehud; Park, Hyun Woo; Yang, Dongki; Muallem, Shmuel

    2013-01-01

    Fluid and HCO3− secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO3− secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren’s syndrome and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO3− secretion, in particular by secretory glands. Fluid and HCO3− secretion by secretory glands is a two step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl− and secrete HCO3−. The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete small amount of NaCl-rich fluid, while the duct absorbs the Cl− and secretes HCO3− and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO3− secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that contains high concentrations of Na+ and Cl− and fluid secretion is mediated by active Cl− secretion. The salivary glands duct absorbs both the Na+ and Cl− and secretes K+ and HCO3−. In this review, we focus on the molecular mechanism of fluid and HCO3− secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and point the differences to meet glands specific secretions. PMID:22298651

  14. Acromegaly in a patient with a pulmonary neuroendocrine tumor: case report and review of current literature.

    PubMed

    Krug, Sebastian; Boch, Michael; Rexin, Peter; Pfestroff, Andreas; Gress, Thomas; Michl, Patrick; Rinke, Anja

    2016-06-27

    Pulmonary neuroendocrine tumors (NET) form a heterogeneous group of rare diseases. In these tumors, paraneoplastic syndromes have been described to drive the course of the disease, among them acromegaly induced by paraneoplastic secretion of growth hormone-releasing hormone (GHRH). We report the case of a 43 years old patient initially diagnosed with acromegaly accompanied by weight gain and acral enlargement. Subsequently, further diagnostic work-up identified a solitary pulmonary neuroendocrine tumor (NET). Laboratory tests revealed markedly increased growth hormone (GH) and insulin-like growth factor 1 (IGF-1) without GHRH elevation in the absence of pituitary pathologies confirming the paraneoplastic origin of clinical presentation with acromegaly. Curative surgery was performed leading to normalization of the elevated hormone levels and improvement of the clinical symptoms. Immunohistochemically, a typical carcinoid (TC) was seen with low proliferation index and abundant IGF-1 expression. The association of acromegaly and pulmonary NET has only rarely been reported. We present an individual case of paraneoplastic GH- and IGF-1 secretion in a patient with pulmonary NET. Based on their rarity, the knowledge of paraneoplastic syndromes occurring in patients with pulmonary NET such as acromegaly due to paraneoplastic GH- and IGF-1 secretion is mandatory to adequately diagnose and treat these patients.

  15. Dendritic cells from the elderly display an intrinsic defect in the production of IL-10 in response to lithium chloride.

    PubMed

    Agrawal, Sudhanshu; Gollapudi, Sastry; Gupta, Sudhir; Agrawal, Anshu

    2013-11-01

    Chronic, low grade inflammation is a characteristic of old age. Innate immune system cells such as dendritic cells (DCs) from the elderly display a pro-inflammatory phenotype associated with increased reactivity to self. Lithium is a well-established anti-inflammatory agent used in the treatment of bipolar disorders. It has also been reported to reduce inflammation in DCs. Here, we investigated whether Lithium is effective in reducing the inflammatory responses in DCs from the elderly. The effect of Lithium Chloride (LiCl) was compared on the response of TLR4 agonist, LPS and TLR2 agonist, PAM3CSK4 stimulated aged and young DCs. LiCl enhanced the production of IL-10 in LPS stimulated young DCs. However, it did not affect TNF-α and IL-6 production. In contrast, in aged DCs, LiCl reduced the secretion of TNF-α and IL-6 in LPS stimulated DCs but did not increase IL-10. LiCl had no significant effect on PAM3CSK4 responses in aged and young DCs. LiCl treated DCs also displayed differences at the level of CD4 T cell priming and polarization. LPS-stimulated young DCs reduced IFN-γ secretion and biased the Th cell response towards Th2/Treg while LiCl treated aged DCs only reduced IFN-γ secretion but did not bias the response towards Th2/Treg. In summary, our data suggests that LiCl reduces inflammation in aged and young DCs via different mechanisms. Furthermore, the effect of LiCl is different on LPS and PAM3CSK4 responses. © 2013.

  16. Transplantation of CX3CL1-expressing mesenchymal stem cells provides neuroprotective and immunomodulatory effects in a rat model of retinal degeneration.

    PubMed

    Huang, Libin; Xu, Wei; Xu, Guoxing

    2013-08-01

    To investigate the neuroprotective and immunomodulatory effects of mesenchymal stem cells (MSCs) engineered to secrete CX3CL1 on the light-injured retinal structure and function. Normal MSCs and CX3CL1-expressing MSCs (CX3CL1-MSCs) were transplanted into the subretinal space of light-injured rats. By ERG and TUNEL methods, their rescue effect of the host retina was compared with untreated light-injured and vehicle-injected rats. Activated microglia in the retina were stained by ED-1 antibody, and Western blot was performed to quantify cytokines secreted by the retina post-transplantation. ERG analysis showed better function in CX3CL1-MSC-injected group than other groups at 21 days after transplantation (p < 0.05). CX3CL1-MSCs inhibited apoptosis of the retinal cells and microglial activation. Neurotrophic factors expression in host retina that received CX3CL1-MSCs was stronger than in the retina that received normal MSCs. Conversely, the expression of proinflammatory factors was downregulated. CX3CL1-MSCs subretinal transplantation may enhance protective effect against light-induced retinal degeneration.

  17. The secretion of organic acids is also regulated by factors other than aluminum.

    PubMed

    Ding, Haiyan; Wen, Danni; Fu, Zhengwei; Qian, Haifeng

    2014-02-01

    As a result of natural processes and human activities, aluminum (Al) toxicity is recognized as a major limiting factor for plant productivity, and the secretion of organic acids facilitated by channel proteins is one of the most important Al resistance mechanisms in plants. The objective of this study was to evaluate the effects of several types of stress, including herbicide (imazethapyr (IM) and diclofop-methyl (DM)), heavy metal (Al and Cu), salt stress (NaCl), and proton stress (HCl), on the release of organic acids in rice. The results showed that 0.05 mg/L IM, 0.1 mg/L DM, 4680 mg/L NaCl, 0.5 mg/L CuSO4, and 18 mg/L AlCl3 significantly inhibited rice root elongation and the root fresh weight. In contrast, no significant inhibitory effects on rice growth were found with HCl (pH = 4.5). Similar to the effect of AlCl3 on organic acid induction, treatment with IM, DM, NaCl, and CuSO4 also induced the synthesis of endogenous citric acid and oxalic acid but decreased endogenous malic acid synthesis in the seedlings, though only citric acid was released into the environment after these treatments. We also analyzed the transcripts of three citrate channel proteins and found they were up-regulated by NaCl, CuSO4, and AlCl3 but not by IM or DM. This study clarified that organic acid secretion in plants might be a common phenomenon when plants are exposed to environmental stress other than Al toxicity.

  18. Role of NH3 and NH4+ transporters in renal acid-base transport.

    PubMed

    Weiner, I David; Verlander, Jill W

    2011-01-01

    Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.

  19. Creatinine reabsorption by the aged kidney.

    PubMed

    Musso, Carlos G; Michelángelo, Hernán; Vilas, Manuel; Reynaldi, Juliana; Martinez, Bernardo; Algranati, Luis; Macías Núñez, Juan F

    2009-01-01

    The handling of renal creatinine in human beings has classically been described as the result of two particular physiological processes: glomerular filtration and proximal tubular secretion. However, there are particular physiological situations in which tubular creatinine reabsorption has been documented, such as in the case of healthy newborns and premature babies. We performed a prospective study in order to evaluate if there is tubular creatinine reabsorption in healthy elderly people. We studied prospectively nine healthy volunteers, four of them young (20-33 years old) and the remaining five, old (65-73 years old). Since creatinine is secreted in the proximal tubules, and its secretion can be completely blocked by cimetidine administration, a creatinine clearance with cimetidine reliably represents the glomerular filtration rate. Therefore, if the ratio creatinine clearance (Ccr)/creatinine clearance with cimetidine (CcrWC) is higher than one, this would indicate net creatinine secretion, whereas a ratio lower than one would indicate a net renal creatinine tubular reabsorption; a ratio equal to one indicates creatinine filtration. Finally, the Ccr, CcrWC, and Ccr/CcrWC ratios were compared between the young and old group. Mann-Whitney and Wilcoxon tests were used. As expected, creatinine clearance in the elderly was significantly lower than in the young [Ccr: 74.4 ml/min (47.9-100.9) (old) vs. 153.8 ml/min (108.3-199.2) (young), p = 0.014]. Similarly, the creatinine clearance with cimetidine (CcrWC) was significantly lower in the elderly compared to the young [CcrWC: 81.8 ml/min (69.2-94.5) (old) vs. 122.5 ml/min (82.6-162.4) (young), p = 0.028]. The ratio of Ccr/CcrWC was 0.9 in the elderly vs. 1.26 in the young (p = 0.014), indicating net creatinine reabsorption in the elderly and net creatinine secretion in the young. Our findings indicate that there seems to be a net reabsorption of creatinine in the renal tubules of healthy old persons.

  20. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells.

    PubMed

    Hernandez, Amanda L; Kitz, Alexandra; Wu, Chuan; Lowther, Daniel E; Rodriguez, Donald M; Vudattu, Nalini; Deng, Songyan; Herold, Kevan C; Kuchroo, Vijay K; Kleinewietfeld, Markus; Hafler, David A

    2015-11-02

    FOXP3+ Tregs are central for the maintenance of self-tolerance and can be defective in autoimmunity. In multiple sclerosis and type-1 diabetes, dysfunctional self-tolerance is partially mediated by a population of IFNγ-secreting Tregs. It was previously reported that increased NaCl concentrations promote the induction of proinflammatory Th17 cells and that high-salt diets exacerbate experimental models of autoimmunity. Here, we have shown that increasing NaCl, either in vitro or in murine models via diet, markedly impairs Treg function. NaCl increased IFNγ secretion in Tregs, and reducing IFNγ - either by neutralization with anti-IFNγ antibodies or shRNA-mediated knockdown - restored suppressive activity in Tregs. The heightened IFNγ secretion and loss of Treg function were mediated by the serum/glucocorticoid-regulated kinase (SGK1). A high-salt diet also impaired human Treg function and was associated with the induction of IFNγ-secreting Tregs in a xenogeneic graft-versus-host disease model and in adoptive transfer models of experimental colitis. Our results demonstrate a putative role for an environmental factor that promotes autoimmunity by inducing proinflammatory responses in CD4 effector cells and Treg pathways.

  1. Impaired Cell Volume Regulation in Intestinal Crypt Epithelia of Cystic Fibrosis Mice

    NASA Astrophysics Data System (ADS)

    Valverde, M. A.; O'Brien, J. A.; Sepulveda, F. V.; Ratcliff, R. A.; Evans, M. J.; Colledge, W. H.

    1995-09-01

    Cystic fibrosis is a disease characterized by abnormalities in the epithelia of the lungs, intestine, salivary and sweat glands, liver, and reproductive systems, often as a result of inadequate hydration of their secretions. The primary defect in cystic fibrosis is the altered activity of a cAMP-activated Cl^- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) channel. However, it is not clear how a defect in the CFTR Cl^- channel function leads to the observed pathological changes. Although much is known about the structural properties and regulation of the CFTR, little is known of its relationship to cellular functions other than the cAMP-dependent Cl^- secretion. Here we report that cell volume regulation after hypotonic challenge is also defective in intestinal crypt epithelial cells isolated from CFTR -/- mutant mice. Moreover, the impairment of the regulatory volume decrease in CFTR -/- crypts appears to be related to the inability of a K^+ conductance to provide a pathway for the exit of this cation during the volume adjustments. This provides evidence that the lack of CFTR protein may have additional consequences for the cellular function other than the abnormal cAMP-mediated Cl^- secretion.

  2. Triiodothyronine stimulates VEGF expression and secretion via steroids and HIF-1α in murine Leydig cells.

    PubMed

    Dhole, Bodhana; Gupta, Surabhi; Venugopal, Senthil Kumar; Kumar, Anand

    2018-06-01

    Leydig cells are the principal steroidogenic cells of the testis. Leydig cells also secrete a number of growth factors including vascular endothelial growth factor (VEGF) which has been shown to regulate both testicular steroidogenesis and spermatogenesis. The thyroid hormone, T 3, is known to stimulate steroidogenesis in Leydig cells. T 3 has also been shown to stimulate VEGF production in a variety of cell lines. However, studies regarding the effect of T 3 on VEGF synthesis and secretion by the Leydig cells were lacking. Therefore, we investigated the effect of T 3 on VEGF synthesis and secretion in a mouse Leydig tumour cell line, MLTC-1. The effect of T 3 was compared with that of LH/cAMP and hypoxia, two known stimulators of Leydig cell functions. The cells were treated with T 3 , 8-Br-cAMP (a cAMP analogue), or CoCl 2 (a hypoxia mimetic) and VEGF secreted in the cell supernatant was measured using ELISA. The mRNA levels of VEGF were measured by quantitative RT-PCR. In the MLTC-1 cells, T 3 , 8-Br-cAMP, and CoCl 2 stimulated VEGF mRNA levels and the protein secretion. T 3 also increased steroid secretion as well as HIF-1α protein levels, two well-established upstream regulators of VEGF. Inhibitors of steroidogenesis as well as HIF-1α resulted in inhibition of T 3 -stimulated VEGF secretion by the MLTC-1 cells. This suggested a mediatory role of steroids and HIF-1α protein in T 3 -stimulated VEGF secretion by MLTC-1 cells. The mediation by steroids and HIF-1α were independent of each other. 8-Br-cAMP: 8-bromo - 3', 5' cyclic adenosine monophosphate; CoCl 2 : cobalt chloride; HIF-1α: hypoxia inducible factor -1α; LH: luteinizing hormone; T 3 : 3, 5, 3'-L-triiodothyronine; VEGF: vascular endothelial growth factor.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nauntofte, B.; Poulsen, J.H.

    Stimulation-induced changes in Cl content and O2 consumption of collagenase-isolated rat parotid acini were measured. In <10 s, carbachol caused a net Cl efflux, corresponding to approx.50% of the Cl content, and increased the O2 uptake by 100%. The increase was inhibitable by ouabain and was dependent on the presence of extracellular CaS . Furosemide reduced the unstimulated TWCl uptake and prevented the reuptake of Cl after carbachol-induced release. This suggests that a cotransport system is operating in both the unstimulated and stimulated states. Furthermore, furosemide inhibited the stimulated ouabain-sensitive OS uptake. Raising intracellular CaS by the calcium ionophore A23187more » evoked the same pattern of Cl loss and O2 uptake as carboachol. Our results ae compatible with the following hypothesis. Carbachol raises intracellular CaS , causing an increased Cl permeability of the luminal membrane, resulting in a net Cl efflux. A subsequently enhanced influx of Cl and Na via a furosemide-sensitive cotransport system increases intracellular Na . This stimulates the Na -K -ATPase and thereby the OS consumption.« less

  4. Chronic lithium treatment up-regulates cell surface Na(V)1.7 sodium channels via inhibition of glycogen synthase kinase-3 in adrenal chromaffin cells: enhancement of Na(+) influx, Ca(2+) influx and catecholamine secretion after lithium withdrawal.

    PubMed

    Yanagita, Toshihiko; Maruta, Toyoaki; Nemoto, Takayuki; Uezono, Yasuhito; Matsuo, Kiyotaka; Satoh, Shinya; Yoshikawa, Norie; Kanai, Tasuku; Kobayashi, Hideyuki; Wada, Akihiko

    2009-09-01

    In cultured bovine adrenal chromaffin cells expressing Na(V)1.7 isoform of voltage-dependent Na(+) channels, we have previously reported that lithium chloride (LiCl) inhibits function of Na(+) channels independent of glycogen synthase kinase-3 (GSK-3) (Yanagita et al., 2007). Here, we further examined the effects of chronic lithium treatment on Na(+) channels. LiCl treatment (1-30 mM, > or = 12 h) increased cell surface [(3)H]saxitoxin ([(3)H]STX) binding by approximately 32% without altering the affinity of [(3)H]STX binding. This increase was prevented by cycloheximide and actinomycin D. SB216763 and SB415286 (GSK-3 inhibitors) also increased cell surface [(3)H]STX binding by approximately 31%. Simultaneous treatment with LiCl and SB216763 or SB415286 did not produce an increased effect on [(3)H]STX binding compared with either treatment alone. LiCl increased Na(+) channel alpha-subunit mRNA level by 32% at 24 h. LiCl accelerated alpha-subunit gene transcription by 35% without altering alpha-subunit mRNA stability. In LiCl-treated cells, LiCl inhibited veratridine-induced (22)Na(+) influx as in untreated cells. However, washout of LiCl after chronic treatment enhanced veratridine-induced (22)Na(+) influx, (45)Ca(2+) influx and catecholamine secretion by approximately 30%. Washout of LiCl after 24 h treatment shifted concentration-response curve of veratridine upon (22)Na(+) influx upward, without altering its EC(50) value. Ptychodiscus brevis toxin-3 allosterically enhanced veratridine-induced (22)Na(+) influx by two-fold in untreated and LiCl-treated cells. Whole-cell patch-clamp analysis indicated that I-V curve and steady-state inactivation/activation curves were comparable between untreated and LiCl-treated cells. Thus, GSK-3 inhibition by LiCl up-regulated cell surface Na(V)1.7 via acceleration of alpha-subunit gene transcription, enhancing veratridine-induced Na(+) influx, Ca(2+) influx and catecholamine secretion.

  5. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice

    PubMed Central

    MacDonald, Kelvin D.; McKenzie, Karen R.; Henderson, Mark J.; Hawkins, Charles E.; Vij, Neeraj; Zeitlin, Pamela L.

    2008-01-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl− transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 μM lubiprostone was −5.8 ± 2.1 mV (CF, n = 12), −8.1 ± 2.6 mV (C57Bl/6 wild-type, n = 12), and −5.3 ± 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 μM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia. PMID:18805957

  6. Differential activation of the HCO3− conductance through the cystic fibrosis transmembrane conductance regulator anion channel by genistein and forskolin in murine duodenum

    PubMed Central

    Tuo, Biguang; Wen, Guorong; Seidler, Ursula

    2009-01-01

    Background and purpose: Many cystic fibrosis (CF)-associated mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels affect CFTR-activated HCO3− transport more than Cl− transport. Targeting the CFTR HCO3− conductance, if possible, may therefore be of major therapeutic benefit. In the present study, we examined the effects of genistein and forskolin on duodenal mucosal HCO3− and Cl− secretion. Experimental approach: Murine duodenal mucosal HCO3− and Cl− secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (Isc) techniques. Key results: Genistein markedly stimulated duodenal HCO3− secretion and Isc in a dose-dependent manner in CFTR wild-type mice, but not in CFTR null mice. CFTRinh-172, a highly specific CFTR inhibitor, inhibited genistein-stimulated duodenal HCO3− secretion and Isc in wild-type mice. Genistein induced 59% net HCO3− increase and 123% net Isc increase over basal value, whereas forskolin, an activator of adenylate cyclase, induced 94% net HCO3− increase and 507% net Isc increase, indicating that, compared with forskolin, genistein induced a relatively high HCO3−/Isc ratio. Further data showed that CFTR HCO3−/Cl− conductance ratio was 1.05 after genistein stimulation, whereas after forskolin stimulation, the CFTR HCO3−/Cl− conductance ratio was 0.27. Conclusions and implications: Genistein stimulates duodenal HCO3− and Cl− secretion through CFTR, and has a relatively high selectivity for the CFTR HCO3− conductance, compared with forskolin. This may indicate the feasibility of selective targeting of the HCO3− conductance of the CFTR channels. PMID:19788494

  7. Effects of muscarinic, alpha-adrenergic, and substance P agonists and ionomycin on ion transport mechanisms in the rat parotid acinar cell. The dependence of ion transport on intracellular calcium

    PubMed Central

    1989-01-01

    The relationship between receptor-mediated increases in the intracellular free calcium concentration [( Ca]i) and the stimulation of ion fluxes involved in fluid secretion was examined in the rat parotid acinar cell. Agonist-induced increases in [Ca]i caused the rapid net loss of up to 50-60% of the total content of intracellular chloride (Cli) and potassium (Ki), which is consistent with the activation of calcium-sensitive chloride and potassium channels. These ion movements were accompanied by a 25% reduction in the intracellular volume. The relative magnitudes of the losses of Ki and the net potassium fluxes promoted by carbachol (a muscarinic agonist), phenylephrine (an alpha-adrenergic agonist), and substance P were very similar to their characteristic effects on elevating [Ca]i. Carbachol stimulated the loss of Ki through multiple efflux pathways, including the large-conductance Ca-activated K channel. Carbachol and substance P increased the levels of intracellular sodium (Nai) to more than 2.5 times the normal level by stimulating the net uptake of sodium through multiple pathways; Na-K-2Cl cotransport accounted for greater than 50% of the influx, and approximately 20% was via Na-H exchange, which led to a net alkalinization of the cells. Ionomycin stimulated similar fluxes through these two pathways, but also promoted sodium influx through an additional pathway which was nearly equivalent in magnitude to the combined uptake through the other two pathways. The carbachol- induced increase in Nai and decrease in Ki stimulated the activity of the sodium pump, measured by the ouabain-sensitive rate of oxygen consumption, to nearly maximal levels. In the absence of extracellular calcium or in cells loaded with the calcium chelator BAPTA (bis[o- aminophenoxy]ethane-N,N,N',N'-tetraacetic acid) the magnitudes of agonist- or ionomycin-stimulated ion fluxes were greatly reduced. The parotid cells displayed a marked desensitization to substance P; within 10 min the elevation of [Ca]i and alterations in Ki, Nai, and cell volume spontaneously returned to near baseline levels. In addition to quantitating the activation of various ion flux pathways in the rat parotid acinar cell, these results demonstrate that the activation of ion transport systems responsible for fluid secretion in this tissue is closely linked to the elevation of [Ca]i. PMID:2467962

  8. Single-electron transfer in palladium complexes of 1,4-naphthoquinone-containing bis(pyrazol-1-yl)methane ligands.

    PubMed

    Scheuermann, Sebastian; Sarkar, Biprajit; Bolte, Michael; Bats, Jan W; Lerner, Hans-Wolfram; Wagner, Matthias

    2009-10-05

    A 1,4-naphthoquinone-substituted bis(pyrazol-1-yl)methane ligand (N--N) has been synthesized and transformed into its corresponding Pd(II) chelate complex [(N--N)PdCl(2)]. Both N--N and [(N--N)PdCl(2)] have been fully characterized by NMR spectroscopy, spectro-electrochemistry, and X-ray crystallography. After treatment of [(N--N)PdCl(2)] with NEt(3), the signature of a 1,4-naphthosemiquinonate radical is visible in the UV-vis- and electron paramagnetic resonance (EPR) spectrum of the reaction mixture; the free ligand N--N does not react with NEt(3) under the conditions applied. It is therefore concluded that NEt(3) first reduces the Pd(II)-ion of [(N--N)PdCl(2)] to the zero-valent state and that this reaction is followed by a single-electron transfer from the metal atom to the 1,4-naphthoquinone moiety. The complex has been specifically designed to disfavor any direct Pd-to-naphthoquinone coordination. Electron transfer thus proceeds through space or, less likely, via sigma-bonds of the ligand framework.

  9. Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes.

    PubMed

    Vuković, Lela; Vokac, Elizabeth; Král, Petr

    2014-06-19

    We reveal by classical molecular dynamics simulations electroosmotic flows in thin neutral carbon (CNT) and boron nitride (BNT) nanotubes filled with ionic solutions of hydrated monovalent atomic ions. We observe that in (12,12) BNTs filled with single ions in an electric field, the net water velocity increases in the order of Na(+) < K(+) < Cl(-), showing that different ions have different power to drag water in thin nanotubes. However, the effect gradually disappears in wider nanotubes. In (12,12) BNTs containing neutral ionic solutions in electric fields, we observe net water velocities going in the direction of Na(+) for (Na(+), Cl(-)) and in the direction of Cl(-) for (K(+), Cl(-)). We hypothesize that the electroosmotic flows are caused by different strengths of friction between ions with different hydration shells and the nanotube walls.

  10. Nutritional support for adaptation to radiation-induced suppression of mucosal immunity in the intestine of the rat.

    PubMed

    Harari, Y; Grossie, V B; Castro, G A

    1996-06-01

    Appropriate enteral nutrition provided immediately after injury or trauma to the gastrointestinal tract may limit or reverse damage to the mucosal barrier. In this regard, diets containing amino acids, such as arginine and glutamine, or fish oil have been identified as beneficial. This report assesses the role of amino acids as "essential nutrients" in the repair of intestinal mucosa damaged by gamma radiation. Rats were used experimentally to test the hypothesis that the recovery of the immune responses in the intestinal mucosa, which are suppressed by radiation, can be improved by feeding an elemental amino acid diet, referred to hereafter as the diet, immediately after irradiation. The objective was to assess the impact of the diet on the expression of type I hypersensitivity or anaphylaxis in the jejunal mucosa. The local expression of this immunological response, which involves several radiosensitive cell types, was studied in rats immunized by oral infection with the nematode parasite, Trichinella spiralis. Rats that recover from infection become immunized and their small intestine undergoes anaphylaxis when subsequently challenged with parasite-derived antigen. This hypersensitivity response is expressed, in part, as Cl- secretion and can be observed in vitro or in vivo. When challenge is provided by a secondary inoculum of infective T. spiralis larvae, Cl- secretion is accompanied by fluid secretion and by the rapid expulsion of the parasite from the intestine. Immunized rats maintained on a stock diet and exposed to 7 Gy of total-abdominal irradiation from a cobalt-60 gamma-ray source failed to express antigen-induced Cl- secretion fully for up to 14 days postirradiation, and rejection of the parasite was suppressed for at least 30 days postirradiation. The suppression of immune responsiveness is associated with the disappearance of intestinal mucosal mast cells, which normally trigger the anaphylactic response. When rats are maintained on the diet after irradiation, the capacity to reject the parasite remains suppressed. However, the ability to express anaphylaxis-mediated Cl- secretion returns by 3 days postirradiation. The quick, diet-supported recovery of antigen-induced Cl- secretion occurs despite the continued absence of mast cells. Although the recovery of anaphylaxis-mediated responses suppressed by irradiation is only partial, our experimental results underscore the potential for enhancing the recovery process through nutritional support.

  11. Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome

    PubMed Central

    Keely, Simon; Kelly, Caleb J.; Weissmueller, Thomas; Burgess, Adrianne; Wagner, Brandie D.; Robertson, Charles E.; Harris, J. Kirk; Colgan, Sean P.

    2012-01-01

    Within the intestinal mucosa, epithelial cells serve multiple functions to partition the lumen from the lamina propria. As part of their natural function, intestinal epithelial cells actively transport electrolytes with passive water movement as a mechanism for mucosal hydration. Here, we hypothesized that electrogenic Cl- secretion, and associated mucosal hydration, influences bacterial-epithelial interactions and significantly influences the composition of the intestinal microbiota. An initial screen of different epithelial secretagogues identified lubiprostone as the most potent agonist for which to define these principles. In in vitro studies using cultured T84 cells, lubiprostone decreased E. coli translocation in a concentration-dependent manner (p < 0.001) and decreased S. typhimurium internalization and translocation by as much as 71 ± 6% (p < 0.01). Such decreases in bacterial translocation were abolished by inhibition of electrogenic Cl- secretion and water transport using the Na-K-Cl- antagonist bumetanide (p < 0.01). Extensions of these findings to microbiome analysis in vivo revealed that lubiprostone delivered orally to mice fundamentally shifted the intestinal microbiota, with notable changes within the Firmicutes and Bacteroidetes phyla of resident colonic bacteria. Such findings document a previously unappreciated role for epithelial Cl- secretion and water transport in influencing bacterial-epithelial interactions and suggest that active mucosal hydration functions as a primitive innate epithelial defense mechanism. PMID:22614705

  12. Physiological protective action of dissolved organic carbon on ion regulation and nitrogenous waste excretion of zebrafish (Danio rerio) exposed to low pH in ion-poor water.

    PubMed

    Duarte, Rafael M; Wood, Chris M; Val, Adalberto L; Smith, D Scott

    2018-06-11

    Dissolved organic carbon (DOC) represents a heterogeneous group of naturally-occurring molecules in aquatic environments, and recent studies have evidenced that optically dark DOCs can exert some positive effects on ionoregulatory homeostasis of aquatic organisms in acidic waters. We investigated the effects of Luther Marsh DOC, a dark allochthonous DOC, on ion regulation and N-waste excretion of zebrafish acutely exposed to either neutral or low pH in ion-poor water. In the first experiment, simultaneous exposure to pH 4.0 and DOC greatly attenuated the stimulation of Na + diffusive losses (J out Na ), and prevented the blockade of Na + uptake (J in Na ) seen in zebrafish exposed to pH 4.0 alone, resulting in much smaller disturbances in Na + net losses (J net Na ). DOC also attenuated the stimulation of net Cl - losses (J net Cl ) and ammonia excretion (J net Amm ) during acidic challenge. In the second experiment, zebrafish acclimated to DOC displayed similar regulation of J in Na and J out Na , and, therefore, reduced J net Na at pH 4.0, effects which persisted even when DOC was no longer present. Protective effects of prior acclimation to DOC on J net Cl and J net Amm at pH 4.0 also occurred, but were less marked than those on Na + balance. Urea fluxes were unaffected by the experimental treatments. Overall, these effects were clearly beneficial to the ionoregulatory homeostasis of zebrafish at low pH, and were quite similar to those seen in a recent parallel study using darker DOC from the upper Rio Negro. This suggests that dark allochthonous DOCs share some chemical properties that render fish tolerant to ionoregulatory disturbances during acidic challenge.

  13. Cortisol receptor blockade and seawater adaptation in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Marshall, W.S.; Cozzi, R.R.F.; Pelis, Ryan M.; McCormick, S.D.

    2005-01-01

    To examine the role of cortisol in seawater osmoregulation in a euryhaline teleost, adult killifish were acclimated to brackish water (10???) and RU486 or vehicle was administered orally in peanut oil daily for five days at low (40 mg.kg-1) or high dose (200 mg.kg-1). Fish were transferred to 1.5 x seawater (45???) or to brackish water (control) and sampled at 24 h and 48 h after transfer, when Cl- secretion is upregulated. At 24 h, opercular membrane Cl- secretion rate, as Isc, was increased only in the high dose RU486 group. Stimulation of membranes by 3-isobutyl-1-methylxanthine and cAMP increased Isc in vehicle treated controls but those from RU486-treated animals were unchanged and membranes from brackish water animals showed a decrease in Isc. At 48 h, Isc increased and transepithelial resistance decreased in vehicle and RU486 groups, compared to brackish water controls. Plasma cortisol increased in all groups transferred to high salinity, compared to brackish water controls. RU486 treated animals had higher cortisol levels compared to vehicle controls. Vehicle treated controls had lower cortisol levels than untreated or RU486 treated animals, higher stimulation of Isc, and lower hematocrit at 24 h, beneficial effects attributed to increased caloric intake from the peanut oil vehicle. Chloride cell density was significantly increased in the high dose RU486 group at 48 hours, yet Isc was unchanged, suggesting a decrease in Cl- secretion per cell. Thus cortisol enhances NaCl secretion capacity in chloride cells, likely via glucocorticoid type receptors. ?? 2005 Wiley-Liss, Inc.

  14. Control of Cl- transport in the operculum epithelium of Fundulus heteroclitus: long- and short-term salinity adaptation.

    PubMed

    Hoffmann, E K; Hoffmann, E; Lang, F; Zadunaisky, J A

    2002-11-13

    The eurohaline fish, Fundulus heteroclitus, adapts rapidly to enhanced salinity by increasing the ion secretion by gill chloride cells. An increase of approximately 70 mOsm in plasma osmolarity was previously found during the transition. To mimic this in vitro, isolated opercular epithelia of seawater-adapted Fundulus mounted in a modified Ussing chamber were exposed to an increase in NaCl and/or osmolarity on the basolateral side, which immediately increased I(SC). Various Cl(-) channel blockers as well as the K(+) channel blocker Ba(2+) added to the basolateral side all inhibited the steady-state as well as the hypertonic stimulation of I(SC). The exists -agonist isoproterenol stimulates I(SC) in standard Ringer solutions. In contrast, when cell volume was kept at the larger value by simultaneous addition of water, the stimulation with isoproterenol was abolished, suggesting that the key process for activation of the Na(+), K(+), 2Cl(-) cotransporter is cell shrinkage. The protein kinase C (PKC) inhibitor chelerythrine and the myosin light chain kinase (MLCK) inhibitor ML-7 had strong inhibitory effects on the mannitol activation of I(SC), thus both MLCK and PKC are involved. The two specific protein kinase A (PKA) inhibitors H-89 and KT 5720 had no effect after mannitol addition whereas isoproterenol stimulation was completely blocked by H-89. This indicates that PKA is involved in the activation of the apical Cl(-) channel via c-AMP whereas the shrinkage activation of the Na(+), K(+), 2Cl(-) cotransporter is independent of PKA activation. The steady-state Cl(-) secretion was stimulated by an inhibitor of serine/threonine phosphatases of the PP-1 and PP-2A type and inhibited by a PKC inhibitor but not by a PKA inhibitor. Thus, it seems to be determined by continuous phosphorylation and dephosphorylation involving PKC but not PKA. The steady-state Cl(-) secretion and the maximal obtainable Cl(-) secretion were measured in freshwater-adapted fish and in fish retransferred to saltwater. No I(SC) could be measured in freshwater-adapted fish or in the fish within the first 18 h after transfer to saltwater. As evidenced from Western blot analysis using antiserine-antibodies, a heavily serine phosphorylated protein of about 190 kDa was consistently observed in the saltwater-acclimated fish, but was only weakly present in freshwater-acclimated fish. This observation indicates that acclimatization to saltwater stimulates the expression of this 190-kDa protein and/or a serine/threonine kinase, which subsequently phosphorylates the protein.

  15. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system

    PubMed Central

    2010-01-01

    Background Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl) concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis. Results Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS). Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR). Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system. Conclusions B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei. PMID:20540813

  16. Probing into the Secret of the Chinese Air Force.

    DTIC Science & Technology

    1983-11-30

    Ri35 968 PROBING INTO THE SECRET OF THE CHINESE AIR FOREE(IJ 1/2 FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON RFB OH 9 38 NOV 83 FTD-ID(,RS)T 1088 3...FOREIGN TECHNOLOGY DIVISION. PROBING INTO THE SECRET OF THE CHINESE AIRFORCE CL1 Approved for public re.lease; distribution unlimited C=)X ~ EET...MICROFICHE NR: FTD-83-C-001469 PROBING INTO THE SECRET OF THE CHINESE AIRFORCE -" -English pages: 111 Source: Enclosure to IR 6 842 0088 83-Booklet

  17. Site classification for National Strong Motion Observation Network System (NSMONS) stations in China using an empirical H/V spectral ratio method

    NASA Astrophysics Data System (ADS)

    Ji, Kun; Ren, Yefei; Wen, Ruizhi

    2017-10-01

    Reliable site classification of the stations of the China National Strong Motion Observation Network System (NSMONS) has not yet been assigned because of lacking borehole data. This study used an empirical horizontal-to-vertical (H/V) spectral ratio (hereafter, HVSR) site classification method to overcome this problem. First, according to their borehole data, stations selected from KiK-net in Japan were individually assigned a site class (CL-I, CL-II, or CL-III), which is defined in the Chinese seismic code. Then, the mean HVSR curve for each site class was computed using strong motion recordings captured during the period 1996-2012. These curves were compared with those proposed by Zhao et al. (2006a) for four types of site classes (SC-I, SC-II, SC-III, and SC-IV) defined in the Japanese seismic code (JRA, 1980). It was found that an approximate range of the predominant period Tg could be identified by the predominant peak of the HVSR curve for the CL-I and SC-I sites, CL-II and SC-II sites, and CL-III and SC-III + SC-IV sites. Second, an empirical site classification method was proposed based on comprehensive consideration of peak period, amplitude, and shape of the HVSR curve. The selected stations from KiK-net were classified using the proposed method. The results showed that the success rates of the proposed method in identifying CL-I, CL-II, and CL-III sites were 63%, 64%, and 58% respectively. Finally, the HVSRs of 178 NSMONS stations were computed based on recordings from 2007 to 2015 and the sites classified using the proposed method. The mean HVSR curves were re-calculated for three site classes and compared with those from KiK-net data. It was found that both the peak period and the amplitude were similar for the mean HVSR curves derived from NSMONS classification results and KiK-net borehole data, implying the effectiveness of the proposed method in identifying different site classes. The classification results have good agreement with site classes based on borehole data of 81 stations in China, which indicates that our site classification results are acceptable and that the proposed method is practicable.

  18. Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line.

    PubMed Central

    Cartwright, C A; McRoberts, J A; Mandel, K G; Dharmsathaphorn, K

    1985-01-01

    Vasoactive intestinal polypeptide (VIP) and the calcium ionophore A23187 caused dose-dependent changes in the potential difference and the short circuit current (Isc) across confluent T84 cell monolayers mounted in modified Ussing chambers. Both VIP and A23187 stimulated net chloride secretion without altering sodium transport. Net chloride secretion accounted for the increase in Isc. When A23187 was tested in combination with VIP, net chloride secretion was significantly greater than predicted from the calculated sum of their individual responses indicating a synergistic effect. VIP increased cellular cyclic AMP (cAMP) production in a dose-dependent manner, whereas A23187 had no effect on cellular cAMP. We then determined whether VIP and A23187 activated different transport pathways. Earlier studies suggest that VIP activates a basolaterally localized, barium-sensitive potassium channel as well as an apically localized chloride conductance pathway. In this study, stimulation of basolateral membrane potassium efflux by A23187 was documented by preloading the monolayers with 86Rb+. Stimulation of potassium efflux by A23187 was additive to the VIP-stimulated potassium efflux. By itself, 0.3 microM A23187 did not alter transepithelial chloride permeability, and its stimulation of basolateral membrane potassium efflux caused only a relatively small amount of chloride secretion. However, in the presence of an increased transepithelial chloride permeability induced by VIP, the effectiveness of A23187 on chloride secretion was greatly augmented. Our studies suggest that cAMP and calcium each activate basolateral potassium channels, but cAMP also activates an apically localized chloride channel. Synergism results from cooperative interaction of potassium channels and the chloride channel. PMID:2997291

  19. DETANO and nitrated lipids increase chloride secretion across lung airway cells.

    PubMed

    Chen, Lan; Bosworth, Charles A; Pico, Tristant; Collawn, James F; Varga, Karoly; Gao, Zhiqian; Clancy, John Paul; Fortenberry, James A; Lancaster, Jack R; Matalon, Sadis

    2008-08-01

    We investigated the cellular mechanisms by which nitric oxide (NO) increases chloride (Cl-) secretion across lung epithelial cells in vitro and in vivo. Addition of (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETANONOate [DETANO];1-1,000 microM) into apical compartments of Ussing chambers containing Calu-3 cells increased short-circuit currents (I(sc)) from 5.2 +/- 0.8 to 15.0 +/- 2.1 microA/cm(2) (X +/- 1 SE; n = 7; P < 0.001). NO generated from two nitrated lipids (nitrolinoleic and nitrooleic acids; 1-10 microM) also increased I(sc) by about 100%. Similar effects were noted across basolaterally, but not apically, permeabilized Calu-3 cells. None of these NO donors increased I(sc) in Calu-3 cells pretreated with 10 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase). Scavenging of NO either prevented or reversed the increase of I(sc). These data indicate that NO stimulation of soluble guanylyl cyclase was sufficient and necessary for the increase of I(sc) via stimulation of the apical cystic fibrosis transmembrane regulator (CFTR). Both Calu-3 and alveolar type II (ATII) cells contained CFTR, as demonstrated by in vitro phosphorylation of immunoprecipitated CFTR by protein kinase (PK) A. PKGII (but not PKGI) phosphorylated CFTR immuniprecipitated from Calu-3 cells. Corresponding values in ATII cells were below the threshold of detection. Furthermore, DETANO, 8-Br-cGMP, or 8-(4-chlorophenylthio)-cGMP (up to 2 mM each) did not increase Cl- secretion across amiloride-treated ATII cells in vitro. Measurements of nasal potential differences in anesthetized mice showed that perfusion of the nares with DETANO activated glybenclamide-sensitive Cl- secretion. These findings suggest that small concentrations of NO donors may prove beneficial in stimulating Cl- secretion across airway cells without promoting alveolar edema.

  20. The interaction of intracellular Mg2+ and pH on Cl- fluxes associated with intracellular pH regulation in barnacle muscle fibers

    PubMed Central

    1988-01-01

    The intracellular dialysis technique was used to measure unidirectional Cl- fluxes and net acid extrusion by single muscle fibers from the giant barnacle. Decreasing pHi below normal levels of 7.35 stimulated both Cl- efflux and influx. These increases of Cl- fluxes were blocked by disulfonic acid stilbene derivatives such as SITS and DIDS. The SITS- sensitive Cl- efflux was sharply dependent upon pHi, increasing approximately 20-fold as pHi was decreased from 7.35 to 6.7. Under conditions of normal intracellular Mg2+ concentration, the apparent pKa for the activation of Cl- efflux was 7.0. We found that raising [Mg2+]i, but not [Mg2+]o, had a pronounced inhibitory effect on both SITS-sensitive unidirectional Cl- fluxes as well as on SITS-sensitive net acid extrusion. Increasing [Mg2+]i shifted the apparent pKa of Cl- efflux to a more acid value without affecting the maximal flux that could be attained. This relation between pHi and [Mg2+]i on SITS- sensitive Cl- efflux is consistent with a competition between H ions and Mg ions. We conclude that the SITS-inhibitable Cl- fluxes are mediated by the pHi-regulatory transport mechanism and that changes of intracellular Mg2+ levels can modify the activity of the pHi regulator/anion transporter. PMID:3392519

  1. COMPUTATIONAL MODELING OF CATHODIC LIMITATIONS ON LOCALIZED CORROSION OF WETTED SS 316L, AT ROOM TEMPERATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Cui; F.J. Presuel-Moreno; R.G. Kelly

    2005-10-13

    The ability of a SS316L surface wetted with a thin electrolyte layer to serve as an effective cathode for an active localized corrosion site was studied computationally. The dependence of the total net cathodic current, I{sub net}, supplied at the repassivation potential E{sub rp} (of the anodic crevice) on relevant physical parameters including water layer thickness (WL), chloride concentration ([Cl{sup -}]) and length of cathode (Lc) were investigated using a three-level, full factorial design. The effects of kinetic parameters including the exchange current density (i{sub o,c}) and Tafel slope ({beta}{sub c}) of oxygen reduction, the anodic passive current density (i{submore » p}) (on the cathodic surface), and E{sub rp} were studied as well using three-level full factorial designs of [Cl{sup -}] and Lc with a fixed WL of 25 {micro}m. The study found that all the three parameters WL, [Cl{sup -}] and Lc as well as the interactions of Lc x WL and Lc x [Cl{sup -}] had significant impact on I{sub net}. A five-factor regression equation was obtained which fits the computation results reasonably well, but demonstrated that interactions are more complicated than can be explained with a simple linear model. Significant effects on I{sub net} were found upon varying either i{sub o,c}, {beta}{sub c}, or E{sub rp}, whereas i{sub p} in the studied range was found to have little impact. It was observed that I{sub net} asymptotically approached maximum values (I{sub max}) when Lc increased to critical minimum values. I{sub max} can be used to determine the stability of coupled localized corrosion and the critical Lc provides important information for experimental design and corrosion protection.« less

  2. Prostaglandin E2 induces chloride secretion through crosstalk between cAMP and calcium signaling in mouse inner medullary collecting duct cells

    PubMed Central

    Rajagopal, Madhumitha; Thomas, Sheela V.; Kathpalia, Paru P.; Chen, Yu

    2013-01-01

    Under conditions of high dietary salt intake, prostaglandin E2 (PGE2) production is increased in the collecting duct and promotes urinary sodium chloride (NaCl) excretion; however, the molecular mechanisms by which PGE2 increases NaCl excretion in this context have not been clearly defined. We used the mouse inner medullary collecting duct (mIMCD)-K2 cell line to characterize mechanisms underlying PGE2-regulated NaCl transport. When epithelial Na+ channels were inhibited, PGE2 exclusively stimulated basolateral EP4 receptors to increase short-circuit current (IscPGE2). We found that IscPGE2 was sensitive to inhibition by H-89 and CFTR-172, indicating that EP4 receptors signal through protein kinase A to induce Cl− secretion via cystic fibrosis transmembrane conductance regulator (CFTR). Unexpectedly, we also found that IscPGE2 was sensitive to inhibition by BAPTA-AM (Ca2+ chelator), 2-aminoethoxydiphenyl borate (2-APB) (inositol triphosphate receptor blocker), and flufenamic acid (FFA) [Ca2+-activated Cl− channel (CACC) inhibitor], suggesting that EP4 receptors also signal through Ca2+ to induce Cl− secretion via CACC. Additionally, we observed that PGE2 stimulated an increase in Isc through crosstalk between cAMP and Ca2+ signaling; BAPTA-AM or 2-APB inhibited a component of IscPGE2 that was sensitive to CFTR-172 inhibition; H-89 inhibited a component of IscPGE2 that was sensitive to FFA inhibition. Together, our findings indicate that PGE2 activates basolateral EP4 receptors and signals through both cAMP and Ca2+ to stimulate Cl− secretion in IMCD-K2 cells. We propose that these signaling pathways, and the crosstalk between them, may provide a concerted mechanism for enhancing urinary NaCl excretion under conditions of high dietary NaCl intake. PMID:24284792

  3. Energetics of acclimation to NaCl by submerged, anoxic rice seedlings

    PubMed Central

    Kurniasih, Budiastuti; Greenway, Hank; Colmer, Timothy David

    2017-01-01

    Background and aims Our aim was to elucidate how plant tissues under a severe energy crisis cope with imposition of high NaCl, which greatly increases ion fluxes and hence energy demands. The energy requirements for ion regulation during combined salinity and anoxia were assessed to gain insights into ion transport processes in the anoxia-tolerant coleoptile of rice. Methods We studied the combined effects of anoxia plus 50 or 100 mm NaCl on tissue ions and growth of submerged rice (Oryza sativa) seedlings. Excised coleoptiles allowed measurements in aerated or anoxic conditions of ion net fluxes and O2 consumption or ethanol formation and by inference energy production. Key Results Over 80 h of anoxia, coleoptiles of submerged intact seedlings grew at 100 mm NaCl, but excised coleoptiles, with 50 mm exogenous glucose, survived only at 50 mm NaCl, possibly due to lower energy production with glucose than for intact coleoptiles with sucrose as substrate. Rates of net uptake of Na+ and Cl− by coleoptiles in anoxia were about half those in aerated solution. Ethanol formation in anoxia and O2 uptake in aerobic solution were each increased by 13–15 % at 50 mm NaCl, i.e. ATP formation was stimulated. For acclimation to 50 mm NaCl, the anoxic tissues used only 25 % of the energy that was expended by aerobic tissues. Following return of coleoptiles to aerated non-saline solution, rates of net K+ uptake recovered to those in continuously aerated solution, demonstrating there was little injury during anoxia with 50 mm NaCl. Conclusion Rice seedlings survive anoxia, without the coleoptile incurring significant injury, even with the additional energy demands imposed by NaCl (100 mm when intact, 50 mm when excised). Energy savings were achieved in saline anoxia by less coleoptile growth, reduced ion fluxes as compared to aerobic coleoptiles and apparent energy-economic ion transport systems. PMID:27694332

  4. Sodium bicarbonate secretion indicated by ultrastructural cytochemical localization of HCO3(-), Cl-, and Na+ ions on rat bile duct brush cells.

    PubMed

    Ogata, Takuro

    2005-12-01

    Brush cells are widely distributed in the digestive and respiratory apparatus, but their function is still unknown. Because brush cells (BC) are found in organs secreting NaHCO3, it was hypothesized that these cells may secrete NaHCO3. To test this possibility, rat common bile duct epithelia were examined by ultrastructural cytochemical methods for localizing HCO3(-), Cl-, and Na+ ions. All three ion precipitates were few in or on BCs of rats without stimulation. Lead carbonate precipitates, which localized HCO3(-) ions by the lead nitrate-osmium method, increased markedly on the surface of the microvilli (MV) of BCs after secretin or meal stimulation, but similar precipitates were few on the luminal surface of principal cells (PCs). Silver chloride precipitates, which indicate the presence of Cl- ions by the silver-osmium method, increased in the apical cytoplasm and in MV of BCs after secretin or meal stimulation, but they were few in PCs. Sodium pyroantimonate precipitates, which localize Na+ ions by the potassium pyroantimonate-osmium method, increased on the surface of the MV, along the basolateral membrane, and in the apical cytoplasm of BCs after secretin or meal stimulation, but they were few in PCs. These results strongly suggest that BCs may be a significant source of NaHCO3 secretion.

  5. PREPUBERTAL EXPOSURES TO COMPOUNDS THAT INCREASE PROLACTIN SECRETION IN THE MALE RAT: EFFECTS ON ADULT PROSTATE

    EPA Science Inventory

    Prepubertal exposure to compounds that increase prolactin secretion in the male rat: effects on the adult prostate.

    Stoker TE, Robinette CL, Britt BH, Laws SC, Cooper RL.

    Endocrinology Branch, Reproductive Toxicology Division, National Health and Environmental Effec...

  6. A thymic neuroendocrine tumour in a young female: a rare cause of relapsing and remitting Cushing's syndrome.

    PubMed

    Trott, M J; Farah, G; Stokes, V J; Wang, L M; Grossman, A B

    2016-01-01

    We present a case of a young female patient with a rare cause of relapsing and remitting Cushing's syndrome due to ectopic ACTH secretion from a thymic neuroendocrine tumour. A 34-year-old female presented with a constellation of symptoms of Cushing's syndrome, including facial swelling, muscle weakness and cognitive impairment. We use the terms 'relapsing and remitting' in this case report, given the unpredictable time course of symptoms, which led to a delay of 2 years before the correct diagnosis of hypercortisolaemia. Diagnostic workup confirmed ectopic ACTH secretion, and a thymic mass was seen on mediastinal imaging. The patient subsequently underwent thymectomy with complete resolution of her symptoms. Several case series have documented the association of Cushing's syndrome with thymic neuroendocrine tumours (NETs), although to our knowledge there are a few published cases of patients with relapsing and remitting symptoms. This case is also notable for the absence of features of the MEN-1 syndrome, along with the female gender of our patient and her history of non-smoking. Ectopic corticotrophin (ACTH) secretion should always be considered in the diagnostic workup of young patients with Cushing's syndromeThere is a small but growing body of literature describing the correlation between ectopic ACTH secretion and thymic neuroendocrine tumours (NETs)The possibility of a MEN-1 syndrome should be considered in all patients with thymic NETs, and we note the observational association with male gender and cigarette smoking in this cohortAn exception to these associations is the finding of relatively high incidence of thymic NETs among female non-smoking MEN-1 patients in the Japanese compared with Western populationsThe relapsing and remitting course of our patient's symptoms is noteworthy, given the paucity of this finding among other published cases.

  7. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yawen; Huang Chunfa; Yang Chingyao

    2010-03-15

    Mercury is a well-known highly toxic metal. In this study, we characterize and investigate the cytotoxicity and its possible mechanisms of inorganic mercury in pancreatic beta-cells. Mercury chloride (HgCl{sub 2}) dose-dependently decreased the function of insulin secretion and cell viability in pancreatic beta-cell-derived HIT-T15 cells and isolated mouse pancreatic islets. HgCl{sub 2} significantly increased ROS formation in HIT-T15 cells. Antioxidant N-acetylcysteine effectively reversed HgCl{sub 2}-induced insulin secretion dysfunction in HIT-T15 cells and isolated mouse pancreatic islets. Moreover, HgCl{sub 2} increased sub-G1 hypodiploids and annexin-V binding in HIT-T15 cells, indicating that HgCl{sub 2} possessed ability in apoptosis induction. HgCl{sub 2} alsomore » displayed several features of mitochondria-dependent apoptotic signals including disruption of the mitochondrial membrane potential, increase of mitochondrial cytochrome c release and activations of poly (ADP-ribose) polymerase (PARP) and caspase 3. Exposure of HIT-T15 cells to HgCl{sub 2} could significantly increase both apoptotic and necrotic cell populations by acridine orange/ethidium bromide dual staining. Meanwhile, HgCl{sub 2} could also trigger the depletion of intracellular ATP levels and increase the LDH release from HIT-T15 cells. These HgCl{sub 2}-induced cell death-related signals could be significantly reversed by N-acetylcysteine. The intracellular mercury levels were markedly elevated in HgCl{sub 2}-treated HIT-T15 cells. Taken together, these results suggest that HgCl{sub 2}-induced oxidative stress causes pancreatic beta-cell dysfunction and cytotoxicity involved the co-existence of apoptotic and necrotic cell death.« less

  8. Chloride channel function is linked to epithelium-dependent airway relaxation.

    PubMed

    Fortner, C N; Lorenz, J N; Paul, R J

    2001-02-01

    We previously reported that substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of mouse tracheal smooth muscle. Since both SP and ATP are known to evoke transepithelial Cl- secretion across epithelial monolayers, we tested the hypothesis that epithelium-dependent relaxation of mouse trachea depends on Cl- channel function. In perfused mouse tracheas, the responses to SP and ATP were both inhibited by the Cl- channel inhibitors diphenylamine-2-carboxylate and 5-nitro-2-(3-phenylpropylamino)benzoate. Relaxation to ATP or SP was unaffected by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), and relaxation to SP was unaffected by either DIDS or DNDS. Replacing Cl- in the buffer solutions with the impermeable anion gluconate on both sides of the trachea inhibited relaxation to SP or ATP. In contrast, increasing the gradient for Cl- secretion using Cl- free medium only in the tracheal lumen enhanced the relaxation to SP or ATP. We conclude that Cl- channel function is linked to receptor-mediated, epithelium-dependent relaxation. The finding that relaxation to SP was not blocked by DIDS suggested the involvement of a DIDS-insensitive Cl- channel, potentially the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. To test this hypothesis, we evaluated tracheas from CFTR-deficient mice and found that the peak relaxation to SP or ATP was not significantly different from those responses in wild-type littermates. This suggests that a DIDS-insensitive Cl- channel other than CFTR is active in the SP response. This work introduces a possible role for Cl- pathways in the modulation of airway smooth muscle function and may have implications for fundamental studies of airway function as well as therapeutic approaches to pulmonary disease.

  9. Pasireotide and octreotide antiproliferative effects and sst2 trafficking in human pancreatic neuroendocrine tumor cultures.

    PubMed

    Mohamed, Amira; Blanchard, Marie-Pierre; Albertelli, Manuela; Barbieri, Federica; Brue, Thierry; Niccoli, Patricia; Delpero, Jean-Robert; Monges, Genevieve; Garcia, Stephane; Ferone, Diego; Florio, Tullio; Enjalbert, Alain; Moutardier, Vincent; Schonbrunn, Agnes; Gerard, Corinne; Barlier, Anne; Saveanu, Alexandru

    2014-10-01

    Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) raise difficult therapeutic problems despite the emergence of targeted therapies. Somatostatin analogs (SSA) remain pivotal therapeutic drugs. However, the tachyphylaxis and the limited antitumoral effects observed with the classical somatostatin 2 (sst2) agonists (octreotide and lanreotide) led to the development of new SSA, such as the pan sst receptor agonist pasireotide. Our aim was to compare the effects of pasireotide and octreotide on cell survival, chromogranin A (CgA) secretion, and sst2 phosphorylation/trafficking in pancreatic NET (pNET) primary cells from 15 tumors. We established and characterized the primary cultures of human pancreatic tumors (pNETs) as powerful preclinical models for understanding the biological effects of SSA. At clinically relevant concentrations (1-10 nM), pasireotide was at least as efficient as octreotide in inhibiting CgA secretion and cell viability through caspase-dependent apoptosis during short treatments, irrespective of the expression levels of the different sst receptors or the WHO grade of the parental tumor. Interestingly, unlike octreotide, which induces a rapid and persistent partial internalization of sst2 associated with its phosphorylation on Ser341/343, pasireotide did not phosphorylate sst2 and induced a rapid and transient internalization of the receptor followed by a persistent recycling at the cell surface. These results provide the first evidence, to our knowledge, of striking differences in the dynamics of sst2 trafficking in pNET cells treated with the two SSAs, but with similar efficiency in the control of CgA secretion and cell viability. © 2014 Society for Endocrinology.

  10. Combinatorial effects of quercetin and sex-steroids on fluid and electrolytes’ (Na+, Cl-, HCO3-) secretory mechanisms in the uterus of ovariectomised female Sprague-Dawley rats

    PubMed Central

    Shahzad, Huma; Giribabu, Nelli; Karim, Kamarulzaman; Kassim, Normadiah M.; Muniandy, Sekaran

    2017-01-01

    Dysregulation of uterine fluid environment could impair successful reproduction and this could be due to the effect of environmental estrogens. Therefore, in this study, effect of quercetin, an environmental estrogen on uterine fluid and electrolytes concentrations were investigated under sex-steroid influence. Ovariectomised adult female Sprague-Dawley rats were given 10, 50 or 100mg/kg/day quercetin subcutaneously with 17-β estradiol (E) for seven days or three days E, then three days E plus progesterone (P) (E+P) treatment. Uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations were determined by in-vivo perfusion. Following sacrifice, uteri were harvested and levels of the proteins of interest were identified by Western blotting and Realtime PCR. Distribution of these proteins in the uterus was observed by immunofluorescence. Levels of uterine cAMP were measured by enzyme-linked immunoassay (EIA). Administration of quercetin at increasing doses increased uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations, but to the levels lesser than that of E. In concordant, levels of CFTR, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP in the uterus increased following increased in the doses of quercetin. Co-administration of quercetin with E caused uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations to decrease. In concordant, uterine CFTR, SLC26A6, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP decreased. Greatest effects were observed following co-administration of 10mg/kg/day quercetin with E. Co-administration of quercetin with E+P caused uterine fluid Na+ and HCO3- concentrations to increase but no changes in fluid secretion rate and Cl- concentration were observed. Co-administration of high dose quercetin (100 mg/kg/day) with E+P caused uterine CFTR, SLC26A6, AC, GPα/β and ENaC (α, β and γ) to increase. Quercetin-induced changes in the uterine fluid secretion rate and electrolytes concentrations could potentially affect the uterine reproductive functions under female sex-steroid influence. PMID:28253299

  11. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations.

    PubMed

    Bazihizina, Nadia; Colmer, Timothy D; Barrett-Lennard, Edward G

    2009-09-01

    Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na(+) and Cl(-) concentrations were 1.9- to 2.3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K(+) concentrations were 1.2- to 2.0-fold higher in the non-uniform treatment. Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments.

  12. In vitro and in vivo delivery of the secretagogue diadenosine tetraphosphate from conventional and silicone hydrogel soft contact lenses

    PubMed Central

    Dominguez-Godinez, Carmen Olalla; Martin-Gil, Alba; Carracedo, Gonzalo; Guzman-Aranguez, Ana; González-Méijome, José Manuel; Pintor, Jesús

    2013-01-01

    Purpose To evaluate the possible use of soft contact lenses (CL) to improve the secretagogue role of diadenosine tetraphosphate (Ap4A) promoting tear secretion. Methods Two conventional hydrogel CL (Omafilcon A and Ocufilcon D) and two silicone hydrogel (SiH) CL (Comfilcon A and Balafilcon A) were used. Ap4A was loaded into the lenses by soaking in a 1 mM Ap4A solution during 12 h. In vitro experiments were performed by placing the lenses in multi-wells during 2 h containing 1 ml of ultrapure water. 100 μl aliquots were taken at time zero and every minute for the first 10 min, and then every 15 min. In vivo experiments were performed in New Zealand rabbits and both the dinucleotide release from SiH and tear secretion were measured by means of Schirmer strips and high-pressure liquid chromatography (HPLC) analysis. Results Ap4A in vitro release experiments in hydrogel CL presented a release time 50 (RT50) of 3.9 ± 0.2 min and 3.1 ± 0.1 min for the non-ionic and the ionic CL, respectively. SiH CL released also Ap4A with RT50 values of 5.1 ± 0.1 min for the non-ionic and 2.7 ± 0.1 min for the ionic CL. In vivo experiments with SiH CL showed RT50 values of 9.3 ± 0.2 min and 8.5 ± 0.2 min for the non-ionic and the ionic respectively. The non-ionic lens Ap4A release was able to induce tear secretion above baseline tear levels for almost 360 min. Conclusion The delivery of Ap4A is slower and the effect lasts longer with non-ionic lenses than ionic lenses.

  13. Intracellular Signaling Mechanisms Pharmacological Action of Jasminum amplexicaule Buch.-Ham. (Oleaceae) on Gastrointestinal Secretion.

    PubMed

    Gao, Zhenhua; Yin, Junqiang; Xie, Xiaolin; Long, Hanwu; Qi, Xiang; Lin, Changhu; Wu, Liangcai

    2014-01-01

    Jasminum amplexicaule Buch-Ham. (Oleaceae) has been commonly used in the traditional medicine in dysentery, diarrhoea and bellyache in China. In the present work, the methanol extract of Jasminum amplexicaule (JME) was examined for pharmacology on human colonic epithelial cell line T84 by the short-circuit current technique. The results showed that pretreatment of T84 cells with JME produced a concentration-dependent (0-1000 μg/mL. EC50 = 0.055 mg/ mL) inhibition effect on adrenalin (Adr.)-induced Cl- secretion. The maximal response was observed at 200 μg/mL. It has been demonstrated that JME has a direct effect on the enterocyte. Our results also demonstrated that the JME exerted inhibitory effect on gastrointestinal Cl(-)secretion that effected by acting on basolateral β-adrenoreceptors. These results suggested that the Chinese traditional medicine of JME can be used for the treatment of acute diarrhea and bellyache.

  14. FECAL PROGESTERONE METABOLITES IN POSTPARTUM SIBERIAN FLYING SQUIRRELS.

    PubMed

    Shimamoto, Tatsuki; Suzuki, Kei K; Hamada, Mizuho; Furukawa, Ryuji; Matsui, Motozumi; Yanagawa, Hisashi

    2018-03-01

    The Siberian flying squirrel ( Pteromys volans) produces up to two litters a year. To deliver second litters in breeding season, P. volans may have a postpartum estrus similarly to that of a variety of small mammals. If this were the case, females would have periods of elevated progesterone levels because of the formation of corpora lutea (CL) after postpartum ovulation. To test this hypothesis, fecal progesterone metabolite dynamics was investigated during lactation in this species using an enzyme immunoassay. In five of the six lactating females, periods of high fecal progesterone metabolite concentration were observed, and, furthermore, progesterone secretion patterns were periodic. Therefore, the source of progesterone during lactation could be arising CL from postpartum ovulation, indicating that ovarian activity was reinitiated after parturition and the CL that formed began secreting progesterone. This study thus showed that P. volans likely has the physiologic potential to mate during lactation.

  15. Effectiveness and Cost of Insecticide-Treated Bed Nets and Indoor Residual Spraying for the Control of Cutaneous Leishmaniasis: A Cluster-Randomized Control Trial in Morocco

    PubMed Central

    Faraj, Chafika; Yukich, Joshua; Adlaoui, El Bachir; Wahabi, Rachid; Mnzava, Abraham Peter; Kaddaf, Mustapha; El Idrissi, Abderrahmane Laamrani; Ameur, Btissam; Kleinschmidt, Immo

    2016-01-01

    Cutaneous leishmaniasis (CL) remains an important public health problem in Morocco. A cluster-randomized trial was conducted with the following three study arms: 1) long-lasting insecticide-treated nets (LLINs) plus standard of care environmental management (SoC-EM), 2) indoor residual spraying (IRS) with α-cypermethrin plus SoC-EM, and 3) SoC-EM alone. Incidence of new CL cases by passive and active case detection, sandfly abundance, and cost and cost-effectiveness was compared between study arms over 5 years. Incidence of CL and sandfly abundance were significantly lower in the IRS arm compared with SoC-EM (CL incidence rate ratio = 0.32, 95% confidence interval [CI] = 0.15–0.69, P = 0.005 and sandfly abundance ratio = 0.39, 95% CI = 0.18–0.85, P = 0.022). Reductions in the LLIN arm of the study were not significant, possibly due to poor compliance. IRS was effective and more cost-effective for the prevention of CL in Morocco. PMID:26811431

  16. A thermodynamic study of electroneutral K-Cl cotransport in pH- and volume-clamped low K sheep erythrocytes with normal and low internal magnesium.

    PubMed

    Lauf, P K; Adragna, N C

    1996-10-01

    Swelling-induced human erythrocyte K-Cl cotransport is membrane potential independent and capable of uphill transport. However, a complete thermodynamic analysis of basal and stimulated K-Cl cotransport, at constant cell volume, is missing. This study was performed in low K sheep red blood cells before and after reducing cellular free Mg into the nanomolar range with the divalent cation ionophore A23187 and a chelator, an intervention known to stimulate K-Cl cotransport. The anion exchange inhibitor 4,4'diisothiocyanato-2,2'disulfonic stilbene was used to clamp intracellular pH and Cl or NO3 concentrations. Cell volume was maintained constant as external and internal pH differed by more than two units. K-Cl cotransport was calculated from the K effluxes and Rb (as K congener) influxes measured in Cl and NO3, at constant internal K and external anions, and variable concentrations of extracellular Rb and internal anions, respectively. The external Rb concentration at which net K-Cl cotransport is zero was defined as flux reversal point which changed with internal pH and hence Cl. Plots of the ratio of external Rb concentrations corresponding to the flux reversal points and the internal K concentration versus the ratio of the internal and external Cl concentrations (i.e., the Donnan ratio of the transported ions) yielded slopes near unity for both control and low internal Mg cells. Thus, basal as well as low internal Mg-stimulated net K-Cl cotransport depends on the electrochemical potential gradient of KCl.

  17. A thermodynamic study of electroneutral K-Cl cotransport in pH- and volume-clamped low K sheep erythrocytes with normal and low internal magnesium

    PubMed Central

    1996-01-01

    Swelling-induced human erythrocyte K-Cl cotransport is membrane potential independent and capable of uphill transport. However, a complete thermodynamic analysis of basal and stimulated K-Cl cotransport, at constant cell volume, is missing. This study was performed in low K sheep red blood cells before and after reducing cellular free Mg into the nanomolar range with the divalent cation ionophore A23187 and a chelator, an intervention known to stimulate K- Cl cotransport. The anion exchange inhibitor 4,4'diisothiocyanato- 2,2'disulfonic stilbene was used to clamp intracellular pH and Cl or NO3 concentrations. Cell volume was maintained constant as external and internal pH differed by more than two units. K-Cl cotransport was calculated from the K effluxes and Rb (as K congener) influxes measured in Cl and NO3, at constant internal K and external anions, and variable concentrations of extracellular Rb and internal anions, respectively. The external Rb concentration at which net K-Cl cotransport is zero was defined as flux reversal point which changed with internal pH and hence Cl. Plots of the ratio of external Rb concentrations corresponding to the flux reversal points and the internal K concentration versus the ratio of the internal and external Cl concentrations (i.e., the Donnan ratio of the transported ions) yielded slopes near unity for both control and low internal Mg cells. Thus, basal as well as low internal Mg-stimulated net K-Cl cotransport depends on the electrochemical potential gradient of KCl. PMID:8894982

  18. Urea inhibits NaK2Cl cotransport in human erythrocytes.

    PubMed Central

    Lim, J; Gasson, C; Kaji, D M

    1995-01-01

    We examined the effect of urea on NaK2Cl cotransport in human erythrocytes. In erythrocytes from nine normal subjects, the addition of 45 mM urea, a concentration commonly encountered in uremic subjects, inhibited NaK2Cl cotransport by 33 +/- 7%. Urea inhibited NaK2Cl cotransport reversibly, and in a concentration-dependent fashion with half-maximal inhibition at 63 +/- 10 mM. Acute cell shrinkage increased, and acute cell swelling decreased NaK2Cl cotransport in human erythrocytes. Okadaic acid (OA), a specific inhibitor of protein phosphatase 1 and 2A, increased NaK2Cl cotransport by nearly 80%, suggesting an important role for these phosphatases in the regulation of NaK2Cl cotransport. Urea inhibited bumetanide-sensitive K influx even when protein phosphatases were inhibited with OA, suggesting that urea acted by inhibiting a kinase. In cells subjected to shrinking and OA pretreatment, maneuvers expected to increase the net phosphorylation, urea inhibited cotransport only minimally, suggesting that urea acted by causing a net dephosphorylation of the cotransport protein, or some key regulatory protein. The finding that concentrations of urea found in uremic subjects inhibited NaK2Cl cotransport, a widespread transport pathway with important physiological functions, suggests that urea is not only a marker for accumulation of other uremic toxins, but may be a significant uremic toxin itself. PMID:7593597

  19. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure.

    PubMed

    Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D

    2017-09-15

    Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater increase in lumbar sympathetic nerve activity (SNA), adrenal SNA and ABP than equi-osmotic sorbitol (2.0 osmol l -1 ). Second, OVLT microinjection (20 nl) of 1.0 m NaCl significantly raised lumbar SNA, adrenal SNA and ABP. Equi-osmotic sorbitol did not alter any variable. Third, in vitro whole-cell recordings demonstrate that 50% (18/36) of OVLT neurons display an increased discharge to both hypertonic NaCl (+7.5 mm) and mannitol (+15 mm). Of these neurons, 56% (10/18) displayed a greater discharge response to hypertonic NaCl vs mannitol. Fourth, in vivo single-unit recordings revealed that intracarotid injection of hypertonic NaCl produced a concentration-dependent increase in OVLT cell discharge, lumbar SNA and ABP. The responses to equi-osmotic infusions of hypertonic sorbitol were significantly smaller. Lastly, icv infusion of 0.5 m NaCl produced significantly greater increases in OVLT discharge and ABP than icv infusion of equi-osmotic sorbitol. Collectively, these findings indicate NaCl and osmotic stimuli produce different responses across OVLT neurons and may represent distinct cellular processes to regulate thirst, vasopressin secretion and autonomic function. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  20. [Investigations on the physiology of the glands of carnivorous plants : IV. The kinetics of chloride secretion by the gland tissue of Nepenthes].

    PubMed

    Lüttge, U

    1966-03-01

    The transport of chloride in isolated tissue from Nepenthes pitchers was investigated using (36)Cl(-), an Aminco-Cotlove chloride-titrator for the determinations of Cl(-) concentrations, and KCN and AsO 4 (-) -as metabolic inhibitors.The tissue was brought in contact with different experimental solutions (=medium). The surface corresponding to the outside of the pitchers was cut with a razor blade to remove the cutinized epidermal layer. At this surface the Cl(-) uptake from the medium is a metabolic process which depends on the Cl(-)-concentration of the medium in a manner that corresponds to the MICHAELIS-MENTEN kinetics. The Michaelis-constant of this transport step was 3×10(-2)M. The Cl(-)-efflux into the medium, however, is a passive process.The opposite surface of the tissue slices (corresponding to the inside of the pitchers) carries the glands. The chloride secretion taking place here is also dependent on metabolism. In vitro it occurs even when a high gradient of chloride concentration has been set up between the medium and the solution which is in contact with the glands. In vivo the Cl(-)-concentration of the pitcher fluid and the amount of Cl(-) per gram of tissue water are almost equal.The rôle of chloride in the physiology of Nepenthes is still under investigation, A correlation between the chloride content of the pitcher fluid and its enzymatic activity (Casein-test), however, could already be demonstrated.

  1. Strategies for regulation of hemolymph pH in acidic and alkaline water by the larval mosquito Aedes aegypti (L.) (Diptera; Culicidae).

    PubMed

    Clark, Thomas M; Vieira, Marcus A L; Huegel, Kara L; Flury, Dawn; Carper, Melissa

    2007-12-01

    The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.

  2. The role of type III secretion system and lens material on adhesion of Pseudomonas aeruginosa to contact lenses.

    PubMed

    Shen, Elizabeth P; Tsay, Ruey-Yug; Chia, Jean-San; Wu, Semon; Lee, Jing-Wen; Hu, Fung-Rong

    2012-09-21

    To determine the distribution of invasive and cytotoxic genotypes among ocular isolates of P. aeruginosa and investigate the influence of the type III secretion system (T3SS) on adhesion to conventional, cosmetic, and silicone hydrogel contact lenses (CL). Clinical isolates from 2001 to 2010 were analyzed by multiplex PCR for exoS, exoU, and exoT genes. Bacterial adhesion to etafilcon, nelfilcon (gray colored), balafilcon, and galyfilcon CL with or without artificial tear fluid (ATF) incubation were compared. Surface characteristics were determined with scanning electron microscopy (SEM). Among 87 total isolates, 64 strains were from microbial keratitis cases. CL-related microbial keratitis (CLMK) isolates were mostly of the cytotoxic genotype (expressing exoU) (P = 0.002). No significant differences were found in bacterial adhesion to all types of CL between the genotypes under T3SS-inducing conditions. A trend for least bacterial adhesion of galyfilcon compared to the other CL was noted for both genotypes. Needle complex pscC mutants adhered less to all materials than the wild type (P < 0.05), indicating a role of the T3SS in contact lens adhesion. ATF-incubated CL had significantly more bacterial adhesion (P < 0.05). SEM showed most of the bacteria adhering on CL surfaces. CLMK isolates were mostly of cytotoxic genotype. Different genotypes did not significantly differ in its adhesion to various CL. T3SS and other adhesins are involved in bacteria-contact lens adhesion through complex interactions. Contact lens materials may also play an important role in the adherence of both genotypes of P. aeruginosa.

  3. 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells.

    PubMed

    Bernhart, Eva; Kogelnik, Nora; Prasch, Jürgen; Gottschalk, Benjamin; Goeritzer, Madeleine; Depaoli, Maria Rosa; Reicher, Helga; Nusshold, Christoph; Plastira, Ioanna; Hammer, Astrid; Fauler, Günter; Malli, Roland; Graier, Wolfgang F; Malle, Ernst; Sattler, Wolfgang

    2018-05-01

    Peripheral leukocytes induce blood-brain barrier (BBB) dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H 2 O 2 -chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens) generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA). In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC) that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a 'clickable' alkyne derivative (2-ClHyA) that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER) and mitochondria of human BMVEC (hCMEC/D3 cell line). 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL)-6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK) inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Tetrahalide complexes of the [U(NR)2]2+ ion: synthesis, theory, and chlorine K-edge X-ray absorption spectroscopy.

    PubMed

    Spencer, Liam P; Yang, Ping; Minasian, Stefan G; Jilek, Robert E; Batista, Enrique R; Boland, Kevin S; Boncella, James M; Conradson, Steven D; Clark, David L; Hayton, Trevor W; Kozimor, Stosh A; Martin, Richard L; MacInnes, Molly M; Olson, Angela C; Scott, Brian L; Shuh, David K; Wilkerson, Marianne P

    2013-02-13

    Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.

  5. Chloride Transport in Porous Lipid Bilayer Membranes

    PubMed Central

    Andreoli, Thomas E.; Watkins, Mary L.

    1973-01-01

    This paper describes dissipative Cl- transport in "porous" lipid bilayer membranes, i.e., cholesterol-containing membranes exposed to 1–3 x 10-7 M amphotericin B. P DCl (cm·s-1), the diffusional permeability coefficient for Cl-, estimated from unidirectional 36Cl- fluxes at zero volume flow, varied linearly with the membrane conductance (Gm, Ω-1·cm-2) when the contributions of unstirred layers to the resistance to tracer diffusion were relatively small with respect to the membranes; in 0.05 M NaCl, P DCl was 1.36 x 10-4 cm·s-1 when Gm was 0.02 Ω-1·cm-2. Net chloride fluxes were measured either in the presence of imposed concentration gradients or electrical potential differences. Under both sets of conditions: the values of P DCl computed from zero volume flow experiments described net chloride fluxes; the net chloride fluxes accounted for ∼90–95% of the membrane current density; and, the chloride flux ratio conformed to the Ussing independence relationship. Thus, it is likely that Cl- traversed aqueous pores in these anion-permselective membranes via a simple diffusion process. The zero current membrane potentials measured when the aqueous phases contained asymmetrical NaCl solutions could be expressed in terms of the Goldman-Hodgkin-Katz constant field equation, assuming that the P DNa/P DCl ratio was 0.05. In symmetrical salt solutions, the current-voltage properties of these membranes were linear; in asymmetrical NaCl solutions, the membranes exhibited electrical rectification consistent with constant-field theory. It seems likely that the space charge density in these porous membranes is sufficiently low that the potential gradient within the membranes is approximately linear; and, that the pores are not electrically neutral, presumably because the Debye length within the membrane phase approximates the membrane thickness. PMID:4708408

  6. Transport of H2S and HS(-) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(-)/HS(-) exchange.

    PubMed

    Jennings, Michael L

    2013-11-01

    The rates of H2S and HS(-) transport across the human erythrocyte membrane were estimated by measuring rates of dissipation of pH gradients in media containing 250 μM H2S/HS(-). Net acid efflux is caused by H2S/HS(-) acting analogously to CO2/HCO3(-) in the Jacobs-Stewart cycle. The steps are as follows: 1) H2S efflux through the lipid bilayer and/or a gas channel, 2) extracellular H2S deprotonation, 3) HS(-) influx in exchange for Cl(-), catalyzed by the anion exchange protein AE1, and 4) intracellular HS(-) protonation. Net acid transport by the Cl(-)/HS(-)/H2S cycle is more efficient than by the Cl(-)/HCO3(-)/CO2 cycle because of the rapid H2S-HS(-) interconversion in cells and medium. The rates of acid transport were analyzed by solving the mass flow equations for the cycle to produce estimates of the HS(-) and H2S transport rates. The data indicate that HS(-) is a very good substrate for AE1; the Cl(-)/HS(-) exchange rate is about one-third as rapid as Cl(-)/HCO3(-) exchange. The H2S permeability coefficient must also be high (>10(-2) cm/s, half time <0.003 s) to account for the pH equilibration data. The results imply that H2S and HS(-) enter erythrocytes very rapidly in the microcirculation of H2S-producing tissues, thereby acting as a sink for H2S and lowering the local extracellular concentration, and the fact that HS(-) is a substrate for a Cl(-)/HCO3(-) exchanger indicates that some effects of exogenous H2S/HS(-) may not result from a regulatory role of H2S but, rather, from net acid flux by H2S and HS(-) transport in a Jacobs-Stewart cycle.

  7. The Chlorine Isotope Composition of Earth’s Mantle

    NASA Astrophysics Data System (ADS)

    Bonifacie, M.; Jendrzejewski, N.; Agrinier, P.; Humler, E.; Coleman, M.; Javoy, M.

    2008-03-01

    Chlorine stable isotope compositions (δ37Cl) of 22 mid-ocean ridge basalts (MORBs) correlate with Cl content. The high-δ37Cl, Cl-rich basalts are highly contaminated by Cl-rich materials (seawater, brines, or altered rocks). The low-δ37Cl, Cl-poor basalts approach the composition of uncontaminated, mantle-derived magmas. Thus, most or all oceanic lavas are contaminated to some extent during their emplacement. MORB-source mantle has δ37Cl ≤ 1.6 per mil (‰), which is significantly lower than that of surface reservoirs (~ 0‰). This isotopic difference between the surface and deep Earth results from net Cl isotopic fractionation (associated with removal of Cl from the mantle and its return by subduction over Earth history) and/or the addition (to external reservoirs) of a late volatile supply that is 37Cl-enriched.

  8. Histological comparison of arterial thrombi in mice and men and the influence of Cl-amidine on thrombus formation.

    PubMed

    Novotny, Julia; Chandraratne, Sue; Weinberger, Tobias; Philippi, Vanessa; Stark, Konstantin; Ehrlich, Andreas; Pircher, Joachim; Konrad, Ildiko; Oberdieck, Paul; Titova, Anna; Hoti, Qendresa; Schubert, Irene; Legate, Kyle R; Urtz, Nicole; Lorenz, Michael; Pelisek, Jaroslav; Massberg, Steffen; von Brühl, Marie-Luise; Schulz, Christian

    2018-01-01

    Medical treatment of arterial thrombosis is mainly directed against platelets and coagulation factors, and can lead to bleeding complications. Novel antithrombotic therapies targeting immune cells and neutrophil extracellular traps (NETs) are currently being investigated in animals. We addressed whether immune cell composition of arterial thrombi induced in mouse models of thrombosis resemble those of human patients with acute myocardial infarction (AMI). In a prospective cohort study of patients suffering from AMI, 81 human arterial thrombi were harvested during percutaneous coronary intervention and subjected to detailed histological analysis. In mice, arterial thrombi were induced using two distinct experimental models, ferric chloride (FeCl3) and wire injury of the carotid artery. We found that murine arterial thrombi induced by FeCl3 were highly concordant with human coronary thrombi regarding their immune cell composition, with neutrophils being the most abundant cell type, as well as the presence of NETs and coagulation factors. Pharmacological treatment of mice with the protein arginine deiminase (PAD)-inhibitor Cl-amidine abrogated NET formation, reduced arterial thrombosis and limited injury in a model of myocardial infarction. Neutrophils are a hallmark of arterial thrombi in patients suffering from acute myocardial infarction and in mouse models of arterial thrombosis. Inhibition of PAD could represent an interesting strategy for the treatment of arterial thrombosis to reduce neutrophil-associated tissue damage and improve functional outcome.

  9. Control of rectal gland secretion by blood acid-base status in the intact dogfish shark (Squalus acanthias).

    PubMed

    Wood, Chris M; Munger, R Stephen; Thompson, Jill; Shuttleworth, Trevor J

    2007-05-14

    In order to address the possible role of blood acid-base status in controlling the rectal gland, dogfish were fitted with indwelling arterial catheters for blood sampling and rectal gland catheters for secretion collection. In intact, unanaesthetized animals, isosmotic volume loading with 500 mmol L-1 NaCl at a rate of 15 mL kg-1 h-1 produced a brisk, stable rectal gland secretion flow of about 4 mL kg-1 h-1. Secretion composition (500 mmol L-1 Na+ and Cl-; 5 mmol L-1 K+; <1 mmol L-1 Ca2+, Mg2+, SO(4)2-, or phosphate) was almost identical to that of the infusate with a pH of about 7.2, HCO3- mmol L-1<1 mmol L-1 and a PCO2 (1 Torr) close to PaCO2. Experimental treatments superimposed on the infusion caused the expected disturbances in systemic acid-base status: respiratory acidosis by exposure to high environmental PCO2, metabolic acidosis by infusion of HCl, and metabolic alkalosis by infusion of NaHCO3. Secretion flow decreased markedly with acidosis and increased with alkalosis, in a linear relationship with extracellular pH. Secretion composition did not change, apart from alterations in its acid-base status, and made negligible contribution to overall acid-base balance. An adaptive control of rectal gland secretion by systemic acid-base status is postulated-stimulation by the "alkaline tide" accompanying the volume load of feeding and inhibition by the metabolic acidosis accompanying the volume contraction of exercise.

  10. Neural modulation of salt secretion in teleostopercular epithelium by 2-adrenergic receptors and inositol 1,4,5-trisphosphate

    PubMed

    Marshall; Duquesnay; Gillis; Bryson; Liedtke

    1998-05-21

    Opercular epithelia from seawater-adapted killifish (Fundulus heteroclitus) were dissected with the nerve intact, mounted in Ussing-style membrane chambers and bathed in symmetrical saline solutions. Nerve stimulation rapidly inhibited transepithelial current (a measure of Cl- secretion rate) by 27.3+/-3.3 % (N=22), and the effect could be sustained for more than 10 min using intermittent pulse trains at 10 Hz. The effect was blocked in a dose-dependent manner by yohimbine, but not by propranolol, atropine or tubocurarine, indicating mediation by 2-adrenergic receptors. The effect was also present, but significantly diminished, in opercular membranes from animals that had been transferred to sea water for 48 h (18+/-8.6 % inhibition, N=14). The resting current and the effect were absent in membranes from freshwater-adapted animals. The addition of clonidine (1.0 micromol l-1 serosal side) started to inhibit Cl- current after 40-60 s; immediately before this, at 30 s, there was a significant rise (P<0.05, N=14) in tissue inositol 1,4,5, -trisphosphate (InsP3) level, but no change at later times, compared with LiCl-treated control membranes and measured by radiolabeled receptor assay. The results indicate that seawater-adapted killifish can decrease their Cl- secretion rate through the action of the sympathetic nervous system, a response appropriate for the entry of estuarine fish to fresh water, and that the effect is mediated by 2-adrenoceptors via InsP3. The results imply that euryhaline fish entering fresh water can undergo an autonomic reflex reduction in salt secretion that does not require a stress response.

  11. Abnormal passive chloride absorption in cystic fibrosis jejunum functionally opposes the classic chloride secretory defect

    PubMed Central

    Russo, Michael A.; Högenauer, Christoph; Coates, Stephen W.; Santa Ana, Carol A.; Porter, Jack L.; Rosenblatt, Randall L.; Emmett, Michael; Fordtran, John S.

    2003-01-01

    Due to genetic defects in apical membrane chloride channels, the cystic fibrosis (CF) intestine does not secrete chloride normally. Depressed chloride secretion leaves CF intestinal absorptive processes unopposed, which results in net fluid hyperabsorption, dehydration of intestinal contents, and a propensity to inspissated intestinal obstruction. This theory is based primarily on in vitro studies of jejunal mucosa. To determine if CF patients actually hyperabsorb fluid in vivo, we measured electrolyte and water absorption during steady-state perfusion of the jejunum. As expected, chloride secretion was abnormally low in CF, but surprisingly, there was no net hyperabsorption of sodium or water during perfusion of a balanced electrolyte solution. This suggested that fluid absorption processes are reduced in CF jejunum, and further studies revealed that this was due to a marked depression of passive chloride absorption. Although Na+-glucose cotransport was normal in the CF jejunum, absence of passive chloride absorption completely blocked glucose-stimulated net sodium absorption and reduced glucose-stimulated water absorption 66%. This chloride absorptive abnormality acts in physiological opposition to the classic chloride secretory defect in the CF intestine. By increasing the fluidity of intraluminal contents, absence of passive chloride absorption may reduce the incidence and severity of intestinal disease in patients with CF. PMID:12840066

  12. P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport

    PubMed Central

    Köttgen, Michael; Löffler, Thomas; Jacobi, Christoph; Nitschke, Roland; Pavenstädt, Hermann; Schreiber, Rainer; Frische, Sebastian; Nielsen, Søren; Leipziger, Jens

    2003-01-01

    Extracellular nucleotides are important regulators of epithelial ion transport. Here we investigated nucleotide-mediated effects on colonic NaCl secretion and the signal transduction mechanisms involved. Basolateral UDP induced a sustained activation of Cl– secretion, which was completely inhibited by 293B, a specific inhibitor of cAMP-stimulated basolateral KCNQ1/KCNE3 K+ channels. We therefore speculated that a basolateral P2Y6 receptor could increase cAMP. Indeed UDP elevated cAMP in isolated crypts. We identified an epithelial P2Y6 receptor using crypt [Ca2+]i measurements, RT-PCR, and immunohistochemistry. To investigate whether the rat P2Y6elevates cAMP, we coexpressed the P2Y1 or P2Y6 receptor together with the cAMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel in Xenopus oocytes. A two-electrode voltage clamp was used to monitor nucleotide-induced Cl– currents. In oocytes expressing the P2Y1 receptor, ATP transiently activated the endogenous Ca2+-activated Cl– current, but not CFTR. In contrast, in oocytes expressing the P2Y6receptor, UDP transiently activated the Ca2+-activated Cl– current and subsequently CFTR. CFTR Cl– currents were identified by their halide conductance sequence. In summary we find a basolateral P2Y6 receptor in colonic epithelial cells stimulating sustained NaCl secretion by way of a synergistic increase of [Ca2+]i and cAMP. In support of these data P2Y6 receptor stimulation differentially activates CFTR in Xenopus oocytes. PMID:12569163

  13. Intracellular Signaling Mechanisms Pharmacological Action of Jasminum amplexicaule Buch.-Ham. (Oleaceae) on Gastrointestinal Secretion

    PubMed Central

    Gao, Zhenhua; Yin, Junqiang; Xie, Xiaolin; Long, Hanwu; Qi, Xiang; Lin, Changhu; Wu, Liangcai

    2014-01-01

    Jasminum amplexicaule Buch-Ham. (Oleaceae) has been commonly used in the traditional medicine in dysentery, diarrhoea and bellyache in China. In the present work, the methanol extract of Jasminum amplexicaule (JME) was examined for pharmacology on human colonic epithelial cell line T84 by the short-circuit current technique. The results showed that pretreatment of T84 cells with JME produced a concentration-dependent (0-1000 μg/mL. EC50 = 0.055 mg/ mL) inhibition effect on adrenalin (Adr.)–induced Cl- secretion. The maximal response was observed at 200 μg/mL. It has been demonstrated that JME has a direct effect on the enterocyte. Our results also demonstrated that the JME exerted inhibitory effect on gastrointestinal Cl-secretion that effected by acting on basolateral β-adrenoreceptors. These results suggested that the Chinese traditional medicine of JME can be used for the treatment of acute diarrhea and bellyache. PMID:25276197

  14. Abnormal carbene-silicon halide complexes.

    PubMed

    Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; Schaefer, Henry F; Robinson, Gregory H

    2016-04-14

    Reaction of the anionic N-heterocyclic dicarbene (NHDC), [:C{[N(2,6-Pr(i)2C6H3)]2CHCLi}]n (1), with SiCl4 gives the trichlorosilyl-substituted (at the C4 carbon) N-heterocyclic carbene complex (7). Abnormal carbene-SiCl4 complex (8) may be conveniently synthesized by combining 7 with HCl·NEt3. In addition, 7 may react with CH2Cl2 in warm hexane, giving the abnormal carbene-complexed SiCl3(+) cation (9). The nature of the bonding in 9 was probed with complementary DFT computations.

  15. Calcium-Activated Cl- Channel: Insights on the Molecular Identity in Epithelial Tissues.

    PubMed

    Rottgen, Trey S; Nickerson, Andrew J; Rajendran, Vazhaikkurichi M

    2018-05-10

    Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca 2+ -activated Cl − secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca 2+ -activated Cl − channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca 2+ -sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.

  16. Secrets of the Super Net Searchers: The Reflections, Revelations, and Hard-Won Wisdom of 35 of the World's Top Internet Researchers.

    ERIC Educational Resources Information Center

    Basch, Reva

    This book presents the collected wisdom of 35 leading Internet hunters and gatherers. Through interviews, these experts offer insights, anecdotes, tips, techniques, and case histories which will raise the "searching IQ" of any serious Internet user. The Super Net Searchers explain how they find valuable information on the Internet,…

  17. The effect of glucose on insulin release and ion movements in isolated pancreatic islets of rats in old age.

    PubMed Central

    Ammon, H P; Fahmy, A; Mark, M; Wahl, M A; Youssif, N

    1987-01-01

    1. The effect of glucose on 86Rb+ efflux, 45Ca2+ net uptake and insulin secretion of pancreatic islets from 3- and 24-month-old rats was studied. 2. Raising the glucose concentration from 3 to 5.6 and 16.7 mM had no effect on 86Rb+ efflux from islets of 24-month-old male rats whereas that from 24-month-old female rats was decreased. 3. At 16.7 mM-glucose, net uptake of 45Ca2+ was significantly diminished in islets of 24-month-old rats compared to islets of 3-month-old rats. 4. In the presence of 16.7 mM-glucose, islets of 24-month-old rats exhibited only 60-70% of the insulin release obtained with islets from 3-month-old rats. 5. Neither net uptake of 45Ca2+ nor insulin secretion appear to differ between the sexes. 6. These data suggest that the decreased insulin secretory response to glucose during old age is due, at least in part, to inadequate inhibition of K+ efflux and diminished net uptake of Ca2+. PMID:3309262

  18. Histological comparison of arterial thrombi in mice and men and the influence of Cl-amidine on thrombus formation

    PubMed Central

    Philippi, Vanessa; Stark, Konstantin; Ehrlich, Andreas; Pircher, Joachim; Konrad, Ildiko; Oberdieck, Paul; Titova, Anna; Hoti, Qendresa; Schubert, Irene; Legate, Kyle R.; Urtz, Nicole; Lorenz, Michael; Pelisek, Jaroslav; Massberg, Steffen; von Brühl, Marie-Luise; Schulz, Christian

    2018-01-01

    Aims Medical treatment of arterial thrombosis is mainly directed against platelets and coagulation factors, and can lead to bleeding complications. Novel antithrombotic therapies targeting immune cells and neutrophil extracellular traps (NETs) are currently being investigated in animals. We addressed whether immune cell composition of arterial thrombi induced in mouse models of thrombosis resemble those of human patients with acute myocardial infarction (AMI). Methods and results In a prospective cohort study of patients suffering from AMI, 81 human arterial thrombi were harvested during percutaneous coronary intervention and subjected to detailed histological analysis. In mice, arterial thrombi were induced using two distinct experimental models, ferric chloride (FeCl3) and wire injury of the carotid artery. We found that murine arterial thrombi induced by FeCl3 were highly concordant with human coronary thrombi regarding their immune cell composition, with neutrophils being the most abundant cell type, as well as the presence of NETs and coagulation factors. Pharmacological treatment of mice with the protein arginine deiminase (PAD)-inhibitor Cl-amidine abrogated NET formation, reduced arterial thrombosis and limited injury in a model of myocardial infarction. Conclusions Neutrophils are a hallmark of arterial thrombi in patients suffering from acute myocardial infarction and in mouse models of arterial thrombosis. Inhibition of PAD could represent an interesting strategy for the treatment of arterial thrombosis to reduce neutrophil-associated tissue damage and improve functional outcome. PMID:29293656

  19. Regulation of K transport in a mathematical model of the cortical collecting tubule.

    PubMed

    Strieter, J; Weinstein, A M; Giebisch, G; Stephenson, J L

    1992-12-01

    The effect of luminal flow rate and peritubular pH on Na and K transport is investigated in a mathematical model of the rabbit cortical collecting tubule. The model is used to simulate a 0.4-cm segment of tubule comprised of principal cell, alpha- and beta-intercalated cells, and lateral interspace. Calculations produce luminal profiles of Na, K, Cl, HCO3, and phosphate, as well as of electrical potential and pH. Parameter sets are developed that permit representation of both unstimulated and deoxycorticosterone acetate-stimulated tubules. A series of simulations is performed in which initial luminal flow rate is varied over the range of values between 0.1 and 30 nl/min. A marked flow-dependent enhancement of Na reabsorption and K secretion is seen, especially at lower flows, while Cl and HCO3 transport remain relatively constant. In experimental studies, it has been observed that metabolic alkalosis stimulates and metabolic acidosis inhibits K secretion, while leaving Na transport relatively unaffected [B. A. Stanton and G. Giebisch. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F544-F551, 1982; K. Tabei, S. Muto, Y. Ando, Y. Sakairi, and Y. Asano. J. Am. Soc. Nephrol. 1: 693, 1990; and K. Tabei, S. Muto, H. Furuya, and Y. Asano. J. Am. Soc. Nephrol. 2: 752, 1991]. Model calculations indicate that, when ion permeabilities are fixed and not dependent on pH, the impact of peritubular HCO3 on K secretion cannot be simulated. When junctional Cl permeability decreases with increasing interspace pH (E. M. Wright and J. M. Diamond. Biochim. Biophys. Acta 163: 57-74, 1968) in the model, there is a marked stimulation of K secretion with alkalosis and inhibition with acidosis. Furthermore, inclusion of a pH-dependent apical Na permeability [L. G. Palmer and G. Frindt. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F333-F339, 1987] that increases with increasing principal cell pH significantly reduces the change in Na+ reabsorption seen with the pH-dependent junctional Cl permeability alone. In these calculations, a pH-dependent apical K permeability [W. Wang, A. Schwab, and G. Giebisch. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F494-F502, 1990] that increases with increasing principal cell pH shows relatively little impact on K secretion.

  20. TLR7/TLR8 Activation Restores Defective Cytokine Secretion by Myeloid Dendritic Cells but Not by Plasmacytoid Dendritic Cells in HIV-Infected Pregnant Women and Newborns

    PubMed Central

    Cardoso, Elaine Cristina; Pereira, Nátalli Zanete; Mitsunari, Gabrielle Eimi; Oliveira, Luanda Mara da Silva; Ruocco, Rosa Maria S. A.; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo; da Silva Duarte, Alberto José; Sato, Maria Notomi

    2013-01-01

    Mother-to-child transmission (MTCT) of HIV-1 has been significantly reduced with the use of antiretroviral therapies, resulting in an increased number of HIV-exposed uninfected infants. The consequences of HIV infection on the innate immune system of both mother-newborn are not well understood. In this study, we analyzed peripheral blood and umbilical cord blood (CB) collected from HIV-1-infected and uninfected pregnant women. We measured TNF-α, IL-10 and IFN-α secretion after the stimulation of the cells with agonists of both extracellular Toll-like receptors (TLRs) (TLR2, TLR4 and TLR5) and intracellular TLRs (TLR7, TLR7/8 and TLR9). Moreover, as an indicator of the innate immune response, we evaluated the responsiveness of myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) to TLRs that are associated with the antiviral response. Our results showed that peripheral blood mononuclear cells (PBMCs) from HIV-1-infected mothers and CB were defective in TNF-α production after activation by TLR2, TLR5, TLR3 and TLR7. However, the TNF-α response was preserved after TLR7/8 (CL097) stimulation, mainly in the neonatal cells. Furthermore, only CL097 activation was able to induce IL-10 and IFN-α secretion in both maternal and CB cells in the infected group. An increase in IFN-α secretion was observed in CL097-treated CB from HIV-infected mothers compared with control mothers. The effectiveness of CL097 stimulation was confirmed by observation of similar mRNA levels of interferon regulatory factor-7 (IRF-7), IFN-α and TNF-α in PBMCs of both groups. The function of both mDCs and pDCs was markedly compromised in the HIV-infected group, and although TLR7/TLR8 activation overcame the impairment in TNF-α secretion by mDCs, such stimulation was unable to reverse the dysfunctional type I IFN response by pDCs in the HIV-infected samples. Our findings highlight the dysfunction of innate immunity in HIV-infected mother-newborn pairs. The activation of the TLR7/8 pathway could function as an adjuvant to improve maternal-neonatal innate immunity. PMID:23826189

  1. TLR7/TLR8 Activation Restores Defective Cytokine Secretion by Myeloid Dendritic Cells but Not by Plasmacytoid Dendritic Cells in HIV-Infected Pregnant Women and Newborns.

    PubMed

    Cardoso, Elaine Cristina; Pereira, Nátalli Zanete; Mitsunari, Gabrielle Eimi; Oliveira, Luanda Mara da Silva; Ruocco, Rosa Maria S A; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo; da Silva Duarte, Alberto José; Sato, Maria Notomi

    2013-01-01

    Mother-to-child transmission (MTCT) of HIV-1 has been significantly reduced with the use of antiretroviral therapies, resulting in an increased number of HIV-exposed uninfected infants. The consequences of HIV infection on the innate immune system of both mother-newborn are not well understood. In this study, we analyzed peripheral blood and umbilical cord blood (CB) collected from HIV-1-infected and uninfected pregnant women. We measured TNF-α, IL-10 and IFN-α secretion after the stimulation of the cells with agonists of both extracellular Toll-like receptors (TLRs) (TLR2, TLR4 and TLR5) and intracellular TLRs (TLR7, TLR7/8 and TLR9). Moreover, as an indicator of the innate immune response, we evaluated the responsiveness of myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) to TLRs that are associated with the antiviral response. Our results showed that peripheral blood mononuclear cells (PBMCs) from HIV-1-infected mothers and CB were defective in TNF-α production after activation by TLR2, TLR5, TLR3 and TLR7. However, the TNF-α response was preserved after TLR7/8 (CL097) stimulation, mainly in the neonatal cells. Furthermore, only CL097 activation was able to induce IL-10 and IFN-α secretion in both maternal and CB cells in the infected group. An increase in IFN-α secretion was observed in CL097-treated CB from HIV-infected mothers compared with control mothers. The effectiveness of CL097 stimulation was confirmed by observation of similar mRNA levels of interferon regulatory factor-7 (IRF-7), IFN-α and TNF-α in PBMCs of both groups. The function of both mDCs and pDCs was markedly compromised in the HIV-infected group, and although TLR7/TLR8 activation overcame the impairment in TNF-α secretion by mDCs, such stimulation was unable to reverse the dysfunctional type I IFN response by pDCs in the HIV-infected samples. Our findings highlight the dysfunction of innate immunity in HIV-infected mother-newborn pairs. The activation of the TLR7/8 pathway could function as an adjuvant to improve maternal-neonatal innate immunity.

  2. Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis.

    PubMed

    Pratha, V S; Hogan, D L; Martensson, B A; Bernard, J; Zhou, R; Isenberg, J I

    2000-06-01

    The duodenum is a cystic fibrosis transmembrane conductance regulator (CFTR)-expressing epithelium with high bicarbonate secretory capacity. We aimed to define the role of CFTR in human duodenal epithelial bicarbonate secretion in normal (NL) subjects and patients with cystic fibrosis (CF). Endoscopic biopsy specimens of the duodenal bulb were obtained from 9 CF patients and 16 volunteers. Tissues were mounted in modified Ussing chambers. Bicarbonate secretion and short-circuit current (Isc) were quantitated under basal conditions and in response to dibutyryl adenosine 3',5'-cyclic monophosphate (db-cAMP), carbachol, and the heat-stable toxin of Escherichia coli (STa). Duodenocytes were also isolated and loaded with the pH-sensitive fluoroprobe BCECF/AM, and intracellular pH (pH(i)) was measured at rest and after intracellular acidification and alkalinization. Basal HCO(3)(-) secretion and Isc were significantly lower in the CF vs. NL duodenal mucosa. In contrast to NL, db-cAMP failed to alter either HCO(3)(-) or Isc in CF tissues. However, in CF, carbachol resulted in an electroneutral HCO(3)(-) secretion, whereas STa induced electrogenic HCO(3)(-) secretion that was similar to NL. In CF and NL duodenocytes, basal pH(i) and recovery from an acid load were comparable, but pH(i) recovery after an alkaline load in CF duodenocytes was Cl(-) dependent, whereas in NL duodenocytes it was Cl(-) independent. These findings implicate CFTR in NL duodenal alkaline transport and its absence in CF. Although duodenal bicarbonate secretion is impaired in CF tissues, alternate pathway(s) likely exist that can be activated by carbachol and STa.

  3. Trypsin Reduces Pancreatic Ductal Bicarbonate Secretion by Inhibiting CFTR Cl- channel and Luminal Anion Exchangers

    PubMed Central

    Pallagi, Petra; Venglovecz, Viktória; Rakonczay, Zoltán; Borka, Katalin; Korompay, Anna; Ózsvári, Béla; Judák, Linda; Sahin-Tóth, Miklós; Geisz, Andrea; Schnúr, Andrea; Maléth, József; Takács, Tamás; Gray, Mike A.; Argent, Barry E.; Mayerle, Julia; Lerch, Markus M.; Wittmann, Tibor; Hegyi, Péter

    2012-01-01

    Background & Aims The effects of trypsin on pancreatic ductal epithelial cells (PDEC) vary among species and depend on localization of proteinase-activated receptor-2 (PAR-2). Bicarbonate secretion is similar in human and guinea pig PDEC; we compared its localization in these cell types and isolated guinea pig ducts to study the effects of trypsin and a PAR-2 agonist on this process. Methods PAR-2 localization was analyzed by immunohistochemistry in guinea pig and human pancreatic tissue samples (from 15 patients with chronic pancreatitis and 15 without pancreatic disease). Functions of guinea pig PDEC were studied by microperfusion of isolated ducts, measurements of intracellular pH (pHi) and Ca2+ concentration [Ca2+]i, and patch clamp analysis. The effect of pH on trypsinogen autoactivation was assessed using recombinant human cationic trypsinogen. Results PAR-2 localized to the apical membrane of human and guinea pig PDEC. Trypsin increased [Ca2+]i and pHi, and inhibited secretion of bicarbonate by the luminal anion exchanger and the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Autoactivation of human cationic trypsinogen accelerated when the pH was reduced from 8.5 to 6.0. PAR-2 expression was strongly down-regulated, at transcriptional and protein levels, in the ducts of patients with chronic pancreatitis, consistent with increased activity of intraductal trypsin. Importantly, in PAR-2 knockout mice, the effects of trypsin were PAR-2 dependent. Conclusions Trypsin reduces pancreatic ductal bicarbonate secretion via PAR-2–dependent inhibition of the apical anion exchanger and the CFTR Cl- channel. This could contribute to the development of chronic pancreatitis, decreasing luminal pH and promoting premature activation of trypsinogen in the pancreatic ducts. PMID:21893120

  4. Extremely bulky secondary phosphinoamines as substituents for sterically hindered aminosilanes.

    PubMed

    Böttcher, Tobias; Jones, Cameron

    2015-09-07

    The synthesis of a series of extremely bulky secondary amines with a phosphine function, Ar(†)(PR2)NH (Ar(†) = C6H2{C(H)Ph2}2Pr(i)-2,6,4; R = Ph, NEt2, NPr(i)2) is described. Deprotonation with either n-BuLi or KH yields the respective alkali metal amides in some cases. Their reaction with the chlorosilanes SiCl4, HSiCl3, Cl2SiPh2, Cl3Si-SiCl3 and Si5Cl10 allows access to monomeric molecular compounds bearing the extremely bulky amino substituents via salt elimination. The products obtained may serve as precursors for subsequent reduction reactions to access sterically protected low valent and low coordinate silicon compounds.

  5. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations

    PubMed Central

    Bazihizina, Nadia; Colmer, Timothy D.; Barrett-Lennard, Edward G.

    2009-01-01

    Background and Aims Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Methods Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Key Results Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na+ and Cl− concentrations were 1·9- to 2·3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K+ concentrations were 1·2- to 2·0-fold higher in the non-uniform treatment. Conclusions Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments. PMID:19556265

  6. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    PubMed

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.

  7. Emodin induces chloride secretion in rat distal colon through activation of mast cells and enteric neurons

    PubMed Central

    Xu, J-D; Liu, S; Wang, W; Li, L-S; Li, X-F; Li, Y; Guo, H; Ji, T; Feng, X-Y; Hou, X-L; Zhang, Y; Zhu, J-X

    2012-01-01

    BACKGROUND AND PURPOSE Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is an active component of many herb-based laxatives. However, its mechanism of action is unclear. The aim of the present study was to investigate the role of mast cells and enteric neurons in emodin-induced ion secretion in the rat colon. EXPERIMENTAL APPROACH Short-circuit current (ISC) recording was used to measure epithelial ion transport. A scanning ion-selective electrode technique was used to directly measure Cl- flux (JCl−) across the epithelium. RIA was used to measure emodin-induced histamine release. KEY RESULTS Basolateral addition of emodin induced a concentration-dependent increase in ISC in colonic mucosa/submucosa preparations, EC50 75 µM. The effect of emodin was blocked by apically applied glibenclamide, a Cl- channel blocker, and by basolateral application of bumetanide, an inhibitor of the Na+-K+-2Cl- cotransporter. Emodin-evoked JCl− in mucosa/submucosa preparations was measured by scanning ion-selective electrode technique, which correlated to the increase in ISC and was significantly suppressed by glibenclamide and bumetanide. Pretreatment with tetrodotoxin and the muscarinic receptor antagonist atropine had no effect on emodin-induced ΔISC in mucosa-only preparations, but significantly reduced emodin-induced ΔISC and JCl− in mucosa/submucosa preparations. The COX inhibitor indomethacin, the mast cell stabilizer ketotifen and H1 receptor antagonist pyrilamine significantly reduced emodin-induced ΔISC in mucosa and mucosa/submucosa preparations. The H2 receptor antagonist cimetidine inhibited emodin-induced ΔISC and JCl− only in the mucosa/submucosa preparations. Furthermore, emodin increased histamine release from the colonic mucosa/submucosa tissues. CONCLUSIONS AND IMPLICATIONS The results suggest that emodin-induced colonic Cl- secretion involves mast cell degranulation and activation of cholinergic and non-cholinergic submucosal neurons. PMID:21718311

  8. cAMP-dependent chloride secretion mediates tubule enlargement and cyst formation by cultured mammalian collecting duct cells.

    PubMed

    Montesano, Roberto; Ghzili, Hafida; Carrozzino, Fabio; Rossier, Bernard C; Féraille, Eric

    2009-02-01

    Polycystic kidney diseases result from disruption of the genetically defined program that controls the size and geometry of renal tubules. Cysts which frequently arise from the collecting duct (CD) result from cell proliferation and fluid secretion. From mCCD(cl1) cells, a differentiated mouse CD cell line, we isolated a clonal subpopulation (mCCD-N21) that retains morphogenetic capacity. When grown in three-dimensional gels, mCCD-N21 cells formed highly organized tubular structures consisting of a palisade of polarized epithelial cells surrounding a cylindrical lumen. Subsequent addition of cAMP-elevating agents (forskolin or cholera toxin) or of membrane-permeable cAMP analogs (CPT-cAMP) resulted in rapid and progressive dilatation of existing tubules, leading to the formation of cystlike structures. When grown on filters, mCCD-N21 cells exhibited a high transepithelial resistance as well as aldosterone- and/or vasopressin-induced amiloride-sensitive and -insensitive current. The latter was in part inhibited by Na(+)-K(+)-2Cl(-) cotransporter (bumetanide) and chloride channel (NPPB) inhibitors. Real-time PCR analysis confirmed the expression of NKCC1, the ubiquitous Na(+)-K(+)-2Cl(-) cotransporter and cystic fibrosis transmembrane regulator (CFTR) in mCCD-N21 cells. Tubule enlargement and cyst formation were prevented by inhibitors of Na(+)-K(+)-2Cl(-) cotransporters (bumetanide or ethacrynic acid) or CFTR (NPPB or CFTR inhibitor-172). These results further support the notion that cAMP signaling plays a key role in renal cyst formation, at least in part by promoting chloride-driven fluid secretion. This new in vitro model of tubule-to-cyst conversion affords a unique opportunity for investigating the molecular mechanisms that govern the architecture of epithelial tubes, as well as for dissecting the pathophysiological processes underlying cystic kidney diseases.

  9. Chloride ion transport and overexpression of TMEM16A in a guinea-pig asthma model.

    PubMed

    Kondo, M; Tsuji, M; Hara, K; Arimura, K; Yagi, O; Tagaya, E; Takeyama, K; Tamaoki, J

    2017-06-01

    TMEM16A, a Ca-activated Cl channel, regulates various physiological functions such as mucin secretion. However, the role of TMEM16A in hyper-secretion in asthma is not fully understood. The aim of this study is to evaluate Cl ion transport via TMEM16A and determine the localization of TMEM16A in a guinea-pig asthma model. Guinea-pigs were sensitized with ovalbumin (OVA) i.p. on Days 1 and 8. On Day 22, we assessed OVA challenge-induced Cl ion transport in the sensitized tracheas ex vivo in an Ussing chamber, compared with the non-sensitized tracheas. We then examined the effect of T16Ainh-A01, a TMEM16A inhibitor, on the increase in Cl ion transport. The tracheal epithelium was immunostained with an anti-TMEM16A antibody. Epithelial cells from guinea-pig tracheas were cultured at the air-liquid interface in the presence of IL-13 for in vitro study. We studied the effect of TMEM16A inhibitors on Ca-dependent agonist, uridine triphosphate (UTP)-induced increases in Cl ion transport in the cultured cells. The cells were immunostained with an anti-TMEM16A antibody, an anti-MUC5AC antibody and an anti-α-tubulin antibody. OVA challenge induced an increase in short circuit current within 1 min in the OVA-sensitized tracheas but not in the non-sensitized tracheas, which was inhibited by pretreatment of T16Ainh-A01. Sensitized tracheas showed goblet cell metaplasia with more positive TMEM16A immunostaining, particularly in the apical portion compared with the non-sensitized tracheas. The in vitro UTP-induced increase in Cl ion transport was strongly inhibited by pretreatment with T16Ainh-A01, benzbromarone, and niflumic acid. TMEM16A was positively immunostained at the apical portion and in the MUC5AC-positive area in IL-13-induced goblet cell metaplasia. Antigen challenge and Ca-dependent agonist treatment increased Cl ion transport via the overexpression of TMEM16A in goblet cell metaplasia in a guinea-pig asthma model. TMEM16A inhibitors may be useful for the treatment of hyper-secretion in asthma. © 2017 John Wiley & Sons Ltd.

  10. Transport interactions of different organic cations during their excretion by the intact rat kidney.

    PubMed

    Pietruck, F; Ullrich, K J

    1995-06-01

    Organic cations, in addition to being filtrated, are secreted or reabsorbed in the proximal renal tubule whereby they have to pass the contraluminal and the luminal cell membrane. Interactions with the transport of other organic cations can occur at either cell side, leading to inhibition or stimulation of net secretion or net reabsorption. A qualitative evaluation of such processes is possible by using the in vivo bolus injection of an organic cation as test substance. Measuring its urinary excretion profile in relation to that of inulin, under control conditions and after application of interfering organic cations, in combination with simultaneous registration of its tissue concentration, allows the demonstration of interaction and also the tentative identification of the cell side at which interference has taken place. As test substance the fluorescent organic cation 4-(4-dimethylaminostyryl)-N-methylpyridinium (4-Di-1-ASP+; denotes permanent positively-charged organic cations was used, having a protein binding of 47% under the given experimental conditions. As interfering organic cations amiloride, benzylamiloride, choline+, cimetidine, and 2-methyl-4-(heptafluorobutoxy)-N-methylpyridinium+ were injected. It was found that: (1) 4-Di-1-ASP+ is filtered and net reabsorbed under control conditions (fractional excretion 0.54 +/- 0.1). All net secreted interfering substances, except bidirectional transported choline+, injected simultaneously with 4-Di-1-ASP+, showed an interference with renal excretion of net reabsorbed 4-Di-1-ASP+, by (2) instantaneously increasing its reabsorption, resulting in a 28 to 33% decrease in urinary excretion, and (3) augmenting its tissue concentration by 19 to 58%. (4) A prolonged effect of the interfering substrates could be observed after a third injection of 4-Di-1-ASP+ (without inhibitor) showing an increased tissue concentration of 4-Di-1-ASP+ of 36 to 46%. The complex interfering pattern of the applied organic cations can be explained by a trans-stimulation of 4-Di-1-ASP+ net reabsorption at the luminal cell side, leading to an increased intracellular content of 4-Di-1-ASP+.

  11. Net Intestinal Transport of Oxalate Reflects Passive Absorption and SLC26A6-mediated Secretion

    PubMed Central

    Knauf, Felix; Ko, Narae; Jiang, Zhirong; Robertson, William G.; Van Itallie, Christina M.; Anderson, James M.

    2011-01-01

    Mice lacking the oxalate transporter SLC26A6 develop hyperoxalemia, hyperoxaluria, and calcium-oxalate stones as a result of a defect in intestinal oxalate secretion, but what accounts for the absorptive oxalate flux remains unknown. We measured transepithelial absorption of [14C]oxalate simultaneously with the flux of [3H]mannitol, a marker of the paracellular pathway, across intestine from wild-type and Slc26a6-null mice. We used the anion transport inhibitor DIDS to investigate other members of the SLC26 family that may mediate transcellular oxalate absorption. Absorptive flux of oxalate in duodenum was similar to mannitol, insensitive to DIDS, and nonsaturable, indicating that it is predominantly passive and paracellular. In contrast, in wild-type mice, secretory flux of oxalate in duodenum exceeded that of mannitol, was sensitive to DIDS, and saturable, indicating transcellular secretion of oxalate. In Slc26a6-null mice, secretory flux of oxalate was similar to mannitol, and no net flux of oxalate occurred. Absorptive fluxes of both oxalate and mannitol varied in parallel in different segments of small and large intestine. In epithelial cell lines, modulation of the charge selectivity of the claudin-based pore pathway did not affect oxalate permeability, but knockdown of the tight-junction protein ZO-1 enhanced permeability to oxalate and mannitol in parallel. Moreover, formation of soluble complexes with cations did not affect oxalate absorption. In conclusion, absorptive oxalate flux occurs through the paracellular “leak” pathway, and net absorption of dietary oxalate depends on the relative balance between absorption and SLC26A6-dependent transcellular secretion. PMID:22021714

  12. Intraportal infusion of ghrelin could inhibit glucose-stimulated GLP-1 secretion by enteric neural net in Wistar rat.

    PubMed

    Zhang, Xiyao; Li, Wensong; Li, Ping; Chang, Manli; Huang, Xu; Li, Qiang; Cui, Can

    2014-01-01

    As a regulator of food intake and energy metabolism, the role of ghrelin in glucose metabolism is still not fully understood. In this study, we determined the in vivo effect of ghrelin on incretin effect. We demonstrated that ghrelin inhibited the glucose-stimulated release of glucagon-like peptide-1 (GLP-1) when infused into the portal vein of Wistar rat. Hepatic vagotomy diminished the inhibitory effect of ghrelin on glucose-stimulated GLP-1 secretion. In addition, phentolamine, a nonselective α receptor antagonist, could recover the decrease of GLP-1 release induced by ghrelin infusion. Pralmorelin (an artificial growth hormone release peptide) infusion into the portal vein could also inhibit the glucose-stimulated release of GLP-1. And growth hormone secretagogue receptor antagonist, [D-lys3]-GHRP-6, infusion showed comparable increases of glucose stimulated GLP-1 release compared to ghrelin infusion into the portal vein. The data showed that intraportal infusion of ghrelin exerted an inhibitory effect on GLP-1 secretion through growth hormone secretagogue receptor 1α (GHS1α receptor), which indicated that the downregulation of ghrelin secretion after food intake was necessary for incretin effect. Furthermore, our results suggested that the enteric neural net involved hepatic vagal nerve and sympathetic nerve mediated inhibition effect of ghrelin on incretin effect.

  13. Inhibition of Ca2+-activated Cl- channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea.

    PubMed

    Namkung, Wan; Thiagarajah, Jay R; Phuan, Puay-Wah; Verkman, A S

    2010-11-01

    TMEM16A was found recently to be a calcium-activated Cl(-) channel (CaCC). CaCCs perform important functions in cell physiology, including regulation of epithelial secretion, cardiac and neuronal excitability, and smooth muscle contraction. CaCC modulators are of potential utility for treatment of hypertension, diarrhea, and cystic fibrosis. Screening of drug and natural product collections identified tannic acid as an inhibitor of TMEM16A, with IC(50) ∼ 6 μM and ∼100% inhibition at higher concentrations. Tannic acid inhibited CaCCs in multiple cell types but did not affect CFTR Cl(-) channels. Structure-activity analysis indicated the requirement of gallic or digallic acid substituents on a macromolecular scaffold (gallotannins), as are present in green tea and red wine. Other polyphenolic components of teas and wines, including epicatechin, catechin, and malvidin-3-glucoside, poorly inhibited CaCCs. Remarkably, a 1000-fold dilution of red wine and 100-fold dilution of green tea inhibited CaCCs by >50%. Tannic acid, red wine, and green tea inhibited arterial smooth muscle contraction and intestinal Cl(-) secretion. Gallotannins are thus potent CaCC inhibitors whose biological activity provides a potential molecular basis for the cardioprotective and antisecretory benefits of red wine and green tea.

  14. AAVP displaying octreotide for ligand-directed therapeutic transgene delivery in neuroendocrine tumors of the pancreas.

    PubMed

    Smith, Tracey L; Yuan, Ziqiang; Cardó-Vila, Marina; Sanchez Claros, Carmen; Adem, Asha; Cui, Min-Hui; Branch, Craig A; Gelovani, Juri G; Libutti, Steven K; Sidman, Richard L; Pasqualini, Renata; Arap, Wadih

    2016-03-01

    Patients with inoperable or unresectable pancreatic neuroendocrine tumors (NETs) have limited treatment options. These rare human tumors often express somatostatin receptors (SSTRs) and thus are clinically responsive to certain relatively stable somatostatin analogs, such as octreotide. Unfortunately, however, this tumor response is generally short-lived. Here we designed a hybrid adeno-associated virus and phage (AAVP) vector displaying biologically active octreotide on the viral surface for ligand-directed delivery, cell internalization, and transduction of an apoptosis-promoting tumor necrosis factor (TNF) transgene specifically to NETs. These functional attributes of AAVP-TNF particles displaying the octreotide peptide motif (termed Oct-AAVP-TNF) were confirmed in vitro, in SSTR type 2-expressing NET cells, and in vivo using cohorts of pancreatic NET-bearing Men1 tumor-suppressor gene KO mice, a transgenic model of functioning (i.e., insulin-secreting) tumors that genetically and clinically recapitulates the human disease. Finally, preclinical imaging and therapeutic experiments with pancreatic NET-bearing mice demonstrated that Oct-AAVP-TNF lowered tumor metabolism and insulin secretion, reduced tumor size, and improved mouse survival. Taken together, these proof-of-concept results establish Oct-AAVP-TNF as a strong therapeutic candidate for patients with NETs of the pancreas. More broadly, the demonstration that a known, short, biologically active motif can direct tumor targeting and receptor-mediated internalization of AAVP particles may streamline the potential utility of myriad other short peptide motifs and provide a blueprint for therapeutic applications in a variety of cancers and perhaps many nonmalignant diseases as well.

  15. Perfrin, a novel bacteriocin associated with netB positive Clostridium perfringens strains from broilers with necrotic enteritis.

    PubMed

    Timbermont, Leen; De Smet, Lina; Van Nieuwerburgh, Filip; Parreira, Valeria R; Van Driessche, Gonzalez; Haesebrouck, Freddy; Ducatelle, Richard; Prescott, John; Deforce, Dieter; Devreese, Bart; Van Immerseel, Filip

    2014-04-05

    Necrotic enteritis in broiler chickens is associated with netB positive Clostridium perfringens type A strains. It is known that C. perfringens strains isolated from outbreaks of necrotic enteritis are more capable of secreting factors inhibiting growth of other C. perfringens strains than strains isolated from the gut of healthy chickens. This characteristic could lead to extensive and selective presence of a strain that contains the genetic make-up enabling to secrete toxins that cause gut lesions. This report describes the discovery, purification, characterization and recombinant expression of a novel bacteriocin, referred to as perfrin, produced by a necrotic enteritis-associated netB-positive C. perfringens strain. Perfrin is a 11.5 kDa C-terminal fragment of a 22.9 kDa protein and showed no sequence homology to any currently known bacteriocin. The 11.5 kDa fragment can be cloned into Escherichia coli, and expression yielded an active peptide. PCR detection of the gene showed its presence in 10 netB-positive C. perfringens strains of broiler origin, and not in other C. perfringens strains tested (isolated from broilers, cattle, sheep, pigs, and humans). Perfrin and NetB are not located on the same genetic element since NetB is plasmid-encoded and perfrin is not. The bacteriocin has bactericidal activity over a wide pH-range but is thermolabile and sensitive to proteolytic digestion (trypsin, proteinase K). C. perfringens bacteriocins, such as perfrin, can be considered as an additional factor involved in the pathogenesis of necrotic enteritis in broilers.

  16. Effect of norepinephrine on swelling-induced potassium transport in duck red cells. Evidence against a volume-regulatory decrease under physiological conditions

    PubMed Central

    1985-01-01

    Duck red cells exhibit specific volume-sensitive ion transport processes that are inhibited by furosemide, but not by ouabain. Swelling cells in a hypotonic synthetic medium activates a chloride- dependent, but sodium-independent, potassium transport. Shrinking cells in a hypertonic synthetic medium stimulates an electrically neutral co- transport of [Na + K + 2 Cl] with an associated 1:1 K/K (or K/Rb) exchange. These shrinkage-induced modes can also be activated in both hypo- and hypertonic solutions by beta-adrenergic catecholamines (e.g., norepinephrine). Freshly drawn cells spontaneously shrink approximately 4-5% when removed from the influence of endogenous plasma catecholamines, either by incubation in a catecholamine-free, plasma- like synthetic medium, or in plasma to which a beta-receptor blocking dose of propranolol has been added. This spontaneous shrinkage resembles the response of hypotonically swollen cells in that it is due to a net loss of KCl with no change in cell sodium. Norepinephrine abolishes the net potassium transport seen in both fresh and hypotonically swollen cells. Moreover, cells swollen in diluted plasma, at physiological pH and extracellular potassium, show no net loss of KCl and water ("volume-regulatory decrease") unless propranolol is added. Examination of the individual cation fluxes in the presence of catecholamines demonstrates that activation of [Na + K + 2Cl] co- transport with its associated K/Rb exchange prevents, or overrides, swelling-induced [K + Cl] co-transport. These results, therefore, cast doubt on whether the swelling-induced [K + Cl] system can serve a volume-regulatory function under in vivo conditions. PMID:3998706

  17. Plasma Jet Interactions with Liquids in Partial Fulfillment of an NRL Karles Fellowship

    DTIC Science & Technology

    2015-11-30

    water (DI H2O) as the reference solution, two concentrations of NaCl mixtures (0.6 Molar, and 1.0 Molar saturated NaCl), and three electroless solutions...by diffusion) to the bulk surface in net excess; that oxygen ions/radicals are being consumed from the bulk by an electrolysis path way; or that the

  18. Lubiprostone decreases mouse colonic inner mucus layer thickness and alters intestinal microbiota.

    PubMed

    Musch, Mark W; Wang, Yunwei; Claud, Erika C; Chang, Eugene B

    2013-03-01

    Lubiprostone has been used to treat constipation through its effects to stimulate Cl(-) secretion, resulting in water and electrolyte secretion. Potential associated changes in intestinal mucus and the colonizing bacteria (microbiome) have not been studied. As mucus obstructions may play a role in cystic fibrosis, the hypothesis that lubiprostone alters intestinal mucus and the microbiome was investigated. Ion transport studies were performed ex vivo. For mucus and microbiome studies, mice were gavaged daily with lubiprostone or vehicle. Mucin from intestinal sections was analyzed in Carnoy's fixed tissues stained with Alcian blue. Microbiome composition was analyzed by 16S rRNA gene-based sequencing. Lubiprostone stimulated short circuit current in all mouse intestinal segments after both serosal and mucosal additions, albeit at lower concentrations in the latter. Current was Cl-dependent and blocked by mucosal diphenylcarboxylic acid, serosal bumetanide, and serosal Ba(++). The CFTR inhibitor CFTRinh172 had a marginal effect. Mucus near epithelial cells (inner layer mucus) was not present in the small intestine of any mice. Proximal colon inner mucus layer was thicker in ∆F/∆F compared with +/∆F and +/+ mice. Lubiprostone decreased inner mucus layer thickness in both proximal and distal colon of all mice. Furthermore, lubiprostone altered the intestinal microbiome by increasing abundance of Lactobacillus and Alistipes. Lubiprostone activates non-CFTR Cl(-) secretion and alters the colonic inner mucus layer, which is associated with changes in the composition of the enteric microbiome.

  19. Biochemical Testing of Potentially Hazardous Chemicals for Toxicity Using Mammalian Liver Cell Cultures.

    DTIC Science & Technology

    1992-04-09

    the culture medium. The HEPA-2 mouse cells are known to synthesize and to secrete albumin, alpha - fetoprotein , transferrin, ceruloplasmin and...Parker, C.L. and Kute, T.E. (1981). Immunoprecipitation assay of alpha - fetoprotein synthesis by cultured mouse hepatoma cells treated with estrogens and...Infection and Immunity 34:908-914. Rosebrock, J.A., C.L. Parker and T.E. Kute (1981). Immunoprecipitation assay of alpha - fetoprotein synthesis by cultured

  20. A novel double-tracer technique to characterize absorption, distribution, metabolism and excretion (ADME) of [14C]tofogliflozin after oral administration and concomitant intravenous microdose administration of [13C]tofogliflozin in humans.

    PubMed

    Schwab, Dietmar; Portron, Agnes; Backholer, Zoe; Lausecker, Berthold; Kawashima, Kosuke

    2013-06-01

    Human mass balance studies and the assessment of absolute oral bioavailability (F) are usually assessed in separate studies. Intravenous microdose administration of an isotope tracer concomitant to an unlabeled oral dose is an emerging technique to assess F. We report a novel double-tracer approach implemented for tofogliflozin combining oral administration of a radiolabel tracer with concomitant intravenous administration of a stable isotope tracer. Tofogliflozin is a potent and selective sodium/glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus currently in clinical development. The objectives of the present study were to assess the systemic exposure of major circulating metabolites, excretion balance, F and contribution of renal clearance (CLR) to total clearance (CL) of tofogliflozin in healthy subjects within one study applying a novel double-tracer technique. Six healthy male subjects received 20 mg [(12)C/(14)C]tofogliflozin (3.73 MBq) orally and a concomitant microdose of 0.1 mg [(13)C]tofogliflozin intravenously. Pharmacokinetics of tofogliflozin were determined for the oral and intravenous route; the pharmacokinetics of the metabolites M1 and M5 were determined for the oral route. Quantification of [(12)C]tofogliflozin in plasma and urine and [(13)C]tofogliflozin in plasma was performed by selective LC-MS/MS methods. For the pre-selected metabolites of tofogliflozin, M1 and M5, a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) was applied to plasma and urine samples. Total radioactivity was assessed in plasma, urine and feces. Pharmacokinetic analysis was conducted by non-compartmental methods. The pharmacokinetics of tofogliflozin in healthy subjects were characterized by an F of 97.5 ± 12.3 %, CL of 10.0 ± 1.3 l/h and volume of distribution at steady-state (V(ss)) of 50.6 ± 6.7 l. The main route of elimination of total drug-related material was by excretion into urine (77.0 ± 4.1 % of the dose). The observed CL(R) of 25.7 ± 5.0 ml/min was higher than the product of the estimated glomerular filtration rate (eGFR) and fraction unbound in plasma (f(u)) (eGFR × f(u) 15 ml/min), indicating the presence of net active tubular secretion in the renal elimination of tofogliflozin. However, CLR contributed only 15.5 % to the CL of tofogliflozin, suggesting that reductions in CLR by renal impairment won't significantly affect systemic exposure to tofogliflozin. Tofogliflozin and its metabolite M1 were the only major circulating entities accounting for 46 ± 8.6 and 50 ± 8.2 %, respectively, of total circulating drug-related material, while the metabolite M5 was a minor circulating metabolite accounting for 3.0 ± 0.3 % of total circulating drug-related material. Both the M1 and M5 metabolites were excreted into urine and the major metabolite M1 did not exhibit active tubular secretion. These results demonstrate the utility of the double-tracer approach to provide essential pharmacokinetic data and excretion data for drug-related material in one study at the same dosing occasion. The data obtained allowed the characterization of absorption, distribution, metabolism and excretion of tofogliflozin. Tofogliflozin exhibited highly favorable pharmacokinetic properties as demonstrated by its high F, low CL and a low V(ss. The presence of only one major circulating metabolite of tofogliflozin was unambiguously demonstrated. As a drug targeting the kidney, luminal exposure of the kidney is achieved by renal filtration and active tubular secretion.

  1. Extracellular deoxyribonuclease production by periodontal bacteria.

    PubMed

    Palmer, L J; Chapple, I L C; Wright, H J; Roberts, A; Cooper, P R

    2012-08-01

    Whilst certain bacteria have long been known to secrete extracellular deoxyribonuclease (DNase), the purpose in microbial physiology was unclear. Recently, however, this enzyme has been demonstrated to confer enhanced virulence, enabling bacteria to evade the host's immune defence of extruded DNA/chromatin filaments, termed neutrophil extracellular traps (NETs). As NETs have recently been identified in infected periodontal tissue, the aim of this study was to screen periodontal bacteria for extracellular DNase activity. To determine whether DNase activity was membrane bound or secreted, 34 periodontal bacteria were cultured in broth and on agar plates. Pelleted bacteria and supernatants from broth cultures were analysed for their ability to degrade DNA, with relative activity levels determined using an agarose gel electrophoresis assay. Following culture on DNA-supplemented agar, expression was determined by the presence of a zone of hydrolysis and DNase activity related to colony size. Twenty-seven bacteria, including red and orange complex members Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Streptococcus constellatus, Campylobacter rectus and Prevotella nigrescens, were observed to express extracellular DNase activity. Differences in DNase activity were noted, however, when bacteria were assayed in different culture states. Analysis of the activity of secreted DNase from bacterial broth cultures confirmed their ability to degrade NETs. The present study demonstrates, for the first time, that DNase activity is a relatively common property of bacteria associated with advanced periodontal disease. Further work is required to determine the importance of this bacterial DNase activity in the pathogenesis of periodontitis. © 2011 John Wiley & Sons A/S.

  2. Inhibitory effects of HgCl2 on excitation-secretion coupling at the motor nerve terminal and excitation-contraction coupling in the muscle cell.

    PubMed

    Røed, A; Herlofson, B B

    1994-12-01

    1. Indirect and direct twitch (0.1-Hz) stimulation of the rat phrenic nerve-diaphragm disclosed that the inhibitory effect of HgCl2, 3.7 x 10(-5) M, on the neuromuscular transmission and in the muscle cell, was accelerated by 10-sec periods of 50-Hz tetanic stimulation every 10 min. This activity-dependent enhancement suggested an inhibitory mechanism of HgCl2 related to the development of fatigue, like membrane depolarization or decreased excitability, decreased availability of transmitter, or interference with the factors controlling excitation-secretion coupling of the nerve terminal, i.e. (Ca2+)0 or (Ca2+)i, and excitation-contraction coupling in the muscle cell, i.e., (Ca2+)i. 2. During both indirect and direct stimulation, HgCl2-induced inhibition was enhanced markedly by pretreatment with caffeine, which releases Ca2+ from endoplasmic and sarcoplasmic reticulum in the nerve terminal and muscle cell, respectively. This caffeine-induced enhancement was completely antagonized by dantrolene, which inhibits the caffeine-induced release. However, dantrolene alone did not antagonize the HgCl2-induced inhibition. 3. Since caffeine depletes the intracellular Ca2+ stores of the smooth endoplasmic reticulum, HgCl2 probably inhibits by binding to SH groups of transport proteins conveying the messenger function of (Ca2+)i. In the muscle cell this leads to inhibition of contraction. In the nerve terminal, an additional enhancement of the HgCl2-induced inhibition, by inhibiting reuptake of choline by TEA and tetanic stimulation, suggested that HgCl2 inhibited a (Ca2+)i signal necessary for this limiting factor in resynthesis of acetylcholine. 4. The (Ca2+)0 signal necessary for stimulus-induced release of acetylcholine was not affected by HgCl2. Hyperpolarization in K(+)-free solution antagonized the inhibitory effect of HgCl2 at indirect stimulation, and Ca(2+)-free solution enhanced the inhibitory effect at direct stimulation. K+ depolarization, membrane electric field increase with high Ca2+, membrane stabilization with lidocaine, and half-threshold stimulation, did not change the inhibitory effect of HgCl CH3HgCl. 1.85 x 10(-5) M, disclosed a synergistic interaction with caffeine during direct, but not during indirect, stimulation.

  3. Human Tear Fluid Reduces Culturability of Contact Lens Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence Associated Type III Secretion System

    PubMed Central

    Wu, Yvonne T.; Tam, Connie; Zhu, Lucia S.; Evans, David J.; Fleiszig, Suzanne M. J.

    2017-01-01

    Purpose The type III secretion system (T3SS) is a significant virulence determinant for Pseudomonas aeruginosa. Using a rodent model, we found that contact lens (CL)-related corneal infections were associated with lens surface biofilms. Here, we studied the impact of human tear fluid on CL-associated biofilm growth and T3SS expression. Methods P. aeruginosa biofilms were formed on contact lenses for up to 7 days with or without human tear fluid, then exposed to tear fluid for 5 or 24 h. Biofilms were imaged using confocal microscopy. Bacterial culturability was quantified by viable counts, and T3SS gene expression measured by RT-qPCR. Controls included trypticase soy broth, PBS and planktonic bacteria. Results With or without tear fluid, biofilms grew to ~108 cfu viable bacteria by 24 h. Exposing biofilms to tear fluid after they had formed without it on lenses reduced bacterial culturability ~180-fold (p<.001). CL growth increased T3SS gene expression versus planktonic bacteria [5.46 ± 0.24-fold for T3SS transcriptional activitor exsA (p=.02), and 3.76 ± 0.36-fold for T3SS effector toxin exoS (p=.01)]. Tear fluid further enhanced exsA and exoS expression in CL-grown biofilms, but not planktonic bacteria, by 2.09 ± 0.38-fold (p = 0.04) and 1.89 ± 0.26-fold (p<.001), respectively. Conclusions Considering the pivitol role of the T3SS in P. aeruginosa infections, its induction in CL-grown P. aeruginosa biofilms by tear fluid might contribute to the pathogenesis of CL-related P. aeruginosa keratitis. PMID:27670247

  4. A Report on Security of Overseas Transport. Volume 2. Project Hartwell.

    DTIC Science & Technology

    1950-09-21

    leaving the harbor, with a. video overlay showing the loc-ation of shipping channels, obstructions, h possible eneray mine locations, and other danger...ideal net should be capable of stopping both sneak craft and full-sized submarines; this implies a reinforced tor- pedo net, probably with explosive...SECRET The defense of the harbor against submarines, long-range tor- pedoes , and midget submarines must be conditioned by an awareness that the most

  5. Cloning, functional expression, and characterization of a PKA-activated gastric Cl- channel.

    PubMed

    Malinowska, D H; Kupert, E Y; Bahinski, A; Sherry, A M; Cuppoletti, J

    1995-01-01

    cDNA encoding a Cl- channel was isolated from a rabbit gastric library, sequenced, and expressed in Xenopus oocytes. The predicted protein (898 amino acids, relative molecular mass 98,433 Da) was overall 93% similar to the rat brain ClC-2 Cl- channel. However, a 151-amino acid stretch toward the COOH-terminus was 74% similar to ClC-2 with six amino acids deleted. Two new potential protein kinase A (PKA) phosphorylation sites (also protein kinase C phosphorylation sites) were introduced. cRNA-injected Xenopus oocytes expressed a Cl- channel that was active at pHtrans 3 and had a linear current-voltage (I-V) curve and a slope conductance of 29 +/- 1 pS at 800 mM CsCl. A fivefold Cl- gradient caused a rightward shift in the I-V curve with a reversal potential of +30 +/- 3 mV, indicating anion selectivity. The selectivity was I- > Cl- > NO3-. The native and recombinant Cl- channel were both activated in vitro by PKA catalytic subunit and ATP. The electrophysiological and regulatory properties of the cloned and the native channel were similar. The cloned protein may be the Cl- channel involved in gastric HCl secretion.

  6. Post-prandial metabolic alkalosis in the seawater-acclimated trout: the alkaline tide comes in.

    PubMed

    Bucking, Carol; Fitzpatrick, John L; Nadella, Sunita R; Wood, Chris M

    2009-07-01

    The consequences of feeding and digestion on acid-base balance and regulation in a marine teleost (seawater-acclimated steelhead trout; Oncorhynchus mykiss) were investigated by tracking changes in blood pH and [HCO3-], as well as alterations in net acid or base excretion to the water following feeding. Additionally the role of the intestine in the regulation of acid-base balance during feeding was investigated with an in vitro gut sac technique. Feeding did not affect plasma glucose or urea concentrations, however, total plasma ammonia rose during feeding, peaking between 3 and 24 h following the ingestion of a meal, three-fold above resting control values (approximately 300 micromol ml(-1)). This increase in plasma ammonia was accompanied by an increase in net ammonia flux to the water (approximately twofold higher in fed fish versus unfed fish). The arterial blood also became alkaline with increases in pH and plasma [HCO3-] between 3 and 12 h following feeding, representing the first measurement of an alkaline tide in a marine teleost. There was no evidence of respiratory compensation for the measured metabolic alkalosis, as Pa CO2 remained unchanged throughout the post-feeding period. However, in contrast to an earlier study on freshwater-acclimated trout, fed fish did not exhibit a compensating increase in net base excretion, but rather took in additional base from the external seawater, amounting to approximately 8490 micromol kg(-1) over 48 h. In vitro experiments suggest that at least a portion of the alkaline tide was eliminated through increased HCO3- secretion coupled to Cl- absorption in the intestinal tract. This did not occur in the intestine of freshwater-acclimated trout. The marked effects of the external salinity (seawater versus freshwater) on different post-feeding patterns of acid-base balance are discussed.

  7. Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3 (-) secretion revealed by disease causing human mutation.

    PubMed

    Hong, Jeong Hee; Muhammad, Emad; Zheng, Changyu; Hershkovitz, Eli; Alkrinawi, Soliman; Loewenthal, Neta; Parvari, Ruti; Muallem, Shmuel

    2015-12-15

    Fluid and HCO3 (-) secretion is essential for all epithelia; aberrant secretion is associated with several diseases. Carbonic anhydrase XII (CA12) is the key carbonic anhydrase in epithelial fluid and HCO3 (-) secretion and works by activating the ductal Cl(-) -HCO3 (-) exchanger AE2. Delivery of CA12 to salivary glands increases salivation in mice and of the human mutation CA12(E143K) markedly inhibits it. The human mutation CA12(E143K) causes disease due to aberrant CA12 glycosylation, and misfolding resulting in loss of AE2 activity. Aberrant epithelial fluid and HCO3 (-) secretion is associated with many diseases. The activity of HCO3 (-) transporters depends of HCO3 (-) availability that is determined by carbonic anhydrases (CAs). Which CAs are essential for epithelial function is unknown. CA12 stands out since the CA12(E143K) mutation causes salt wasting in sweat and dehydration in humans. Here, we report that expression of CA12 and of CA12(E143K) in mice salivary glands respectively increased and prominently inhibited ductal fluid secretion and salivation in vivo. CA12 markedly increases the activity and is the major HCO3 (-) supplier of ductal Cl(-) -HCO3 (-) exchanger AE2, but not of NBCe1-B. The E143K mutation alters CA12 glycosylation at N28 and N80, resulting in retention of the basolateral CA12 in the ER. Knockdown of AE2 and of CA12 inhibited pancreatic and salivary gland ductal AE2 activity and fluid secretion. Accordingly, patients homozygous for the CA12(E143K) mutation have a dry mouth, dry tongue phenotype. These findings reveal an unsuspected prominent role of CA12 in epithelial function, explain the disease and call for caution in the use of CA12 inhibitors in cancer treatment. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  8. DA-6034-induced mucin secretion via Ca2+-dependent pathways through P2Y receptor stimulation.

    PubMed

    Lee, Hun; Kim, Eung Kweon; Kim, Ji Yeon; Yang, Yu-Mi; Shin, Dong Min; Kang, Kyung Koo; Kim, Tae-im

    2014-09-11

    We evaluated whether DA-6034 is involved in mucin secretion via P2Y receptor activation and/or intracellular Ca2+ concentration ([Ca2+]i) change. Also, we investigated the effect of P2Y receptor inhibitors or Ca2+ chelators on the DA-6034-induced mucin secretion and [Ca2+]i increases. Effects of DA-6034 on mucin expression in primary, cultured, conjunctival epithelial cells was studied using RT-PCR, Western blot analysis, and periodic acid-schiff (PAS) staining. To evaluate thin film layer thickness generated by mucin and fluid secretion, cells were incubated in DA-6034 with/without P2Y antagonists or extracellular/intracellular Ca2+ chelators, and were imaged with confocal microscope using Texas Red-dextran dye. In addition, DA-6034-induced Ca2+-dependent Cl- channels opening was evaluated using perforated patch clamp. Fluo-4/AM was used to measure changes in [Ca2+]i induced by DA-6034 in Ca2+-free or Ca2+-containing buffered condition, as well as P2Y antagonists. DA-6034 induced the expression of mucin genes, production of mucin protein, and increase of number of mucin-secreting cells. P2Y antagonists inhibited DA-6034-induced mucin and fluid secretion, which was also affected by extracellular/intracellular Ca2+ chelators. DA-6034 stimulated Cl- channel opening and [Ca2+]i elevation. Further, [Ca2+]i increases induced by DA-6034 were lacking in either P2Y antagonists or Ca2+-free buffered condition, and diminished when endoplasmic reticulum Ca2+ was depleted by cyclopiazonic acid in Ca2+-free buffered condition. This study demonstrated that DA-6034 has a potential to induce mucin secretion via Ca2+-dependent pathways through P2Y receptors in multilayer, cultured, human conjunctival epithelial cells. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  9. A Tannic Acid-based Medical Food, Cesinex®, Exhibits Broad-spectrum Antidiarrheal Properties: a Mechanistic and Clinical Study

    PubMed Central

    Ren, Aixia; Zhang, Weiqiang; Thomas, Hugh Greg; Barish, Amy; Berry, Stephen; Kiel, Jeffrey S.

    2011-01-01

    Background To evaluate the efficacy and tolerability of a tannic acid-based medical food, Cesinex®, in the treatment of diarrhea, and to investigate the mechanisms underlying its antidiarrheal effect. Methods Cesinex® was prescribed to six children and four adults with diarrhea. Patient records were retrospectively reviewed for the primary outcome. Cesinex® and its major component, tannic acid, were tested for their effects on cholera toxin-induced intestinal fluid secretion in mouse. Polarized human gut epithelial cells (HT29-CL19A cells) were used to investigate the effects of tannic acid on epithelial barrier properties, transepithelial chloride secretion, and cell viability. Results Successful resolution of diarrheal symptoms was reported in nine of ten patients receiving Cesinex®. Treatment of HT29-CL19A cells with clinically relevant concentrations of tannic acid (0.01–1 mg/ml) significantly increased transepithelial resistance and inhibited the CFTR-dependent or the calcium-activated Cl− secretion. Tannic acid could also improve the impaired epithelial barrier function induced by TNFα and inhibited the disrupting effect of TNFα on the epithelial barrier function in these cells. CTX-induced mouse intestinal fluid secretion was significantly reduced by administration of Cesinex® or tannic acid. Cesinex® has high antioxidant capacity. Conclusions Cesinex® demonstrates an effective and safety profile in treatment of diarrhea. The broad-spectrum antidiarrheal effect of Cesinex® can be attributed to a combination of factors: its ability to improve the epithelial barrier properties, to inhibit intestinal fluid secretion, and the high antioxidant property. PMID:21748285

  10. Risk factors of visceral leishmaniasis: a case control study in north-western Ethiopia.

    PubMed

    Yared, Solomon; Deribe, Kebede; Gebreselassie, Araya; Lemma, Wessenseged; Akililu, Essayas; Kirstein, Oscar D; Balkew, Meshesha; Warburg, Alon; Gebre-Michael, Teshome; Hailu, Asrat

    2014-10-14

    Visceral leishmaniasis (VL, also called ''kala-azar"), is a life threatening neglected tropical infectious disease which mainly affects the poorest of the poor. VL is prevalent in Ethiopia particularly in the northwest of the country. Understanding the risk factors of VL infection helps in its prevention and control. The aim of the present study was to identify the factors associated with VL. A case-control study was carried out during the period of January-July 2013 in northwest Ethiopia. Cases and controls were diagnosed using clinical presentation, the rk39 rapid diagnostic test and Direct Agglutination Test (DAT). A total of 283 (84.8% males versus 15.2% females) participants were interviewed. 90 cases and 193 controls were involved, matched by age, sex and geographical location with a ratio of 1:2 (case: controls). Univariate and backward multivariate conditional logistic regression were used to identify risk factors of VL. Elevated odds of VL was associated with goat ownership (OR = 6.4; 95%: confidence interval [Cl]: 1.5-28.4), living in houses with cracked wall (OR = 6.4; 95% Cl: 1.6-25.6), increased family size (OR = 1.3; 95% Cl: 1.0-1.8) and the number of days spent in the farm field (OR = 1.1; 95% Cl: 1.0-1.2). However, daily individual activities around the home and farm fields, mainly sleeping on a bed (OR = 0.2; 95%: Cl 0.03-0.9), sleeping outside the house under a bed net (OR = 0.1; 95% Cl: 0.02-0.36)] and smoking plant parts in the house during the night time (OR = 0.1; 95% Cl: 0.01-0.6) were associated with decreased odds of being VL case. Our findings showed that use of bed net and smoke could be helpful for the prevention of VL in the area particularly among individuals who spend most of their time in the farm. VL control effort could be focused on improving housing conditions, such as sealing cracks and crevices inside and outside houses. Further research is warranted to elucidate the role of goats in the transmission of L. donovani, assess the impact of bed nets and the role of the traditional practice of smoking plants.

  11. Secretion of Sparfloxacin from the Human Intestinal Caco-2 Cell Line Is Altered by P-Glycoprotein Inhibitors

    PubMed Central

    Cormet-Boyaka, Estelle; Huneau, Jean-François; Mordrelle, Agnès; Boyaka, Prosper N.; Carbon, Claude; Rubinstein, Ethan; Tomé, Daniel

    1998-01-01

    The mechanism of intestinal secretion of the difluorinated quinolone sparfloxacin was investigated with the epithelial cell line Caco-2 and was compared to that of the P-glycoprotein (P-gp) substrate vinblastine. The P-gp inhibitors verapamil and progesterone significantly increased the epithelial cell accumulation of both vinblastine and sparfloxacin. This increase is likely to result from an inhibition of drug secretion since both vinblastine uptake and sparfloxacin uptake are known to proceed through a passive transmembrane diffusion. The unidirectional fluxes across cell monlayers grown on permeable filters indicated that a net secretion of sparfloxacin and vinblastine occurred across Caco-2 cells. These secretions were significantly inhibited by the MDR-reversing agent verapamil. We conclude that the P-gp is likely to be involved in the intestinal elimination of the difluorinated quinolone sparfloxacin. PMID:9756763

  12. Cell surface engineering of Bacillus subtilis improves production yields of heterologously expressed α-amylases.

    PubMed

    Cao, Haojie; van Heel, Auke J; Ahmed, Hifza; Mols, Maarten; Kuipers, Oscar P

    2017-04-04

    Bacillus subtilis is widely used as a cell factory for numerous heterologous proteins of commercial value and medical interest. To explore the possibility of further enhancing the secretion potential of this model bacterium, a library of engineered strains with modified cell surface components was constructed, and the corresponding influences on protein secretion were investigated by analyzing the secretion of α-amylase variants with either low-, neutral- or high- isoelectric points (pI). Relative to the wild-type strain, the presence of overall anionic membrane phospholipids (phosphatidylglycerol and cardiolipin) increased dramatically in the PssA-, ClsA- and double KO mutants, which resulted in an up to 47% higher secretion of α-amylase. Additionally, we demonstrated that the appropriate net charge of secreted targets (AmyTS-23, AmyBs and AmyBm) was beneficial for secretion efficiency as well. In B. subtilis, the characteristics of cell membrane phospholipid bilayer and the pIs of heterologous α-amylases appear to be important for their secretion efficiency. These two factors can be engineered to reduce the electrostatic interaction between each other during the secretion process, which finally leads to a better secretion yield of α-amylases.

  13. THE SHARK RECTAL GLAND MODEL: A CHAMPION OF RECEPTOR MEDIATED CHLORIDE SECRETION THROUGH CFTR

    PubMed Central

    FORREST, JOHN N.

    2016-01-01

    The dogfish shark salt gland was predicted by Smith and discovered by Burger at the Mount Desert Island Biological Laboratory in Salisbury Cove, Maine. It is an epithelial organ in the intestine composed of tubules that serve a single function: the secretion of hypertonic NaCl. Many G protein receptors are present on the basolateral surface of these tubules, including stimulatory receptors for vasoactive intestinal peptide, adenosine A2, growth hormone releasing hormone, and inhibitory receptors for somatostatin and adenosine A1. An entirely different class of stimulatory receptors is present as C-type natriuretic peptide receptors. Each stimulatory receptor evokes powerful NaCl secretion. G protein receptors bind to Gαs to activate the catalytic unit of adenylate cyclase to form cyclic adenosine monophosphate (cAMP) and protein kinase A that phosphorylates the regulatory domain of cystic fibrosis transmembrane conductance regulator, opening the channel. The C-type natriuretic peptide receptor stimulates by activating guanylate cyclase and endogenous cyclic guanosine monophosphate which inhibits type 3 phosphodiesterase, the enzyme that breaks down cAMP, thereby elevating cAMP and activating the protein kinase A pathway. PMID:28066051

  14. Simultaneous measurements of gastric motility and acid-bicarbonate secretions in the anaesthetized cat.

    PubMed

    Fändriks, L; Stage, L

    1986-12-01

    Chloralosed cats were acutely vagotomized, their splanchnic nerves cut and the adrenal glands ligated. The gastric lumen was perfused with isotonic NaCl and gastric motility was monitored as changes in hydrostatic pressure within the perfusion circuit. Gastric secretion of H+ and HCO3- were calculated from continuous measurements of pH and PCO2. Methodological tests ex vivo showed good accuracy of the estimations. Recovery of H+ after HCl instillation into the stomach in vivo was almost complete, while HCO3- recovery after NaHCO3 instillations was 85-95%. Pentagastrin (10 micrograms kg-1 h-1 i.v.) stimulated gastric contractile activity and increased gastric H+ secretion 30-fold, while HCO3- secretion decreased somewhat. Carbachol (4 micrograms kg-1 h-1) induced gastric contractions and increased H+ secretion by 400% and HCO3- output by 100-130%. Electrical stimulation of the cut vagal nerves (10 Hz for 10 min) induced well known gastric motor responses and increased gastric H+ secretion 20-fold preceded by a transient doubling of HCO3- secretion. Omeprazole, a selective inhibitor of gastric H+ secretion, decreased the vagally induced H+ secretion, while recorded gastric HCO3- secretion was clearly enhanced. In conclusion, the technique permits simultaneous recordings of rapid alterations of gastric motility and H+ and HCO3- secretions. However, HCO3- secretion was modestly underestimated, probably due to mucosal CO2 absorption.

  15. Protons inhibit anoctamin 1 by competing with calcium.

    PubMed

    Chun, Hyeyeon; Cho, Hawon; Choi, Jimi; Lee, Jesun; Kim, Sung Min; Kim, Hyungsup; Oh, Uhtaek

    2015-11-01

    Cl(-) efflux through Ca(2+)-activated Cl(-) channels (CaCCs) in secretory epithelial cells plays a key role in the regulation of fluid secretion. The fluid and electrolyte secretion is closely related to intracellular pH. CaCCs have been known to be inhibited by intracellular acid. However, the molecular mechanism for the inhibition remains unknown. Anoctamin 1 (ANO1) is a Ca(2+)-activated Cl(-) channel that mediates numerous physiological functions including fluid secretion in secretory epithelia. However, little is known about whether ANO1 can be modulated by change of intracellular pH. Here, we demonstrate that Ca(2+)-induced activation of ANO1 and its homolog ANO2 are strongly inhibited by intracellular acid. Intracellular acid caused a rightward shift of the concentration-response curve of Ca(2+) in activating ANO1 and ANO2. To identify the location of the acid-induced inhibition, mutations were made on each of all histidine residues in cytoplasmic part of ANO1. However, none of the His-mutant showed the reduction in the acid-induced inhibition. Furthermore, mutation on Glu- or Asp-residues in the multiple acidic-amino acid regions was ineffective in blocking the acid-induced inhibition. Because the Ca(2+)-binding site of a fungal anoctamin (nhTMEM16) was uncovered by crystallography, mutagenesis was performed in this region. Surprisingly, mutations at Glu, Asp or Asn residues in the hydrophobic core that are known to be essential for Ca(2+)-induced activation of ANO1 blocked the acid-induced inhibition. These results suggest that protons interfere with Ca(2+) at the Ca(2+) binding site of ANO1. These findings provide a molecular mechanism underlying the acid-induced inhibition of ANO1, which may contribute to control fluid and electrolyte secretion in the secretory epithelia. Copyright © 2015. Published by Elsevier Ltd.

  16. CFTR is restricted to a small population of high expresser cells that provide a forskolin-sensitive transepithelial Cl- conductance in the proximal colon of the possum, Trichosurus vulpecula.

    PubMed

    Fan, Shujun; Harfoot, Natalie; Bartolo, Ray C; Butt, A Grant

    2012-04-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is central to anion secretion in both the possum and eutherian small intestine. Here, we investigated its role in the possum proximal colon, which has novel transport properties compared with the eutherian proximal colon. Despite considerable CFTR expression, high doses of the CFTR activator forskolin (EC(50)≈10 μmol l(-1)) were required for a modest, CFTR-dependent increase in short-circuit current (I(sc)) in the proximal colon. Presumably, this is because CFTR is restricted to the apical membrane of a small population of CFTR high expresser (CHE) cells in the surface and upper crypt epithelium. Furthermore, although the forskolin-stimulated I(sc) was dependent on serosal Na(+), Cl(-) and HCO(3)(-), consistent with anion secretion, inhibition of the basolateral Na-K-2Cl(-) (NKCC1) or Na-HCO(3) (pNBCe1) cotransporters did not prevent it. Therefore, although NKCC1 and pNBCe1 are expressed in the colonic epithelium they do not appear to be expressed in CHE cells. At low doses (IC(50)≈1 μmol l(-1)), forskolin also decreased the transepithelial conductance (G(T)) of the colon through inhibition of a 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid-sensitive anion conductance in the basolateral membrane of the CHE cells. This conductance is arranged in series with CFTR in the CHE cells and, therefore, the CHE cells provide a transepithelial Cl(-) conductance for passive Cl(-) absorption across the epithelium. Inhibition of the basolateral Cl(-) conductance of the CHE cells by forskolin will inhibit Na(+) absorption by restricting the movement of its counter-ion Cl(-), assisting in the conversion of the tissue from an absorptive to a secretory state.

  17. Leishmaniasis acquired by travellers to endemic regions in Europe: a EuroTravNet multi-centre study.

    PubMed

    Ehehalt, Urs; Schunk, Mirjam; Jensenius, Mogens; van Genderen, Perry J J; Gkrania-Klotsas, Effrossyni; Chappuis, François; Schlagenhauf, Patricia; Castelli, Francesco; Lopez-Velez, Rogelio; Parola, Philippe; Burchard, Gerd D; Cramer, Jakob P

    2014-01-01

    Leishmaniasis is a disease caused by protozoan parasites of the genus Leishmania. Clinical manifestations of leishmaniasis include cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). About 90% of cases occur in the tropics or subtropics but the disease is also endemic in the Mediterranean area. No systematic analysis on leishmaniasis in travellers visiting endemic areas in Europe is available. Within the European travel medicine network EuroTravNet, we performed a retrospective analysis in travellers who acquired leishmaniasis within Europe diagnosed between 2000 and 2012. Forty cases of leishmaniasis (30 CL and 10 VL) were identified; the majority were acquired in Spain (n = 20, 50%), Malta and Italy (each n = 7, 18%). Median age was 48 years (range 1-79). Three of eight (37.5%) of the VL patients were on immunosuppressive therapy. The most frequent reason for travel was tourism (83%). Median duration of travel for patients with CL and VL was 2 weeks with ranges of 1-21 weeks in CL and 1-67 weeks in VL, respectively (P = 0.03). Health professionals should include leishmaniasis in the differential diagnosis in patients returning from southern Europe - including short-term travellers - with typical skin lesions or systemic alterations like fever, hepatosplenomegaly and pancytopenia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium

    PubMed Central

    Santos, Anderson F.; Valle, Roberta S.; Pacheco, Clarissa A.; Alvarez, Vanessa M.; Seldin, Lucy; Santos, André L.S.

    2013-01-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties. PMID:24688526

  19. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium.

    PubMed

    Santos, Anderson F; Valle, Roberta S; Pacheco, Clarissa A; Alvarez, Vanessa M; Seldin, Lucy; Santos, André L S

    2013-12-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  20. Inhibition of NET Release Fails to Reduce Adipose Tissue Inflammation in Mice.

    PubMed

    Braster, Quinte; Silvestre Roig, Carlos; Hartwig, Helene; Beckers, Linda; den Toom, Myrthe; Döring, Yvonne; Daemen, Mat J; Lutgens, Esther; Soehnlein, Oliver

    2016-01-01

    Obesity-associated diseases such as Type 2 diabetes, liver disease and cardiovascular diseases are profoundly mediated by low-grade chronic inflammation of the adipose tissue. Recently, the importance of neutrophils and neutrophil-derived myeloperoxidase and neutrophil elastase on the induction of insulin resistance has been established. Since neutrophil elastase and myeloperoxidase are critically involved in the release of neutrophil extracellular traps (NETs), we here hypothesized that NETs may be relevant to early adipose tissue inflammation. Thus, we tested the effect of the Peptidyl Arginine Deiminase 4 inhibitor Cl-amidine, a compound preventing histone citrullination and subsequent NET release, in a mouse model of adipose tissue inflammation. C57BL6 mice received a 60% high fat diet for 10 weeks and were treated with either Cl-amidine or vehicle. Flow cytometry of adipose tissue and liver, immunohistological analysis and glucose and insulin tolerance tests were performed to determine the effect of the treatment and diet. Although high fat diet feeding induced insulin resistance no significant effect was observed between the treatment groups. In addition no effect was found in leukocyte infiltration and activation in the adipose tissue and liver. Therefore we concluded that inhibition of neutrophil extracellular trap formation may have no clinical relevance for early obesity-mediated pathogenesis of the adipose tissue and liver.

  1. Bumetanide increases Cl--dependent short-circuit current in late distal colon: Evidence for the presence of active electrogenic Cl- absorption.

    PubMed

    Tang, Lieqi; Fang, Xiefan; Winesett, Steven P; Cheng, Catherine Y; Binder, Henry J; Rivkees, Scott A; Cheng, Sam X

    2017-01-01

    Mammalian colonic epithelia consist of cells that are capable of both absorbing and secreting Cl-. The present studies employing Ussing chamber technique identified two opposing short-circuit current (Isc) responses to basolateral bumetanide in rat distal colon. Apart from the transepithelial Cl--secretory Isc in early distal colon that was inhibited by bumetanide, bumetanide also stimulated Isc in late distal colon that had not previously been identified. Since bumetanide inhibits basolateral Na+-K+-2Cl- cotransporter (NKCC) in crypt cells and basolateral K+-Cl- cotransporter (KCC) in surface epithelium, we proposed this stimulatory Isc could represent a KCC-mediated Cl- absorptive current. In support of this hypothesis, ion substitution experiments established Cl- dependency of this absorptive Isc and transport inhibitor studies demonstrated the involvement of an apical Cl- conductance. Current distribution and RNA sequencing analyses revealed that this Cl- absorptive Isc is closely associated with epithelial Na+ channel (ENaC) but is not dependent on ENaC activity. Thus, inhibition of ENaC by 10 μM amiloride or benzamil neither altered the direction nor its activity. Physiological studies suggested that this Cl- absorptive Isc senses dietary Cl- content; thus when dietary Cl- was low, Cl- absorptive Isc was up-regulated. In contrast, when dietary Cl- was increased, Cl- absorptive Isc was down-regulated. We conclude that an active Cl- extrusion mechanism exists in ENaC-expressing late distal colon and likely operates in parallel with ENaC to facilitate NaCl absorption.

  2. Experimental and computational study of the bonding properties of mixed bis-ylides of phosphorus and sulfur.

    PubMed

    Serrano, Elena; Navarro, Rafael; Soler, Tatiana; Carbó, Jorge J; Lledós, Agustí; Urriolabeitia, Esteban P

    2009-07-20

    The reactivity of the known ylide-sulfonium salt [Ph(3)P=CHC(O)CH(2)SMe(2)]Br 1 and the new ylide-sulfide [Ph(3)P=CHC-(O)CH(2)SMe] 2 toward Pd(II) complexes has been studied. Compound 1 reacts with PdCl(2)(NCMe)(2) and NEt(3) to give cis-[PdCl(2)[Ph(3)PCHC(O)CHSMe(2)-kappa-C,C

  3. An electrochemical quartz crystal microbalance study of magnesium dissolution

    NASA Astrophysics Data System (ADS)

    Ralston, K. D.; Thomas, S.; Williams, G.; Birbilis, N.

    2016-01-01

    A quartz crystal microbalance (QCM) was used in conjunction with electrochemical measurements to study dissolution of pure magnesium (Mg) sensors in dilute NaCl electrolytes. Open circuit potential and potentiodynamic polarisation experiments were conducted in 0.01 M NaCl, having pH values 3 (buffered) and 6 (unbuffered). In the pH 3 solution, the Mg sensor showed a net mass-loss during the electrochemical tests, whereas, in the unbuffered pH 6 solution Mg showed a net mass-gain, corresponding to the growth of an Mg(OH)2 film on its surface. The loss in the electrochemical efficiency of Mg dissolution due to such direct parasitic Mg(OH)2 growth has been estimated to be around 17-34%. This loss relates to the low capacities and voltage fluctuations reported during discharge of primary Mg batteries.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, T.A.; Brugnara, C.; Canessa, M.

    The authors have characterized a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in vascular endothelial cells (EC) cultured from different blood vessels and species that is inhibited by the diuretics furosemide and bumentanide. Inward /sup 86/Rb influx transported by the Na/sup +/-K/sup +/ pump in cultured EC from bovine and pig aorta, bovine vena cava, and baboon cephalic vein but not in human umbilical or saphenous vein EC. External Na/sup +/ or Cl/sup -/-stimulated, ouabain-insensitive /sup 86/Rb influx is equal to furosemide or bumetanide-sensitive /sup 86/Rb influx. Ouabain-insensitive /sup 22/Na influx is also partially inhibited by these drugs and stimulated by increasingmore » external K/sup +/ or Cl/sup -/. Net Na/sup +/ extrusion occurs via the Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in the absence of external K/sup +/, whereas net Na/sup +/ influx occurs at higher external K/sup +/. Maximal concentrations (100 nM) of bradykinin and vasopressin increase the initial rate of bumetanide-sensitive /sup 86/Rb influx by approx.60 and 70%. Addition of either ethyleneglycol-bis(..beta..-aminotethylether)-N,N'-tetraacetic acid or LaCl/sub 3/ (to block calcium influx) prevents bradykinin-stimulated /sup 86/Rb influx. When intracellular calcium is elevated using ionomycin (100 nM), a Ca/sup 2 +/ionophore, bumetanide-sensitive /sup 86/Rb influx increases approx.twofold. In contrast, isoproterenol (100 ..mu..M) and forskolin (50 /sup +/M), adenylate cyclase stimulators, decrease furosemide-sensitive /sup 86/Rb influx. Thus in certain types of cultured EC, a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter mediates a fraction of K/sup +/ influx quantitatively as important as the Na/sup +/-K/sup +/ pump (ouabain-sensitive /sup 86/Rb influx) and appears to be modulated by Ca/sup 2 +/ and cyclic nucleotides.« less

  5. Carbachol-induced fluid movement through methazolamide-sensitive bicarbonate production in rat parotid intralobular ducts: quantitative analysis of fluorescence images using fluorescent dye sulforhodamine under a confocal laser scanning microscope.

    PubMed

    Nakamoto, Tetsuji; Shiba, Yoshiki; Hirono, Chikara; Sugita, Makoto; Takemoto, Kazuhisa; Iwasa, Yoshiko; Akagawa, Yasumasa

    2002-09-01

    Fluid secretion is observed at the openings of ducts in the exocrine gland. It remains unclear whether the ducts are involved in fluid secretion in the salivary glands. In the present study, we investigated the exclusion of fluorescent dye from the duct lumen by carbachol (CCh) in isolated parotid intralobular duct segments to clarify the ability of the ducts for the fluid secretion. When the membrane-impermeable fluorescent dye, sulforhodamine, was added to the superfused extracellular solution, quantitative fluorescence images of the duct lumen were obtained under the optical sectioning at the level of the duct lumen using a confocal laser scanning microscope. CCh decreased the fluorescent intensity in the duct lumen during the superfusion of the fluorescent dye, and CCh flushed out small viscous substances stained with the fluorescent dye from isolated duct lumen, suggesting that CCh might induce fluid secretion in the duct, leading to the clearance of the dye and small stained clumps from the duct lumen. CCh-induced clearance of the fluorescent dye was divided into two phases by the sensitivity to external Ca2+ and methazolamide, an inhibitor for carbonic anhydrase. The initial phase was insensitive to these, and the subsequent late phase was sensitive to these. A major portion in the late phase was inhibited by removal of bicarbonate in the superfusion solution and DPC, but not low concentration of external Cl-, bumetanide or DIDS, suggesting that methazolamide-sensitive production of HCO3-, but not the Cl- uptake mechanism, might contribute to the CCh-induced clearance of the dye from the duct lumen. These results represent the first measurements of fluid movement in isolated duct segments, and suggest that carbachol might evoke fluid secretion possibly through Ca2+-activated, DPC-sensitive anion channels with HCO3- secretion in the rat parotid intralobular ducts.

  6. Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines

    PubMed Central

    Case, R. M.; Conigrave, A. D.; Novak, I.; Young, J. A.

    1980-01-01

    1. A method is described for the isolation and vascular perfusion in vitro of the mandibular gland of the rabbit. The perfusate is a physiological salt solution containing glucose as the only metabolic substrate. 2. During perfusion with solutions containing acetylcholine, the gland secretes vigorously at a rate and in a manner similar to that seen in vivo. Although the gland becomes oedematous during perfusion, the extent of this oedema appears to have no influence on secretory ability: the perfused glands were capable of functioning for at least 4 h, and often for more than 6 h. 3. Acetylcholine evoked a small secretory response at a concentration of 8 × 10-9 mol l-1 and a maximum response at 8 × 10-7 mol l-1. Eserine (2 × 10-5 mol l-1) evoked secretory responses comparable to those evoked by acetylcholine in a concentration of 8 × 10-9 mol l-1. Secretion, whether unstimulated or evoked by acetylcholine or eserine, could be blocked completely by atropine. 4. During prolonged stimulation with acetylcholine, the fluid secretory response declined rapidly over a period of about 15 min from an initial high value to a much lower plateau value. After 3 or more hours of stimulation, the secretory response began once more to decline, this time towards zero. If, before the second period of decline begins, stimulation is interrupted for about 30 min, the gland recovers its initial responsiveness to further stimulation with acetylcholine. 5. The Na, K, Cl and HCO3 concentrations and the osmolality of acetylcholine evoked saliva exhibited flow-dependency similar to that seen in vivo. The concentrations of Na and Cl, but not K and HCO3, increased by about 25 mmol l-1 during periods of prolonged stimulation with acetylcholine even though the salivary secretory rate was constant. The concentrations of K and HCO3, but not Na and Cl, increased progressively as the concentration of infused acetylcholine was increased. 6. Salivary protein secretion increased with increasing concentrations of acetylcholine to a greater extent than did fluid secretion. During continuous stimulation, the rate of protein secretion fell off much faster than the rate of fluid secretion. 7. The β-adrenergic agonist isoproterenol evoked a fluid secretory response only equal to about 5% of that evoked by acetylcholine, but still the response declined during continued stimulation. The electrolyte composition of isoproterenol-evoked saliva was vastly different from that evoked by acetylcholine, being particularly rich in K and HCO3. The isoproterenol-evoked saliva was also extremely rich in protein so that the total protein secretion evoked by isoproterenol was much greater than that evoked by acetylcholine. 8. The α-adrenergic agonist phenylephrine was without stimulatory effect on salivary fluid secretion and caused a reduction in the secretory response to acetylcholine. The drug had little or no effect on the electrolyte content of acetylcholine-evoked saliva and appeared to reduce its protein content. PMID:7381794

  7. Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.

    PubMed

    Hao, Yuan; Ko, Wing-hung

    2014-02-25

    The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.

  8. A lower isoelectric point increases signal sequence-mediated secretion of recombinant proteins through a bacterial ABC transporter.

    PubMed

    Byun, Hyunjong; Park, Jiyeon; Kim, Sun Chang; Ahn, Jung Hoon

    2017-12-01

    Efficient protein production for industrial and academic purposes often involves engineering microorganisms to produce and secrete target proteins into the culture. Pseudomonas fluorescens has a TliDEF ATP-binding cassette transporter, a type I secretion system, which recognizes C-terminal LARD3 signal sequence of thermostable lipase TliA. Many proteins are secreted by TliDEF in vivo when recombined with LARD3, but there are still others that cannot be secreted by TliDEF even when LARD3 is attached. However, the factors that determine whether or not a recombinant protein can be secreted through TliDEF are still unknown. Here, we recombined LARD3 with several proteins and examined their secretion through TliDEF. We found that the proteins secreted via LARD3 are highly negatively charged with highly-acidic isoelectric points (pI) lower than 5.5. Attaching oligo-aspartate to lower the pI of negatively-charged recombinant proteins improved their secretion, and attaching oligo-arginine to negatively-charged proteins blocked their secretion by LARD3. In addition, negatively supercharged green fluorescent protein (GFP) showed improved secretion, whereas positively supercharged GFP did not secrete. These results disclosed that proteins' acidic pI and net negative charge are major factors that determine their secretion through TliDEF. Homology modeling for TliDEF revealed that TliD dimer forms evolutionarily-conserved positively-charged clusters in its pore and substrate entrance site, which also partially explains the pI dependence of the TliDEF-dependent secretions. In conclusion, lowering the isoelectric point improved LARD3-mediated protein secretion, both widening the range of protein targets for efficient production via secretion and signifying an important aspect of ABC transporter-mediated secretions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension.

    PubMed

    Hadchouel, Juliette; Soukaseum, Christelle; Büsst, Cara; Zhou, Xiao-ou; Baudrie, Véronique; Zürrer, Tany; Cambillau, Michelle; Elghozi, Jean-Luc; Lifton, Richard P; Loffing, Johannes; Jeunemaitre, Xavier

    2010-10-19

    Mutations in WNK1 and WNK4 lead to familial hyperkalemic hypertension (FHHt). Because FHHt associates net positive Na(+) balance together with K(+) and H(+) renal retention, the identification of WNK1 and WNK4 led to a new paradigm to explain how aldosterone can promote either Na(+) reabsorption or K(+) secretion in a hypovolemic or hyperkalemic state, respectively. WNK1 gives rise to L-WNK1, an ubiquitous kinase, and KS-WNK1, a kinase-defective isoform expressed in the distal convoluted tubule. By inactivating KS-WNK1 in mice, we show here that this isoform is an important regulator of sodium transport. KS-WNK1(-/-) mice display an increased activity of the Na-Cl cotransporter NCC, expressed specifically in the distal convoluted tubule, where it participates in the fine tuning of sodium reabsorption. Moreover, the expression of the ROMK and BKCa potassium channels was modified in KS-WNK1(-/-) mice, indicating that KS-WNK1 is also a regulator of potassium transport in the distal nephron. Finally, we provide an alternative model for FHHt. Previous studies suggested that the activation of NCC plays a central role in the development of hypertension and hyperkalemia. Even though the increase in NCC activity in KS-WNK1(-/-) mice was less pronounced than in mice overexpressing a mutant form of WNK4, our study suggests that the activation of Na-Cl cotransporter is not sufficient by itself to induce a hyperkalemic hypertension and that the deregulation of other channels, such as the Epithelial Na(+) channel (ENaC), is probably required.

  10. Electrical parameters and water permeability properties of monolayers formed by T84 cells cultured on permeable supports.

    PubMed

    Ozu, M; Toriano, R; Capurro, C; Parisi, M

    2005-01-01

    T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (POSM), hydraulic permeability (PHYDR) and transport-associated net water fluxes (JW-transp), as well as short-circuit current (ISC), transepithelial resistance (RT), and potential difference (deltaVT) were measured in T84 monolayers with the following results: POSM 1.3 +/- 0.1 cm.s-1 x 10-3; PHYDR 0.27 +/- 0.02 cm.s-1; RT 2426 +/- 109 omega.cm2, and deltaVT 1.31 +/- 0.38 mV. The effect of 50 microM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in ISC induced by DCEBIO which was associated here with a modest secretory deltaJW-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between PHYDR and RT could be demonstrated and high PHYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJW-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.

  11. Dermal glands in freshwater mites Limnesia undulata (O.F. Müller, 1776) and Limnesia fulgida (C.L. Koch, 1836) (Acariformes, Limnesiidae).

    PubMed

    Shatrov, Andrew B; Soldatenko, Elena V

    2016-07-01

    Dermal glands in the water mites Limnesia undulata (O.F. Müller, 1776) and Limnesia fulgida (C.L. Koch, 1836) and their secretion were studied by means of light microscopical, transmission electron microscopical (TEM) and scanning electron microscopical (SEM) methods. These mites possess two types of dermal glands - the 'common' dermal glands in a number of 14 pairs and one pair of the so-called 'idiosomal' dermal glands. The common dermal glands are bi-lobed organs and consist of high prismatic secretory cells directed to the gland mouth and mostly replacing the intra-alveolar lumen. The cells contain numerous cisterns of rough endoplasmic reticulum (RER) and specifically organized Golgi bodies (GB) producing electron-dense elongated secretory granules. These granules are released from the cells via apocrine secretion and come to the gland mouth, where they are sometimes accompanied by secretory cell cytoplasm. The final secretion may show a fibrous character. The idiosomal glands are sac-like organs stretched along the ventral body wall in posterior direction from the gland orifice corresponding to the epimeroglandularia 4. The secretory epithelium leaves a large intra-alveolar lumen filled with an electron-dense secretory material. Golgi bodies are organized identically with those in the common glands, which indicates the general homology of these two types of dermal glands. The glands' orifices are organized similarly in all glands and possess an internal funnel-shaped sclerite with muscle armament, an internal valve, medial epicuticular flaps and an external circular cuticular ring. All glandularia, except for E4 and V1, are accompanied with a long and thin sensitive seta. During fixation, secretion of the common dermal glands is extruded to the exterior in the form of large amounts of convoluted tube-like structures. In the living organisms, being secreted in mass from the glands, this secretion acquires the form of long rigid mostly hollow un-branched threads comparable with the similar silken threads of other water arthropods. The function of the idiosomal glands secretion still remains unknown. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis.

    PubMed

    Knight, Jason S; Luo, Wei; O'Dell, Alexander A; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C; Thompson, Paul R; Eitzman, Daniel T; Kaplan, Mariana J

    2014-03-14

    Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Apolipoprotein-E (Apoe)(-/-) mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe(-/-) mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses.

  13. Hidden Treasures and Secret Pitfalls: Application of the Capability Approach to ParkinsonNet.

    PubMed

    Canoy, Marcel; Faber, Marjan J; Munneke, Marten; Oortwijn, Wija; Nijkrake, Maarten J; Bloem, Bastiaan R

    2015-01-01

    In the Netherlands, the largest health technology assessment (HTA) program funds mainly (cost-)effectiveness studies and implementation research. The cost-effectiveness studies are usually controlled clinical trials which simultaneously collect cost data. The success of a clinical trial typically depends on the effect size for the primary outcome, such as health gains or mortality rates. A drawback is that in case of a negative primary outcome, relevant other (and perhaps more implicit) benefits might be missed. Conversely, positive trials can contain adverse outcomes that may also remain hidden. The capability approach (developed by Nobel Prize winner and philosopher Sen) is an instrument that may reveal such "hidden treasures and secret pitfalls" that lie embedded within clinical trials, beyond the more traditional outcomes. Here, we exemplify the possible merits of the capability approach using a large clinical trial (funded by the HTA program in the Netherlands) that aimed to evaluate the ParkinsonNet concept, an innovative network approach for Parkinson patients. This trial showed no effects for the primary outcome, but the ParkinsonNet concept tested in this study was nevertheless met with great enthusiasm and was rapidly implemented throughout an entire country, and meanwhile also internationally. We applied the capability approach to the ParkinsonNet concept, and this analysis yielded additional benefits within several capability domains. These findings seems to substantiate the claim that richer policy debates may ensue by applying the capability approach to clinical trial data, in addition to traditional outcomes.

  14. α-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism

    PubMed Central

    Tokonami, Natsuko; Morla, Luciana; Centeno, Gabriel; Mordasini, David; Ramakrishnan, Suresh Krishna; Nikolaeva, Svetlana; Wagner, Carsten A.; Bonny, Olivier; Houillier, Pascal; Doucet, Alain; Firsov, Dmitri

    2013-01-01

    Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle’s loop from reabsorption (acid load) to secretion (base load). Here we show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG receptor OXGR1 expressed in the type B and non-A–non-B intercalated cells of the connecting tubule (CNT) and the cortical collecting duct (CCD). The addition of 1 mM αKG to the tubular lumen strongly stimulated Cl–-dependent HCO3– secretion and electroneutral transepithelial NaCl reabsorption in microperfused CCDs of wild-type mice but not Oxgr1–/– mice. Analysis of alkali-loaded mice revealed a significantly reduced ability of Oxgr1–/– mice to maintain acid-base balance. Collectively, these results demonstrate that OXGR1 is involved in the adaptive regulation of HCO3– secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and establish αKG as a paracrine mediator involved in the functional coordination of the proximal and the distal parts of the renal tubule. PMID:23934124

  15. Group 4 metal mono-dicarbollide piano stool complexes. Synthesis, structure, and reactivity of ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})M(NR{sub 2}){sub 2}(NHR{sub 2}) (M = Zr, R = Et; M = Ti, R = Me, Et)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, D.E.; Jordan, R.F.; Rogers, R.D.

    1995-08-01

    The amine elimination reaction of C{sub 2}B{sub 9}H{sub 13} and Zr(NEt{sub 2}){sub 4} yields the mono-dicarbollide complex ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}(NHEt{sub 2}), (1), which has been shown to adopt a three-legged piano stool structure by X-ray crystallography. Crystal data for 1: space group P2{sub 1}/c, a = 10.704(4) A, b = 11.066(3) A, c = 20.382(8) A, {beta} = 99.20(3){degree}, V = 2383(1) A{sup 3}, Z = 4. Complex 1 undergoes facile ligand substitution by THF and 4-picoline, yielding ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}-(THF) (2) and ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}(4-picoline){sub 2} (3).more » Compound 3 exists as the four-coordinate species ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}(4-picoline) in CH{sub 2}Cl{sub 2} solution. Complex 1 reacts selectively with 2 equiv of [NH{sub 2}ET{sub 2}]Cl, yielding ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})ZrCl{sub 2}(NHEt{sub 2}){sub 2} (4). Similarly, the reaction of C{sub 2}B{sub 9}H{sub 13} and Ti(NR{sub 2}){sub 4} yields ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Ti(NR{sub 2}){sub 2}(NHR{sub 2}) (5, R = Me; 6, R = Et). Compounds 1-6 are potential precursors to group 4 metal ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})MR{sub 2}L{sub n} alkyl species. 25 refs., 3 figs., 3 tabs.« less

  16. Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods.

    PubMed

    Herzog, Max; Konnerup, Dennis; Pedersen, Ole; Winkel, Anders; Colmer, Timothy David

    2018-05-01

    Floods and salinization of agricultural land adversely impact global rice production. We investigated whether gas films on leaves of submerged rice delay salt entry during saline submergence. Two-week-old plants with leaf gas films (+GF) or with gas films experimentally removed (-GF) were submerged in artificial floodwater with 0 or 50 mm NaCl for up to 16 d. Gas films were present >9 d on GF plants after which gas films were diminished. Tissue ion analysis (Na + , Cl - and K + ) showed that gas films caused some delay of Na + entry, as leaf Na + concentration was 36-42% higher in -GF leaves than +GF leaves on days 1-5. However, significant net uptakes of Na + and Cl - , and K + net loss, occurred despite the presence of gas films, indicating the likely presence of some leaf-to-floodwater contact, so that the gas layer must not have completely separated the leaf surfaces from the water. Natural loss and removal of gas films resulted in severe declines in growth, underwater photosynthesis, chlorophyll a and tissue porosity. Submergence was more detrimental to leaf P N and growth than the additional effect of 50 mm NaCl, as salt did not significantly affect underwater P N at 200 μm CO 2 nor growth. © 2016 John Wiley & Sons Ltd.

  17. Gastrointestinal assimilation of Cu during digestion of a single meal in the freshwater rainbow trout (Oncorhynchus mykiss).

    PubMed

    Nadella, Sunita R; Bucking, Carol; Grosell, Martin; Wood, Chris M

    2006-08-01

    Gastrointestinal processing and assimilation of Cu in vivo was investigated by sequential chyme analysis over a 72 h period following ingestion of a single satiation meal (3% body weight) of commercial trout food (Cu content=0.42 micromol g(-1)) by adult rainbow trout. Leaded glass ballotini beads incorporated into the food and detected by X-ray radiography were employed as an inert marker in order to quantify net Cu absorption or secretion in various parts of the tract. Cu concentrations in the supernatant (fluid phase) fell from about 0.06 micromol mL(-1) (63 microM) in the stomach at 2 h to about 0.003 micromol mL(-1) (3 microM) in the posterior intestine at 72 h. Cu concentrations in the solid phase were 10 to 30-fold higher than in the fluid phase, and increased about 4-fold from the stomach at 2 h to the posterior intestine at 72 h. By reference to the inert marker, overall net Cu absorption from the ingested food by 72 h was about 50%. The mid-intestine, and posterior intestine emerged as important sites of net Cu and water absorption and a potential role for the stomach in this process was also indicated. The anterior intestine was a site of large net Cu addition to the chyme, probably due to large net additions of Cu-containing fluids in the form of bile and other secretions in this segment. The results provide valuable information about sites of Cu absorption and realistic concentrations of Cu in chyme fluid for future in vitro mechanistic studies on Cu transport in the trout gastrointestinal tract.

  18. Chlorogenic Acid Activates CFTR-Mediated Cl- Secretion in Mice and Humans: Therapeutic Implications for Chronic Rhinosinusitis

    PubMed Central

    Illing, Elisa; Cho, Do-Yeon; Zhang, Shaoyan; Skinner, Daniel F.; Dunlap, Quinn A.; Sorscher, Eric J.; Woodworth, Bradford A.

    2016-01-01

    Objectives Salubrious effects of the green coffee bean are purportedly secondary to high concentrations of chlorogenic acid. Chlorogenic acid has a molecular structure similar to bioflavonoids that activate transepithelial Cl- transport in sinonasal epithelia. In contrast to flavonoids, the drug is freely soluble in water. The objective of this study is to evaluate the Cl- secretory capability of chlorogenic acid and its potential as a therapeutic activator of mucus clearance in sinus disease. Study Design Basic research Setting Laboratory Subjects and Methods Chlorogenic acid was tested on primary murine nasal septal epithelial(MNSE)[CFTR+/+ and transgenic CFTR-/-] and human sinonasal epithelial(HSNE)[CFTR+/+ and F508del/F508del] cultures under pharmacologic conditions in Ussing chambers to evaluate effects on transepithelial Cl- transport. Cellular cAMP, phosphorylation of the CFTR regulatory domain(R-D), and CFTR mRNA transcription were also measured. Results Chlorogenic acid stimulated transepithelial Cl- secretion [(change in short-circuit current(ΔISC=μA/cm2)] in MNSE(13.1+/-0.9 vs. 0.1+/-0.1, p<0.05) and HSNE(34.3+/-0.9 vs. 0.0+/-0.1, p<0.05). The drug had a long duration until peak effect at 15-30 minutes after application. Significant inhibition with INH-172, as well as absent stimulation in cultures lacking functional CFTR, suggests effects are dependent on CFTR-mediated pathways. However, the absence of elevated cellular cAMP and phosphorylation the CFTR R-D indicates chlorogenic acid does not work through a PKA-dependent mechanism. Conclusion Chlorogenic acid is a water soluble agent that promotes CFTR-mediated Cl- transport in mouse and human sinonasal epithelium. Translating activators of mucociliary transport to clinical use provides a new therapeutic approach to sinus disease. Further in vivo evaluation is planned. PMID:26019132

  19. Chlorogenic Acid Activates CFTR-Mediated Cl- Secretion in Mice and Humans: Therapeutic Implications for Chronic Rhinosinusitis.

    PubMed

    Illing, Elisa A; Cho, Do-Yeon; Zhang, Shaoyan; Skinner, Daniel F; Dunlap, Quinn A; Sorscher, Eric J; Woodworth, Bradford A

    2015-08-01

    Salubrious effects of the green coffee bean are purportedly secondary to high concentrations of chlorogenic acid. Chlorogenic acid has a molecular structure similar to bioflavonoids that activate transepithelial Cl(-) transport in sinonasal epithelia. In contrast to flavonoids, the drug is freely soluble in water. The objective of this study is to evaluate the Cl(-) secretory capability of chlorogenic acid and its potential as a therapeutic activator of mucus clearance in sinus disease. Basic research. Laboratory. Chlorogenic acid was tested on primary murine nasal septal epithelial (MNSE) (CFTR(+/+) and transgenic CFTR(-/-)) and human sinonasal epithelial (HSNE) (CFTR(+/+) and F508del/F508del) cultures under pharmacologic conditions in Ussing chambers to evaluate effects on transepithelial Cl(-) transport. Cellular cyclic adenosine monophosphate (cAMP), phosphorylation of the CFTR regulatory domain (R-D), and CFTR mRNA transcription were also measured. Chlorogenic acid stimulated transepithelial Cl(-) secretion (change in short-circuit current [ΔISC = µA/cm(2)]) in MNSE (13.1 ± 0.9 vs 0.1 ± 0.1; P < .05) and HSNE (34.3 ± 0.9 vs 0.0 ± 0.1; P < .05). The drug had a long duration until peak effect at 15 to 30 minutes after application. Significant inhibition with INH-172 as well as absent stimulation in cultures lacking functional CFTR suggest effects are dependent on CFTR-mediated pathways. However, the absence of elevated cellular cAMP and phosphorylation the CFTR R-D indicates chlorogenic acid does not work through a PKA-dependent mechanism. Chlorogenic acid is a water-soluble agent that promotes CFTR-mediated Cl(-) transport in mouse and human sinonasal epithelium. Translating activators of mucociliary transport to clinical use provides a new therapeutic approach to sinus disease. Further in vivo evaluation is planned. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  20. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice

    PubMed Central

    Eraly, Satish A.; Rao, Satish Ramachandra; Gerasimova, Maria; Rose, Michael; Nagle, Megha; Anzai, Naohiko; Smith, Travis; Sharma, Kumar; Nigam, Sanjay K.; Rieg, Timo

    2012-01-01

    Tubular secretion of the organic cation, creatinine, limits its value as a marker of glomerular filtration rate (GFR) but the molecular determinants of this pathway are unclear. The organic anion transporters, OAT1 and OAT3, are expressed on the basolateral membrane of the proximal tubule and transport organic anions but also neutral compounds and cations. Here, we demonstrate specific uptake of creatinine into mouse mOat1- and mOat3-microinjected Xenopus laevis oocytes at a concentration of 10 μM (i.e., similar to physiological plasma levels), which was inhibited by both probenecid and cimetidine, prototypical competitive inhibitors of organic anion and cation transporters, respectively. Renal creatinine clearance was consistently greater than inulin clearance (as a measure of GFR) in wild-type (WT) mice but not in mice lacking OAT1 (Oat1−/−) and OAT3 (Oat3−/−). WT mice presented renal creatinine net secretion (0.23 ± 0.03 μg/min) which represented 45 ± 6% of total renal creatinine excretion. Mean values for renal creatinine net secretion and renal creatinine secretion fraction were not different from zero in Oat1−/− (−0.03 ± 0.10 μg/min; −3 ± 18%) and Oat3−/− (0.01 ± 0.06 μg/min; −6 ± 19%), with greater variability in Oat1−/−. Expression of OAT3 protein in the renal membranes of Oat1−/− mice was reduced to ∼6% of WT levels, and that of OAT1 in Oat3−/− mice to ∼60%, possibly as a consequence of the genes for Oat1 and Oat3 having adjacent chromosomal locations. Plasma creatinine concentrations of Oat3−/− were elevated in clearance studies under anesthesia but not following brief isoflurane anesthesia, indicating that the former condition enhanced the quantitative contribution of OAT3 for renal creatinine secretion. The results are consistent with a contribution of OAT3 and possibly OAT1 to renal creatinine secretion in mice. PMID:22338083

  1. Specific ion-protein interactions dictate solubility behavior of a monoclonal antibody at low salt concentrations.

    PubMed

    Zhang, Le; Zhang, Jifeng

    2012-09-04

    The perturbation of salt ions on the solubility of a monoclonal antibody was systematically studied at various pHs in Na(2)SO(4), NaNO(3), NaCl, NaF, MgSO(4), Mg(NO(3))(2) and MgCl(2) solutions below 350 mM. At pH 7.1, close to the pI, all of the salts increased the solubility of the antibody, following the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-) for anions and Mg(2+) > Na(+) for cations. At pH 5.3 where the antibody had a net positive charge, the anions initially followed the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-) for effectiveness in reducing the solubility and then switched to increasing the solubility retaining the same order. Furthermore, the antibody was more soluble in the Mg(2+) salt solutions than in the corresponding Na(+) salt solutions with the same anion. At pH 9.0 where the antibody had a net negative charge, an initial decrease in the protein solubility was observed in the solutions of the Mg(2+) salts and NaF, but not in the rest of the Na(+) salt solutions. Then, the solubility of the antibody was increased by the anions in the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-). The above complex behavior is explained based on the ability of both cation and anion from a salt to modulate protein-protein interactions through their specific binding to the protein surface.

  2. Control of potassium excretion: a Paleolithic perspective.

    PubMed

    Halperin, Mitchell L; Cheema-Dhadli, Surinder; Lin, Shih-Hua; Kamel, Kamel S

    2006-07-01

    Regulation of potassium (K) excretion was examined in an experimental setting that reflects the dietary conditions for humans in Paleolithic times (high, episodic intake of K with organic anions; low intake of NaCl), because this is when major control mechanisms were likely to have developed. The major control of K secretion in this setting is to regulate the number of luminal K channels in the cortical collecting duct. Following a KCl load, the K concentration in the medullary interstitial compartment rose; the likely source of this medullary K was its absorption by the H/K-ATPase in the inner medullary collecting duct. As a result of the higher medullary K concentration, the absorption of Na and Cl was inhibited in the loop of Henle, and this led to an increased distal delivery of a sufficient quantity of Na to raise K excretion markedly, while avoiding a large natriuresis. In addition, because K in the diet was accompanied by 'future' bicarbonate, a role for bicarbonate in the control of K secretion via 'selecting' whether aldosterone would be a NaCl-conserving or a kaliuretic hormone is discussed. This way of examining the control of K excretion provides new insights into clinical disorders with an abnormal plasma K concentration secondary to altered K excretion, and also into the pathophysiology of calcium-containing kidney stones.

  3. The early effect of dextran sodium sulfate administration on carbachol-induced short-circuit current in distal and proximal colon during colitis development.

    PubMed

    Hock, M; Soták, M; Kment, M; Pácha, J

    2011-01-01

    Increased colonic Cl(-) secretion was supposed to be a causative factor of diarrhea in inflammatory bowel diseases. Surprisingly, hyporesponsiveness to Cl(-) secretagogues was later described in inflamed colon. Our aim was to evaluate changes in secretory responses to cholinergic agonist carbachol in distal and proximal colon during colitis development, regarding secretory activity of enteric nervous system (ENS) and prostaglandins. Increased responsiveness to carbachol was observed in both distal and proximal colon after 3 days of 2 % dextran sodium sulfate (DSS) administration. It was measured in the presence of mucosal Ba(2+) to emphasize Cl(-) secretion. The described increase was abolished by combined inhibitory effect of tetrodotoxin (TTX) and indomethacin. Indomethacin also significantly reduced TTX-sensitive current. On the 7th day of colitis development responsiveness to carbachol decreased in distal colon (compared to untreated mice), but did not change in proximal colon. TTX-sensitive current did not change during colitis development, but indomethacin-sensitive current was significantly increased the 7th day. Decreased and deformed current responses to serosal Ba(2+) were observed during colitis induction, but only in proximal colon. We conclude that besides inhibitory effect of DSS on distal colon responsiveness, there is an early stimulatory effect that manifests in both distal and proximal colon.

  4. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3.

    PubMed

    Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph

    2014-02-01

    Determination of renal plasma flow (RPF) by para-aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigated this phenomenon in a rat model of renal ischemia and reperfusion by determining PAH clearance, PAH extraction, PAH net secretion, and the expression of rOat1 and rOat3. PAH extraction was seriously impaired after ischemia and reperfusion which led to a threefold underestimation of RPF when PAH extraction ratio was not considered. PAH extraction directly correlated with the expression of basolateral Oat1 and Oat3. Tubular PAH secretion directly correlated with PAH extraction. Consequently, our data offer an explanation for impaired renal PAH extraction by reduced expression of the rate limiting basolateral organic anion transporters Oat1 and Oat3. Moreover, we show that determination of PAH net secretion is suitable to correct PAH clearance for impaired extraction after ischemia and reperfusion in order to get valid results for RPF.

  5. The Ethanol-Induced Stimulation of Rat Duodenal Mucosal Bicarbonate Secretion In Vivo Is Critically Dependent on Luminal Cl–

    PubMed Central

    Sommansson, Anna; Wan Saudi, Wan Salman; Nylander, Olof; Sjöblom, Markus

    2014-01-01

    Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS) is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v.) did not change the secretory response to ethanol, while removing Cl− from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v.) but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl− and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms. PMID:25033198

  6. Net K+ secretion in the thick ascending limb of mice on a low-Na, high-K diet.

    PubMed

    Wang, Bangchen; Wen, Donghai; Li, Huaqing; Wang-France, Jun; Sansom, Steven C

    2017-10-01

    Because of its cardio-protective effects, a low-Na, high-K diet (LNaHK) is often warranted in conjunction with diuretics to treat hypertensive patients. However, it is necessary to understand the renal handling of such diets in order to choose the best diuretic. Wild-type (WT) or Renal Outer Medullary K channel (ROMK) knockout mice (KO) were given a regular (CTRL), LNaHK, or high-K diet (HK) for 4-7 days. On LNaHK, mice treated with either IP furosemide for 12 hrs, or given furosemide in drinking water for 7 days, exhibited decreased K clearance. We used free-flow micropuncture to measure the [K + ] in the early distal tubule (EDT [K + ]) before and after furosemide treatment. Furosemide increased the EDT [K + ] in WT on CTRL but decreased that in WT on LNaHK. Furosemide did not affect the EDT [K + ] of KO on LNaHK or WT on HK. Furosemide-sensitive Na + excretion was significantly greater in mice on LNaHK than those on CTRL or HK. Patch clamp analysis of split-open TALs revealed that 70-pS ROMK exhibited a higher open probability (Po) but similar density in mice on LNaHK, compared with CTRL. No difference was found in the density or Po of the 30 pS K channels between the two groups. These results indicate mice on LNaHK exhibited furosemide-sensitive net K + secretion in the TAL that is dependent on increased NKCC2 activity and mediated by ROMK. We conclude that furosemide is a K-sparing diuretic by decreasing the TAL net K + secretion in subjects on LNaHK. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. Characterization of target camouflage structures by means of different microwave imaging procedures

    NASA Astrophysics Data System (ADS)

    Inaebnit, Christian; John, Marc-Andre; Aulenbacher, Uwe; Akyol, Zeynrep; Hueppi, Rudolf; Wellig, Peter

    2009-05-01

    This paper presents two different test methods for camouflage layers (CL) like nets or foam based structures. The effectiveness of CL in preventing radar detection and recognition of targets depends on the interaction of CL properties as absorption and diffuse scattering with target specific scattering properties. This fact is taken into account by representing target backscattering as interference of different types of GTD contributions and evaluating the impact of CL onto these individual contributions separately. The first method investigates how a CL under test alters these individual scattering contributions and which "new" contributions are produced by "self-scattering" at the CL. This information is gained by applying ISAR imaging technique to a test structure with different types of scattering contributions. The second test method aims for separating the effects of absorption and "diffuse scattering" in case of a planar metallic plate covered by CL. For this, the equivalent source distribution in the plane of the CL is reconstructed from bistatic scattering data. Both test methods were verified by experimental results obtained from X-band measurements at different CL and proved to be well suited for an application specific evaluation of camouflage structures from different manufacturers.

  8. Ca²⁺ signal contributing to the synthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia'.

    PubMed

    Hu, Zenghui; Li, Tianjiao; Zheng, Jian; Yang, Kai; He, Xiangfeng; Leng, Pingsheng

    2015-06-01

    The floral scent is an important part of plant volatile compounds, and is influenced by environmental factors. The emission of monoterpenes of Lilium 'siberia' is regulated by light intensity, but the mechanism is large unknown. In this study, the expression of Li-mTPS, a monoterpene synthase gene in the tepals of Lilium 'siberia', and net Ca(2+) flux were investigated after exposure to different levels of light intensity (0, 100, 300, 600, 1000, and 1500 μmol m(-2) s(-1)). Moreover the effect of LaCl3 and ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) on the Li-mTPS expression, monoterpene emission, and net Ca(2+) flux were examined at 600 μmol m(-2) s(-1). The results showed that along with the enhancement of light intensity, the expression level of Li-mTPS increased gradually, and the net Ca(2+) influx was also enhanced showing a similar pattern. It was found that LaCl3 and EGTA effectively inhibited the increase in expression of Li-mTPS and the net Ca(2+) influx induced by light treatment. Moreover, the release amounts of monoterpenes decreased significantly after treatment with LaCl3 and EGTA. So it can be concluded that Ca(2+) signal contributed to the biosynthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia' tepals. The increased light intensity firstly triggered the Ca(2+) influx to cytoplasm, and then the gene expression of monoterpene synthases downstream was activated to regulate the biosynthesis and emission of monoterpenes. But in the signaling pathway other mechanisms were thought to be involved in the emission of monoterpenes regulated by light intensity, which need to be investigated in future research. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Oxidative demetalation of cyclohexadienyl ruthenium(II) complexes: a net Ru-mediated dearomatization.

    PubMed

    Pigge, F Christopher; Coniglio, John J; Rath, Nigam P

    2003-05-29

    [reaction: see text] An experimentally simple method for the demetalation of spirocyclic cyclohexadienylruthenium(II) complexes has been developed. Treatment of an alkoxy-substituted cyclohexadienyl complex with CuCl(2) affords either azaspiro[4.5]decane derivatives or heavily functionalized tetrahydroisoquinolines. The former reaction manifold completes a net Ru-mediated dearomatization as the organometallic starting materials are prepared from (eta(6)-arene)Ru(II) precursors. Both of these heterocyclic products are well suited for further synthetic elaboration.

  10. Talking about the Best Kept Secret: Sexual Abuse and Children with Disabilities.

    ERIC Educational Resources Information Center

    Watson, Janice Daar

    1984-01-01

    Because disabled children and adults may be particularly vulnerable to sexual abuse, the author discusses warning symptoms (such as sleep and appetite disturbances, and unusual demands for affection or attention) and suggests approaches in both responding to abuse and preventing abuse. (CL)

  11. Cl sup minus -HCO sub 3 sup minus exchange is present with Na sup + -K sup + -Cl sup minus cotransport in rabbit parotid acinar basolateral membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, R.J.; George, J.N.

    1988-03-01

    The presence of a sodium-independent electroneutral Cl{sup {minus}}-anion exchanger in a basolateral membrane vesicle preparation from the rabbit parotid is demonstrated. This exchanger is shared by HCO{sub 3}{sup {minus}}, NO{sub 3}{sup {minus}}, Br{sup {minus}}, F{sup {minus}}, and formate, but not by thiocyanate, acetate, methylsulfate, gluconate, or hydroxyl ions. In order of relative potency, the exchanger is inhibited by SITS {ge} phloretin > furosemide > bumetanide {ge} phlorizin. A Na{sup +}-K{sup +}-dependent component of chloride flux, presumably due to the Na{sup +}-K{sup +}-Cl{sup {minus}} cotransporter already characterized in this preparation, was also observed. {sup 36}Cl uptake into vesicles loaded with KClmore » exhibited an overshoot of intravesicular ({sup 36}Cl) due to {sup 36}Cl-Cl exchange. However, when vesicles were loaded with both KCl and NaCl the height of the overshoot was considerably decreased indicating a Na{sup +}-K{sup +}-dependent dissipation of the intravesicular to extravesicular chloride gradient. This experiment provides strong evidence that the Na{sup +}-K{sup +}Cl{sup {minus}} cotransporter and the Cl{sup {minus}} HCO{sub 3}{sup {minus}} exchange are present in the same membrane vesicles. These results indicate that Cl{sup {minus}}-HCO{sub 3}{sup {minus}} exchange is present in the basolateral membrane of parotid acinar cells and thus that this transporter may play a significant role in salivary secretion.« less

  12. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  13. Oestrogen promotes KCNQ1 potassium channel endocytosis and postendocytic trafficking in colonic epithelium.

    PubMed

    Rapetti-Mauss, Raphael; O'Mahony, Fiona; Sepulveda, Francisco V; Urbach, Valerie; Harvey, Brian J

    2013-06-01

    The cAMP-regulated potassium channel KCNQ1:KCNE3 plays an essential role in transepithelial Cl(-) secretion. Recycling of K(+) across the basolateral membrane provides the driving force necessary to maintain apical Cl(-) secretion. The steroid hormone oestrogen (17β-oestradiol; E2), produces a female-specific antisecretory response in rat distal colon through the inhibition of the KCNQ1:KCNE3 channel. It has previously been shown that rapid inhibition of the channel conductance results from E2-induced uncoupling of the KCNE3 regulatory subunit from the KCNQ1 channel pore complex. The purpose of this study was to determine the mechanism required for sustained inhibition of the channel function. We found that E2 plays a role in regulation of KCNQ1 cell membrane abundance by endocytosis. Ussing chamber experiments have shown that E2 inhibits both Cl(-) secretion and KCNQ1 current in a colonic cell line, HT29cl.19A, when cultured as a confluent epithelium. Following E2 treatment, KCNQ1 was retrieved from the plasma membrane by a clathrin-mediated endocytosis, which involved the association between KCNQ1 and the clathrin adaptor, AP-2. Following endocytosis, KCNQ1 was accumulated in early endosomes. Following E2-induced endocytosis, rather than being degraded, KCNQ1 was recycled by a biphasic mechanism involving Rab4 and Rab11. Protein kinase Cδ and AMP-dependent kinase were rapidly phosphorylated in response to E2 on their activating phosphorylation sites, Ser643 and Thr172, respectively (as previously shown). Both kinases are necessary for the E2-induced endocytosis, because E2 failed to induce KCNQ1 internalization following pretreatment with specific inhibitors of both protein kinase Cδ and AMP-dependent kinase. The ubiquitin ligase Nedd4.2 binds KCNQ1 in response to E2 to induce channel internalization. This study has provided the first demonstration of hormonal regulation of KCNQ1 trafficking. In conclusion, we propose that internalization of KCNQ1 is a key event in the sustained antisecretory response to oestrogen.

  14. Role of carbonic anhydrase in basal and stimulated bicarbonate secretion by the guinea pig duodenum.

    PubMed

    Muallem, R; Reimer, R; Odes, H S; Schwenk, M; Beil, W; Sewing, K F

    1994-05-01

    The role of carbonic anhydrase in the process of proximal duodenal mucosal bicarbonate secretion was investigated in the guinea pig. In a series of experiments in vivo, the duodenum was perfused with 24 mmol/liter NaHCO3 solution (+ NaCl for isotonicity) to ensure that active duodenal HCO3- secretion against a concentration gradient was measured. Acetazolamide (80 mg/kg) was infused intravenously to examine the role of carbonic anhydrase on basal and agonist-stimulated HCO3- secretion. Acetazolamide abolished basal HCO3- secretion and significantly decreased HCO3- secretion after stimulation with dibutyryl 5'-cyclic adenosine monophosphate (dBcAMP, 10(-5) mol/kg), dibutyryl 5'-cyclic guanosine monophosphate (dBcGMP, 10(-5) mol/kg), prostaglandin E2 (PGE2, 10(-6) mol/kg), PGF2 alpha (10(-6) mol/kg), tetradecanoyl-phorbol-acetate (TPA, 10(-7) mol/kg), glucagon (10(-7) mol/kg), vasoactive intestinal polypeptide (VIP, 10(-8) mol/kg), and carbachol (10(-8) mol/kg). Utilizing a fluorescence technique, we could detect the enzyme carbonic anhydrase in equal amounts in villous and crypt cells of the proximal duodenal epithelium; no activity was demonstrated in tissues pretreated with acetazolamide. In conclusion, carbonic anhydrase is required for both basal and stimulated duodenal HCO3- secretion.

  15. Physiology and pathophysiology of ClC-K/barttin channels.

    PubMed

    Fahlke, Christoph; Fischer, Martin

    2010-01-01

    ClC-K channels form a subgroup of anion channels within the ClC family of anion transport proteins. They are expressed predominantly in the kidney and in the inner ear, and are necessary for NaCl resorption in the loop of Henle and for K+ secretion by the stria vascularis. Subcellular distribution as well as the function of these channels are tightly regulated by an accessory subunit, barttin. Barttin improves the stability of ClC-K channel protein, stimulates the exit from the endoplasmic reticulum and insertion into the plasma membrane and changes its function by modifying voltage-dependent gating processes. The importance of ClC-K/barttin channels is highlighted by several genetic diseases. Dysfunctions of ClC-K channels result in Bartter syndrome, an inherited human condition characterized by impaired urinary concentration. Mutations in the gene encoding barttin, BSND, affect the urinary concentration as well as the sensory function of the inner ear. Surprisingly, there is one BSND mutation that causes deafness without affecting renal function, indicating that kidney function tolerates a reduction of anion channel activity that is not sufficient to support normal signal transduction in inner hair cells. This review summarizes recent work on molecular mechanisms, physiology, and pathophysiology of ClC-K/barttin channels.

  16. Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity.

    PubMed

    de Buhr, Nicole; Neumann, Ariane; Jerjomiceva, Natalja; von Köckritz-Blickwede, Maren; Baums, Christoph G

    2014-02-01

    Streptococcus suis is an important cause of different pathologies in pigs and humans, most importantly fibrinosuppurative meningitis. Tissue infected with this pathogen is substantially infiltrated with neutrophils, but the function of neutrophil extracellular traps (NETs) - a more recently discovered antimicrobial strategy of neutrophils - in host defence against Strep. suis has not been investigated. The objective of this work was to investigate the interaction of Strep. suis with NETs in vitro. Strep. suis induced NET formation in porcine neutrophils and was entrapped but not killed by those NETs. As the amount of NETs decreased over time, we hypothesized that a known extracellular DNase of Strep. suis degrades NETs. Though this nuclease was originally designated Strep. suis-secreted nuclease A (SsnA), this work demonstrated surface association in accordance with an LPXTG cell wall anchor motif and partial release into the supernatant. Confirming our hypothesis, an isogenic ssnA mutant was significantly attenuated in NET degradation and in protection against the antimicrobial activity of NETs as determined in assays with phorbol myristate acetate (PMA)-stimulated human neutrophils. Though assays with PMA-stimulated porcine neutrophils suggested that SsnA also degrades porcine NETs, phenotypic differences between wt and the isogenic ssnA mutant were less distinct. As SsnA expression was crucial for neither growth in vitro nor for survival in porcine or human blood, the results indicated that SsnA is the first specific NET evasion factor to be identified in Strep. suis.

  17. Export of excess Cl by river systems indicates long-term changes to groundwater-surface water interaction

    NASA Astrophysics Data System (ADS)

    Cartwright, Ian; Hofmann, Harald; Gilfedder, Ben

    2013-04-01

    Understanding whether catchments are in chemical mass balance is important in understand long-term groundwater-surface water interactions. The mass balance of a conservative solute such as Cl in a catchment is: P*Cl(P) = SW*Cl(SW) + GW*Cl(GW) + dST*Cl(ST) where P, SW, and GW, are net precipitation, surface water outflows, and groundwater outflows and dST accounts for changes to water held in storage, primarily in the groundwater system. Cl() is the concentration of Cl in the various water components. Precipitation and river discharges are commonly well constrained and in many regions there are also rainfall, groundwater, and surface water geochemistry data. Groundwater fluxes and changes to water in storage are less well known meaning that it is difficult to perform accurate solute balances. However, if the flux of a conservative solute out of a catchment via the river system is larger than the input from rainfall (i.e., if SW*Cl(SW) > P*Cl(P)), the catchment is a net exporter of solutes. In turn this implies a change to the amount of water stored in the catchment and/or a change in chemistry of water in storage. We apply this technique to several regional-scale catchments (areas up to 15,000 km2) from Victoria, southeast Australia. Cl/Br ratios indicate that the Cl in groundwater and surface water in this region is derived from evapotranspiration of rainfall. Rivers from several catchments in Victoria are saline (Cl >500 mg/L) due mainly to groundwater inflows. Cl concentrations and EC values are well correlated allowing a long-term (up to 25 years) continual record of Cl fluxes to be estimated from sub-daily river discharge and EC data. Many of the rivers export significantly higher volumes of Cl than is delivered via rainfall (up to 1800%). Two scenarios may explain this chemical imbalance. Firstly, saline marshes and lakes developed on young (<1 Ma) basaltic lava plains have gradually drained as blocked river systems re-established. Evapotranspiration and repeated recharge-discharge cycles within these lakes and wetlands produced shallow groundwater with high Cl concentrations that is currently being exported via the re-established river systems. Secondly, in many catchments land-clearing over the last 200 years has resulted in lower evapotranspiration rates and increased recharge. The increased recharge has resulted in a rise of regional water tables and increased baseflow to the rivers. As a consequence, Cl from the groundwater that has relatively long residence time is now being exported. In both cases, the catchments are adjusting to a new hydrological balance and the Cl mass balance indicates that the present patterns of groundwater-surface water interaction are transitory. Both scenarios involve a decrease in evapotranspiration in the catchments that results in groundwater salinities decreasing. Thus, over time, the Cl concentrations in these rivers will decrease as fresher groundwater increasingly forms the baseflow to the rivers and the catchments will tend toward chemical balance; the timescale of change however may be several ka.

  18. Interaction of Constitutive Nitric Oxide Synthases with Cyclooxygenases in Regulation of Bicarbonate Secretion in the Gastric Mucosa.

    PubMed

    Zolotarev, V A; Andreeva, Yu V; Vershinina, E; Khropycheva, R P

    2017-05-01

    Neuronal NO synthase blocker 7-nitroindazole suppressed bicarbonate secretion in rat gastric mucosa induced by mild local irritation with 1 M NaCl (pH 2.0). Non-selective blocker of neuronal and endothelial synthases, Nω-nitro-L-arginine (L-NNA), did not affect HCO 3 - production, but inhibited secretion after pretreatment with omeprazole. Non-selective cyclooxygenase blocker indomethacin inhibited HCO 3 - production under conditions of normal synthase activity and in the presence of L-NNA, but was ineffective when co-administered with 7-nitroindazole. It was concluded that neuronal and endothelial synthases are involved in different mechanisms of regulation of HCO 3 - secretion in the gastric mucosa induced by mild irritation. Activation of neuronal synthase stimulated HCO 3 - production, which is mediated mainly through activation of cyclooxygenase. Theoretically, activation of endothelial synthase should suppress HCO 3 - production. The effect of endothelial synthase depends on acid secretion in the stomach and bicarbonate concentration in the submucosa, as it was demonstrated in experiments with intravenous NaHCO 3 infusion.

  19. The biphasic effect of extracellular glucose concentration on carbachol-induced fluid secretion from mouse submandibular glands.

    PubMed

    Terachi, Momomi; Hirono, Chikara; Kitagawa, Michinori; Sugita, Makoto

    2018-06-01

    Cholinergic agonists evoke elevations of the cytoplasmic free-calcium concentration ([Ca 2+ ] i ) to stimulate fluid secretion in salivary glands. Salivary flow rates are significantly reduced in diabetic patients. However, it remains elusive how salivary secretion is impaired in diabetes. Here, we used an ex vivo submandibular gland perfusion technique to characterize the dependency of salivary flow rates on extracellular glucose concentration and activities of glucose transporters expressed in the glands. The cholinergic agonist carbachol (CCh) induced sustained fluid secretion, the rates of which were modulated by the extracellular glucose concentration in a biphasic manner. Both lowering the extracellular glucose concentration to less than 2.5 mM and elevating it to higher than 5 mM resulted in decreased CCh-induced fluid secretion. The CCh-induced salivary flow was suppressed by phlorizin, an inhibitor of the sodium-glucose cotransporter 1 (SGLT1) located basolaterally in submandibular acinar cells, which is altered at the protein expression level in diabetic animal models. Our data suggest that SGLT1-mediated glucose uptake in acinar cells is required to maintain the fluid secretion by sustaining Cl - secretion in real-time. High extracellular glucose levels may suppress the CCh-induced secretion of salivary fluid by altering the activities of ion channels and transporters downstream of [Ca 2+ ] i signals. © 2018 Eur J Oral Sci.

  20. Peptidylarginine Deiminase Inhibition Reduces Vascular Damage and Modulates Innate Immune Responses in Murine Models of Atherosclerosis

    PubMed Central

    Knight, Jason S.; Luo, Wei; O’Dell, Alexander A.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C.; Thompson, Paul R.; Eitzman, Daniel T.; Kaplan, Mariana J.

    2014-01-01

    Rationale Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. Objective To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Methods and Results Apolipoprotein-E (Apoe)−/− mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe−/− mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Conclusions Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses. PMID:24425713

  1. Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis.

    PubMed

    Wood, C M; Milligan, C L; Walsh, P J

    1999-08-01

    Exposure to hyperoxia (500-600 torr) or low pH (4.5) for 72 h or NaHCO(3) infusion for 48 h were used to create chronic respiratory (RA) or metabolic acidosis (MA) or metabolic alkalosis in freshwater rainbow trout. During alkalosis, urine pH increased, and [titratable acidity (TA) - HCO(-)(3)] and net H(+) excretion became negative (net base excretion) with unchanged NH(+)(4) efflux. During RA, urine pH did not change, but net H(+) excretion increased as a result of a modest rise in NH(+)(4) and substantial elevation in [TA - HCO(-)(3)] efflux accompanied by a large increase in inorganic phosphate excretion. However, during MA, urine pH fell, and net H(+) excretion was 3.3-fold greater than during RA, reflecting a similar increase in [TA - HCO(-)(3)] and a smaller elevation in phosphate but a sevenfold greater increase in NH(+)(4) efflux. In urine samples of the same pH, [TA - HCO(-)(3)] was greater during RA (reflecting phosphate secretion), and [NH(+)(4)] was greater during MA (reflecting renal ammoniagenesis). Renal activities of potential ammoniagenic enzymes (phosphate-dependent glutaminase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, alanine aminotransferase, phosphoenolpyruvate carboxykinase) and plasma levels of cortisol, phosphate, ammonia, and most amino acids (including glutamine and alanine) increased during MA but not during RA, when only alanine aminotransferase increased. The differential responses to RA vs. MA parallel those in mammals; in fish they may be keyed to activation of phosphate secretion by RA and cortisol mobilization by MA.

  2. Ion-induced nucleation in solution: promotion of solute nucleation in charged levitated droplets.

    PubMed

    Draper, Neil D; Bakhoum, Samuel F; Haddrell, Allen E; Agnes, George R

    2007-09-19

    We have investigated the nucleation and growth of sodium chloride in both single quiescent charged droplets and charged droplet populations that were levitated in an electrodynamic levitation trap (EDLT). In both cases, the magnitude of a droplet's net excess charge (ions(DNEC)) influenced NaCl nucleation and growth, albeit in different capacities. We have termed the phenomenon ion-induced nucleation in solution. For single quiescent levitated droplets, an increase in ions(DNEC) resulted in a significant promotion of NaCl nucleation, as determined by the number of crystals observed. For levitated droplet populations, a change in NaCl crystal habit, from regular cubic shapes to dome-shaped dendrites, was observed once a surface charge density threshold of -9 x 10(-4) e.nm(-2) was surpassed. Although promotion of NaCl nucleation was observed for droplet population experiments, this can be attributed in part to the increased rate of solvent evaporation observed for levitated droplet populations having a high net charge. Promotion of nucleation was also observed for two organic acids, 2,4,6-trihydroxyacetophenone monohydrate (THAP) and alpha-cyano-4-hydroxycinnamic acid (CHCA). These results are of direct relevance to processes that occur in both soft-ionization techniques for mass spectrometry and to a variety of industrial processes. To this end, we have demonstrated the use of ion-induced nucleation in solution to form ammonium nitrate particles from levitated droplets to be used in in vitro toxicology studies of ambient particle types.

  3. Glucose uptake and lactate production in cells exposed to CoCl(2) and in cells overexpressing the Glut-1 glucose transporter.

    PubMed

    Hwang, Daw-Yang; Ismail-Beigi, Faramarz

    2002-03-15

    Glut-1-mediated glucose transport is augmented in response to a variety of conditions and stimuli. In this study we examined the metabolic fate of glucose in cells in which glucose transport is stimulated by exposure to CoCl(2), an agent that stimulates the expression of a set of hypoxia-responsive genes including several glycolytic enzymes and the Glut-1 glucose transporter. Similarly, we determined the metabolic fate of glucose in stably transfected cells overexpressing Glut-1. Exposure of Clone 9 liver cell line, 3T3-L1 fibroblasts, and C(2)C(12) myoblasts to CoCl(2) resulted in an increase glucose uptake and in the activity of glucose phosphorylation ("hexokinase") and lactate dehydrogenase. In cells treated with CoCl(2), the net increase in glucose taken up was accounted for by its near-complete conversion to lactate. Cells stably transfected to overexpress Glut-1 also exhibited enhanced net uptake of glucose with the near-complete conversion of the increased glucose taken up to lactate; however, the effect in these cells was observed in the absence of any change in the activity of two glycolytic enzymes examined. These findings suggest that in cells in which glucose transport is rate-limiting for glucose metabolism, enhancement of the glucose entry step per se results in a near-complete conversion of the extra glucose to lactate.

  4. Annual gonadal cycles in birds: modeling the effects of photoperiod on seasonal changes in GnRH-1 secretion.

    PubMed

    Dawson, Alistair

    2015-04-01

    This paper reviews current knowledge of photoperiod control of GnRH-1 secretion and proposes a model in which two processes act together to regulate GnRH1 secretion. Photo-induction controls GnRH1 secretion and is directly related to prevailing photoperiod. Photo-inhibition, a longer term process, acts through GnRH1 synthesis. It progresses each day during daylight hours, but reverses during darkness. Thus, photo-inhibition gradually increases when photoperiods exceed 12h, and reverses under shorter photoperiods. GnRH1 secretion on any particular day is the net result of these two processes acting in tandem. The only difference between species is their sensitivity to photo-inhibition. This can potentially explain differences in timing and duration of breeding seasons between species, why some species become absolutely photorefractory and others relatively photorefractory, why breeding seasons end at the same time at different latitudes within species, and why experimental protocols sometimes produce results that appear counter to what happens naturally. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  5. Secretory pattern of inhibin during estrous cycle and pregnancy in African (Loxodonta africana) and Asian (Elephas maximus) elephants.

    PubMed

    Yamamoto, Yuki; Yuto, Natsuki; Yamamoto, Tatsuya; Kaewmanee, Saroch; Shiina, Osamu; Mouri, Yasushi; Narushima, Etsuo; Katayanagi, Masayuki; Sugimura, Keisuke; Nagaoka, Kentaro; Watanabe, Gen; Taya, Kazuyoshi

    2012-01-01

    The ovary of female elephants has multiple corpora lutea (CL) during the estrous cycle and gestation. The previous reports clearly demonstrated that inhibin was secreted from lutein cells as well as granulosa cells of antral follicles in cyclic Asian elephants. The aim of this study is to investigate the inhibin secretion during the pregnancy in African and Asian elephants. Two African elephants and two Asian elephants were subjected to this study. Circulating levels of immunoreactive (ir-) inhibin and progesterone were measured by radioimmunoassay. Four pregnant periods of an African elephant and three pregnant periods of an Asian elephant were analyzed in this study. Circulating levels of ir-inhibin started to increase at 1 or 2 week before the ovulation and reached the peak level 3 or 4 weeks earlier than progesterone during the estrous cycle in both African and Asian elephants. After last luteal phase, the serum levels of ir-inhibin remained low throughout pregnancy in both an African and an Asian elephant. The mean levels of ir-inhibin during the pregnancy were lower than the luteal phase in the estrous cycle despite high progesterone levels were maintained throughout the pregnancy. These results strongly suggest that CL secrete a large amount of progesterone but not inhibin during the pregnancy in elephants. © 2011 Wiley Periodicals, Inc.

  6. Oxytocin and tumor necrosis factor alpha stimulate expression of prostaglandin E2 synthase and secretion of prostaglandin E2 by luminal epithelial cells of the porcine endometrium during early pregnancy.

    PubMed

    Waclawik, Agnieszka; Blitek, Agnieszka; Ziecik, Adam J

    2010-10-01

    Oxytocin (OXT) and tumor necrosis factor α (TNF) have been implicated in the control of luteolysis by stimulating endometrial secretion of luteolytic prostaglandin F(2α) (PGF(2α)). Nevertheless, OXT concentration in porcine uterine lumen increases markedly on days 11-12 of pregnancy, and TNF is expressed in endometrium during pregnancy. The objective of the study was to determine the effect of OXT and TNF on expression of the enzymes involved in PG synthesis: PG-endoperoxide synthase 2 (PTGS2), PGE(2) synthase (mPGES-1) and PGF synthase, and PGE(2) receptor (PTGER2), as well as on PG secretion by endometrial luminal epithelial cells (LECs) on days 11-12 of the estrous cycle and pregnancy. LECs isolated from gilts on days 11-12 of the estrous cycle (n=8) and pregnancy (n=7) were treated with OXT (100  nmol/l) and TNF (0.6  nmol/l) for 24  h. OXT increased PTGS2 mRNA and mPGES-1 protein contents, as well as PGE(2) secretion but only on days 11-12 of pregnancy. TNF stimulated PTGS2 and mPGES-1 mRNA, as well as mPGES-1 protein expression and PGE(2) release on days 11-12 of pregnancy and the estrous cycle. In addition, expressions of PTGER2 and PTGER4 were determined in corpus luteum (CL). Abundance of PTGER2 mRNA and PTGER4 protein in CL was upregulated on day 14 of pregnancy versus day 14 of the estrous cycle. This study indicates that TNF and OXT regulate PGE(2) synthesis in LECs during early pregnancy. PGE(2) secreted by LECs, after reaching ovaries, could have a luteoprotective effect through luteal PTGER2 and PTGER4, or may directly promote uterine function and conceptus development.

  7. An acid-loading chloride transport pathway in the intraerythrocytic malaria parasite, Plasmodium falciparum.

    PubMed

    Henry, Roselani I; Cobbold, Simon A; Allen, Richard J W; Khan, Asif; Hayward, Rhys; Lehane, Adele M; Bray, Patrick G; Howitt, Susan M; Biagini, Giancarlo A; Saliba, Kevin J; Kirk, Kiaran

    2010-06-11

    The intraerythrocytic malaria parasite exerts tight control over its ionic composition. In this study, a combination of fluorescent ion indicators and (36)Cl(-) flux measurements was used to investigate the transport of Cl(-) and the Cl(-)-dependent transport of "H(+)-equivalents" in mature (trophozoite stage) parasites, isolated from their host erythrocytes. Removal of extracellular Cl(-), resulting in an outward [Cl(-)] gradient, gave rise to a cytosolic alkalinization (i.e. a net efflux of H(+)-equivalents). This was reversed on restoration of extracellular Cl(-). The flux of H(+)-equivalents was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and, when measured in ATP-depleted parasites, showed a pronounced dependence on the pH of the parasite cytosol; the flux was low at cytosolic pH values < 7.2 but increased steeply with cytosolic pH at values > 7.2. (36)Cl(-) influx measurements revealed the presence of a Cl(-) uptake mechanism with characteristics similar to those of the Cl(-)-dependent H(+)-equivalent flux. The intracellular concentration of Cl(-) in the parasite was estimated to be approximately 48 mm in situ. The data are consistent with the intraerythrocytic parasite having in its plasma membrane a 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive transporter that, under physiological conditions, imports Cl(-) together with H(+)-equivalents, resulting in an intracellular Cl(-) concentration well above that which would occur if Cl(-) ions were distributed passively in accordance with the parasite's large, inwardly negative membrane potential.

  8. Low Ozone in the Marine Boundary Layer of the Tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Gregory, G. L.; Andesrson, B.; Browell, E.; Sachse, G. W.; Davis, D. D.; Crawford, J.; Bradshaw, J. D.; Talbot, R.; Blake, D. R.; hide

    1994-01-01

    Aircraft measurements of ozone, its key precursors, and a variety of chemical tracers were made in the troposphere of the western and central Pacific in October 1991. These data are presented and analyzed to examine the occurrence of low ozone concentrations in the remote marine boundary layer of the tropical and equatorial Pacific Ocean. The data from these flights out of Guam, covering an area extending from the equator to 20 N and from south of the Philippines to Hawaii, show average O3 concentrations as low as 8-9 ppb (ppb=10(exp-9)v/v) at altitudes of 0.3-0.5 km in the boundary layer. Individual measurements as low as 2-5 ppb were recorded. Low O3 concentrations do not always persist in space and time. High O3, generally associated with the transport of upper tropospheric air, was also encountered in the boundary layer. In practically all cases, O3 increased to values as large as 25-30 ppb within 2 km above the boundary layer top. Steady state model computations are used to suggest that these low O3 concentrations are a result of net photochemical O3 destruction in a low NO environment, sea-surface deposition, and extremely low net entrainment rates (1-2 mm per second) from the free troposphere. Day/night measurements of ethane, propane, gaseous and aerosol Cl suggest that daytime (morning) Cl atom concentrations in the vicinity of 10(exp 5) molecules per cubic centimeter may be present in the marine boundary layer. This Cl atom abundance can be rationalized only if sea salt aerosols can release free chlorine (Cl2) to the gas phase in the presence of sun light (and possibly O3). These Cl atom concentrations, however, are still insufficient and Cl (or Br) chemistry is not likely to be an important cause of the observed low O3.

  9. Buffering of protons released by mineral formation during amelogenesis in mice.

    PubMed

    Bronckers, Antonius L J J; Lyaruu, Don M; Jalali, Rozita; DenBesten, Pamela K

    2016-10-01

    Regulation of pH by ameloblasts during amelogenesis is critical for enamel mineralization. We examined the effects of reduced bicarbonate secretion and the presence or absence of amelogenins on ameloblast modulation and enamel mineralization. To that end, the composition of fluorotic and non-fluorotic enamel of several different mouse mutants, including enamel of cystic fibrosis transmembrane conductance regulator-deficient (Cftr null), anion exchanger-2-deficient (Ae2a,b null), and amelogenin-deficient (Amelx null) mice, was determined by quantitative X-ray microanalysis. Correlation analysis was carried out to compare the effects of changes in the levels of sulfated-matrix (S) and chlorine (Cl; for bicarbonate secretion) on mineralization and modulation. The chloride (Cl - ) levels in forming enamel determined the ability of ameloblasts to modulate, remove matrix, and mineralize enamel. In general, the lower the Cl - content, the stronger the negative effects. In Amelx-null mice, modulation was essentially normal and the calcium content was reduced least. Retention of amelogenins in enamel of kallikrein-4-deficient (Klk4-null) mice resulted in decreased mineralization and reduced the length of the first acid modulation band without changing the total length of all acidic bands. These data suggest that buffering by bicarbonates is critical for modulation, matrix removal and enamel mineralization. Amelogenins also act as a buffer but are not critical for modulation. © 2016 Eur J Oral Sci.

  10. Renal intercalated cells and blood pressure regulation.

    PubMed

    Wall, Susan M

    2017-12-01

    Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl - absorption and HCO 3 - secretion largely through pendrin-dependent Cl - /HCO 3 - exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO 3 administration. In some rodent models, pendrin-mediated HCO 3 - secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl - absorption, but also by modulating the aldosterone response for epithelial Na + channel (ENaC)-mediated Na + absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.

  11. Effects of Simulated Nitrogen Deposition on Soil Net Nitrogen Mineralization in the Meadow Steppe of Inner Mongolia, China

    PubMed Central

    Liu, Xing-ren; Ren, Jian-qiang; Li, Sheng-gong; Zhang, Qing-wen

    2015-01-01

    Effects of simulated nitrogen (N) deposition on soil net nitrogen mineralization (NNM) were examined in situ during two growing seasons, using the resin-core technique in the semiarid meadow steppe in Inner Mongolia, China. The aim of this study is to clarify the effect of N levels (0, 10, and 20 kg N ha−1yr−1) and forms (NH4 + and NO3 -) on soil mineral N and NNM. Our results showed that N levels had no significant differences on soil mineral N and NNM. In the first year, three N treatments ((NH4)2SO4, NH4Cl and KNO3) increased soil NH4 + concentrations but had no significant effects on soil NO3 - concentrations. In the second year, (NH4)2SO4 treatment increased soil NO3 - concentrations, NH4Cl and KNO3 treatments decreased them. Three N treatments significantly decreased soil NH4 + concentrations in the later stages of the second year. As for the soil NNM, three N treatments had no significant effects on the rates of soil NNM (R m) and net nitrification (R n) in the first year, but significantly decreased them in the second year. The contribution of N addition to Rm was higher from (NH4)2SO4 than from NH4Cl and KNO3. However, Soil R m was mainly affected by soil water content (SWC), accumulated temperature (Ta), and soil total N (TN). These results suggest that the short-term atmospheric N deposition may inhibit soil NNM in the meadow steppe of Inner Mongolia. PMID:26218275

  12. Structure, properties and enhanced expression of galactose-binding C-type lectins in mucous cells of gills from freshwater Japanese eels (Anguilla japonica).

    PubMed

    Mistry, A C; Honda, S; Hirose, S

    2001-11-15

    Using a Japanese-eel (Anguilla japonica) gill cDNA subtraction library, two novel beta-d-galactose-binding lectins were identified that belong to group VII of the animal C-type lectin family. The eel C-type lectins, termed eCL-1 and eCL-2, are simple lectins composed of 163 amino acid residues, including a 22-residue signal peptide for secretion and a single carbohydrate-recognition domain (CRD) of approximately 130 residues typical of C-type lectins. The galactose specificity of the CRD was suggested by the presence of a QPD motif and confirmed by a competitive binding assay. Using Ruthenium Red staining, the lectins were shown to bind Ca(2+) ions. SDS/PAGE showed that native eCL-1 and eCL-2 have an SDS-resistant octameric structure (a tetramer of disulphide-linked dimers). Northern and Western blot analyses demonstrated high-level expression of eCL-1 and eCL-2 mRNAs and their protein products in gills from freshwater eels, which decreased markedly when the eels were transferred from freshwater to seawater. Immunohistochemistry showed that the eel lectins are localized in the exocrine mucous cells of the gill.

  13. Gender-based effects on methylprednisolone pharmacokinetics and pharmacodynamics

    PubMed Central

    Lew, Kim H.; Ludwig, Elizabeth A.; Milad, Mark A.; Donovan, Kathleen; Middleton, Elliott; Ferry, James J.; Jusko, William J.

    2014-01-01

    The pharmacokinetics and selected pharmacodynamic responses to methylprednisolone were investigated in six men and six premenopausal women after a dose of 0.6 mg/kg ideal body weight. Women (luteal phase) exhibited a greater methylprednisolone clearance (0.45 versus 0.29 L/hr/kg) and shorter elimination half-life (1.7 versus 2.6 hours) than men. The volume of distribution of methylprednisolone was similar when normalized for ideal body weight. Pharmacodynamic models were used to examine the methylprednisolone suppressive effects on cortisol secretion and basophil and helper T lymphocyte trafficking. A significantly smaller 50% inhibitory concentration (IC50) value (0.1 versus 1.7 ng/ml) was seen in the women for suppression of cortisol secretion, indicating increased sensitivity. However, the area under the concentration-time curve of effect was similar for both groups. The IC50 values for effects of methylprednisolone on basophil trafficking related to estradiol concentrations in a log-linear fashion in women, with increased sensitivity found at higher estradiol concentrations. Men displayed a greater 24-hour net suppression in blood basophil numbers, but no difference was observed in net cortisol and helper T lymphocyte suppression between the sexes. These findings suggest that methylprednisolone dosages should be based on ideal body weight. Although women are more sensitive to methylprednisolone as measured by cortisol suppression, they eliminate the drug more quickly, generally producing a similar net response. PMID:8222483

  14. Mechanism involved in Danshen-induced fluid secretion in salivary glands

    PubMed Central

    Wei, Fei; Wei, Mu-Xin; Murakami, Masataka

    2015-01-01

    AIM: Danshen’s capability to induce salivary fluid secretion and its mechanisms were studied to determine if it could improve xerostomia. METHODS: Submandibular glands were isolated from male Wistar rats under systemic anesthesia with pentobarbital sodium. The artery was cannulated and vascularly perfused at a constant rate. The excretory duct was also cannulated and the secreted saliva was weighed in a cup on an electronic balance. The weight of the accumulated saliva was measured every 3 s and the salivary flow rate was calculated. In addition, the arterio-venous difference in the partial oxygen pressure was measured as an indicator of oxygen consumption. In order to assess the mechanism involved in Danshen-induced fluid secretion, either ouabain (an inhibitor of Na+/K+ ATPase) or bumetanide (an inhibitor of NKCC1) was additionally applied during the Danshen stimulation. In order to examine the involvement of the main membrane receptors, atropine was added to block the M3 muscarinic receptors, or phentolamine was added to block the α1 adrenergic receptors. In order to examine the requirement for extracellular Ca2+, Danshen was applied during the perfusion with nominal Ca2+ free solution. RESULTS: Although Danshen induced salivary fluid secretion, 88.7 ± 12.8 μL/g-min, n = 9, (the highest value around 20 min from start of DS perfusion was significantly high vs 32.5 ± 5.3 μL/g-min by carbamylcholine, P = 0.00093 by t-test) in the submandibular glands, the time course of that secretion differed from that induced by carbamylcholine. There was a latency associated with the fluid secretion induced by Danshen, followed by a gradual increase in the secretion to its highest value, which was in turn followed by a slow decline to a near zero level. The application of either ouabain or bumetanide inhibited the fluid secretion by 85% or 93%, and suppressed the oxygen consumption by 49% or 66%, respectively. These results indicated that Danshen activates Na+/K+ ATPase and NKCC1 to maintain Cl- release and K+ release for fluid secretion. Neither atropine or phentolamine inhibited the fluid secretion induced by Danshen (263% ± 63% vs 309% ± 45%, 227% ± 63% vs 309% ± 45%, P = 0.899, 0.626 > 0.05 respectively, by ANOVA). Accordingly, Danshen does not bind with M3 or α1 receptors. These characteristics suggested that the mechanism involved in DS-induced salivary fluid secretion could be different from that induced by carbamylcholine. Carbamylcholine activates the M3 receptor to release inositol trisphosphate (IP3) and quickly releases Ca2+ from the calcium stores. The elevation of [Ca2+]i induces chloride release and quick osmosis, resulting in an onset of fluid secretion. An increase in [Ca2+]i is essential for the activation of the luminal Cl- and basolateral K+ channels. The nominal removal of extracellular Ca2+ totally abolished the fluid secretion induced by Danshen (1.8 ± 0.8 μL/g-min vs 101.9 ± 17.2 μL/g-min, P = 0.00023 < 0.01, by t-test), suggesting the involvement of Ca2+ in the activation of these channels. Therefore, IP3-store Ca2+ release signalling may not be involved in the secretion induced by Danshen, but rather, there may be a distinct signalling process. CONCLUSION: The present findings suggest that Danshen can be used in the treatment of xerostomia, to avoid the systemic side effects associated with muscarinic drugs. PMID:25663764

  15. Bicarbonate promotes BK-α/β4-mediated K excretion in the renal distal nephron

    PubMed Central

    Cornelius, Ryan J.; Wen, Donghai; Hatcher, Lori I.

    2012-01-01

    Ca-activated K channels (BK), which are stimulated by high distal nephron flow, are utilized during high-K conditions to remove excess K. Because BK predominantly reside with BK-β4 in acid/base-transporting intercalated cells (IC), we determined whether BK-β4 knockout mice (β4KO) exhibit deficient K excretion when consuming a high-K alkaline diet (HK-alk) vs. high-K chloride diet (HK-Cl). When wild type (WT) were placed on HK-alk, but not HK-Cl, renal BK-β4 expression increased (Western blot). When WT and β4KO were placed on HK-Cl, plasma K concentration ([K]) was elevated compared with control K diets; however, K excretion was not different between WT and β4KO. When HK-alk was consumed, the plasma [K] was lower and K clearance was greater in WT compared with β4KO. The urine was alkaline in mice on HK-alk; however, urinary pH was not different between WT and β4KO. Immunohistochemical analysis of pendrin and V-ATPase revealed the same increases in β-IC, comparing WT and β4KO on HK-alk. We found an amiloride-sensitive reduction in Na excretion in β4KO, compared with WT, on HK-alk, indicating enhanced Na reabsorption as a compensatory mechanism to secrete K. Treating mice with an alkaline, Na-deficient, high-K diet (LNaHK) to minimize Na reabsorption exaggerated the defective K handling of β4KO. When WT on LNaHK were given NH4Cl in the drinking water, K excretion was reduced to the magnitude of β4KO on LNaHK. These results show that WT, but not β4KO, efficiently excretes K on HK-alk but not on HK-Cl and suggest that BK-α/β4-mediated K secretion is promoted by bicarbonaturia. PMID:22993067

  16. Tetraperchlorate of methane

    NASA Technical Reports Server (NTRS)

    Schack, C. J.

    1972-01-01

    The preparation of the tetraperchlorate of methane (TPM) was attempted. Displacement of halogen from carbon tetrahalides was accomplished with either CCl4 or CBr4 using the halogen perchlorates, ClOClO3, and BOClO3. Although the displacement process was successful, the generated carbon perchlorate intermediates were not isolated. Instead, these species decomposed to COCl2, CO2, and Cl2O7. The vigorous displacement reaction that often occurred required moderation. Fluorocarbon solvents and chlorine perchlorate were successfully tested for compatibility, permitting their use in these synthetic reactions. While the sought for moderating effect was obtained, the net result of the displacement of halogen from CX sub 4 substrates was the same as before. Thus only CO2, COCl2, and Cl2O7 were isolated.

  17. Hydroxo radicals, C-H activation, and Pt-C bond formation from 77 K photolysis of a platinum(IV) hydroxo complex.

    PubMed

    Wickramasinghe, Lasantha A; Sharp, Paul R

    2014-11-17

    Photolysis (380 nm) of trans,cis-Pt(PEt3)2(Cl)2(OH)(4-tft) (4-tft = 4-trifluoromethylphenyl) at 77 K in 2-methyltetrahydrofuran gives triplet emission, platinum(III), and a hydroxo radical. Benzyl radical emission is observed in toluene from the reaction of a portion of the OH radicals with toluene. Warming the photolyzed solutions gives platinacycle trans-Pt(CH2CH2PEt2)(PEt3)(Cl)2(4-tft) by hydrogen-atom abstraction from a PEt3 ligand and trans-Pt(PEt3)2(Cl)(4-tft) from net HOCl photoelimination. The platinacycle undergoes thermal reductive elimination at 298 K or photolytic reductive elimination, even at 77 K.

  18. Anoctamin 6 Contributes to Cl- Secretion in Accessory Cholera Enterotoxin (Ace)-stimulated Diarrhea: AN ESSENTIAL ROLE FOR PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE (PIP2) SIGNALING IN CHOLERA.

    PubMed

    Aoun, Joydeep; Hayashi, Mikio; Sheikh, Irshad Ali; Sarkar, Paramita; Saha, Tultul; Ghosh, Priyanka; Bhowmick, Rajsekhar; Ghosh, Dipanjan; Chatterjee, Tanaya; Chakrabarti, Pinak; Chakrabarti, Manoj K; Hoque, Kazi Mirajul

    2016-12-23

    Accessory cholera enterotoxin (Ace) of Vibrio cholerae has been shown to contribute to diarrhea. However, the signaling mechanism and specific type of Cl - channel activated by Ace are still unknown. We have shown here that the recombinant Ace protein induced I Cl of apical plasma membrane, which was inhibited by classical CaCC blockers. Surprisingly, an Ace-elicited rise of current was neither affected by ANO1 (TMEM16A)-specific inhibitor T16A (inh) -AO1(TAO1) nor by the cystic fibrosis transmembrane conductance regulator (CFTR) blocker, CFTR inh-172. Ace stimulated whole-cell current in Caco-2 cells. However, the apical I Cl was attenuated by knockdown of ANO6 (TMEM16F). This impaired phenotype was restored by re-expression of ANO6 in Caco-2 cells. Whole-cell patch clamp recordings of ANO currents in HEK293 cells transiently expressing mouse ANO1-mCherry or ANO6-GFP confirmed that Ace induced Cl - secretion. Application of Ace produced ANO6 but not the ANO1 currents. Ace was not able to induce a [Ca 2+ ] i rise in Caco-2 cells, but cellular abundance of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) increased. Identification of the PIP 2 -binding motif at the N-terminal sequence among human and mouse ANO6 variants along with binding of PIP 2 directly to ANO6 in HEK293 cells indicate likely PIP 2 regulation of ANO6. The biophysical and pharmacological properties of Ace stimulated Cl - current along with intestinal fluid accumulation, and binding of PIP 2 to the proximal KR motif of channel proteins, whose mutagenesis correlates with altered binding of PIP 2 , is comparable with ANO6 stimulation. We conclude that ANO6 is predominantly expressed in intestinal epithelia, where it contributes secretory diarrhea by Ace stimulation in a calcium-independent mechanism of RhoA-ROCK-PIP 2 signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Chloride cycling in two forested lake watersheds in the west-central Adirondack Mountains, New York, U.S.A.

    USGS Publications Warehouse

    Peters, N.E.

    1991-01-01

    The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling C1- cycling. Results indicate that C1- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived C1- through the ecosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till( > 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling Cl- cycling. Results indicate that Cl- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived Cl- through the excosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till (> 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.

  20. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains

    PubMed Central

    Herpoël-Gimbert, Isabelle; Margeot, Antoine; Dolla, Alain; Jan, Gwénaël; Mollé, Daniel; Lignon, Sabrina; Mathis, Hughes; Sigoillot, Jean-Claude; Monot, Frédéric; Asther, Marcel

    2008-01-01

    Background Due to its capacity to produce large amounts of cellulases, Trichoderma reesei is increasingly been researched in various fields of white biotechnology, especially in biofuel production from lignocellulosic biomass. The commercial enzyme mixtures produced at industrial scales are not well characterized, and their proteinaceous components are poorly identified and quantified. The development of proteomic methods has made it possible to comprehensively overview the enzymes involved in lignocellulosic biomass degradation which are secreted under various environmental conditions. Results The protein composition of the secretome produced by industrial T. reesei (strain CL847) grown on a medium promoting the production of both cellulases and hemicellulases was explored using two-dimensional electrophoresis and MALDI-TOF or LC-MS/MS protein identification. A total of 22 protein species were identified. As expected, most of them are potentially involved in biomass degradation. The 2D map obtained was then used to compare the secretomes produced by CL847 and another efficient cellulolytic T. reesei strain, Rut-C30, the reference cellulase-overproducing strain using lactose as carbon source and inducer of cellulases. Conclusion This study provides the most complete mapping of the proteins secreted by T. reesei to date. We report on the first use of proteomics to compare secretome composition between two cellulase-overproducing strains Rut-C30 and CL847 grown under similar conditions. Comparison of protein patterns in both strains highlighted many unexpected differences between cellulase cocktails. The results demonstrate that 2D electrophoresis is a promising tool for studying cellulase production profiles, whether for industrial characterization of an entire secretome or for a more fundamental study on cellulase expression at genome-wide scale. PMID:19105830

  1. [Monitoring early toxicity of heavy metals including Hg using a HSE-SEAP reporter gene].

    PubMed

    Yu, Zhan-Jiang; Yang, Qin; Yang, Xiao-Da; Wang, Kui

    2006-08-01

    To develop a cellular assay based on heat shock signal pathway and secreted alkaline phosphatase (SEAP) reporter gene for investigating/predicting the early toxicity of heavy metals on HeLa cells in Chinese traditional medicine (TCM). The pHSE-SEAP plasmid was transfected into HeLa cells to build a HSE-SEAP-HeLa cell model. For validation of the model, the transfected cells were treated by either heating at 42 degrees C for 1 h or incubated with 5 mol x L(-1) CdCl2 for 4 h. Then the cells were covered in complete DMEM culture medium for 48 h and the activity of SEAP (reflecting the cellular level of heat shock protein) in cultural supernatants was measured; meanwhile, cell viability was determined by MTT assays. In addition, the cells were treated by four mercury compounds, HgCl2, merthilate sodium, HgS and cinnabar at the sub-lethal concentrations (determined by MTT assays). Then the heat shock response was detected likewise. Significant level of secreted alkaline phosphatase (SEAP) was found in pHSE-SEAP transfected HeLa cells treated either by heating (42 degrees C) or incubating with CdCl2. The heat shock protein was induced by CdCl2 before decrease of cell viability was observed. All four mercury compounds induced heat shock response in both time and concentration-dependant manner. However, there were big differences among the mercury compounds, suggesting potential differences for early-stage toxicity in vivo. The pHSE-SEAP transfected HeLa cells respond effectively to heat shock and metal stresses, and therefore provide a practical and repeatable assay for investigating/predicting the early toxicity of heavy metals and mineral-containing drugs in TCM.

  2. Culturing INS-1 cells on CDPGYIGSR-, RGD- and fibronectin surfaces improves insulin secretion and cell proliferation.

    PubMed

    Kuehn, Carina; Dubiel, Evan A; Sabra, Georges; Vermette, Patrick

    2012-02-01

    Rat insulinoma cells (INS-1), an immortalized pancreatic beta cell line, were cultured on low-fouling carboxymethyl-dextran (CMD) layers bearing fibronectin, the tripeptide Arg-Gly-Asp (RGD) or CDPGYIGSR, a laminin nonapeptide. INS-1 cells were non-adherent on CMD and RGE but adhered to fibronectin- and peptide-coated CMD surfaces and to tissue culture polystyrene (TCPS). On CMD bearing fibronectin and the peptides, INS-1 cells showed higher glucose-stimulated insulin secretion compared to those on TCPS, bare CMD and RGE. INS-1 cells experienced a net cell growth, with the lowest found after 7 days on CMD and the highest on fibronectin. Similarly, cells on RGD and CDPGYIGSR showed lower net growth rates than those on fibronectin. Expression of E-cadherin and integrins αvβ3 and α5 were similar between the conditions, except for α5 expression on fibronectin, RGD and CDPGYIGSR. Larger numbers of Ki-67-positive cells were found on CDPGYIGSR, TCPS, fibronectin and RGD. Cells in all conditions expressed Pdx1. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis.

    PubMed

    Nadesalingam, Ajantha; Chen, Jacky H K; Farahvash, Armin; Khan, Meraj A

    2018-01-01

    Tonicity of saline (NaCl) is important in regulating cellular functions and homeostasis. Hypertonic saline is administered to treat many inflammatory diseases, including cystic fibrosis. Excess neutrophil extracellular trap (NET) formation, or NETosis, is associated with many pathological conditions including chronic inflammation. Despite the known therapeutic benefits of hypertonic saline, its underlying mechanisms are not clearly understood. Therefore, we aimed to elucidate the effects of hypertonic saline in modulating NETosis. For this purpose, we purified human neutrophils and induced NETosis using agonists such as diacylglycerol mimetic phorbol myristate acetate (PMA), Gram-negative bacterial cell wall component lipopolysaccharide (LPS), calcium ionophores (A23187 and ionomycin from Streptomyces conglobatus ), and bacteria ( Pseudomonas aeruginosa and Staphylococcus aureus ). We then analyzed neutrophils and NETs using Sytox green assay, immunostaining of NET components and apoptosis markers, confocal microscopy, and pH sensing reagents. This study found that hypertonic NaCl suppresses nicotinamide adenine dinucleotide phosphate oxidase (NADPH2 or NOX2)-dependent NETosis induced by agonists PMA, Escherichia coli LPS (0111:B4 and O128:B12), and P. aeruginosa . Hypertonic saline also suppresses LPS- and PMA- induced reactive oxygen species production. It was determined that supplementing H 2 O 2 reverses the suppressive effect of hypertonic saline on NOX2-dependent NETosis. Many of the aforementioned suppressive effects were observed in the presence of equimolar concentrations of choline chloride and osmolytes (d-mannitol and d-sorbitol). This suggests that the mechanism by which hypertonic saline suppresses NOX2-dependent NETosis is via neutrophil dehydration. Hypertonic NaCl does not significantly alter the intracellular pH of neutrophils. We found that hypertonic NaCl induces apoptosis while suppressing NOX2-dependent NETosis. In contrast, hypertonic solutions do not suppress NOX2-independent NETosis. Although hypertonic saline partially suppresses ionomycin-induced NETosis, it enhances A23187-induced NETosis, and it does not alter S. aureus -induced NETosis. Overall, this study determined that hypertonic saline suppresses NOX2-dependent NETosis induced by several agonists; in contrast, it has variable effects on neutrophil death induced by NOX2-independent NETosis agonists. These findings are important in understanding the regulation of NETosis and apoptosis in neutrophils.

  4. Neutrophil extracellular traps formation by bacteria causing endometritis in the mare.

    PubMed

    Rebordão, M R; Carneiro, C; Alexandre-Pires, G; Brito, P; Pereira, C; Nunes, T; Galvão, A; Leitão, A; Vilela, C; Ferreira-Dias, G

    2014-12-01

    Besides the classical functions, neutrophils (PMNs) are able to release DNA in response to infectious stimuli, forming neutrophil extracellular traps (NETs) and killing pathogens. The pathogenesis of endometritis in the mare is not completely understood. The aim was to evaluate the in vitro capacity of equine PMNs to secrete NETs by chemical activation, or stimulated with Streptococcus equi subspecies zooepidemicus (Szoo), Escherichia coli (Ecoli) or Staphylococcus capitis (Scap) strains obtained from mares with endometritis. Ex vivo endometrial mucus from mares with bacterial endometritis were evaluated for the presence of NETs. Equine blood PMNs were used either without or with stimulation by phorbol-myristate-acetate (PMA), a strong inducer of NETs, for 1-3h. To evaluate PMN ability to produce NETs when phagocytosis was impaired, the phagocytosis inhibitor cytochalasin (Cyt) was added after PMA. After the addition of bacteria, a subsequent 1-h incubation was carried out in seven groups. NETs were visualized by 4',6-diamidino-2-phenylindole (DAPI) and anti-histone. Ex vivo samples were immunostained for myeloperoxidase and neutrophil elastase. A 3-h incubation period of PMN + PMA increased NETs (p < 0.05). Bacteria + 25 nM PMA and bacteria + PMA + Cyt increased NETs (p<0.05). Szoo induced fewer NETs than Ecoli or Scap (p < 0.05). Ex vivo NETs were present in mares with endometritis. Scanning electron microscopy showed the spread of NETs formed by smooth fibers and globules that can be aggregated in thick bundles. Formation of NETs and the subsequent entanglement of bacteria suggest that equine NETs might be a complementary mechanism in fighting some of the bacteria causing endometritis in the mare. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. The secretion of alkali metal ions by the perfused cat pancreas as influenced by the composition and osmolality of the external environment and by inhibitors of metabolism and Na+, K+-ATPase activity

    PubMed Central

    Case, R. M.; Scratcherd, T.

    1974-01-01

    1. The secretion of sodium, potassium and lithium has been studied in the isolated cat pancreas, perfused with bicarbonate buffered saline solutions of varying composition and osmolality, and stimulated maximally with secretin. 2. Under isosmolal conditions, when perfusate sodium chloride was replaced by sucrose, sodium secretion and potassium secretion were directly related to perfusate sodium concentration, [Na]p. 3. When osmolality was varied by increasing or decreasing perfusate sodium chloride concentration, the secretion of sodium and of potassium were maximal at [Na]p of about 120 and 80 mM respectively. 4. At a given [Na]p, sodium secretion was greater under hypo-osmolal conditions than under isosmolal conditions. 5. When potassium concentration was varied over the range 0-130 mM under isosmolal conditions, by adjusting perfusate NaCl concentration, the secretion of potassium and of sodium were maximal at [K]p of about 50 and 10 mM respectively. Water flux was maximal at a [K]p of 10-15 mM. The concentration of potassium in the secretion was almost identical with that in the perfusate over the whole concentration range. 6. Replacement of perfusate sodium by lithium reduced the volume of secretion, though a small secretion was maintained even in the complete absence of sodium. The concentration of lithium in the secretion was generally slightly greater than that in the perfusate. 7. Omission of potassium from the perfusate reduced secretion by about 65%. Rubidium was a complete substitute for potassium; caesium was not. 8. Energy for secretion is derived largely from oxidative phosphorylation. Secretion was reduced by more than 90% under anaerobic conditions and in the presence of dinitrophenol or cyanide. Removal of glucose from the perfusate reduced secretion by more than 50% within 30 min; lactate was a complete substitute for glucose. 9. Ouabain, ethacrinic acid and frusimide, known inhibitors of Na+, K+-ATPase activity, all inhibited pancreatic electrolyte secretion. 10. The observations are interpreted with reference to the nature of active transport processes involved in pancreatic electrolyte secretion. PMID:4281836

  6. Comparison of recombinant cathepsins L1, L2, and L5 as ELISA targets for serodiagnosis of bovine and ovine fascioliasis.

    PubMed

    Martínez-Sernández, Victoria; Perteguer, María J; Hernández-González, Ana; Mezo, Mercedes; González-Warleta, Marta; Orbegozo-Medina, Ricardo A; Romarís, Fernanda; Paniagua, Esperanza; Gárate, Teresa; Ubeira, Florencio M

    2018-05-01

    Infections caused by Fasciola hepatica are of great importance in the veterinary field, as they cause important economic losses to livestock producers. Serodiagnostic methods, typically ELISA (with either native or recombinant antigens), are often used for early diagnosis. The use of native antigens, as in the MM3-SERO ELISA (commercialized as BIO K 211, BIO-X Diagnostics), continues to be beneficial in terms of sensitivity and specificity; however, there is interest in developing ELISA tests based on recombinant antigens to avoid the need to culture parasites. Of the antigens secreted by adult flukes, recombinant procathepsin L1 (rFhpCL1) is the most commonly tested in ELISA to date. However, although adult flukes produce three different clades of CLs (FhCL1, FhCL2, and FhCL5), to our knowledge, the diagnostic value of recombinant FhCL2 and FhCL5 has not yet been investigated. In the present study, we developed and tested three indirect ELISAs using rFhpCL1, rFhpCL2, and rFhpCL5 and evaluated their recognition by sera from sheep and cattle naturally infected with F. hepatica. Although the overall antibody response to these three rFhpCLs was similar, some animals displayed preferential recognition for particular rFhpCLs. Moreover, for cattle sera, the highest sensitivity was obtained using rFhpCL2 (97%), being equal for both rFhpCL1 and rFhpCL5 (87.9%), after adjusting cut-offs for maximum specificity. By contrast, for sheep sera, the sensitivity was 100% for the three rFhpCLs. Finally, the presence of truncated and/or partially unfolded molecules in antigen preparations is postulated as a possible source of cross-reactivity.

  7. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits.

    PubMed

    Wang, Chunyang; Jia, Yachao; Yang, Weichao; Zhang, Cheng; Zhang, Kuihua; Chai, Yimin

    2018-07-01

    Silk fibroin (SF)-based nerve conduits have been widely used to bridge peripheral nerve defects. Our previous study showed that nerve regeneration in a SF-blended poly (l-lactide-co-ɛ-caprolactone) [P(LLA-CL)] nerve conduit is better than that in a P(LLA-CL) conduit. However, the involved mechanisms remain unclarified. Because angiogenesis within a nerve conduit plays an important role in nerve regeneration, vascularization of SF/P(LLA-CL) and P(LLA-CL) conduits was compared both in vitro and in vivo. In the present study, we observed that SF/P(LLA-CL) nanofibers significantly promoted fibroblast proliferation, and vascular endothelial growth factor secreted by fibroblasts seeded in SF/P(LLA-CL) nanofibers was more than seven-fold higher than that in P(LLA-CL) nanofibers. Conditioned medium of fibroblasts in the SF/P(LLA-CL) group stimulated more human umbilical vein endothelial cells (HUVEC) to form capillary-like networks and promoted faster HUVEC migration. The two kinds of nerve conduits were used to bridge 10-mm-length nerve defects in rats. At 3 weeks of reparation, the blood vessel area in the SF/P(LLA-CL) group was significantly larger than that in the P(LLA-CL) group. More regenerated axons and Schwann cells were also observed in the SF/P(LLA-CL) group, which was consistent with the results of blood vessels. Collectively, our data revealed that the SF/P(LLA-CL) nerve conduit enhances peripheral nerve regeneration by improving angiogenesis within the conduit. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2070-2077, 2018. © 2018 Wiley Periodicals, Inc.

  8. Does stimulation of NaCl secretion in in vitro perfused rectal gland tubules of Squalus acanthias increase membrane capacitance?

    PubMed

    Greger, R; Thiele, I; Warth, R; Bleich, M

    1998-07-01

    NaCl secretion in rectal gland tubules (RGT) of Squalus acanthias requires the activation of Cl– channels in the luminal membrane. The RGT and its mechanism of activation are an early evolutionary paradigm of exocrine secretion. The respective Cl– channels probably resemble the shark equivalent of the cystic fibrosis transmembrane conductance regulator (CFTR). Activation of these Cl– channels occurs via cAMP. It has been hypothesized that the activation of CFTR occurs via exocytosis or inhibited endocytosis. To examine this question directly by electrical measurements we have performed whole-cell patch-clamp analyses of in vitro perfused RGT. NaCl secretion was stimulated by a solution (Stim) containing forskolin (10 µmol/l), dibutyryl-cAMP (0.5 mmol/l) and adenosine (0.5 mmol/l). This led to the expected strong depolarization and an increase in membrane conductance (G m). The membrane capacitance (C m) was measured by a newly devised two-frequency synchronous detector method. It was increased by Stim significantly from 5.00±0.22 to 5.17±0.21 pF (n=50). The increase in C m correlated with the increase in G m with a slope of 51 fF/nS. Next the effect of furosemide (500 µmol/l) was examined in previously stimulated RGT. Furosemide was supposed to inhibit coupled Na+2Cl–K+ uptake and to reduce cell volume but not membrane trafficking of Cl– channels. Furosemide reduced G m slightly (due to the fall in cytosolic Cl– concentration) and C m to the same extent by which Stim had increased it. Both changes were statistically significant, and the slope of ΔC m/ΔG m was similar to that caused by Stim. Inhibitors of microtubules or actin (colchicine, phalloidin and cytochalasin D added at 10 µmol/l to the pipette solution and dialysed for >10 min) did not alter cell voltage, G m or C m, nor did these inhibitors abolish the stimulatory effect of cAMP. These data suggest that the small C m changes observed with Stim reflect a minor cell volume increase and an ”unfolding” of the plasma membrane. The present data do not support the exocytosis/endocytosis hypothesis of cAMP-mediated activation of Cl– channels in these cells.

  9. Transepithelial nasal potential difference (NPD) measurements in cystic fibrosis (CF).

    PubMed

    Sands, Dorota

    2013-01-01

    The main underlying physiologic abnormality in cystic fibrosis (CF) is dysfunction of the CF transmembrane conductance regulator (CFTR), which results in abnormal transport of sodium and chloride across epithelial surfaces. CFTR function could be tested in vivo using measurements of nasal transepithelial potential difference (PD). Nasal measurements show characteristic features of CF epithelia, including hyperpolarized baseline readings (basal PD), excessive depolarization in response to sodium channel inhibitors, such as amiloride (ΔAmiloride), and little or no chloride (Cl-) secretion in response to isoproterenol in a chloride-free solution (ΔCl- free-isoproterenol). PD test is applied for CF diagnosis and monitoring of new therapeutic modulations and corrections.

  10. Cellular and functional characterization of buffalo (Bubalus bubalis) corpus luteum during the estrous cycle and pregnancy.

    PubMed

    Baithalu, Rubina Kumari; Singh, S K; Gupta, Chhavi; Raja, Anuj K; Saxena, Abhishake; Kumar, Yogendra; Singh, R; Agarwal, S K

    2013-08-01

    In the present paper, cellular composition of buffalo corpus luteum (CL) with its functional characterization based on 3β-HSD and progesterone secretory ability at different stages of estrous cycle and pregnancy was studied. Buffalo uteri along with ovaries bearing CL were collected from the local slaughter house. These were classified into different stages of estrous cycle (Stage I, II, III and IV) and pregnancy (Stage I, II and III) based on morphological appearance of CL, surface follicles on the ovary and crown rump length of conceptus. Luteal cell population, progesterone content and steroidogenic properties were studied by dispersion of luteal cells using collagenase type I enzyme, RIA and 3β-HSD activity, respectively. Large luteal cells (LLC) appeared as polyhedral or spherical in shape with a centrally placed large round nucleus and an abundance of cytoplasmic lipid droplets. However, small luteal cells (SLC) appeared to be spindle shaped with an eccentrically placed irregular nucleus and there was paucity of cytoplasmic lipid droplets. The size of SLC (range 12-23μm) and LLC (range 25-55μm) increased (P<0.01) with the advancement of stage of estrous cycle and pregnancy. The mean progesterone concentration per gram and per CL increased (P<0.01) from Stage I to III of estrous cycle with maximum concentration at Stage III of estrous cycle and pregnancy. The progesterone concentration decreased at Stage IV (day 17-20) of estrous cycle coinciding with CL regression. Total luteal cell number (LLC and SLC) also increased (P<0.01) from Stage I to III of estrous cycle and decreased (P<0.05), thereafter, at Stage IV indicating degeneration of luteal cells and regression of the CL. Total luteal cell population during pregnancy also increased (P<0.01) from Stage I to II and thereafter decreased (P>0.05) indicating cessation of mitosis. Increased (P<0.05) large luteal cell numbers from Stage I to III of estrous cycle and pregnancy coincided with the increased progesterone secretion and 3β-HSD activity of CL. Thus, proportionate increases of large compared with small luteal cells were primarily responsible for increased progesterone secretion during the advanced stages of the estrous cycle and pregnancy. Total luteal cells and progesterone content per CL during the mid-luteal stage in buffalo as observed in the present study seem to be less than with cattle suggesting inherent luteal deficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Neutrophil Extracellular Traps Identification in Tegumentary Lesions of Patients with Paracoccidioidomycosis and Different Patterns of NETs Generation In Vitro

    PubMed Central

    Della Coletta, Amanda Manoel; Bachiega, Tatiana Fernanda; de Quaglia e Silva, Juliana Carvalho; Soares, Ângela Maria Victoriano de Campos; De Faveri, Julio; Marques, Silvio Alencar; Marques, Mariângela Esther Alencar; Ximenes, Valdecir Farias; Dias-Melicio, Luciane Alarcão

    2015-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American countries, especially in Brazil. It is caused by the thermo-dimorphic fungus of the genus Paracoccidioides (Paracoccidioides brasiliensis and Paracoccidioides lutzii). Innate immune response plays a crucial role in host defense against fungal infections, and neutrophils (PMNs) are able to combat microorganisms with three different mechanisms: phagocytosis, secretion of granular proteins, which have antimicrobial properties, and the most recent described mechanism called NETosis. This new process is characterized by the release of net-like structures called Neutrophil Extracellular Traps (NETs), which is composed of nuclear (decondensed DNA and histones) and granular material such as elastase. Several microorganisms have the ability of inducing NETs formation, including gram-positive and gram-negative bacteria, viruses and some fungi. We proposed to identify NETs in tegumentary lesions of patients with PCM and to analyze the interaction between two strains of P. brasiliensis and human PMNs by NETs formation in vitro. In this context, the presence of NETs in vivo was evidenced in tegumentary lesions of patients with PCM by confocal spectrum analyzer. Furthermore, we showed that the high virulent P. brasiliensis strain 18 (Pb18) and the lower virulent strain Pb265 are able to induce different patterns of NETs formation in vitro. The quantification of extracellular DNA corroborates the idea of the ability of P. brasiliensis in inducing NETs release. In conclusion, our data show for the first time the identification of NETs in lesions of patients with PCM and demonstrate distinct patterns of NETs in cultures challenged with fungi in vitro. The presence of NETs components both in vivo and in vitro open new possibilities for the detailed investigation of immunity in PCM. PMID:26327485

  12. Clinical Presentation and Diagnosis of Neuroendocrine Tumors.

    PubMed

    Vinik, Aaron I; Chaya, Celine

    2016-02-01

    Neuroendocrine tumors (NETs) are slow-growing neoplasms capable of storing and secreting different peptides and neuroamines. Some of these substances cause specific symptom complexes, whereas others are silent. They usually have episodic expression, and the diagnosis is often made at a late stage. Although considered rare, the incidence of NETs is increasing. For these reasons, a high index of suspicion is needed. In this article, the different clinical syndromes and the pathophysiology of each tumor as well as the new and emerging biochemical markers and imaging techniques that should be used to facilitate an early diagnosis, follow-up, and prognosis are reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A physiologically-oriented transcriptomic analysis of the midgut of Tenebrio molitor.

    PubMed

    Moreira, Nathalia R; Cardoso, Christiane; Dias, Renata O; Ferreira, Clelia; Terra, Walter R

    2017-05-01

    Physiological data showed that T. molitor midgut is buffered at pH 5.6 at the two anterior thirds and at 7.9 at the posterior third. Furthermore, water is absorbed and secreted at the anterior and posterior midgut, respectively, driving a midgut counter flux of fluid. To look for the molecular mechanisms underlying these phenomena and nutrient absorption as well, a transcriptomic approach was used. For this, 11 types of transporters were chosen from the midgut transcriptome obtained by pyrosequencing (Roche 454). After annotation with the aid of databanks and manual curation, the sequences were validated by RT-PCR. The expression level of each gene at anterior, middle and posterior midgut and carcass (larva less midgut) was evaluated by RNA-seq taking into account reference sequences based on 454 contigs and reads obtained by Illumina sequencing. The data showed that sugar and amino acid uniporters and symporters are expressed along the whole midgut. In the anterior midgut are found transporters for NH 3 and NH 4 + that with a chloride channel may be responsible for acidifying the lumen. At the posterior midgut, bicarbonate-Cl - antiporter with bicarbonate supplied by carbonic anhydrase may alkalinize the lumen. Water absorption caused mainly by an anterior Na + -K + -2Cl - symporter and water secretion caused by a posterior K + -Cl - may drive the midgut counter flux. Transporters that complement the action of those described were also found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Structure, properties and enhanced expression of galactose-binding C-type lectins in mucous cells of gills from freshwater Japanese eels (Anguilla japonica).

    PubMed Central

    Mistry, A C; Honda, S; Hirose, S

    2001-01-01

    Using a Japanese-eel (Anguilla japonica) gill cDNA subtraction library, two novel beta-d-galactose-binding lectins were identified that belong to group VII of the animal C-type lectin family. The eel C-type lectins, termed eCL-1 and eCL-2, are simple lectins composed of 163 amino acid residues, including a 22-residue signal peptide for secretion and a single carbohydrate-recognition domain (CRD) of approximately 130 residues typical of C-type lectins. The galactose specificity of the CRD was suggested by the presence of a QPD motif and confirmed by a competitive binding assay. Using Ruthenium Red staining, the lectins were shown to bind Ca(2+) ions. SDS/PAGE showed that native eCL-1 and eCL-2 have an SDS-resistant octameric structure (a tetramer of disulphide-linked dimers). Northern and Western blot analyses demonstrated high-level expression of eCL-1 and eCL-2 mRNAs and their protein products in gills from freshwater eels, which decreased markedly when the eels were transferred from freshwater to seawater. Immunohistochemistry showed that the eel lectins are localized in the exocrine mucous cells of the gill. PMID:11695997

  15. Passive driving forces of proximal tubular fluid and bicarbonate transport: gradient dependence of H+ secretion.

    PubMed

    Chan, Y L; Malnic, G; Giebisch, G

    1983-11-01

    The effect of oncotic pressure changes on fluid (Jv) and net bicarbonate transport (JHCO-3) and the transepithelial bicarbonate permeability (PHCO-3) were measured by an improved luminal and capillary microperfusion method that allows paired experiments on the same tubule. Rat proximal tubules were pump-perfused and Jv and [HCO-3] measured with [14C]inulin and a pH glass electrode. Raising peritubular protein (0-8-15 g/100 ml bovine serum albumin) stimulated Jv and HCO-3 reabsorption. The response to oncotic pressure changes was asymmetrical since changes of the luminal protein concentration had no significant effects. Whereas transepithelial solvent drag effects on HCO-3 must be minimal, peritubular protein most likely stimulates translocation of fluid and bicarbonate from intercellular spaces into peritubular capillaries. PHCO-3 was measured from HCO-3 net flux along a lumen-to-capillary-directed electrochemical potential gradient. In these experiments active H+ transport and Jv were minimized by 10(-4) M acetazolamide and luminal raffinose. PHCO-3 was 1.77 X 10(-5) cm X s-1 and was unaffected by increasing luminal flow rate from 10 to 45 nl X min-1. Since bicarbonate backflux is only a small fraction of physiological rates of JHCO-3, net transport alterations at varying [HCO-3] in the lumen must be due to changes in active HCO-3 (H+) transport. Thus, active H+ ion secretion across the luminal membrane of the proximal tubule is gradient dependent.

  16. Pharmacological characterization of a fluorescent uptake assay for the noradrenaline transporter.

    PubMed

    Haunsø, Anders; Buchanan, Dawn

    2007-04-01

    The noradrenaline transporter (NET) is a Na(+)/Cl(-) dependent monoamine transporter that mediates rapid clearance of noradrenaline from the synaptic cleft, thereby terminating neuronal signaling. NET is an important target for drug development and is known to be modulated by many psychoactive compounds, including psychostimulants and antidepressants. Here, the authors describe the development and pharmacological characterization of a nonhomogeneous fluorescent NET uptake assay using the compound 4-(4-dimethylaminostyryl)-N-methylpyridinium (ASP(+)). Data presented show that the pharmacology of both the classic radiolabeled (3)H-noradrenaline- and ASP(+)-based uptake assays are comparable, with an excellent correlation between potency obtained for known modulators of NET (r = 0.95, p < 0.0001). Furthermore, the fluorescent uptake assay is highly reproducible and has sufficiently large Z' values to be amenable for high-throughput screening (HTS). The advantage of this assay is compatibility with both 96- and 384-well formats and lack of radioactivity usage. Thus, the authors conclude that the assay is an inexpensive, viable approach for the identification and pharmacological profiling of small-molecule modulators of the monoamine transporter NET and may be amenable for HTS.

  17. Gustatory stimuli representing different perceptual qualities elicit distinct patterns of neuropeptide secretion from taste buds.

    PubMed

    Geraedts, Maartje C P; Munger, Steven D

    2013-04-24

    Taste stimuli that evoke different perceptual qualities (e.g., sweet, umami, bitter, sour, salty) are detected by dedicated subpopulations of taste bud cells that use distinct combinations of sensory receptors and transduction molecules. Here, we report that taste stimuli also elicit unique patterns of neuropeptide secretion from taste buds that are correlated with those perceptual qualities. We measured tastant-dependent secretion of glucagon-like peptide-1 (GLP-1), glucagon, and neuropeptide Y (NPY) from circumvallate papillae of Tas1r3(+/+), Tas1r3(+/-) and Tas1r3 (-/-) mice. Isolated tongue epithelia were mounted in modified Ussing chambers, permitting apical stimulation of taste buds; secreted peptides were collected from the basal side and measured by specific ELISAs. Appetitive stimuli (sweet: glucose, sucralose; umami: monosodium glutamate; polysaccharide: Polycose) elicited GLP-1 and NPY secretion and inhibited basal glucagon secretion. Sweet and umami stimuli were ineffective in Tas1r3(-/-) mice, indicating an obligatory role for the T1R3 subunit common to the sweet and umami taste receptors. Polycose responses were unaffected by T1R3 deletion, consistent with the presence of a distinct polysaccharide taste receptor. The effects of sweet stimuli on peptide secretion also required the closing of ATP-sensitive K(+) (KATP) channels, as the KATP channel activator diazoxide inhibited the effects of glucose and sucralose on both GLP-1 and glucagon release. Both sour citric acid and salty NaCl increased NPY secretion but had no effects on GLP-1 or glucagon. Bitter denatonium showed no effects on these peptides. Together, these results suggest that taste stimuli of different perceptual qualities elicit unique patterns of neuropeptide secretion from taste buds.

  18. Initial Assessment of β3-Adrenoceptor-Activated Brown Adipose Tissue in Streptozotocin-Induced Type 1 Diabetes Rodent Model Using [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    PubMed

    Baranwal, Aparna; Mirbolooki, M Reza; Mukherjee, Jogeshwar

    2015-01-01

    Metabolic activity of brown adipose tissue (BAT) is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET) blockers and is measurable using [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography/computed tomography (PET/CT) in rats. Using the streptozotocin (STZ)-treated rat model of type 1 diabetes mellitus (T1DM), we investigated BAT activity in this rat model under fasting and nonfasting conditions using [(18)F]FDG PET/CT. Drugs that enhance BAT activity may have a potential for therapeutic development in lowering blood sugar in insulin-resistant diabetes. Rats were rendered diabetic by administration of STZ and confirmed by glucose measures. [(18)F]FDG was injected in the rats (fasted or nonfasted) pretreated with either saline or β3-adrenoceptor agonist CL316,243 or the NET blocker atomoxetine for PET/CT scans. [(18)F]FDG metabolic activity was computed as standard uptake values (SUVs) in interscapular brown adipose tissue (IBAT) and compared across the different drug treatment conditions. Blood glucose levels > 500 mg/dL were established for the STZ-treated diabetic rats. Under fasting conditions, average uptake of [(18)F]FDG in the IBAT of STZ-treated diabetic rats was approximately 70% lower compared to that of normal rats. Both CL316,243 and atomoxetine activated IBAT in normal rats had an SUV > 5, whereas activation in STZ-treated rats was significantly lower. The agonist CL316,243 activated IBAT up to threefold compared to saline in the fasted STZ-treated rat. In the nonfasted rat, the IBAT activation was up by twofold by CL316243. Atomoxetine had a greater effect on lowering blood sugar levels compared to CL316,243 in the nonfasted rats. A significant reduction in metabolic activity was observed in the STZ-treated diabetic rodent model. Increased IBAT activity in the STZ-treated diabetic rat under nonfasted conditions using the β3-adrenoceptor agonist CL316,243 suggests a potential role of BAT in modulating blood sugar levels. Further studies are needed to evaluate the therapeutic role of β3-adrenoceptor agonists in insulin-resistant T1DM.

  19. [New perspective on the role of WNK1 and WNK4 in the regulation of NaCl reabsorption and K(+) secretion by the distal nephron].

    PubMed

    Rafael, Chloé; Chavez-Canales, Maria; Hadchouel, Juliette

    2016-03-01

    The study of Familial Hyperkalemic Hypertension (FHHt), a rare monogenic disease, allowed remarkable advances in the understanding of the mechanisms of regulation of NaCl reabsorption by the distal nephron. FHHt results from mutations in the genes encoding WNK1 and WNK4, two serine-threonine kinases of the WNK (With No lysine [K]) family. The clinical manifestations of FHHt are due, among others, to an increased activity of the Na(+)-Cl(-) cotransporter NCC. Several groups therefore tried to understand how WNK1 and WNK4 could regulate NCC. However, the data were often contradictory. Two of our recent studies allowed to partially explain these controversies and to propose a new model for the regulation of NCC by the WNKs. © 2016 médecine/sciences – Inserm.

  20. Cyclooxygenase cloning in dogfish shark, Squalus acanthias, and its role in rectal gland Cl secretion.

    PubMed

    Yang, T; Forrest, S J; Stine, N; Endo, Y; Pasumarthy, A; Castrop, H; Aller, S; Forrest, J N; Schnermann, J; Briggs, J

    2002-09-01

    The present studies were carried out with the aims to determine the cDNA sequence for cyclooxygenase (COX) in an elasmobranch species and to study its role in regulation of chloride secretion in the perfused shark rectal gland (SRG). With the use of long primers (43 bp) derived from regions of homology between zebrafish and rainbow trout COX-2 genes, a 600-bp product was amplified from SRG and was found to be almost equally homologous to mammalian COX-1 and COX-2 (65%). The full-length cDNA sequence was obtained by 5'-RACE and by analyzing an EST clone generated by the EST Project of the Mt. Desert Island Biological Laboratory Marine DNA Sequencing Center. The longest open reading frame encodes a 593-amino acid protein that has 68 and 64% homology to mammalian COX-1 and COX-2, respectively. The gene and its protein product is designated as shark COX (sCOX). The key residues in the active site (Try(385), His(388), and Ser(530)) are conserved between the shark and mammalian COX. sCOX contains Val(523) that has been shown to be a key residue determining the sensitivity to COX-2-specific inhibitors including NS-398. The mRNA of sCOX, detected by RT-PCR, was found in all tissues tested, including rectal gland, kidney, spleen, gill, liver, brain, and heart, but not in fin. In the perfused SRG, vasoactive intestinal peptide (VIP) at 5 nM induced rapid and marked Cl(-) secretion (basal: <250 microeq x h(-1) x g(-1); peak response: 3,108 +/- 479 microeq x h(-1) x g(-1)). In the presence of 50 microM NS-398, both the peak response (2,131 +/- 307 microeq x h(-1) x g(-1)) and the sustained response to VIP were significantly reduced. When NS-398 was removed, there was a prompt recovery of chloride secretion to control values. In conclusion, we have cloned the first COX in an elasmobranch species (sCOX) and shown that sCOX inhibition suppresses VIP-stimulated chloride secretion in the perfused SRG.

  1. A rare case of an ACTH/CRH co-secreting midgut neuroendocrine tumor mimicking Cushing's disease.

    PubMed

    Streuli, Regina; Krull, Ina; Brändle, Michael; Kolb, Walter; Stalla, Günter; Theodoropoulou, Marily; Enzler-Tschudy, Annette; Bilz, Stefan

    2017-01-01

    Ectopic ACTH/CRH co-secreting tumors are a very rare cause of Cushing's syndrome and only a few cases have been reported in the literature. Differentiating between Cushing's disease and ectopic Cushing's syndrome may be particularly difficult if predominant ectopic CRH secretion leads to pituitary corticotroph hyperplasia that may mimic Cushing's disease during dynamic testing with both dexamethasone and CRH as well as bilateral inferior petrosal sinus sampling (BIPSS). We present the case of a 24-year-old man diagnosed with ACTH-dependent Cushing's syndrome caused by an ACTH/CRH co-secreting midgut NET. Both high-dose dexamethasone testing and BIPSS suggested Cushing's disease. However, the clinical presentation with a rather rapid onset of cushingoid features, hyperpigmentation and hypokalemia led to the consideration of ectopic ACTH/CRH-secretion and prompted a further workup. Computed tomography (CT) of the abdomen revealed a cecal mass which was identified as a predominantly CRH-secreting neuroendocrine tumor. To the best of our knowledge, this is the first reported case of an ACTH/CRH co-secreting tumor of the cecum presenting with biochemical features suggestive of Cushing's disease. The discrimination between a Cushing's disease and ectopic Cushing's syndrome is challenging and has many caveats.Ectopic ACTH/CRH co-secreting tumors are very rare.Dynamic tests as well as BIPSS may be compatible with Cushing's disease in ectopic CRH-secretion.High levels of CRH may induce hyperplasia of the corticotroph cells in the pituitary. This could be the cause of a preserved pituitary response to dexamethasone and CRH.Clinical features of ACTH-dependent hypercortisolism with rapid development of Cushing's syndrome, hyperpigmentation, high circulating levels of cortisol with associated hypokalemia, peripheral edema and proximal myopathy should be a warning flag of ectopic Cushing's syndrome and lead to further investigations.

  2. Basolateral choline transport in isolated rabbit renal proximal tubules.

    PubMed

    Dantzler, W H; Evans, K K; Wright, S H

    1998-11-01

    Choline can undergo both net secretion and net reabsorption by renal proximal tubules, but at physiological plasma levels net reabsorption occurs. During this process, choline enters the cells at the luminal side down an electrochemical gradient via a specific transporter with a high affinity for choline. It appeared likely that choline was then transported out of the cells against an electrochemical gradient at the basolateral membrane by countertransport for another organic cation. This possibility was examined by studying net transepithelial reabsorption and basolateral uptake and efflux of [14C]choline in isolated S2 segments of rabbit renal proximal tubules. Basolateral uptake, which was inhibited by other organic cations such as tetraethylammonium (TEA), appeared to occur by the standard organic cation transport pathway. However, the addition of TEA to the bathing medium not only failed to trans-stimulate net transepithelial reabsorption and basolateral efflux of [14C]choline but it actually inhibited transepithelial reabsorption by @60%. The results do not support the presence of a countertransport step for choline against an electrochemical gradient at the basolateral membrane. Instead, they suggest that choline crosses this membrane by some form of carrier-mediated diffusion even during the reabsorptive process.

  3. Ectopic ACTH and CRH co-secreting tumor localized by 68Ga-DOTA-TATE PET/CT

    PubMed Central

    Papadakis, Georgios Z.; Bagci, Ulas; Sadowski, Samira M.; Patronas, Nicholas J.; Stratakis, Constantine A.

    2015-01-01

    Diagnosis of ectopic adrenocorticotropic hormone (ACTH) and corticotropin releasing hormone (CRH) co-secreting tumors causing Cushing syndrome (CS) is challenging, since these tumors are rare and their diagnosis is frequently confused with Cushing disease (CD), due to the effect of CRH on the pituitary. We report a case of a 21-year-old male who was referred to our institution with persistent hypercortisolemia and CS after undergoing unnecessary transsphenoidal surgery (TSS). 68Ga-DOTA-TATE PET/CT revealed increased tracer uptake in the thymus which was histologically proved to be neuroendocrine tumor (NET) staining positive for ACTH and CRH. Imaging with 18F-FDG PET/CT was not diagnostic. PMID:26018709

  4. Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host

    PubMed Central

    Ding, Jiun-Yan; Shiu, Jia-Ho; Chen, Wen-Ming; Chiang, Yin-Ru; Tang, Sen-Lin

    2016-01-01

    The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its host. Testosterone degradation and type III secretion system are commonly present in Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, this bacterium could move into coral cells via endocytosis after binding to coral's Eph receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase are possible type III secretion effectors that might help coral to prevent mitochondrial dysfunction and promote gluconeogenesis, especially under stress conditions. Based on all these findings, we inferred that E. montiporae was a facultative endosymbiont that can recognize, translocate, communicate and modulate its coral host. PMID:27014194

  5. A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland

    PubMed Central

    Catalán, Marcelo A.; Kondo, Yusuke; Peña-Munzenmayer, Gaspar; Jaramillo, Yasna; Liu, Frances; Choi, Sooji; Crandall, Edward; Borok, Zea; Flodby, Per; Shull, Gary E.; Melvin, James E.

    2015-01-01

    Activation of an apical Ca2+-activated Cl− channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl− current and Cl− efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl− channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A−/−). Ca2+-dependent salivation was abolished in Tmem16A−/− mice, demonstrating that Tmem16A is obligatory for Ca2+-mediated fluid secretion. However, the amount of saliva secreted by Tmem16A−/− mice in response to the β-adrenergic receptor agonist isoproterenol (IPR) was comparable to that seen in controls, indicating that Tmem16A does not significantly contribute to cAMP-induced secretion. Furthermore, IPR-stimulated secretion was unaffected in mice lacking Cftr (Cftr∆F508/∆F508) or ClC-2 (Clcn2−/−) Cl− channels. The time course for activation of IPR-stimulated fluid secretion closely correlated with that of the IPR-induced cell volume increase, suggesting that acinar swelling may activate a volume-sensitive Cl− channel. Indeed, Cl− channel blockers abolished fluid secretion, indicating that Cl− channel activity is critical for IPR-stimulated secretion. These data suggest that β-adrenergic–induced, cAMP-dependent fluid secretion involves a volume-regulated anion channel. In summary, our results using acinar-specific Tmem16A−/− mice identify Tmem16A as the Cl− channel essential for muscarinic, Ca2+-dependent fluid secretion in adult mouse salivary glands. PMID:25646474

  6. Proteomic analysis of secreted proteins by human bronchial epithelial cells in response to cadmium toxicity.

    PubMed

    Chen, De-Ju; Xu, Yan-Ming; Zheng, Wei; Huang, Dong-Yang; Wong, Wing-Yan; Tai, William Chi-Shing; Cho, Yong-Yeon; Lau, Andy T Y

    2015-09-01

    For years, many studies have been conducted to investigate the intracellular response of cells challenged with toxic metal(s), yet, the corresponding secretome responses, especially in human lung cells, are largely unexplored. Here, we provide a secretome analysis of human bronchial epithelial cells (BEAS-2B) treated with cadmium chloride (CdCl2 ), with the aim of identifying secreted proteins in response to Cd toxicity. Proteins from control and spent media were separated by two-dimensional electrophoresis and visualized by silver staining. Differentially-secreted proteins were identified by MALDI-TOF-MS analysis and database searching. We characterized, for the first time, the extracellular proteome changes of BEAS-2B dosed with Cd. Our results unveiled that Cd treatment led to the marked upregulation of molecular chaperones, antioxidant enzymes, enzymes associated with glutathione metabolic process, proteins involved in cellular energy metabolism, as well as tumor-suppressors. Pretreatment of cells with the thiol antioxidant glutathione before Cd treatment effectively abrogated the secretion of these proteins and prevented cell death. Taken together, our results demonstrate that Cd causes oxidative stress-induced cytotoxicity; and the differentially-secreted protein signatures could be considered as targets for potential use as extracellular biomarkers upon Cd exposure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cosmic microwave background constraints on secret interactions among sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Forastieri, Francesco; Lattanzi, Massimiliano; Mangano, Gianpiero; Mirizzi, Alessandro; Natoli, Paolo; Saviano, Ninetta

    2017-07-01

    Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson X (with MX ll MW), and characterized by a gauge coupling gX, have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interaction framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95 % CL) ms < 0.82 eV or ms < 0.29 eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength GX to be < 2.8 (2.0) × 1010 GF from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with MX ~ 0.1 MeV and relatively large coupling gX~ 10-1, previously indicated as a possible solution to the small scale dark matter problem.

  8. A mathematical model of the pancreatic duct cell generating high bicarbonate concentrations in pancreatic juice.

    PubMed

    Whitcomb, David C; Ermentrout, G Bard

    2004-08-01

    To develop a simple, physiologically based mathematical model of pancreatic duct cell secretion using experimentally derived parameters that generates pancreatic fluid bicarbonate concentrations of >140 mM after CFTR activation. A new mathematical model was developed simulating a duct cell within a proximal pancreatic duct and included a sodium-2-bicarbonate cotransporter (NBC) and sodium-potassium pump (NaK pump) on a chloride-impermeable basolateral membrane, CFTR on the luminal membrane with 0.2 to 1 bicarbonate to chloride permeability ratio. Chloride-bicarbonate antiporters (Cl/HCO3 AP) were added or subtracted from the basolateral (APb) and luminal (APl) membranes. The model was integrated over time using XPPAUT. This model predicts robust, NaK pump-dependent bicarbonate secretion with opening of the CFTR, generates and maintains pancreatic fluid secretion with bicarbonate concentrations >140 mM, and returns to basal levels with CFTR closure. Limiting CFTR permeability to bicarbonate, as seen in some CFTR mutations, markedly inhibited pancreatic bicarbonate and fluid secretion. A simple CFTR-dependent duct cell model can explain active, high-volume, high-concentration bicarbonate secretion in pancreatic juice that reproduces the experimental findings. This model may also provide insight into why CFTR mutations that predominantly affect bicarbonate permeability predispose to pancreatic dysfunction in humans.

  9. Fertilization effects on forest carbon storage and exchange, and net primary production: A new hybrid process model for stand management

    Treesearch

    D. A. Sampson; R. H. Waring; C. A. Maier; C. M. Gough; M. J. Ducey; K. H. Johnsen

    2006-01-01

    A critical ecological question in plantation management is whether fertilization, which generally increases yield, results in enhanced C sequestration over short rotations. We present a rotation-length hybrid process model (SECRETS-3PG) that was calibrated (using control treatments; CW) and verified (using fertilized treatments; FW) using daily estimates of H

  10. Fertilization effects on forest carbon storage and exchange, and net primary production: a new hybrid process model for stand management

    Treesearch

    D.A. Sampson; R.H. Waring; C.A. Maier; C.M. Gough; M.J. Ducey; K.H. Kohnsen

    2006-01-01

    A critical ecological question in plantation management is whether fertilization, which generally increases yield, results in enhanced C sequestration over short rotations. We present a rotation-length hybrid process model (SECRETS-3PG) that was calibrated (using control treatments; CW) and verified (using fertilized treatments; FW) using daily estimates of H

  11. Solubility of lysozyme in polyethylene glycol-electrolyte mixtures: the depletion interaction and ion-specific effects.

    PubMed

    Boncina, Matjaz; Rescic, Jurij; Vlachy, Vojko

    2008-08-01

    The solubility of aqueous solutions of lysozyme in the presence of polyethylene glycol and various alkaline salts was studied experimentally. The protein-electrolyte mixture was titrated with polyethylene glycol, and when precipitation of the protein occurred, a strong increase of the absorbance at 340 nm was observed. The solubility data were obtained as a function of experimental variables such as protein and electrolyte concentrations, electrolyte type, degree of polymerization of polyethylene glycol, and pH of the solution; the last defines the net charge of the lysozyme. The results indicate that the solubility of lysozyme decreases with the addition of polyethylene glycol; the solubility is lower for a polyethylene glycol with a higher degree of polymerization. Further, the logarithm of the protein solubility is a linear function of the polyethylene glycol concentration. The process is reversible and the protein remains in its native form. An increase of the electrolyte (NaCl) concentration decreases the solubility of lysozyme in the presence and absence of polyethylene glycol. The effect can be explained by the screening of the charged amino residues of the protein. The solubility experiments were performed at two different pH values (pH = 4.0 and 6.0), where the lysozyme net charge was +11 and +8, respectively. Ion-specific effects were systematically investigated. Anions such as Br(-), Cl(-), F(-), and H(2)PO(4)(-) (all in combination with Na(+)), when acting as counterions to a protein with positive net charge, exhibit a strong effect on the lysozyme solubility. The differences in protein solubility for chloride solutions with different cations Cs(+), K(+), and Na(+) (coions) were much smaller. The results at pH = 4.0 show that anions decrease the lysozyme solubility in the order F(-) < H(2)PO(4)(-) < Cl(-) < Br(-) (the inverse Hofmeister series), whereas cations follow the direct Hofmeister series (Cs(+) < K(+) < Na(+)) in this situation.

  12. NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways

    PubMed Central

    Yuen, Joshua; Pluthero, Fred G.; Douda, David N.; Riedl, Magdalena; Cherry, Ahmed; Ulanova, Marina; Kahr, Walter H. A.; Palaniyar, Nades; Licht, Christoph

    2016-01-01

    Neutrophils deposit antimicrobial proteins, such as myeloperoxidase and proteases on chromatin, which they release as neutrophil extracellular traps (NETs). Neutrophils also carry key components of the complement alternative pathway (AP) such as properdin or complement factor P (CFP), complement factor B (CFB), and C3. However, the contribution of these complement components and complement activation during NET formation in the presence and absence of bacteria is poorly understood. We studied complement activation on NETs and a Gram-negative opportunistic bacterial pathogen Pseudomonas aeruginosa (PA01, PAKwt, and PAKgfp). Here, we show that anaphylatoxin C5a, formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA), which activates NADPH oxidase, induce the release of CFP, CFB, and C3 from neutrophils. In response to PMA or P. aeruginosa, neutrophils secrete CFP, deposit it on NETs and bacteria, and induce the formation of terminal complement complexes (C5b–9). A blocking anti-CFP antibody inhibited AP-mediated but not non-AP-mediated complement activation on NETs and P. aeruginosa. Therefore, NET-mediated complement activation occurs via both AP- and non AP-based mechanisms, and AP-mediated complement activation during NETosis is dependent on CFP. These findings suggest that neutrophils could use their “AP tool kit” to readily activate complement on NETs and Gram-negative bacteria, such as P. aeruginosa, whereas additional components present in the serum help to fix non-AP-mediated complement both on NETs and bacteria. This unique mechanism may play important roles in host defense and help to explain specific roles of complement activation in NET-related diseases. PMID:27148258

  13. Determinants of surgical resection for pancreatic neuroendocrine tumors.

    PubMed

    Doi, Ryuichiro

    2015-08-01

    Pancreatic neuroendocrine tumors (pNETs) include functioning and non-functional tumors. Functioning tumors consist of tumors that produce a variety of hormones and their clinical effects. Therefore, determinants of resection of pNETs should be discussed for each group of tumors. Less than 10% of insulinomas are malignant, therefore more than 90% of the cases can be cured by surgical resection. Lymphadenectomy is generally not necessary in insulinoma operation. If preoperative localization of the insulinoma is completed, enucleation from the pancreatic body or tail, and distal pancreatectomy can be performed safely by laparoscopy. When preoperative localization of a sporadic insulinoma is not confirmed, surgical exploration is needed. Intraoperative localization of a tumor, intraoperative insulin sampling and frozen section are required. The crucial purpose of surgical resection is to control inappropriate insulin secretion by removing all insulinomas. Gastrinomas are usually located in the duodenum or pancreas, which secrete gastrin and cause Zollinger-Ellison syndrome (ZES). Duodenal gastrinomas are usually small, therefore they are not seen on preoperative imaging studies or endoscopic ultrasound, and can be found only at surgery if a duodenotomy is performed. In addition, lymph node metastasis is found in 40-60% of cases. Therefore, the experienced surgeons should direct operation for gastrinomas. Surgical exploration with duodenotomy should be performed at a laparotomy. Other functioning pNETs can occur in the pancreas or in other locations. Curative resection is always recommended whenever possible after optimal symptomatic control of the clinical syndrome by medical treatment. Indications for surgery depend on clinical symptom control, tumor size, location, extent, malignancy and presence of metastasis. A lot of non-functioning pNETs are found incidentally according to the quality improvement of imaging techniques. Localized, small, malignant non-functioning pNETs should be operated on aggressively, while in possibly benign tumors smaller than 2 cm the surgical risk-benefit ratio should be carefully weighted. Surgical liver resection is generally proposed in curative intent to all patients with operable metastases from G1 or G2 pNET. The benefits of surgical resection of liver metastases have been demonstrated in terms of overall survival and quality of life. Complete resection is associated with better long-term survival. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  14. Bile salt induced back diffusion of hydrogen ions across gastric mucosa in man. Fact or fiction?

    PubMed

    Ivey, K J

    1981-01-01

    We studied the effect of 5.5 mM bile salts, consisting of taurine conjugates in 5 normal subjects. Bile salts caused a significant increase in H+ loss from and Na+ movement into the gastric lumen (controls 1.5 mEq H+, 1.5 mEq Na+; bile salts -3.1 mEq H+ (p less than 0.001), Na+ 2.5 mEq (p less than 0.01) per 15 min.) To determine the effect of acid secretion, studies were repeated after i.v. atropine 2 mg/70 kg b.w. Atropine reduced net H+ flux to -0.2 mEq and Na+ gain to 0.9 mEq. When the bile salt studies were repeated after i.v. atropine, net H+ loss was increased to -5.4 mEq H+, significantly greater than with bile salts alone; corresponding Na+ gain was 3.2 mEq/15 min. The volume of fluid secreted was 25.0 ml in the bile salt study compared with 14.0 ml in the atropine and bile salt study. Even if all the additional volume 'secreted' (14 ml) were bicarbonate from the stomach or pancreatic juice with a concentration of 145 mEq/liter, it could account for a loss of only 2.0 mEq H+. In conclusion, atropine with bile salts is associated with a loss of H+ ions too great to be accounted for by bicarbonate neutralization. We conclude that back diffusion of H+ ions is the most likely explanation of H+ loss after bile salts in man.

  15. Lubiprostone stimulates secretion from tracheal submucosal glands of sheep, pigs, and humans

    PubMed Central

    Joo, N. S.; Wine, J. J.; Cuthbert, A. W.

    2009-01-01

    Lubiprostone, a putative ClC-2 chloride channel opener, has been investigated for its effects on airway epithelia (tracheas). Lubiprostone is shown to increase submucosal gland secretion in pigs, sheep, and humans and to increase short-circuit current (SCC) in the surface epithelium of pigs and sheep. Use of appropriate blocking agents and ion-substitution experiments shows anion secretion is the driving force for fluid formation in both glands and surface epithelium. From SCC concentration-response relations, it is shown that for apical lubiprostone Kd = 10.5 nM with a Hill slope of 1.08, suggesting a single type of binding site and, from the speed of the response, close to the apical surface, confirmed the rapid blockade by Cd ions. Responses to lubiprostone were reversible and repeatable, responses being significantly larger with ventral compared with dorsal epithelium. Submucosal gland secretion rates following basolateral lubiprostone were, respectively, 0.2, 0.5, and 0.8 nl gl−1 min−1 in humans, sheep, and pigs. These rates dwarf any contribution surface secretion adds to the accumulation of surface liquid under the influence of lubiprostone. Lubiprostone stimulated gland secretion in two out of four human cystic fibrosis (CF) tissues and in two of three disease controls, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (COPD/IPF), but in neither type of tissue was the increase significant. Lubiprostone was able to increase gland secretion rates in normal human tissue in the continuing presence of a high forskolin concentration. Lubiprostone had no spasmogenic activity on trachealis muscle, making it a potential agent for increasing airway secretion that may have therapeutic utility. PMID:19233902

  16. Lubiprostone stimulates secretion from tracheal submucosal glands of sheep, pigs, and humans.

    PubMed

    Joo, N S; Wine, J J; Cuthbert, A W

    2009-05-01

    Lubiprostone, a putative ClC-2 chloride channel opener, has been investigated for its effects on airway epithelia (tracheas). Lubiprostone is shown to increase submucosal gland secretion in pigs, sheep, and humans and to increase short-circuit current (SCC) in the surface epithelium of pigs and sheep. Use of appropriate blocking agents and ion-substitution experiments shows anion secretion is the driving force for fluid formation in both glands and surface epithelium. From SCC concentration-response relations, it is shown that for apical lubiprostone K(d) = 10.5 nM with a Hill slope of 1.08, suggesting a single type of binding site and, from the speed of the response, close to the apical surface, confirmed the rapid blockade by Cd ions. Responses to lubiprostone were reversible and repeatable, responses being significantly larger with ventral compared with dorsal epithelium. Submucosal gland secretion rates following basolateral lubiprostone were, respectively, 0.2, 0.5, and 0.8 nl gl(-1) min(-1) in humans, sheep, and pigs. These rates dwarf any contribution surface secretion adds to the accumulation of surface liquid under the influence of lubiprostone. Lubiprostone stimulated gland secretion in two out of four human cystic fibrosis (CF) tissues and in two of three disease controls, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (COPD/IPF), but in neither type of tissue was the increase significant. Lubiprostone was able to increase gland secretion rates in normal human tissue in the continuing presence of a high forskolin concentration. Lubiprostone had no spasmogenic activity on trachealis muscle, making it a potential agent for increasing airway secretion that may have therapeutic utility.

  17. The effect of serum on the secretion of radiolabeled mucous macromolecules into the lumen of the cat trachea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peatfield, A.C.; Hall, R.L.; Richardson, P.S.

    1982-02-01

    We studied the effect of placing serum within a segment of trachea on secretion into its lumen in the cat. A segment of cervical trachea was isolated from the rest of the airway in situ. Secretions were radiolabeled biosynthetically by the administration of two radiolabeled precursors: (35S)sodium sulphate and (3H)glucose. Autologous serum placed in the segment at a dilution of 1 in 8 increased the output of radiolabeled macromolecules: (35S) by 80% and (3H) by 159% (p less than 0.001). At a dilution of 1 in 24, serum still increased the output of both isotopes. At dilutions of 1 inmore » 48 and 1 in 80 the increases were significant for (35S) but not for (3H). Heating the serum to 90 degrees C diminished its effects. Fractionating the serum by dialysis and gel filtration showed that the components of molecular weight less than about 13,000 daltons had no effect on secretion, whereas three higher molecular weight fractions all increased secretion. Two alien proteins (horseradish peroxidase and bovine serum albumin) stimulated secretion but a large molecular weight carbohydrate (carboxymethyl cellulose) did not. Atropine and propranolol, at doses that greatly reduced the effect of parasympathetic and sympathetic nerve activity, did not diminish the effects of serum, which therefore appeared to be independent of nerve activity. Gel filtration of the secretions elicited by serum showed that the predominant component was excluded even by Sepharose CL-2B and thus had a high molecular weight. We conclude that there are several components of serum that promote the secretion of mucus glycoproteins into the cat trachea. The relevance of these findings to diseases of human airways is considered.« less

  18. Evaluating the Impact of Hospital Based Drug and Alcohol Consultation Liaison Services.

    PubMed

    Reeve, Rebecca; Arora, Sheena; Butler, Kerryn; Viney, Rosalie; Burns, Lucinda; Goodall, Stephen; van Gool, Kees

    2016-09-01

    Consultation liaison (CL) services provide direct access to specialist services for support, treatment advice and assistance with the management of a given condition. Alcohol and other drugs (AOD) CL services aim to improve identification and treatment of patients with AOD morbidity. Our objective was to evaluate the costs and consequences of AOD CL services in hospitals in New South Wales, Australia. Patients were surveyed at eight hospitals and problematic AOD use was identified using the Alcohol, Smoking and Substance Involvement Screening Test (n=1615). For consenting participants, medical record data were obtained from 18 months pre- to 12 months post-survey. We used interrupted time series analyses to compare utilization and costs for patients with and without AOD problems and changes over time between those who received AOD CL and similar patients. Approximately 35% of patients surveyed had AOD problems (excluding tobacco) with 7% requiring intensive treatment. Only 24% of patients requiring intensive treatment were treated by AOD CL. Those treated had relative improvements over time in the cost of presentations to emergency departments, emergency admission performance and increased uptake of appropriate pharmaceuticals. The estimated net benefit of AOD CL services was at least AUD$100,000 savings per hospital per year. Expanding AOD CL services to address current unmet need may lead to even greater cost savings for hospitals. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells.

    PubMed

    Deuse, Tobias; Stubbendorff, Mandy; Tang-Quan, Karis; Phillips, Neil; Kay, Mark A; Eiermann, Thomas; Phan, Thang T; Volk, Hans-Dieter; Reichenspurner, Hermann; Robbins, Robert C; Schrepfer, Sonja

    2011-01-01

    We here present an immunologic head-to-head comparison between human umbilical cord lining mesenchymal stem cells (clMSCs) and adult bone marrow MSCs (bmMSCs) from patients >65 years of age. clMSCs had significantly lower HLA class I expression, higher production of tolerogenic TGF-β and IL-10, and showed significantly faster proliferation. In vitro activation of allogeneic lymphocytes and xenogeneic in vivo immune activation was significantly stronger with bmMSCs, whereas immune recognition of clMSCs was significantly weaker. Thus, bmMSCs were more quickly rejected in immunocompetent mice. IFN-γ at 25 ng/ml increased both immunogenicity by upregulation of HLA class I/ HLA-DR expression and tolerogenicity by increasing intracellular HLA-G and surface HLA-E expression, augmenting TGF-β and IL-10 release, and inducing indoleamine 2,3-dioxygenase (IDO) expression. Higher concentrations of IFN-γ (>50 ng/ml) further enhanced the immunosuppressive phenotype of clMSCs, more strongly downregulating HLA-DR expression and further increasing IDO production (at 500 ng/ml). The net functional immunosuppressive efficacy of MSCs was tested in mixed lymphocyte cultures. Although both clMSCs and bmMSCs significantly reduced in vitro immune activation, clMSCs were significantly more effective than bmMSCs. The veto function of both MSC lines was enhanced in escalating IFN-γ environments. In conclusion, clMSCs show a more beneficial immunogeneic profile and stronger overall immunosuppressive potential than aged bmMSCs.

  20. Experimental evidence of large changes in terrestrial chlorine cycling following altered tree species composition.

    PubMed

    Montelius, Malin; Thiry, Yves; Marang, Laura; Ranger, Jacques; Cornelis, Jean-Thomas; Svensson, Teresia; Bastviken, David

    2015-04-21

    Organochlorine molecules (Clorg) are surprisingly abundant in soils and frequently exceed chloride (Cl(-)) levels. Despite the widespread abundance of Clorg and the common ability of microorganisms to produce Clorg, we lack fundamental knowledge about how overall chlorine cycling is regulated in forested ecosystems. Here we present data from a long-term reforestation experiment where native forest was cleared and replaced with five different tree species. Our results show that the abundance and residence times of Cl(-) and Clorg after 30 years were highly dependent on which tree species were planted on the nearby plots. Average Cl(-) and Clorg content in soil humus were higher, at experimental plots with coniferous trees than in those with deciduous trees. Plots with Norway spruce had the highest net accumulation of Cl(-) and Clorg over the experiment period, and showed a 10 and 4 times higher Cl(-) and Clorg storage (kg ha(-1)) in the biomass, respectively, and 7 and 9 times higher storage of Cl(-) and Clorg in the soil humus layer, compared to plots with oak. The results can explain why local soil chlorine levels are frequently independent of atmospheric deposition, and provide opportunities for improved modeling of chlorine distribution and cycling in terrestrial ecosystems.

  1. Atomic force microscopy and Langmuir–Blodgett monolayer technique to assess contact lens deposits and human meibum extracts☆

    PubMed Central

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    Purpose The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Methods Meibum study: Meibum was collected from all participants and studied via Langmuir–Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Results Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. Conclusions MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. PMID:25620317

  2. Lithium Induces Glycogen Accumulation in Salivary Glands of the Rat.

    PubMed

    Souza, D N; Mendes, F M; Nogueira, F N; Simões, A; Nicolau, J

    2016-02-01

    Lithium is administered for the treatment of mood and bipolar disorder. The aim of this study was to verify whether treatment with different concentrations of lithium may affect the glycogen metabolism in the salivary glands of the rats when compared with the liver. Mobilization of glycogen in salivary glands is important for the process of secretion. Two sets of experiments were carried out, that is, in the first, the rats received drinking water supplemented with LiCl (38,25 and 12 mM of LiCl for 15 days) and the second experiment was carried out by intraperitoneal injection of LiCl solution (12 mg/kg and 45 mg LiCl/kg body weight) for 3 days. The active form of glycogen phosphorylase was not affected by treatment with LiCl considering the two experiments. The active form of glycogen synthase presented higher activity in the submandibular glands of rats treated with 25 and 38 mM LiCl and in the liver, with 25 mM LiCl. Glycogen level was higher than that of control in the submandibular glands of rats receiving 38 and 12 mM LiCl, in the parotid of rats receiving 25 and 38 mM, and in the liver of rats receiving 12 mM LiCl. The absolute value of glycogen for the submandibular treated with 25 mM LiCl, and the liver treated with 38 mM LiCl, was higher than the control value, although not statistically significant for these tissues. No statistically significant difference was found in the submandibular and parotid salivary glands for protein concentration when comparing experimental and control groups. We concluded that LiCl administered to rats influences the metabolism of glycogen in salivary glands.

  3. Model of bicarbonate secretion by resting frog stomach fundus mucosa. II. Role of the oxyntopeptic cells.

    PubMed

    Debellis, L; Iacovelli, C; Frömter, E; Curci, S

    1994-10-01

    In the present publication we report mainly electrophysiological studies on oxyntopeptic cells of frog gastric mucosa which aim at clarifying a possible involvement of these cells in the process of resting gastric alkali (HCO3-) secretion, described in the preceding publication. The experiments were performed on intact gastric fundus mucosa of Rana esculenta mounted in Ussing chambers. After removal of the muscle and connective tissue layer oxyntopeptic cells were punctured from the serosal surface with conventional or pH-sensitive microelectrodes to measure, besides transepithelial voltage and resistance, the basolateral cell membrane potential, the voltage divider ratio, and the cell pH in response to secretagogues and/or changes in serosal ion concentration. Carbachol (10(-4) mol/l), which transiently stimulated HCO3- secretion by 0.22 mumol.cm-2.h-1, transiently acidified the cells by 0.09 +/- SEM 0.03 pH units (n = 6) and transiently induced an apical cell membrane anion conductance. According to the model of gastric HCO3- secretion presented in the preceding publication, this anion conductance could be involved in gastric HCO3- secretion, mediating, besides Cl- efflux, also apical HCO3- efflux. In addition carbachol stimulated basolateral Na+(HCO3-)n-cotransport, which according to the results from the preceding publication mediates basolateral HCO3- uptake for secretion. By contrast, cAMP-mediated secretagogues, such as histamine or others, which stimulate HCl secretion and transiently alkalinize the oxyntopeptic cells, were found to down-regulate the basolateral Na+(HCO3-)n-cotransporter.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. FABP4 is secreted from adipocytes by adenyl cyclase-PKA- and guanylyl cyclase-PKG-dependent lipolytic mechanisms.

    PubMed

    Mita, Tomohiro; Furuhashi, Masato; Hiramitsu, Shinya; Ishii, Junnichi; Hoshina, Kyoko; Ishimura, Shutaro; Fuseya, Takahiro; Watanabe, Yuki; Tanaka, Marenao; Ohno, Kohei; Akasaka, Hiroshi; Ohnishi, Hirofumi; Yoshida, Hideaki; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2015-02-01

    Fatty acid-binding protein 4 (FABP4) is expressed in adipocytes, and elevated plasma FABP4 level is associated with obesity-mediated metabolic phenotype. Postprandial regulation and secretory signaling of FABP4 has been investigated. Time courses of FABP4 levels were examined during an oral glucose tolerance test (OGTT; n=53) or a high-fat test meal eating (n=35). Effects of activators and inhibitors of adenyl cyclase (AC)-protein kinase A (PKA) signaling and guanylyl cyclase (GC)-protein kinase G (PKG) signaling on FABP4 secretion from mouse 3T3-L1 adipocytes were investigated. FABP4 level significantly declined after the OGTT or a high-fat meal eating, while insulin level was increased. Treatment with low and high glucose concentration or palmitate for 2 h did not affect FABP4 secretion from 3T3-L1 adipocytes. FABP4 secretion was increased by stimulation of lipolysis using isoproterenol, a β3 -adrenoceptor agonist (CL316243), forskolin, dibutyryl-cAMP and atrial natriuretic peptide, and the induced FABP4 secretion was suppressed by insulin or an inhibitor of PKA (H-89), PKG (KT5823) or hormone sensitive lipase (CAY10499). FABP4 is secreted from adipocytes in association with lipolysis regulated by AC-PKA- and GC-PKG-mediated signal pathways. Plasma FABP4 level declines postprandially, and suppression of FABP4 secretion by insulin-induced anti-lipolytic signaling may be involved in this decline in FABP4 level. © 2014 The Obesity Society.

  5. Effect of 5-hydroxytryptamine on duodenal mucosal bicarbonate secretion in mice.

    PubMed

    Tuo, Bi-Guang; Isenberg, Jon I

    2003-09-01

    5-hydroxytryptamine (5-HT) is an important neurotransmitter and intercellular messenger that modulates many gastrointestinal functions. Because little is known about the role of 5-HT in the regulation of duodenal bicarbonate secretion, we examined the role of 5-HT on duodenal bicarbonate secretion and define neural pathways involved in the actions of 5-HT. Duodenal mucosa from National Institutes of Health Swiss mice was stripped of seromuscular layers and mounted in Ussing chambers. The effect of 5-HT on duodenal bicarbonate secretion was determined by the pH stat technique. Acetylcholine (ACh) release from duodenal mucosa was assessed by preincubating the tissue with [(3)H] choline and measuring 5-HT-evoked release of tritium. 5-HT added to the serosal bath markedly stimulated duodenal bicarbonate secretion and short circuit current (Isc) in a dose-dependent manner (10(-7) mol/L to 10(-3) mol/L; P < 0.0001), whereas mucosally added 5-HT was without effect. 5-HT-stimulated bicarbonate secretion was independent of luminal Cl(-). Pretreatment with tetrodotoxin (TTX) (10(-6) mol/L) or atropine (10(-5) mol/L) markedly reduced 5-HT-stimulated duodenal bicarbonate secretion (by 60% and 65%, respectively; P < 0.001) and Isc (by 45% and 27%, respectively; P < 0.001 and P < 0.05). Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME) (10(-3) mol/L), propranolol (10(-5) mol/L), or phentolamine (10(-5) mol/L) did not significantly alter 5-HT-stimulated duodenal mucosal bicarbonate secretion or Isc. 5-HT concentration-dependently evoked ACh release from duodenal mucosal preparations (P < 0.0001). TTX markedly inhibited 5-HT-evoked ACh release (P < 0.001). 5-HT is a potent activator of duodenal mucosal bicarbonate secretion in mice. Duodenal bicarbonate secretion induced by 5-HT in vitro occurs principally via a cholinergic neural pathway.

  6. Prolonged Expression of Secreted Enzymes in Dogs After Liver-Directed Delivery of Sleeping Beauty Transposons: Implications for Non-Viral Gene Therapy of Systemic Disease.

    PubMed

    Aronovich, Elena L; Hyland, Kendra A; Hall, Bryan C; Bell, Jason B; Olson, Erik R; Rusten, Myra Urness; Hunter, David W; Ellinwood, N Matthew; McIvor, R Scott; Hackett, Perry B

    2017-07-01

    The non-viral, integrating Sleeping Beauty (SB) transposon system is efficient in treating systemic monogenic disease in mice, including hemophilia A and B caused by deficiency of blood clotting factors and mucopolysaccharidosis types I and VII caused by α-L-iduronidase (IDUA) and β-glucuronidase (GUSB) deficiency, respectively. Modified approaches of the hydrodynamics-based procedure to deliver transposons to the liver in dogs were recently reported. Using the transgenic canine reporter secreted alkaline phosphatase (cSEAP), transgenic protein in the plasma was demonstrated for up to 6 weeks post infusion. This study reports that immunosuppression of dogs with gadolinium chloride (GdCl 3 ) prolonged the presence of cSEAP in the circulation up to 5.5 months after a single vector infusion. Transgene expression declined gradually but appeared to stabilize after about 2 months at approximately fourfold baseline level. Durability of transgenic protein expression in the plasma was inversely associated with transient increase of liver enzymes alanine transaminase and aspartate transaminase in response to the plasmid delivery procedure, which suggests a deleterious effect of hepatocellular toxicity on transgene expression. GdCl 3 treatment was ineffective for repeat vector infusions. In parallel studies, dogs were infused with potentially therapeutic transposons. Activities of transgenic IDUA and GUSB in plasma peaked at 50-350% of wildtype, but in the absence of immunosuppression lasted only a few days. Transposition was detectable by excision assay only when the most efficient transposase, SB100X, was used. Dogs infused with transposons encoding canine clotting factor IX (cFIX) were treated with GdCl 3 and showed expression profiles similar to those in cSEAP-infused dogs, with expression peaking at 40% wt (2 μg/mL). It is concluded that GdCl 3 can support extended transgene expression after hydrodynamic introduction of SB transposons in dogs, but that alternative regimens will be required to achieve therapeutic levels of transgene products.

  7. Luteal deficiency and embryo mortality in the mare.

    PubMed

    Allen, W R

    2001-08-01

    Four separate components combine to produce the progesterone and biologically active 5 alpha-reduced pregnanes needed to maintain pregnancy in the mare. The primary corpus luteum (CL) is prolonged beyond its cyclical lifespan by the down-regulation of endometrial oxytocin receptors to prevent activation of the luteolytic pathway and its waning progesterone production is supplemented from day 40 of gestation by the formation of a series of accessory CL which develop in the maternal ovaries as a result of the gonadotrophic actions of pituitary FSH and the equine chorionic gonadotrophin (eCG). From around day 100 the allantochorion secretes progesterone and progestagens directly to the endometrium and underlying myometrium and, in the last month of gestation, the enlarging foetal adrenal gland secretes appreciable quantities of pregnenelone which is also utilized by the placenta to synthesize progestagens. Between 10 and 15% of mares undergo foetal death and abortion at some time in gestation and the majority of these losses occur during the first 40 days of gestation when the primary CL is the sole source of progesterone. Yet, all the available evidence suggests that untoward luteolysis is not common in this period and the losses that do occur have other underlying causes. Beyond day 40 the secondary CL receive powerful luteotrophic support from eCG and from day 80-100 until term the supply organ (placenta) and target tissues (endometrium and myometrium) are in direct contact with each other over their entire surface. In the face of this interlocking and failsafe system for progestagen production throughout pregnancy, and despite a paucity of evidence that a deficiency of progesterone production is a cause of pregnancy loss in the mare, it is surprising, and worrying, that annually many thousands of pregnant mares throughout the world are given exogenous progestagen therapy during part or all of their gestation as a form of preventative insurance against the possibility of pregnancy failure. Basic investigative research is required urgently to validate or debunk the practice.

  8. Techniques for Monitoring Razorback Sucker in the Lower Colorado River, Hoover to Parker Dams, 2006-2007, Final Report

    USGS Publications Warehouse

    Mueller, Gordon A.; Wydoski, Richard; Best, Eric; Hiebert, Steve; Lantow, Jeff; Santee, Mark; Goettlicher, Bill; Millosovich, Joe

    2008-01-01

    Trammel netting is generally the accepted method of monitoring razorback sucker in reservoirs, but this method is ineffective for monitoring this fish in rivers. Trammel nets set in the current become fouled with debris, and nets set in backwaters capture high numbers of nontarget species. Nontargeted fish composed 97 percent of fish captured in previous studies (1999-2005). In 2005, discovery of a large spawning aggregation of razorback sucker in midchannel near Needles, Calif., prompted the development of more effective methods to monitor this and possibly other riverine fish populations. This study examined the effectiveness of four methods of monitoring razorback sucker in a riverine environment. Hoop netting, electrofishing, boat surveys, and aerial photography were evaluated in terms of data accuracy, costs, stress on targeted fish, and effect on nontargeted fish as compared with trammel netting. Trammel netting in the riverine portion of the Colorado River downstream of Davis Dam, Arizona-Nevada yielded an average of 43 razorback suckers a year (1999 to 2005). Capture rates averaged 0.5 razorback suckers per staff day effort, at a cost exceeding $1,100 per fish. Population estimates calculated for 2003-2005 were 3,570 (95 percent confidence limits [CL] = 1,306i??i??i??-8,925), 1,768 (CL = 878-3,867) and 1,652 (CL = 706-5,164); wide confidence ranges reflect the small sample size. By-catch associated with trammel netting included common carp, game fish and, occasionally, shorebirds, waterfowl, and muskrats. Hoop nets were prone to downstream drift owing to design and anchoring problems aggravated by hydropower ramping. Tests were dropped after the 2006 field season and replaced with electrofishing. Electrofishing at night during low flow and when spawning razorback suckers moved to the shoreline proved extremely effective. In 2006 and 2007, 263 and 299 (respectively) razorback suckers were taken. Capture rates averaged 8.3 razorback suckers per staff day at a cost of $62 per fish. The adult population was estimated at 1,196 (925-1,546) fish. Compared with trammel netting, confidence limits narrowed substantially, from +or- 500 percent to +or- 30 percent, reflecting more precise estimates. By-catch was limited to two common carp. No recreational game fish, waterfowl, or mammals were captured or handled during use of electrofishing. Aerial photography (2006 and 2007) suggested an annual average of 580 fish detected on imagery. Identification of species was not possible; carp commonly have been mistaken for razorback sucker. Field verification determined that the proportion of razorback suckers to other fish was 3:1. On that basis, we estimated 435 razorback suckers were photographed, which equals 8.4 razorback suckers per staff day at a cost of $78 per fish. The data did not lend itself to population estimates. Fish were more easily identified from boats, where their lateral rather than their dorsal aspect is visible. On average, 888 razorback suckers were positively identified each year. Observation rates averaged 29.6 razorback suckers per staff day at a cost less than $18 per fish observed. Sucker densities averaged 20.5 and 9.6 fish/hectare which equated to an average spawning population at Needles, Calif., of 2,520 in 2006 and 1152 in 2007. The lower 2007 estimate reflected a refinement in sampling approach which removed a sampling bias. Electrofishing and boat surveys were more cost effective than other methods tested, and they provided more accurate information without the by-catch associated with trammel netting. However, they provided different types of data. Handling fish may be necessary for research purposes but unnecessary for general trend analysis. Electrofishing was extremely effective but can harm fish if not used with caution. Unnecessary electrofishing increases the likelihood of spinal damage and possible damage to eggs and potential young, and it may alter spawning behavior or duration. B

  9. Nitric oxide inhibition of NaCl secretion in the opercular epithelium of seawater-acclimated killifish, Fundulus heteroclitus.

    PubMed

    Gerber, Lucie; Jensen, Frank B; Madsen, Steffen S; Marshall, William S

    2016-11-01

    Nitric oxide (NO) modulates epithelial ion transport pathways in mammals, but this remains largely unexamined in fish. We explored the involvement of NO in controlling NaCl secretion by the opercular epithelium of seawater killifish using an Ussing chamber approach. Pharmacological agents were used to explore the mechanism(s) triggering NO action. A modified Biotin-switch technique was used to investigate S-nitrosation of proteins. Stimulation of endogenous NO production via the nitric oxide synthase (NOS) substrate l-arginine (2.0 mmol l -1 ), and addition of exogenous NO via the NO donor SNAP (10 -6 to 10 -4  mol l -1 ), decreased the epithelial short-circuit current (I sc ). Inhibition of endogenous NO production by the NOS inhibitor l-NAME (10 -4  mol l -1 ) increased I sc and revealed a tonic control of ion transport by NO in unstimulated opercular epithelia. The NO scavenger PTIO (10 -5  mol l -1 ) supressed the NO-mediated decrease in I sc , and confirmed that the effect observed was elicited by release of NO. The effect of SNAP on I sc was abolished by inhibitors of the soluble guanylyl cyclase (sGC), ODQ (10 -6  mol l -1 ) and Methylene Blue (10 -4  mol l -1 ), revealing NO signalling via the sGC/cGMP pathway. Incubation of opercular epithelium and gill tissues with SNAP (10 -4  mol l -1 ) led to S-nitrosation of proteins, including Na + /K + -ATPase. Blocking of NOS with l-NAME (10 -6  mol l -1 ) or scavenging of NO with PTIO during hypotonic shock suggested an involvement of NO in the hypotonic-mediated decrease in I sc Yohimbine (10 -4  mol l -1 ), an inhibitor of α 2 -adrenoceptors, did not block NO effects, suggesting that NO is not involved in the α-adrenergic control of NaCl secretion. © 2016. Published by The Company of Biologists Ltd.

  10. Effect of progesterone from induced corpus luteum on the characteristics of a dominant follicle in dromedary camels (Camelus dromedarius).

    PubMed

    Manjunatha, B M; David, C G; Pratap, N; Al-Bulushi, Samir; Hago, B E

    2012-06-01

    The present study was carried out to elucidate the effect of progesterone (P4) from the induced corpus luteum (CL) on the characteristics of the dominant follicle (DF) in dromedary camels (Camelus dromedarius). Ovarian follicular and induced CL dynamics were monitored by transrectal ultrasonography in eight camels during the peak breeding season. The characteristics of the DF were monitored daily from the day of emergence into a wave, until it appeared to lose its dominance and the DF of a subsequent wave grew to a diameter of 13-17 mm. At this stage ovulation was induced by hCG and the DF was monitored every 8 h for 48 h. After ovulation, CL dynamics and follicular development (emergence of a new wave, growth and mature phase of the selected DF) were monitored daily. Blood samples were collected during each ultrasound examination to study the P4 profile in these animals. The CL developed to a maximum size (22.55 ± 3.24 mm) with a peak concentration of P4 (4.60 ± 2.57 ng/ml) 7 days after ovulation. The size of the CL was positively correlated with the P4 concentration (r = 0.612) during the different stages of the CL dynamics. The presence of CL did not affect the linear growth rate, duration of growth and mature phases of the DF. The development of the DF to its maximum size during its mature phase and inter-wave interval were not affected by the P4 secreted by the induced CL. In conclusion, there is no evidence from this study to suggest that P4 from induced CL altered the characteristics of a DF in dromedary camels. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Changes in hydraulic conductance cause the difference in growth response to short-term salt stress between salt-tolerant and -sensitive black gram (Vigna mungo) varieties.

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Ookawa, Taiichiro; Kanekatsu, Motoki; Hirasawa, Tadashii

    2016-04-01

    Black gram (Vigna mungo) is an important crop in Asia, However, most black gram varieties are salt-sensitive. The causes of varietal differences in salt-induced growth reduction between two black gram varieties, 'U-Taung-2' (salt-tolerant; BT) and 'Mut Pe Khaing To' (salt-sensitive; BS), were examined the potential for the first step toward the genetic improvement of salt tolerance. Seedlings grown in vermiculite irrigated with full-strength Hoagland solution were treated with 0mM NaCl (control) or 225 mM NaCl for up to 10 days. In the 225 mM NaCl treatment, plant growth rate, net assimilation rate, mean leaf area, leaf water potential, and leaf photosynthesis were reduced more in BS than in BT plants. Leaf water potential was closely related to leaf photosynthesis, net assimilation rate, and increase in leaf area. In response to salinity stress, hydraulic conductance of the root, stem, and petiole decreased more strongly in BS than in BT plants. The reduction in stem and petiole hydraulic conductance was caused by cavitation, whereas the reduction in root hydraulic conductance in BS plants was caused by a reduction in root surface area and hydraulic conductivity. We conclude that the different reduction in hydraulic conductance is a cause of the differences in the growth response between the two black gram varieties under short-term salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Calcium transport in turtle bladder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabatini, S.; Kurtzman, N.A.

    1987-12-01

    Unidirectional {sup 45}Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J{sup net}{sub Ca}) was secretory (serosa to mucosa). Ouabain reversed J{sup net}{sub Ca} to an absorptive flux. Amiloride reduced both fluxes such that J{sup net}{sub Ca} was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J{sup net}{sub Ca} decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J{sup net}{sub Ca} was similar inmore » magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue {sup 45}Ca content was {approx equal}30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca{sup 2+}-ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na{sup +}-K{sup +}-ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa.« less

  13. Autonomous Information Unit for Fine-Grain Data Access Control and Information Protection in a Net-Centric System

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Woo, Simon S.; James, Mark; Paloulian, George K.

    2012-01-01

    As communication and networking technologies advance, networks will become highly complex and heterogeneous, interconnecting different network domains. There is a need to provide user authentication and data protection in order to further facilitate critical mission operations, especially in the tactical and mission-critical net-centric networking environment. The Autonomous Information Unit (AIU) technology was designed to provide the fine-grain data access and user control in a net-centric system-testing environment to meet these objectives. The AIU is a fundamental capability designed to enable fine-grain data access and user control in the cross-domain networking environments, where an AIU is composed of the mission data, metadata, and policy. An AIU provides a mechanism to establish trust among deployed AIUs based on recombining shared secrets, authentication and verify users with a username, X.509 certificate, enclave information, and classification level. AIU achieves data protection through (1) splitting data into multiple information pieces using the Shamir's secret sharing algorithm, (2) encrypting each individual information piece using military-grade AES-256 encryption, and (3) randomizing the position of the encrypted data based on the unbiased and memory efficient in-place Fisher-Yates shuffle method. Therefore, it becomes virtually impossible for attackers to compromise data since attackers need to obtain all distributed information as well as the encryption key and the random seeds to properly arrange the data. In addition, since policy can be associated with data in the AIU, different user access and data control strategies can be included. The AIU technology can greatly enhance information assurance and security management in the bandwidth-limited and ad hoc net-centric environments. In addition, AIU technology can be applicable to general complex network domains and applications where distributed user authentication and data protection are necessary. AIU achieves fine-grain data access and user control, reducing the security risk significantly, simplifying the complexity of various security operations, and providing the high information assurance across different network domains.

  14. Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds.

    PubMed

    Huang, Anthony Y; Wu, Sandy Y

    2018-04-01

    Capsaicin-mediated modulation of taste nerve responses is thought to be produced indirectly by the actions of neuropeptides, for example, CGRP and substance P (SP), on taste cells implying they play a role in taste sensitivity. During the processing of gustatory information in taste buds, CGRP shapes peripheral taste signals via serotonergic signalling. The underlying assumption has been that SP exerts its effects on taste transmitter secretion in taste buds of mice. To test this assumption, we investigated the net effect of SP on taste-evoked ATP secretion from mouse taste buds, using functional calcium imaging with CHO cells expressing high-affinity transmitter receptors as cellular biosensors. Our results showed that SP elicited PLC activation-dependent intracellular Ca 2+ transients in taste cells via neurokinin 1 receptors, most likely on glutamate-aspartate transporter-expressing Type I cells. Furthermore, SP caused Type I cells to secrete GABA. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the current results indicate that SP elicited secretion of GABA, which provided negative feedback onto Type II (receptor) cells to reduce taste-evoked ATP secretion. These findings are consistent with a role for SP as an inhibitory transmitter that shapes the peripheral taste signals, via GABAergic signalling, during the processing of gustatory information in taste buds. Notably, the results suggest that SP is intimately associated with GABA in mammalian taste signal processing and demonstrate an unanticipated route for sensory information flow within the taste bud. © 2018 The British Pharmacological Society.

  15. Everolimus as first line therapy for pancreatic neuroendocrine tumours: current knowledge and future perspectives.

    PubMed

    Gallo, Marco; Malandrino, Pasqualino; Fanciulli, Giuseppe; Rota, Francesca; Faggiano, Antongiulio; Colao, Annamaria

    2017-07-01

    Everolimus has been shown to be effective for advanced pancreatic neuroendocrine tumours (pNETs), but its positioning in the therapeutic algorithm for pNETs is matter of debate. With the aim to shed light on this point, we performed an up-to-date critical review taking into account the results of both retrospective and prospective published studies, and the recommendations of international guidelines. In addition, we performed an extensive search on the Clinical Trial Registries databases worldwide, to gather information on the ongoing clinical trials related to this specific topic. We identified eight retrospective published studies, two prospective published studies, and five registered clinical trials. Moreover, we analyzed the content of four widespread international guidelines. Our critical review confirms the lack of high-quality data to recommend everolimus as the first line therapy for pNETs. The ongoing clinical trials reported in this review will hopefully help clinicians, in the near future, to better evaluate the role of everolimus as the first line therapy for pNETs. However, at the moment, there is already enough evidence to recommend everolimus as the first line therapy for patients with symptomatic malignant unresectable insulin-secreting pNETs, to control the endocrine syndrome regardless of tumour growth.

  16. Gastric mucosal protective mechanisms: roles of epithelial bicarbonate and mucus secretions.

    PubMed

    Garner, A; Flemström, G; Allen, A; Heylings, J R; McQueen, S

    1984-01-01

    Secretion of HCO3 (amounting to 2-10% of maximum H+ secretion) in conjunction with the adherent mucus gel layer (functioning as a mixing barrier) protects gastric mucosa from luminal acid by a process of surface neutralization. Gastric HCO3 secretion is augmented by cholinergic agonists, prostaglandins and low luminal pH. Ulcerogens attenuate HCO3 secretion although passive diffusion of alkali consequent upon an increase in mucosal permeability may mask these inhibitory actions. Studies in vitro indicate that HCO3 transport in the stomach is dependent on oxidative metabolism, carbonic anhydrase activity and involves a CL exchange mechanism. Mucus, synthesized and released from epithelial cells, adheres to the mucosal surface as a thin (less than 80 microns in rat) but continuous gel layer. Prostaglandins and carbachol induced release of preformed mucus and thereby increase thickness, whereas acute exposure to ulcerogens has little effect on overall dimensions of the surface mucus layer. Measurements of pH gradients adjacent to gastric mucosa indicate that the disposal of luminal H+ occurs by extracellular neutralization. However, the fall in pH at the apical cell membrane when luminal pH is low (pH 1.5) suggests that while a mucus-bicarbonate barrier comprises the first line of mucosal defence, other factors are involved in the overall process of mucosal protection in the stomach.

  17. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    PubMed

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  18. Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): Controlling relative kinetics for high productivity.

    PubMed

    Yu, Iris K M; Tsang, Daniel C W; Yip, Alex C K; Chen, Season S; Wang, Lei; Ok, Yong Sik; Poon, Chi Sun

    2017-08-01

    This study aimed to maximize the valorization of bread waste, a typical food waste stream, into hydroxymethylfurfural (HMF) by improving our kinetic understanding. The highest HMF yield (30mol%) was achieved using SnCl 4 as catalyst, which offered strong derived Brønsted acidity and moderate Lewis acidity. We evaluated the kinetic balance between these acidities to facilitate faster desirable reactions (i.e., hydrolysis, isomerization, and dehydration) relative to undesirable reactions (i.e., rehydration and polymerization). Such catalyst selectivity of SnCl 4 , AlCl 3 , and FeCl 3 was critical in maximizing HMF yield. Higher temperature made marginal advancement by accelerating the undesirable reactions to a similar extent as the desirable pathways. The polymerization-induced metal-impregnated high-porosity carbon was a possible precursor of biochar-based catalyst, further driving up the economic potential. Preliminary economic analysis indicated a net gain of USD 43-236 per kilogram bread waste considering the thermochemical-conversion cost and chemical-trading revenue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Lanreotide inhibits human jejunal secretion induced by prostaglandin E1 in healthy volunteers.

    PubMed

    Sobhani, I; René, E; Ramdani, A; Bayod, F; Sabbagh, L C; Thomas, F; Mignon, M

    1996-02-01

    1. Somatostatin inhibits hormonal secretions in the gastrointestinal tract. Somatostatin analogues are used in the treatment of VIPome-related watery diarrhoea. In addition, more than 10% of patients with AIDS suffer from diarrhoea likely due to the increased intestinal secretion of water and ions. However, the direct effect of somatostatin on the flux of water and ions in the intestine has not been, so far, analyzed in vivo. The aim of the present study was to evaluate the effect of lanreotide, a somatostatin analogue, on the movements of water and ions in the jejunum in man. 2. Accordingly, 10 healthy volunteers (age 18-35 years, mean 27) and two patients with AIDS (26 and 33 years) suffering from water diarrhoea (> 800 ml day-1) underwent intestinal perfusion using a four lumen tube with proximal occluding balloon. The segment tested was 25 cm long. The jejunum was infused by an isotonic control saline solution containing polyethylene glycol (PEG) as nonabsorbable marker. Basal jejunal secretions were measured in all subjects. Prostaglandin E1 (PGE1) was administered intraluminally to stimulate jejunal secretion in healthy volunteers. The effect of intravenous lanreotide on the jejunal PGE1-induced secretions of water and electrolytes was analysed in healthy subjects and on the basal secretions in AIDS patients. Each period was analyzed on the basis of three (10 min) successive intestinal juice collections after 20-30 min equilibration time. The antisecretory effect of lanreotide was evaluated in each subject as the difference between fluxes compared to the control period. 3. In healthy volunteers, PGE1 induced secretion of H2O, Na+, K+ and Cl- in the jejunum and lanreotide reduced significantly PGE1-induced response. In both AIDS patients basal fluxes of water and ions were reduced by lanreotide in a dose-dependent manner. 4. Somatostatin can reduce stimulated-jejunal secretion of ions and water in normal subjects and may improve water diarrhoea in AIDS patients.

  20. Intratesticular hypertonic sodium chloride solution treatment as a method of chemical castration in cattle.

    PubMed

    Neto, Olmiro Andrade; Gasperin, Bernardo G; Rovani, Monique T; Ilha, Gustavo F; Nóbrega, Janduí E; Mondadori, Rafael G; Gonçalves, Paulo B D; Antoniazzi, Alfredo Q

    2014-10-15

    Castration of male calves is necessary for trading to facilitate handling and prevent reproduction. However, some methods of castration are traumatic and lead to economic losses because of infection and myiasis. The objective of the present study was to evaluate the efficiency of intratesticular injection (ITI) of hypertonic sodium chloride (NaCl; 20%) solution in male calf castration during the first weeks of life. Forty male calves were allocated to one of the following experimental groups: negative control-surgically castrated immediately after birth; positive control -intact males; G1-ITI from 1- to 5-day old; G2-ITI from 15- to 20-day old; and G3-ITI from 25- to 30-day old. Intratesticular injection induced coagulative necrosis of Leydig cells and seminiferous tubules leading to extensive fibrosis. Testosterone secretion and testicular development were severely impaired in 12-month-old animals from G1 and G2 groups (P<0.05), in which no testicular structure and sperm cells were observed during breeding soundness evaluation. Rectal and scrotal temperatures were not affected by different procedures. In conclusion, ITI of hypertonic NaCl solution induces sterility and completely suppresses testosterone secretion when performed during the first 20 days of life. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. NaCl osmotic perturbation can modulate hydration control in rabbit cornea.

    PubMed

    Ruberti, Jeffrey W; Klyce, Stephen D

    2003-03-01

    The corneal endothelium transports solute from the stroma to the aqueous humor, maintaining corneal hydration. Currently, little is known about how this active transport system is controlled. The purpose of this study is to investigate in greater detail the corneal response to small NaCl osmotic perturbations using a more refined automatic thickness measurement system in a search for response signatures of transport control. Adult New Zealand White rabbit corneas were debrided of their epithelium, excised and mounted in perfusion chambers. The endothelium, thus isolated, was bathed in isotonic Glutathione Bicarbonate Ringer's (GBR) solution and the bare anterior stroma was covered with silicone oil. Following stabilization in isotonic GBR, the endothelial perfusate was altered by +/-15 mOsm or+/-45 mOsm for 1 hr and 45 min by addition or removal of NaCl and returned (reversal) to GBR for 1 hr and 45 min. An enhanced, automatic scanning specular microscope monitored stromal thickness. The effective membrane transport coefficients were determined from the stromal thickness vs. time curves using an established numerical model of corneal hydration dynamics. It was found that the small (+/-15 mOsm) NaCl perturbations of the rabbit corneal endothelium resulted in a rapid trans-endothelial stromal volume control response that was not reversible after return to GBR. Long after the expected dissipation of the induced transients, this thickness 'controlling' response ultimately resulted in a sustained net thinning of 14 microm following the hypotonic perturbation and reversal, and a net swelling of 16 microm following the hypertonic perturbation and reversal. Model calculations indicated that the change induced by the perturbation could be explained by an immediate and persistent reduction of the passive endothelial NaCl permeability by 26% for the -15 mOsm perturbation compared to the +15 mOsm perturbation. This change persisted even after return to GBR. In contrast, the larger (+/-45 mOsm) perturbations did not elicit a similar response consistently. Our data suggest that trans-endothelial fluid transport can be rapidly modulated to control stromal hydration in response to small NaCl osmotic stresses in a way that cushions the shock and reduces the change in corneal thickness. Moreover, this behavior is not reversible in the short term, and may assist the regulation of corneal hydration homeostatically.

  2. Environment or Development? Lifetime Net CO2 Exchange and Control of the Expression of Crassulacean Acid Metabolism in Mesembryanthemum crystallinum1

    PubMed Central

    Winter, Klaus; Holtum, Joseph A.M.

    2007-01-01

    The relative influence of plant age and environmental stress signals in triggering a shift from C3 photosynthesis to Crassulacean acid metabolism (CAM) in the annual halophytic C3-CAM species Mesembryanthemum crystallinum was explored by continuously monitoring net CO2 exchange of whole shoots from the seedling stage until seed set. Plants exposed to high salinity (400 mm NaCl) in hydroponic culture solution or grown in saline-droughted soil acquired between 11% and 24% of their carbon via net dark CO2 uptake involving CAM. In contrast, plants grown under nonsaline, well-watered conditions were capable of completing their life cycle by operating in the C3 mode without ever exhibiting net CO2 uptake at night. These observations are not consistent with the widely expressed view that the induction of CAM by high salinity in M. crystallinum represents an acceleration of preprogrammed developmental processes. Rather, our study demonstrates that the induction of the CAM pathway for carbon acquisition in M. crystallinum is under environmental control. PMID:17056756

  3. Environment or development? Lifetime net CO2 exchange and control of the expression of Crassulacean acid metabolism in Mesembryanthemum crystallinum.

    PubMed

    Winter, Klaus; Holtum, Joseph A M

    2007-01-01

    The relative influence of plant age and environmental stress signals in triggering a shift from C(3) photosynthesis to Crassulacean acid metabolism (CAM) in the annual halophytic C(3)-CAM species Mesembryanthemum crystallinum was explored by continuously monitoring net CO(2) exchange of whole shoots from the seedling stage until seed set. Plants exposed to high salinity (400 mm NaCl) in hydroponic culture solution or grown in saline-droughted soil acquired between 11% and 24% of their carbon via net dark CO(2) uptake involving CAM. In contrast, plants grown under nonsaline, well-watered conditions were capable of completing their life cycle by operating in the C(3) mode without ever exhibiting net CO(2) uptake at night. These observations are not consistent with the widely expressed view that the induction of CAM by high salinity in M. crystallinum represents an acceleration of preprogrammed developmental processes. Rather, our study demonstrates that the induction of the CAM pathway for carbon acquisition in M. crystallinum is under environmental control.

  4. Investigation of the hydrochlorination of SiCL4

    NASA Technical Reports Server (NTRS)

    Mui, J. Y. P.

    1982-01-01

    Reaction kinetic measurements on the hydrochlorination of SiCl4 and metallurgical grade (m.g.) silicon metal were made at a wide range of experimental variables. The effect of pressure on the reaction rate was studied at 25 psig, 100 psig, 150 psig and 200 psig, respectively. Results of these experiments show a large pressure effect on the hydrochlorination reaction. As expected, higher pressures produce a higher equilibrium SiHC13 conversion, since the hydrochlorination reaction results in a net volume contraction as product SiHC1 is formed. However, the reaction rate, namely, the rate at which the hydrochlorination reaction reaches its equilibrium SiHC13 conversion, was found to be much faster at low pressures.

  5. Calcimimetic R568 inhibits tetrodotoxin-sensitive colonic electrolyte secretion and reduces c-fos expression in myenteric neurons.

    PubMed

    Sun, Xiangrong; Tang, Lieqi; Winesett, Steven; Chang, Wenhan; Cheng, Sam Xianjun

    2018-02-01

    Calcium-sensing receptor (CaSR) is expressed on neurons of both submucosal and myenteric plexuses of the enteric nervous system (ENS) and the CaSR agonist R568 inhibited Cl - secretion in intestine. The purpose of this study was to localize the primary site of action of R568 in the ENS and to explore how CaSR regulates secretion through the ENS. Two preparations of rat proximal and distal colon were used. The full-thickness preparation contained both the submucosal and myenteric plexuses, whereas for the "stripped" preparation the myenteric plexus with the muscle layers was removed. Both preparations were mounted onto Ussing chambers and Cl - secretory responses were compared by measuring changes in short circuit current (I sc ). Two tissue-specific CaSR knockouts (i.e., neuron-specific vs. enterocyte-specific) were generated to compare the effect of R568 on expression of c-fos protein in myenteric neurons by immunocytochemistry. In full-thickness colons, tetrodotoxin (TTX) inhibited I sc , both in proximal and distal colons. A nearly identical inhibition was produced by R568. However, in stripped preparations, while the effect of TTX on I sc largely remained, the effect of R568 was nearly completely eliminated. In keeping with this, R568 reduced c-fos protein expression only in myenteric neurons of wild type mice and mutant mice that contained CaSR in neurons (i.e., villin Cre/Casr flox/flox mice), but not in myenteric neurons of nestin Cre/Casr flox/flox mice in which neuronal cell CaSR was eliminated. These results indicate that R568 exerts its anti-secretory effects predominantly via CaSR-mediated inhibition of neuronal activity in the myenteric plexus. Published by Elsevier Inc.

  6. Modulation of epidermal growth factor effects on epithelial ion transport by intestinal trefoil factor.

    PubMed Central

    Chinery, R.; Cox, H. M.

    1995-01-01

    1. The direct epithelial effects of epidermal growth factor (EGF) and its modulation by intestinal trefoil factor (ITF) have been studied in a human colonic adenocarcinoma cell line called Colony-29 (Col-29). 2. When grown in culture as confluent monolayers and voltage-clamped in Ussing chambers, these epithelia responded with an increase in short circuit current (SCC) to basolateral as well as to apically applied EGF although the latter responses (at 10 nM) were only 25% of those observed following basolateral peptide. 3. Recombinant rat ITF (added to the basolateral surface) did not alter basal SCC levels, but it did enhance the electrogenic effects of basolateral EGF. The EC50 values for EGF-induced ion transport were 0.25 nM in control, and 0.26 nM in ITF pretreated Col-29 epithelia. A significant increase in the size of EGF responses (0.1 nM-10 nM) was observed in the presence of 10 nM ITF and the half-maximal concentration for this modulatory effect of ITF was 7.6 nM. 4. The EGF-induced increases in SCC were partially inhibited (50%) by piretanide pretreatment, indicating that Cl- secretion is involved. EGF responses either in the presence or absence of ITF were also significantly reduced (84% and 66% respectively) by the cyclo-oxygenase inhibitor, piroxicam, therefore implicating prostaglandins as mediators of EGF-stimulated anion secretion. 5. We conclude that in confluent Col-29 epithelia, basolateral EGF stimulates a predominantly prostaglandin-dependent increase in Cl- secretion that is enhanced by basolateral ITF, and that these two peptides may interact in normal and damaged mucosa to alter the local apical solute and fluid environment. PMID:7647987

  7. Excretion of NaCl and KCl loads in mosquitoes. 2. Effects of the small molecule Kir channel modulator VU573 and its inactive analog VU342

    PubMed Central

    Rouhier, Matthew F.; Hine, Rebecca M.; Park, Seokhwan Terry; Raphemot, Rene; Denton, Jerod; Piermarini, Peter M.

    2014-01-01

    The effect of two small molecules VU342 and VU573 on renal functions in the yellow fever mosquito Aedes aegypti was investigated in vitro and in vivo. In isolated Malpighian tubules, VU342 (10 μM) had no effect on the transepithelial secretion of Na+, K+, Cl−, and water. In contrast, 10 μM VU573 first stimulated and then inhibited the transepithelial secretion of fluid when the tubules were bathed in Na+-rich or K+-rich Ringer solution. The early stimulation was blocked by bumetanide, suggesting the transient stimulation of Na-K-2Cl cotransport, and the late inhibition of fluid secretion was consistent with the known block of AeKir1, an Aedes inward rectifier K+ channel, by VU573. VU342 and VU573 at a hemolymph concentration of about 11 μM had no effect on the diuresis triggered by hemolymph Na+ or K+ loads. VU342 at a hemolymph concentration of 420 μM had no effect on the diuresis elicited by hemolymph Na+ or K+ loads. In contrast, the same concentration of VU573 significantly diminished the Na+ diuresis by inhibiting the urinary excretion of Na+, Cl−, and water. In K+-loaded mosquitoes, 420 μM VU573 significantly diminished the K+ diuresis by inhibiting the urinary excretion of K+, Na+, Cl−, and water. We conclude that 1) the effects of VU573 observed in isolated Malpighian tubules are overwhelmed in vivo by the diuresis triggered with the coinjection of Na+ and K+ loads, and 2) at a hemolymph concentration of 420 μM VU573 affects Kir channels systemically, including those that might be involved in the release of diuretic hormones. PMID:25056106

  8. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    PubMed

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action. Copyright 2006 Wiley-Liss, Inc.

  9. A rare case of an ACTH/CRH co-secreting midgut neuroendocrine tumor mimicking Cushing's disease

    PubMed Central

    Streuli, Regina; Krull, Ina; Brändle, Michael; Kolb, Walter; Stalla, Günter; Theodoropoulou, Marily; Enzler-Tschudy, Annette

    2017-01-01

    Ectopic ACTH/CRH co-secreting tumors are a very rare cause of Cushing’s syndrome and only a few cases have been reported in the literature. Differentiating between Cushing’s disease and ectopic Cushing’s syndrome may be particularly difficult if predominant ectopic CRH secretion leads to pituitary corticotroph hyperplasia that may mimic Cushing’s disease during dynamic testing with both dexamethasone and CRH as well as bilateral inferior petrosal sinus sampling (BIPSS). We present the case of a 24-year-old man diagnosed with ACTH-dependent Cushing’s syndrome caused by an ACTH/CRH co-secreting midgut NET. Both high-dose dexamethasone testing and BIPSS suggested Cushing’s disease. However, the clinical presentation with a rather rapid onset of cushingoid features, hyperpigmentation and hypokalemia led to the consideration of ectopic ACTH/CRH-secretion and prompted a further workup. Computed tomography (CT) of the abdomen revealed a cecal mass which was identified as a predominantly CRH-secreting neuroendocrine tumor. To the best of our knowledge, this is the first reported case of an ACTH/CRH co-secreting tumor of the cecum presenting with biochemical features suggestive of Cushing’s disease. Learning points: The discrimination between a Cushing’s disease and ectopic Cushing’s syndrome is challenging and has many caveats. Ectopic ACTH/CRH co-secreting tumors are very rare. Dynamic tests as well as BIPSS may be compatible with Cushing’s disease in ectopic CRH-secretion. High levels of CRH may induce hyperplasia of the corticotroph cells in the pituitary. This could be the cause of a preserved pituitary response to dexamethasone and CRH. Clinical features of ACTH-dependent hypercortisolism with rapid development of Cushing’s syndrome, hyperpigmentation, high circulating levels of cortisol with associated hypokalemia, peripheral edema and proximal myopathy should be a warning flag of ectopic Cushing’s syndrome and lead to further investigations. PMID:28680643

  10. Array of Laminated Waveguides for Implementation in LTCC Technology

    DTIC Science & Technology

    2006-11-01

    Novembre 2004, pp 581-589. [ 13 ] Clénet, M., “Study of a Ka-Band Yagi-like antenna array buried in LTCC material”, JINA, 12-14 November 2002, Nice...public release, distribution unlimited 13 . SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16...2.3.1 Excitation coefficients ....................................................................... 13 2.3.2 Boresight radiation patterns

  11. Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas and acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist.

    PubMed

    Uchida, Masahiko; Ito, Tetsuhide; Nakamura, Taichi; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Takayanagi, Ryoichi; Jensen, Robert T

    2014-07-01

    Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1), in acute/chronic pancreatitis; however, the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues and the effects of CX3CL1 on activated PSCs. CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues was evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated PSCs were examined with real-time polymerase chain reaction, BrdU (5-bromo-2-deoxyuridine) assays, and Western blotting. In normal pancreas, acinar cells expressed CX3CR1 within granule-like formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal, and activated PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1 did not induce inflammatory genes expression in activated PSCs, but induced proliferation. CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis, and the CX3CR1s are activated. CX3CL1 induces proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSC proliferation in pancreatitis where CX3CL1 levels are elevated.

  12. Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas, acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist

    PubMed Central

    Uchida, Masahiko; Ito, Tetsuhide; Nakamura, Taichi; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Takayanagi, Ryoichi; Jensen, Robert T.

    2014-01-01

    Objectives Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1) in acute/chronic pancreatitis, however the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues, and the effects of CX3CL1 on activated-PSCs. Methods CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues were evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated-PSCs were examined with realtime-PCR, BrdU assays and Western Blotting. Results In normal pancreas, acinar cells expressed CX3CR1 within granule-like-formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal and activated-PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1, did not induce inflammatory-genes expression in activated-PSCs, but induced proliferation. Conclusions CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis and the CX3CR1s are activated. CX3CL1 induces proliferation of activated-PSCs without increasing release of inflammatory-mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSCs proliferation in pancreatitis where CX3CL1 levels are elevated. PMID:24681877

  13. Atomic force microscopy and Langmuir-Blodgett monolayer technique to assess contact lens deposits and human meibum extracts.

    PubMed

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  14. Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow.

    PubMed

    Yamashita, Hiromichi; Kamada, Daichi; Shirasuna, Koumei; Matsui, Motozumi; Shimizu, Takashi; Kida, Katsuya; Berisha, Bajram; Schams, Dieter; Miyamoto, Akio

    2008-09-01

    Active angiogenesis and progesterone (P) synthesis occur in parallel during development of the corpus luteum (CL). Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are known to stimulate angiogenesis and P synthesis in vitro. The aim of the present study was to investigate the impact of bFGF or VEGF on the CL development in the cow by using a specific antibody against bFGF or VEGF. bFGF antibody, VEGF antibody, or saline as a control (n = 4 cows/treatment) were injected directly into the CL immediately after ovulation (Day 1), and the treatment was continued for 3 times/day over 7 days. Luteal biopsies were applied on Day 8 of the estrous cycle to determine the expression of genes associated with P synthesis and angiogenesis. Intraluteal injections with the bFGF antibody or the VEGF antibody markedly decreased the CL volume, plasma P concentration and StAR mRNA expression. bFGF antibody treatment decreased the mRNA expression of bFGF, FGF receptor-1, VEGF120, and angiopoietin (ANPT)-1, and increased ANPT-2/ANPT-1 ratio. However, VEGF antibody treatment decreased ANPT-2 mRNA expression and ANPT-2/ANPT-1 ratio. These results indicate that local neutralization of bFGF or VEGF changes genes regulating angiogenesis and P synthesis, and remarkably suppresses the CL size and P secretion during the development of CL in the cow, supporting the concept that bFGF and VEGF control the CL formation and function.

  15. Xenin Augments Duodenal Anion Secretion via Activation of Afferent Neural Pathways

    PubMed Central

    Kaji, Izumi; Akiba, Yasutada; Kato, Ikuo; Maruta, Koji; Kuwahara, Atsukazu

    2017-01-01

    Xenin-25, a neurotensin (NT)-related anorexigenic gut hormone generated mostly in the duodenal mucosa, is believed to increase the rate of duodenal ion secretion, because xenin-induced diarrhea is not present after Roux-en-Y gastric bypass surgery. Because the local effects of xenin on duodenal ion secretion have remained uninvestigated, we thus examined the neural pathways underlying xenin-induced duodenal anion secretion. Intravenous infusion of xenin-8, a bioactive C-terminal fragment of xenin-25, dose dependently increased the rate of duodenal HCO3− secretion in perfused duodenal loops of anesthetized rats. Xenin was immunolocalized to a subset of enteroendocrine cells in the rat duodenum. The mRNA of the xenin/NT receptor 1 (NTS1) was predominantly expressed in the enteric plexus, nodose and dorsal root ganglia, and in the lamina propria rather than in the epithelium. The serosal application of xenin-8 or xenin-25 rapidly and transiently increased short-circuit current in Ussing-chambered mucosa-submucosa preparations in a concentration-dependent manner in the duodenum and jejunum, but less so in the ileum and colon. The selective antagonist for NTS1, substance P (SP) receptor (NK1), or 5-hydroxytryptamine (5-HT)3, but not NTS2, inhibited the responses to xenin. Xenin-evoked Cl- secretion was reduced by tetrodotoxin (TTX) or capsaicin-pretreatment, and abolished by the inhibitor of TTX-resistant sodium channel Nav1.8 in combination with TTX, suggesting that peripheral xenin augments duodenal HCO3− and Cl− secretion through NTS1 activation on intrinsic and extrinsic afferent nerves, followed by release of SP and 5-HT. Afferent nerve activation by postprandial, peripherally released xenin may account for its secretory effects in the duodenum. PMID:28115552

  16. Effect of decreasing temperature on the strobilation of Aurelia sp.1

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Yu, Zhigang; Zhen, Yu; Wang, Guoshan; Wang, Xungong; Mi, Tiezhu

    2018-03-01

    The worldwide proliferation of marine jellyfish has become a crucial ecological and social issue, and as a cosmopolitan species, Aurelia spp. have received increasing scientific attentions. In the present study, the responses of strobilation in Aurelia sp.1 to decreasing temperature were illuminated through the expression levels of the retinoid x receptor (RxR) gene and the gene encoding a secreted protein, CL390. We observed that a higher final temperature decreased the strobilation prophase and strobilation interphase periods, and the growth rate of the strobilae ratio increased with increasing CL390 gene expression. The ratio of strobilae at 12°C was highest, and the strobilae showed the higher releasing ratios at both 12°C and 16°C compared with those at 4°C and 8°C. Furthermore, more ephyrae were released at the higher final temperature. Additionally, up-regulation and down-regulation of the CL390 gene were observed in response to the four decreasing temperatures. Although the four CL390 gene transcript levels increased more significantly than the transcript levels of the RxR gene, similar trends were observed in both genes.

  17. The Bimodal Lifestyle of Intracellular Salmonella in Epithelial Cells: Replication in the Cytosol Obscures Defects in Vacuolar Replication

    PubMed Central

    Steele-Mortimer, Olivia

    2012-01-01

    Salmonella enterica serovar Typhimurium invades and proliferates within epithelial cells. Intracellular bacteria replicate within a membrane bound vacuole known as the Salmonella containing vacuole. However, this bacterium can also replicate efficiently in the cytosol of epithelial cells and net intracellular growth is a product of both vacuolar and cytosolic replication. Here we have used semi-quantitative single-cell analyses to investigate the contribution of each of these replicative niches to intracellular proliferation in cultured epithelial cells. We show that cytosolic replication can account for the majority of net replication even though it occurs in less than 20% of infected cells. Consequently, assays for net growth in a population of infected cells, for example by recovery of colony forming units, are not good indicators of vacuolar proliferation. We also show that the Salmonella Type III Secretion System 2, which is required for SCV biogenesis, is not required for cytosolic replication. Altogether this study illustrates the value of single cell analyses when studying intracellular pathogens. PMID:22719929

  18. Protective Effect of Immunization with Heat-Labile Enterotoxin in Gnotobiotic Rats Monocontaminated with Enterotoxigenic Escherichia coli

    PubMed Central

    Klipstein, Frederick A.; Engert, Richard F.; Short, Helen B.

    1980-01-01

    The protective effect of active immunization with a purified preparation of the polymyxin-release form of Escherichia coli heat-labile enterotoxin (LT), administered using a parenteral prime and peroral boosts given after ablation of gastric secretion by means of cimetidine, was assessed in gnotobiotic rats which were challenged by monocontamination with enterotoxigenic strains of E. coli. Water transport was evaluated by the in vivo marker perfusion technique at weekly intervals over a 3-week period after contamination. Water transport in unimmunized control rats was consistently in absorption in those contaminated by a nontoxigenic strain, in secretion during only week 2 in those contaminated by an LT+/− strain, in secretion during weeks 2 and 3 in those contaminated by an LT+/ST+ (heat-stable enterotoxin) strain, and consistently in absorption in those contaminated by an −/ST+ strain. Rats immunized with a booster dosage of 250 μg had a significant increase (P < 0.001) in net water absorption as compared to unimmunized rats, with values in the borderline range of absorption, when challenged with either the LT+/− or LT+/ST+ strains. Rats immunized with a 10-fold-higher boosting dosage had a significant increase (P < 0.001) in net water absorption as compared to those boosted at the lower dosage; water absorption was within the normal range. There was no difference between the ileal bacterial counts of unimmunized and immunized rats challenged by the various strains. These observations indicate that this immunization program provides complete protection in an animal model against challenge by intestinal contamination with enterotoxigenic strains of E. coli which produce LT, either alone or in combination with ST. PMID:6991436

  19. The inhibition of cholera toxin-induced 5-HT release by the 5-HT3 receptor antagonist, granisetron, in the rat

    PubMed Central

    Turvill, J L; Connor, P; Farthing, M J G

    2000-01-01

    The secretagogue 5-hydroxytryptamine (5-HT) is implicated in the pathophysiology of cholera. 5-HT released from enterochromaffin cells after cholera toxin exposure is thought to activate non-neuronally (5-HT2 dependent) and neuronally (5-HT3 dependent) mediated water and electrolyte secretion. CT-secretion can be reduced by preventing the release of 5-HT. Enterochromaffin cells possess numerous receptors that, under basal conditions, modulate 5-HT release. These include basolateral 5-HT3 receptors, the activation of which is known to enhance 5-HT release. Until now, 5-HT3 receptor antagonists (e.g. granisetron) have been thought to inhibit cholera toxin-induced fluid secretion by blockading 5-HT3 receptors on secretory enteric neurones. Instead we postulated that they act by inhibiting cholera toxin-induced enterochromaffin cell degranulation. Isolated intestinal segments in anaesthetized male Wistar rats, pre-treated with granisetron 75 μg kg−1, lidoocaine 6 mg kg−1 or saline, were instilled with a supramaximal dose of cholera toxin or saline. Net fluid movement was determined by small intestinal perfusion or gravimetry and small intestinal and luminal fluid 5-HT levels were determined by HPLC with fluorimetric detection. Intraluminal 5-HT release was proportional to the reduction in tissue 5-HT levels and to the onset of water and electrolyte secretion, suggesting that luminal 5-HT levels reflect enterochromaffin cell activity. Both lidocaine and granisetron inhibited fluid secretion. However, granisetron alone, and proportionately, reduced 5-HT release. The simultaneous inhibition of 5-HT release and fluid secretion by granisetron suggests that 5-HT release from enterochromaffin cells is potentiated by endogenous 5-HT3 receptors. The accentuated 5-HT release promotes cholera toxin-induced fluid secretion. PMID:10882387

  20. Abundance of Cysteine Endopeptidase Dionain in Digestive Fluid of Venus Flytrap (Dionaea muscipula Ellis) Is Regulated by Different Stimuli from Prey through Jasmonates

    PubMed Central

    Libiaková, Michaela; Floková, Kristýna; Novák, Ondřej; Slováková, L'udmila; Pavlovič, Andrej

    2014-01-01

    The trap of the carnivorous plant Venus flytrap (Dionaea muscipula) catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs) result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl) and P(K) stimulation) on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl) stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA) but jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed. PMID:25153528

  1. Effect of stress on hepatic 11beta-hydroxysteroid dehydrogenase activity and its influence on carbohydrate metabolism.

    PubMed

    Altuna, María Eugenia; Lelli, Sandra Marcela; San Martín de Viale, Leonor C; Damasco, María Cristina

    2006-10-01

    Stress activates the synthesis and secretion of catecholamines and adrenal glucocorticoids, increasing their circulating levels. In vivo, hepatic 11beta-hydroxysteroid dehydrogenase 1 (HSD1) stimulates the shift of 11-dehydrocorticosterone to corticosterone, enhancing active glucocorticoids at tissue level. We studied the effect of 3 types of stress, 1 induced by bucogastric overload with 200 mmol/L HCl causing metabolic acidosis (HCl), the second induced by bucogastric overload with 0.45% NaCl (NaCl), and the third induced by simulated overload (cannula), on the kinetics of hepatic HSD1 of rats and their influence on the activity of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase, glycemia, and glycogen deposition. Compared with unstressed controls, all types of stress significantly increased HSD1 activity (146% cannula, 130% NaCl, and 253% HCl), phosphoenolpyruvate carboxykinase activity (51% cannula, 48% NaCl, and 86% HCl), and glycemia (29% cannula, 30% NaCl, and 41% HCl), but decreased hepatic glycogen (68% cannula, 68% NaCl, and 78% HCl). Owing to these results, we suggest the following events occur when stress is induced: an increase in hepatic HSD1 activity, augmented active glucocorticoid levels, increased gluconeogenesis, and glycemia. Also involved are the multiple events indirectly related to glucocorticoids, which lead to the depletion of hepatic glycogen deposits, thereby contributing to increased glycemia. This new approach shows that stress increments the activity of hepatic HSD1 and suggests that this enzyme could be involved in the development of the Metabolic Syndrome.

  2. Alkali absorption and citrate excretion in calcium nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  3. Luteal Expression of Thyroid Hormone Receptors During Gestation and Postpartum in the Rat

    PubMed Central

    Navas, Paola B.; Redondo, Analía L.; Cuello-Carrión, F. Darío; Roig, Laura M. Vargas; Valdez, Susana R.; Jahn, Graciela A.

    2014-01-01

    Background: Progesterone (P4) is the main steroid secreted by the corpora lutea (CL) and is required for successful implantation and maintenance of pregnancy. Although adequate circulating levels of thyroid hormone (TH) are needed to support formation and maintenance of CL during pregnancy, TH signaling had not been described in this gland. We determined luteal thyroid hormone receptor isoforms (TR) expression and regulation throughout pregnancy and under the influence of thyroid status, and in vitro effects of triiodothyronine (T3) exposure on luteal P4 synthesis. Methods: Euthyroid female Wistar rats were sacrificed by decapitation on gestational day (G) 5, G10, G15, G19, or G21 of pregnancy or on day 2 postpartum (L2). Hyperthyroidism and hypothyroidism were induced in female Wistar rats by daily administration of thyroxine (T4; 0.25 mg/kg subcutaneously) or 6-propyl-2-thiouracil (PTU; 0.1 g/L in drinking water), respectively. Luteal TR expression of mRNA was determined using real-time reverse-transcription quantitative polymerase chain reaction, and of protein using Western blot and immunohistochemistry. Primary cultures of luteal cells and of luteinized granulosa cells were used to study in vitro effects of T3 on P4 synthesis. In addition, the effect of T3 on P4 synthesis under basal conditions and under stimulation with luteinizing hormone (LH), prolactin (PRL), and prostaglandin E2 (PGE2) was evaluated. Results: TRα1, TRα2, and TRβ1 mRNA were present in CL, increasing during the first half and decreasing during the second half of pregnancy. At the protein level, TRβ1 was abundantly expressed during gestation reaching a peak at G19 and decreasing afterwards. TRα1 was barely expressed during early gestation, peaked at G19, and diminished thereafter. Expression of TRβ1 and TRα1 at the protein and mRNA level were not influenced by thyroid status. T3 neither modified P4 secretion from CL of pregnancy nor its synthesis in luteinized granulosa cells in culture. Conclusions: This study confirms for the first time the presence of TR isoforms in the CL during pregnancy and postpartum, identifying this gland as a TH target during gestation. TR expression is modulated in this tissue in accordance with the regulation of P4 metabolism, and the abrupt peripartum changes suggest a role of TH during luteolysis. However, TH actions on the CL do not seem to be related to a direct regulation of P4 synthesis. PMID:24684177

  4. Simultaneous ion and neutral evaporation in aqueous nanodrops: experiment, theory, and molecular dynamics simulations.

    PubMed

    Higashi, Hidenori; Tokumi, Takuya; Hogan, Christopher J; Suda, Hiroshi; Seto, Takafumi; Otani, Yoshio

    2015-06-28

    We use a combination of tandem ion mobility spectrometry (IMS-IMS, with differential mobility analyzers), molecular dynamics (MD) simulations, and analytical models to examine both neutral solvent (H2O) and ion (solvated Na(+)) evaporation from aqueous sodium chloride nanodrops. For experiments, nanodrops were produced via electrospray ionization (ESI) of an aqueous sodium chloride solution. Two nanodrops were examined in MD simulations: a 2500 water molecule nanodrop with 68 Na(+) and 60 Cl(-) ions (an initial net charge of z = +8), and (2) a 1000 water molecule nanodrop with 65 Na(+) and 60 Cl(-) ions (an initial net charge of z = +5). Specifically, we used MD simulations to examine the validity of a model for the neutral evaporation rate incorporating both the Kelvin (surface curvature) and Thomson (electrostatic) influences, while both MD simulations and experimental measurements were compared to predictions of the ion evaporation rate equation of Labowsky et al. [Anal. Chim. Acta, 2000, 406, 105-118]. Within a single fit parameter, we find excellent agreement between simulated and modeled neutral evaporation rates for nanodrops with solute volume fractions below 0.30. Similarly, MD simulation inferred ion evaporation rates are in excellent agreement with predictions based on the Labowsky et al. equation. Measurements of the sizes and charge states of ESI generated NaCl clusters suggest that the charge states of these clusters are governed by ion evaporation, however, ion evaporation appears to have occurred with lower activation energies in experiments than was anticipated based on analytical calculations as well as MD simulations. Several possible reasons for this discrepancy are discussed.

  5. Cobalt(II) complexes with bis(N-imidazolyl/benzimidazolyl) pyridazine: Structures, photoluminescent and photocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jin-Ping; Fan, Jian-Zhong; Wang, Duo-Zhi, E-mail: wangdz@xju.edu.cn

    2016-07-15

    Six new Co{sup II} complexes [Co(L{sup 1}){sub 4}(OH){sub 2}] (1), {[Co(L"1)(H_2O)_4]·2ClO_4}{sub ∞} (2), {[Co(L"1)(H_2O)_4]·SiF_6}{sub ∞} (3), {[Co(L"1)_3]·2ClO_4}{sub ∞} (4), [Co(L{sup 2})Cl{sub 2}]{sub ∞} (5) and {[Co(L"2)_2]·SiF_6}{sub ∞} (6) [L{sup 1}=3,6-bis(N-imidazolyl) pyridazine, L{sup 2}=3,6-bis (N-benzimidazolyl) pyridazine] have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 has a mononuclear structure, while complexes 2 and 3 have 1-D chain structures. Considering the Co{sup II} centers were linked by the L{sup 1} ligands, the 3-D framework of complex 4 can be rationalized to be a {4^12.6^3} 6-c topological net with the stoichiometry uninodal net. 5 revealsmore » a coordination 1-D zigzag chain structure consisting of a neutral chain [Co(L{sup 2})Cl{sub 2}]{sub n} with the Co{sup II} centers. Complex 6 has a rhombohedral grid with a (4, 4) topology. The TGA property, fluorescent property and photocatalytic activity of complexes 1–6 have been investigated and discussed. - Graphical abstract: Six Co{sup II} complexes of bis(N-imidazolyl/benzimidazolyl)pyridazine were synthesized and structurally characterized. The fluorescence properties and photocatalytic activity for dye degradation under UV light of all complexes have been investigated and discussed. Display Omitted - Highlights: • Six new Co{sup II} complexes with bis(N-imidazolyl/benzimidazolyl) pyridazine. • Structural analysis of all complexes. • Fluorescent property of all complexes. • Photocatalytic activity for dye degradation under UV light of all complexes.« less

  6. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress.

    PubMed

    Morant-Manceau, Annick; Pradier, Elisabeth; Tremblin, Gérard

    2004-01-01

    The effect of salt stress (NaCl 85.7 or 110 mmol/L) was investigated in the triticale T300 and its parental species, Triticum dicoccum farrum (Triticum df) and Secale cereale cv. Petkus. Triticum df and T300 were more salt-tolerant than the rye (110 mmol/L NaCl was the highest concentration allowing rye growth to the three-leaf stage). Na+, K+ and Cl- ions accounted for almost half of the osmotic adjustment in Triticum df and T300, and up to 90% in rye. Salinity decreased the net photosynthesis and transpiration rates of the three cereals as compared to control plants, but induced no significant change in chlorophyll a fluorescence parameters. Water-use efficiency (WUE) increased with salinity. In the presence of 110 mmol/L NaCl, the K+/Na+ ratio decreased markedly in rye as compared to the other two cereals. Proline concentration, which increased in Triticum df and T300, could have protected membrane selectivity in favour of K+. Proline content remained low in rye, and increasing soluble sugar content did not appear to prevent competition between Na+ and K+. The salt sensitivity of rye could be due to low K+ uptake in the presence of a high NaCl concentration.

  7. Local Electronic Structure Changes in Polycrystalline CdTe with CdCl 2 Treatment and Air Exposure

    DOE PAGES

    Berg, Morgann; Kephart, Jason M.; Munshi, Amit; ...

    2018-03-12

    Postdeposition CdCl 2 treatment of polycrystalline CdTe is known to increase the photovoltaic device efficiency. However, the precise chemical, structural, and electronic changes that underpin this improvement are still debated. In this work, spectroscopic photoemission electron microscopy was used to spatially map the vacuum level and ionization energy of CdTe films, enabling the identification of electronic structure variations between grains and grain boundaries (GBs). In vacuo preparation and inert transfer of oxide-free CdTe surfaces isolated the separate effects of CdCl 2 treatment and ambient oxygen exposure. Qualitatively, grain boundaries displayed lower work function and downward band bending relative to grainmore » interiors, but only after air exposure of CdCl 2-treated CdTe. Analysis of numerous space charge regions at grain boundaries showed an average depletion width of 290 nm and an average band bending magnitude of 70 meV, corresponding to a GB trap density of 10 11 cm –2 and a net carrier density of 10 15 cm –3. Finally, these results suggest that both CdCl 2 treatment and oxygen exposure may be independently tuned to enhance the CdTe photovoltaic performance by engineering the interface and bulk electronic structure.« less

  8. Dissociation of hydrophobic and charged nano particles in aqueous guanidinium chloride and urea solutions: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Mu, Yuguang

    2012-02-01

    It has been a long history that urea and guanidinium chloride (GdmCl) are used as agents for denaturing proteins. The underlying mechanism has been extensively studied in the past several decades. However, the question regarding why GdmCl is much stronger than urea has seldom been touched. Here, through molecular dynamics simulations, we show that a 4 M GdmCl solution is more able than 7 M urea solution to dissociate both hydrophobic and charged nano-particles (NP). Both urea and GdmCl affect the NPs' aggregation through direct binding to the NP surface. The advantages of GdmCl originate from the net charge of bound guanidinium ions which can generate a local positively charged environment around hydrophobic and negatively charged NPs. This effective coating can introduce Coulombic repulsion between all the NPs. Urea shows certain ability to dissociate hydrophobic NPs. However, in the case of charged NPs, urea molecules located between two opposite-charged NPs will form ordered hydrogen bonds, acting like ``glue'' which prevents separation of the NPs. Although urea can form hydrogen bonds with either hydrophilic amino acids or the protein backbone, which are believed to contribute to protein denaturation, our findings strongly suggest that this property does not always contribute positively to urea's denaturation power.

  9. Photoproduction of I2, Br2, and Cl2 on n-semiconducting powder

    NASA Technical Reports Server (NTRS)

    Reichman, B.; Byvik, C. E.

    1981-01-01

    The photosynthetic production of Br2 and Cl2 and the photocatalytic production of I2 from aqueous solutions of the respective halide ions in the presence of platinized semiconducting n-TiO2 powder are reported. Reactions were produced in 2-3 M oxygen-saturated aqueous solutions of KI, KBr or NaCl containing Pt-TiO2 powder which were irradiated by a high-pressure mercury lamp at a power of 400 mW/sq cm. Halogens are found to be produced in greater quantities when platinized TiO2 powders are used rather than pure TiO2, and rates of halogen production are observed to increase from Cl2 to Br2 to I2. The presence of the synthetic reactions producing Br2 and Cl2 with a net influx of energy indicates that an effective separation of the photoproduced electron-hole pair occurs in the semiconductor. Quantum efficiencies of the reaction, which increase with decreasing solution pH, are found to be as high as 30%, implying a solar-to-chemical energy conversion efficiency between 0.03% and 3% for the case of chlorine production. It is concluded that the photoproduction of halogens may be of practical value if product halogens are efficiently removed from the reaction cell.

  10. Local Electronic Structure Changes in Polycrystalline CdTe with CdCl 2 Treatment and Air Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Morgann; Kephart, Jason M.; Munshi, Amit

    Postdeposition CdCl 2 treatment of polycrystalline CdTe is known to increase the photovoltaic device efficiency. However, the precise chemical, structural, and electronic changes that underpin this improvement are still debated. In this work, spectroscopic photoemission electron microscopy was used to spatially map the vacuum level and ionization energy of CdTe films, enabling the identification of electronic structure variations between grains and grain boundaries (GBs). In vacuo preparation and inert transfer of oxide-free CdTe surfaces isolated the separate effects of CdCl 2 treatment and ambient oxygen exposure. Qualitatively, grain boundaries displayed lower work function and downward band bending relative to grainmore » interiors, but only after air exposure of CdCl 2-treated CdTe. Analysis of numerous space charge regions at grain boundaries showed an average depletion width of 290 nm and an average band bending magnitude of 70 meV, corresponding to a GB trap density of 10 11 cm –2 and a net carrier density of 10 15 cm –3. Finally, these results suggest that both CdCl 2 treatment and oxygen exposure may be independently tuned to enhance the CdTe photovoltaic performance by engineering the interface and bulk electronic structure.« less

  11. Chloride and sulphate toxicity to Hydropsyche exocellata (Trichoptera, Hydropsychidae): Exploring intraspecific variation and sub-lethal endpoints.

    PubMed

    Sala, Miquel; Faria, Melissa; Sarasúa, Ignacio; Barata, Carlos; Bonada, Núria; Brucet, Sandra; Llenas, Laia; Ponsá, Sergio; Prat, Narcís; Soares, Amadeu M V M; Cañedo-Arguelles, Miguel

    2016-10-01

    The rivers and streams of the world are becoming saltier due to human activities. In spite of the potential damage that salt pollution can cause on freshwater ecosystems, this is an issue that is currently poorly managed. Here we explored intraspecific differences in the sensitivity of freshwater fauna to two major ions (Cl(-) and SO4(2-)) using the net-spinning caddisfly Hydropsyche exocellata Dufour 1841 (Trichoptera, Hydropsychidae) as a model organism. We exposed H. exocellata to saline solutions (reaching a conductivity of 2.5mScm(-1)) with Cl(-):SO4(2-) ratios similar to those occurring in effluents coming from the meat, mining and paper industries, which release dissolved salts to rivers and streams in Spain. We used two different populations, coming from low and high conductivity streams. To assess toxicity, we measured sub-lethal endpoints: locomotion, symmetry of the food-capturing nets and oxidative stress biomarkers. According to biomarkers and net building, the population historically exposed to lower conductivities (B10) showed higher levels of stress than the population historically exposed to higher conductivities (L102). However, the differences between populations were not strong. For example, net symmetry was lower in the B10 than in the L102 only 48h after treatment was applied, and biomarkers showed a variety of responses, with no discernable pattern. Also, treatment effects were rather weak, i.e. only some endpoints, and in most cases only in the B10 population, showed a significant response to treatment. The lack of consistent differences between populations and treatments could be related to the high salt tolerance of H. exocellata, since both populations were collected from streams with relatively high conductivities. The sub-lethal effects tested in this study can offer an interesting and promising tool to monitor freshwater salinization by combining physiological and behavioural bioindicators. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Use of molecular targeted agents for the diagnosis, staging and therapy of neuroendocrine malignancy

    PubMed Central

    2010-01-01

    Abstract Imaging of neuroendocrine tumours (NET) poses significant challenges because of the heterogeneous biology of the tumours that are represented by this class of neoplasia. NET can range from benign lesions to highly aggressive cancers. Structural imaging techniques have suboptimal sensitivity in most published series and diagnosis is often delayed until metastatic disease is present. Current guidelines emphasise the importance of functional imaging for evaluating the extent of NET. The mainstay of this type of imaging has been somatostatin receptor scintigraphy (SRS) with [111In]diethylenetriaminepentaacetic acid-octreotide (Octreoscan™). Routine use of single-photon emission computed tomography (SPECT) and particularly of hybrid SPECT/computed tomography (CT) has significantly improved localisation of tumour sites and evaluation of somatostatin receptor (SSTR) expression, which is important for predicting the likelihood of response to somatostatin analogues (SSA). Positron emission tomography (PET) can also now be used for evaluating SSTR expression. There are a number of peptides that have been evaluated but [68Ga]tetraazocyclodecanetetraacetic acid (DOTA)-octreotate (GaTate) PET/CT, which has been shown to be significantly more sensitive for detecting small lesions than Octreoscan™, is now probably the preferred agent because high uptake in known sites of disease provides a diagnostic pair for assessing suitability of patients for [177Lu]DOTA-octreotate (LuTate) peptide receptor radionuclide therapy (PRRT). A range of other radiolabelled SSA has also been used for PRRT. Lesions without SSTR expression require alternative imaging and therapeutic strategies. Although fluorodeoxyglucose (FDG) uptake in low-grade NET is not generally increased relative to normal tissues, the loss of differentiation that often accompanies loss of SSTR expression may be associated with a significant increase in glycolytic metabolism and an accompanying improvement in the diagnostic sensitivity of FDG PET/CT. High FDG avidity is associated with a poorer prognosis but increases the likelihood of response to chemotherapy. Functioning tumours also require substrates for their secreted products. This can be exploited for NET imaging with amine precursor uptake being imaged using [18F]3,4-dihydrophenylalanine and serotonin-secreting tumours being sensitively detected using [11C]5-hydroxytryptamine. Both these agents are suitable for imaging with PET. [123I]meta-Iodo-benzyl-guanidine (MIBG) SPECT/CT may also be useful as a staging technique, particularly for NET of the sympathetic neuronal chain, and can identify patients who may be suitable for [131I]MIBG therapy. In the future, paradigms guided by clinical and biopsy features should allow personalised imaging paradigms aligned to therapeutic options. PMID:20880795

  13. Short communication: Effect of maternal heat stress in late gestation on blood hormones and metabolites of newborn calves.

    PubMed

    Guo, J-R; Monteiro, A P A; Weng, X-S; Ahmed, B M; Laporta, J; Hayen, M J; Dahl, G E; Bernard, J K; Tao, S

    2016-08-01

    Maternal heat stress alters immune function of the offspring, as well as metabolism and future lactational performance, but its effect on the hormonal and metabolic responses of the neonate immediately after birth is still not clear. The objective of this study was to investigate the blood profiles of hormones and metabolites of calves born to cows that were cooled (CL) or heat-stressed (HS) during the dry period. Within 2 h after birth, but before colostrum feeding, blood samples were collected from calves [18 bulls (HS: n=10; CL: n=8) and 20 heifers (HS: n=10; CL: n=10)] born to CL or HS dry cows, and hematocrit and plasma concentrations of total protein, prolactin, insulin-like growth factor-I, insulin, glucose, nonesterified fatty acid, and β-hydroxybutyrate were measured. Compared with CL, HS calves had lower hematocrit and tended to have lower plasma concentrations of insulin, prolactin, and insulin-like growth factor-I. However, maternal heat stress had no effect on plasma levels of total protein, glucose, fatty acid, and β-hydroxybutyrate immediately after birth. These results suggest that maternal heat stress desensitizes a calf's stress response and alters the fetal development by reducing the secretion of insulin-like growth factor-I, prolactin, and insulin. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Nitrogen amendment of green waste impacts microbial community, enzyme secretion and potential for lignocellulose decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chaowei; Harrold, Duff R.; Claypool, Joshua T.

    Microorganisms involved in biomass deconstruction are an important resource for organic waste recycling and enzymes for lignocellulose bioconversion. The goals of this paper were to examine the impact of nitrogen amendment on microbial community restructuring, secretion of xylanases and endoglucanases, and potential for biomass deconstruction. Communities were cultivated aerobically at 55 °C on green waste (GW) amended with varying levels of NH 4Cl. Bacterial and fungal communities were determined using 16S rRNA and ITS region gene sequencing and PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was applied to predict relative abundance of genes involved in lignocellulose hydrolysis.more » Nitrogen amendment significantly increased secretion of xylanases and endoglucanases, and microbial activity; enzyme activities and cumulative respiration were greatest when nitrogen level in GW was between 4.13–4.56 wt% (g/g), but decreased with higher nitrogen levels. The microbial community shifted to one with increasing potential to decompose complex polymers as nitrogen increased with peak potential occurring between 3.79–4.45 wt% (g/g) nitrogen amendment. Finally, the results will aid in informing the management of nitrogen level to foster microbial communities capable of secreting enzymes that hydrolyze recalcitrant polymers in lignocellulose and yield rapid decomposition of green waste.« less

  15. The selective PI3Kα inhibitor BYL719 as a novel therapeutic option for neuroendocrine tumors: Results from multiple cell line models

    PubMed Central

    Rentsch, Jakob; Freitag, Helma; Detjen, Katharina; Briest, Franziska; Möbs, Markus; Weissmann, Victoria; Siegmund, Britta; Auernhammer, Christoph J.; Aristizabal Prada, Elke Tatjana; Lauseker, Michael; Grossman, Ashley; Exner, Samantha; Fischer, Christian; Grötzinger, Carsten

    2017-01-01

    Background/Aims The therapeutic options for metastatic neuroendocrine tumors (NETs) are limited. As PI3K signaling is often activated in NETs, we have assessed the effects of selective PI3Kp110α inhibition by the novel agent BYL719 on cell viability, colony formation, apoptosis, cell cycle, signaling pathways, differentiation and secretion in pancreatic (BON-1, QGP-1) and pulmonary (H727) NET cell lines. Methods Cell viability was investigated by WST-1 assay, colony formation by clonogenic assay, apoptosis by caspase3/7 assay, the cell cycle by FACS, cell signaling by Western blot analysis, expression of chromogranin A and somatostatin receptors 1/2/5 by RT-qPCR, and chromogranin A secretion by ELISA. Results BYL719 dose-dependently decreased cell viability and colony formation with the highest sensitivity in BON-1, followed by H727, and lowest sensitivity in QGP-1 cells. BYL719 induced apoptosis and G0/G1 cell cycle arrest associated with increased p27 expression. Western blots showed inhibition of PI3K downstream targets to a varying degree in the different cell lines, but IGF1R activation. The most sensitive BON-1 cells displayed a significant, and H727 cells a non-significant, GSK3 inhibition after BYL719 treatment, but these effects do not appear to be mediated through the IGF1R. In contrast, the most resistant QGP-1 cells showed no GSK3 inhibition, but a modest activation, which would partially counteract the other anti-proliferative effects. Accordingly, BYL719 enhanced neuroendocrine differentiation with the strongest effect in BON-1, followed by H727 cells indicated by induction of chromogranin A and somatostatin receptor 1/2 mRNA-synthesis, but not in QGP-1 cells. In BON-1 and QGP-1 cells, the BYL719/everolimus combination was synergistic through simultaneous AKT/mTORC1 inhibition, and significantly increased somatostatin receptor 2 transcription compared to each drug separately. Conclusion Our results suggest that the agent BYL719 could be a novel therapeutic approach to the treatment of NETs that may sensitize NET cells to somatostatin analogs, and that if there is resistance to its action this may be overcome by combination with everolimus. PMID:28800359

  16. The selective PI3Kα inhibitor BYL719 as a novel therapeutic option for neuroendocrine tumors: Results from multiple cell line models.

    PubMed

    Nölting, Svenja; Rentsch, Jakob; Freitag, Helma; Detjen, Katharina; Briest, Franziska; Möbs, Markus; Weissmann, Victoria; Siegmund, Britta; Auernhammer, Christoph J; Aristizabal Prada, Elke Tatjana; Lauseker, Michael; Grossman, Ashley; Exner, Samantha; Fischer, Christian; Grötzinger, Carsten; Schrader, Jörg; Grabowski, Patricia

    2017-01-01

    The therapeutic options for metastatic neuroendocrine tumors (NETs) are limited. As PI3K signaling is often activated in NETs, we have assessed the effects of selective PI3Kp110α inhibition by the novel agent BYL719 on cell viability, colony formation, apoptosis, cell cycle, signaling pathways, differentiation and secretion in pancreatic (BON-1, QGP-1) and pulmonary (H727) NET cell lines. Cell viability was investigated by WST-1 assay, colony formation by clonogenic assay, apoptosis by caspase3/7 assay, the cell cycle by FACS, cell signaling by Western blot analysis, expression of chromogranin A and somatostatin receptors 1/2/5 by RT-qPCR, and chromogranin A secretion by ELISA. BYL719 dose-dependently decreased cell viability and colony formation with the highest sensitivity in BON-1, followed by H727, and lowest sensitivity in QGP-1 cells. BYL719 induced apoptosis and G0/G1 cell cycle arrest associated with increased p27 expression. Western blots showed inhibition of PI3K downstream targets to a varying degree in the different cell lines, but IGF1R activation. The most sensitive BON-1 cells displayed a significant, and H727 cells a non-significant, GSK3 inhibition after BYL719 treatment, but these effects do not appear to be mediated through the IGF1R. In contrast, the most resistant QGP-1 cells showed no GSK3 inhibition, but a modest activation, which would partially counteract the other anti-proliferative effects. Accordingly, BYL719 enhanced neuroendocrine differentiation with the strongest effect in BON-1, followed by H727 cells indicated by induction of chromogranin A and somatostatin receptor 1/2 mRNA-synthesis, but not in QGP-1 cells. In BON-1 and QGP-1 cells, the BYL719/everolimus combination was synergistic through simultaneous AKT/mTORC1 inhibition, and significantly increased somatostatin receptor 2 transcription compared to each drug separately. Our results suggest that the agent BYL719 could be a novel therapeutic approach to the treatment of NETs that may sensitize NET cells to somatostatin analogs, and that if there is resistance to its action this may be overcome by combination with everolimus.

  17. How to measure CFTR-dependent bicarbonate transport: from single channels to the intact epithelium.

    PubMed

    Hug, Martin J; Clarke, Lane L; Gray, Michael A

    2011-01-01

    Bicarbonate serves many functions in our body. It is the predominant buffer maintaining a physiological pH in the blood and within our cells. It is also essential for proper digestion of nutrients and solubilization of complex protein mixtures, such as digestive enzymes and mucins, in epithelial secretions. Transepithelial HCO3- transport also drives net fluid secretion in many epithelial tissues including those in the gastrointestinal and reproductive tracts as well as the airways. Indeed, defective bicarbonate secretion is a hallmark of the pathophysiology in the pancreas of most patients suffering from cystic fibrosis. Some, but not all, disease-causing mutations in the CF gene lead to impaired bicarbonate transport when expressed in heterologous systems. Recently developed pharmacological modulators of mutant CFTR have demonstrated an ability to activate chloride transport but little is known about whether they also increase the secretion of bicarbonate. It is therefore essential to assay bicarbonate transport when studying the effect of small molecules on CFTR function. However, due to the chaotropic nature of the ion, the measurement of the absolute bicarbonate concentration and its permeability through CFTR is far from trivial. In this chapter we will review some of the techniques available to measure bicarbonate transport through single ion channels, individual cells, and intact epithelial layers.

  18. Secreted CLCA1 modulates TMEM16A to activate Ca(2+)-dependent chloride currents in human cells.

    PubMed

    Sala-Rabanal, Monica; Yurtsever, Zeynep; Nichols, Colin G; Brett, Tom J

    2015-03-17

    Calcium-activated chloride channel regulator 1 (CLCA1) activates calcium-dependent chloride currents; neither the target, nor mechanism, is known. We demonstrate that secreted CLCA1 activates calcium-dependent chloride currents in HEK293T cells in a paracrine fashion, and endogenous TMEM16A/Anoctamin1 conducts the currents. Exposure to exogenous CLCA1 increases cell surface levels of TMEM16A and cellular binding experiments indicate CLCA1 engages TMEM16A on the surface of these cells. Altogether, our data suggest that CLCA1 stabilizes TMEM16A on the cell surface, thus increasing surface expression, which results in increased calcium-dependent chloride currents. Our results identify the first Cl(-) channel target of the CLCA family of proteins and establish CLCA1 as the first secreted direct modifier of TMEM16A activity, delineating a unique mechanism to increase currents. These results suggest cooperative roles for CLCA and TMEM16 proteins in influencing the physiology of multiple tissues, and the pathology of multiple diseases, including asthma, COPD, cystic fibrosis, and certain cancers.

  19. Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin.

    PubMed

    Wojciechowski, Daniel; Thiemann, Stefan; Schaal, Christina; Rahtz, Alina; de la Roche, Jeanne; Begemann, Birgit; Becher, Toni; Fischer, Martin

    2018-06-01

    ClC-K channels belong to the CLC family of chloride channels and chloride/proton antiporters. They contribute to sodium chloride reabsorption in Henle's loop of the kidney and to potassium secretion into the endolymph by the stria vascularis of the inner ear. Their accessory subunit barttin stabilizes the ClC-K/barttin complex, promotes its insertion into the surface membrane, and turns the pore-forming subunits into a conductive state. Barttin mutations cause Bartter syndrome type IV, a salt-wasting nephropathy with sensorineural deafness. Here, studying ClC-K/barttin channels heterologously expressed in MDCK-II and HEK293T cells with confocal imaging and patch-clamp recordings, we demonstrate that the eight-amino-acids-long barttin N terminus is required for channel trafficking and activation. Deletion of the complete N terminus (Δ2-8 barttin) retained barttin and human hClC-Ka channels in intracellular compartments. Partial N-terminal deletions did not compromise subcellular hClC-Ka trafficking but drastically reduced current amplitudes. Sequence deletions encompassing Thr-6, Phe-7, or Arg-8 in barttin completely failed to activate hClC-Ka. Analyses of protein expression and whole-cell current noise revealed that inactive channels reside in the plasma membrane. Substituting the deleted N terminus with a polyalanine sequence was insufficient for recovering chloride currents, and single amino acid substitutions highlighted that the correct sequence is required for proper function. Fast and slow gate activation curves obtained from rat V166E rClC-K1/barttin channels indicated that mutant barttin fails to constitutively open the slow gate. Increasing expression of barttin over that of ClC-K partially recovered this insufficiency, indicating that N-terminal modifications of barttin alter both binding affinities and gating properties. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Impact of combined sodium chloride and saturated long-chain fatty acid challenge on the differentiation of T helper cells in neuroinflammation.

    PubMed

    Hammer, Anna; Schliep, Anne; Jörg, Stefanie; Haghikia, Aiden; Gold, Ralf; Kleinewietfeld, Markus; Müller, Dominik N; Linker, Ralf A

    2017-09-12

    There has been a marked increase in the incidence of autoimmune diseases like multiple sclerosis (MS) in the last decades which is most likely driven by a change in environmental factors. Here, growing evidence suggests that ingredients of a Western diet like high intake of sodium chloride (NaCl) or saturated fatty acids may impact systemic immune responses, thus increasing disease susceptibility. Recently, we have shown that high dietary salt or long-chain fatty acid (LCFA) intake indeed aggravates T helper (Th) cell responses and neuroinflammation. Naïve CD4 + T cells were treated with an excess of 40 mM NaCl and/or 250 μM lauric acid (LA) in vitro to analyze effects on Th cell differentiation, cytokine secretion, and gene expression. We employed ex vivo analyses of the model disease murine experimental autoimmune encephalomyelitis (EAE) to investigate whether salt and LCFA may affect disease severity and T cell activation in vivo. LCFA, like LA, together with NaCl enhance the differentiation of Th1 and Th17 cells as well as pro-inflammatory cytokine and gene expression in vitro. In cell culture, we observed an additive effect of LA and hypertonic extracellular NaCl (NaCl + LA) in Th17 differentiation assays as well as on IL-17, GM-CSF, and IL-2 gene expression. In contrast, NaCl + LA reduced Th2 frequencies. We employed EAE as a model of Th1/Th17 cell-mediated autoimmunity and show that the combination of a NaCl- and LA-rich diet aggravated the disease course and increased T cell infiltration into the central nervous system (CNS) to the same extent as dietary NaCl. Our findings demonstrate a partially additive effect of NaCl and LA on Th cell polarization in vitro and on Th cell responses in autoimmune neuroinflammation. These data may help to better understand the pathophysiology of autoimmune diseases such as MS.

  1. Selective Amperometric Recording of Endogenous Ascorbate Secretion from a Single Rat Adrenal Chromaffin Cell with Pretreated Carbon Fiber Microelectrodes.

    PubMed

    Wang, Kai; Xiao, Tongfang; Yue, Qingwei; Wu, Fei; Yu, Ping; Mao, Lanqun

    2017-09-05

    Quantitative description of ascorbate secretion at a single-cell level is of great importance in physiological studies; however, most studies on the ascorbate secretion have so far been performed through analyzing cell extracts with high performance liquid chromatography, which lacks time resolution and analytical performance on a single-cell level. This study demonstrates a single-cell amperometry with carbon fiber microelectrodes (CFEs) to selectively monitor amperometric vesicular secretion of endogenous ascorbate from a single rat adrenal chromaffin cell. The CFEs are electrochemically pretreated in a weakly basic solution (pH 9.5), and such pretreatment essentially enables the oxidation of ascorbate to occur at a relatively low potential (i.e., 0.0 V vs Ag/AgCl), and further a high selectivity for ascorbate measurement over endogenously existing electroactive species such as epinephrine, norepinephrine, and dopamine. The selectivity is ensured by much larger amperometric response at the pretreated CFEs toward ascorbate over those toward other endogenously existing electroactive species added into the solution or ejected to the electrode with a micropuffer pipet, and by the totally suppressed current response by adding ascorbate oxidase into the cell lysate. With the pretreated CFE-based single-cell amperometry developed here, exocytosis of endogenous ascorbate of rat adrenal chromaffin cells is directly observed and ensured with the calcium ion-dependent high K + -induced secretion of endogenous ascorbate from the cells. Moreover, the quantitative information on the exocytosis of endogenous ascorbate is provided.

  2. New experimental method to study acid/base transporters and their regulation in lacrimal gland ductal epithelia.

    PubMed

    Tóth-Molnár, Edit; Venglovecz, Viktória; Ozsvári, Béla; Rakonczay, Zoltán; Varró, András; Papp, Julius G; Tóth, András; Lonovics, János; Takács, Tamás; Ignáth, Imre; Iványi, Béla; Hegyi, Péter

    2007-08-01

    The main function of the lacrimal gland is to produce the most aqueous component of the tear film covering the surfaces of the cornea and the conjunctiva. Studies have been conducted that characterize the mixed fluid and protein secretion of isolated acini, but no methods have been developed to characterize lacrimal gland ductal cell (LGDC) secretion. Secretory mechanisms of ductal epithelia may play physiological roles in the maintenance of the standard environments for the cornea and the conjunctiva. In this study, the authors developed a rapid method to isolate large quantities of intact lacrimal ducts. The preparation of isolated intact lacrimal gland ducts for the first time enabled the performance of real-time functional experiments on cleaned ducts. Electron microscopy and fluorescence measurements were used to evaluate the viability of lacrimal ducts. Fluorescence measurements showed that LGDCs express functionally active Na(+)/H(+) exchanger (NHE) and Cl(-)/HCO(3)(-) exchanger (AE). Parasympathomimetic stimulation by carbachol stimulated NHE and AE through the elevation of intracellular calcium concentration. This mechanism can play a role in the regulation of ion and water secretion by LGDCs. The authors have described a lacrimal gland duct isolation technique in which the intact ducts remain viable and the role of duct cells in tear film secretion can be characterized. These data combined with the novel isolation facilitated understanding of the regulation mechanisms of ductal cell secretion at cellular and molecular levels under normal and pathologic conditions.

  3. Eccrine sweat gland development and sweat secretion.

    PubMed

    Cui, Chang-Yi; Schlessinger, David

    2015-09-01

    Eccrine sweat glands help to maintain homoeostasis, primarily by stabilizing body temperature. Derived from embryonic ectoderm, millions of eccrine glands are distributed across human skin and secrete litres of sweat per day. Their easy accessibility has facilitated the start of analyses of their development and function. Mouse genetic models find sweat gland development regulated sequentially by Wnt, Eda and Shh pathways, although precise subpathways and additional regulators require further elucidation. Mature glands have two secretory cell types, clear and dark cells, whose comparative development and functional interactions remain largely unknown. Clear cells have long been known as the major secretory cells, but recent studies suggest that dark cells are also indispensable for sweat secretion. Dark cell-specific Foxa1 expression was shown to regulate a Ca(2+) -dependent Best2 anion channel that is the candidate driver for the required ion currents. Overall, it was shown that cholinergic impulses trigger sweat secretion in mature glands through second messengers - for example InsP3 and Ca(2+) - and downstream ion channels/transporters in the framework of a Na(+) -K(+) -Cl(-) cotransporter model. Notably, the microenvironment surrounding secretory cells, including acid-base balance, was implicated to be important for proper sweat secretion, which requires further clarification. Furthermore, multiple ion channels have been shown to be expressed in clear and dark cells, but the degree to which various ion channels function redundantly or indispensably also remains to be determined. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  4. Cosmic microwave background constraints on secret interactions among sterile neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forastieri, Francesco; Natoli, Paolo; Lattanzi, Massimiliano

    Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson X (with M {sub X} || M {sub W} ), and characterized by a gauge coupling g {sub X} , have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interactionmore » framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95 % CL) m {sub s} < 0.82 eV or m {sub s} < 0.29 eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength G {sub X} to be < 2.8 (2.0) × 10{sup 10} G {sub F} from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with M {sub X} ∼ 0.1 MeV and relatively large coupling g {sub X} {sub ∼} 10{sup −1}, previously indicated as a possible solution to the small scale dark matter problem.« less

  5. [Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves].

    PubMed

    Li, Xu-Xin; Liu, Bing-Xiang; Guo, Zhi-Tao; Chang, Yue-Xia; He, Lei; Chen, Fang; Lu, Bing-She

    2013-09-01

    By using fast chlorophyll fluorescence induction dynamics analysis technique (JIP-test), this paper studied the photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of 1-year old Pistacia chinensis seedlings under the stress of NaCl at the concentrations 0% (CK), 0.15%, 0.3%, 0.45%, and 0.6%. With the increasing concentration of NaCl, the contents of Chl a, Chl b, and Chl (a+b) in the seedlings leaves decreased, the Chl a/b ratio decreased after an initial increase, and the carotenoid content increased. The net photosynthetic rate (P(n)) and stomatal conductance (g(s)) decreased gradually with increasing NaCl concentration. The decrease of P(n) was mainly attributed to the stomatal limitation when the NaCl concentration was lower than 0.3%, and to the non-stomatal limitation when the NaCl concentration was higher than 0.3%. The trapped energy flux per RC (TR0/CS0), electron transport flux per RC (ET0/CS0), density of RCs (RC/CS0), and yield or flux ratio (psi(0) or phi(E0)) decreased, but the absorption flux per CS (ABS/CS0) and the K phase (W(k)) and J phase (V) in the O-J-I-P chlorophyll fluorescence induction curves increased distinctly, indicating that NaCl stress damaged the leaf oxygen-evolving complex (OEC), donor sides, and PS II reaction centers. When the NaCl concentration reached 0.3%, the maximum photochemical efficiency (F(v)/F(m)) and performance index (PI(ABS)) decreased 17.7% and 36.6%, respectively, as compared with the control.

  6. Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice.

    PubMed

    Wang, Lihong; Wang, Wen; Zhou, Qing; Huang, Xiaohua

    2014-10-01

    Rare earth elements (REEs) pollution and acid rain are environmental issues, and their deleterious effects on plants attract worldwide attention. These two issues exist simultaneously in many regions, especially in some rice-growing areas. However, little is known about the combined effects of REEs and acid rain on plants. Here, the combined effects of lanthanum chloride (LaCl3), one type of REE salt, and acid rain on photosynthesis in rice were investigated. We showed that the combined treatment of 81.6 μM LaCl3 and acid rain at pH 4.5 increased net photosynthetic rate (Pn), stomatic conductance (Gs), intercellular CO2 concentration (Ci), Hill reaction activity (HRA), apparent quantum yield (AQY) and carboxylation efficiency (CE) in rice. The combined treatment of 81.6 μM LaCl3 and acid rain at pH 3.5 began to behave toxic effects on photosynthesis (decreasing Pn, Gs, HRA, AQY and CE, and increasing Ci), and the maximally toxic effects were observed in the combined treatment of 2449.0 μM LaCl3 and acid rain at pH 2.5. Moreover, the combined effects of LaCl3 and acid rain on photosynthesis in rice depended on the growth stage of rice, with the maximal effects occurring at the booting stage. Furthermore, the combined treatment of high-concentration LaCl3 and low-pH acid rain had more serious effects on photosynthesis in rice than LaCl3 or acid rain treatment alone. Finally, the combined effect of LaCl3 and acid rain on Pn in rice resulted from the changes in stomatic (Gs, Ci) and non-stomatic (HRA, AQY and CE) factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone.

    PubMed

    Moeser, Adam J; Nighot, Prashant K; Engelke, Kory J; Ueno, Ryuji; Blikslager, Anthony T

    2007-02-01

    Previous studies utilizing an ex vivo porcine model of intestinal ischemic injury demonstrated that prostaglandin (PG)E(2) stimulates repair of mucosal barrier function via a mechanism involving Cl(-) secretion and reductions in paracellular permeability. Further experiments revealed that the signaling mechanism for PGE(2)-induced mucosal recovery was mediated via type-2 Cl(-) channels (ClC-2). Therefore, the objective of the present study was to directly investigate the role of ClC-2 in mucosal repair by evaluating mucosal recovery in ischemia-injured intestinal mucosa treated with the selective ClC-2 agonist lubiprostone. Ischemia-injured porcine ileal mucosa was mounted in Ussing chambers, and short-circuit current (I(sc)) and transepithelial electrical resistance (TER) were measured in response to lubiprostone. Application of 0.01-1 microM lubiprostone to ischemia-injured mucosa induced concentration-dependent increases in TER, with 1 microM lubiprostone stimulating a twofold increase in TER (DeltaTER = 26 Omega.cm(2); P < 0.01). However, lubiprostone (1 microM) stimulated higher elevations in TER despite lower I(sc) responses compared with the nonselective secretory agonist PGE(2) (1 microM). Furthermore, lubiprostone significantly (P < 0.05) reduced mucosal-to-serosal fluxes of (3)H-labeled mannitol to levels comparable to those of normal control tissues and restored occludin localization to tight junctions. Activation of ClC-2 with the selective agonist lubiprostone stimulated elevations in TER and reductions in mannitol flux in ischemia-injured intestine associated with structural changes in tight junctions. Prostones such as lubiprostone may provide a selective and novel pharmacological mechanism of accelerating recovery of acutely injured intestine compared with the nonselective action of prostaglandins such as PGE(2).

  8. Conjoint regulation of glucagon concentrations via plasma insulin and glucose in dairy cows.

    PubMed

    Zarrin, M; Wellnitz, O; Bruckmaier, R M

    2015-04-01

    Insulin and glucagon are glucoregulatory hormones that contribute to glucose homeostasis. Plasma insulin is elevated during normoglycemia or hyperglycemia and acts as a suppressor of glucagon secretion. We have investigated if and how insulin and glucose contribute to the regulation of glucagon secretion through long term (48 h) elevated insulin concentrations during simultaneous hypoglycemia or euglycemia in mid-lactating dairy cows. Nineteen Holstein dairy cows were randomly assigned to 3 treatment groups: an intravenous insulin infusion (HypoG, n = 5) to decrease plasma glucose concentrations (2.5 mmol/L), a hyperinsulinemic-euglycemic clamp to study effects of insulin at simultaneously normal glucose concentrations (EuG, n = 6) and a 0.9% saline infusion (NaCl, n = 8). Plasma glucose was measured at 5-min intervals, and insulin and glucose infusion rates were adjusted accordingly. Area under the curve of hourly glucose, insulin, and glucagon concentrations on day 2 of infusion was evaluated by analysis of variance with treatments as fixed effect. Insulin infusion caused an increase of plasma insulin area under the curve (AUC)/h in HypoG (41.9 ± 8.1 mU/L) and EuG (57.8 ± 7.8 mU/L) compared with NaCl (13.9 ± 1.1 mU/L; P < 0.01). Induced hyperinsulinemia caused a decline of plasma glucose AUC/h to 2.3 ± 0.1 mmol/L in HypoG (P < 0.01), whereas plasma glucose AUC/h remained unchanged in EuG (3.8 ± 0.2 mmol/L) and NaCl (4.1 ± 0.1 mmol/L). Plasma glucagon AUC/h was lower in EuG (84.0 ± 6.3 pg/mL; P < 0.05) and elevated in HypoG (129.0 ± 7.0 pg/mL; P < 0.01) as compared with NaCl (106.1 ± 5.4 pg/mL). The results show that intravenous insulin infusion induces elevated glucagon concentrations during hypoglycemia, although the same insulin infusion reduces glucagon concentrations at simultaneously normal glucose concentrations. Thus, insulin does not generally have an inhibitory effect on glucagon concentrations. If simultaneously glucose is low and insulin is high, glucagon is upregulated to increase glucose availability. Therefore, insulin and glucose are conjoint regulatory factors of glucagon concentrations in dairy cows, and the plasma glucose status is the key factor to decide if its concentrations are increased or decreased. This regulatory effect can be important for the maintenance of glucose homeostasis if insulin secretion is upregulated by other factors than high glucose such as high plasma lipid and protein concentrations at simultaneously low glucose. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Temperature and salinity regulation of growth and gas exchange of Salicornia fruticosa (L.) L.

    PubMed

    Abdulrahman, Farag Saleh; Williams, George J

    1981-03-01

    Salicornia fruticosa was collected from a salt marsh on the Mediterranean sea coast in Libya. Growth and gas exchange of this C 3 species were monitered in plants pretreated at various NaCl concentrations (0, 171, 342, 513 and 855 mM). Maximum growth was at 171 mM NaCl under cool growth conditions (20/10° C) and at 342 mM NaCl under warm growth conditions (30/15° C) with minimum growth at 0 mM NaCl (control). Net photosynthesis (Pn) was greatest in plants grown in 171 mM NaCl with plants grown at 513 and 855 mM having lowest rates. Maximum Pn was at 20-25° C shoot temperatures with statistically significant reductions at 30° C in control plants while salt treated plants showed such reductions at 35° C. Salt treatments increased dark respiration over the control at 171 and 342 mM but reduced it at higher concentrations. Photorespiration was reduced by salt treatment and increased by increasing shoot temperature. Greatest transpiration was in 171 mM NaCl treated plants and increasing shoot temperature increased transpiration in all treatments. Stomatal resistance to CO 2 influx was influenced only moderately by temperature while increasing salinity resulted in increased stomatal resistance. In general both temperature and salinity increased the mesophyll resistance to CO 2 influx. The species seems adapted to the warm saline habitat along the Mediterranean sea coast, at least partially, by its ability to maintain relatively high Pn at moderate NaCl concentrations over a broad range of shoot temperatures.

  10. Constructing a Catalytic Cycle for C-F to C-X (X = O, S, N) Bond Transformation Based on Gold-Mediated Ligand Nucleophilic Attack.

    PubMed

    Hu, Ji-Yun; Zhang, Jing; Wang, Gao-Xiang; Sun, Hao-Ling; Zhang, Jun-Long

    2016-03-07

    A tricoordinated gold(I) chloride complex, tBuXantphosAuCl, supported by a sterically bulky 9,9-dimethyl-4,5-bis(di-tert-butylphosphino)xanthene ligand (tBuXantphos) was synthesized. This complex features a remarkably longer Au-Cl bond length [2.632(1) Å] than bicoordinated linear gold complexes (2.27-2.30 Å) and tricoordinated XantphosAuCl [2.462(1) Å]. Single-crystal X-ray diffraction analysis of a cocrystal of tBuXantphosAuCl and pentafluoronitrobenzene (PFNB) and UV-vis spectroscopic titration experiments revealed the existence of an anion-π interaction between the Cl anion ligand and PFNB. Stoichiometric reaction between PFNB and tBuXantphosAuOtBu, after replacement of Cl by a more nucleophilic tBuO anion ligand, showed higher reactivity and para selectivity in the transformation of C-F to C-OtBu bond, distinctively different from that when only KOtBu was used (ortho selectivity) under the identical condition. Mechanistic studies including density functional theory calculations suggested a gold-mediated nucleophilic ligand attack of the C-F bond pathway via an SNAr process. On the basis of these results, using trimethylsilyl derivatives TMS-X (X = OMe, SEt, NEt2) as the nucleophilic ligand source and the fluorine acceptor, catalytic transformation of the C-F bond of aromatic substrates to the C-X (X = O, S, N) bond was achieved with tBuXantphosAuCl as the catalyst (up to 20 turnover numbers).

  11. Treating cutaneous leishmaniasis patients in Kabul, Afghanistan: cost-effectiveness of an operational program in a complex emergency setting

    PubMed Central

    Reithinger, Richard; Coleman, Paul G

    2007-01-01

    Background Although Kabul city, Afghanistan, is currently the worldwide largest focus of cutaneous leishmaniasis (CL) with an estimated 67,500 cases, donor interest in CL has been comparatively poor because the disease is non-fatal. Since 1998 HealthNet TPO (HNTPO) has implemented leishmaniasis diagnosis and treatment services in Kabul and in 2003 alone 16,390 were treated patients in six health clinics in and around the city. The aim of our study was to calculate the cost-effectiveness for the implemented treatment regimen of CL patients attending HNTPO clinics in the Afghan complex emergency setting. Methods Using clinical and cost data from the on-going operational HNTPO program in Kabul, published and unpublished sources, and discussions with researchers, we developed models that included probabilistic sensitivity analysis to calculate ranges for the cost per disability adjusted life year (DALY) averted for implemented CL treatment regimen. We calculated the cost-effectiveness of intralesional and intramuscular administration of the pentavalent antimonial drug sodium stibogluconate, HNTPO's current CL 'standard treatment'. Results The cost of the standard treatment was calculated to be US$ 27 (95% C.I. 20 – 36) per patient treated and cured. The cost per DALY averted per patient cured with the standard treatment was estimated to be approximately US$ 1,200 (761 – 1,827). Conclusion According to WHO-CHOICE criteria, treatment of CL in Kabul, Afghanistan, is not a cost-effective health intervention. The rationale for treating CL patients in Afghanistan and elsewhere is discussed. PMID:17263879

  12. Characterization and charge distribution of the asparagine-linked oligosaccharides on secreted mouse thyrotropin and free alpha-subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gesundheit, N.; Gyves, P.W.; DeCherney, G.S.

    1989-06-01

    Mouse hemipituitaries in vitro secrete TSH, composed of an alpha-beta heterodimer, as well as excess (free) alpha-subunits. By dual metabolic labeling with (35S)sulfate and (3H)mannose, we have characterized oligosaccharides from secreted TSH alpha, TSH beta, and free alpha-subunits released from the apoprotein by enzymatic deglycosylation. Oligosaccharides from each subunit displayed a distinct anion exchange HPLC profile due to a specific pattern of sialylation and sulfation. Six species were obtained from TSH alpha (with two glycosylation sites), including neutral oligosaccharides as well as those with one or two negative charges. For TSH beta (with one glycosylation site) at least eight oligosaccharidemore » species were noted, representing nearly every permutation of sialylation and sulfation; approximately 30% contained three or more negative charges. Analysis of (3H)mannose-labeled oligosaccharides on Concanavalin-A-agarose showed 85% binding for those from TSH alpha, 70% for free alpha, and 50% for those from TSH beta. These data demonstrate that oligosaccharides from secreted TSH beta were more sialylated and sulfated, consistent with a more complex branching pattern, than those from TSH alpha. Oligosaccharides from free alpha-subunit were more sialylated than those from TSH alpha, and the net negative charge was intermediate between those of TSH alpha and TSH beta. Although great microheterogeneity is present even at the single glycosylation site on the beta-subunit of secreted TSH, a pattern of sialylation and sulfation could be discerned.« less

  13. Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach.

    PubMed

    Liu, Y; Cain, J P; Wang, H; Laskin, A

    2007-10-11

    Heterogeneous reaction kinetics of gaseous nitric acid with deliquesced sodium chloride particles NaCl(aq) + HNO3(g) --> NaNO3(aq) + HCl(g) were investigated with a novel particle-on-substrate stagnation flow reactor (PS-SFR) approach under conditions, including particle size, relative humidity, and reaction time, directly relevant to the atmospheric chemistry of sea salt particles. Particles deposited onto an electron microscopy grid substrate were exposed to the reacting gas at atmospheric pressure and room temperature by impingement via a stagnation flow inside the reactor. The reactor design and choice of flow parameters were guided by computational fluid dynamics to ensure uniformity of the diffusion flux to all particles undergoing reaction. The reaction kinetics was followed by observing chloride depletion in the particles by computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The validity of the current approach was examined first by conducting experiments with median dry particle diameter D(p) = 0.82 microm, 80% relative humidity, particle loading densities 4 x 10(4)

  14. Effect of NaCl induced floc disruption on biological disintegration of sludge for enhanced biogas production.

    PubMed

    Kavitha, S; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-09-01

    In the present study, the influence of NaCl mediated bacterial disintegration of waste activated sludge (WAS) was evaluated in terms of disintegration and biodegradability of WAS. Floc disruption was efficient at 0.03 g/g SS of NaCl, promoting the shifts of extracellular proteins and carbohydrates from inner layers to extractable--soluble layers (90 mg/L), respectively. Outcomes of sludge disintegration reveal that the maximum solubilization achieved was found to be 23%, respectively. The model elucidating the parameter evaluation, explicates that floc disrupted--bacterially disintegrated sludge (S3) showed superior biodegradability of about 0.23 (gCOD/gCOD) than the bacterially disintegrated (S2) and control (S3) sludges of about 0.13 (gCOD/gCOD) and 0.05 (gCOD/gCOD), respectively. Cost evaluation of the present study affords net profits of approximately 2.5 USD and -21.5 USD in S3 and S2 sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters.

    PubMed

    Díaz, I; Ramos, I; Fdz-Polanco, M

    2015-09-01

    The application of microaerobic conditions during sludge digestion has been proven to be an efficient method for H2S removal from biogas. In this study, three microaerobic treatments were considered as an alternative to the technique of biogas desulfurization applied (FeCl3 dosing to the digesters) in a WWTP comprising three full-scale anaerobic reactors treating sewage sludge, depending on the reactant: pure O2 from cryogenic tanks, concentrated O2 from PSA generators, and air. These alternatives were compared in terms of net present value (NPV) with a fourth scenario consisting in the utilization of iron-sponge-bed filter inoculated with thiobacteria. The analysis revealed that the most profitable alternative to FeCl3 addition was the injection of concentrated O2 (0.0019 €/m(3) biogas), and this scenario presented the highest robustness towards variations in the price of FeCl3, electricity, and in the H2S concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Interactions of histatin-3 and histatin-5 with actin.

    PubMed

    Blotnick, Edna; Sol, Asaf; Bachrach, Gilad; Muhlrad, Andras

    2017-03-06

    Histatins are histidine rich polypeptides produced in the parotid and submandibular gland and secreted into the saliva. Histatin-3 and -5 are the most important polycationic histatins. They possess antimicrobial activity against fungi such as Candida albicans. Histatin-5 has a higher antifungal activity than histatin-3 while histatin-3 is mostly involved in wound healing in the oral cavity. We found that these histatins, like other polycationic peptides and proteins, such as LL-37, lysozyme and histones, interact with extracellular actin. Histatin-3 and -5 polymerize globular actin (G-actin) to filamentous actin (F-actin) and bundle F-actin filaments. Both actin polymerization and bundling by histatins is pH sensitive due to the high histidine content of histatins. In spite of the equal number of net positive charges and histidine residues in histatin-3 and -5, less histatin-3 is needed than histatin-5 for polymerization and bundling of actin. The efficiency of actin polymerization and bundling by histatins greatly increases with decreasing pH. Histatin-3 and -5 induced actin bundles are dissociated by 100 and 50 mM NaCl, respectively. The relatively low NaCl concentration required to dissociate histatin-induced bundles implies that the actin-histatin filaments bind to each other mainly by electrostatic forces. The binding of histatin-3 to F-actin is stronger than that of histatin-5 showing that hydrophobic forces have also some role in histatin-3- actin interaction. Histatins affect the fluorescence of probes attached to the D-loop of G-actin indicating histatin induced changes in actin structure. Transglutaminase cross-links histatins to actin. Competition and limited proteolysis experiments indicate that the main histatin cross-linking site on actin is glutamine-49 on the D-loop of actin. Both histatin-3 and -5 interacts with actin, however, histatin 3 binds stronger to actin and affects actin structure at lower concentration than histatin-5 due to the extra 8 amino acid sequence at the C-terminus of histatin-3. Extracellular actin might regulate histatin activity in the oral cavity, which should be the subject of further investigation.

  17. Waterscape determinants of net mercury methylation in a tropical wetland.

    PubMed

    Lázaro, Wilkinson L; Díez, Sergi; da Silva, Carolina J; Ignácio, Áurea R A; Guimarães, Jean R D

    2016-10-01

    The periphyton associated with freshwater macrophyte roots is the main site of Hg methylation in different wetland environments in the world. The aim of this study was to test the use of connectivity metrics of water bodies, in the context of patches, in a tropical waterscape wetland (Guapore River, Amazonia, Brazil) as a predictor of potential net methylmercury (MeHg) production by periphyton communities. We sampled 15 lakes with different patterns of lateral connectivity with the main river channel, performing net mercury methylation potential tests in incubations with local water and Eichhornia crassipes root-periphyton samples, using (203)HgCl2 as a tracer. Physico-chemical variables, landscape data (morphological characteristics, land use, and lateral connection type of water bodies) using GIS resources and field data were analyzed with Generalized Additive Models (GAM). The net Me(203)Hg production (as % of total added (203)Hg) was expressive (6.2-25.6%) showing that periphyton is an important matrix in MeHg production. The model that best explained the variation in the net Me(203)Hg production (76%) was built by the variables: connection type, total phosphorus and dissolved organic carbon (DOC) in water (AICc=48.324, p=0.001). Connection type factor was the best factor to model fit (r(2)=0.32; p=0.008) and temporarily connected lakes had higher rates of net mercury methylation. Both DOC and total phosphorus showed positive significant covariation with the net methylation rates (r(2)=0.26; p=0.008 and r(2)=0.21; p=0.012 respectively). Our study suggests a strong relationship between rates of net MeHg production in this tropical area and the type of water body and its hydrological connectivity within the waterscape. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effect of decreasing dietary phosphorus supply on net recycling of inorganic phosphate in lactating dairy cows.

    PubMed

    Puggaard, L; Kristensen, N B; Sehested, J

    2011-03-01

    Five ruminally cannulated lactating Holstein cows, fitted with permanent indwelling catheters in the mesenteric vein, hepatic vein, portal vein, and an artery were used to study intestinal absorption and net recycling of inorganic phosphate (P(i)) to the gastrointestinal tract. Treatments were low P (LP; 2.4 g of P/kg of DM) and high P (HP; 3.4 g of P/kg of DM). The dietary total P (tP) concentrations were obtained by replacing 0.50% calcium carbonate in the LP diet with 0.50% monocalcium phosphate in the HP diet. Diets were fed for 14 d and cows were sampled on d 14 in each period. Cows were fed restrictively, resulting in equal dry matter intakes as well as milk, fat, and protein yields between treatments. Net P(i) recycling (primarily salivary) was estimated as the difference between net portal plasma flux (net absorption of P(i)) and apparently digested tP (feed - fecal tP difference). Phosphorus intake, apparently digested tP, and fecal tP excretion decreased with LP. An effect of decreased tP intake on net portal plasma flux of P(i) could not be detected. However, despite numerically minute net fluxes across the liver, the net splanchnic flux of P(i) was less in LP compared with that in HP. Though arterial plasma P(i) concentration decreased, net P(i) recycling was not decreased when tP intake was decreased, and recycling of P(i) was maintained at the expense of deposition of P(i) in bones. Data are not consistent with salivary P(i) secretion being the primary regulator of P(i) homeostasis at low tP intakes. On the contrary, maintaining salivary P(i) recycling at low tP intakes indicates that rumen function was prioritized at the expense of bone P reserves. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. [Effects of calcium and ABA on photosynthesis and related enzymes activities in cucumber seedlings under drought stress].

    PubMed

    Chen, Lu Lu; Wang, Xiu Feng; Liu, Mei; Yang, Feng Juan; Shi, Qing Hua; Wei, Min; Li, Qing Ming

    2016-12-01

    To investigate the effect of calcium and ABA on photosynthesis and the activities of antioxidant enzymes in cucumber seedlings under drought stress, the cucumber was used as the expe-riment materials, normal nutrient solution culture was considered as the control, and PEG-6000 application in the nutrient solution simulated the drought stress. There were five different treatments which were spraying water, ABA, CaCl 2 +ABA, LaCl 3 (calcium channel inhibitor)+ABA and EGTA (calcium ion chelating agent)+ABA under drought stress. The results showed that drought stress inhibited the growth of cucumber seedlings, and reduced the activities of antioxidant enzymes, nitrate reductase, net photosynthetic rate and fluorescence parameters of the cucumber seedlings leaves. The application of ABA reduced the inhibition of activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), photosynthesis (P n , g s ) and the fluorescence parameters (F v '/F m ', q P and ETR), and decreased the damage of drought stress on plant. Spraying CaCl 2 +ABAsignificantly promoted the positive effect of ABA, while EGTA+ABA and LaCl 3 +ABA didn't show the promoting effect.

  20. Development of compact excimer lasers for remote sensing

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Mcdermid, I. S.; Pacala, T. J.

    1983-01-01

    The capabilities of excimer lasers for remote sensing applications are illustrated in a discussion of the development of a compact tunable XeCl excimer laser for the detection of atmospheric OH radicals. Following a brief review of the operating principles and advantages of excimer lasers, measurements of the wavelength dependence of the net small signal gain coefficient of a discharge excited XeCl laser are presented which demonstrate the overlap of several absorption lines of the A-X(0,0) transition of OH near 308 nm with the wavelengths of the XeCl laser. A range of continuous narrow bandwidth tunability of from 307.6 to 308.4 nm with only a 30 percent variation in output is reported for an XeCl laser used as a double-pass amplifier for a frequency-doubled dye laser, and measurements demonstrating the detection of laser-induced fluorescence from OH in a methane-oxygen flame are also noted. The design of an oscillator-amplifier excimer system comprising a corona-preionized, transverse-discharge oscillator and amplifier is then presented. Output energies of 12-15 mJ have been achieved in the regions where injection locking was established, with energies of 8-10 mJ elsewhere.

  1. In situ rat brain and liver spontaneous chemiluminescence after acute ethanol intake.

    PubMed

    Boveris, A; Llesuy, S; Azzalis, L A; Giavarotti, L; Simon, K A; Junqueira, V B; Porta, E A; Videla, L A; Lissi, E A

    1997-09-19

    The influence of acute ethanol administration on the oxidative stress status of rat brain and liver was assessed by in situ spontaneous organ chemiluminescence (CL). Brain and liver CL was significantly increased after acute ethanol administration to fed rats, a response that is time-dependent and evidenced at doses higher than 1 g/kg. Ethanol-induced CL development is faster in liver compared with brain probably due to the greater ethanol metabolic capacity of the liver, whereas the net enhancement in brain light emission at 3 h after ethanol treatment is higher than that of the liver, which could reflect the greater susceptibility of brain to oxidative stress. The effect of ethanol on brain and liver CL seems to be mediated by acetaldehyde, due to its abolishment by the alcohol dehydrogenase inhibitor 4-methylpyrazole and exacerbation by the aldehyde dehydrogenase inhibitor disulfiram. In brain, these findings were observed in the absence of changes in the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase. However, the content of brain glutathione was significantly decreased by 31%, by ethanol, thus establishing an enhanced oxidative stress in this tissue.

  2. Epidemiological Study on Cutaneous Leishmaniasis in an Endemic Area, of Qom Province, Central Iran.

    PubMed

    Saghafipour, Abedin; Vatandoost, Hassan; Zahraei-Ramazani, Ali Reza; Yaghoobi-Ershadi, Mohammad Reza; Jooshin, Moharram Karami; Rassi, Yavar; Shirzadi, Mohammad Reza; Akhavan, Amir Ahmad; Hanafi-Bojd, Ahmad Ali

    2017-09-01

    Cutaneous leishmaniasis (CL) is one of the most important health problems in many areas of Iran. There are two forms of the disease in Iran, anthroponotic and zoonotic CL. This study conducted to assess the epidemiological situation of CL in an endemic area of Qom Province, central Iran from Apr to Nov 2015. The sticky paper traps and aspirating tubes were used for collecting adult sand flies. Sherman traps and small insect nets were used to capture rodents and small mammals. Giemsa staining was used for preparing the expanded smear and followed by PCR for identifying the causative agent in human, vectors, and reservoirs. In this study, relative frequency of CL was also calculated. Fourteen species of Phlebotomine sand flies were collected. Phlebotomus papatasi (61.74%) was the predominant species through the period of activity. Overall, 62 Meriones libycus , 8 Nesokia indica , 4 Mus musculus , 16 Allactaga elater and 2 Hemiechinus auritis were caught. PCR technique showed 6 out of 150 P. papatasi (2%), two out of 62 M. libycus (3.23%) and all of suspected human's skin tissue samples (100%) were infected with Leishmania major . The relative frequency of CL was 0.30%. This is the first detection of L. major within P. papatasi , M. libycus and human in Kahak District in Qom Province of Iran. Zoonotic cycle of CL exists in this area, L. major is the causative agent, P. papatasi is the main vector and M. libycus is the main reservoir of the disease.

  3. Mitogen-Activated Protein Kinase 8 (MAP3K8) Mediates the Signaling Pathway of Estradiol Stimulating Progesterone Production Through G Protein-Coupled Receptor 30 (GPR30) in Mouse Corpus Luteum.

    PubMed

    Liu, Ying; Li, Yueqin; Zhang, Di; Liu, Jiali; Gou, Kemian; Cui, Sheng

    2015-05-01

    The corpus luteum (CL) is a transient endocrine gland developed from the ovulated follicles, and the most important function is to synthesize and secrete progesterone (P(4)), a key hormone to maintain normal pregnancy and estrous cycle in most mammals. It is known that estrogen has a vital role in stimulating P(4) synthesis in CL, but it still remains unclear about the mechanism of estradiol (E(2)) regulating P(4) production in CL. Our results here first show that all of the CL cells express MAPK 8 (MAP3K8), and the MAP3K8 level is much higher at the midstage than at the early and late stages during CL development. The further functional studies show that the forced inhibition of endogenous MAP3K8 by using MAP3K8 small interfering RNA and MAP3K8 signaling inhibitor (MAP3K8i) in the luteal cells significantly block the P(4) synthesis and neutralize the enhancing effect of E(2) on P(4) production in the CL. In addition, our results here demonstrate that the stimulating effect of E(2) on P(4) synthesis relies on the estrogen no-classical protein-coupled receptor 30, and MAP3K8 is involved in mediating the protein-coupled receptor 30signaling of E(2) affecting P(4) synthesis via stimulating ERK phosphorylation. These novel findings are critical for our understanding the ovary physiology and pathological mechanism.

  4. Hypotonic Shock Modulates Na+ Current via a Cl- and Ca2+/Calmodulin Dependent Mechanism in Alveolar Epithelial Cells

    PubMed Central

    Tatur, Sabina; Brochiero, Emmanuelle; Grygorczyk, Ryszard; Berthiaume, Yves

    2013-01-01

    Alveolar epithelial cells are involved in Na+ absorption via the epithelial Na+ channel (ENaC), an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl- transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl- channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC) inhibitor reduced the total and ENaC currents, showing that transcellular Cl- transport plays a major role in that process. During hypotonic shock, a basolateral Cl- influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca2+. While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl- influx as well as Ca2+/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock. PMID:24019969

  5. Growth Factor-Reinforced ECM Fabricated from Chemically Hypoxic MSC Sheet with Improved In Vivo Wound Repair Activity.

    PubMed

    Du, Hui-Cong; Jiang, Lin; Geng, Wen-Xin; Li, Jing; Zhang, Rui; Dang, Jin-Ge; Shu, Mao-Guo; Li, Li-Wen

    2017-01-01

    MSC treatment can promote cutaneous wound repair through multiple mechanisms, and paracrine mediators secreted by MSC are responsible for most of its therapeutic benefits. Recently, MSC sheet composed of live MSCs and their secreted ECMs was reported to promote wound healing; however, whether its ECM alone could accelerate wound closure remained unknown. In this study, Nc-ECM and Cc-ECM were prepared from nonconditioned and CoCl 2 -conditioned MSC sheets, respectively, and their wound healing properties were evaluated in a mouse model of full-thickness skin defect. Our results showed that Nc-ECM can significantly promote wound repair through early adipocyte recruitment, rapid reepithelialization, enhanced granulation tissue growth, and augmented angiogenesis. Moreover, conditioning of MSC sheet with CoCl 2 dramatically enriched its ECM with collagen I, collagen III, TGF- β 1, VEGF, and bFGF via activation of HIF-1 α and hence remarkably improved its ECM's in vivo wound healing potency. All the Cc-ECM-treated wounds completely healed on day 7, while Nc-ECM-treated wounds healed about 85.0% ± 8.6%, and no-treatment wounds only healed 69.8% ± 9.6% ( p < 0.05). Therefore, we believe that such growth factor-reinforced ECM fabricated from chemically hypoxic MSC sheet has the potential for clinical translation and will lead to a MSC-derived, cost-effective, bankable biomaterial for wound management.

  6. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China.

    PubMed

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-10-09

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl(-), SO4(2-) and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type.

  7. Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon

    PubMed Central

    Yu, Kuai; Lujan, Rafael; Marmorstein, Alan; Gabriel, Sherif; Hartzell, H. Criss

    2010-01-01

    Anion transport by the colonic mucosa maintains the hydration and pH of the colonic lumen, and its disruption causes a variety of diarrheal diseases. Cholinergic agonists raise cytosolic Ca2+ levels and stimulate anion secretion, but the mechanisms underlying this effect remain unclear. Cholinergic stimulation of anion secretion may occur via activation of Ca2+-activated Cl– channels (CaCCs) or an increase in the Cl– driving force through CFTR after activation of Ca2+-dependent K+ channels. Here we investigated the role of a candidate CaCC protein, bestrophin-2 (Best2), using Best2–/– mice. Cholinergic stimulation of anion current was greatly reduced in Best2–/– mice, consistent with our proposed role for Best2 as a CaCC. However, immunostaining revealed Best2 localized to the basolateral membrane of mucin-secreting colonic goblet cells, not the apical membrane of Cl–-secreting enterocytes. In addition, in the absence of HCO3–, cholinergic-activated current was identical in control and Best2–/– tissue preparations, which suggests that most of the Best2 current was carried by HCO3–. These data delineate an alternative model of cholinergic regulation of colonic anion secretion in which goblet cells play a critical role in HCO3– homeostasis. We therefore propose that Best2 is a HCO3– channel that works in concert with a Cl:HCO3– exchanger in the apical membrane to affect transcellular HCO3– transport. Furthermore, previous models implicating CFTR in cholinergic Cl– secretion may be explained by substantial downregulation of Best2 in Cftr–/– mice. PMID:20407206

  8. Bufo arenarum egg jelly coat: purification and characterization of two highly glycosylated proteins.

    PubMed Central

    Arranz, S E; Albertali, I E; Cabada, M O

    1997-01-01

    Egg jelly coats from Bufo arenarum are formed by components secreted along the oviduct. These secretion products overlay the oocytes as they transit along the different oviductal portions. In this study, we have isolated two highly glycosylated proteins of the jelly coat, which are secreted almost all the way along the oviduct. Both glycoproteins [designated as highly glycosylated protein (HGP) and low-molecular-mass highly glycosylated protein (L-HGP)] were purified to homogeneity, from the secretion of the caudal oviduct portion, by CsCl density gradient ultracentrifugation. HGP is a high-molecular-mass protein with mucin-like characteristics: high viscosity, a high content of serine and threonine, about 70% carbohydrate by weight, and a protease-resistant domain. Cleavage of disulphide bridges with reducing agents resulted in the release of a single subunit (300000 Da). L-HGP is also a disulphide-cross-linked protein with lower apparent monomeric molecular mass, in the range 100-120 kDa and containing 50% carbohydrate by weight. HGP contains galactose, fucose, N-acetylgalactosamine and sialic acid, but no mannose, suggesting the presence of O-linked oligosaccharides exclusively. The secretion ratio of HGP increases from cephalic (16% of total protein in pars preconvoluta) to caudal (40% of total protein in pars convoluta) oviductal portions. It appears to be the major structural component of the jelly coat. Our purification data suggest that HGP is non-covalently linked to the other egg jelly proteins. Polyclonal antiserum to each purified glycoprotein from secretion was raised in rabbits and used to localize both glycoproteins in the different oviductal portions, total egg jelly and the aqueous medium where oocyte strings were incubated. HGP forms a stable fibre matrix around the oocyte. L-HGP is present in the jelly coat and is released into the incubation medium. PMID:9173897

  9. Development of Energetic Actuators for Shear and Vortex Dominated Flow Control

    DTIC Science & Technology

    2014-02-19

    max-min fairness in data net- works,” Selected Areas in Communications , IEEE Journal on, vol. 9, pp. 1024 –1039, sep 1991. [ 11 ] R. G. Gallager, Poisson...the legitimate messages to route via the communication channel. Unless the secret trigger combination is known and the radio is under physical tests... 11 ]–[15], [17], [18], [29]. Covert channels are mechanisms for communicating information in ways that are difficult to detect. Packet networks are

  10. Pregnancy-related pharmacokinetic changes.

    PubMed

    Tasnif, Y; Morado, J; Hebert, M F

    2016-07-01

    The pharmacokinetics of many drugs are altered by pregnancy. Drug distribution and protein binding are changed by pregnancy. While some drug metabolizing enzymes have an apparent increase in activity, others have an apparent decrease in activity. Not only is drug metabolism affected by pregnancy, but renal filtration is also increased. In addition, pregnancy alters the apparent activities of multiple drug transporters resulting in changes in the net renal secretion of drugs. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  11. Na+-coupled bicarbonate transporters in duodenum, collecting ducts and choroid plexus.

    PubMed

    Praetorius, Jeppe

    2010-01-01

    Epithelia cover the internal and external surfaces of the organism and form barriers between the various compartments. Some of these epithelia are specialized for effective transmembrane or even transepithelial movement of acid-base equivalents. Certain epithelia with a high rate of HCO3- transport express a few potent Na+-coupled acid-base transporters to gain a net HCO3- movement across the epithelium. Examples of such epithelia are renal proximal tubules and pancreatic ducts. In contrast, multiple Na+-coupled HCO3- transporters are expressed in other HCO3- secreting epithelia, such as the duodenal mucosa or the choroid plexus, which maintain suitable intracellular pH despite a variable demand for secreting HCO3-. In the duodenum, the epithelial cells must secrete HCO3- for neutralization of the gastric acid, and at the same time prevent cellular acidification. During the neutralization, large quantities of CO2 are formed in the duodenal lumen, which enter the epithelial cells. This would tend to lower intracellular pH and require effective counteracting mechanisms to avoid cell death and to maintain HCO3- secretion. The choroid plexus secretes the cerebrospinal fluid (CSF) and controls the pH of the otherwise poorly buffered CSF. The pCO2 of CSF fluctuates with plasma pCO2, and the choroid plexus must regulate the HCO3- secretion to minimize the effects of these fluctuations on CSF pH. This is done while maintaining pH neutrality in the epithelial cells. Thus, the Na+-HCO3- cotransporters appear to be involved in HCO3- import in more epithelia, where Na+/H+ exchangers were until recently thought to be sufficient for maintaining intracellular pH.

  12. The altered expression of perineuronal net elements during neural differentiation.

    PubMed

    Eskici, Nazli F; Erdem-Ozdamar, Sevim; Dayangac-Erden, Didem

    2018-01-01

    Perineuronal nets (PNNs), which are localized around neurons during development, are specialized forms of neural extracellular matrix with neuroprotective and plasticity-regulating roles. Hyaluronan and proteoglycan link protein 1 (HAPLN1), tenascin-R (TNR) and aggrecan (ACAN) are key elements of PNNs. In diseases characterized by neuritogenesis defects, the expression of these proteins is known to be downregulated, suggesting that PNNs may have a role in neural differentiation. In this study, the mRNA and protein levels of HAPLN1, TNR and ACAN were determined and compared at specific time points of neural differentiation. We used PC12 cells as the in vitro model because they reflect this developmental process. On day 7, the HAPLN1 mRNA level showed a 2.9-fold increase compared to the non-differentiated state. However, the cellular HAPLN1 protein level showed a decrease, indicating that the protein may have roles in neural differentiation, and may be secreted during the early period of differentiation. By contrast, TNR mRNA and protein levels remained unchanged, and the amount of cellular ACAN protein showed a 3.7-fold increase at day 7. These results suggest that ACAN may be secreted after day 7, possibly due to its large amount of post-translational modifications. Our results provide preliminary data on the expression of PNN elements during neural differentiation. Further investigations will be performed on the role of these elements in neurological disease models.

  13. Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia

    PubMed Central

    Hieke, Cathleen; Kriebel, Katja; Engelmann, Robby; Müller-Hilke, Brigitte; Lang, Hermann; Kreikemeyer, Bernd

    2016-01-01

    Periodontitis is characterized by inflammation associated with the colonization of different oral pathogens. We here aimed to investigate how bacteria and host cells shape their environment in order to limit inflammation and tissue damage in the presence of the pathogen. Human dental follicle stem cells (hDFSCs) were co-cultured with gram-negative P. intermedia and T. forsythia and were quantified for adherence and internalization as well as migration and interleukin secretion. To delineate hDFSC-specific effects, gingival epithelial cells (Ca9-22) were used as controls. Direct effects of hDFSCs on neutrophils (PMN) after interaction with bacteria were analyzed via chemotactic attraction, phagocytic activity and NET formation. We show that P. intermedia and T. forsythia adhere to and internalize into hDFSCs. This infection decreased the migratory capacity of the hDFSCs by 50%, did not disturb hDFSC differentiation potential and provoked an increase in IL-6 and IL-8 secretion while leaving IL-10 levels unaltered. These environmental modulations correlated with reduced PMN chemotaxis, phagocytic activity and NET formation. Our results suggest that P. intermedia and T. forsythia infected hDFSCs maintain their stem cell functionality, reduce PMN-induced tissue and bone degradation via suppression of PMN-activity, and at the same time allow for the survival of the oral pathogens. PMID:27974831

  14. Reversal of ocean acidification enhances net coral reef calcification.

    PubMed

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  15. Reversal of ocean acidification enhances net coral reef calcification

    NASA Astrophysics Data System (ADS)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; MacLaren, Jana K.; Mason, Benjamin M.; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L.; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-01

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO32-]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO32-], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  16. Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation: 1. major and minor element variation

    NASA Astrophysics Data System (ADS)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Kullmer, O.; Schrenk, F.; Ssemmanda, I.; Mertz, D. F.

    2011-05-01

    Bioapatite in mammalian teeth is readily preserved in continental sediments and represents a very important archive for reconstructions of environment and climate evolution. This project intends to provide a detailed data base of major, minor and trace element and isotope tracers for tooth apatite using a variety of microanalytical techniques. The aim is to identify specific sedimentary environments and to improve our understanding on the interaction between internal metabolic processes during tooth formation and external nutritional control and secondary alteration effects. Here, we use the electron microprobe, to determine the major and minor element contents of fossil and modern molar enamel, cement and dentin from hippopotamids. Most of the studied specimens are from different ecosystems in Eastern Africa, representing modern and fossil lakustrine (Lake Kikorongo, Lake Albert, and Lake Malawi) and modern fluvial environments of the Nile River system. Secondary alteration effects in particular FeO, MnO, SO3 and F concentrations, which are 2 to 10 times higher in fossil than in modern enamel; secondary enrichments in fossil dentin and cement are even higher. In modern and fossil enamel, along sections perpendicular to the enamel-dentin junction (EDJ) or along cervix-apex profiles, P2O5 and CaO contents and the CaO/P2O5 ratios are very constant (StdDev ~1 %). Linear regression analysis reveals very tight control of the MgO (R2∼0.6), Na2O and Cl variation (for both R2>0.84) along EDJ-outer enamel rim profiles, despite large concentration variations (40 % to 300 %) across the enamel. These minor elements show well defined distribution patterns in enamel, similar in all specimens regardless of their age and origin, as the concentration of MgO and Na2O decrease from the enamel-dentin junction (EDJ) towards the outer rim, whereas Cl displays the opposite variation. Fossil enamel from hippopotamids which lived in the saline Lake Kikorongo have a much higher MgO/Na2O ratio (∼1.11) than those from the Neogene fossils of Lake Albert (MgO/Na2O∼0.4), which was a large fresh water lake like those in the western Branch of the East African Rift System today. Similarly, the MgO/Na2O ratio in modern enamel from the White Nile River (∼0.36), which has a Precambrian catchment of dominantly granite and gneisses and passes through several saline zones, is higher than that from the Blue Nile River, whose catchment is the Neogene volcanic Ethiopian Highland (MgO/Na2O∼0.22). Thus, particularly MgO/Na2O might be a sensitive fingerprint for environments where river and lake water have suffered strong evaporation. Enamel formation in mammals takes place at successive mineralization fronts within a confined chamber where ion and molecule transport is controlled by the surrounding enamel organ. During the secretion and maturation phases the epithelium generates different fluid composition, which in principle, should determine the final composition of enamel apatite. This is supported by co-linear relationships between MgO, Cl and Na2O which can be interpreted as binary mixing lines. However, if maturation starts after secretion is completed the observed element distribution can only be explained by recrystallization of existing and addition of new apatite during maturation. Perhaps the initial enamel crystallites precipitating during secretion and the newly formed bioapatite crystals during maturation equilibrate with a continuously evolving fluid. During crystallization of bioapatite the enamel fluid becomes continuously depleted in MgO and Na2O, but enriched in Cl which results in the formation of MgO, and Na2O-rich, but Cl-poor bioapatite near the EDJ and MgO- and Na2O-poor, but Cl-rich bioapatite at the outer enamel rim. The linkage between lake and river water composition, bioavailability of elements for plants, animal nutrition and tooth formation is complex and multifaceted. The quality and limits of the MgO/Na2O and other proxies have to be established with systematic investigations relating chemical distribution patterns to sedimentary environment and to growth structures developing as secretion and maturation proceed during tooth formation.

  17. Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 1: Major and minor element variation

    NASA Astrophysics Data System (ADS)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Kullmer, O.; Schrenk, F.; Ssemmanda, I.; Mertz, D. F.

    2012-01-01

    Bioapatite in mammalian teeth is readily preserved in continental sediments and represents a very important archive for reconstructions of environment and climate evolution. This project provides a comprehensive data base of major, minor and trace element and isotope tracers for tooth apatite using a variety of microanalytical techniques. The aim is to identify specific sedimentary environments and to improve our understanding on the interaction between internal metabolic processes during tooth formation and external nutritional control and secondary alteration effects. Here, we use the electron microprobe to determine the major and minor element contents of fossil and modern molar enamel, cement and dentin from Hippopotamids. Most of the studied specimens are from different ecosystems in Eastern Africa, representing modern and fossil lacustrine (Lake Kikorongo, Lake Albert, and Lake Malawi) and modern fluvial environments of the Nile River system. Secondary alteration effects - in particular FeO, MnO, SO3 and F concentrations - are 2 to 10 times higher in fossil than in modern enamel; the secondary enrichment of these components in fossil dentin and cement is even higher. In modern and fossil enamel, along sections perpendicular to the enamel-dentin junction (EDJ) or along cervix-apex profiles, P2O5 and CaO contents and the CaO/P2O5 ratios are very constant (StdDev ∼1%). Linear regression analysis reveals tight control of the MgO (R2∼0.6), Na2O and Cl variation (for both R2>0.84) along EDJ-outer enamel rim profiles, despite large concentration variations (40% to 300%) across the enamel. These minor elements show well defined distribution patterns in enamel, similar in all specimens regardless of their age and origin, as the concentration of MgO and Na2O decrease from the enamel-dentin junction (EDJ) towards the outer rim, whereas Cl displays the opposite trend. Fossil enamel from Hippopotamids which lived in the saline Lake Kikorongo have a much higher MgO/Na2O ratio (∼1.11) than those from the Neogene fossils of Lake Albert (MgO/Na2O∼0.4), which was a large fresh water lake like those in the western Branch of the East African Rift System today. Similarly, the MgO/Na2O ratio in modern enamel from the White Nile River (∼0.36), which has a Precambrian catchment of dominantly granites and gneisses and passes through several saline zones, is higher than that from the Blue Nile River, whose catchment is the Neogene volcanic Ethiopian Highland (MgO/Na2O∼0.22). Thus, particularly MgO/Na2O might be a sensitive fingerprint for environments where river and lake water have suffered strong evaporation. Enamel formation in mammals takes place at successive mineralization fronts within a confined chamber where ion and molecule transport is controlled by the surrounding enamel organ. During the secretion and maturation phases the epithelium generates different fluid composition, which in principle, should determine the final composition of enamel apatite. This is supported by co-linear relationships between MgO, Cl and Na2O which can be interpreted as binary mixing lines. However, if maturation starts after secretion is completed, the observed element distribution can only be explained by equilibration of existing and addition of new apatite during maturation. It appears the initial enamel crystallites precipitating during secretion and the newly formed bioapatite crystals during maturation equilibrate with a continuously evolving fluid. During crystallization of bioapatite the enamel fluid becomes continuously depleted in MgO and Na2O, but enriched in Cl which results in the formation of MgO, and Na2O-rich, but Cl-poor bioapatite near the EDJ and MgO- and Na2O-poor, but Cl-rich bioapatite at the outer enamel rim. The linkage between lake and river water compositions, bioavailability of elements for plants, animal nutrition and tooth formation is complex and multifaceted. The quality and limits of the MgO/Na2O and other proxies have to be established with systematic investigations relating chemical distribution patterns to sedimentary environment and to growth structures developing as secretion and maturation proceed during tooth formation.

  18. Flowpath contributions of weathering products to stream fluxes at the Panola Mountain Research Watershed, Georgia

    USGS Publications Warehouse

    Peters, Norman E.; Aulenbach, Brent T.

    2009-01-01

    Short-term weathering rates (chemical denudation) of primary weathering products were derived from an analysis of fluxes in precipitation and streamwater. Rainfall, streamflow (runoff), and related water quality have been monitored at the Panola Mountain Research Watershed (PMRW) since 1985. Regression relations of stream solute concentration of major ions including weathering products [sodium (Na), magnesium (Mg), calcium (Ca) and silica (H4SiO4)] were derived from weekly and storm-based sampling from October 1986 through September 1998; runoff, seasonality, and hydrologic state were the primary independent variables. The regression relations explained from 74 to 90 percent of the variations in solute concentration. Chloride (Cl) fluxes for the study period were used to estimate dry atmospheric deposition (DAD) by subtracting the precipitation flux from the stream flux; net Cl flux varied from years of net retention during dry years to >3 times more exported during wet years. On average, DAD was 56 percent of the total atmospheric deposition (also assumed for the other solutes); average annual net cation and H4SiO4 fluxes were 50.6 and 85.9 mmol m-2, respectively. The annual cumulative density functions of solute flux as a function of runoff were evaluated and compared among solutes to evaluate relative changes in solute sources during stormflows. Stream flux of weathering solutes is primarily associated with groundwater discharge. During stormflow, Ca and Mg contributions increase relative to Na and H4SiO4, particularly during wet years when the contribution is 10 percent of the annual flux. The higher Ca and Mg contributions to the stream during stormflow are consistent with increased contribution from shallow soil horizons where these solutes dominate.

  19. Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region.

    PubMed

    Achá, Darío; Hintelmann, Holger; Yee, Janet

    2011-02-01

    Sulfate reducing bacteria (SRB) are important mercury methylators in sediments, but information on mercury methylators in other compartments is ambiguous. To investigate SRB involvement in methylation in Amazonian periphyton, the relationship between Hg methylation potential and SRB (Desulfobacteraceae, Desulfobulbaceae and Desulfovibrionaceae) abundance in Eichhornia crassipes and Polygonum densiflorum root associated periphyton was examined. Periphyton subsamples of each macrophyte were amended with electron donors (lactate, acetate and propionate) or inhibitors (molybdate) of sulfate reduction to create differences in SRB subgroup abundance, which was measured by quantitative real-time PCR with primers specific for the 16S rRNA gene. Mercury methylation and demethylation potentials were determined by a stable isotope tracer technique using 200HgCl and CH3(202)HgCl, respectively. Relative abundance of Desulfobacteraceae (<0.01-12.5%) and Desulfovibrionaceae (0.01-6.8%) were both highly variable among samples and subsamples, but a significant linear relationship (p<0.05) was found between Desulfobacteraceae abundance and net methylmercury formation among treatments of the same macrophyte periphyton and among all P. densiflorum samples, suggesting that Desulfobacteraceae bacteria are the most important mercury methylators among SRB families. Yet, molybdate only partially inhibited mercury methylation potentials, suggesting the involvement of other microorganisms as well. The response of net methylmercury production to the different electron donors and molybdate was highly variable (3-1104 pg g(-1) in 12 h) among samples, as was the net formation in control samples (17-164 pg g(-1) in 12 h). This demonstrates the importance of community variability and complexity of microbial interactions for the overall methylmercury production in periphyton and their response to external stimulus. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Contingent use of fetal fibronectin testing and cervical length measurement in women with preterm labour.

    PubMed

    Audibert, François; Fortin, Suzanne; Delvin, Edgard; Djemli, Anissa; Brunet, Suzanne; Dubé, Johanne; Fraser, William D

    2010-04-01

    To evaluate the contingent use of fetal fibronectin (fFN) testing and cervical length (CL) measurement to predict preterm delivery, and to validate the use of phosphorylated IGFBP-1 as a predictor of preterm delivery. We recruited 71 women with a clinical diagnosis of preterm labour between 24 and 34 weeks, and tested for the presence of fFN and IGFBP-1 in the cervicovaginal secretions of all women immediately before CL measurement. Among the 66 women with complete outcome, four were excluded from the final analysis as two had assessment for fFN but no CL measurement, and another two had CL measured but no screening for fFN. Among 62 women with complete results, the mean gestational age at recruitment was 29.4 +/- 2.5 weeks. Six women (9.6%) delivered within two weeks of assessment, and 14 (22.5%) delivered before 34 weeks. A positive fFN test resulted in a sensitivity of 83%, a specificity of 84%, a positive predictive value of 36%, and a negative predictive value of 98% for delivery within two weeks; for CL < 25 mm, these figures were 50%, 52%, 10%, and 91%, respectively, and for a positive IGFBP-1, they were 17%, 93%, 20%, and 91%, respectively. A policy of contingent use of fFN (in which the test was assumed to be positive if CL < or = 15 mm, and fFN was only measured if the CL was between 16 and 30 mm) gave sensitivity, specificity, positive and negative predictive values of 80%, 61%, 17%, and 97%, respectively for delivery within two weeks. Using this contingent use protocol, only one third of women needed fFN screening after CL measurement. In this study, IGFBP-1 screening did not predict preterm delivery and fFN screening provided the best predictive capacity. A policy of contingent use of testing for fFN after CL measurement, or contingent use of CL measurement after fFN screening (depending on available resources) is a promising approach to limit use of resources.

  1. Fractalkine in human inflammatory cardiomyopathy.

    PubMed

    Escher, F; Vetter, R; Kühl, U; Westermann, D; Schultheiss, H-P; Tschöpe, C

    2011-05-01

    Cardiac inflammation is important for the prognosis of patients with inflammatory cardiomyopathy (CMi), but the mechanisms leading to it are not fully elucidated. To study the role of fractalkine (CX3CL1) in chemotactic and adhesive properties of peripheral blood mononuclear cells (PBMCs) in patients with CMi. Patients with enterovirus (EV)-positive CMi, patients with virus-negative CMi, patients with parvovirus B19 (B19) genomes with low intramyocardial inflammation and patients without cardiac inflammation and viral infection in the endomyocardial biopsy (EMB) were enrolled (n=10/group). The expression of CX3CL1 and monocyte chemoattractant protein (MCP-1) in EMBs was significantly increased in EV-positive and virus-negative patients with CMi in contrast to controls and B19-positive patients (EV+ vs controls: CX3CL1-area fraction (AF) % 0.078±0.012 vs 0.009±0.003 p<0.05; MCP-1-AF % 0.093±0.023 vs 0.011±0.009). The receptor (CX3CR1)-mediated chemotaxis was increased twofold in PBMCs in comparison with those of controls. The MCP-1 secretion was 3.1-fold higher in PBMCs from EV-positive patients compared with controls, and this elevation was further increased by CX3CL1 in EV-positive patients. No significant CX3CL1-mediated MCP-1 increase was seen in PBMCs from healthy controls. Moreover, spontaneously beating neonatal rat cardiomyocytes exposed to CX3CL1 exhibited an attenuated positive chronotropic response to β-adrenergic stimulation with isoproterenol. The cardiac and plasma CX3CL1/CX3CR1 system is upregulated in CMi and this affects the functional potential of PBMCs. Moreover, a direct cardiodepressive effect of CX3CL1 in cardiac tissue was demonstrated since neonatal cardiomyocytes exhibited an attenuated positive chronotropic response to β-adrenergic stimulation.

  2. Silver(I) coordination polymers assembled from flexible cyclotriphosphazene ligand: structures, topologies and investigation of the counteranion effects.

    PubMed

    Davarcı, Derya; Gür, Rüştü; Beşli, Serap; Şenkuytu, Elif; Zorlu, Yunus

    2016-06-01

    The reactions of a flexible ligand hexakis(3-pyridyloxy)cyclotriphosphazene (HPCP) with a variety of silver(I) salts (AgX; X = NO3(-), PF6(-), ClO4(-), CH3PhSO3(-), BF4(-) and CF3SO3(-)) afforded six silver(I) coordination polymers, namely {[Ag2(HPCP)]·(NO3)2·H2O}n (1), {[Ag2(HPCP)(CH3CN)]·(PF6)2}n (2), {[Ag2(HPCP)(CH3CN)]·(ClO4)2}n (3), [Ag3(HPCP)(CH3PhSO3)3]n (4), [Ag2(HPCP)(CH3CN)(BF4)2]n (5) and {[Ag(HPCP)]·(CF3SO3)}n (6). All of the isolated crystalline compounds were structurally determined by X-ray crystallography. Changing the counteranions in the reactions, which were conducted under similar conditions of M/L ratio (1:1), temperature and solvent, resulted in structures with different types of topologies. In complexes (1)-(6), the ligand HPCP shows different coordination modes with Ag(I) ions giving two-dimensional layered structures and three-dimensional frameworks with different topologies. Complex (1) displays a new three-dimensional framework adopting a (3,3,6)-connected 3-nodal net with point symbol {4.6(2)}2{4(2).6(10).8(3)}. Complexes (2) and (3) are isomorphous and have a two-dimensional layered structure showing the same 3,6L60 topology with point symbol {4.2(6)}2{4(8).6(6).8}. Complex (4) is a two-dimensional structure incorporating short Ag...Ag argentophilic interactions and has a uninodal 4-connected sql/Shubnikov tetragonal plane net with {4(4).6(2)} topology. Complex (5) exhibits a novel three-dimensional framework and more suprisingly contains twofold interpenetrated honeycomb-like networks, in which the single net has a trinodal (2,3,5)-connected 3-nodal net with point symbol {6(3).8(6).12}{6(3)}{8}. Complex (6) crystallizes in a trigonal crystal system with the space group R\\bar 3 and possesses a three-dimensional polymeric structure showing a binodal (4,6)-connected fsh net with the point symbol (4(3).6(3))2.(4(6).6(6).8(3)). The effect of the counteranions on the formation of coordination polymers is discussed in this study.

  3. Digestive tract absorption of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a nursing infant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, M.S.

    The digestive tract absorption of environmental contaminants is an important but poorly understood parameter in contaminant is an important but poorly understood parameter in contaminant risk assessments. The net absorption of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a nursing infant was measured under natural conditions over 12 days. The levels of the substances in the mother's milk were typical for Germany. It was found that for almost all congeners over 90% of the ingested compound was absorbed. This indicates that the common assumption of 100% absorption in nursing infants is reasonable. No firm conclusions could be drawn regarding the absorptionmore » of Cl7- and Cl8DD/F due to high blank levels in the cotton diapers used.« less

  4. Expression of and secretion through the Aeromonas salmonicida type III secretion system.

    PubMed

    Ebanks, Roger O; Knickle, Leah C; Goguen, Michel; Boyd, Jessica M; Pinto, Devanand M; Reith, Michael; Ross, Neil W

    2006-05-01

    Aeromonas salmonicida subsp. salmonicida is the aetiological agent of furunculosis, a disease of farmed and wild salmonids. The type III secretion system (TTSS) is one of the primary virulence factors in A. salmonicida. Using a combination of differential proteomic analysis and reverse transcriptase (RT)-PCR, it is shown that A. salmonicida A449 induces the expression of TTSS proteins at 28 degrees C, but not at its more natural growth temperature of 17 degrees C. More modest increases in expression occur at 24 degrees C. This temperature-induced up-regulation of the TTSS in A. salmonicida A449 occurs within 30 min of a growth temperature increase from 16 to 28 degrees C. Growth conditions such as low-iron, low pH, low calcium, growth within the peritoneal cavity of salmon and growth to high cell densities do not induce the expression of the TTSS in A. salmonicida A449. The only other known growth condition that induces expression of the TTSS is growth of the bacterium at 16 degrees C in salt concentrations ranging from 0.19 to 0.38 M NaCl. It is also shown that growth at 28 degrees C followed by exposure to low calcium results in the secretion of one of the TTSS effector proteins. This study presents a simple in vitro model for the expression of TTSS proteins in A. salmonicida.

  5. Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy.

    PubMed

    Li, Li; Somerset, Shawn

    2014-10-01

    Cystic fibrosis can affect food digestion and nutrient absorption. The underlying mutation of the cystic fibrosis trans-membrane regulator gene depletes functional cystic fibrosis trans-membrane regulator on the surface of epithelial cells lining the digestive tract and associated organs, where Cl(-) secretion and subsequently secretion of water and other ions are impaired. This alters pH and dehydrates secretions that precipitate and obstruct the lumen, causing inflammation and the eventual degradation of the pancreas, liver, gallbladder and intestine. Associated conditions include exocrine pancreatic insufficiency, impaired bicarbonate and bile acid secretion and aberrant mucus formation, commonly leading to maldigestion and malabsorption, particularly of fat and fat-soluble vitamins. Pancreatic enzyme replacement therapy is used to address this insufficiency. The susceptibility of pancreatic lipase to acidic and enzymatic inactivation and decreased bile availability often impedes its efficacy. Brush border digestive enzyme activity and intestinal uptake of certain disaccharides and amino acids await clarification. Other complications that may contribute to maldigestion/malabsorption include small intestine bacterial overgrowth, enteric circular muscle dysfunction, abnormal intestinal mucus, and intestinal inflammation. However, there is some evidence that gastric digestive enzymes, colonic microflora, correction of fatty acid abnormalities using dietary n-3 polyunsaturated fatty acid supplementation and emerging intestinal biomarkers can complement nutrition management in cystic fibrosis. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  6. Secreted HoxA3 Promotes Epidermal Proliferation and Angiogenesis in Genetically Modified Three-Dimensional Composite Skin Constructs

    PubMed Central

    Kuo, Jennifer H.; Cuevas, Ileana; Chen, Amy; Dunn, Ashley; Kuri, Mauricio; Boudreau, Nancy

    2014-01-01

    Objective: Homeobox (HOX) transcription factors coordinate gene expression in wound repair and angiogenesis. Previous studies have shown that gene transfer of HoxA3 to wounds of diabetic mice accelerates wound healing, increasing angiogenesis and keratinocyte migration. In this study, we examined whether HoxA3 can also improve angiogenesis, epidermal integrity, and viability of composite skin grafts. Approach: To determine the effects of HoxA3 on composite skin grafts, we constructed bilayered composite grafts incorporating fibroblasts engineered to constitutively secrete HoxA3. We then transplanted these composite grafts in vivo. Results: The composite grafts produced a stratified epidermal layer after seventeen days in culture and following transplantation in vivo, these grafts exhibit normal epidermal differentiation and reduced contraction compared to controls. In addition, HoxA3 grafts showed increased angiogenesis. Quantitative polymerase chain reaction (PCR) analyses of HoxA3 graft tissue reveal an increase in the downstream HoxA3 target genes MMP-14 and uPAR expression, as well as a reduction in CCL-2 and CxCl-12. Innovation: Expression of secreted HoxA3 in composite grafts represents a comprehensive approach that targets both keratinocytes and endothelial cells to promote epidermal proliferation and angiogenesis. Conclusion: Secreted HoxA3 improves angiogenesis, reduces expression of inflammatory mediators, and prolongs composite skin graft integrity. PMID:25302136

  7. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants.

    PubMed

    Tan, Wei; Meng, Qing wei; Brestic, Marian; Olsovska, Katarina; Yang, Xinghong

    2011-11-15

    Effects of exogenous calcium chloride (CaCl(2)) (20 mM) on photosynthetic gas exchange, photosystem II photochemistry, and the activities of antioxidant enzymes in tobacco plants under high temperature stress (43°C for 2 h) were investigated. Heat stress resulted in a decrease in net photosynthetic rate (P(n)), stomatal conductance as well as the apparent quantum yield (AQY) and carboxylation efficiency (CE) of photosynthesis. Heat stress also caused a decrease of the maximal photochemical efficiency of primary photochemistry (F(v)/F(m)). On the other hand, CaCl(2) application improved P(n), AQY, and CE as well as F(v)/F(m) under high temperature stress. Heat stress reduced the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), whereas the activities of these enzymes either decreased less or increased in plants pretreated with CaCl(2); glutathione reductase (GR) activity increased under high temperature, and it increased more in plants pretreated with CaCl(2). There was an obvious accumulation of H(2)O(2) and O(2)(-) under high temperature, but CaCl(2) application decreased the contents of H(2)O(2) and O(2)(-) under heat stress conditions. Heat stress induced the level of heat shock protein 70 (HSP70), while CaCl(2) pretreatment enhanced it. These results suggested that photosynthesis was improved by CaCl(2) application in heat-stressed plants and such an improvement was associated with an improvement in stomatal conductance and the thermostability of oxygen-evolving complex (OEC), which might be due to less accumulation of reactive oxygen species. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel

    PubMed Central

    Jayakannan, Maheswari; Bose, Jayakumar; Babourina, Olga; Rengel, Zed; Shabala, Sergey

    2013-01-01

    Despite numerous reports implicating salicylic acid (SA) in plant salinity responses, the specific ionic mechanisms of SA-mediated adaptation to salt stress remain elusive. To address this issue, a non-invasive microelectrode ion flux estimation technique was used to study kinetics of NaCl-induced net ion fluxes in Arabidopsis thaliana in response to various SA concentrations and incubation times. NaCl-induced K+ efflux and H+ influx from the mature root zone were both significantly decreased in roots pretreated with 10–500 μM SA, with strongest effect being observed in the 10–50 μM SA range. Considering temporal dynamics (0–8-h SA pretreatment), the 1-h pretreatment was most effective in enhancing K+ retention in the cytosol. The pharmacological, membrane potential, and shoot K+ and Na+ accumulation data were all consistent with the model in which the SA pretreatment enhanced activity of H+-ATPase, decreased NaCl-induced membrane depolarization, and minimized NaCl-induced K+ leakage from the cell within the first hour of salt stress. In long-term treatments, SA increased shoot K+ and decreased shoot Na+ accumulation. The short-term NaCl-induced K+ efflux was smallest in the gork1-1 mutant, followed by the rbohD mutant, and was highest in the wild type. Most significantly, the SA pretreatment decreased the NaCl-induced K+ efflux from rbohD and the wild type to the level of gork1-1, whereas no effect was observed in gork1-1. These data provide the first direct evidence that the SA pretreatment ameliorates salinity stress by counteracting NaCl-induced membrane depolarization and by decreasing K+ efflux via GORK channels. PMID:23580750

  9. Effects of Different Oral Doses of Sodium Chloride on the Basal Acid-Base and Mineral Status of Exercising Horses Fed Low Amounts of Hay.

    PubMed

    Zeyner, Annette; Romanowski, Kristin; Vernunft, Andreas; Harris, Patricia; Müller, Ann-Marie; Wolf, Carola; Kienzle, Ellen

    2017-01-01

    The provision of NaCl, according to current recommendations, to horses in moderate work has been shown to induce immediate postprandial acidosis. The present study aimed to clarify whether this NaCl induced acidosis i) persists beyond the immediate postprandial period, and ii) is still present after a 2 week adaptation period. Six adult warmblood mares in moderate work received daily 1.00 kg hay per 100 kg body weight (bwt) only together with 0.64 kg unprocessed cereal grains/100 kg bwt.d as fed basis. Using a 3x3 Latin Square, either 0 (NaCl-0), 50 (NaCl-50) or 100 (NaCl-100) g NaCl/d were fed together with the concentrates in two equal doses for 3 weeks. During the final week, a mineral digestibility trial was undertaken. The middle sodium and chloride intake (NaCl-50) at least met the most common recommendations for moderate work. Morning (7:00 AM) urine and venous blood samples were collected on days 0, 1-4, 8, and 15, and analysed for pH, acid-base status, creatinine and electrolyte concentrations. Fractional electrolyte clearances (FC) were determined. Mean apparent sodium digestibility ranged between 60-62% whereas chloride digestibility was consistently above 94%. Supplementing 100 g but not 50 g of NaCl resulted in significant reduction of blood pH and base excess as well as urinary pH and urine acid excretion. Both 50 g and 100 g NaCl supplementation caused a significant reduction in base and net acid-base excretion, urine density and potassium concentration, but increased urine sodium concentration and the FC of sodium and chloride (P < 0.05). This suggests that a high proportion of the recommended salt doses is excreted renally. The above effects of NaCl supplementation persisted over the 2 week measurement period. Results suggest that feeding 100 g NaCl to moderately exercising horses results in mild metabolic acidosis, whereas feeding 50 g according to current recommendations resulted in compensated acidosis.

  10. Effects of Different Oral Doses of Sodium Chloride on the Basal Acid-Base and Mineral Status of Exercising Horses Fed Low Amounts of Hay

    PubMed Central

    Zeyner, Annette; Romanowski, Kristin; Vernunft, Andreas; Harris, Patricia; Müller, Ann-Marie; Wolf, Carola; Kienzle, Ellen

    2017-01-01

    The provision of NaCl, according to current recommendations, to horses in moderate work has been shown to induce immediate postprandial acidosis. The present study aimed to clarify whether this NaCl induced acidosis i) persists beyond the immediate postprandial period, and ii) is still present after a 2 week adaptation period. Six adult warmblood mares in moderate work received daily 1.00 kg hay per 100 kg body weight (bwt) only together with 0.64 kg unprocessed cereal grains/100 kg bwt.d as fed basis. Using a 3x3 Latin Square, either 0 (NaCl-0), 50 (NaCl-50) or 100 (NaCl-100) g NaCl/d were fed together with the concentrates in two equal doses for 3 weeks. During the final week, a mineral digestibility trial was undertaken. The middle sodium and chloride intake (NaCl-50) at least met the most common recommendations for moderate work. Morning (7:00 AM) urine and venous blood samples were collected on days 0, 1–4, 8, and 15, and analysed for pH, acid-base status, creatinine and electrolyte concentrations. Fractional electrolyte clearances (FC) were determined. Mean apparent sodium digestibility ranged between 60–62% whereas chloride digestibility was consistently above 94%. Supplementing 100 g but not 50 g of NaCl resulted in significant reduction of blood pH and base excess as well as urinary pH and urine acid excretion. Both 50 g and 100 g NaCl supplementation caused a significant reduction in base and net acid-base excretion, urine density and potassium concentration, but increased urine sodium concentration and the FC of sodium and chloride (P < 0.05). This suggests that a high proportion of the recommended salt doses is excreted renally. The above effects of NaCl supplementation persisted over the 2 week measurement period. Results suggest that feeding 100 g NaCl to moderately exercising horses results in mild metabolic acidosis, whereas feeding 50 g according to current recommendations resulted in compensated acidosis. PMID:28045916

  11. Pregnancy Increases the Renal Secretion of N1-methylnicotinamide, an Endogenous Probe for Renal Cation Transporters, in Patients Prescribed Metformin.

    PubMed

    Bergagnini-Kolev, Mackenzie C; Hebert, Mary F; Easterling, Thomas R; Lin, Yvonne S

    2017-03-01

    N 1 -methylnicotinamide (1-NMN) has been investigated as an endogenous probe for the renal transporter activity of organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins 1 and 2-K (MATE1 and MATE2-K). As pregnancy increased the renal secretion of metformin, a substrate for OCT2, MATE1, and MATE2-K, we hypothesized that the renal secretion of 1-NMN would be similarly affected. Blood and urine samples collected from women prescribed metformin for type 2 diabetes, gestational diabetes, and polycystic ovarian syndrome during early, mid, and late pregnancy ( n = 34 visits) and postpartum ( n = 14 visits) were analyzed for 1-NMN using liquid chromatography-mass spectrometry. The renal clearance and secretion clearance, using creatinine clearance to correct for glomerular filtration, were estimated for 1-NMN and correlated with metformin renal clearance. 1-NMN renal clearance was higher in both mid (504 ± 293 ml/min, P < 0.01) and late pregnancy (557 ± 305 ml/min, P < 0.01) compared with postpartum (240 ± 106 ml/min). The renal secretion of 1-NMN was 3.5-fold higher in mid pregnancy (269± 267, P < 0.05) and 4.5-fold higher in late pregnancy compared with postpartum (342 ± 283 versus 76 ± 92 ml/min, P < 0.01). Because creatinine is also a substrate of OCT2, MATE1, and MATE2-K, creatinine clearance likely overestimates filtration clearance, whereas the calculated 1-NMN secretion clearance is likely underestimated. Metformin renal clearance and 1-NMN renal clearance were positively correlated (r s = 0.68, P < 0.0001). 1-NMN renal clearance increases during pregnancy due to increased glomerular filtration and net secretion by renal transporters. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Soya phytoestrogens, genistein and daidzein, decrease apolipoprotein B secretion from HepG2 cells through multiple mechanisms.

    PubMed Central

    Borradaile, Nica M; de Dreu, Linda E; Wilcox, Lisa J; Edwards, Jane Y; Huff, Murray W

    2002-01-01

    Diets containing the soya-derived phytoestrogens, genistein and daidzein, decrease plasma cholesterol in humans and experimental animals. The mechanisms responsible for the hypocholesterolaemic effects of these isoflavones are unknown. The present study was conducted to determine if genistein and daidzein regulate hepatocyte cholesterol metabolism and apolipoprotein (apo) B secretion in cultured human hepatoma (HepG2) cells. ApoB secretion was decreased dose-dependently by up to 63% and 71% by genistein and daidzein (100 microM; P<0.0001) respectively. In contrast, no effect on apoAI secretion was observed. Cellular cholesterol synthesis was inhibited 41% by genistein (100 microM; P<0.005) and 18% by daidzein (100 microM; P<0.05), which was associated with significant increases in 3-hydroxy-3-methylglutaryl-CoA reductase mRNA. Cellular cholesterol esterification was decreased 56% by genistein (100 microM; P<0.04) and 29% by daidzein (100 microM; P<0.04); however, mRNA levels for acyl-CoA:cholesterol acyltransferase (ACAT) 1 and ACAT2 were unaffected. At 100 microM, both isoflavones equally inhibited the activities of both forms of ACAT in cells transfected with either ACAT1 or ACAT2. Genistein (100 microM) and daidzein (100 microM) significantly decreased the activity of microsomal triacylglycerol transfer protein (MTP) by 30% and 24% respectively, and significantly decreased MTP mRNA levels by 35% and 55%. Both isoflavones increased low-density lipoprotein (LDL)-receptor mRNA levels by 3- to 6-fold (100 microM; P<0.03) and significantly increased the binding, uptake and degradation of (125)I-labelled LDL, suggesting that enhanced reuptake of newly secreted apoB-containing lipoproteins contributed to the net decrease in apoB secretion. These results indicate that genistein and daidzein inhibit hepatocyte apoB secretion through several mechanisms, including inhibition of cholesterol synthesis and esterification, inhibition of MTP activity and expression and increased expression of the LDL-receptor. PMID:12030847

  13. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps.

    PubMed

    Doke, M; Fukamachi, H; Morisaki, H; Arimoto, T; Kataoka, H; Kuwata, H

    2017-08-01

    Periodontitis is an inflammatory disease caused by periodontal bacteria in subgingival plaque. These bacteria are able to colonize the periodontal region by evading the host immune response. Neutrophils, the host's first line of defense against infection, use various strategies to kill invading pathogens, including neutrophil extracellular traps (NETs). These are extracellular net-like fibers comprising DNA and antimicrobial components such as histones, LL-37, defensins, myeloperoxidase, and neutrophil elastase from neutrophils that disarm and kill bacteria extracellularly. Bacterial nuclease degrades the NETs to escape NET killing. It has now been shown that extracellular nucleases enable bacteria to evade this host antimicrobial mechanism, leading to increased pathogenicity. Here, we compared the DNA degradation activity of major Gram-negative periodontopathogenic bacteria, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We found that Pr. intermedia showed the highest DNA degradation activity. A genome search of Pr. intermedia revealed the presence of two genes, nucA and nucD, putatively encoding secreted nucleases, although their enzymatic and biological activities are unknown. We cloned nucA- and nucD-encoding nucleases from Pr. intermedia ATCC 25611 and characterized their gene products. Recombinant NucA and NucD digested DNA and RNA, which required both Mg 2+ and Ca 2+ for optimal activity. In addition, NucA and NucD were able to degrade the DNA matrix comprising NETs. © 2016 The Authors Molecular Oral Microbiology Published by John Wiley & Sons Ltd.

  14. Stimulation of Murine Intestinal Secretion by Daily Genistein Injections: Gender-dependent Differences

    PubMed Central

    Al-Nakkash, Layla; Batia, Lyn; Bhakta, Minoti; Peterson, Amity; Hale, Nathan; Skinner, Ryan; Sears, Steven; Jensen, Jesse

    2011-01-01

    Background/Aims The effect of daily injections with genistein (naturally occurring phytoestrogen) on intestinal chloride (Cl−) secretion was measured with Ussing chamber short circuit current (Isc, μA/cm2), in C57BL/6J male and female mice, using 600 mg/kg genistein/day (600G), 300 mg/kg genistein/day (300G), 150 mg/kg genistein/day (150G) or genistein-free vehicle control (0G) for 1- or 2-weeks. Methods and Results Injecting with 600G elicited significant increases in basal Isc in females after 1-week (ñ70 μA/cm2, n=15, p < 0.05) and in males after 2-weeks (ñ80 μA/cm2, n=5, p < 0.05) compared to their 0G counterparts. Chloride-free ringer significantly reduced basal Isc by 65% in 600G males and 72% in 600G females, suggesting that Cl− was the major anion comprising the genistein-stimulated secretion. The forskolin-stimulated (10 μM) Isc was significantly inhibited by the CFTR chloride channel inhibitors, glibenclamide (500 μM) and CFTRinh-172 (100 μM) in 600G males and females, suggesting some contribution by genistein-dependent CFTR-mediated Cl− secretion. We found no associated changes in intestinal morphology, nor change in total CFTR protein with 600G. There was a 5% increase in apical/subapical ratio in 600G males compared to controls (no change in females). Conclusion These data suggest that male and female mice both exhibit increased Cl- secretion with 600G, however, the mechanisms mediating this are gender-dependent. PMID:21865731

  15. Printable Organic Nanoelectronics for Memory, Sensors and Display

    DTIC Science & Technology

    2014-02-01

    central ion but associated with ring- based processes during oxidation and reduction. The electrochromic behaviour of the film was examined by cyclic...Fluorine-doped tin oxide 12  satDI Saturation current 9 scI Short circuit current 10 LiClO4 Lithium perchlorate 14 NADH reduced nicotinamide...resistor R and capacitor C , connected in parallel. The net current I is the sum of the circulating current and displacement components in the form

  16. Measurements of intracellular calcium signals in polarized primary cultures of normal and cystic fibrosis human airway epithelia.

    PubMed

    Ribeiro, Carla M P

    2011-01-01

    The airways are continuously challenged by a variety of stimuli including bacteria, viruses, allergens, and inflammatory factors that act as agonists for G protein-coupled receptors (GPCR). Intracellular calcium (Ca(2+) (i)) mobilization in airway epithelia in response to extracellular stimuli regulates key airway innate defense functions, e.g., Ca(2+)-activated Cl(-) secretion, ciliary beating, mucin secretion, and inflammatory responses. Because Ca(2+) (i) mobilization in response to luminal stimuli is larger in CF vs. normal human airway epithelia, alterations in Ca(2+) (i) signals have been associated with the pathogenesis of CF airway disease. Hence, assessment of Ca(2+) (i) signaling has become an important area of CF research. This chapter will focus on measurements of cytoplasmic and mitochondrial Ca(2+) signals resulting from GPCR activation in polarized primary cultures of normal and CF human bronchial epithelia (HBE).

  17. Management of the hormonal syndrome of neuroendocrine tumors

    PubMed Central

    Waligórska-Stachura, Joanna; Czarnywojtek, Agata; Sawicka-Gutaj, Nadia; Bączyk, Maciej; Ziemnicka, Katarzyna; Fischbach, Jakub; Woliński, Kosma; Kaznowski, Jarosław; Wrotkowska, Elżbieta; Ruchała, Marek

    2016-01-01

    Gastroenteropancreatic neuroendocrine tumors (GEP/NET) are unusual and rare neoplasms that present many clinical challenges. They characteristically synthesize store and secrete a variety of peptides and neuroamines which can lead to the development of distinct clinical syndrome, however many are clinically silent until late presentation with mass effects. Management strategies include surgery cure and cytoreduction with the use of somatostatin analogues. Somatostatin have a broad range of biological actions that include inhibition of exocrine and endocrine secretions, gut motility, cell proliferation, cell survival and angiogenesis. Five somatostatin receptors (SSTR1-SSTR5) have been cloned and characterized. Somatostatin analogues include octreotide and lanreotide are effective medical tools in the treatment and present selectivity for SSTR2 and SSTR5. During treatment is seen disapperance of flushing, normalization of bowel movements and reduction of serotonin and 5-hydroxyindole acetic acid (5-HIAA) secretion. Telotristat represents a novel approach by specifically inhibiting serotonin synthesis and as such, is a promising potential new treatment for patients with carcinoid syndrome. To pancreatic functionig neuroendocrine tumors belongs insulinoma, gastrinoma, glucagonoma and VIP-oma. Medical management in patients with insulinoma include diazoxide which suppresses insulin release. Also mTOR inhibitors may inhibit insulin secretion. Treatment of gastrinoma include both proton pump inhibitors (PPIs) and histamine H2 – receptor antagonists. In patients with glucagonomas hyperglycaemia can be controlled using insulin and oral blood glucose lowering drugs. In malignant glucagonomas smatostatin analogues are effective in controlling necrolytic migratory erythemia. Severe cases of the VIP-oma syndrome require supplementation of fluid losses. Octreotide reduce tumoral VIP secretion and control secretory diarrhoea. PMID:28507564

  18. The effect of imiquimod on taste bud calcium transients and transmitter secretion.

    PubMed

    Huang, Anthony Y; Wu, Sandy Y

    2016-11-01

    Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell-cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste-evoked ATP secretion from mouse taste buds. Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca 2+ concentrations. These Ca 2 + responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca 2 + -ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca 2 + mobilization elicited by imiquimod was dependent on release from internal Ca 2 + stores. Moreover, combining studies of Ca 2 + imaging with cellular biosensors showed that imiquimod evoked secretion of 5-HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste-evoked ATP secretion. Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5-HT signalling. © 2016 The British Pharmacological Society.

  19. Epiregulin (EREG) is upregulated through an IL-1β autocrine loop in Caco-2 epithelial cells with reduced CFTR function.

    PubMed

    Massip-Copiz, Macarena; Clauzure, Mariángeles; Valdivieso, Ángel G; Santa-Coloma, Tomás A

    2018-03-01

    CFTR is a cAMP-regulated chloride channel, whose mutations produce cystic fibrosis. The impairment of CFTR activity increases the intracellular Cl - concentration, which in turn produces an increased interleukin-1β (IL-1β) secretion. The secreted IL-1β then induces an autocrine positive feedback loop, further stimulating IL-1β priming and secretion. Since IL-1β can transactivate the epidermal growth factor receptor (EGFR), we study here the levels of expression for different EGFR ligands in Caco-2/pRS26 cells (expressing shRNA against CFTR resulting in a reduced CFTR expression and activity). The epiregulin (EREG), amphiregulin (AREG), and heparin binding EGF like growth factor (HBEGF) mRNAs, were found overexpressed in Caco-2/pRS26 cells. The EREG mRNA had the highest differential expression and was further characterized. In agreement with its mRNA levels, Western blots (WB) showed increased EREG levels in CFTR-impaired cells. In addition, EREG mRNA and protein levels were stimulated by incubation with exogenous IL-1β and inhibited by the Interleukin 1 receptor type I (IL1R1) antagonist IL1RN, suggesting that the overexpression of EREG is a consequence of the autocrine IL-1β loop previously described for these cells. In addition, the JNK inhibitor SP600125, and the EGFR inhibitors AG1478 and PD168393, also had an inhibitory effect on EREG expression, suggesting that EGFR, activated in Caco-2/pRS26 cells, is involved in the observed EREG upregulation. In conclusion, in Caco-2 CFTR-shRNA cells, the EGFR ligand EREG is overexpressed due to an active IL-1β autocrine loop that indirectly activates EGFR, constituting new signaling effectors for the CFTR signaling pathway, downstream of CFTR, Cl - , and IL-1β. © 2017 Wiley Periodicals, Inc.

  20. Lubiprostone prevents nonsteroidal anti-inflammatory drug-induced small intestinal damage by suppressing the expression of inflammatory mediators via EP4 receptors.

    PubMed

    Hayashi, Shusaku; Kurata, Naoto; Yamaguchi, Aya; Amagase, Kikuko; Takeuchi, Koji

    2014-06-01

    Lubiprostone, a bicyclic fatty acid derived from prostaglandin E1, has been used to treat chronic constipation and irritable bowel syndrome, and its mechanism of action has been attributed to the stimulation of intestinal fluid secretion via the activation of the chloride channel protein 2/cystic fibrosis transmembrane regulator (ClC-2/CFTR) chloride channels. We examined the effects of lubiprostone on indomethacin-induced enteropathy and investigated the functional mechanisms involved, including its relationship with the EP4 receptor subtype. Male Sprague-Dawley rats were administered indomethacin (10 mg/kg p.o.) and killed 24 hours later to examine the hemorrhagic lesions that developed in the small intestine. Lubiprostone (0.01-1 mg/kg) was administered orally twice 30 minutes before and 9 h after the indomethacin treatment. Indomethacin markedly damaged the small intestine, accompanied by intestinal hypermotility, a decrease in mucus and fluid secretion, and an increase in enterobacterial invasion as well as the up-regulation of inducible nitric-oxide synthase (iNOS) and tumor necrosis factor α (TNFα) mRNAs. Lubiprostone significantly reduced the severity of these lesions, with the concomitant suppression of the functional changes. The effects of lubiprostone on the intestinal lesions and functional alterations were significantly abrogated by the coadministration of AE3-208 [4-(4-cyano-2-(2-(4-fluoronaphthalen-1-yl)propionylamino)phenyl)butyric acid], a selective EP4 antagonist, but not by CFTR(inh)-172, a CFTR inhibitor. These results suggest that lubiprostone may prevent indomethacin-induced enteropathy via an EP4 receptor-dependent mechanism. This effect may be functionally associated with the inhibition of intestinal hypermotility and increase in mucus/fluid secretion, resulting in the suppression of bacterial invasion and iNOS/TNFα expression, which are major pathogenic events in enteropathy. The direct activation of CFTR/ClC-2 chloride channels is not likely to have contributed to the protective effects of lubiprostone.

  1. Epidemiological Study on Cutaneous Leishmaniasis in an Endemic Area, of Qom Province, Central Iran

    PubMed Central

    Saghafipour, Abedin; Vatandoost, Hassan; Zahraei-Ramazani, Ali Reza; Yaghoobi-Ershadi, Mohammad Reza; Jooshin, Moharram Karami; Rassi, Yavar; Shirzadi, Mohammad Reza; Akhavan, Amir Ahmad; Hanafi-Bojd, Ahmad Ali

    2017-01-01

    Background: Cutaneous leishmaniasis (CL) is one of the most important health problems in many areas of Iran. There are two forms of the disease in Iran, anthroponotic and zoonotic CL. This study conducted to assess the epidemiological situation of CL in an endemic area of Qom Province, central Iran from Apr to Nov 2015. Methods: The sticky paper traps and aspirating tubes were used for collecting adult sand flies. Sherman traps and small insect nets were used to capture rodents and small mammals. Giemsa staining was used for preparing the expanded smear and followed by PCR for identifying the causative agent in human, vectors, and reservoirs. In this study, relative frequency of CL was also calculated. Results: Fourteen species of Phlebotomine sand flies were collected. Phlebotomus papatasi (61.74%) was the predominant species through the period of activity. Overall, 62 Meriones libycus, 8 Nesokia indica, 4 Mus musculus, 16 Allactaga elater and 2 Hemiechinus auritis were caught. PCR technique showed 6 out of 150 P. papatasi (2%), two out of 62 M. libycus (3.23%) and all of suspected human’s skin tissue samples (100%) were infected with Leishmania major. The relative frequency of CL was 0.30%. Conclusion: This is the first detection of L. major within P. papatasi, M. libycus and human in Kahak District in Qom Province of Iran. Zoonotic cycle of CL exists in this area, L. major is the causative agent, P. papatasi is the main vector and M. libycus is the main reservoir of the disease. PMID:29322057

  2. Action of fatty acids on the exocrine pancreatic secretion of the conscious rat: further evidence for a protein pancreatic inhibitory factor.

    PubMed

    Demol, P; Sarles, H

    1978-02-01

    The existence of a delayed inhibition of the secretion of protein by the rat pancreas after intraduodenal injection of oleic acid has been confirmed. 1. This phenomenon is not dependent on the presence or absence of bile or pancreatic juice in the intestine. 2. The action of oleic acid is not a pathological phenomenon due to lesions of the gut mucosa because isotonic solutions of Na oleate dispersed into polysorbate 80 or olive oil (rich in oleic acid) plus pancreatic juice have the same effect. 3. Fatty acids must be free or saponified but not esterified in the form of triglycerides. Triglycerides are only effective if pancreatic juice is simultaneously reintroduced into the duodenum. 4. Oleic acid (C18 monoéne) is more efficient than caprylic acid (C8) and butyric acid (C4) is ineffective. The effect of chain length in releasing the inhibitory factor is therefore approximately the same as in CCK-PZ release. 5. Intraduodenal infusion of hypertonic glucose solution does not inhibit pancreatic protein secretion indicating that release of enteroglucagon is probably not responsible for the inhibition. The inhibitory action of hypertonic NaCl solution is not explained.

  3. Submucosal reflexes: distension-evoked ion transport in the guinea pig distal colon.

    PubMed

    Frieling, T; Wood, J D; Cooke, H J

    1992-07-01

    Muscle-stripped segments of distal colon from guinea pigs were mounted in modified flux chambers to determine the effect of distension on mucosal secretion. Ion secretion was monitored as changes in short-circuit current (Isc). Distending forces were pressure gradients established by controlled reduction in liquid volume of the submucosal compartment of the chamber. Volume removal for 10 s or 5 min evoked a monophasic or biphasic increase in Isc, which returned to baseline within 5-20 min. The amplitude of the response correlated with the volume removed and was reduced by bumetanide and Cl-free solutions but not by tetraethylammonium or amiloride. Tetrodotoxin and atropine also suppressed the response. Neither the nicotinic receptor antagonist mecamylamine, the 5-hydroxytryptamine3 (5-HT3) receptor antagonist ICS 205-930, or the prostaglandin synthesis inhibitor piroxicam altered the response. Addition of prostaglandin D2 to the submucosal bath significantly enhanced the response. The results suggest that distension of the colon evokes anion secretion by activation of reflex circuits with cholinergic neurons and muscarinic synapses. Prostaglandins and 5-hydroxytryptamine acting at 5-HT3 receptors appear not to be signal substances in the reflex pathway, which evokes the secretory response to distension.

  4. Immunological impact of magnetic nanoparticles (Ferucarbotran) on murine peritoneal macrophages

    NASA Astrophysics Data System (ADS)

    Yeh, Chen-Hao; Hsiao, Jong-Kai; Wang, Jaw-Lin; Sheu, Fuu

    2010-01-01

    Ferucarbotran, a clinically used superparamagnetic iron oxide, is widely developed as a magnetic resonance imaging (MRI) contrast agent and has the potential to improve the monitoring of macrophage recirculation in vivo. However, the biological effect of Ferucarbotran or magnetic nanoparticles (MNPs) on macrophage is not clearly understood yet. This study is aimed to examine the immunological impact of Ferucarbotran toward murine peritoneal macrophages. Cells treated with Ferucarbotran demonstrated a dose-responsive increase of granularity in the cytoplasm. After 24 h of incubation, viability and cytotoxicity in macrophages treated with 200 μg Fe/mL of Ferucarbotran were not affected. Macrophages loaded with Ferucarbotran above 100 μg Fe/mL showed a significant ( p < 0.01) increase in cytokine (TNF-α, IL-1β, IL-6) secretion and mRNA expression, followed by nitric oxide (NO) secretion and iNOS mRNA expression. Chemotactic responses of Ferucarbotran-preloaded macrophages toward CX3CL1 were significantly ( p < 0.05) lower than those of untreated macrophages. Taking together, Ferucarbotran at high dose (100 μg Fe/mL) could induce murine peritoneal macrophages activation in pro-inflammatory cytokine secretion and NO production.

  5. Propofol inhibits carbachol-induced chloride secretion by directly targeting the basolateral K+ channel in rat ileum epithelium.

    PubMed

    Tang, S-H; Wang, H-Y; Sun, H; An, N; Xiao, L; Sun, Q; Zhao, D-B

    2017-02-01

    Propofol is a widely used intravenous general anesthetic. Acetylcholine (ACh) is critical in controlling epithelial ion transport. This study was to investigate the effects of propofol on ACh-evoked secretion in rat ileum epithelium. The Ussing chamber technique was used to investigate the effects of propofol on carbachol (CCh)-evoked short-circuit currents (Isc). Propofol (10 -2 -10 -6  mol/L) attenuated CCh-evoked Isc of rat ileum mucosa in a dose-dependent manner. The inhibitory effect of propofol was only evident after application to the serosal side. Pretreatment with tetrodotoxin (TTX, 0.3 μmol/L, n=5) had no effect on propofol-induced inhibitory effect, whereas serosal application of K + channel inhibitor, glibenclamide, but not, an ATP-sensitive K + channel inhibitor, largely reduced the inhibitory effect of propofol. In addition, pretreatment with either hexamethonium bromide (HB, nicotinic nACh receptor antagonist) or Cl - channel blockers niflumic acid and cystic fibrosis transmembrane conductance regulator (inh)-172 did not produce any effect on the propofol-induced inhibitory effect. Propofol inhibits CCh-induced intestinal secretion by directly targeting basolateral K + channels. © 2016 John Wiley & Sons Ltd.

  6. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Jae Hyung; Kim, Yang Hee; Asan Institute for Life Science, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3more » dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.« less

  7. Functionalization of metallabenzenes through nucleophilic aromatic substitution of hydrogen.

    PubMed

    Clark, George R; Ferguson, Lauren A; McIntosh, Amy E; Söhnel, Tilo; Wright, L James

    2010-09-29

    The cationic metallabenzenes [Ir(C(5)H(4){SMe-1})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (1) and [Os(C(5)H(4){SMe-1})(CO)(2)(PPh(3))(2)][CF(3)SO(3)] (2) undergo regioselective nucleophilic aromatic substitution of hydrogen at the metallabenzene ring position γ to the metal in a two-step process that first involves treatment with appropriate nucleophiles and then oxidation. Thus, reaction between compound 1 and NaBH(4), MeLi, or NaOEt gives the corresponding neutral iridacyclohexa-1,4-diene complexes Ir(C(5)H(3){SMe-1}{H-3}{Nu-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2) (Nu = H (3), Me (4), OEt (5)). Similarly, reaction between 2 and NaBH(4) or MeLi gives the corresponding osmacyclohexa-1,4-diene complexes Os(C(5)H(3){SMe-1}{H-3}{Nu-3})(CO)(2)(PPh(3))(2) (Nu = H (8), Me (9)). The metallacyclohexa-1,4-diene rings in all these compounds are rearomatized on treatment with the oxidizing agent O(2), CuCl(2), or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Accordingly, the cationic metallabenzene 1 or 2 is returned after reaction between 3 and DDQ/NEt(4)PF(6) or between 8 and DDQ/NaO(3)SCF(3), respectively. The substituted cationic iridabenzene [Ir(C(5)H(3){SMe-1}{Me-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (6) or [Ir(C(5)H(4){SMe-1}{OEt-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (7) is produced in a similar manner through reaction between 4 or 5, respectively, and DDQ/NEt(4)PF(6), and the substituted cationic osmabenzene [Os(C(5)H(3){SMe-1}{Me-3})(CO)(2)(PPh(3))(2)]Cl (10) is formed in good yield on treatment of 9 with CuCl(2). The starting cationic iridabenzene 1 is conveniently prepared by treatment of the neutral iridabenzene Ir(C(5)H(4){SMe-1})Cl(2)(PPh(3))(2) with NaS(2)CNEt(2) and NEt(4)PF(6), and the related starting cationic osmabenzene 2 is obtained by treatment of Os(C(5)H(4){S-1})(CO)(PPh(3))(2) with CF(3)SO(3)CH(3) and CO. The stepwise transformations of 1 into 6 or 7 as well as 2 into 10 provide the first examples in metallabenzene chemistry of regioselective nucleophilic aromatic substitutions of hydrogen by external nucleophiles. DFT calculations have been used to rationalize the preferred sites for nucleophilic attack at the metallabenzene rings of 1 and 2. The crystal structures of 1, 3, 6, and 7 have been obtained.

  8. Estimates of water and solute release from a coal waste rock dump in the Elk Valley, British Columbia, Canada.

    PubMed

    Villeneuve, S A; Barbour, S L; Hendry, M J; Carey, S K

    2017-12-01

    Long term (1999 to 2014) flow and water quality data from a rock drain located at the base of a coal waste rock dump constructed in the Elk Valley, British Columbia was used to characterize the release of three solutes (NO 3 - , Cl - and SO 4 2- ) from the dump and obtain whole dump estimates of net percolation (NP). The concentrations of dump derived solutes in the rock drain water were diluted by snowmelt waters from the adjacent natural watershed during the spring freshet and reached a maximum concentration during the winter baseflow period. Historical peak baseflow concentrations of conservative ions (NO 3 - and Cl - ) increased until 2006/07 after which they decreased. This decrease was attributed to completion of the flushing of the first pore volume of water stored within the dump. The baseflow SO 4 2- concentrations increased proportionally with NO 3 - and Cl - to 2007, but then continued to slowly increase as NO 3 - and Cl - concentrations decreased. This was attributed to ongoing production of SO 4 2- due to oxidation of sulfide minerals within the dump. Based on partitioning of the annual volume of water discharged from the rock drain to waste rock effluent (NP) and water entering the rock drain laterally from the natural watershed, the mean NP values were estimated to be 446±50mm/a (area normalized net percolation/year) for the dump and 172±71mm/a for the natural watershed. The difference was attributed to greater rates of recharge in the dump from summer precipitation compared to the natural watershed where rainfall interception and enhanced evapotranspiration will increase water losses. These estimates included water moving through subsurface pathways. However, given the limitations in quantifying these flows the estimated NP rates for both the natural watershed and the waste rock dump are considered to be low, and could be much higher (e.g. ~450mm/a and ~800mm/a). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Male-induced short oestrous and ovarian cycles in sheep and goats: a working hypothesis.

    PubMed

    Chemineau, Philippe; Pellicer-Rubio, Maria-Theresa; Lassoued, Narjess; Khaldi, Gley; Monniaux, Danielle

    2006-01-01

    The existence of short ovulatory cycles (5-day duration) after the first male-induced ovulations in anovulatory ewes and goats, associated or not with the appearance of oestrous behaviour, is the origin of the two-peak abnormal distribution of parturitions after the "male effect". We propose here a working hypothesis to explain the presence of these short cycles. The male-effect is efficient during anoestrus, when follicles contain granulosa cells of lower quality than during the breeding season. They generate corpora lutea (CL) with a lower proportion of large luteal cells compared to small cells, which secrete less progesterone, compared to what is observed in the breeding season cycle. This is probably not sufficient to block prostaglandin synthesis in the endometrial cells of the uterus at the time when the responsiveness to prostaglandins of the new-formed CL is initiated and, in parallel, to centrally reduce LH pulsatility. This LH pulsatility stimulates a new wave of follicles secreting oestradiol which, in turn, stimulates prostaglandin synthesis and provokes luteolysis and new ovulation(s). The occurrence of a new follicular wave on days 3-4 of the first male-induced cycle and the initiation of the responsiveness to prostaglandins of the CL from day 3 of the oestrous cycle are probably the key elements which ensure such regularity in the duration of the short cycles. Exogenous progesterone injection suppresses short cycles, probably not by delaying ovulation time, but rather by blocking prostaglandin synthesis, thus impairing luteolysis. The existence, or not, of oestrous behaviour associated to these ovulatory events mainly varies with species: ewes, compared to does, require a more intense endogenous progesterone priming; only ovulations preceded by normal cycles are associated with oestrous behaviour. Thus, the precise and delicate mechanism underlying the existence of short ovulatory and oestrous cycles induced by the male effect appears to be dependent on the various levels of the hypothalamo-pituitary-ovario-uterine axis.

  10. Role of vasopressin in regulation of renal kinin excretion in Long-Evans and diabetes insipidus rats.

    PubMed Central

    Kauker, M L; Crofton, J T; Share, L; Nasjletti, A

    1984-01-01

    To study the relationship between vasopressin and the renal kallikrein-kinin system we measured the rate of excretion of kinins into the urine of anesthetized rats during conditions of increased and decreased vasopressin level. The excretion of immunoreactive kinins in Brattleboro rats with hereditary diabetes insipidus (DI) (24 +/- 3 pg min-1 kg-1) was lower than in the control Long Evans (LE) rats (182 +/- 22 pg min-1 kg-1; P less than 0.05). The DI rats also exhibited negligible urinary excretion of immunoreactive vasopressin, reduced urine osmolality, and increased urine flow and kininogenase excretion. In LE rats, volume expansion by infusion of 0.45% NaCl-2.5% dextrose to lower vasopressin secretion reduced (P less than 0.05) kinin excretion, vasopressin excretion, and urine osmolality to 41, 26, and 15% of their respective control values, while increasing (P less than 0.05) urine flow and kininogenase excretion. On the other hand, the infusion of 5% NaCl, which promotes vasopressin secretion, increased (P less than 0.05) the urinary excretion of kinins and vasopressin to 165 and 396% of control, while increasing (P less than 0.05) urine flow and kininogenase excretion. Infusion of vasopressin (1.2 mU/h, intravenous) enhanced (P less than 0.05) kinin excretion by two to threefold in DI rats and in LE rats during volume expansion with 0.45% NaCl-2.5% dextrose, while decreasing urine flow and increasing urine osmolality. This study demonstrates that the urinary excretion of immunoreactive kinins varies in relation to the urinary level of vasopressin, irrespective of urine volume and osmolality and of the urinary excretions of sodium and kininogenase. The study suggests a role for vasopressin in promoting the activity of the renal kallikrein-kinin system in the rat. PMID:6561201

  11. Controls on Hyporheic Nitrate Removal: Assessing Transport and Substrate Limitations with 15N Tracer Studies (Invited)

    NASA Astrophysics Data System (ADS)

    Zarnetske, J. P.; Haggerty, R.; Wondzell, S. M.; Baker, M. A.

    2010-12-01

    We examined transport time and substrate controls on hyporheic (HZ) nitrification and denitrification in an upland agricultural stream with a series of 15N tracer studies - whole-stream and in situ well-to-well steady-state 15NO3- and conservative tracer (Cl-) addition experiments. For the whole-stream experiment, we measured relevant solute, 15N isotope, and hydraulic transport conditions of the reach and along HZ flowpaths of an instrumented gravel bar. HZ exchange was observed across the entire gravel bar with flowpath lengths up to 4.2m and corresponding median residence times greater than 28.5h. The HZ transitioned from a net nitrification environment at its head (small residence times, <6.9h) to a net denitrification environment at its tail (large residence times, 6.9-28.5h). HZ denitrification was confirmed as 15N2 was produced across the entire gravel bar. Production of 15N2 across all observed flowpaths and residence times indicated that denitrification microsites are present even where net nitrification occurred. At large residence times, the rate of denitrification decreased despite persistent anoxic conditions, indicating substrate (NO3- and carbon) limitations. Consequently, we conducted in situ 15NO3-, conservative tracers (Cl- and Br), and acetate injection experiments to determine how the availability of labile dissolved organic carbon (DOC) as acetate influences microbial denitrification in the HZ, especially along anoxic flowpaths with large residence times. The acetate addition to the HZ stimulated significant increases in 15N2 production by factors of 2.7 to 26.1 in all receiving wells, and significant decreases of NO3- and DOC aromaticity in the wells most hydrologically connected to the injection. Further, 100% of acetate was retained in the HZ, a portion of which is due to biological consumption. These studies demonstrate that: 1. the HZ is an active nitrogen sink in this study system, 2. the distinction between net nitrification and denitrification in the HZ is a function of residence time and exhibits threshold behavior, and 3. microbial denitrification in anaerobic portions of the HZ can be limited by labile DOC supply.

  12. The protective effect of different airway humidification liquids to lung after tracheotomy in traumatic brain injury: The role of pulmonary surfactant protein-A (SP-A).

    PubMed

    Su, Xinyang; Li, Zefu; Wang, Meilin; Li, Zhenzhu; Wang, Qingbo; Lu, Wenxian; Li, Xiaoli; Zhou, Youfei; Xu, Hongmei

    2016-02-10

    The purpose of this study was to establish a rat model of a brain injury with tracheotomy and compared the wetting effects of different airway humidification liquids, afterward, the best airway humidification liquid was selected for the clinical trial, thus providing a theoretical basis for selecting a proper airway humidification liquid in a clinical setting. Rats were divided into a sham group, group A (0.9% NaCl), group B (0.45% NaCl), group C (0.9% NaCl+ambroxol) and group D (0.9% NaCl+Pulmicort). An established rat model of traumatic brain injury with tracheotomy was used. Brain tissue samples were taken to determine water content, while lung tissue samples were taken to determine wet/dry weight ratio (W/D), histological changes and expression levels of SP-A mRNA and SP-A protein. 30 patients with brain injury and tracheotomy were selected and divided into two groups based on the airway humidification liquid instilled in the trachea tube, 0.45% NaCl and 0.9% NaCl+ambroxol. Blood was then extracted from the patients to measure the levels of SP-A, interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α). The difference between group C and other groups in lung W/D and expression levels of SP-A mRNA and SP-A protein was significant (P<0.05). In comparison, the histological changes showed that the lung tissue damage was smallest in group C compared to the three other groups. Aspect of patients, 0.45% NaCl group and 0.9% NaCl+ambroxol group were significantly different in the levels of SP-A, IL-6, IL-8 and TNF-α (P<0.01). In the present study, 0.9% NaCl+ambroxol promote the synthesis and secretion of pulmonary surfactant, and has anti-inflammatory and antioxidant effects, which inhibit the release of inflammatory factors and cytokines, making it an ideal airway humidification liquid. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory.

    PubMed

    Schulthess, Cristian P; Ndu, Udonna

    2017-01-01

    Simultaneous adsorption modeling of four ions was predicted with a strict net charge-neutral ion-exchange theory and its corresponding equilibrium and mass balance equations. An important key to the success of this approach was the proper collection of all the data, particularly the proton adsorption data, and the inclusion of variable concentrations of conjugate ions from the experimental pH adjustments. Using IExFit software, the ion-exchange model used here predicted the competitive retention of several ions on goethite by assuming that the co-adsorption or desorption of all ions occurred in the correct stoichiometries needed to maintain electroneutrality. This approach also revealed that the retention strength of Cl- ions on goethite increases in the presence of phthalate ions. That is, an anion-anion enhancement effect was observed. The retention of Cl- ions was much weaker than phthalate ions, and this also resulted in a higher sensitivity of the Cl- ions toward minor variations in the surface reactivity. The proposed model uses four goethite surface sites. The drop in retention of phthalate ions at low pH was fully described here as resulting from competitive Cl- reactions, which were introduced in increasing concentrations into the matrix as the conjugate base to the acid added to lower the pH.

  14. A bipartite graph of Neuroendocrine System

    NASA Astrophysics Data System (ADS)

    Guo, Zhong-Wei; Zou, Sheng-Rong; Peng, Yu-Jing; Zhou, Ta; Gu, Chang-Gui; He, Da-Ren

    2008-03-01

    We present an empirical investigation on the neuroendocrine system and suggest describe it by a bipartite graph. In the net the cells can be regarded as collaboration acts and the mediators can be regarded as collaboration actors. The act degree stands for the number of the cells that secrete a single mediator. Among them bFGF (the basic fibroblast growth factor) has the largest node act degree. It is the most important mitogenic cytokine, followed by TGF-beta, IL-6, IL1-beta, VEGF, IGF-1and so on. They are critical in neuroendocrine system to maintain bodily healthiness, emotional stabilization and endocrine harmony. The act degree distribution shows a shifted power law (SPL) function forms [1]. The average act degree of neuroendocrine network is h=3.01, It means that each mediator is secreted by three cells on average. The similarity, which stands for the average probability of secreting the same mediators by all neuroendocrine cells, is observed as s=0.14. Our results may be used in the research of the medical treatment of neuroendocrine diseases. [1] Assortativity and act degree distribution of some collaboration networks, Hui Chang, Bei-Bei Su, Yue-Ping Zhou, Daren He, Physica A, 383 (2007) 687-702

  15. Purification and Characterization of a Fibrinolytic Enzyme from Bacillus pumilus 2.g Isolated from Gembus, an Indonesian Fermented Food

    PubMed Central

    Afifah, Diana Nur; Sulchan, Muhammad; Syah, Dahrul; Yanti; Suhartono, Maggy Thenawidjaja; Kim, Jeong Hwan

    2014-01-01

    Bacillus pumilus 2.g isolated from gembus, an Indonesian fermented soybean cake, secretes several proteases that have strong fibrinolytic activities. A fibrinolytic enzyme with an apparent molecular weight of 20 kDa was purified from the culture supernatant of B. pumilus 2.g by sequential application of ammonium sulfate precipitation, ion-exchange chromatography, and hydrophobic chromatography. The partially purified enzyme was stable between pH 5 and pH 9 and temperature of less than 60°C. Fibrinolytic activity was increased by 5 mM MgCl2 and 5 mM CaCl2 but inhibited by 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM sodium dodecyl sulfate (SDS), and 1 mM ethylenediaminetetraacetic acid (EDTA). The partially purified enzyme quickly degraded the α and β chains of fibrinogen but was unable to degrade the γ chain. PMID:25320719

  16. Apical ammonium inhibition of cAMP-stimulated secretion in T84 cells is bicarbonate dependent.

    PubMed

    Worrell, Roger T; Best, Alison; Crawford, Oscar R; Xu, Jie; Soleimani, Manoocher; Matthews, Jeffrey B

    2005-10-01

    Normal human colonic luminal (NH(4)(+)) concentration ([NH(4)(+)]) ranges from approximately 10 to 100 mM. However, the nature of the effects of NH(4)(+) on transport, as well as NH(4)(+) transport itself, in colonic epithelium is poorly understood. We elucidate here the effects of apical NH(4)(+) on cAMP-stimulated Cl(-) secretion in colonic T84 cells. In HEPES-buffered solutions, 10 mM apical NH(4)(+) had no significant effect on cAMP-stimulated current. In contrast, 10 mM apical NH(4)(+) reduced current within 5 min to 61 +/- 4% in the presence of 25 mM HCO(3)(-). Current inhibition was not simply due to an increase in extracellular K(+)-like cations, in that the current magnitude was 95 +/- 5% with 10 mM apical K(+) and 46 +/- 3% with 10 mM apical NH(4)(+) relative to that with 5 mM apical K(+). We previously demonstrated that inhibition of Cl(-) secretion by basolateral NH(4)(+) occurs in HCO(3)(-)-free conditions and exhibits anomalous mole fraction behavior. In contrast, apical NH(4)(+) inhibition of current in HCO(3)(-) buffer did not show anomalous mole fraction behavior and followed the absolute [NH(4)(+)] in K(+)-NH(4)(+) mixtures, where K(+) concentration + [NH(4)(+)] = 10 mM. The apical NH(4)(+) inhibitory effect was not prevented by 100 microM methazolamide, suggesting no role for apical carbonic anhydrase. However, apical NH(4)(+) inhibition of current was prevented by 10 min of pretreatment of the apical surface with 500 microM DIDS, 100 microM 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), or 25 microM niflumic acid, suggesting a role for NH(4)(+) action through an apical anion exchanger. mRNA and protein for the apical anion exchangers SLC26A3 [downregulated in adenoma (DRA)] and SLC26A6 [putative anion transporter (PAT1)] were detected in T84 cells by RT-PCR and Northern and Western blots. DRA and PAT1 appear to associate with CFTR in the apical membrane. We conclude that the HCO(3)(-) dependence of apical NH(4)(+) inhibition of secretion is due to the action of NH(4)(+) on an apical anion exchanger.

  17. Critical role for NHE1 in intracellular pH regulation in pancreatic acinar cells.

    PubMed

    Brown, David A; Melvin, James E; Yule, David I

    2003-11-01

    The primary function of pancreatic acinar cells is to secrete digestive enzymes together with a NaCl-rich primary fluid which is later greatly supplemented and modified by the pancreatic duct. A Na+/H+ exchanger(s) [NHE(s)] is proposed to be integral in the process of fluid secretion both in terms of the transcellular flux of Na+ and intracellular pH (pHi) regulation. Multiple NHE isoforms have been identified in pancreatic tissue, but little is known about their individual functions in acinar cells. The Na+/H+ exchange inhibitor 5-(N-ethyl-N-isopropyl) amiloride completely blocked pHi recovery after an NH4Cl-induced acid challenge, confirming a general role for NHE in pHi regulation. The targeted disruption of the Nhe1 gene also completely abolished pHi recovery from an acid load in pancreatic acini in both HCO3--containing and HCO3--free solutions. In contrast, the disruption of either Nhe2 or Nhe3 had no effect on pHi recovery. In addition, NHE1 activity was upregulated in response to muscarinic stimulation in wild-type mice but not in NHE1-deficient mice. Fluctuations in pHi could potentially have major effects on Ca2+ signaling following secretagogue stimulation; however, the targeted disruption of Nhe1 was found to have no significant effect on intracellular Ca2+ homeostasis. These data demonstrate that NHE1 is the major regulator of pHi in both resting and muscarinic agonist-stimulated pancreatic acinar cells.

  18. DETANONOate, a nitric oxide donor, decreases amiloride-sensitive alveolar fluid clearance in rabbits.

    PubMed

    Nielsen, V G; Baird, M S; Chen, L; Matalon, S

    2000-04-01

    Inhaled nitric oxide (NO) has been administered to animals to selectively reduce pulmonary hypertension via NO donors such as the NONOates. However, vectorial Na(+) transport across confluent monolayers of alveolar type II (ATII) pneumocytes has been decreased by NO. We tested the hypothesis that administration of the NO donor, DETANONOate, would decrease alveolar fluid clearance (AFC) in the rabbit in vivo. We instilled a solution of 5% albumin in 0.9% NaCl with 3 mM DETANONOate into anesthetized rabbits. Two hours later, similar AFC values were measured in the presence and absence of 3 mM DETANONOate (38 +/- 12% versus 43 +/- 13%; mean +/- SD). However, animals coadministered 1 mM amiloride with one of three doses of DETANONOate (100 microM, 300 microM, or 3 mM) had significantly (p < 0.05) greater AFC values (23 +/- 8, 20 +/- 14, 28 +/- 12%, respectively) than those administered amiloride alone (10 +/- 7%). When 5% albumin in a Cl(-)-free solution was administered in the presence or absence of 100 microM DETANONOate, neither AFC values nor alveolar Cl(-) concentrations were different. DETANONOate decreases the amiloride-sensitive fraction of AFC but does not decrease total AFC. DETANONOate does not influence total AFC secondary to an increase in the amiloride-insensitive fraction of AFC that is not associated with a decrease in alveolar Cl(-) secretion.

  19. Application of Lactobacillus johnsonii expressing phage endolysin for control of Clostridium perfringens.

    PubMed

    Gervasi, T; Lo Curto, R; Minniti, E; Narbad, A; Mayer, M J

    2014-10-01

    Clostridium perfringens is frequently found in food and the environment and produces potent toxins that have a negative impact on both human and animal health and particularly on the poultry industry. Lactobacillus johnsonii FI9785, isolated from the chicken gastrointestinal tract, has been demonstrated to exclude Cl. perfringens in poultry. We have investigated the interaction of wild-type Lact. johnsonii FI9785 or an engineered strain expressing a cell wall-hydrolysing endolysin with Cl. perfringens in vitro, using a batch culture designed to simulate human gastrointestinal tract conditions. Co-culture experiments indicated that acid production by Lact. johnsonii is important in pathogen control. The co-culture of the endolysin-secreting Lact. johnsonii with Cl. perfringens showed that the engineered strain had the potential to control the pathogen, but the ability to reduce Cl. perfringens numbers was not consistent. Results obtained indicate that survival of high numbers of Lact. johnsonii will be essential for effective pathogen control. Significance and impact of the study: The bacterium Lactobacillus johnsonii FI9785 reduces numbers of the pathogen Clostridium perfringens in vitro. Biocontrol was improved by engineering the strain to produce and export a cell wall-hydrolysing endolysin, but good survival of the producer strain is essential. The production of bacteriophage endolysins by commensal bacteria has the potential to improve competitive exclusion of pathogens in the gastrointestinal tract. © 2014 The Society for Applied Microbiology.

  20. Anaerobic Dehalogenation of Chloroanilines by Dehalococcoides mccartyi Strain CBDB1 and Dehalobacter Strain 14DCB1 via Different Pathways as Related to Molecular Electronic Structure.

    PubMed

    Zhang, Shangwei; Wondrousch, Dominik; Cooper, Myriel; Zinder, Stephen H; Schüürmann, Gerrit; Adrian, Lorenz

    2017-04-04

    Dehalococcoides mccartyi strain CBDB1 and Dehalobacter strain 14DCB1 are organohalide-respiring microbes of the phyla Chloroflexi and Firmicutes, respectively. Here, we report the transformation of chloroanilines by these two bacterial strains via dissimilar dehalogenation pathways and discuss the underlying mechanism with quantum chemically calculated net atomic charges of the substrate Cl, H, and C atoms. Strain CBDB1 preferentially removed Cl doubly flanked by two Cl or by one Cl and NH 2 , whereas strain 14DCB1 preferentially dechlorinated Cl that has an ortho H. For the CBDB1-mediated dechlorination, comparative analysis with Hirshfeld charges shows that the least-negative Cl discriminates active from nonactive substrates in 14 out of 15 cases and may represent the preferred site of primary attack through cob(I)alamin. For the latter trend, three of seven active substrates provide strong evidence, with partial support from three of the remaining four substrates. Regarding strain 14DCB1, the most positive carbon-attached H atom discriminates active from nonactive chloroanilines in again 14 out of 15 cases. Here, regioselectivity is governed for 10 of the 11 active substrates by the most positive H attached to the highest-charge (most positive or least negative) aromatic C carrying the Cl to be removed. These findings suggest the aromatic ring H as primary site of attack through the supernucleophile Co(I), converting an initial H bond to a full electron transfer as start of the reductive dehalogenation. For both mechanisms, one- and two-electron transfer to Cl (strain CBDB1) or H (strain 14DCB1) are compatible with the presently available data. Computational chemistry research into reaction intermediates and pathways may further aid in understanding the bacterial reductive dehalogenation at the molecular level.

  1. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice.

    PubMed

    Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-05-01

    Acid rain and rare earth element (REE) pollution exist simultaneously in many agricultural regions. However, how REE pollution and acid rain affect plant growth in combination remains largely unknown. In this study, the combined effects of simulated acid rain and lanthanum chloride (LaCl3) on chloroplast morphology, chloroplast ultrastructure, functional element contents, chlorophyll content, and the net photosynthetic rate (P n) in rice (Oryza sativa) were investigated by simulating acid rain and rare earth pollution. Under the combined treatment of simulated acid rain at pH 4.5 and 0.08 mM LaCl3, the chloroplast membrane was smooth, proteins on this membrane were uniform, chloroplast structure was integrated, and the thylakoids were orderly arranged, and simulated acid rain and LaCl3 exhibited a mild antagonistic effect; the Mg, Ca, Mn contents, the chlorophyll content, and the P n increased under this combined treatment, with a synergistic effect of simulated acid rain and LaCl3. Under other combined treatments of simulated acid rain and LaCl3, the chloroplast membrane surface was uneven, a clear "hole" was observed on the surface of chloroplasts, and the thylakoids were dissolved and loose; and the P n and contents of functional elements (P, Mg, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo) and chlorophyll decreased. Under these combined treatments, simulated acid rain and LaCl3 exhibited a synergistic effect. Based on the above results, a model of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis was established in order to reveal the combined effects on plant photosynthesis, especially on the photosynthetic organelle-chloroplast. Our results would provide some references for further understanding the mechanism of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis.

  2. Vortex Dynamics around Pitching Plates

    DTIC Science & Technology

    2014-04-29

    electrical signals are A/D converted in an ATI NetBox interface and recorded using a Java application, and are filtered in three steps. The first is a low...the plate while staying attached to the corners of the leading edge. During this process, a second vortex loop, created by the quick angular ...is a spike in CL centered around t = 0 due to non-circulatory6 effects from the angular acceleration of the wing. The amplitude of the peak is

  3. Hydraulic and biochemical gradients limit wetland mercury supply to an Adirondack stream

    USGS Publications Warehouse

    Bradley, Paul M.; Burns, Douglas A.; Harvey, Judson; Journey, Celeste A.; Brigham, Mark E.; Murray, Karen

    2016-01-01

    Net fluxes (change between upstream and downstream margins) for water, methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and chloride (Cl) were assessed twice in an Adirondack stream reach (Sixmile Brook, USA), to test the hypothesized importance of wetland-stream hydraulic and chemical gradients as fundamental controls on fluvial mercury (Hg) supply. The 500 m study reach represented less than 4% of total upstream basin area. During a snowmelt high-flow event in May 2009 surface water, DOC, and chloride fluxes increased by 7.1±1.3%, 8.0±1.3%, and 9.0±1.3%, respectively, within the reach, demonstrating that the adjacent wetlands are important sources of water and solutes to the stream. However, shallow groundwater Hg concentrations lower than in the surface water limited groundwater-surface water Hg exchange and no significant changes in Hg (filtered MeHg and THg) fluxes were observed within the reach despite the favorable hydraulic gradient. In August 2009, the lack of significant wetland-stream hydraulic gradient resulted in no net flux of water or solutes (MeHg, THg, DOC, or Cl) within the reach. The results are consistent with the wetland-Hg-source hypothesis and indicate that hydraulic and chemical gradient (direction and magnitude) interactions are fundamental controls on the supply of wetland Hg to the stream.

  4. Magnesium absorption in human subjects from leafy vegetables, intrinsically labeled with stable /sup 26/Mg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, R.; Spencer, H.; Welsh, J.J.

    1984-04-01

    Collards, turnip greens, leaf lettuce, and spinach, grown in nutrient solution so that their Mg content was 80 to 90% /sup 26/Mg, were tested in ambulant male volunteers stabilized on a constant metabolic diet. The freeze-dried vegetables were incorporated in bran muffins in which the vegetables replaced part of the bran. Bran muffins without vegetables were consumed for breakfast each day. They were also used as a standard test meal to which the vegetable muffins were compared. All subjects participated in three consecutive isotope absorption tests: one of the standard test meal and two of the vegetables. The standard testmore » was carried out after at least 30 days on the controlled diet. Subsequent tests of vegetables followed at 4-wk intervals. Each test meal contained 30 microCi /sup 28/MgCl2 and 50 mg stable /sup 26/Mg, the latter either as the intrinsic label of a test vegetable or as /sup 26/MgCl/sub 2/ in solution taken with the standard bran muffins. Net absorption of both isotopes was measured to establish exchangeability and to determine relative Mg absorption from the vegetables. Exchangeability was 90% or higher from all meals tested. Relative Mg absorption was highest from collards and least from the standard test meal. Net absorption values ranged from 40 to 60%.« less

  5. TPA induces a block of differentiation and increases the susceptibility to neoplastic transformation of a rat thyroid epithelial cell line.

    PubMed

    Portella, G; Vitagliano, D; Li, Z; Sferratore, F; Santoro, M; Vecchio, G; Fusco, A

    1998-01-01

    The PC Cl 3 cell line is a well-characterized epithelial cell line of rat thyroid origin. This cell line retains in vitro the typical markers of thyroid differentiation: thyroglobulin (TG) synthesis and secretion, iodide uptake, thyroperoxidase (TPO) expression, and dependency on TSH for growth. Although the differentiated phenotype of thyroid cells has been relatively well described, the molecular mechanisms that regulate both differentiation and neoplastic transformation of thyroid cells still need to be investigated in detail. Protein kinase C (PKC), the target of tetradecanoylphorbol acetate (TPA), regulates growth and differentiation of several cell types. Here we show that treatment of PC Cl 3 cells with TPA induces an acute block of thyroid differentiation. TPA-treated PC Cl 3 cells are unable to trap iodide and the expression levels of thyroglobulin, TSH receptor, and TPO genes are drastically reduced by TPA treatment. This differentiation block is not caused by a reduced expression of one of the master genes of thyroid differentiation, the thyroid transcription factor 1 (TTF-1). TPA-treated PC Cl 3 cells display an increased growth rate indicating that, in addition to the differentiation block, TPA also significantly affects the growth regulation of thyroid cells. Finally, TPA treatment dramatically increases the number of transformation foci induced in PC Cl 3 cells by retroviruses carrying v-Ki-ras, v-Ha-ras, and v-mos oncogenes. These findings support the notion that the PKC pathway can influence proliferation, differentiation, and neoplastic transformation of thyroid cells in culture.

  6. Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter.

    PubMed

    Layton, Anita T; Dantzler, William H; Pannabecker, Thomas L

    2012-03-01

    We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na(+) or urea-Cl(-) cotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na(+) or urea- Cl(-) cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data.

  7. NETosis Delays Diabetic Wound Healing in Mice and Humans.

    PubMed

    Fadini, Gian Paolo; Menegazzo, Lisa; Rigato, Mauro; Scattolini, Valentina; Poncina, Nicol; Bruttocao, Andrea; Ciciliot, Stefano; Mammano, Fabio; Ciubotaru, Catalin Dacian; Brocco, Enrico; Marescotti, Maria Cristina; Cappellari, Roberta; Arrigoni, Giorgio; Millioni, Renato; Vigili de Kreutzenberg, Saula; Albiero, Mattia; Avogaro, Angelo

    2016-04-01

    Upon activation, neutrophils undergo histone citrullination by protein arginine deiminase (PAD)4, exocytosis of chromatin and enzymes as neutrophil extracellular traps (NETs), and death. In diabetes, neutrophils are primed to release NETs and die by NETosis. Although this process is a defense against infection, NETosis can damage tissue. Therefore, we examined the effect of NETosis on the healing of diabetic foot ulcers (DFUs). Using proteomics, we found that NET components were enriched in nonhealing human DFUs. In an independent validation cohort, a high concentration of neutrophil elastase in the wound was associated with infection and a subsequent worsening of the ulcer. NET components (elastase, histones, neutrophil gelatinase-associated lipocalin, and proteinase-3) were elevated in the blood of patients with DFUs. Circulating elastase and proteinase-3 were associated with infection, and serum elastase predicted delayed healing. Neutrophils isolated from the blood of DFU patients showed an increased spontaneous NETosis but an impaired inducible NETosis. In mice, skin PAD4 activity was increased by diabetes, and FACS detection of histone citrullination, together with intravital microscopy, showed that NETosis occurred in the bed of excisional wounds. PAD4 inhibition by Cl-amidine reduced NETting neutrophils and rescued wound healing in diabetic mice. Cumulatively, these data suggest that NETosis delays DFU healing. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Characterization of synthetic lung surfactant activity against proinflammatory cytokines in human monocytes.

    PubMed

    Otsubo, Eiji; Irimajiri, Kiyohiro; Takei, Tsunetomo; Nomura, Masato

    2002-03-01

    Our previous study demonstrated that the smallest synthetic peptide with the sequence CPVHLKRLLLLLLLLLLLLLLLL, SP-CL16(6-28), admixed with phospholipid (synthetic lung surfactant, SLS) showed strong surface activity. In this study, we attempted to develop a dual-type surfactant with both anti inflammatory and surface activities. SP-CL16(6-28) was first chemically synthesized and then purified for use by centrifugal partition chromatography. A mixture of SP-CL16(6-28) and phospholipid complex was tested for anti inflammatory activity using the human monocyte cell line THP-1. Whether the suppression of tumor necrosis factor-alpha (TNF-a), interleukin (IL)-8, IL-6, IL-1beta, and macrophage migration inhibitory factor (MIF) was reduced by lipopolysaccharide (LPS) in monocytes was examined. Levels of these cytokines were measured by enzyme-linked immunosorbent assay. It was found that SLS significantly and dose dependently inhibited the secretion of TNF-alpha by THP-1 cells following stimulation with LPS. Dipalmitoylphosphatidylcoline did not inhibit the release of cytokines. These findings suggest that SLS has anti inflammatory activity. Therefore it should be possible to develop a SLS with both anti inflammatory activity and surface activity.

  9. Enteric nervous system: sensory physiology, diarrhea and constipation.

    PubMed

    Wood, Jackie D

    2010-03-01

    The enteric nervous system integrates secretion and motility into homeostatic patterns of behavior susceptible to disorder. Progress in understanding mechanosensory detection in these processes, disordered enteric nervous system integration in diarrhea and constipation and pharmacotherapy is summarized. Most neurons in the enteric nervous system discharge in response to distortion. Drugs acting directly to open chloride conductance channels in the mucosal epithelium are therapeutic options for constipation. Mechanoreception is required for negative feedback control. At issue is identification of the neurons that fulfil the requirement for mechanoreception. Understanding secretomotor neurons is basic to understanding neurogenic secretory diarrhea and constipation and therapeutic strategies. A strategy for treatment of chronic constipation is development of agents that act directly to open Cl channels, which thereby increases the liquidity of the luminal contents. Lubiprostone, a recently Food and Drug Administration-approved drug, increases intraluminal liquidity by opening Cl channels. The future for the drug is clouded by controversy over whether its action is directly at one or the other of chloride channel type 2 (ClC-2) or cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels or both and whether action reflects involvement of G protein-coupled prostaglandin receptors expressed by mucosal epithelial cells.

  10. Overexpression of artificially fused bifunctional enzyme 4CL1-CCR: a method for production of secreted 4-hydroxycinnamaldehydes in Escherichia coli.

    PubMed

    Liu, Shuxin; Qi, Qi; Chao, Nan; Hou, Jiayin; Rao, Guodong; Xie, Jin; Lu, Hai; Jiang, Xiangning; Gai, Ying

    2015-08-12

    4-Hydroxycinnamaldehydes are important intermediates in several secondary metabolism pathways, including those involved in the biosynthesis of phenolic acids, flavonoids, terpenoids and monolignols. They are also involved in the biosynthesis and degradation of lignins, which are important limiting factors during the processes of papermaking and biofuel production. Access to these aromatic polymers is necessary to explore the secondary biometabolic pathways they are involved in. Coniferaldehyde, sinapaldehyde, p-coumaraldehyde and caffealdehyde are members of the 4-hydroxycinnamaldehyde family. Although coniferaldehyde and sinapaldehyde can be purchased from commercial sources, p-coumaraldehyde and caffealdehyde are not commercially available. Therefore, there is increasing interest in producing 4-hydroxycinnamaldehydes. Here, we attempted to produce 4-hydroxycinnamaldehydes using engineered Escherichia coli. 4-Coumaric acid: coenzyme A ligase (4CL1) and cinnamoyl coenzyme A reductase (CCR) were fused by means of genetic engineering to generate an artificial bifunctional enzyme, 4CL1-CCR, which was overexpressed in cultured E. coli supplemented with phenylpropanoic acids. Three 4-hydroxycinnamaldehydes, p-coumaraldehyde, caffealdehyde and coniferaldehyde, were thereby biosynthesized and secreted into the culture medium. The products were extracted and purified from the culture medium, and identically characterized by the HPLC-PDA-ESI-MSn. The productivity of this new metabolic system were 49 mg/L for p-coumaraldehyde, 19 mg/L for caffealdehyde and 35 mg/L for coniferaldehyde. Extracellular hydroxycinnamoyl-coenzyme A thioesters were not detected, indicating that these thioesters could not pass freely through the cellular membrane. The fusion enzyme 4CL1-CCR can catalyze sequential multistep reactions, thereby avoiding the permeability problem of intermediates, which reveals its superiority over a mixture of individual native enzymes. Moreover, we have described a highly sensitive and selective method for separation and identification of phenylpropanoic acids and their corresponding cinnamaldehydes in the present paper. The feasibility of this method has been proven in the application of the method to the analysis of the metabolites of whole-cell catalysts. We have established a bioconversion pathway for the microbial production of valuable 4-hydroxycinnamaldehydes from phenylpropanoic acids. This biotransformation method is both convenient and environmentally friendly, and provides new insights into the biosynthesis of natural plant secondary products.

  11. Potential influence of tubular dysfunction on the difference between estimated and measured glomerular filtration rate after kidney transplantation.

    PubMed

    Lezaic, V; Mirkovic, D; Ristic, S; Radivojevic, D; Dajak, M; Naumovic, R; Marinkovic, J; Djukanovic, L J

    2013-05-01

    Because no consensus exists regarding the most accurate calculation to estimate glomerular filtration rate (GFR) based on serum creatinine concentrations (sCr) after kidney transplantation, this study sought to assess the potential role of tubular dysfunction on GFR estimates using various equations as well as the effect of pharmacologic blockades on tubular secretion of creatinine on creatinine clearance (ClCr). Iohexol GFR (mGFR) was performed in 17 stable kidney transplant recipients(R) at >24 months post-transplantation. Their mean age was 48.3 ± 11.3 years. All R were treated with a calcineurin inhibitor (CNI). At the time of study we measured sCr, 24 hour-ClCr, cystatin C, 24-hour proteinuria, microalbuminuria, FE Na, alfa1-microglobulinuria (alfa1-MG), and CNI concentrations. To block tubular secretion of Cr, recipients were prescribed cimetidine (2400 mg) 2 days before the sCr measurement. Additionally, to exclude dietary influences on sCr, R did not eat meat for 2 days before testing. GFR was estimated using the Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), Cockroft-Gault (C&G), and Cystatin C (Cyst C) GFR equations. Mean kidney graft function over the previous 6 months was used as the control. Pearson correlation was determined between the differences between mGFR and estimatedGFR: Iohexol minus MDRD, EPI, Cyst C or C&G GFR for paired estimates. The diagnostic accuracy of the eGFRs to detect an mGFR of 60 mL/min/1.73 m(2) was examined by receiver operating characteristic curves. Mean mGFR was 75.2 ± 35.8 mL/min/1.73 m(2). The sCr increased but the 24-hour ClCr, MDRD, EPI, and C&G decreased after vs before cimetidine. The difference was significant for sCr (F = 12.933; P = .002) and MDRD GFR (F = 15.750; P = .001). mGFR was not significantly higher than all pair values of eGFRs, and not significantly lower than 24-hour ClCr before and after cimetidine. However, in comparison to all eGFRs, ClCr after cimetidine most approached mGFR. A significant positive correlation was observed between alfa1-MG and the difference between mGFR and MDRD (before, r = .543 [P = .045]; after cimetidine, 0.568 [P = .034]), EPI (before, r = 0.516 [P = .050]; after cimetidine, r = 0.562 [P = .036]), and ClCr (r = 0.633; P = .016), C&G (P = .581; P = .029) before cimetidine. Accuracy of eGFRs to detect mGFR of 60 mL/min/1.73 m(2) showed EPI GFR before cimetidine to show diagnostic accuracy for patients with GFR >60 mL/min/1.73 m(2) with a sensitivity of 81.8% and a specificity of 71.4%. Because mGFR is unavailable in many transplant centers, determination of ClCr after cimetidine may help to achieve a more accurate diagnosis of CKD among transplant patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Stimulation of ANP secretion by 2-Cl-IB-MECA through A(3) receptor and CaMKII.

    PubMed

    Yuan, Kuichang; Bai, Guang Yi; Park, Woo Hyun; Kim, Sung Zoo; Kim, Suhn Hee

    2008-12-01

    Adenosine is a potent mediator of myocardial protection against hypertrophy via A(1) or A(3) receptors that may be partly related to atrial natriuretic peptide (ANP) release. However, little is known about the possible involvement of the A(3) receptor on ANP release. We studied the effects of the A(3) receptor on atrial functions and its modification in hypertrophied atria. A selective A(3) receptor agonist, 2-chloro-N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide (2-CI-IB-MECA), was perfused into isolated, beating rat atria with and without receptor modifiers. 2-CI-IB-MECA dose-dependently increased the ANP secretion, which was blocked by the A(3) receptor antagonist, but the increased atrial contractility and decreased cAMP levels induced by 30muM 2-CI-IB-MECA were not affected. The 100muM 2-(1-hexylnyl)-N-methyladenosine (HEMADO) and N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide (IB-MECA), A(3) receptor agonist, also stimulated the ANP secretion without positive inotropy. The potency for the stimulation of ANP secretion was 2-CI-IB-MECA>IB-MECA=HEMADO. The inhibition of the ryanodine receptor or calcium/calmodulin-dependent kinase II (CaMKII) attenuated 2-CI-IB-MECA-induced ANP release, positive inotropy, and translocation of extracellular fluid. However, the inhibition of L-type Ca(2+) channels, sarcoplasmic reticulum Ca(2+)-reuptake, phospholipase C or inositol 1,4,5-triphosphate receptors did not affect these parameters. 2-CI-IB-MECA decreased cAMP level, which was blocked only with an inhibitor of CaMKII or adenylyl cyclase. These results suggest that 2-CI-IB-MECA increases the ANP secretion mainly via A(3) receptor activation and positive inotropy by intracellular Ca(2+) regulation via the ryanodine receptor and CaMKII.

  13. Ion transport studies with H+-K+-ATPase-rich vesicles: implications for HCl secretion and parietal cell physiology.

    PubMed

    Wolosin, J M

    1985-06-01

    A summary of recent studies on relations between the properties of the membrane incorporating the H+-K+-ATPase, the H+ motive force in gastric acid secretion, and the secretory state of the parietal cell is presented. Depending on tissue secretory state, two distinct H+-K+-ATPase-rich membranes predominate in tissue homogenates, the gastric microsomes derived from the intracellular tubulovesicles of the resting cell and the stimulation-associated (SA) vesicle derived from the apical membrane of the acid-secreting cell. Structural and chemical differences between both vesicular types lend support to the notion that the formation of an expanded, elaborated apical membrane in the secreting parietal cell results from fusion of tubulovesicles containing the H+-K+-ATPase to an apical membrane of different chemical composition. Comparison of polypeptide composition of microsomes and SA membranes provides a way to identify and isolate membrane and cytoskeletal components putatively involved in the membrane interconversion process. Comparison of transport properties between gastric microsomes and SA vesicles demonstrates that stimulation triggers the appearance of rapid K+ and Cl- permeabilities in the H+-K+-ATPase membrane, allowing efficient acid accumulation in SA vesicles by the combination of rapid KCl influx followed by ATPase-driven H+ for K+ exchange, i.e., by K+ recycling. These stimulation-triggered conductances are functionally independent. Nevertheless, their concurrent inhibition by certain divalent cations (Mn2+,Zn2+) suggests their location within a single physical domain. The compatibility of the K+-recycling model for HCl accumulation in SA vesicles with gastric HCl secretion and selected electrophysiological observations and certain implications of the findings for cellular mechanisms of transport regulation in the context of a membrane fusion and recycling model are discussed.

  14. Syndrome of inappropriate antidiuretic hormone secretion related to Guillain-Barré syndrome after laparoscopic cholecystectomy.

    PubMed

    Çakırgöz, Mensure Yılmaz; Duran, Esra; Topuz, Cem; Kara, Deniz; Turgut, Namigar; Türkmen, Ülkü Aygen; Turanç, Bülent; Dolap, Mustafa Önder; Hancı, Volkan

    2014-01-01

    Guillain-Barré Syndrome is one of the most common causes of acute polyneuropathy in adults. Recently, the occurrence of Guillain-Barré Syndrome after major and minor surgical operations has been increasingly debated. In Guillain-Barré syndrome, syndrome of inappropriate antidiuretic hormone secretion and dysautonomy are generally observed after maximal motor deficit. A 44-year-old male patient underwent a laparoscopic cholecystectomy for acute cholecystitis. After the development of a severe headache, nausea, diplopia, and attacks of hypertension in the early postoperative period, a computer tomography of the brain was normal. Laboratory tests revealed hyponatremia linked to syndrome of inappropriate antidiuretic hormone secretion, the patient's fluids were restricted, and furosemide and 3% NaCl treatment was initiated. On the second day postoperative, the patient developed numbness moving upward from the hands and feet, loss of strength, difficulty swallowing and respiratory distress. Guillain-Barré syndrome was suspected, and the patient was moved to intensive care. Cerebrospinal fluid examination showed 320 mg/dL protein, and acute motor-sensorial axonal neuropathy was identified by electromyelography. Guillain-Barré syndrome was diagnosed, and intravenous immune globulin treatment (0.4 g/kg/day, 5 days) was initiated. After 10 days in the intensive care unit, at which the respiratory, hemodynamic, neurologic and laboratory results returned to normal, the patient was transferred to the neurology service. Our case report indicates that although syndrome of inappropriate antidiuretic hormone secretion and autonomic dysfunction are rarely the initial characteristics of Guillain-Barré syndrome, the possibility of postoperative syndrome of inappropriate antidiuretic hormone secretion should be kept in mind. The presence of secondary hyponatremia in this type of clinical presentation may delay diagnosis. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Dynamics of carbonate chemistry, production, and calcification of the Florida Reef Tract (2009-2010): Evidence for seasonal dissolution

    NASA Astrophysics Data System (ADS)

    Muehllehner, Nancy; Langdon, Chris; Venti, Alyson; Kadko, David

    2016-05-01

    Ocean acidification is projected to lower the Ωar of reefal waters by 0.3-0.4 units by the end of century, making it more difficult for calcifying organisms to secrete calcium carbonate while at the same time making the environment more favorable for abiotic and biotic dissolution of the reefal framework. There is great interest in being able to project the point in time when coral reefs will cross the tipping point between being net depositional to net erosional in terms of their carbonate budgets. Periodic in situ assessments of the balance between carbonate production and dissolution that spans seasonal time scales may prove useful in monitoring and formulating projections of the impact of ocean acidification on reefal carbonate production. This study represents the first broad-scale geochemical survey of the rates of net community production (NCP) and net community calcification (NCC) across the Florida Reef Tract (FRT). Surveys were performed at approximately quarterly intervals in 2009-2010 across seven onshore-offshore transects spanning the upper, middle, and lower Florida Keys. Averaged across the FRT, the rates of NCP and NCC were positive during the spring/summer at 62 ± 7 and 17 ± 2 mmol m-2 d-1, respectively, and negative during the fall/winter at -33 ± 6 and -7 ± 2 mmol m-2 d-1. The most significant finding of the study was that the northernmost reef is already net erosional (-1.1 ± 0.4 kg CaCO3 m-2 yr-1) and midreefs to the south were net depositional on an annual basis (0.4 ± 0.1 kg CaCO3 m-2 yr-1) but erosional during the fall and winter. Only the two southernmost reefs were net depositional year-round. These results indicate that parts of the FRT have already crossed the tipping point for carbonate production and other parts are getting close.

  16. Cl- channels of the gastric parietal cell that are active at low pH.

    PubMed

    Cuppoletti, J; Baker, A M; Malinowska, D H

    1993-06-01

    HCl secretion across mammalian gastric parietal cell apical membrane may involve Cl- channels. H(+)-K(+)-ATPase-containing membranes isolated from gastric mucosa of histamine-stimulated rabbits were fused to planar lipid bilayers. Channels were recorded with symmetric 800 mM CsCl solutions, pH 7.4. A linear current-voltage (I-V) relationship was obtained, and conductance was 28 +/- 1 pS at 800 mM CsCl. Conductance was 6.9 +/- 2 pS at 150 mM CsCl. Reversal potential was +22 mV with a fivefold cis-trans CsCl concentration gradient, indicating that the channel was anion selective with a discrimination ratio of 6:1 for Cl- over Cs+. Anion selectivity of the channel was I- > Cl- > or = Br- > NO3-, and gluconate was impermeant. Channels obtained at pH 7.4 persisted when pH of medium bathing the trans side of the bilayer (pHtrans) was reduced to pH 3, without a change in conductance, linearity of I-V relationship, or ion selectivity. In contrast, asymmetric reduction of pH of medium bathing the cis side of the bilayer from 7.4 to 3 always resulted in loss of channel activity. At pH 7.4, open probability (Po) of the channel was voltage dependent, i.e., predominantly open at +80 mV but mainly closed at -80 mV. In contrast, with low pHtrans, channel Po at -80 mV was increased 3.5-fold. The Cl- channel was Ca2+ indifferent. In absence of ionophores, ion selectivity for support of H(+)-K(+)-ATPase activity and H+ transport was consistent with that exhibited by the channel and could be limited by substitution with NO3-, whereas maximal H(+)-K(+)-ATPase activity was indifferent to anion present, demonstrating that anion transport can be rate limiting. Cl- channels with similar characteristics (conductance, linear I-V relationship, and ion selectivity) were also present in H(+)-K(+)-ATPase-containing vesicles isolated from resting (cimetidine-treated) gastric mucosa, exhibiting at -80 mV a pH-independent approximately 3.5-fold lower Po than stimulated vesicle channels. At -80 mV, reduction of pHtrans increased Po of both resting and stimulated Cl- channels by five- to sixfold. Changing membrane potential from 0 to -80 mV across stimulated vesicles increased Cl- channel activity an additional 10-fold.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. The effect of imiquimod on taste bud calcium transients and transmitter secretion

    PubMed Central

    Wu, Sandy Y

    2016-01-01

    Background and Purpose Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell–cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. Experimental Approach Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste‐evoked ATP secretion from mouse taste buds. Key Results Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca2+ concentrations. These Ca2 + responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca2 +‐ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca2 + mobilization elicited by imiquimod was dependent on release from internal Ca2 + stores. Moreover, combining studies of Ca2 + imaging with cellular biosensors showed that imiquimod evoked secretion of 5‐HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste‐evoked ATP secretion. Conclusion and Implications Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5‐HT signalling. PMID:27464850

  18. The Use of Cyclometalated NHCs and Pyrazoles for the Development of Fully Efficient Blue PtII Emitters and Pt/Ag Clusters.

    PubMed

    Arnal, Lorenzo; Fuertes, Sara; Martín, Antonio; Sicilia, Violeta

    2018-05-15

    New bis-pyrazole complexes [Pt(C^C*)(RpzH) 2 ]X, containing a cyclometalated N-heterocyclic carbene ligand (HC^C*=1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazol-2-ylidene) were prepared as chloride (X=Cl - , RpzH: 3,5-Me 2 pzH 1 a, 4-MepzH 2 a, pzH 3 a), perchlorate (X=ClO 4 - , 1 b-3 b), or hexafluorophosphate (X=PF 6 - , RpzH: 3,5-Me 2 pzH 1 c) salts. The X-ray structure of 1 a showed that the Cl - anion is trapped by the cation through two N-H⋅⋅⋅Cl bonds. In solution of methanol, acetone and THF at RT, 1 a-3 a coexist in equilibrium with the corresponding [PtCl(C^C*)(RpzH)] (B) and RpzH species. In CH 2 Cl 2 , this equilibrium takes place just for 2 a and 3 a, but it is completely shifted to the left at 243 and 223 K for 2 a and 3 a, respectively. The low-lying absorption and emission bands were assigned to intraligand (ILCT) charge transfer on the NHC group. Quantum yield measurements in PMMA films revealed that 1 b, 2 b and 1 c are amongst the most efficient blue-light emitters, with values up to 100 %. Proton abstraction from the coordinated 3,5-Me 2 pzH in 1 b by NEt 3 and replacement by Ag + afforded a neutral [Pt 2 Ag 2 ] cluster containing Pt→Ag dative bonds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions.

    PubMed

    Xu, Chengbin; Li, Xuemei; Zhang, Lihong

    2013-01-01

    Few attempts have been made to study the alleviating effects of signal molecules on zoysiagrass (Zoysiajaponica) under drought stress. Calcium chloride has been shown to ameliorate the adverse effects of drought stress on many plants. It is necessary to investigate how to enhance drought tolerance of zoysiagrass using calcium chloride. The study elucidated the effects of calcium chloride on zoysiagrass under drought conditions by investigating the following parameters: biomass, chlorophyll (Chl) content, net photosynthetic rate (Pn), chlorophyll fluorescence, antioxidant enzymes, proline content, and malondialdehyde (MDA) content. Experimental conditions consisted of an aqueous CaCl2 solution at 5, 10, and 20 mM sprayed on zoysiagrass leaves for 3 d, following by an inducement of drought conditions by withholding water for 16 d. Under drought conditions, all CaCl2 pretreatments were found to increase the above-ground fresh biomass, as well as below-ground fresh and dry biomass. The resulting Chl (a, b, a+b) contents of the 5 and 10 mM CaCl2 pretreatment groups were higher than those of the control. In the later stages of drought conditions, the chlorophyll fluorescence parameter Fv/Fm was higher in leaves treated with 10 mM CaCl2 than in the leaves of the other two treatment groups. Zoysiagrass pretreated with 10 mM CaCl2 possessed both the maximum observed Pn and antioxidant enzyme activities. Meanwhile, lower MDA and proline contents were recorded in the plants pretreated with 5 and 10 mM CaCl2 under drought conditions. As a whole, the drought tolerance of zoysiagrass was improved to some extent by the application of a moderate calcium concentration.

  20. Lubiprostone: a chloride channel activator.

    PubMed

    Lacy, Brian E; Levy, L Campbell

    2007-04-01

    In January 2006 the Food and Drug Administration approved lubiprostone for the treatment of chronic constipation in men and women aged 18 and over. Lubiprostone is categorized as a prostone, a bicyclic fatty acid metabolite of prostaglandin E1. Lubiprostone activates a specific chloride channel (ClC-2) in the gastrointestinal (GI) tract to enhance intestinal fluid secretion, which increases GI transit and improves symptoms of constipation. This article reviews the role of chloride channels in the GI tract, describes the structure, function, and pharmacokinetics of lubiprostone, and discusses clinically important data on this new medication.

  1. 1D and 2D assembly structures by imidazole···chloride hydrogen bonds of iron(II) complexes [Fe(II)(HL(n-Pr))3]Cl·Y (HL(n-Pr) = 2-methylimidazol-4-yl-methylideneamino-n-propyl; Y = AsF6, BF4) and their spin states.

    PubMed

    Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Iijima, Seiichiro; Halcrow, Malcolm A; Sunatsuki, Yukinari; Kojima, Masaaki

    2011-12-07

    Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3 : 3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3 : 3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and Mössbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.

  2. A comparison of total inward leakage measured using sodium chloride (NaCl) and corn oil aerosol methods for air-purifying respirators.

    PubMed

    Rengasamy, Samy; Zhuang, Ziqing; Niezgoda, George; Walbert, Gary; Lawrence, Robert; Boutin, Brenda; Hudnall, Judith; Monaghan, William P; Bergman, Michael; Miller, Colleen; Harris, James; Coffey, Christopher

    2018-05-21

    The International Organization for Standardization (ISO) standard 16900-1:2014 specifies the use of sodium chloride (NaCl) and corn oil aerosols, and sulfur hexafluoride gas for measuring total inward leakage (TIL). However, a comparison of TIL between different agents is lacking. The objective of this study was to measure and compare TIL for respirators using corn oil and NaCl aerosols. TIL was measured with 10 subjects donning two models of filtering facepiece respirators (FFRs) including FFP1, N95, P100, and elastomeric half-mask respirators (ERs) in NaCl and corn oil aerosol test chambers, using continuous sampling methods. After fit testing with a PortaCount (TSI, St. Paul, MN) using the Occupational Safety and Health Administration (OSHA) protocol, five subjects were tested in the NaCl chamber first and then in the corn oil chamber, while other subjects tested in the reverse order. TIL was measured as a ratio of mass-based aerosol concentrations in-mask to the test chamber, while the subjects performed ISO 16900-1-defined exercises. The concentration of NaCl aerosol was measured using two flame photometers, and corn oil aerosol was measured with one light scattering photometer. The same instruments were used to measure filter penetration in both chambers using a Plexiglas® setup. The size distribution of aerosols was determined using a scanning mobility particle sizer and charge was measured with an electrometer. Filter efficiency was measured using an 8130 Automated Filter Tester (TSI). Results showed the geometric mean TIL for corn oil aerosol for one model each of all respirator categories, except P100, were significantly (p<0.05) greater than for NaCl aerosol. Filter penetration in the two test chambers showed a trend similar to TIL. The count median diameter was ∼82 nm for NaCl and ∼200 nm for corn oil aerosols. The net positive charge for NaCl aerosol was relatively larger. Both fit factor and filter efficiency influence TIL measurement. Overall, TIL determination with aerosols of different size distributions and charges using different methodologies may produce dissimilar results.

  3. Neuropeptide S reduces duodenal bicarbonate secretion and ethanol-induced increases in duodenal motility in rats

    PubMed Central

    Wan Saudi, Wan Salman

    2017-01-01

    Alcohol disrupts the intestinal mucosal barrier by inducing metabolic and functional changes in epithelial cells. Recently, we showed that neuropeptide S (NPS) decreases duodenal motility and increases mucosal paracellular permeability, suggesting a role of NPS in the pathogenesis of disorders and dysfunctions in the small intestine. The aim of the present study was to investigate the effects of NPS on ethanol- and HCl-induced changes of duodenal mucosal barrier function and motility. Rats were anaesthetized with thiobarbiturate, and a 30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ. The effects on duodenal bicarbonate secretion, the blood-to-lumen clearance of 51Cr-EDTA, motility and transepithelial net fluid flux were investigated. Intravenous (i.v.) administration of NPS significantly reduced duodenal mucosal bicarbonate secretion and stimulated mucosal transepithelial fluid absorption, mechanisms dependent on nitrergic signaling. NPS dose-dependently reduced ethanol-induced increases in duodenal motility. NPS (83 pmol·kg-1·min-1, i.v.) reduced the bicarbonate and fluid secretory response to luminal ethanol, whereas a 10-fold higher dose stimulated fluid secretion but did not influence bicarbonate secretion. In NPS-treated animals, duodenal perfusion of acid (pH 3) induced greater bicarbonate secretory rates than in controls. Pre-treating animals with Nω-nitro-L-arginine methyl ester (L-NAME) inhibited the effect of NPS on bicarbonate secretion. In response to luminal acid, NPS-treated animals had significantly higher paracellular permeability compared to controls, an effect that was abolished by L-NAME. Our findings demonstrate that NPS reduces basal and ethanol-induced increases in duodenal motility. In addition, NPS increases luminal alkalinization and mucosal permeability in response to luminal acid via mechanisms that are dependent on nitric oxide signaling. The data support a role for NPS in neurohumoral regulation of duodenal mucosal barrier function and motility. PMID:28384243

  4. Triglycerides produced in the livers of fasting rabbits are predominantly stored as opposed to secreted into the plasma

    PubMed Central

    Tuvdendorj, Demidmaa; Zhang, Xiao-jun; Chinkes, David L.; Wang, Lijian; Wu, Zhanpin; Rodriguez, Noe A.; Herndon, David N.; Wolfe, Robert R.

    2015-01-01

    Objective The liver plays a central role in regulating fat metabolism; however, it is not clear how the liver distributes the synthesized triglycerides (TGs) to storage and to the plasma. Materials and Methods We have measured the relative distribution of TGs produced in the liver to storage and the plasma by means of U-13C16-palmitate infusion in anesthetized rabbits after an overnight fast. Results The fractional synthesis rates of TGs stored in the liver and secreted into the plasma were not significantly different (Stored vs. Secreted: 31.9 ± 0.8 vs. 27.7 ± 2.6 %•h−1, p > 0.05. However, the absolute synthesis rates of hepatic stored and secreted TGs were 543 ± 158 and 27 ± 7 nmol·kg−1·min−1 respectively, indicating that in fasting rabbits the TGs produced in the liver were predominately stored (92±3%) rather than secreted (8±3%) into the plasma. This large difference was mainly due to the larger pool size of the hepatic TGs which was 21±9-fold that of plasma TGs. Plasma free fatty acids (FFAs) contributed 47±1% of the FA precursor for hepatic TG synthesis, and the remaining 53±1% was derived from hepatic lipid breakdown and possibly plasma TGs depending on the activity of hepatic lipase. Plasma palmitate concentration significantly correlated with hepatic palmitoyl-CoA and TG synthesis. Conclusion In rabbits, after an overnight fast, the absolute synthesis rate of hepatic stored TGs was significantly higher than that of secreted due to the larger pool size of hepatic TGs. The net synthesis rate of TG was approximately half the absolute rate. Plasma FFA is a major determinant of hepatic TG synthesis, and therefore hepatic TG storage. PMID:25682063

  5. Secondary corpora lutea induced by HCG treatment enhanced demi-embryo survival in lactating high-yielding dairy cows.

    PubMed

    Torres, A; Chagas e Silva, J; Deloche, M C; Humblot, P; Horta, A E M; Lopes-da-Costa, L

    2013-08-01

    Using a novel in vivo model considering a low developmental competence embryo (demi-embryo) and a subnormal fertility recipient (lactating high-yielding dairy cow), this experiment evaluated the effect of human chorionic gonadotrophin (hCG) treatment at embryo transfer (ET) on embryonic size at implantation, embryonic survival and recipient plasma progesterone (P4 ) and bovine pregnancy-specific protein B (PSPB) concentrations until day 63 of pregnancy. Embryos were bisected and each pair of demi-embryos was bilaterally transferred to recipients (n = 61) on day 7 of the oestrous cycle. At ET recipients were randomly assigned to treatment with 1500 IU hCG or to untreated controls. Higher (p < 0.01) pregnancy rates on days 25, 42 and 63, and embryo survival rate on day 63 were observed in hCG-treated cows with secondary CL than in hCG-treated cows without secondary CL and in untreated cows. Pregnancy rates and embryo survival rate were similar in hCG-treated cows without secondary CL and untreated cows. Embryonic size on day 42 was not affected by treatment with hCG, presence of secondary CL and type of pregnancy (single vs twin). Presence of secondary CL increased (p < 0.05) plasma P4 concentrations of pregnant cows on days 14, 19 and 25 but not thereafter and of non-pregnant cows on days 14-21. Treatment with hCG and presence of secondary CL had no effect on plasma PSPB concentrations, which were higher (p < 0.05) in twin than in single pregnancies. In conclusion, secondary CL induced by hCG treatment at ET significantly increased plasma P4 concentrations, the survival rate of demi-embryos and the pregnancy rate of high-yielding lactating dairy cows. Embryos were rescued beyond maternal recognition of pregnancy, but later embryonic survival, growth until implantation and placental PSPB secretion until day 63 of pregnancy were not affected by treatment or presence of secondary CL. © 2013 Blackwell Verlag GmbH.

  6. MATLAB Algorithms for Rapid Detection and Embedding of Palindrome and Emordnilap Electronic Watermarks in Simulated Chemical and Biological Image Data

    DTIC Science & Technology

    2004-12-01

    digital watermarking http:// ww*.petitcolas .net/ fabien/ steganography / email: fapp2@cl.cam.ac.uk a=double(imread(’custom-a.jpg’)); %load in image ...MATLAB Algorithms for Rapid Detection and Embedding of Palindrome and Emordnilap Electronic Watermarks in Simulated Chemical and Biological Image ...approach (Ref 2-4) to watermarking involves be used to inform the viewer of data (such as photographs putting the cover image in the first 4

  7. An alternative explanation for the occurrence of short circuit current increases in the small intestine following challenge by bacterial enterotoxins.

    PubMed

    Lucas, M L

    2013-10-01

    Secretory diarrhoeal disease due to enterotoxins is thought to arise from the enhancement to pathologically high rates of normally occurring chloride ion and therefore fluid secretion from enterocytes. In support of this concept, many enterotoxins increase intestinal short-circuit current, regarded now as faithfully reflecting the increased chloride ion secretion. Contradicting this assumption, STa reduces absorption but does not cause secretion in vivo although short-circuit current is increased in vitro. There is therefore a mismatch between an assumed enterocyte mediated secretory event that should but does not cause net fluid secretion and an undoubtedly increased short-circuit current. It is proposed here that short-circuit current increases are not themselves secretory events but result from interrupted fluid absorption. A noteworthy feature of compounds that inhibit the increase in short-circuit current is that the majority are vasoactive, neuroactive or both. In general, vasodilator substances increase current. An alternative hypothesis for the origin of short-circuit current increases is that these result from reflex induction of electrogenic fluid absorption. This reflex enhances a compensatory response that is also present at a cellular level. An intestinal reflex is therefore proposed by which decreases in interstitial and intravascular volume or pressure within the intestine initiate an electrogenic fluid absorption mechanism that compensates for the loss of electrically neutral fluid absorption. This hypothesis would explain the apparently complex pharmacology of short-circuit current increases since many depressor substances have receptors in common with enterocytes and enteric nerves. The proposed alternative view of the origin of short-circuit current increases assumes that these do not represent chloride secretion from the enterocytes. This view may therefore aid the successful development of anti-diarrhoeal drugs to overcome a major cause of infant mortality worldwide, if short-circuit current data are being persistently misinterpreted. The putative but testable link between interstitial volume or pressure and fluid absorption also provides support for the alternative view of secretion; namely, that enhanced capillary and epithelial cell tight junctional permeability together with increased intracapillary pressure may cause secretion and not chloride exit from the enterocytes. Copyright © 2013. Published by Elsevier Ltd.

  8. Preferential interactions of trehalose, L-arginine.HCl and sodium chloride with therapeutically relevant IgG1 monoclonal antibodies.

    PubMed

    Sudrik, Chaitanya; Cloutier, Theresa; Pham, Phuong; Samra, Hardeep S; Trout, Bernhardt L

    2017-10-01

    Preferential interactions of weakly interacting formulation excipients govern their effect on the equilibrium and kinetics of several reactions of protein molecules in solution. Using vapor pressure osmometry, we characterized the preferential interactions of commonly used excipients trehalose, L-arginine.HCl and NaCl with three therapeutically-relevant, IgG1 monoclonal antibodies that have similar size and shape, but differ in their surface hydrophobicity and net charge. We further characterized the effect of these excipients on the reversible self-association, aggregation and viscosity behavior of these antibody molecules. We report that trehalose, L-arginine.HCl and NaCl are all excluded from the surface of the three IgG1 monoclonal antibodies, and that the exclusion behavior is linearly related to the excipient molality in the case of trehalose and NaCl, whereas a non-linear behavior is observed for L-arginine.HCl. Interestingly, we find that the magnitude of trehalose exclusion depends upon the nature of the protein surface. Such behavior is not observed in case of NaCl and L-arginine.HCl as they are excluded to the same extent from the surface of all three antibody molecules tested in this study. Analysis of data presented in this study provides further insight into the mechanisms governing excipient-mediated stabilization of mAb formulations.

  9. Comparison of cation adsorption by isostructural rutile and cassiterite.

    PubMed

    Machesky, Michael; Wesolowski, David; Rosenqvist, Jörgen; Předota, Milan; Vlcek, Lukas; Ridley, Moira; Kohli, Vaibhav; Zhang, Zhan; Fenter, Paul; Cummings, Peter; Lvov, Serguei; Fedkin, Mark; Rodriguez-Santiago, Victor; Kubicki, James; Bandura, Andrei

    2011-04-19

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl(2) in NaCl, and trace ZnCl(2) in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (ε(bulk) ≈ 11). Inner-sphere adsorption is also significant for Rb(+) and Na(+) on neutral surfaces, whereas Cl(-) binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb(+), Na(+), and especially Sr(2+) are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn(2+) are very steep but similar for both oxides, reflective of Zn(2+) hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH(+) on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner-sphere cation binding is relatively more favorable. © 2011 American Chemical Society

  10. Cyclopentadienylniobium and -molybdenum phosphorodithioate complexes. X-ray crystal structures of CpNbCl sub 3 (S sub 2 P(OPr sup i ) sub 2 ), CpNbCl(. mu. -Cl) sub 2 Nb(S sub 2 P(OPr sup i ) sub 2 )Cp, and cis-Cp prime Mo(CO) sub 2 (S sub 2 P(OPr sup i ) sub 2 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, S.; Riaz, U.; Curtis, M.D.

    1990-10-01

    Reaction of CpNbCl{sub 4} (Cp = {eta}-C{sub 5}H{sub 5}) with (Pr{sup i}O){sub 2}P(S)(SH) in the presence of NEt{sub 3} yields CpNbCl{sub 3}(S{sub 2}P(S{sub 2}Pr{sup i}){sub 2}) (1). Reduction of 1 with Na/Hg affords the Nb-Nb-bonded complex CpNbCl({mu}-Cl){sub 2}Nb(S{sub 2}P(OR){sub 2})Cp (2). In refluxing toluene, (Pr{sup i}O){sub 2}P(S)(SH) with (Cp{prime}Mo(CO){sub 3}){sub 2} (Cp{prime} = {eta}-C{sub 5}H{sub 4}Me) gives cis-Cp{prime}Mo(CO){sub 2}(S{sub 2}P(OPr{sup i}){sub 2}) (3). Oxidation of 3 with I{sub 2} affords Cp{prime}MoI{sub 2}(CO)(S{sub 2}P(OPr{sup i}){sub 2}) (4). The crystal structures of 1-3 are compared. For 1, triclinic, P{bar 1}, a = 7.122 (3) {angstrom}, b = 11.365 (4) {angstrom}, c =more » 12.532 (4) {angstrom}, {alpha} = 77.38 (3){degree}, {beta} = 89.08 (3){degree}, {gamma} = 72.87 (3){degree}, V = 944.5 (8) {angstrom}{sup 3}. For 2, triclinic, P{bar 1}, a = 7.251 (3) {angstrom}, b = 12.386 (5) {angstrom}, c = 13.988 (5) {angstrom}, {alpha} = 102.66 (3){degree}, {beta} = 103.56 (3){degree}, {gamma} = 94.66 (3){degree}, V = 1180.0 (8) {angstrom}{sup 3}, Z = 2. For 3, orthorhombic, Pbca, a = 12.703 (3) {angstrom}, b = 16.707 (4) {angstrom}, c = 18.398 (4) {angstrom}, V = 3904.4 (17) {angstrom}{sup 3}, Z = 8.« less

  11. Functional Erythropoietin Autocrine Loop in Melanoma

    PubMed Central

    Kumar, Suresh M.; Acs, Geza; Fang, Dong; Herlyn, Meenhard; Elder, David E.; Xu, Xiaowei

    2005-01-01

    Although erythropoietin (Epo) is a known stimulator of erythropoiesis, recent evidence suggests that its biological functions are not confined to hematopoietic cells. To elucidate the role of Epo and erythropoietin receptor (EpoR) in melanoma, we examined the expression and function of these proteins in melanocytes and melanoma cells. We found increased expression of Epo in melanoma cells compared to melanocyte in vitro. EpoR was also strongly expressed in all of the melanoma cell lines and two of the three melanocyte cell lines examined. Epo expression was significantly higher in melanoma than in benign nevi as determined by immunohistochemistry. Although melanoma cells secreted Epo in normoxic condition in vitro, hypoxia and CoCl2 treatment increased Epo secretion. EpoR in melanoma cells was functional, because exogenous Epo increased melanoma resistance to hypoxic stress, pretreatment of melanoma cells with Epo significantly increased resistance to dacarbazine treatment, and Epo increased the phosphorylation of EpoR, RAF, and MEK. In conclusion, we demonstrated constitutive expression of Epo and EpoR as well as autonomous secretion of Epo by melanoma cells, indicating a novel autocrine loop of Epo in melanoma. The results suggest that the autocrine and paracrine functions of Epo might play a role in malignant transformation of melanocytes and in the survival of melanoma cells in hypoxia and other adverse conditions. PMID:15743794

  12. Branchial mitochondria-rich cells in the dogfish Squalus acanthias.

    PubMed

    Wilson, Jonathan M; Morgan, John D; Vogl, A Wayne; Randall, David J

    2002-06-01

    In marine teleost fishes, the gill mitochondria-rich cells (MRCs) are responsible for NaCl elimination; however, in elasmobranch fishes, the specialized rectal gland is considered to be the most important site for salt secretion. The role of the gills in elasmobranch ion regulation, although clearly shown to be secondary, is not well characterized. In the present study, we investigated some morphological properties of the branchial MRCs and the localization, and activity of the important ionoregulatory enzyme Na(+)/K(+)-ATPase, under control conditions and following rectal gland removal (1 month) in the spiny dogfish, Squalus acanthias. A clear correlation can be made between MRC numbers and the levels of Na(+)/K(+)-ATPase activity in crude gill homogenates (r(2)=-0.69). Strong Na(+)/K(+)-ATPase immunoreactivity is also clearly associated with the basolateral membrane of these MRCs. In addition, the dogfish were able to maintain ionic balance after rectal gland removal. These results all suggest a possible role of the dogfish gill in salt secretion. MRCs were, however, unresponsive to rectal gland removal in terms of changes in number, fine structure and Na(+)/K(+)-ATPase activity, as might be expected if they were compensating for the loss of salt secretion by the rectal gland. Thus, the specific role that these MRCs play in ion regulation in the dogfish remains to be determined

  13. Probing Intracellular Element Concentration Changes during Neutrophil Extracellular Trap Formation Using Synchrotron Radiation Based X-Ray Fluorescence

    PubMed Central

    Niemiec, Maria J.; Laforce, Brecht; Garrevoet, Jan; Vergucht, Eva; De Rycke, Riet; Cloetens, Peter; Urban, Constantin F.; Vincze, Laszlo

    2016-01-01

    High pressure frozen (HPF), cryo-substituted microtome sections of 2 μm thickness containing human neutrophils (white blood cells) were analyzed using synchrotron radiation based X-ray fluorescence (SR nano-XRF) at a spatial resolution of 50 nm. Besides neutrophils from a control culture, we also analyzed neutrophils stimulated for 1–2 h with phorbol myristate acetate (PMA), a substance inducing the formation of so-called Neutrophil Extracellular Traps (or NETs), a defense system again pathogens possibly involving proteins with metal chelating properties. In order to gain insight in metal transport during this process, precise local evaluation of elemental content was performed reaching limits of detection (LODs) of 1 ppb. Mean weight fractions within entire neutrophils, their nuclei and cytoplasms were determined for the three main elements P, S and Cl, but also for the 12 following trace elements: K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Sr and Pb. Statistical analysis, including linear regression provided objective analysis and a measure for concentration changes. The nearly linear Ca and Cl concentration changes in neutrophils could be explained by already known phenomena such as the induction of Ca channels and the uptake of Cl under activation of NET forming neutrophils. Linear concentration changes were also found for P, S, K, Mn, Fe, Co and Se. The observed linear concentration increase for Mn could be related to scavenging of this metal from the pathogen by means of the neutrophil protein calprotectin, whereas the concentration increase of Se may be related to its antioxidant function protecting neutrophils from the reactive oxygen species they produce against pathogens. We emphasize synchrotron radiation based nanoscopic X-ray fluorescence as an enabling analytical technique to study changing (trace) element concentrations throughout cellular processes, provided accurate sample preparation and data-analysis. PMID:27812122

  14. Comparison of Film and Digital Fundus Photographs in Eyes of Individuals with Diabetes Mellitus

    PubMed Central

    Gangaputra, Sapna; Glassman, Adam R.; Aiello, Lloyd Paul; Bressler, Neil; Bressler, Susan B.; Danis, Ronald P.; Davis, Matthew D.

    2011-01-01

    Purpose. To compare grading of diabetic retinopathy (DR) and diabetic macular edema (DME) from stereoscopic film versus stereoscopic digital photographs obtained from a subset of Diabetic Retinopathy Clinical Research Network (DRCR.net) participants. Methods. In this photographic media comparison study, digital and film images were obtained at a single study visit from some of the subjects enrolled in active DRCR.net clinical study protocols. Digital camera systems and digital and film photographers were certified to obtain images according to standard procedures. Images were graded for DR severity and DME in a masked fashion by Fundus Photograph Reading Center (Madison, WI) graders. Agreement between gradings was assessed by calculating the percentage of agreement and κ statistics. Results. Images obtained with both film and digital media were submitted for 155 eyes of 96 study participants. On a nine-step Early Treatment Diabetic Retinopathy study DR severity scale, grading agreed exactly in 74%, and was within one step of agreement in 93%, with a weighted κ statistic of 0.82 (95% confidence interval [CI], 0.71–0.92). On a nine-step DME severity scale and three-step clinically significant macular edema (CSME) scale, grading agreed exactly in 39% and 88%, respectively, and within one step in 70% and 92% (weighted κ statistic, 0.44 [95% Cl, 0.34–0.54] and 0.72 [95% Cl, 0.55–0.90], respectively). Conclusions. Among clinical sites participating in the DRCR.net, agreement between film and digital images was substantial to almost perfect for DR severity level and moderate to substantial for DME and CSME severity levels, respectively. Replacement of film fundus images with digital images for DR severity level should not adversely affect clinical trial quality. (ClinicalTrials.gov numbers, NCT00367133, NCT00369486, NCT00444600, NCT00445003, NCT00709319.) PMID:21571677

  15. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2.

    PubMed

    Amoozegar, Mohammad Ali; Salehghamari, Ensieh; Khajeh, Khosro; Kabiri, Mahbube; Naddaf, Saied

    2008-06-01

    Fifty strains of moderately halophilic bacteria were isolated from various salty environments in Iran. A strain designated as SA-2 was shown to be the best producer of extracellular lipase and was selected for further studies. Biochemical and physiological characterization along with 16S rDNA sequence analysis placed SA-2 in the genus Salinivibrio. The optimum salt, pH, temperature and aeration for enzyme production were 0.1 M KCl, pH 8, 35 degrees C and 150 rpm, respectively. The enzyme production was synchronized bacterial growth and reached a maximum level during the early-stationary phase in the basal medium containing 1 M NaCl. Triacylglycerols enhanced lipase production, while carbohydrates had inhibitory effects on it. The maximum lipase activity was obtained at pH 7.5, 50 degrees C and CaCl(2) concentration of 0.01 M. The enzyme was stable at pH range of 7.5-8 and retained 90% of its activity at 80 degrees C for 30 min. Different concentrations of NaNO(3), Na(2)SO(4), KCl and NaCl had no affect on lipase stability for 3 h. These results suggest that the lipase secreted by Salinivibrio sp. strain SA-2 is industrially important from the perspective of its tolerance to a broad temperature range, its moderate thermoactivity and its high tolerance to a wide range of salt concentrations (0-3 M NaCl).

  16. Bicarbonate secretion and non-Na component of the short-circuit current in the isolated colonic mucosa of Bufo arenarum

    PubMed Central

    Carlisky, N. J.; Lew, V. L.

    1970-01-01

    1. In the isolated colonic mucosa of Bufo arenarum, under special circumstances, there is a variable fraction of the short-circuit current (0-38%) that is unaccounted for by either the Na or the Cl and bicarbonate transmembrane net fluxes. 2. The hypothesis that a special kind of bicarbonate transport may account for the non-Na component of the short-circuit current was investigated. According to this, bicarbonate ions formed within the membrane await transport towards the mucosal solution within a compartment that does not undergo isotopic exchange with the serosal bathing solution. This kind of transport may be detected by a lowering of mucosal specific activity of bicarbonate but would not be revealed by the classic method of comparing the difference between the unidirectional fluxes with the short-circuit current. 3. The specific activity of bicarbonate was determined in the inside solution (initially bicarbonate-free) of ten normal and four everted colonic sacs incubated in an external medium (reservoir) containing a constant specific activity of bicarbonate. Comparison between membrane-to-internal solution bicarbonate flux and non-Na component of the short-circuit current was carried out in two different ways: (a) by measuring the remaining short-circuit current in Na-free medium and (b) by determining simultaneously the Na net flux. 4. Whatever the value of the short-circuit current and its non-Na component, there is no reduction of the specific activity of the bicarbonate appearing in the inside solution of the everted colonic sacs. 5. In the normal sacs there is a reduction of the specific activity of bicarbonate which accounts for a membrane-to-mucosa bicarbonate flux which parallels the variations of the non-Na component of the short-circuit current although quantitatively representing only 68-87% of it. 6. There is no systematic decrease in the rate of reduction of the mucosal specific activity of bicarbonate in successive experimental flux periods; this excludes a slow equilibration of the intracellular bicarbonate with serosal bicarbonate. 7. Other possible explanations of the present results are discussed, as well as the availability and hydration rate of metabolic CO2 necessary to account for this kind of bicarbonate transport. PMID:5498504

  17. Effect of entacapone on colon motility and ion transport in a rat model of Parkinson's disease.

    PubMed

    Li, Li-Sheng; Liu, Chen-Zhe; Xu, Jing-Dong; Zheng, Li-Fei; Feng, Xiao-Yan; Zhang, Yue; Zhu, Jin-Xia

    2015-03-28

    To study the effects of entacapone, a catechol-O-methyltransferase inhibitor, on colon motility and electrolyte transport in Parkinson's disease (PD) rats. Distribution and expression of catechol-O-methyltransferase (COMT) were measured by immunohistochemistry and Western blotting methods. The colonic smooth muscle motility was examined in vitro by means of a muscle motility recording device. The mucosal electrolyte transport of PD rats was examined by using a short-circuit current (ISC ) technique and scanning ion-selective electrode technique (SIET). Intracellular detection of cAMP and cGMP was accomplished by radioimmunoassay testing. COMT was expressed in the colons of both normal and PD rats, mainly on the apical membranes of villi and crypts in the colon. Compared to normal controls, PD rats expressed less COMT. The COMT inhibitor entacapone inhibited contraction of the PD rat longitudinal muscle in a dose-dependent manner. The β2 adrenoceptor antagonist ICI-118,551 blocked this inhibitory effect by approximately 67% (P < 0.01). Entacapone increased mucosal ISC in the colon of rats with PD. This induction was significantly inhibited by apical application of Cl(-) channel blocker diphenylamine-2, 2'-dicarboxylic acid, basolateral application of Na(+)-K(+)-2Cl(-)co-transporter antagonist bumetanide, elimination of Cl(-) from the extracellular fluid, as well as pretreatment using adenylate cyclase inhibitor MDL12330A. As an inhibitor of prostaglandin synthetase, indomethacin can inhibit entacapone-induced ISC by 45% (P < 0.01). When SIET was applied to measure Cl(-) flux changes, this provided similar results. Entacapone significantly increased intracellular cAMP content in the colonic mucosa, which was greatly inhibited by indomethacin. COMT expression exists in rat colons. The β2 adrenoceptor is involved in the entacapone-induced inhibition of colon motility. Entacapone induces cAMP-dependent Cl(-) secretion in the PD rat.

  18. Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues.

    PubMed

    Zhao, Yu-Ying; Yang, Rui; Xiao, Mo; Guan, Min-Jie; Zhao, Ning; Zeng, Tao

    2017-09-01

    Kupffer cells (KCs) have been suggested to play critical roles in chronic ethanol induced early liver injury, but the role of KCs in binge drinking-induced hepatic steatosis remains unclear. This study was designed to investigate the roles of KCs inhibitor (GdCl 3 ) and TNF-α antagonist (etanercept) on binge drinking-induced liver steatosis and to explore the underlying mechanisms. C57BL/6 mice were exposed to three doses of ethanol (6g/kg body weight) to mimic binge drinking-induced fatty liver. The results showed that both GdCl 3 and etanercept partially but significantly alleviated binge drinking-induced increase of hepatic triglyceride (TG) level, and reduced fat droplets accumulation in mice liver. GdCl 3 but not etanercept significantly blocked binge drinking-induced activation of KCs. However, neither GdCl 3 nor etanercept could affect binge drinking-induced decrease of PPAR-α, ACOX, FAS, ACC and SCD protein levels, or increase of the LC3 II/LC3 I ratio and p62 protein level. Interestingly, both GdCl 3 and etanercept significantly suppressed binge drinking-induced phosphorylation of HSL in epididymal adipose tissues. Results of in vitro studies with cultured epididymal adipose tissues showed that TNF-α could increase the phosphorylation of HSL in adipose tissues and upgrade the secretion of free fatty acid (FFA) in the culture medium. Taken together, KCs inhibitor and TNF-α antagonist could partially attenuate binge drinking-induced liver steatosis, which might be attributed to the suppression of mobilization of white adipose tissues. These results suggest that KCs activation may promote binge drinking-induced fatty liver by TNF-α mediated activation of lipolysis in white adipose tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Evidence for net renal tubule oxalate secretion in patients with calcium kidney stones

    PubMed Central

    Zisman, Anna L.; Asplin, John R.; Worcester, Elaine M.; Coe, Fredric L.

    2011-01-01

    Little is known about the renal handling of oxalate in patients with idiopathic hypercalciuria (IH). To explore the role of tubular oxalate handling in IH and to evaluate whether differences exist between IH and normal controls, we studied 19 IH subjects, 8 normal subjects, and 2 bariatric stone formers (BSF) during a 1-day General Clinical Research Center protocol utilizing a low-oxalate diet. Urine and blood samples were collected at 30- to 60-min intervals while subjects were fasting and after they ate three meals providing known amounts of calcium, phosphorus, sodium, protein, oxalate, and calories. Plasma oxalate concentrations and oxalate-filtered loads were similar between patients (includes IH and BSF) and controls in both the fasting and fed states. Urinary oxalate excretion was significantly higher in patients vs. controls regardless of feeding state. Fractional excretion of oxalate (FEOx) was >1, suggesting tubular secretion of oxalate, in 6 of 19 IH and both BSF, compared with none of the controls (P < 0.00001). Adjusted for water extraction along the nephron, urine oxalate rose more rapidly among patients than normal subjects with increases in plasma oxalate. Our findings identify tubular secretion of oxalate as a key mediator of hyperoxaluria in calcium stone formers, potentially as a means of maintaining plasma oxalate in a tight range. PMID:21123489

  20. Protective Effect of Origanum majorana L. 'Marjoram' on various models of gastric mucosal injury in rats.

    PubMed

    Al-Howiriny, Tawfeq; Alsheikh, Abdulmalik; Alqasoumi, Saleh; Al-Yahya, Mohammed; ElTahir, Kamal; Rafatullah, Syed

    2009-01-01

    'Marjoram,' Origanum majorana L., a culinary aromatic medicinal herb is known to possess various therapeutic properties. We evaluated the antiulcerogenic activity of the ethanol extract in hypothermic restraint stress-, indomethacin-, necrotizing agents- (80% ethanol, 25% NaCl and 0.2 M NaOH) induced ulcers and basal gastric acid secretion using pylorus ligated Shay rat-model. Marjoram at doses of 250 and 500 mg/kg of body weight, significantly decreased the incidence of ulcers, basal gastric secretion and acid output. Furthermore, the extract replenished the ethanol-induced depleted gastric wall mucus and nonprotein sulfhydryls (NP-SH) contents and significantly lowered the increase in the concentration of malondialdehyde (MDA). Ulcer preventing potential was further confirmed by histopathological assessment. An acute toxicity test showed a large margin of safety of the extract in mice. The phytochemical screening of aerial parts of marjoram revealed the presence of volatile oil, flavonoids, tannins, sterols and/or triterpenes.

  1. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish

    USGS Publications Warehouse

    Hiroi, Junya; McCormick, Stephen D.

    2012-01-01

    Teleost fishes are able to acclimatize to seawater by secreting excess NaCl by means of specialized “ionocytes” in the gill epithelium. Antibodies against Na+/K+-ATPase (NKA) have been used since 1996 as a marker for identifying branchial ionocytes. Immunohistochemistry of NKA by itself and in combination with Na+/K+/2Cl− cotransporter and CFTR Cl− channel provided convincing evidence that ionocytes are functional during seawater acclimation, and also revealed morphological variations in ionocytes among teleost species. Recent development of antibodies to freshwater- and seawater-specific isoforms of the NKA alpha-subunit has allowed functional distinction of ion absorptive and secretory ionocytes in Atlantic salmon. Cutaneous ionocytes of tilapia embryos serve as a model for branchial ionocytes, allowing identification of 4 types: two involved in ion uptake, one responsible for salt secretion and one with unknown function. Combining molecular genetics, advanced imaging techniques and immunohistochemistry will rapidly advance our understanding of both the unity and diversity of ionocyte function and regulation in fish osmoregulation.

  2. Chloride and bicarbonate transport in rat resistance arteries.

    PubMed Central

    Aalkjaer, C; Hughes, A

    1991-01-01

    1. The role of chloride and bicarbonate in the control of intracellular pH (pHi) was assessed in segments of rat mesenteric resistance arteries (internal diameter about 200 microns) by measurements of chloride efflux with 36Cl-, of pHi with the pH-sensitive dye 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF) and of membrane potential with intracellular electrodes. 2. The main questions addressed were whether the previously demonstrated sodium-coupled uptake of bicarbonate in these arteries was also coupled to chloride efflux, and whether sodium-independent Cl(-)-HCO3- exchange was present and played a role in regulation of pHi. 3. The 36Cl- efflux was unaffected by acidification induced by an NH4Cl pre-pulse in the presence as well as in the absence of bicarbonate. This was also true in sodium-free media and in vessels depolarized by high potassium. 4. The membrane potential was unaffected by the acidification associated with wash-out of NH4Cl, and the net acid extrusion during recovery of pHi from the acidification was not affected significantly by depolarization. 5. In the absence of bicarbonate, omission of extracellular chloride caused no change in pHi, but reduced 36Cl- efflux. By contrast, in the presence of bicarbonate, omission of chloride caused an increase in pHi but no change in 36Cl- efflux. Furthermore, the anion transport inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) inhibited the increase in pHi seen in the presence of bicarbonate and reduced the 36Cl- efflux in the presence of bicarbonate. 6. The presence of bicarbonate had no significant effect on the rate of recovery of pHi or the rate of increase of intracellular acid equivalents after an NH4Cl induced alkalinization; also the buffering power was not significantly different in the absence and presence of bicarbonate. Moreover these parameters were not significantly affected by DIDS, although DIDS as previously demonstrated reduced the rate of recovery of pHi from acidification. 7. The membrane potential was not significantly affected by the alkalinization associated with addition of NH4Cl and the rate of recovery of pHi from the alkalinization was not affected by depolarization. 8. The effects of NH4Cl and PCO2 on 36Cl- efflux were complex and could not easily be explained by the changes in pHi.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2061847

  3. Nocturnal and seasonal patterns of carbon isotope composition of leaf dark-respired carbon dioxide differ among dominant species in a semiarid savanna.

    PubMed

    Sun, Wei; Resco, Víctor; Williams, David G

    2010-10-01

    The C isotope composition of leaf dark-respired CO(2) (δ(13)C(l)) integrates short-term metabolic responses to environmental change and is potentially recorded in the isotopic signature of ecosystem-level respiration. Species differences in photosynthetic pathway, resource acquisition and allocation patterns, and associated isotopic fractionations at metabolic branch points can influence δ(13)C(l), and differences are likely to be modified by seasonal variation in drought intensity. We measured δ(13)C(l) in two deep-rooted C(3) trees (Prosopis velutina and Celtis reticulata), and two relatively shallow-rooted perennial herbs (a C(3) dicot Viguiera dentata and a C(4) grass Sporobolus wrightii) in a floodplain savanna ecosystem in southeastern Arizona, USA during the dry pre-monsoon and wet monsoon seasons. δ(13)C(l) decreased during the nighttime and reached minimum values at pre-dawn in all species. The magnitude of nocturnal shift in δ(13)C(l) differed among species and between pre-monsoon and monsoon seasons. During the pre-monsoon season, the magnitude of the nocturnal shift in δ(13)C(l) in the deep-rooted C(3) trees P. velutina (2.8 ± 0.4‰) and C. reticulata (2.9 ± 0.2‰) was greater than in the C(3) herb V. dentata (1.8 ± 0.4‰) and C(4) grass S. wrightii (2.2 ± 0.4‰). The nocturnal shift in δ(13)C(l) in V. dentata and S. wrightii increased to 3.2 ± 0.1‰ and 4.6 ± 0.6‰, respectively, during the monsoon season, but in C(3) trees did not change significantly from pre-monsoon values. Cumulative daytime net CO(2) uptake was positively correlated with the magnitude of the nocturnal decline in δ(13)C(l) across all species, suggesting that nocturnal δ(13)C(l) may be controlled by (13)C/(12)C fractionations associated with C substrate availability and C metabolite partitioning. Nocturnal patterns of δ(13)C(l) in dominant plant species in the semiarid savanna apparently have predictable responses to seasonal changes in water availability, which is important for interpreting and modeling the C isotope signature of ecosystem-respired CO(2).

  4. Impact of mechanical stress on ion transport in native lung epithelium (Xenopus laevis): short-term activation of Na+, Cl (-) and K+ channels.

    PubMed

    Bogdan, Roman; Veith, Christine; Clauss, Wolfgang; Fronius, Martin

    2008-09-01

    Epithelia, in general, and the lung epithelium, in particular, are exposed to mechanical forces, but little is known about their impact on pulmonary ion transport. In our present study, we employed transepithelial ion transport measurements on Xenopus lung preparations using custom-built Ussing chambers. Tissues were exposed to mechanical stress by increasing the water column (5 cm) at one side of the tissues. Apical exposure to hydrostatic pressure significantly decreased the short circuit current (I (SC): 24 +/- 1%, n = 152), slightly decreased the transepithelial resistance (R (T): 7 +/- 2%, n = 152), but increased the apical membrane capacitance (C (M): 16 +/- 6%, n = 9). The pressure-induced effect was sensitive to Na+ (amiloride), Cl(-) (DIDS, NFA, NPPB) and K+ channel blockers (Ba2+), glibenclamide). Further on, it was accompanied by increased extracellular ATP levels. The results show that mechanical stress leads to an activation of Na+, Cl(-), and K+ conductances in a native pulmonary epithelium resulting in a net decrease of ion absorption. This could be of considerable interest, since an altered ion transport may contribute to pathophysiological conditions, e.g., the formation of pulmonary edema during artificial ventilation.

  5. Pancreatic cholera syndrome: effect of a synthetic somatostatin analog on intestinal water and ion transport.

    PubMed

    Santangelo, W C; O'Dorisio, T M; Kim, J G; Severino, G; Krejs, G J

    1985-09-01

    The effect of a synthetic somatostatin analog was studied in a patient with severe secretory diarrhea due to pancreatic cholera syndrome. Basal intestinal perfusion studies indicated an absence of water and sodium absorption, and active chloride secretion in the small bowel. Intravenous administration of the somatostatin analog (1 microgram/kg.h) changed zero net water movement to absorption (122 mL/30 cm of the jejunum per hour). Chloride secretion changed to absorption (5.0 to 7.9 meq/30 cm.h), and plasma vasoactive intestinal polypeptide concentration was reduced from 330 to 45 pmol/L (normal, less than 51). When the analog was given subcutaneously, 100 micrograms twice daily, stool weight decreased, and plasma vasoactive intestinal polypeptide concentration fell toward the normal range (67 pmol/L). Plasma concentration of pancreatic polypeptide was initially elevated and dropped during intravenous infusion of somatostatin analog but returned to baseline on maintenance therapy with the analog delivered subcutaneously. The patient has not had further diarrhea during 9 months of therapy.

  6. Ion Fluxes and Short-Circuit Current in Internally Perfused Cells of Valonia ventricosa

    PubMed Central

    Gutknecht, John

    1967-01-01

    Ion transport in the giant celled marine alga, Valonia ventricosa, was studied during internal perfusion and short-circuiting of the vacuole potential. The perfusing and bathing solutions were similar to natural Valonia sap and contained the following concentrations of major ions: Na 51, K 618, and Cl 652 mM. The average short-circuit current (I sc) was 97 pEq/cm2 sec (inward positive current), and the average open-circuit potential difference (PD) was 74 mv (vacuole positive to external solution). Perfused and short-circuited cells showed a small net influx of Na (2.0 pEq/cm2 sec) and large net influxes of K (80 pEq/cm2 sec) and Cl (50 pEq/cm2 sec). Unidirectional K influx was proportional to I sc, but more than one-half of the I sc remained unaccounted for. Both the I sc and PD were partly light-dependent, declining rapidly during the first 1–2 min of darkness. Ouabain (5 x 10-4 M) had little effect on the influx of Na or K and had no effect on I inf or PD. Fluid was absorbed at a rate of about 93 pliter/cm2 sec. Reversing the direction of fluid movement by adding mannitol to the outside solution had little effect on ion movements. The ionic and electrical properties of normal and perfused cells of Valonia are compared. PMID:6050968

  7. 23Na and 39K NMR studies of ion transport in human erythrocytes.

    PubMed

    Ogino, T; Shulman, G I; Avison, M J; Gullans, S R; den Hollander, J A; Shulman, R G

    1985-02-01

    Ion transport in human erythrocytes was studied by 23Na and 39K NMR with an anionic paramagnetic shift reagent, Dy(P3O10)2(7-). The intra- and extracellular 23Na and 39K NMR signals were well separated (over 10 ppm) at 5 mM concentration of the shift reagent. The NMR visibility of the intracellular Na+ and K+ was determined to be 100% in human and duck erythrocytes. The intracellular ion concentrations were 8.1 +/- 0.8 mM Na+ (n = 7) and 110 +/- 12 mM K+ (n = 4) for fresh human erythrocytes. The ouabain-sensitive net Na+ efflux was 1.75 +/- 0.08 mmol/hr per liter of cells at 37 degrees C (n = 3). The gramicidin-induced ion transport in human erythrocytes was also studied by 23Na and 39K NMR or by simultaneous measurements of 23Na NMR and a K+-selective electrode. The time courses of the Na+ and K+ transport induced by the ionophore were biphasic. The initial rapid fluxes were due to an exchange of Na+ for K+, which were found to occur with a 1:1 stoichiometry. The subsequent slow components were the net Na+ and K+ effluxes rate-limited by the Cl- permeability and accompanied by a reduction in cell volume. The Cl- permeability determined from the NMR measurements of these slow fluxes was 3.2 +/- 0.5 X 10(-8) cm/sec at 25 degrees C (n = 4).

  8. 23Na and 39K NMR studies of ion transport in human erythrocytes.

    PubMed Central

    Ogino, T; Shulman, G I; Avison, M J; Gullans, S R; den Hollander, J A; Shulman, R G

    1985-01-01

    Ion transport in human erythrocytes was studied by 23Na and 39K NMR with an anionic paramagnetic shift reagent, Dy(P3O10)2(7-). The intra- and extracellular 23Na and 39K NMR signals were well separated (over 10 ppm) at 5 mM concentration of the shift reagent. The NMR visibility of the intracellular Na+ and K+ was determined to be 100% in human and duck erythrocytes. The intracellular ion concentrations were 8.1 +/- 0.8 mM Na+ (n = 7) and 110 +/- 12 mM K+ (n = 4) for fresh human erythrocytes. The ouabain-sensitive net Na+ efflux was 1.75 +/- 0.08 mmol/hr per liter of cells at 37 degrees C (n = 3). The gramicidin-induced ion transport in human erythrocytes was also studied by 23Na and 39K NMR or by simultaneous measurements of 23Na NMR and a K+-selective electrode. The time courses of the Na+ and K+ transport induced by the ionophore were biphasic. The initial rapid fluxes were due to an exchange of Na+ for K+, which were found to occur with a 1:1 stoichiometry. The subsequent slow components were the net Na+ and K+ effluxes rate-limited by the Cl- permeability and accompanied by a reduction in cell volume. The Cl- permeability determined from the NMR measurements of these slow fluxes was 3.2 +/- 0.5 X 10(-8) cm/sec at 25 degrees C (n = 4). PMID:2579385

  9. Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes

    PubMed Central

    Sandhu, Devinder; Cornacchione, Monica V.; Ferreira, Jorge F. S.; Suarez, Donald L.

    2017-01-01

    Twelve alfalfa genotypes that were selected for biomass under salinity, differences in Na and Cl concentrations in shoots and K/Na ratio were evaluated in this long-term salinity experiment. The selected plants were cloned to reduce genetic variability within each genotype. Salt tolerance (ST) index of the genotypes ranged from 0.39 to 1. The most salt-tolerant genotypes SISA14-1 (G03) and AZ-90ST (G10), the top performers for biomass, exhibited the least effect on shoot number and height. SISA14-1 (G03) accumulated low Na and Cl under salinity. Most genotypes exhibited a net reduction in shoot Ca, Mg, P, Fe, and Cu, while Mn and Zn increased under salinity. Salinity reduced foliar area and stomatal conductance; while net photosynthetic rate and transpiration were not affected. Interestingly, salinity increased chlorophyll and antioxidant capacity in most genotypes; however neither parameter correlated well to ST index. Salt-tolerant genotypes showed upregulation of the SOS1, SOS2, SOS3, HKT1, AKT1, NHX1, P5CS1, HSP90.7, HSP81.2, HSP71.1, HSPC025, OTS1, SGF29 and SAL1 genes. Gene expression analyses allowed us to classify genotypes based on their ability to regulate different components of the salt tolerance mechanism. Pyramiding different components of the salt tolerance mechanism may lead to superior salt-tolerant alfalfa genotypes. PMID:28225027

  10. X-ray microanalysis of rotavirus-infected mouse intestine: A new concept of diarrhoeal secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, A.J.; Osborne, M.P.; Haddon, S.J.

    1990-05-01

    Neonatal mice were infected at 7 days of age with rotavirus (epizootic diarrhea of infant mice (EDIM) virus) and killed at 24-h intervals postinfection (PI). Cytoplasmic concentrations of Na, Mg, P, S, Cl, K, and Ca intestinal epithelial cells from infected and age-matched control animals were measured by x-ray microanalysis. In villus tip cells, Ca concentration increased at 24-96 h PI; Na concentration increased at 24-72 h PI; Ca and Na concentrations were near normal by 168 h PI. K concentration decreased 24-72 h PI, and Cl concentration decreased 48-96 h PI. In crypt cells, changes were observed without amore » discernible pattern: at 96 h PI, Na, Mg, S, and Cl concentrations increased and K concentration decreased; at 120 h PI, the concentrations of all elements except Na and Ca increased. In villus base cells, the mean concentrations of all elements except Ca peaked at 48-72 h PI and at 120 h PI. Na and Cl concentrations increased dramatically in some cells from 48 h PI onward. All the above concentration values were obtained from freeze-dried specimens and expressed in millimoles per kilogram of dry weight. Conversion of a limited number of data, pertaining to villus base cells, from dry weight to wet weight was possible. This conversion revealed that villus base cells in infected animals were more hydrated than corresponding cells from control animals. Also, the Na and Cl concentrations in mmol/kg H2O were significantly higher in villus base cells from infected animals than in those from corresponding controls: 137 +/- 7 versus 38 +/- 4 (Na) and 121 +/- 5 versus 89 +/- 6 (Cl). Wet weight concentrations of other elements were either the same (Mg) or lower (P, S, and K) after infection with virus.« less

  11. The pump and leak steady-state concept with a variety of regulated leak pathways.

    PubMed

    Hoffmann, E K

    2001-12-01

    The paper will reflect on how Ussing has affected my own scientific work and how he created much of the framework within which I have been working. I have used five examples: (i) The first description of a 1:1 exchange diffusion was introduced by Ussing in 1947 and has been found to be of great physiological significance in most cells. We found that Cl- transport in Ehrlich ascites tumor cells (EATC) was completely dominated by an exchange diffusion process, as defined by Ussing, and, thus, the Cl- conductance was much lower than previously estimated from measurements of unidirectional tracer fluxes. This had a major influence on my later description of a swelling-activated Cl- conductance. (ii) The pump-leak steady-state concept for cell volume control was introduced by Krogh in 1946, but it was developed in detail by Leaf and Ussing in 1959. This concept was the basis for me and others, when we later found that the passive ion leaks play an active role in cell volume control. (iii) The use of isotopes and Ussing's famous flux ratio equation provided an ingenious instrument for distinguishing the various transport routes. We used this to identify the Na,K,2Cl cotransport system as accounting for maintaining a [Cl-]i in the EATC far above thermodynamic equilibrium, as well as accounting for the ion uptake during a regulatory volume increase (RVI) in EATC, similar to what Ussing had found in frog skin. (iv) Short-circuit current setup in the Ussing chamber is still used in laboratories around the world to study ion transport across epithelia. A few results on Cl- transport across the operculum epithelium of the small eurohaline fish Fundulus heteroclitus mounted in small Ussing chambers are presented. (v) Shrinkage-activated Na+ conductance and its possible role in isotonic secretion in frog skin glands is finally discussed.

  12. Anti-proliferative and anti-secretory effects of everolimus on human pancreatic neuroendocrine tumors primary cultures: is there any benefit from combination with somatostatin analogs?

    PubMed

    Mohamed, Amira; Romano, David; Saveanu, Alexandru; Roche, Catherine; Albertelli, Manuela; Barbieri, Federica; Brue, Thierry; Niccoli, Patricia; Delpero, Jean-Robert; Garcia, Stephane; Ferone, Diego; Florio, Tullio; Moutardier, Vincent; Poizat, Flora; Barlier, Anne; Gerard, Corinne

    2017-06-20

    Therapeutic management of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) is challenging. The mammalian target of rapamycin (mTOR) inhibitor everolimus recently obtained approval from the Food and Drug Administration for the treatment of patients with advanced pancreatic neuroendocrine tumors (pNETs). Despite its promising antitumor efficacy observed in cell lines, clinical benefit for patients is unsatisfactory. The limited therapeutic potential of everolimus in cancer cells has been attributed to Akt activation due to feedback loops relief following mTOR inhibition. Combined inhibition of Akt might then improve everolimus antitumoral effect. In this regard, the somatostatin analog (SSA) octreotide has been shown to repress the PI3K/Akt pathway in some tumor cell lines. Moreover, SSAs are well tolerated and routinely used to reduce symptoms caused by peptide release in patients carrying functional GEP-NETs. We have recently established and characterized primary cultures of human pNETs and demonstrated the anti-proliferative effects of both octreotide and pasireotide. In this study, we aim at determining the antitumor efficacy of everolimus alone or in combination with the SSAs octreotide and pasireotide in primary cultures of pNETs. Everolimus reduced both Chromogranin A secretion and cell viability and upregulated Akt activity in single treatment. Its anti-proliferative and anti-secretory efficacy was not improved combined with the SSAs. Both SSAs did not overcome everolimus-induced Akt upregulation. Furthermore, caspase-dependent apoptosis induced by SSAs was lost in combined treatments. These molecular events provide the first evidence supporting the lack of marked benefit in patients co-treated with everolimus and SSA.

  13. Anti-proliferative and anti-secretory effects of everolimus on human pancreatic neuroendocrine tumors primary cultures: is there any benefit from combination with somatostatin analogs?

    PubMed Central

    Mohamed, Amira; Romano, David; Saveanu, Alexandru; Roche, Catherine; Albertelli, Manuela; Barbieri, Federica; Brue, Thierry; Niccoli, Patricia; Delpero, Jean-Robert; Garcia, Stephane; Ferone, Diego; Florio, Tullio; Moutardier, Vincent; Gerard, Corinne

    2017-01-01

    Therapeutic management of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) is challenging. The mammalian target of rapamycin (mTOR) inhibitor everolimus recently obtained approval from the Food and Drug Administration for the treatment of patients with advanced pancreatic neuroendocrine tumors (pNETs). Despite its promising antitumor efficacy observed in cell lines, clinical benefit for patients is unsatisfactory. The limited therapeutic potential of everolimus in cancer cells has been attributed to Akt activation due to feedback loops relief following mTOR inhibition. Combined inhibition of Akt might then improve everolimus antitumoral effect. In this regard, the somatostatin analog (SSA) octreotide has been shown to repress the PI3K/Akt pathway in some tumor cell lines. Moreover, SSAs are well tolerated and routinely used to reduce symptoms caused by peptide release in patients carrying functional GEP-NETs. We have recently established and characterized primary cultures of human pNETs and demonstrated the anti-proliferative effects of both octreotide and pasireotide. In this study, we aim at determining the antitumor efficacy of everolimus alone or in combination with the SSAs octreotide and pasireotide in primary cultures of pNETs. Everolimus reduced both Chromogranin A secretion and cell viability and upregulated Akt activity in single treatment. Its anti-proliferative and anti-secretory efficacy was not improved combined with the SSAs. Both SSAs did not overcome everolimus-induced Akt upregulation. Furthermore, caspase-dependent apoptosis induced by SSAs was lost in combined treatments. These molecular events provide the first evidence supporting the lack of marked benefit in patients co-treated with everolimus and SSA. PMID:28454119

  14. The Photosynthesis, Na+/K+ Homeostasis and Osmotic Adjustment of Atriplex canescens in Response to Salinity

    PubMed Central

    Pan, Ya-Qing; Guo, Huan; Wang, Suo-Min; Zhao, Bingyu; Zhang, Jin-Lin; Ma, Qing; Yin, Hong-Ju; Bao, Ai-Ke

    2016-01-01

    Atriplex canescens (fourwing saltbush) is a C4 perennial fodder shrub with excellent resistance to salinity. However, the mechanisms underlying the salt tolerance in A. canescens are poorly understood. In this study, 5-weeks-old A. canescens seedlings were treated with various concentrations of external NaCl (0–400 mM). The results showed that the growth of A. canescens seedlings was significantly stimulated by moderate salinity (100 mM NaCl) and unaffected by high salinity (200 or 400 mM NaCl). Furthermore, A. canescens seedlings showed higher photosynthetic capacity under NaCl treatments (except for 100 mM NaCl treatment) with significant increases in net photosynthetic rate and water use efficiency. Under saline conditions, the A. canescens seedlings accumulated more Na+ in either plant tissues or salt bladders, and also retained relatively constant K+ in leaf tissues and bladders by enhancing the selective transport capacity for K+ over Na+ (ST value) from stem to leaf and from leaf to bladder. External NaCl treatments on A. canescens seedlings had no adverse impact on leaf relative water content, and this resulted from lower leaf osmotic potential under the salinity conditions. The contribution of Na+ to the leaf osmotic potential (Ψs) was sharply enhanced from 2% in control plants to 49% in plants subjected to 400 mM NaCl. However, the contribution of K+ to Ψs showed a significant decrease from 34% (control) to 9% under 400 mM NaCl. Interestingly, concentrations of betaine and free proline showed significant increase in the leaves of A. canescens seedlings, these compatible solutes presented up to 12% of contribution to Ψs under high salinity. These findings suggest that, under saline environments, A. canescens is able to enhance photosynthetic capacity, increase Na+ accumulation in tissues and salt bladders, maintain relative K+ homeostasis in leaves, and use inorganic ions and compatible solutes for osmotic adjustment which may contribute to the improvement of water status in plant. PMID:27379134

  15. Does thrombin stimulation of human platelets proceed via a simultaneous Na/sup +/-H/sup +/ exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, T.A.; Katona, E.; Vasilescu, V.

    1986-03-05

    Thrombin stimulation of human platelets initiates a membrane depolarization attributable to a Na/sup +/ influx into, and an alkalinization of, the cytoplasm, both of which follow a similar rapid time scale and thrombin dose dependence. These responses precede secretion of the contents of dense granules (serotonin) and, after 1 min, of lysosomes (..beta..-glucuronidase). These markers have been used to determine whether the Na/sup +/ influx and H/sup +/ efflux are sequential or simultaneous. They have examined these parameters in D/sub 2/O-Hepes buffers. NMR evidence indicates that equilibration is rapid, and virtually complete within the 3 minute pre-stimulation platelets equilibration period.more » The rate of depolarization is 70-80% slower in D/sub 2/O than in H/sub 2/O. The time to reach maximal depolarization is 5-10 sec longer, the extent of depolarization 60% inhibited, and the (H/sup +/) change 85-100% inhibited. The serotonin secretion is unaltered, and the ..beta..-glucuronidase secretion is 130-180% enhanced. 10/sup -4/ M amiloride inhibits Na/sup +/ influx, i.e. depolarization, and the pH change completely. Adjustment to pH/sub i/ 7.3 with NH/sub 4/Cl led to a 30-80% enhanced ..beta..-glucuronidase release upon thrombin exposure. These results suggest that the Na/sup +/ and H/sup +/ fluxes across the platelet membrane occur sequentially, the Na/sup +/ occurring first. Furthermore, granule secretion, previously shown by us to be independent of the existent Na/sup +/ gradient, depends on the cytoplasmic K/sup +/ and H/sup +/ concentrations.« less

  16. Lubiprostone Reverses the Inhibitory Action of Morphine on Intestinal Secretion in Guinea Pig and Mouse

    PubMed Central

    Fei, Guijun; Raehal, Kirsten; Liu, Sumei; Qu, Mei-Hua; Sun, Xiaohong; Wang, Guo-Du; Wang, Xi-Yu; Xia, Yun; Schmid, Cullen L.; Bohn, Laura M.

    2010-01-01

    Lubiprostone activates ClC-2 chloride channels in epithelia. It is approved for treatment of chronic idiopathic constipation in adults and constipation-predominate irritable bowel syndrome in women. We tested a hypothesis that lubiprostone can reverse the constipating action of morphine and investigated the mechanism of action. Short-circuit current (Isc) was recorded in Ussing chambers as a marker for chloride secretion during pharmacological interactions between morphine and lubiprostone. Measurements of fecal wet weight were used to obtain information on morphine-lubiprostone interactions in conscious mice. Morphine decreased basal Isc, with an IC50 of 96.1 nM. The action of dimethylphenylpiperazinium (DMPP), a nicotinic receptor agonist that stimulates neurogenic Isc, was suppressed by morphine. Lubiprostone applied after pretreatment with morphine reversed morphine suppression of both basal Isc and DMPP-evoked chloride secretion. Electrical field stimulation (EFS) of submucosal neurons evoked biphasic increases in Isc. Morphine abolished the first phase and marginally suppressed the second phase. Lubiprostone reversed, in concentration-dependent manner, the action of morphine on the first and second phases of the EFS-evoked responses. Subcutaneous lubiprostone increased fecal wet weight and numbers of pellets expelled. Morphine significantly reduced fecal wet weight and number of pellets. Injection of lubiprostone, 30-min after morphine, reversed morphine-induced suppression of fecal wet weight. We conclude that inhibitory action of morphine on chloride secretion reflects suppression of excitability of cholinergic secretomotor neurons in the enteric nervous system. Lubiprostone, which does not directly affect enteric neurons, bypasses the neurogenic constipating effects of morphine by directly opening chloride channels in the mucosal epithelium. PMID:20406855

  17. Lubiprostone targets prostanoid EP₄ receptors in ovine airways.

    PubMed

    Cuthbert, A W

    2011-01-01

    Lubiprostone, a prostaglandin E₁ derivative, is reported to activate ClC-2 chloride channels located in the apical membranes of a number of transporting epithelia. Lack of functioning CFTR chloride channels in epithelia is responsible for the genetic disease cystic fibrosis, therefore, surrogate channels that can operate independently of CFTR are of interest. This study explores the target receptor(s) for lubiprostone in airway epithelium. All experiments were performed on the ventral tracheal epithelium of sheep. Epithelia were used to measure anion secretion from the apical surface as short circuit current or as fluid secretion from individual airway submucosal glands, using an optical method. The EP₄ antagonists L-161982 and GW627368 inhibited short circuit current responses to lubiprostone, while EP₁(,)₂(&)₃ receptor antagonists were without effect. Similarly, lubiprostone induced secretion in airway submucosal glands was inhibited by L-161982. L-161982 effectively competed with lubiprostone with a K(d) value of 0.058 µM, close to its value for binding to human EP₄ receptors (0.024 µM). The selective EP₄ agonist L-902688 and lubiprostone behaved similarly with respect to EP₄ receptor antagonists. Results of experiments with H89, a protein kinase A inhibitor, were consistent with lubiprostone acting through a G(s) -protein coupled EP₄ receptor/cAMP cascade. Lubiprostone-induced short-circuit currents and submucosal gland secretions were inhibited by selective EP₄ receptor antagonists. The results suggest EP₄ receptor activation by lubiprostone triggers cAMP production necessary for CFTR activation and the secretory responses, a possibility precluded in CF tissues. © 2010 The Author. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  18. Lubiprostone reverses the inhibitory action of morphine on intestinal secretion in guinea pig and mouse.

    PubMed

    Fei, Guijun; Raehal, Kirsten; Liu, Sumei; Qu, Mei-Hua; Sun, Xiaohong; Wang, Guo-Du; Wang, Xi-Yu; Xia, Yun; Schmid, Cullen L; Bohn, Laura M; Wood, Jackie D

    2010-07-01

    Lubiprostone activates ClC-2 chloride channels in epithelia. It is approved for treatment of chronic idiopathic constipation in adults and constipation-predominate irritable bowel syndrome in women. We tested a hypothesis that lubiprostone can reverse the constipating action of morphine and investigated the mechanism of action. Short-circuit current (Isc) was recorded in Ussing chambers as a marker for chloride secretion during pharmacological interactions between morphine and lubiprostone. Measurements of fecal wet weight were used to obtain information on morphine-lubiprostone interactions in conscious mice. Morphine decreased basal Isc, with an IC(50) of 96.1 nM. The action of dimethylphenylpiperazinium (DMPP), a nicotinic receptor agonist that stimulates neurogenic Isc, was suppressed by morphine. Lubiprostone applied after pretreatment with morphine reversed morphine suppression of both basal Isc and DMPP-evoked chloride secretion. Electrical field stimulation (EFS) of submucosal neurons evoked biphasic increases in Isc. Morphine abolished the first phase and marginally suppressed the second phase. Lubiprostone reversed, in concentration-dependent manner, the action of morphine on the first and second phases of the EFS-evoked responses. Subcutaneous lubiprostone increased fecal wet weight and numbers of pellets expelled. Morphine significantly reduced fecal wet weight and number of pellets. Injection of lubiprostone, 30-min after morphine, reversed morphine-induced suppression of fecal wet weight. We conclude that inhibitory action of morphine on chloride secretion reflects suppression of excitability of cholinergic secretomotor neurons in the enteric nervous system. Lubiprostone, which does not directly affect enteric neurons, bypasses the neurogenic constipating effects of morphine by directly opening chloride channels in the mucosal epithelium.

  19. Effects of luteinizing hormone and human chorionic gonadotropin on corpus luteum cells in a spheroid cell culture system.

    PubMed

    Walz, A; Keck, C; Weber, H; Kissel, C; Pietrowski, D

    2005-09-01

    The human corpus luteum (CL) is a highly vascularized, temporarily active endocrine gland and consists mainly of granulosa cells (GCs), theca cells (TCs), and endothelial cells (ECs). Its cyclic growth and development takes place under the influence of gonadotropic hormones. If pregnancy does occur, human chorionic gonadotropin (hCG) takes over the function of luteinizing hormone (LH) and, in contrast to LH, extends the functional life span of the CL. In this study, we investigated the effects of hCG and LH in a spheroidal cell culture model of CL development. Our data indicate that GCs secrete factors under the control of hCG that increase sprout formation of EC-spheroids. We demonstrate that the most prominent of these factors is VEGF-A. Furthermore, we found that both LH and hCG decrease sprout formation of GC-spheroids. After forming EC-GC coculture spheroids and consequently bringing GCs and ECs in close contact, sprouting increased under the influence of hCG, however not under LH. These experiments provide evidence for an hCG dependent functional switch in the GCs after coming in contact with ECs. Moreover, it demonstrates the considerably different effects of hCG and LH on GCs although their signaling is transmitted via the same receptor.

  20. Stimulation of Mucin, Mucus, and Viscosity during Lubiprostone in Patients with Chronic Constipation may Potentially Lead to Increase of Lubrication.

    PubMed

    Majewski, Marek; Sarosiek, Irene; Wallner, Grzegorz; Edlavitch, Stanley A; Sarosiek, Jerzy

    2014-12-18

    The purpose of this clinical trial was to explore whether lubiprostone increases the rate of mucus and mucin secretion and its viscosity in chronic constipation (CC) patients. The secretion of chloride (CS) into the gastrointestinal tract lumen is pivotal in the body's ability to process non-digestible food components. CS sets the optimal rate of hydration for non-digestible food components, their fluidity, and their adequate propulsion along the alimentary tract. Chloride is also instrumental in the secretion of alimentary tract mucus, and the formation of a gel-like, viscous mucus-buffer layer. This layer acts as the first line and vanguard of the mucosal barrier. This barrier is essential in mucosal lubrication and protection. Lubiprostone, a novel chloride channel stimulator ClC-2, is currently approved for the treatment of CC. Its impact on mucus, mucus secretion, and viscosity is not established. A double-blind, crossover trial was approved by the IRBs at the Kansas University Medical Center (Kansas City, KS) (study site) and at the Texas Tech University HSC (El Paso, TX) (analysis site). The study included 20 patients (17 females (F); mean age: 37 years) with symptoms of CC diagnosed according to the Rome III criteria. Patients were randomized to 1 week of therapy with lubiprostone or placebo followed by a 1 week washout and 1 week of the alternative therapy. Gastric juice was collected basally and during stimulation with pentagastrin (6 μg/kg body weight subcutaneously) at the end of weeks 1 and 3. Pentagastrin stimulation mimics food stimulation. The mucus content in gastric juice was assessed gravimetrically. The mucin content was measured after its purification using ultracentrifugation. The viscosity of the gastric secretion was measured using a digital viscometer. In comparison with placebo, the volume of gastric secretion in patients with CC during administration of lubiprostone increased significantly by 50% (86.3 vs. 57.5 ml/h) (P<0.001) in basal conditions and increased by 25% (210.0 vs. 167.6 ml/h) (P=0.024) during stimulation with pentagastrin. The rate of gastric mucus secretion during therapy with lubiprostone was 91% higher (257.3 vs. 135 mg/h) (P=0.001) in basal conditions and 28% higher (348.1 vs. 270.8 mg/h) (NS) in stimulated conditions, although the latter was not statistically significant. The rate of gastric mucin secretion during lubiprostone therapy was 85% higher (98.4 vs. 65.5 mg/h) (P=0.011) in basal conditions and 38% (98.3 vs. 71.7 mg/h) (NS) higher in stimulated conditions. In basal conditions, the viscosity of gastric secretion during administration of lubiprostone increased by 240% at the lowest (P<0.001) and by 106% at the highest shear rate (P<0.001). In stimulated conditions, it increased by 226% (P<0.01) at the lowest shear rate and by 67% (P<0.01) at the highest shear rate. The significantly higher content of gastric mucus and mucin during therapy in basal conditions with lubiprostone in patients with CC suggests and supports the potentially leading role of lubiprostone and ClC-2 stimulation in their secretion. This increased stimulation results in profoundly increased viscosity, which in turn facilitates and/or accelerates the transit and evacuation of non-digestible food components. Although increases in mucus and mucin were observed in stimulated conditions, neither increase was statistically significant. Based on this experiment, we hypothesize that, in CC patients, the significantly increased rate of mucus and its major component, mucin secretion, during lubiprostone administration may partially explain its clinical effectiveness and also have additional clinically important effects. We propose that since the increased mucus production enhances the protective quality of the mucosal barrier, it also boosts its potential to withstand luminal aggressive components such as acid/pepsin duet, Helicobacter pylori and/or nonsteroidal anti-inflammatory drugs/aspirin, or a combination of all. Further trials are needed to test this hypothesis. As this was crossover clinical trial, the patients serve as their own controls. No interaction was found with body mass index (BMI) and treatment. The observed relationships of BMI and mucus and mucin secretions and gastric juice volume are important considerations in the design of future trials, particularly if a crossover design is not used.

Top