Science.gov

Sample records for net community production

  1. Net community production of dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    Hansell, Dennis A.; Carlson, Craig A.

    1998-09-01

    Each year large amounts of carbon, with a residence time of months, accumulate in the surface layer of the ocean as semilabile dissolved organic carbon (DOC). This material is transported long distances, contributing to the interhemispheric transfer and deep ocean export of carbon. The fraction of net community production resulting in the accumulation of semilabile DOC is estimated here by mass balance during periods of net phytoplankton production in three diverse environments: the Ross Sea polynya, the Equatorial Pacific Ocean, and the Sargasso Sea. In the eutrophic systems of the Ross Sea and the Equatorial Pacific, net DOC production generally fell between 10 and 20% of net community production. For the 1995 spring bloom in the Sargasso Sea, net DOC production was 59-70% of the net community production. Net DOC production was maximal during the period of deep convective overturn of the water column, indicating linkage between the processes. Following the Sargasso Sea spring bloom and into the summer period, net DOC production was nil over the upper 250 m so that net DOC production was reduced to ˜8% of net community production on a seasonal timescale. Consideration of the various types of production regimes in the ocean indicates that the global net production of semilabile DOC is ˜17% of global new production. Regions of the world's oceans with the greatest contributions to global net community production, such as equatorial and coastal upwelling areas, contribute most to the global production of semilabile DOC.

  2. Global net community production and the putative net heterotrophy of the oligotrophic oceans

    NASA Astrophysics Data System (ADS)

    Westberry, Toby K.; Williams, Peter J. Le B.; Behrenfeld, Michael J.

    2012-12-01

    Reconciling rates of organic carbon export from the euphotic zone with the consumption of organic material in the dark ocean remains one of the major quantitative uncertainties of the ocean carbon cycle. Euphotic zone net community production (NCP) provides one broad constraint on export flux and potential carbon drawdown. However, in vitro measurements of NCP consistently suggest that oligotrophic oceans are net heterotrophic, which is inconsistent with evidence of their carbon export to depth. Further, we have been unable to identify organic inputs on a scale to supplement the purported net heterotrophy. Here, we calculate global NCP rates using empirical relationships between in vitro photosynthesis (P) and respiration (R) and a satellite-based productivity model. A low value for global NCP (˜139 ± 325 Tmol C a-1) is found when a single P versus R (PvR) relation is derived from all in vitro data, with areas of net heterotrophy occupying 52% of the surface ocean. If a set of PvR relationships are instead derived by segregating the in vitro data into broad latitudinal zones associated with differing nutrient dynamics, we find a global NCP distribution in better agreement with independent model estimates of particulate carbon export, except in the 10°-40° latitudinal band where negative NCP values remain. Consistency between NCP and particulate export across all latitudes is achieved by applying a single PvR relationship derived using all in vitro data collected outside the 10°-40° latitudinal band. With this model, global NCP is estimated at ˜781 ± 393 Tmol C a-1 and modeled values at well-characterized field sites are in good agreement with non-incubation based in situ measurements. We infer from our results that in vitro NCP data from oligotrophic sites are too low, and suggest that this error is more likely the result of underestimated photosynthesis than overestimated respiration, although the precise physiological nature of the problem remains to be

  3. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    NASA Astrophysics Data System (ADS)

    Comeau, Steeve; Edmunds, Peter J.; Lantz, Coulson A.; Carpenter, Robert C.

    2017-07-01

    The threat represented by ocean acidification (OA) for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR) is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet), and between PAR and community net calcification (Gnet), using experiments on three coral communities constructed to match (i) the back reef of Mo'orea, French Polynesia, (ii) the fore reef of Mo'orea, and (iii) the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet-PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet-PAR relationship for both reef communities in Mo'orea (but not in O'ahu). For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  4. Effects of elevated turbidity and nutrients on the net production of a tropical seagrass community

    SciTech Connect

    Caldwell, J.W.

    1985-01-01

    Dredging effects on seagrass communities in the Florida Keys were examined by (1) comparing impacts on net production resulting from dredging and natural weather events, (2) determining changes in community photosynthetic efficiency, (3) evaluating shading and nutrient effects on net production, and (4) developing a systems dynamics model. Net community production was estimated during numerous meteorological and dredging events using the Odum-Hoskins oxygen technique in flow-through field microcosms. In other experiments, shading and nutrients (phosphorus, nitrate, and ammonia) were manipulated to simulate dredge plume conditions. The greatest depression in net community production resulted from severe thunderstorms and dredging events, respectively. In field microcosm experiments, significant interaction occurred between shading and nutrient concentration. The model of seagrass production was most sensitive to changes in nutrient-seagrass relationships, seagrass production estimates, and seagrass-light interactions. Recovery of seagrass biomass following numerous dredging events (3.5 years) was longer than that from the estimated total annual thunderstorms encountered (1 year) but shorter than recovery from hurricane events (4.1 years).

  5. Microbial Community Dynamics, Community Respiration, and Net Community Production in Monterey Bay, a Nearshore Upwelling Kelp Forest Environment

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Litvin, S. Y.; Beman, M.

    2016-02-01

    Upwelling ecosystems, and the extensive kelp forests that can be found in such environments, are extremely productive, supporting extensive food webs and active biogeochemical cycling. However, variation in microbial community dynamics and metabolism—typically a key component of oceanic biogeochemical cycles—are poorly understood within and outside kelp forests. We examined variation in microbial community diversity and composition, planktonic community respiration (CR), net community production (NCP), and gross primary production (GPP) as a function of proximity to kelp (Macrocystis pyrifera) and other variables (i.e. depth, temperature, time, size fractionation) through lab-based and in situ bottle incubations in Monterey Bay, CA. Microbial alpha diversity tended to be higher at shallower depths and inside the kelp forest than outside it, while non-dimensional scaling revealed that variations in beta diversity were driven primarily by date and depth. CR and NCP varied with depth, date, and with proximity to kelp. CR was lower within the kelp forest than outside it, but kelp forest samples exhibited less variation. Inside the kelp forest, a relatively constant rate of CR led to variations in NCP driven by variable GPP, while CR alone appeared to control NCP outside the kelp forest across multiple depths. Taken together, these results speak to the variable nature of the nearshore environment in both space and time, and demonstrate how kelp forests may influence microbial communities and moderate changes in biogeochemical cycling over time.

  6. Net community production and dark community respiration in a Karenia brevis (Davis) bloom in West Florida coastal waters, USA

    PubMed Central

    Hitchcock, Gary L.; Kirkpatrick, Gary; Minnett, Peter; Palubok, Valeriy

    2013-01-01

    Oxygen-based productivity and respiration rates were determined in West Florida coastal waters to evaluate the proportion of community respiration demands met by autotrophic production within a harmful algal bloom dominated by Karenia brevis. The field program was adaptive in that sampling during the 2006 bloom occurred where surveys by the Florida Wildlife Research Institute indicated locations with high cell abundances. Net community production (NCP) rates from light-dark bottle incubations during the bloom ranged from 10 to 42 µmole O2 L−1 day−1 with highest rates in bloom waters where abundances exceeded 105 cells L−1. Community dark respiration (R) rates in dark bottles ranged from <10 to 70 µmole O2 L−1 day−1 over 24 h. Gross primary production derived from the sum of NCP and R varied from ca. 20 to 120 µmole O2 L−1 day−1. The proportion of GPP attributed to NCP varied with the magnitude of R during day and night periods. Most surface communities exhibited net autotrophic production (NCP > R) over 24 h, although heterotrophy (NCP < R) characterized the densest sample where K. brevis cell densities exceed 106 cells L−1. PMID:24179460

  7. Net community production and dark community respiration in a Karenia brevis (Davis) bloom in West Florida coastal waters, USA.

    PubMed

    Hitchcock, Gary L; Kirkpatrick, Gary; Minnett, Peter; Palubok, Valeriy

    2010-05-01

    Oxygen-based productivity and respiration rates were determined in West Florida coastal waters to evaluate the proportion of community respiration demands met by autotrophic production within a harmful algal bloom dominated by Karenia brevis. The field program was adaptive in that sampling during the 2006 bloom occurred where surveys by the Florida Wildlife Research Institute indicated locations with high cell abundances. Net community production (NCP) rates from light-dark bottle incubations during the bloom ranged from 10 to 42 µmole O2 L(-1) day(-1) with highest rates in bloom waters where abundances exceeded 10(5) cells L(-1). Community dark respiration (R) rates in dark bottles ranged from <10 to 70 µmole O2 L(-1) day(-1) over 24 h. Gross primary production derived from the sum of NCP and R varied from ca. 20 to 120 µmole O2 L(-1) day(-1). The proportion of GPP attributed to NCP varied with the magnitude of R during day and night periods. Most surface communities exhibited net autotrophic production (NCP > R) over 24 h, although heterotrophy (NCP < R) characterized the densest sample where K. brevis cell densities exceed 10(6) cells L(-1).

  8. Assessment of net community production and calcification of a coral reef using a boundary layer approach

    NASA Astrophysics Data System (ADS)

    Takeshita, Yuichiro; McGillis, Wade; Briggs, Ellen M.; Carter, Amanda L.; Donham, Emily M.; Martz, Todd R.; Price, Nichole N.; Smith, Jennifer E.

    2016-08-01

    Coral reefs are threatened worldwide, and there is a need to develop new approaches to monitor reef health under natural conditions. Because simultaneous measurements of net community production (NCP) and net community calcification (NCC) are used as important indicators of reef health, tools are needed to assess them in situ. Here we present the Benthic Ecosystem and Acidification Measurement System (BEAMS) to provide the first fully autonomous approach capable of sustained, simultaneous measurements of reef NCP and NCC under undisturbed, natural conditions on time scales ranging from tens of minutes to weeks. BEAMS combines the chemical and velocity gradient in the benthic boundary layer to quantify flux from the benthos for a variety of parameters to measure NCP and NCC. Here BEAMS was used to measure these rates from two different sites with different benthic communities on the western reef terrace at Palmyra Atoll for 2 weeks in September 2014. Measurements were made every ˜15 min. The trends in metabolic rates were consistent with the benthic communities between the two sites with one dominated by fleshy organisms and the other dominated by calcifiers (degraded and healthy reefs, respectively). This demonstrates the potential utility of BEAMS as a reef health monitoring tool. NCP and NCC were tightly coupled on time scales of minutes to days, and light was the primary driver for the variability of daily integrated metabolic rates. No correlation between CO2 levels and daily integrated NCC was observed, indicating that NCC at these sites were not significantly affected by CO2.

  9. Net community production from autonomous oxygen observations in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Feen, M.; Estapa, M. L.

    2016-02-01

    Optical sensors on autonomous floats provide high-resolution profiles of oxygen concentration over time. Improved spatiotemporal resolution in our measurements of oxygen will allow for better estimates of net community production and a greater understanding of the biological pump. Two autonomous profiling floats (NAVIS BGCi, Sea-Bird) equipped with SBE-63 optodes to measure dissolved oxygen were deployed in the Sargasso Sea on a series of five Bermuda Atlantic Time-series Study (BATS) cruises from July 2013 to April 2014. In situ calibration of the oxygen sensors to Winkler titration bottle samples at BATS did not show systematic drift in the oxygen sensors over time. Calibrations were applied to determine oxygen concentrations in profiles collected in the Sargasso Sea at 1.5 to 2.5 day intervals over a year. Oxygen concentrations were used to quantify sub-mixed layer net community production. Changes in production rates from this study were compared with upper water column biology and particle flux measurements obtained independently from optical sensors on the profiling floats, allowing us to examine processes controlling carbon export into the deep ocean.

  10. Net community production in the bottom of first-year sea ice over the Arctic spring bloom

    NASA Astrophysics Data System (ADS)

    Campbell, K.; Mundy, C. J.; Gosselin, M.; Landy, J. C.; Delaforge, A.; Rysgaard, S.

    2017-09-01

    The balance of photosynthesis and respiration by organisms like algae and bacteria determines whether sea ice is net heterotrophic or autotrophic. In turn this clarifies the influence of microbes on atmosphere-ice-ocean gas fluxes and their contribution to the trophic system. In this study we define two phases of the spring bloom based on bottom ice net community production and algal growth. Phase I was characterized by limited algal accumulation and low productivity, which at times resulted in net heterotrophy. Greater productivity in Phase II drove rapid algal accumulation that consistently produced net autotrophic conditions. The different phases were associated with seasonal shifts in light availability and species dominance. Results from this study demonstrate the importance of community respiration on spring productivity, as respiration rates can maintain a heterotrophic state independent of algal growth. This challenges previous assumptions of a fully autotrophic sea ice community during the ice-covered spring.

  11. Ocean carbon cycling in the Indian Ocean: 2. Estimates of net community production

    NASA Astrophysics Data System (ADS)

    Bates, Nicholas R.; Pequignet, A. Christine; Sabine, Christopher L.

    2006-09-01

    The spatiotemporal variability of ocean carbon cycling and air-sea CO2 exchange in the Indian Ocean was examined using inorganic carbon data collected as part of the World Ocean Circulation Experiment (WOCE) cruises in 1995. Several carbon mass balance approaches were used to estimate rates of net community production (NCP) in the Indian Ocean. Carbon transports into and out of the Indian Ocean were derived using mass transport estimates of Robbins and Toole (1997) and Schmitz (1996), and transoceanic hydrographic and TCO2 sections at 32°S and across the Indonesian Throughflow. The derived NCP rates of 749 ± 227 to 1572 ± 180 Tg C yr-1 (0.75-1.57 Pg C yr-1) estimated by carbon mass balance were similar to new production rates (1100-1800 Tg C yr-1) determined for the Indian Ocean by a variety of other methods (Louanchi and Najjar, 2000; Gnanadesikan et al., 2002). Changes in carbon inventories of the surface layer were also used to evaluate the spatiotemporal patterns of NCP. Significant NCP occurred in all regions during the Northeast Monsoon and Spring Intermonsoon periods. During the Southwest Monsoon and Fall Intermonsoon periods, the trophic status appears to shift from net autotrophy to net heterotrophy, particularly in the Arabian Sea, Bay of Bengal, and 10°N to 10°S zones.

  12. Hydrographic controls on net community production and total organic carbon distributions in the eastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Cross, Jessica N.; Mathis, Jeremy T.; Bates, Nicholas R.

    2012-06-01

    In order to assess spatial and temporal variability of net community production (NCP) in shelf areas of the eastern Bering Sea, seawater samples for dissolved inorganic carbon (DIC) and total organic carbon (TOC) were collected during BEST-BSIERP cruises in the spring, summer, and fall of 2009 and compared to prior measurements made in 2008. DIC and TOC data were used to estimate seasonal changes in rates of NCP and the balance of net autotrophy versus heterotrophy in different shelf areas. In 2009, springtime surface layer DIC concentrations were generally uniform across the shelf and averaged ˜2100 μmol kg-1, although concentrations in northern shelf areas (under sea-ice cover) were slightly higher (˜2130 μmol kg-1). Subsequently, surface layer DIC (˜1950 μmol kg-1) decreased significantly by summertime with the largest drawdown of DIC observed in the Middle Domain between 57° and 61°N. In this area, high NCP rates of up to 92 mmol C m-2 d-1 were observed and were higher than those reported in 2008. Comparing 2008 and 2009, the shelfwide average drawdown of DIC in the upper 30 m between spring and summer was greater by ˜16 μmol kg-1. In both spring and summer of 2008 and 2009, concentrations of TOC generally decreased from the coast. TOC concentrations were tightly coupled to salinity, particularly in spring, and largely influenced by the discharge of the Yukon and Kuskokwim Rivers. TOC accumulation between spring and summer was relatively small. In nearshore regions of the shelf, negative rates of NCP observed in 2009 were indicative of net heterotrophy with remineralization of labile organic carbon from rivers likely contributing to the observed net respiration signal in this region. In contrast, net heterotrophy was not observed in 2008, when river discharge rates were 30% lower (likely with lower river transport of TOC). While 2009 rates of production were higher outside the coastal domain than those observed in 2008, integrated annual production

  13. Is seasonal net community production in the South Pacific Subtropical Gyre anomalously low?

    NASA Astrophysics Data System (ADS)

    Bender, Michael L.; Jönsson, Bror

    2016-09-01

    The region of the South Pacific Subtropical Gyre (SPSG) at 20°-30°S, 140°-110°W is the oceanic area with the lowest chlorophyll concentration and the deepest nutricline, O2 saturation horizon, and euphotic zone. We analyze the limited available data from this region to determine if rates of net community production (NCP) are systematically lower than elsewhere. We present limited mixed layer O2/Ar data constraining mixed layer NCP, examine hydrographic data from the CLIVAR repeat hydrography P18 line to assess seasonal dissolved inorganic carbon drawdown, and review results from the literature. While it is not possible to formalize uncertainties, the evidence suggests that euphotic zone NCP is around the lower end (~1 mol m-2 yr-1) of rates observed elsewhere. However, NCP is shifted to unusually deep depths, a change enabled by the very low extinction coefficients of these waters.

  14. Annual net community production and the biological carbon flux in the ocean

    NASA Astrophysics Data System (ADS)

    Emerson, Steven

    2014-01-01

    The flux of biologically produced organic matter from the surface ocean (the biological pump), over an annual cycle, is equal to the annual net community production (ANCP). Experimental determinations of ANCP at ocean time series sites using a variety of different metabolite mass balances have made it possible to evaluate the accuracy of sediment trap fluxes and satellite-determined ocean carbon export. ANCP values at the Hawaii Ocean Time-series (HOT), the Bermuda Atlantic Time-series Study (BATS), Ocean Station Papa (OSP) are 3 ± 1 mol C m-2 yr-1—much less variable than presently suggested by satellite remote sensing measurements and global circulation models. ANCP determined from mass balances at these locations are 3-4 times particulate organic carbon fluxes measured in sediment traps. When the roles of dissolved organic carbon (DOC) flux, zooplankton migration, and depth-dependent respiration are considered these differences are reconciled at HOT and OSP but not at BATS, where measured particulate fluxes are about 3 times lower than expected. Even in the cases where sediment trap fluxes are accurate, it is not possible to "scale up" these measurements to determine ANCP without independent determinations of geographically variable DOC flux and zooplankton migration. Estimates of ANCP from satellite remote sensing using net primary production determined by the carbon-based productivity model suggests less geographic variability than its predecessor (the vertically generalized productivity model) and brings predictions at HOT and OSP closer to measurements; however, satellite-predicted ANCP at BATS is still 3 times too low.

  15. Oxygen Dynamics and Net Community Productivity During a Lagrangian Cruise in the Western Gulf of Maine

    NASA Astrophysics Data System (ADS)

    de Meo, O.; Salisbury, J.

    2010-12-01

    Quantifying the coastal ocean’s role in the carbon cycle has become an important consideration in calculating oceanic carbon budgets. While much previous work has focused on elucidating air-sea CO2 fluxes, little work has been done to quantify the biological component influencing this flux, which can be expressed as net community productivity (NCP). NCP is defined as the difference between gross primary productivity (GPP) and community respiration (R). This study seeks to constrain NCP, which is measurable through changes in the biological oxygen anomaly, and to identify an optical proxy for NCP that can be studied remotely by satellite. A Lagrangian experiment was conducted in the Western Gulf of Maine where the temporal evolution of a water mass and its properties were observed on seven cruises over the course of two and a half weeks. Dissolved oxygen data from Winkler incubations and depth profiles were used to calculate NCP independently. NCP was shown to be highly variable, ranging from apparent autotrophic to heterotrophic conditions. Additionally, variability in chlorophyll fluorescence (f-chl) was examined for use as an estimator of NCP. Changes in f-chl inventories correlated well with changes in dissolved oxygen inventories. A similar relationship was also exhibited in turnover rate. These correspondences are indicative that f-chl may be a viable proxy for estimating NCP. However, further work is needed to examine other optical properties that may serve as a better proxy.

  16. Net community calcification and production rates from Palmyra Atoll using a boundary layer gradient flux approach

    NASA Astrophysics Data System (ADS)

    Takeshita, Y.; McGillis, W. R.; Martz, T. R.; Price, N.; Smith, J.; Donham, E. M.

    2016-02-01

    Coral reefs are a highly dynamic system, where large variability in environmental conditions (e.g. pH) occurs on timescales of minutes to hours. Yet, techniques that are capable of monitoring reef calcification rates without artificial confinement on the same frequency are scarce. Here, we present a 2 week time series of sub-hourly, in situ benthic net community production (Pnet) and net community calcification (Gnet) rates from a reef terrace at Palmyra Atoll using the Benthic Ecosystem and Acidification Monitoring System (BEAMS). The net metabolism rates reported here are measured under natural conditions, without any alterations to the environment (e.g. light, flow, pH). The BEAMS measures the chemical gradient and the current velocity profile in the benthic boundary layer using autonomous sensors to calculate the chemical flux from the benthos. The O2 and total alkalinity (TA) fluxes were used to calculate Pnet and Gnet, respectively; TA gradients were calculated from pH and O2 measurements. Gnet can be constrained to better than 3 mmol CaCO3 m-2 hr-1 using this approach, based on three simultaneous BEAMS deployments. A clear diel cycle of Gnet was observed, where the peak day time Gnet and average nighttime Gnet were 14 and 1 mmol CaCO3 m-2 hr-1, respectively. Integrated daily Gnet ranged from 76 to 219 mmol CaCO3 m-2 d-1, with an average of 107 ± 14 mmol CaCO3 m-2 d-1. Light had the strongest control over Gnet, with current velocity having a smaller yet noticeable effect. During the deployment, pH varied by 0.16 (ranged between 7.92 and 8.08), and a significant positive relationship was observed between pH and Gnet. However, pH was also positively correlated with current velocity and Pnet, making it difficult to determine if natural variability in pH was significantly affecting Gnet on the timescale of days to weeks.

  17. Decoupling of net community and export production on submesoscales in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Estapa, M. L.; Siegel, D. A.; Buesseler, K. O.; Stanley, R. H. R.; Lomas, M. W.; Nelson, N. B.

    2015-08-01

    Determinations of the net community production (NCP) in the upper ocean and the particle export production (EP) should balance over long time and large spatial scales. However, recent modeling studies suggest that a horizontal decoupling of flux-regulating processes on submesoscales (≤10 km) could lead to imbalances between individual determinations of NCP and EP. Here we sampled mixed-layer biogeochemical parameters and proxies for NCP and EP during 10, high-spatial resolution (~2 km) surface transects across strong physical gradients in the Sargasso Sea. We observed strong biogeochemical and carbon flux variability in nearly all transects. Spatial coherence among measured biogeochemical parameters within transects was common but rarely did the same parameters covary consistently across transects. Spatial variability was greater in parameters associated with higher trophic levels, such as chlorophyll in >5.0 µm particles, and variability in EP exceeded that of NCP in nearly all cases. Within sampling transects, coincident EP and NCP determinations were uncorrelated. However, when averaged over each transect (30 to 40 km in length), we found NCP and EP to be significantly and positively correlated (R = 0.72, p = 0.04). Transect-averaged EP determinations were slightly smaller than similar NCP values (Type-II regression slope of 0.93, standard deviation = 0.32) but not significantly different from a 1:1 relationship. The results show the importance of appropriate sampling scales when deriving carbon flux budgets from upper ocean observations.

  18. Interannual variability in net community production at the Western Antarctic Peninsula region (1997-2014)

    NASA Astrophysics Data System (ADS)

    Li, Zuchuan; Cassar, Nicolas; Huang, Kuan; Ducklow, Hugh; Schofield, Oscar

    2016-07-01

    In this study, we examined the interannual variability of net community production (NCP) in the Western Antarctic Peninsula (WAP) using in situ O2/Ar-NCP estimates (2008-2014) and satellite data (SeaWiFS and MODIS-Aqua) from 1997 to 2014. We found that NCP generally first peaks offshore and follows sea-ice retreat from offshore to inshore. Annually integrated NCP (ANCP) displays an onshore-to-offshore gradient, with coastal and shelf regions up to 8 times more productive than offshore regions. We examined potential drivers of interannual variability in the ANCP using an Empirical Orthogonal Function (EOF) analysis. The EOF's first mode explains ˜50% of the variance, with high interannual variability observed seaward of the shelf break. The first principal component is significantly correlated with the day of sea-ice retreat (R = -0.58, p < 0.05), as well as the Southern Annular Mode (SAM) and El Niño Southern Oscillation (ENSO) climate indices in austral spring. Although the most obvious pathway by which the day of sea-ice retreat influences NCP is by controlling light availability early in the growing season, we found that the effect of day of sea-ice retreat on NCP persists throughout the growing season, suggesting that additional controls, such as iron availability, are preconditioned or correlated to the day of sea-ice retreat.

  19. Net Community Production in the Southern Ocean Monitored with Nitrate and Oxygen Sensors on Profiling Floats

    NASA Astrophysics Data System (ADS)

    Johnson, K. S.; Riser, S.; Swift, D.; Coletti, L.; Jannasch, H. W.; Plant, J.; Sakamoto, C.

    2011-12-01

    The Southern Ocean is the least observed ocean due to its remote location and severe weather. There are few areas visited regularly by ships and surface moorings are difficult to maintain. Profiling floats equipped with biogeochemical sensors provide one mechanism to sustain long term observations in this region. Here we present results obtained from two Apex profiling floats equipped with In Situ Ultraviolet Spectrophotometer (ISUS) nitrate sensors and Aanderaa Optode oxygen sensors. Float 5146 operated for over three years near 55° South in the Indian Ocean sector of the Southern Ocean. It made 230 vertical profiles at 5 day intervals from 1000 m to the surface with 60 nitrate and oxygen measurements on each profile before its batteries were exhausted near the Kerguelen Plateau. Nitrate reported by Float 5146 is shown in the figure. Float 5426 has operated over 2.5 years and made 190 vertical profiles to date. It was initially launched in the near 55° South, 80° West in the Pacific sector and then passed through the Drake Passage and is now near 45° South in the Atlantic sector. Each of these floats provides a unique perspective on changes in net community production along their trajectory. Data quality over the multi-year operating life of each float will first be assessed. Rates of biogeochemical processes that are diagnosed by combining sensor data with a 1-D mixed layer model will then be discussed.

  20. Late summer net community production in the central Arctic Ocean using multiple approaches

    NASA Astrophysics Data System (ADS)

    Ulfsbo, Adam; Cassar, Nicolas; Korhonen, Meri; van Heuven, Steven; Hoppema, Mario; Kattner, Gerhard; Anderson, Leif G.

    2014-10-01

    Large-scale patterns of net community production (NCP) were estimated during the late summer cruise ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean. Several approaches were used based on the following: (i) continuous measurements of surface water oxygen to argon ratios (O2/Ar), (ii) underway measurements of surface partial pressure of carbon dioxide (pCO2), (iii) discrete samples of dissolved inorganic carbon, and (iv) dissolved inorganic nitrogen and phosphate. The NCP estimates agreed well within the uncertainties associated with each approach. The highest late summer NCP (up to 6 mol C m-2) was observed in the marginal sea ice zone region. Low values (<1 mol C m-2) were found in the sea ice-covered deep basins with a strong spatial variability. Lowest values were found in the Amundsen Basin and moderate values in the Nansen and Makarov Basins with slightly higher estimates over the Mendeleev Ridge. Our findings support a coupling of NCP to sea ice coverage and nutrient supply and thus stress a potential change in spatial and temporal distribution of NCP in a future Arctic Ocean. To follow the evolution of NCP in space and time, it is suggested to apply one or several of these approaches in shipboard investigations with a time interval of 3 to 5 years.

  1. Net community production in the North Atlantic Ocean derived from Volunteer Observing Ship data

    NASA Astrophysics Data System (ADS)

    Ostle, Clare; Johnson, Martin; Landschützer, Peter; Schuster, Ute; Hartman, Susan; Hull, Tom; Robinson, Carol

    2015-01-01

    The magnitude of marine plankton net community production (NCP) is indicative of both the biologically driven exchange of carbon dioxide between the atmosphere and the surface ocean and the export of organic carbon from the surface ocean to the ocean interior. In this study the seasonal variability in the NCP of five biogeochemical regions in the North Atlantic was determined from measurements of surface water dissolved oxygen and dissolved inorganic carbon (DIC) sampled from a Volunteer Observing Ship (VOS). The magnitude of NCP derived from dissolved oxygen measurements (NCPO2) was consistent with previous geochemical estimates of NCP in the North Atlantic, with an average annual NCPO2 of 9.5 ± 6.5 mmol O2 m-2 d-1. Annual NCPO2 did not vary significantly over 35° of latitude and was not significantly different from NCP derived from DIC measurements (NCPDIC). The relatively simple method described here is applicable to any VOS route on which surface water dissolved oxygen concentrations can be accurately measured, thus providing estimates of NCP at higher spatial and temporal resolution than currently achieved.

  2. Net community production and calcification from 7 years of NOAA Station Papa Mooring measurements

    NASA Astrophysics Data System (ADS)

    Fassbender, Andrea J.; Sabine, Christopher L.; Cronin, Meghan F.

    2016-02-01

    Seven years of near-continuous observations from the Ocean Station Papa (OSP) surface mooring were used to evaluate drivers of marine carbon cycling in the eastern subarctic Pacific. Processes contributing to mixed layer carbon inventory changes throughout each deployment year were quantitatively assessed using a time-dependent mass balance approach in which total alkalinity and dissolved inorganic carbon were used as tracers. By using two mixed layer carbon tracers, it was possible to isolate the influences of net community production (NCP) and calcification. Our results indicate that the annual NCP at OSP is 2 ± 1 mol C m-2 yr-1 and the annual calcification is 0.3 ± 0.3 mol C m-2 yr-1. Piecing together evidence for potentially significant dissolved organic carbon cycling in this region, we estimate a particulate inorganic carbon to particulate organic carbon ratio between 0.15 and 0.25. This is at least double the global average, adding to the growing evidence that calcifying organisms play an important role in carbon export at this location. These results, coupled with significant seasonality in the NCP, suggest that carbon cycling near OSP may be more complex than previously thought and highlight the importance of continuous observations for robust assessments of biogeochemical cycling.

  3. Net community production at Ocean Station Papa observed with nitrate and oxygen sensors on profiling floats

    NASA Astrophysics Data System (ADS)

    Plant, Joshua N.; Johnson, Kenneth S.; Sakamoto, Carole M.; Jannasch, Hans W.; Coletti, Luke J.; Riser, Stephen C.; Swift, Dana D.

    2016-06-01

    Six profiling floats equipped with nitrate and oxygen sensors were deployed at Ocean Station P in the Gulf of Alaska. The resulting six calendar years and 10 float years of nitrate and oxygen data were used to determine an average annual cycle for net community production (NCP) in the top 35 m of the water column. NCP became positive in February as soon as the mixing activity in the surface layer began to weaken, but nearly 3 months before the traditionally defined mixed layer began to shoal from its winter time maximum. NCP displayed two maxima, one toward the end of May and another in August with a summertime minimum in June corresponding to the historical peak in mesozooplankton biomass. The average annual NCP was determined to be 1.5 ± 0.6 mol C m-2 yr-1 using nitrate and 1.5 ± 0.7 mol C m-2 yr-1 using oxygen. The results from oxygen data proved to be quite sensitive to the gas exchange model used as well as the accuracy of the oxygen measurement. Gas exchange models optimized for carbon dioxide flux generally ignore transport due to gas exchange through the injection of bubbles, and these models yield NCP values that are two to three time higher than the nitrate-based estimates. If nitrate and oxygen NCP rates are assumed to be related by the Redfield model, we show that the oxygen gas exchange model can be optimized by tuning the exchange terms to reproduce the nitrate NCP annual cycle.

  4. Ice melt influence on summertime net community production along the Western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Eveleth, R.; Cassar, N.; Sherrell, R. M.; Ducklow, H.; Meredith, M. P.; Venables, H. J.; Lin, Y.; Li, Z.

    2017-05-01

    The Western Antarctic Peninsula (WAP) is a highly productive marine environment that is undergoing rapid change, with consequences for productivity and total ecosystem carbon cycling. We present continuous underway O2/Ar estimates of net community production (NCPO2Ar) in austral summer 2012, 2013 and 2014 at sub-kilometer horizontal resolution within the Palmer Long-Term Ecological Research (Pal-LTER) grid region of the WAP. Substantial spatial variability is observed with NCPO2Ar ranging from 0 to 790 mmol O2 m-2 d-1 and considerable interannual variability with mean values in the grid region of 54.4±48.5, 44.6±40.5, and 85.6±75.9 mmol O2 m-2 d-1 in 2012, 2013 and 2014 respectively. Based on a strong correlation (r2=0.83) between residence time integrated NCPO2Ar and NCPDIC derived from seasonal DIC drawdown, we find the observed NCPO2Ar spatial and interannual variability to be consistent with the December-January NCPDIC magnitude. Seeking to explain the mechanistic drivers of NCP in the WAP, we observe a linear relationship between NCPO2Ar and meteoric water content derived from δ18O and salinity. This correlation may be due to Fe supply from glacial melt and/or strengthening of stratification and relief of light limitation. Elevated surface Fe availability, as indicated by Fv/Fm and measurements of surface water dissolved Fe and Mn (a rough proxy for recent potential Fe availability), and shallower, more stable mixed layers are present where meteoric water and/or sea ice melt is high near the coast. Light limitation is evident in the WAP when mixed layer depths are greater than 40 m. Additionally we document hotspots of NCP associated with submarine canyons along the WAP. While it is difficult to predict how the physical-biological system might evolve under changing climatic conditions, it is evident that NCP, and potentially carbon flux out of the mixed layer, along the WAP will be sensitive to shifts in meltwater input and timing.

  5. The annual cycle of gross primary production, net community production, and export efficiency across the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Palevsky, Hilary I.; Quay, Paul D.; Lockwood, Deirdre E.; Nicholson, David P.

    2016-02-01

    We measured triple oxygen isotopes and oxygen/argon dissolved gas ratios as nonincubation-based geochemical tracers of gross oxygen production (GOP) and net community production (NCP) on 16 container ship transects across the North Pacific from 2008 to 2012. We estimate rates and efficiency of biological carbon export throughout the full annual cycle across the North Pacific basin (35°N-50°N, 142°E-125°W) by constructing mixed layer budgets that account for physical and biological influences on these tracers. During the productive season from spring to fall, GOP and NCP are highest in the Kuroshio region west of 170°E and decrease eastward across the basin. However, deep winter mixed layers (>200 m) west of 160°W ventilate ~40-90% of this seasonally exported carbon, while only ~10% of seasonally exported carbon east of 160°W is ventilated in winter where mixed layers are <120 m. As a result, despite higher annual GOP in the west than the east, the annual carbon export (sequestration) rate and efficiency decrease westward across the basin from export of 2.3 ± 0.3 mol C m-2 yr-1 east of 160°W to 0.5 ± 0.7 mol C m-2 yr-1 west of 170°E. Existing productivity rate estimates from time series stations are consistent with our regional productivity rate estimates in the eastern but not western North Pacific. These results highlight the need to estimate productivity rates over broad spatial areas and throughout the full annual cycle including during winter ventilation in order to accurately estimate the rate and efficiency of carbon sequestration via the ocean's biological pump.

  6. Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds.

    PubMed

    Negandhi, Karita; Laurion, Isabelle; Lovejoy, Connie

    2016-08-01

    One consequence of High Arctic permafrost thawing is the formation of small ponds, which release greenhouse gases (GHG) from stored carbon through microbial activity. Under a climate with higher summer air temperatures and longer ice-free seasons, sediments of shallow ponds are likely to become warmer, which could influence enzyme kinetics or select for less cryophilic microbes. There is little data on the direct temperature effects on GHG production and consumption or on microbial communities' composition in Arctic ponds. We investigated GHG production over 16 days at 4°C and 9°C in sediments collected from four thaw ponds. Consistent with an enzymatic response, production rates of CO2 and CH4 were significantly greater at higher temperatures, with Q10 varying from 1.2 to 2.5. The bacterial community composition from one pond was followed through the incubation by targeting the V6-V8 variable regions of the 16S rRNA gene and 16S rRNA. Several rare taxa detected from rRNA accounted for significant community compositional changes. At the higher temperature, the relative community contribution from Bacteroidetes decreased by 15% with compensating increases in Betaproteobacteria, Alphaproteobacteria, Firmicutes, Acidobacteria, Verrucomicrobia and Actinobacteria. The increase in experimental GHG production accompanied by changes in community indicates an additional factor to consider in sediment environments when evaluating future climate scenarios. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. An organic carbon budget for coastal Southern California determined by estimates of vertical nutrient flux, net community production and export

    NASA Astrophysics Data System (ADS)

    Haskell, William Z.; Prokopenko, Maria G.; Hammond, Douglas E.; Stanley, Rachel H. R.; Berelson, William M.; Baronas, J. Jotautas; Fleming, John C.; Aluwihare, Lihini

    2016-10-01

    Organic carbon export and burial in coastal upwelling regions is an important mechanism for oceanic uptake of atmospheric CO2. In order to understand how these complex systems will respond to future climate forcing, further studies of nutrient input, biological production and export are needed. Using a 7Be-based approach, we produced an 18-month record of upwelling velocity estimates at the San Pedro Ocean Time-series (SPOT), Southern California Bight. These upwelling rates and vertical nutrient distributions have been combined to make estimates of potential new production (PNP), which are compared to estimates of net community oxygen production (NOP) made using a one-dimensional, two-box non-steady state model of euphotic zone biological oxygen supersaturation. NOP agrees within uncertainty with PNP, suggesting that upwelling is the dominant mechanism for supplying the ecosystem with new nutrients in the spring season, but negligible in the fall and winter. Combining this data set with estimates of sinking particulate organic carbon (POC) flux from water column 234Th:238U disequilibrium and sediment trap deployments, and an estimate of the ratio of dissolved organic carbon (DOC):POC consumption rates, we construct a simple box model of organic carbon in the upper 200 m of our study site. This box model (with uncertainties of ±50%) suggests that in spring, 28% of net production leaves the euphotic zone as DOC, of this, 12% as horizontal export and 16% via downward mixing. The remaining 72% of net organic carbon export exits as sinking POC, with only 10% of euphotic zone export reaching 200 m. We find the metabolic requirement for the local heterotrophic community below the euphotic zone, but above 200 m, is 105±50 mmol C m-2 d-1, or 80% of net euphotic zone production in spring.

  8. Exploring Estimates of Net Community Production and Export Along the Western Antarctic Peninsula (WAP), 1993-2014.

    NASA Astrophysics Data System (ADS)

    Ducklow, H. W.; Stukel, M. R.; Bowman, J. S.; Kim, H.; Cassar, N.; Eveleth, R.; Li, Z.; Doney, S. C.; Sailley, S. F.; Jickells, T. D.; Baker, A. R.; Chance, R.

    2016-12-01

    In this presentation, we will compare different estimates of net community production (NCP) and export production (EP), including both traditional (changes in nutrient inventories and biological incubations) and newer measurements (Oxygen-Argon ratio, Thorium-234 disequilibrium, Iodide accumulation). Palmer Long Term Ecological Research (PAL-LTER) has been conducting observations of core biogeochemical (nutrient and carbon inventories, sediment trap flux) and ecological (standing stocks, production and grazing rates) processes along the WAP since 1993. Datasets include both temporally-intensive (semiweekly, Oct-April) observations in two nearshore locations at Palmer Station, and regionally-extensive observations over a 200 x 700 km grid of stations extending across the shelf into deep ocean water (>3000 m) each January. These observations provide a long term temporal and spatial context for more recent and focused measurements of net NCP and EP from the euphotic zone. For example, long-term net drawdown of nitrate averaged 415 mmol N m-2 season-1 (33 gC m-2 Season-1) at Palmer Station and 557 mmol N m-2 Season-1 (45 gC m-2 Season-1) over the regional grid. In comparison, discrete bottle-based O2/Ar estimates of NCP averaged 44 mmol O2 m-2 d-1 (0.37 gC m-2 d-1) regionally in January 2008-11. Th234 export was 684 dpm-2 d-1 (0.15 gC m-2 d-1) in January 2012, sourced from 15NO3 uptake-based new production of 4.1 mmol N m-2 d-1 (0.37 gC m-2 d-1). Intercomparison of these estimates is not straightforward. Measurements are based on several elemental currencies (C, N, O2, Th). We do not fully understand the processes each method claims to address. Is NCP the same as new production? Different processes and their measurements proceed over timescales of hours (new and net PP) to weeks (O2/Ar, 234Th) to months (inventory drawdowns). As implied above, assignment of time duration of net drawdown processes is uncertain for changes in water column inventories. Models provide

  9. Spatial and temporal variation of net community production and its regulating factors in the Amundsen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Hahm, Doshik; Rhee, Tae Siek; Kim, Hae-Cheol; Park, Jisoo; Kim, Young-Nam; Shin, Hyoung Chul; Lee, SangHoon

    2014-05-01

    We observed ΔO2/Ar in the surface waters of the Amundsen Sea, Antarctica, during the austral summers in 2011 and 2012 to investigate the variability of net community production (NCP). Corresponding to the typical peak phytoplankton bloom period, the ΔO2/Ar of the Amundsen Sea Polynya (ASP) reached 30% in early January 2011 and had a strong positive correlation with the sea surface temperature (SST) and chlorophyll-a (Chl-a). In contrast, ΔO2/Ar decreased to -10% in the sea ice zone (SIZ), which was likely associated with either net O2 consumption in the unlit area or the entrainment of deep water containing low dissolved oxygen. Near the terminal stage of the phytoplankton bloom in late February 2012, we observed the same contrasting ΔO2/Ar features between the ASP and SIZ. However, the ΔO2/Ar in the ASP was not >10%, which corresponded with the overall reduction in Chl-a, solar radiation, and SST compared with the corresponding values in 2011. The average net community production in the ASP was 119 ± 79 mmol O2 m-2 d-1 in January 2011, and 23 ± 14 mmol O2 m-2 d-1 in February 2012. The strong correlations of NCP with SST and mixed layer depth (MLD) indicate that the ASP phytoplankton bloom is likely initiated by a combination of increased light availability and SST in early summer. Low SST and variable fluorescence to maximum florescence ratio (Fv/Fm) in February indicate that decreased solar radiation and Fe availability are likely responsible for the phytoplankton bloom demise.

  10. Satellite estimates of net community production based on O2/Ar observations and comparison to other estimates

    NASA Astrophysics Data System (ADS)

    Li, Zuchuan; Cassar, Nicolas

    2016-05-01

    We present two statistical algorithms for predicting global oceanic net community production (NCP) from satellite observations. To calibrate these two algorithms, we compiled a large data set of in situ O2/Ar-NCP and remotely sensed observations, including sea surface temperature (SST), net primary production (NPP), phytoplankton size composition, and inherent optical properties. The first algorithm is based on genetic programming (GP) which simultaneously searches for the optimal form and coefficients of NCP equations. We find that several GP solutions are consistent with NPP and SST being strong predictors of NCP. The second algorithm uses support vector regression (SVR) to optimize a numerical relationship between O2/Ar-NCP measurements and satellite observations. Both statistical algorithms can predict NCP relatively well, with a coefficient of determination (R2) of 0.68 for GP and 0.72 for SVR, which is comparable to other algorithms in the literature. However, our new algorithms predict more spatially uniform annual NCP distribution for the world's oceans and higher annual NCP values in the Southern Ocean and the five oligotrophic gyres.

  11. Mechanistic explanation of the imbalance between the net community production and nutrient supply in the North Atlantic subtropical gyre

    NASA Astrophysics Data System (ADS)

    Chen, H.; McKinley, G. A.

    2016-02-01

    In the oligotrophic subtropical gyre, seasonal drawdown of summertime dissolved inorganic carbon (DIC) and oxygen (O2) build-up in the surface layer ( 0-50m) without a source of nutrients to support primary productivity has been an unresolved puzzle for decades (Michaels et al., 1994). Here to resolve this puzzle, we analyzed biogeochemical data from recently-available profiling floats deployed in the northwestern subtropical North Atlantic (Johnson et al., 2013) together with bottle samples from a timeseries near Bermuda (Lomas et al., 2013). Our results show that subduction of oxygen-rich, nitrate-low surface waters occurring after the spring bloom can increase depth-integrated (50-100m) O2 anomaly by 1.64 ± 0.60 mol/m2 from May to October, and decrease nitrate by 0.028 ± 0.022 mol/m2. Due to simultaneous injection of very high non-sinking organic matter with subduction, the tendency towards large oxygen build-up is suppressed by organic matter remineralization as the watermass travels through the shallow subsurface. However, this compensation is incomplete (70-80%), such that a small net increase of O2 anomaly from May to October (0.32 ± 0.15 mol/m2) in the seasonal thermocline is observed, despite negative net community production (NCP). Positive NCP within the mixed layer is potentially supported by vertical supply of remineralized nutrients into the mixed layer, and we estimate these processes can contribute 30%-50% of the annual NCP near Bermuda. However, the net impact of horizontal advection is to decrease thermocline nitrate at seasonal time scale, thus leads to the previous conundrum of "DIC drawdown in the mixed layer but no visible nitrate". The mechanistic understanding of biogeochemical cycles in the NASG would improve our understanding how future climate change may impact the ocean biological carbon pump via perturbations to the oceanic upper layer circulation.

  12. Annual net community production in the subtropical Pacific Ocean from in situ oxygen measurements on profiling floats

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Emerson, Steven R.; Bushinsky, Seth M.

    2017-04-01

    Annual net community production (ANCP) in the subtropical Pacific Ocean was determined by using annual oxygen measurements from Argo profiling floats with an upper water column oxygen mass balance model. ANCP was determined to be from 2.0 to 2.4 mol C m-2 yr-1 in the western subtropical North Pacific, 2.4 mol C m-2 yr-1 in the eastern subtropical North Pacific, and near zero in the subtropical South Pacific. Error analysis with the main sources of uncertainty being the accuracy of oxygen measurements and the parameterization of bubble fluxes in winter suggested an uncertainty of 0.3 mol C m-2 yr-1 in subtropical Pacific. The results are in good agreement with previous observations in locations where ANCP has been determined before. These are the first results from the western subtropical North Pacific and subtropical South Pacific where ANCP have not been evaluated before. ANCP for the subtropical South Pacific is significantly lower than in all other open ocean locations where it has been determined by mass balance. Comparison of our observations with net biological carbon export estimated from remote sensing algorithms indicates that observations from the subtropical North Pacific are higher than the satellite estimates, but those in the subtropical South Pacific are lower than satellite-determined carbon export.

  13. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  14. Net community production dynamics in the herb-shrub stratum of a loblolly pine-hardwood forest: effects of clearcutting and site preparation

    Treesearch

    John J. Stransky; Jimmy C. Huntley; Wanda J. Risner

    1986-01-01

    During the 10-year regeneration cycle-from sawtimber stand through clearcutting, site preparation, pine planting, and to the established pine plantations-average net community production in the herb-shrub stratum increased ten-fold, from 369 to 3,462 kg/ha at the peak of each site treatment, and nearly dropped to its initial low level after 10 years.

  15. Correcting oceanic O2/Ar-net community production estimates for vertical mixing using N2O observations

    NASA Astrophysics Data System (ADS)

    Cassar, Nicolas; Nevison, Cynthia D.; Manizza, Manfredi

    2014-12-01

    The O2/Ar approach has become a key method to estimate oceanic net community production (NCP). However, in some seasons and regions of the ocean, strong vertical mixing of O2-depleted deepwater introduces a large error into O2/Ar-derived NCP estimates. In these cases, undersaturated-O2/Ar observations have for all intents and purposes been ignored. We propose to combine underway O2/Ar and N2O observations into a composite tracer that is conservative with respect to the influence of vertical mixing on the surface biological O2 inventory. We test the proposed method with an ocean observing system simulation experiment (OSSE) in which we compare N2O-O2/Ar and O2/Ar-only gas flux estimates of NCP to the model-simulated true NCP in the Southern Ocean. Our proof-of-concept simulations show that the N2O-O2/Ar tracer significantly improves NCP estimates when/where vertical mixing is important.

  16. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models

    NASA Astrophysics Data System (ADS)

    Fu, Weiwei; Randerson, James T.; Moore, J. Keith

    2016-09-01

    We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2-16 % and EP by 7-18 %. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positive biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface-ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. Community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export

  17. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models

    DOE PAGES

    Fu, Weiwei; Randerson, James T.; Moore, J. Keith

    2016-09-16

    We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16 % and EP by 7–18 %. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positivemore » biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. Community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate

  18. De-coupling of net community production and new production in the euphotic zone of the equatorial Pacific: A model study

    NASA Astrophysics Data System (ADS)

    Wang, Xiujun; Murtugudde, Ragu; Busalacchi, Antonio J.; Le Borgne, Robert

    2005-11-01

    A physical-biogeochemical model is employed to estimate rates of nitrogen based primary production (PP*), net community production (NCP*), and new production (NP) in the equatorial Pacific. The model reproduces observed vertical differences between ammonium regeneration and uptake: uptake > regeneration above 40 m and uptake < regeneration below 40 m. As a result, NCP* exceeds NP in the upper 40 m, but decreases more rapidly with depth than NP. High surface NCP* appears across the entire upwelling region whereas high surface NP is found in the eastern equatorial Pacific with a much stronger spatial and temporal variability in NCP* relative to NP. The NCP*/PP* ratio shows a larger range (0.1-0.4) than the f-ratio (i.e., the NP/PP* ratio) (0.1-0.3). The zonal and vertical de-coupling between NCP* and NP is caused by the time lag between biological uptake and regeneration, and the advection of organic and inorganic nitrogen. The excess of NCP* over NP in the upper euphotic zone suggests the possibility of carbon over-consumption in the upper ocean of the equatorial Pacific with implications for predicting sinks/sources of CO2.

  19. Net production of oxygen in the subtropical ocean.

    PubMed

    Riser, Stephen C; Johnson, Kenneth S

    2008-01-17

    The question of whether the plankton communities in low-nutrient regions of the ocean, comprising 80% of the global ocean surface area, are net producers or consumers of oxygen and fixed carbon is a key uncertainty in the global carbon cycle. Direct measurements in bottle experiments indicate net oxygen consumption in the sunlit zone, whereas geochemical evidence suggests that the upper ocean is a net source of oxygen. One possible resolution to this conflict is that primary production in the gyres is episodic and thus difficult to observe: in this model, oligotrophic regions would be net consumers of oxygen during most of the year, but strong, brief events with high primary production rates might produce enough fixed carbon and dissolved oxygen to yield net production as an average over the annual cycle. Here we examine the balance of oxygen production over three years at sites in the North and South Pacific subtropical gyres using the new technique of oxygen sensors deployed on profiling floats. We find that mixing events during early winter homogenize the upper water column and cause low oxygen concentrations. Oxygen then increases below the mixed layer at a nearly constant rate that is similar to independent measures of net community production. This continuous oxygen increase is consistent with an ecosystem that is a net producer of fixed carbon (net autotrophic) throughout the year, with episodic events not required to sustain positive oxygen production.

  20. Free-Nets: Delivering Information to the Community.

    ERIC Educational Resources Information Center

    Toms, Elaine G.

    1994-01-01

    Examines Free-Net, and discusses its development and usefulness in delivering the information and services typically provided by community information centers. Discussion includes 10 characteristics of Free-Nets; and sidebars include selected examples of Free-Nets, how to try out a Free-Net, and a sample of Cleveland Free-Net=FEs main menu. (24…

  1. Carbon Use Efficiency, and Net Primary Productivity of Terrestrial Vegetation

    NASA Astrophysics Data System (ADS)

    Choudhury, Bhaskar J.

    The carbon use efficiency (CUE), defined as the ratio of net carbon gain to gross carbon assimilation during a period, is a highly significant determinant of primary production of terrestrial plant communities. Available data for CUE is summarized. Then, a model for gross assimilation has been run using satellite and ancillary data to calculate annual net carbon gain or net primary productivity for the global land surface during four year period (1987-1990). The results are compared with other estimates. Interannual variability of 30-50% is found in some of the latitude bands

  2. Aboveground and belowground net primary production

    Treesearch

    Marianne K. Burke; Hal O. Liechty; Mark H. Eisenbies

    2000-01-01

    The relationship among net primary productivity (NPP), hydroperiod, and fertility in forested wetlands is poorly understood (Burke and others 1999), particularly with respect to belowground NPP (Megonigal and others 1997). Although some researchers have studied aboveground and belowground primary production in depressional, forested wetland systems, e.g., Day and...

  3. Switchgrass: Production, Economics, and Net Energy

    USDA-ARS?s Scientific Manuscript database

    The critical questions for a biomass bioenergy production system are: • What are the economics? • Is energy from biomass net energy positive? • Is production system information available and verified? • Is the system sustainable? To address these questions, ten farmers in the mid-continental USA w...

  4. The annual cycle of nitrate and net community production in surface waters of the Southern Ocean observed with SOCCOM profiling floats

    NASA Astrophysics Data System (ADS)

    Johnson, K. S.; Plant, J. N.; Sakamoto, C.; Coletti, L. J.; Sarmiento, J. L.; Riser, S.; Talley, L. D.

    2016-12-01

    Sixty profiling floats with ISUS and SUNA nitrate sensors have been deployed in the Southern Ocean (south of 30 degrees S) as part of the SOCCOM (Southern Ocean Carbon and Climate Observations and Modeling) program and earlier efforts. These floats have produced detailed records of the annual cycle of nitrate concentration throughout the region from the surface to depths near 2000 m. In surface waters, there are clear cycles in nitrate concentration that result from uptake of nitrate during austral spring and summer. These changes in nitrate concentration were used to compute the annual net community production over this region. NCP was computed using a simplified version of the approach detailed by Plant et al. (2016, Global Biogeochemical Cycles, 30, 859-879, DOI: 10.1002/2015GB005349). At the time the abstract was written 41 complete annual cycles were available from floats deployed before the austral summer of 2015/2016. After filtering the data to remove floats that crossed distinct frontal boundaries, floats with other anomalies, and floats in sub-tropical waters, 23 cycles were available. A preliminary assessment of the data yields an NCP of 2.8 +/- 0.95 (1 SD) mol C/m2/y after integrating to 100 m depth and converting nitrate uptake to carbon using the Redfield ratio. This preliminary assessment ignores vertical transport across the nitracline and is, therefore, a minimum estimate. The number of cycles available for analysis will increase rapidly, as 32 of the floats were deployed in the austral summer of 2015/2016 and have not yet been analyzed.

  5. netLibrary: eBooks for the Academic Community.

    ERIC Educational Resources Information Center

    Doan, Scott

    2001-01-01

    Describes netLibrary, Inc., as one of the major suppliers of eBooks, with over two hundred community college customers. States that netLibrary's goal is to work with librarians, rather than in competition with them; thus, they see themselves as no threat to the existence of the printed book. Reports that netLibrary expects to digitize around…

  6. Impact of drought and precipitation seasonality on net primary production and plant community composition across a grassland ecotone in New Mexico

    NASA Astrophysics Data System (ADS)

    Collins, Scott; Thomey, Michell; Brown, Renee; Gehres, Nate; Petrie, Matthew; Vanderbilt, Kristin; Pockman, William

    2015-04-01

    In the southwestern US, climate change will impact the amount, timing and variability of rainfall during the summer monsoon. Changes in amount and seasonality of precipitation are likely to affect plant community dynamics and ecosystem processes, especially along ecotones. In 2012, we established a rainfall manipulation experiment (EDGE-Extreme Drought in Grasslands Experiment) in Chihuahuan Desert grassland (CDG) dominated by black grama and shortgrass steppe (SGS) dominated by blue grama across a grassland ecotone in central New Mexico. EDGE includes two rainfall treatments, chronic drought (~66% reduction in monsoon rainfall) and altered timing of the summer monsoon. Chronic drought is imposed from July through September by rainout shelters with roof panels that cover 66% of the surface area. To alter precipitation seasonality complete rainout shelters are erected in July and August, and all rainfall that occurred during this period is captured, stored, and then reapplied in several large rain events during September and October. Thus, this treatment receives the same amount of precipitation as ambient but differs in seasonality and frequency of rain events. We measured soil moisture, aboveground net primary production (ANPP), and plant species composition in each replicate (n=10) of each treatment at CDG and SGS sites. There were no significant pre-treatment differences in ANPP or plant species richness at either site. In 2013 following an above average monsoon, ambient ANPP was 99.4 g m-2 at CDG and 44.3 g m-2 at SGS. Event size reduction resulted in a 75% reduction in ANPP at CDG but only a 33% reduction in ANPP at SGS. Shifting the monsoon to later in the growing season resulted in a 50% and 43% reduction in ANPP at CDG and SGS, respectively. Thus, ANPP at CDG partially recovered from the mid-summer drought with late season precipitation but SGS did not. Event size reduction also resulted in a decrease in species richness at CDG, but not at SGS. These short

  7. Impact of Drought and Precipitation Seasonality on Net Primary Production and Plant Community Composition Across a Grassland Ecotone in New Mexico

    NASA Astrophysics Data System (ADS)

    Collins, S. L.; Thomey, M. L.; Brown, R. F.; Gehres, N.; Petrie, M. D.; Vanderbilt, K.; Pockman, W.

    2014-12-01

    In the southwestern US, climate change will impact the amount, timing and variability of rainfall during the summer monsoon. Changes in amount and seasonality of precipitation are likely to affect plant community dynamics and ecosystem processes, especially along ecotones. In 2012, we established a rainfall manipulation experiment (EDGE-Extreme Drought in Grasslands Experiment) in Chihuahuan Desert grassland (CDG) dominated by black grama and shortgrass steppe (SGS) dominated by blue grama across a grassland ecotone in central New Mexico. EDGE includes two rainfall treatments, chronic drought (~66% reduction in monsoon rainfall) and altered timing of the summer monsoon. Chronic drought is imposed from July through September by rainout shelters with roof panels that cover 66% of the surface area. To alter precipitation seasonality complete rainout shelters are erected in July and August, and all rainfall that occurred during this period is captured, stored, and then reapplied in several large rain events during September and October. Thus, this treatment receives the same amount of precipitation as ambient but differs in seasonality and frequency of rain events. We measured soil moisture, aboveground net primary production (ANPP), and plant species composition in each replicate (n=10) of each treatment at CDG and SGS sites. There were no significant pre-treatment differences in ANPP or plant species richness at either site. In 2013 following an above average monsoon, ambient ANPP was 99.4 g m-2 at CDG and 44.3 g m-2 at SGS. Event size reduction resulted in a 75% reduction in ANPP at CDG but only a 33% reduction in ANPP at SGS. Shifting the monsoon to later in the growing season resulted in a 50% and 43% reduction in ANPP at CDG and SGS, respectively. Thus, ANPP at CDG partially recovered from the mid-summer drought with late season precipitation but SGS did not. Event size reduction also resulted in a decrease in species richness at CDG, but not at SGS. These short

  8. QUANTIFYING UNCERTAINTY IN NET PRIMARY PRODUCTION MEASUREMENTS

    EPA Science Inventory

    Net primary production (NPP, e.g., g m-2 yr-1), a key ecosystem attribute, is estimated from a combination of other variables, e.g. standing crop biomass at several points in time, each of which is subject to errors in their measurement. These errors propagate as the variables a...

  9. QUANTIFYING UNCERTAINTY IN NET PRIMARY PRODUCTION MEASUREMENTS

    EPA Science Inventory

    Net primary production (NPP, e.g., g m-2 yr-1), a key ecosystem attribute, is estimated from a combination of other variables, e.g. standing crop biomass at several points in time, each of which is subject to errors in their measurement. These errors propagate as the variables a...

  10. Net ecosystem production in a subarctic peatland

    SciTech Connect

    Luken, J.O.

    1984-01-01

    A mass balance approach was used to determine the rates of carbon storage in three areas of a subarctic bog near Fairbanks, Alaska (latitude 64/sup 0/52'N). Aboveground net primary production was 20.3, 74.2, and 77.4 gm/sup -2/yr/sup -1/ for nonvascular plants, the shrub and herb layer, and the tree layer of the bog forest, respectively. Aboveground net primary production was 83.7 and 58.2 g m/sup -2/yr/sup -1/ for nonvascular plants and the shrub and herb layer of the Andromeda bog, respectively, in the Carex lawns, aboveground net primary production was 194.9 and 111.7 g m/sup -2/yr/sup -1/ for nonvascular and vascular plants, respectively. Sphagnum mosses are important components of this peatbog ecosystem due to their high rates of net primary production and slow rates of decomposition. Experimental manipulations of light level, water table level, and nutrient availability indicated that terminal extension rates and volumetric density of the Sphagnum stands are controlled primarily by light and water table levels. An explanation of Sphagnum zonation in hummock-hollow complexes is presented which incorporates aspects of growth rate, stand morphology, and reproductive mode. Soil carbon dioxide efflux rates were measured in a number of different hummock-hollow microhabitats. Approximately 75% of the variance associated with soil respiration could be explained by regression equations with soil moisture and soil temperature as independent variables. Carbohydrate limitation of soil microbial populations was demonstrated in both laboratory and field experiments.

  11. Scale Impacts in Net Ecosystem Productivity Estimations

    NASA Astrophysics Data System (ADS)

    Carvalhais, N.; Myneni, R.

    2004-12-01

    Net ecosystem production (NEP) estimations play a key role in the terrestrial carbon cycle assessment, both at regional and global scales studies. The emergence of remote sensing greatly improved NEP estimation methods and analysis domain. Yet, spatial and temporal resolution of sensors and remote sensing products often imply adjustments to NEP calculation methods. The Carnegie Ames Stanford Approach (CASA) terrestrial biogeochemical model (Potter et al., 1993; Friedlingstein et al., 1999) simulates plant and soil processes allowing the estimation of NEP through the difference between net primary productivity and soil respiration. CASA inputs include climatic data: precipitation, temperature and solar radiation; soil texture; vegetation type and percentage cover; as well as leaf area index (LAI), fraction of photosynthetically active radiation absorbed by vegetation (FPAR) and normalized difference vegetation index (NDVI). With a research interest in regional vegetation dynamics in the Iberian Peninsula (IP), estimations of NEP were compared with local measurements over a Quercus ilex and Quercus suber with perennial grassland ecosystem, representing a region characteristic land cover. The CASA calibration process aimed the tuning of efficiency scalars directly related to net primary productivity and soil respiration calculations, maximum light use efficiency (å*) and temperature effect on soil fluxes (Q10). To this end local weather station data was used as climatic inputs, with remotely sensed LAI, FPAR and NDVI products from MODIS sensor. In a first approach the NEP calculations were performed at a finer spatial and temporal resolution of 1 km and 8 days, respectively, for the periods of 2002 and 2003 (years of available NEP measurements). A confident correlation is found, although local extremes tend to differ and affect the annual balance concordance between estimations and measurements of NEP. Consequently, calibrated å* and Q10 values were used at coarser

  12. Advancing netCDF-CF for the Geoscience Community

    NASA Astrophysics Data System (ADS)

    Davis, Ethan; Zender, Charlie; Arctur, David; Jelenak, Aleksandar; Santek, Dave; O'Brien, Kevin; Dixon, Mike

    2016-04-01

    The Climate and Forecast (CF) metadata conventions for netCDF (netCDF-CF) are used widely by weather forecasters, climate scientists, and remote-sensing researchers to include auxiliary information along with scientific data. This auxiliary information, or metadata, describes where and how the data were collected, the units of measurement used, and other similar details. Numerous open source and commercial software tools are able to explore and analyze data sets that include netCDF-CF metadata. This presentation will introduce work to extend the existing netCDF-CF metadata conventions in ways that will broaden the range of earth science domains whose data can be represented. It will include discussion of the enhancements to netCDF-CF that are envisioned and information on how to participate in the community-based standards development process.

  13. Tightening the net: children, community, and control.

    PubMed

    James, A L; James, A

    2001-06-01

    The recent move to revitalize social democracy in the UK under the New Labour government, explored by Giddens as 'the Third Way', embraces many of Etzioni's ideas on communitarianism. The principles that emerge from these political philosophies, such as the involvement of local communities in policy consultations and implementation, have largely been welcomed as a reflection of the aim of revitalizing civic society in the context of a range of social policies. It is argued, however, that for children, contrary to this general trend, many of these policies represent attempts to increase the social control of children. Their effect has been to restrict children's agency and their rights, rather than to increase their participation as citizens, and thus,in spite of the requirements of the UN Convention on the Rights of the Child, children continue to be marginalized.

  14. LabNet: Toward a Community of Practice.

    ERIC Educational Resources Information Center

    Ruopp, Richard

    1993-01-01

    Describes the LabNet project that has three interrelated goals: (1) encouraging the use of student projects to enhance science learning, (2) building a professional community of practice among high school science teachers, and (3) exploiting the potential of today's new technologies. (PR)

  15. Net ecosystem calcification and net primary production in two Hawaii back-reef systems

    NASA Astrophysics Data System (ADS)

    Kiili, S.; Colbert, S.; Hart, K.

    2016-02-01

    Back-reef systems have complex carbon cycling, driven by dominant benthic communities that change with environmental conditions and display characteristic patterns of net primary production (NP) and net ecosystem calcification (G). The G/NP ratio provides a fundamental community-level assessment to compare systems spatially and to evaluate temporal changes in carbon cycling. Carbon dynamics were examined at leeward Hōnaunau and windward Waíōpae, Hawaíi Island. Both locations discharge brackish groundwater, including geothermal water at Waíōpae. The change in total CO2 (TCO2) and total alkalinity (TA) between morning and afternoon was measured to calculate the G/NP ratio along a salinity gradient. At both sites, aragonite saturation (ΩAr) was lower than open ocean conditions, and increased with salinity. Between the morning and afternoon, ΩAr increased by at least 1 as photosynthesis consumed CO2. At Waíōpae, water was corrosive to aragonite due to the input of acidic groundwater, but not at Honaunau, demonstrating the importance of local watershed characteristics on ΩAr. Across the salinity gradient, TA and TCO2 decreased between morning and afternoon. At Hōnaunau, G/NP increased from 0.11 to 0.31 with salinity, consistent with an offshore increase in coral cover. But at Waíōpae, G/NP decreased from 0.49 to 0.0 with salinity, despite an increase in coral cover with salinity. Low G may be caused by benthic processes, including coral bleaching or high rates of carbonate dissolution in interstitial waters between tide pools. Broader environmental conditions than just salinity, including pH of fresh groundwater inputs, shape the carbon cycling in the back-reef system. Examining the G/NP ratio of a back-reef system allows for a simple method to establish community level activity, and possibly indicate changes in a dynamic system.

  16. Global patterns in human consumption of net primary production

    NASA Astrophysics Data System (ADS)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  17. Global patterns in human consumption of net primary production.

    PubMed

    Imhoff, Marc L; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T

    2004-06-24

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production--the net amount of solar energy converted to plant organic matter through photosynthesis--can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production 'supply' and 'demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production 'imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  18. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer’s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  19. LabNet: Toward a community of practice

    NASA Astrophysics Data System (ADS)

    Ruopp, Richard

    1993-03-01

    It is common currency that science education in America isn't working well enough. We are failing to excite the curiosity of young minds in the great questions of the physical universe. LabNet—a prototype teacher-support project developed by TERC, and funded by the National Science Foundation, is dedicated to addressing this issue. The first three year phase of LabNet began in January 1989 and ended in mid-1992. During that time, some 562 high school teachers of physics in 37 states were involved. Three interconnected threads are woven through the fabric of LabNet. The first, and most vivid, is the use of projects to enhance students' science learning. LabNet's second thread is building a community of practice among LabNet teachers. The third thread woven into LabNet is promoting the use of new technologies in science teaching and learning. The most notable use of new technology in the LabNet project is telecommunications—computer-to-computer communication via telephone lines. A dedicated network has been created and made available to all participants. As the first national network designed for high school teachers of physical science, the LabNetwork is a dynamic medium for building and sustaining a community of practice for physics teachers separated by many thousands of miles. In recommendations directed at teachers, scientists, and particularly the National Science Foundation, steps are outlined that can be taken to strengthen the community and the teaching of science in both the secondary and elementary grades.

  20. Global Patterns in Human Consumption of Net Primary Production

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence William T.

    2004-01-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, flows within food webs and the provision of important primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial ba!mce sheet of net primary production supply and demand for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production "imports" and suggest policy options for slowing future growth of human appropriation of net primary production.

  1. Global Patterns in Human Consumption of Net Primary Production

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence William T.

    2004-01-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, flows within food webs and the provision of important primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial ba!mce sheet of net primary production supply and demand for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production "imports" and suggest policy options for slowing future growth of human appropriation of net primary production.

  2. Scaling net ecosystem production and net biome production over a heterogeneous region in the Western United States

    Treesearch

    D.P. Turner; W.D. Ritts; B.E. Law; W.B. Cohen; Z. Yan; T. Hudiburg; J.L. Campbell; M. Duane

    2007-01-01

    Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5x105 km2 ) in the Western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history...

  3. Production of fumaric acid by immobilized Rhizopus arrhizus on net.

    PubMed

    Gu, Chunbo; Zhou, Yuqing; Liu, Luo; Tan, Tianwei; Deng, Li

    2013-03-01

    An immobilization method using net was developed for fumaric acid fermentation by Rhizopus arrhizus RH-07-13. The large surface of the net immobilized enough filamentous mycelia which produced fumaric acid rapidly. Net size and spore concentration were optimized to enhance fermentation performance and 150cm(2) of net size, 0.5×10(6)per ml of spore concentration were selected finally. Compared to free-cell fermentation, fumaric acid production was flat (32.03 vs. 31.23g/L) but fermentation time reduced 83.3% (24 vs. 144h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Decreases in net primary production and net ecosystem production along a repeated-fires induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, C. H.; Huang, Y. H.; Chung-Yu, L.; Menyailo, O.

    2016-12-01

    Fire is one of the most important disturbances in ecosystems. Fire rapidly releases stored carbon into atmosphere and also plays critical roles on soil properties, light and moisture regimes, and plant structures and communities. With the interventions of climate change and human activities, fire regimes become more severe and frequent. In many parts of world, forest fire regimes can be further altered by grass invasion because the invasive grasses create a positive feedback cycle through their rapid recovery after fires and their high flammability during dry periods and allow forests to be burned repeatedly in a relatively short time. For such invasive grass-fire cycle, a great change of native vegetation community can occur. In this study, we examined a C4 invasive grass () fire-induced forest/grassland gradient to quantify the changes of net primary production (NPP) and net ecosystem production (NEP) from an unburned forest to repeated fire grassland. Our results demonstrated negative effects of repeated fires on NPP and NEP. Within 4 years of the onset of repeated fires on the unburned forest, NPP declined by 14%, mainly due to the reduction in aboveground NPP but offset by increase of belowground NPP. Subsequent fires cumulatively caused reductions in both aboveground and belowground NPP. A total of 40% reduction in the long-term repeated fire induced grassland was found. Soil respiration rate were not significantly different along the forest/grassland gradient. Thus, a great reduction in NEP were shown in grassland, which shifted from 4.6 Mg C ha-1 yr-1 in unburnt forest to -2.6 Mg C ha-1 yr-1. Such great losses are critical within the context of forest carbon cycling and long-term sustainability. Forest management practices that can effectively reduce the likelihood of repeated fires and consequent likelihood of establishment of the grass fire cycle are essential for protecting the forest.

  5. Decadal trends in net ecosystem production and net ecosystem carbon balance for a regional socioecological system

    Treesearch

    David P. Turner; William D. Ritts; Zhiqiang Yang; Robert E. Kennedy; Warren B. Cohen; Maureen V. Duane; Peter E. Thornton; Beverly E. Law

    2011-01-01

    Carbon sequestration is increasingly recognized as an ecosystem service, and forest management has a large potential to alter regional carbon fluxes, notably by way of harvest removals and related impacts on net ecosystem production (NEP). In the Pacific Northwest region of the US, the implementation of the Northwest Forest Plan (NWFP) in 1993 established a regional...

  6. Estimating Net Primary Productivity Using Satellite and Ancillary Data

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    2002-01-01

    The net primary productivity (C) or the annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of gross photosynthesis (A(sub g)) and respiration (R) per unit ground area. Available field observations show that R is a large and variable fraction of A(sub g), although it is generally recognized that there are considerable difficulties in determining these fluxes, and thus pose challenge in assessing the accuracy. Further uncertainties arise in extrapolating field measurements (which are acquired over a hectare or so area) to regional scale. Here, an approach is presented for determining these fluxes using satellite and ancillary data to be representative of regional scale and allow assessment of interannual variation. A, has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R(sub g) and R(sub m)).The R(sub m) has been determined from nitrogen content of plant tissue per unit ground area, while R(sub g) has been obtained as a fraction of the difference of A(sub g) and R(sub m). Results for five consecutive years (1986-1990) are presented for the Amazon-Tocontins, Mississippi, and Ob River basins.

  7. Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems

    USGS Publications Warehouse

    Randerson, J.T.; Chapin, F. S.; Harden, J.W.; Neff, J.C.; Harmon, M.E.

    2002-01-01

    The conceptual framework used by ecologists and biogeochemists must allow for accurate and clearly defined comparisons of carbon fluxes made with disparate techniques across a spectrum of temporal and spatial scales. Consistent with usage over the past four decades, we define "net ecosystem production" (NEP) as the net carbon accumulation by ecosystems. Past use of this term has been ambiguous, because it has been used conceptually as a measure of carbon accumulation by ecosystems, but it has often been calculated considering only the balance between gross primary production (GPP) and ecosystem respiration. This calculation ignores other carbon fluxes from ecosystems (e.g., leaching of dissolved carbon and losses associated with disturbance). To avoid conceptual ambiguities, we argue that NEP be defined, as in the past, as the net carbon accumulation by ecosystems and that it explicitly incorporate all the carbon fluxes from an ecosystem, including autotrophic respiration, heterotrophic respiration, losses associated with disturbance, dissolved and particulate carbon losses, volatile organic compound emissions, and lateral transfers among ecosystems. Net biome productivity (NBP), which has been proposed to account for carbon loss during episodic disturbance, is equivalent to NEP at regional or global scales. The multi-scale conceptual framework we describe provides continuity between flux measurements made at the scale of soil profiles and chambers, forest inventories, eddy covariance towers, aircraft, and inversions of remote atmospheric flask samples, allowing a direct comparison of NEP estimates made at all temporal and spatial scales.

  8. Global climate change and terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.

    1993-01-01

    A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

  9. Global climate change and terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.

    1993-01-01

    A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

  10. Human Appropriation of Net Primary Production - Can Earth Keep Up?

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.

    2006-01-01

    The amount of Earth's vegetation or net primary production required to support human activities is powerful measure of aggregate human impacts on the biosphere. Biophysical models applied to consumption statistics were used to estimate the annual amount of net primary production in the form of elemental carbon required for food, fibre, and fuel-wood by the global population. The calculations were then compared to satellite-based estimates of Earth's average net primary production to produce a geographically explicit balance sheet of net primary production "supply" and "demand". Humans consume 20% of Earth's net primary production (11.5 petagrams carbon) annually and this percentage varies regionally from 6% (South America) to over 70% (Europe and Asia), and locally from near 0% (central Australia) to over 30,000% (New York City, USA). The uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations are vulnerable to climate change and suggest policy options for slowing future growth of NPP demand.

  11. Human Appropriation of Net Primary Production - Can Earth Keep Up?

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.

    2006-01-01

    The amount of Earth's vegetation or net primary production required to support human activities is powerful measure of aggregate human impacts on the biosphere. Biophysical models applied to consumption statistics were used to estimate the annual amount of net primary production in the form of elemental carbon required for food, fibre, and fuel-wood by the global population. The calculations were then compared to satellite-based estimates of Earth's average net primary production to produce a geographically explicit balance sheet of net primary production "supply" and "demand". Humans consume 20% of Earth's net primary production (11.5 petagrams carbon) annually and this percentage varies regionally from 6% (South America) to over 70% (Europe and Asia), and locally from near 0% (central Australia) to over 30,000% (New York City, USA). The uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations are vulnerable to climate change and suggest policy options for slowing future growth of NPP demand.

  12. Evaluation of Interceptor long-lasting insecticidal nets in eight communities in Liberia

    PubMed Central

    2010-01-01

    Background By 2008, the WHO Pesticide Evaluation Scheme (WHOPES) recommended five long-lasting insecticidal nets (LLINs) for the prevention of malaria: Olyset®, PermaNet 2.0®, Netprotect®, Duranet® and Interceptor®. Field information is available for both Olyset® and PermaNet®, with limited data on the newer LLINs. To address this gap, a field evaluation was carried out to determine the acceptability and durability of Interceptor® LLINs. Methods A one-year prospective field study was conducted in eight rural returnee villages in Liberia. Households were randomized to receive Interceptor® LLINs or conventionally treated nets (CTNs). Primary outcomes were levels of residual alpha-cypermethrin measured by HPLC and participant utilization/acceptability of the ITNs. Results A total of 398 nets were analysed for residual alpha-cypermethrin. The median baseline concentrations of insecticide were 175.5 mg/m2 for the Interceptor® LLIN and 21.8 mg/m2 for the CTN. Chemical residue loss after a one year follow-up period was 22% and 93% respectively. Retention and utilization of nets remained high (94%) after one year, irrespective of type, while parasitaemia prevalence decreased from 29.7% at baseline to 13.6% during the follow up survey (p = < 0.001). Interview and survey data show perceived effectiveness of ITNs was just as important as other physical attributes in influencing net utilization. Conclusion Interceptor® LLINs are effective and desirable in rural communities in Liberia. Consideration for end user preferences should be incorporated into product development of all LLINs in the future, in order to achieve optimum retention and utilization. PMID:20334677

  13. Forecasting annual aboveground net primary production in the intermountain west

    USDA-ARS?s Scientific Manuscript database

    For many land manager’s annual aboveground net primary production, or plant growth, is a key factor affecting business success, profitability and each land manager's ability to successfully meet land management objectives. The strategy often utilized for forecasting plant growth is to assume every y...

  14. Estimating aboveground net primary productivity in forest-dominated ecosystems

    Treesearch

    Brian D. Kloeppel; Mark E. Harmon; Timothy J. Fahey

    2007-01-01

    The measurement of net primary productivity (NPP) in forest ecosystems presents a variety of challenges because of the large and complex dimensions of trees and the difficulties of quantifying several components of NPP. As summarized by Clark et al. (2001a), these methodological challenges can be overcome, and more reliable spatial and temporal comparisons can be...

  15. Environmental controls on daytime net community calcification on a Red Sea reef flat

    NASA Astrophysics Data System (ADS)

    Bernstein, W. N.; Hughen, K. A.; Langdon, C.; McCorkle, D. C.; Lentz, S. J.

    2016-06-01

    Coral growth and carbonate accumulation form the foundation of the coral reef ecosystem. Changes in environmental conditions due to coastal development, climate change, and ocean acidification may pose a threat to net carbonate production in the near future. Controlled laboratory studies demonstrate that calcification by corals and coralline algae is sensitive to changes in aragonite saturation state (Ωa), as well as temperature, light, and nutrition. Studies also show that the dissolution rate of carbonate substrates is impacted by changes in carbonate chemistry. The sensitivity of coral reefs to these parameters must be confirmed and quantified in the natural environment in order to predict how coral reefs will respond to local and global changes, particularly ocean acidification. We estimated the daytime hourly net community metabolic rates, both net community calcification (NCC) and net community productivity (NCP), at Sheltered Reef, an offshore platform reef in the central Red Sea. Average NCC was 8 ± 3 mmol m-2 h-1 in December 2010 and 11 ± 1 mmol m-2 h-1 in May 2011, and NCP was 21 ± 7 mmol m-2 h-1 in December 2010 and 44 ± 4 mmol m-2 h-1 in May 2011. We also monitored a suite of physical and chemical properties to help relate the rates at Sheltered Reef to published rates from other sites. While previous research shows that short-term field studies investigating the NCC-Ωa relationship have differing results due to confounding factors, it is important to continue estimating NCC in different places, seasons, and years, in order to monitor changes in NCC versus Ω in space and time, and to ultimately resolve a broader understanding of this relationship.

  16. BreadNet: An On-Line Community.

    ERIC Educational Resources Information Center

    Walker, Susan

    1987-01-01

    Describes BreadNet, a computer network linking Middlebury College English teachers, their associates, and students. Network extends to rural English teachers and their K-8 students. BreadNet used for student pen pal program, teacher teleconferencing, information access. Also describes BreadNet's problems and future possibilities. (TES)

  17. BreadNet: An On-Line Community.

    ERIC Educational Resources Information Center

    Walker, Susan

    1987-01-01

    Describes BreadNet, a computer network linking Middlebury College English teachers, their associates, and students. Network extends to rural English teachers and their K-8 students. BreadNet used for student pen pal program, teacher teleconferencing, information access. Also describes BreadNet's problems and future possibilities. (TES)

  18. Net energy analysis of alcohol production from sugarcane

    SciTech Connect

    Hopkinson, C.S. Jr.; Day, J.W. Jr.

    1980-01-18

    Energy requirements were calculated for the agricultural and the industrial phase of ethyl alcohol production from sugarcane grown in Louisiana. Agricultural energy requirements comprised 54% of all energy inputs, with machinery, fuel, and nitrogen fertilizer representing most of the energy subsidies. Overall net energy benefits (output:input) for alcohol production ranged from 1.8:1 to 0.9:1 depending on whether crop residues or fossil fuels were used for industrial processes.

  19. Community of Practice Applications from WaterNet: The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Houser, P.; Rodell, M.; Lehning, M.

    2009-04-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It addresses a means for enhancing the social and economic developments of nations by increased use of practical research products from the terrestrial water cycle for making informed decisions. This paper provides a summary of the Water Cycle Community of Practice (CoP) plans and examples of Land Surface Model (LSM) applications for extreme events - floods, droughts, and heavy snowstorms in Europe. It discusses the concept of NASA's solutions networks focusing on the WaterNet. It invites EGU teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team is developing WaterNet by engaging relevant NASA water cycle research and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base. Recognizing the many existing highly valuable water-related science and application networks in the US and EU, we focus the balance of our efforts on enabling their interoperability - facilitating access and communications among decision-makers and scientists. We present results of our initial focus on identification, collection, and analysis of the two end points, these being the NWRs and EWRs and water related DSTs. We

  20. A capture-rate model of net-spinning caddisfly communities.

    PubMed

    Alstad, D N

    1987-03-01

    Empirical research suggests that net-spinning caddisflies require two basic resources, suspended particulate foods, and the currents which deliver them. I present a theoretical model of caddisfly communities based on quantitative differences in the capture rate produced by different catchnet designs. It assumes that catchnet architecture reflects a tradeoff between water filtration rate (flux through the net) and capture efficiency (the proportion of suspended items retained), and that the marginal resource concentration required by species with different catchnet morphologies should reflect the product of these parameters. The model hypothesizes a) that downstream changes in the physical morphology of the stream channel cause a shift in the relative importance of population limitations imposed by food and current-substrate availability, b) that the interaction of these physical changes with the filtering biota results in a seston resource gradient, and c) that the distribution of each taxon along this resource gradient reflects a marginal resource requirement determined by the functional morphology of its catchnet.

  1. Maximizing net energy production in municipal wastewater treatment

    SciTech Connect

    Wetzel, E.D.

    1982-01-01

    A steady state mathematical model was developed to analyze the energy requirements and production for a municipal wastewater treatment facility. The modeled processes included primary treatment, secondary treatment with conventional activated sludge or plastic media trickling filtration, gravity or dissolved air flotation thickening and anaerobic digestion. The energy content of the methane generated by the digester was compared with the energy required by individual unit processes and general facility pumping demands. The sensitivity of the process variables was determined by varying input data values from a baseline condition and comparing net energy production. The verified model was used to determine the combination of processes and operating conditions that result in the maximum net energy production for the facility. Secondary sludge thickening was shown to be an essential element for energy-efficient design. Plastic media trickling filters generally resulted in higher net energy production than the activated sludge process, with filter effluent recycle preferred over clarifier supernatant recycle. The benefits of operating the digester at low temperature (20/sup 0/C) and in the anaerobic contact mode were demonstrated. The energy recovered from the digester gas must exceed 50% for energy self-sufficiency to be feasible.

  2. Community Computing and Citizen Productivity.

    ERIC Educational Resources Information Center

    Grabill, Jeffrey T.

    2003-01-01

    Focuses on the development of a community computing network in an Atlanta, Georgia neighborhood. Aims to help a community use information technologies to enhance more effectively the life of the community. Focuses on the necessity of designing community networks that both recognize the productive power and expertise of community residents as well…

  3. Spatial characteristics of net methylmercury production hot spots in peatlands

    Treesearch

    Carl P.J. Mitchell; Brian A. Branfireun; Randall K. Kolka

    2008-01-01

    Many wetlands are sources of methylmercury (MeHg) to surface waters, yet little information exists about the distribution of MeHg within wetlands. Total mercury (THg) and MeHg in peat pore waters were studied in four peatlands in spring, summer, and fall 2005. Marked spatial variability in the distribution of MeHg, and %MeHg as a proxy for net MeHg production, was...

  4. Application of Green Net Metropolitan Product to Measure ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (USEPA) has been increasingly incorporating the concept of sustainability in its research programs. One facet of this research is the quantitative assessment of the sustainability of urban systems in light of several multidisciplinary sustainability metrics. In this work, we explore the estimation of economic measure of sustainability for Chicago Metropolitan Area (CMA) based on Green Net Metropolitan Product (GNMP), by adapting the economic models of sustainability at the macroeconomic level to regional sustainability. GNMP aims at amending the limitations of Net Domestic Product (NDP), a classical indicator of economic wellbeing, which fails to account for the degradation of environmental and natural resources caused by economic activities. We collect data for computing GNMP from publicly available secondary sources on variables such as gross metropolitan product, net income, emissions, solid waste, etc. In estimating GNMP for CMA, we have accounted for the damage costs associated with pollution emissions based on marginal damage values obtained from the literature using benefit transfers method. In addition, we attempt at accounting for the marginal value of depletion of natural resources in the CMA in terms of water depletion and changes in urban ecosystems such as green spaces. We account for the marginal damage cost associated with solid waste generation. It is expected the preliminary results of this exploration se

  5. Estimating Net Primary Productivity Using Satellite and Ancillary Data

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Houser, Paul (Technical Monitor)

    2001-01-01

    The net primary productivity (C) or annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of the rate of gross photosynthesis (A(sub g)) and autotrophic respiration (R) per unit ground area. Although available observations show that R is a large and variable fraction of A(sub g), viz., 0.3 to 0.7, it is generally recognized that much uncertainties exist in this fraction due to difficulties associated with the needed measurements. Additional uncertainties arise when these measurements are extrapolated to regional or global land surface using empirical equations, for example, using regression equations relating C to mean annual precipitation and air temperature. Here, a process-based approach has been taken to calculate A(sub g) and R using satellite and ancillary data. A(sub g) has been expressed as a product of radiation use efficiency, magnitude of intercepted photosynthetically active radiation (PAR), and normalized by stresses due to soil water shortage and air temperature away from the optimum range. A biophysical model has been used to determine the radiation use efficiency from the maximum rate of carbon assimilation by a leaf, foliage temperature, and the fraction of diffuse PAR incident on a canopy. All meteorological data (PAR, air temperature, precipitation, etc.) needed for the calculation are derived from satellite observations, while a land use, land cover data (based on satellite and ground measurements) have been used to assess the maximum rate of carbon assimilation by a leaf of varied cover type based on field measurements. R has been calculated as the sum of maintenance and growth components. The maintenance respiration of foliage and live fine roots at a standard temperature of different land cover has been determined from their nitrogen content using field and satellite measurements, while that of living fraction of woody stem (viz., sapwood) from the seasonal maximum leaf area index as

  6. Estimating Net Primary Productivity Using Satellite and Ancillary Data

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Houser, Paul (Technical Monitor)

    2001-01-01

    The net primary productivity (C) or annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of the rate of gross photosynthesis (A(sub g)) and autotrophic respiration (R) per unit ground area. Although available observations show that R is a large and variable fraction of A(sub g), viz., 0.3 to 0.7, it is generally recognized that much uncertainties exist in this fraction due to difficulties associated with the needed measurements. Additional uncertainties arise when these measurements are extrapolated to regional or global land surface using empirical equations, for example, using regression equations relating C to mean annual precipitation and air temperature. Here, a process-based approach has been taken to calculate A(sub g) and R using satellite and ancillary data. A(sub g) has been expressed as a product of radiation use efficiency, magnitude of intercepted photosynthetically active radiation (PAR), and normalized by stresses due to soil water shortage and air temperature away from the optimum range. A biophysical model has been used to determine the radiation use efficiency from the maximum rate of carbon assimilation by a leaf, foliage temperature, and the fraction of diffuse PAR incident on a canopy. All meteorological data (PAR, air temperature, precipitation, etc.) needed for the calculation are derived from satellite observations, while a land use, land cover data (based on satellite and ground measurements) have been used to assess the maximum rate of carbon assimilation by a leaf of varied cover type based on field measurements. R has been calculated as the sum of maintenance and growth components. The maintenance respiration of foliage and live fine roots at a standard temperature of different land cover has been determined from their nitrogen content using field and satellite measurements, while that of living fraction of woody stem (viz., sapwood) from the seasonal maximum leaf area index as

  7. Net Ecosystem Exchange and Net Biome Productivity of different land use in eastern Germany

    NASA Astrophysics Data System (ADS)

    Grünwald, Thomas; Prescher, Anne-Katrin; Bernhofer, Christian

    2010-05-01

    The carbon (CO2-C) budgets of a managed forest (spruce), grassland and a cropland (crop rotation) have been determined and compared. The sites are part of the Tharandt cluster which features low intersite variability in climate due to the small distances between the sites. This allows the comparison of management effects on the carbon budget of different land use among other things. At the forest site, continuous CO2 flux measurements are available from 1997 to 2008, the common observation period of the grassland and cropland sites was 2005 to 2008. With regard to annual net ecosystem exchange NEE (based on eddy covariance flux measurements), the forest showed the highest net sink (-698 g C m-2 (1999) to -444 g C m-2 (2003)). In contrast the grassland and cropland sites were significantly lower sinks in terms of NEE (-177 g C m-2 (2004) to -62 g C m-2 (2005) and -115 g C m-2 (2005) to -32 g C m-2 (2007 and 2008), respectively). To quantify the net biome productivity (NBP) carbon exports due to thinning or harvest as well as carbon imports due to organic fertilisation are considered besides NEE. Carbon exports and imports change the carbon budget in terms of NBP. At the forest site only the 2002 NBP is a carbon source (+221 g C m-2) due to the thinning in April 2002 when around 43 m3 ha-1 solid wood was removed from the ecosystem. After the thinning the annual NEE is reduced by around 100 g C m-2 until 2007. The grassland NBP alternated between carbon source and sink (+25 g C m-2 (2008) to -28 g C m-2 (2006)) indicating the carbon balance was approximately neutral. Low NEE and NBP values at the grassland site were a consequence of carbon export due to several cuts per year. The NBP of the cropland ecosystem was mainly influenced by the crop type (winter or spring crop) and the application of organic fertiliser (manure) resulting in carbon budgets between +484 g C m-2 (2007) and -89 g C m-2 (2006). The different timing and length of the growing season of winter and

  8. Safety-net providers in some US communities have increasingly embraced coordinated care models.

    PubMed

    Cunningham, Peter; Felland, Laurie; Stark, Lucy

    2012-08-01

    Safety-net organizations, which provide health services to uninsured and low-income people, increasingly are looking for ways to coordinate services among providers to improve access to and quality of care and to reduce costs. In this analysis, a part of the Community Tracking Study, we examined trends in safety-net coordination activities from 2000 to 2010 within twelve communities in the United States and found a notable increase in such activities. Six of the twelve communities had made formal efforts to link uninsured people to medical homes and coordinate care with specialists in 2010, compared to only two communities in 2000. We also identified key attributes of safety-net coordinated care systems, such as reliance on a medical home for meeting patients' primary care needs, and lingering challenges to safety-net integration, such as competition among hospitals and community health centers for Medicaid patients.

  9. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed layer properties and rates of net community production under sea ice

    NASA Astrophysics Data System (ADS)

    Bates, N. R.; Garley, R.; Frey, K. E.; Shake, K. L.; Mathis, J. T.

    2014-01-01

    The carbon dioxide (CO2)-carbonate chemistry of sea-ice melt and co-located, contemporaneous seawater has rarely been studied in sea ice covered oceans. Here, we describe the CO2-carbonate chemistry of sea-ice melt (both above sea ice as "melt ponds" and below sea ice as "interface waters") and mixed layer properties in the western Arctic Ocean in the early summer of 2010 and 2011. At nineteen stations, the salinity (~ 0.5 to < 6.5), dissolved inorganic carbon (DIC; ~ 20 to < 550 μmol kg-1) and total alkalinity (TA; ~ 30 to < 500 μmol kg-1) of above-ice melt pond water was low compared to water in the underlying mixed layer. The partial pressure of CO2 (pCO2) in these melt ponds was highly variable (~ < 10 to > 1500 μatm) with the majority of melt ponds acting as potentially strong sources of CO2 to the atmosphere. The pH of melt pond waters was also highly variable ranging from mildly acidic (6.1 to 7) to slightly more alkaline than underlying seawater (8 to 10.7). All of observed melt ponds had very low (< 0.1) saturation states (Ω) for calcium carbonate (CaCO3) minerals such as aragonite (Ωaragonite). Our data suggests that sea ice generated "alkaline" or "acidic" melt pond water. This melt-water chemistry dictates whether the ponds are sources of CO2 to the atmosphere or CO2 sinks. Below-ice interface water CO2-carbonate chemistry data also indicated substantial generation of alkalinity, presumably owing to dissolution of calcium CaCO3 in sea ice. The interface waters generally had lower pCO2 and higher pH/Ωaragonite than the co-located mixed layer beneath. Sea-ice melt thus contributed to the suppression of mixed layer pCO2 enhancing the surface ocean's capacity to uptake CO2 from the atmosphere. Meltwater contributions to changes in mixed-layer DIC were also used to estimate net community production rates (mean of 46.9 ±29.8 g C m-2 for the early-season period) under sea-ice cover. Although sea-ice melt is a transient seasonal feature, above-ice melt

  10. Effects of community-level bed net coverage on malaria morbidity in Lilongwe, Malawi.

    PubMed

    Escamilla, Veronica; Alker, Alisa; Dandalo, Leonard; Juliano, Jonathan J; Miller, William C; Kamthuza, Portia; Tembo, Tapiwa; Tegha, Gerald; Martinson, Francis; Emch, Michael; Hoffman, Irving F

    2017-04-07

    The protective effect of insecticide-treated bed nets against individual-level malaria transmission is well known, however community-level effects are less understood. Protective effects from community-level bed net use against malaria transmission have been observed in clinical trials, however, the relationship is less clear outside of a controlled research setting. The objective of this research was to investigate the effect of community-level bed net use against malaria transmission outside of a bed net clinical trial setting in Lilongwe, Malawi following national efforts to scale-up ownership of long-lasting, insecticide-treated bed nets. An annual, cross-sectional, household-randomized, malaria transmission intensity survey was conducted in Lilongwe, Malawi (2011-2013). Health, demographic, and geographic-location data were collected. Participant blood samples were tested for Plasmodium falciparum presence. The percentage of people sleeping under a bed net within 400-m and 1-km radii of all participants was measured. Mixed effects logistic regression models were used to measure the relationship between malaria prevalence and surrounding bed net coverage. Each year, 800 people were enrolled (400 <5 years; 200 5-19 years; 200 ≥20 years; total n = 2400). From 2011 to 2013, malaria prevalence declined from 12.9 to 5.6%, while bed net use increased from 53.8 to 78.6%. For every 1% increase in community bed net coverage, malaria prevalence decreased among children under 5 years old [adjusted odds ratio: 0.98 (0.96, 1.00)]. Similar effects were observed in participants 5-19 years [unadjusted odds ratio: 0.98 (0.97, 1.00)]; the effect was attenuated after adjusting for individual-level bed net use. Community coverage was not associated with malaria prevalence among adults ≥20 years. Supplemental analyses identified more pronounced indirect protective effects from community-level bed net use against malaria transmission among children under 5 years who

  11. Measuring Net Investment and Productivity in Timber Production

    Treesearch

    David N. Wear

    1994-01-01

    An index number approach is developed for measuring changes in inputs, outputs, and total factor productivity in a timber-producing sector. These methods are applied to timber production in the U.S. South for the period 1952 to 1985. Results suggest that development of the sector may be described by an adjustment phase between 1952 and 1962 and a growth phase between...

  12. Net loss of CaCO3 from coral reef communities due to human induced seawater acidification

    USGS Publications Warehouse

    Andersson, A.J.; Kuffner, I.B.; MacKenzie, F.T.; Jokiel, P.L.; Rodgers, K.S.; Tan, A.

    2009-01-01

    Acidification of seawater owing to oceanic uptake of atmospheric CO2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3) material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (n=3) incubated in continuous-flow mesocosms subject to future seawater conditions. The calcifying community was dominated by the coral Montipora capitata. Daily average community calcification or Net Ecosystem Calcification (NEC=CaCO3 production – dissolution) was positive at 3.3 mmol CaCO3 m−2 h−1 under ambient seawater pCO2 conditions as opposed to negative at −0.04 mmol CaCO3 m−2h−1 under seawater conditions of double the ambient pCO2. These experimental results provide support for the conclusion that some net calcifying communities could become subject to net dissolution in response to anthropogenic ocean acidification within this century. Nevertheless, individual corals remained healthy, actively calcified (albeit slower than at present rates), and deposited significant amounts of CaCO3 under the prevailing experimental seawater conditions of elevated pCO2.

  13. Net carbon flux in organic and conventional olive production systems

    NASA Astrophysics Data System (ADS)

    Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al

    2014-05-01

    Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a

  14. Local Area Network: Community Involvement, Social Capital, and Glocalization at NetU

    ERIC Educational Resources Information Center

    Trevett-Smith, Matthew D.

    2010-01-01

    Ethnographic and interview data from a long-term study of "NetU," a wired community and college, are used to investigate the effects of computer-mediated communication on social relationships. During the course of this research "LAN" residents of NetU are compared with a similar group of non-LAN residents who lived in the same neighborhood, but…

  15. Local Area Network: Community Involvement, Social Capital, and Glocalization at NetU

    ERIC Educational Resources Information Center

    Trevett-Smith, Matthew D.

    2010-01-01

    Ethnographic and interview data from a long-term study of "NetU," a wired community and college, are used to investigate the effects of computer-mediated communication on social relationships. During the course of this research "LAN" residents of NetU are compared with a similar group of non-LAN residents who lived in the same neighborhood, but…

  16. Under the radar: community safety nets for AIDS-affected households in sub-Saharan Africa.

    PubMed

    Foster, G

    2007-01-01

    Safety nets are mechanisms to mitigate the effects of poverty on vulnerable households during times of stress. In sub-Saharan Africa, extended families, together with communities, are the most effective responses enabling access to support for households facing crises. This paper reviews literature on informal social security systems in sub-Saharan Africa, analyses changes taking place in their functioning as a result of HIV/AIDS and describes community safety net components including economic associations, cooperatives, loan providers, philanthropic groups and HIV/AIDS initiatives. Community safety nets target households in greatest need, respond rapidly to crises, are cost efficient, based on local needs and available resources, involve the specialized knowledge of community members and provide financial and psycho-social support. Their main limitations are lack of material resources and reliance on unpaid labour of women. Changes have taken place in safety net mechanisms because of HIV/AIDS, suggesting the resilience of communities rather than their impending collapse. Studies are lacking that assess the value of informal community-level transfers, describe how safety nets assist the poor or analyse modifications in response to HIV/AIDS. The role of community safety nets remains largely invisible under the radar of governments, non-governmental organizations and international bodies. External support can strengthen this system of informal social security that provides poor HIV/AIDS-affected households with significant support.

  17. Economic Investigation of Community-Scale Versus Building Scale Net-Zero Energy

    SciTech Connect

    Fernandez, Nicholas; Katipamula, Srinivas; Brambley, Michael R.; Reddy, T. A.

    2009-12-31

    The study presented in this report examines issues concerning whether achieving net-zero energy performance at the community scale provides economic and potentially overall efficiency advantages over strategies focused on individual buildings.

  18. Evaluating North American net primary productivity with satellite observations

    NASA Technical Reports Server (NTRS)

    Goward, Samuel N.; Dye, Dennis G.

    1987-01-01

    An ecological model is developed to estimate annual net primary productivity (NPP) in 12 North American biomes. The model combines existing models which address canopy photosynthesis in response to light, temperature, and moisture availability, and account for respiration. Climate data, solar radiation data, and spectral vegetation index data are utilized. Estimates of NPP from the model compare well with data in the literature, but a systematic error is suspected. Difficulties encountered in specifying certain model parameters are discussed as possible sources of this error. The results of this study suggest the promise of remotely sensed measurements for macroscale evaluation and modeling of NPP.

  19. Designing Interoperable Data Products with Community Conventions

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Jelenak, A.; Lee, H.

    2015-12-01

    The HDF Product Designer (HPD) is a cloud-based client-server collaboration tool that can bring existing netCDF-3/4/CF, HDF4/5, and HDF-EOS2/5 products together to create new interoperable data products that serve the needs of the Earth Science community. The tool is designed to reduce the burden of creating and storing data in standards-compliant, interoperable HDF5 files and lower the technical and programming skill threshold needed to design such products by providing a user interface that combines the netCDF-4/HDF5 interoperable feature set with applicable metadata conventions. Users can collaborate quickly to devise new HDF5 products while at the same time seamlessly incorporating the latest best practices and conventions in their community by importing existing data products. The tool also incorporates some expert system features through CLIPS, allowing custom approaches in the file design, as well as easy transfer of preferred conventions as they are being developed. The current state of the tool and the plans for future development will be presented. Constructive input from any interested parties is always welcome.

  20. Decadal trends in net ecosystem production and net ecosystem carbon balance for a regional socioecological system

    SciTech Connect

    Turner, David P.; Ritts, William D.; Yang, Zhiqiang; Kennedy, Robert E.; Cohen, Warren B.; Duane, Maureen V.; Thornton, Peter E.; Law, Beverly E.

    2011-07-14

    Carbon sequestration is increasingly recognized as an ecosystem service, and forest management has a large potential to alter regional carbon fluxes notably by way of harvest removals and related impacts on net ecosystem production (NEP). In the Pacific Northwest region of the U.S., the implementation of the Northwest Forest Plan (NWFP) in 1993 established a regional socioecological system focused on forest management. The NWFP resulted in a large (82%) decrease in the rate of harvest removals on public forest land, thus significantly impacting the regional carbon balance. Here we use a combination of remote sensing and ecosystem modeling to examine the trends in NEP and Net Ecosystem Carbon Balance (NECB) in this region over the 1985 to 2007 period, with particular attention to land ownership since management now differs widely between public and private forestland. In the late 1980s, forestland in both ownership classes was subject to high rates of harvesting, and consequently the land was a carbon source (i.e. had a negative NECB). After the policy driven reduction in the harvest level, public forest land became a large carbon sink driven in part by increasing NEP whereas private forest lands were close to carbon neutral. In the 2003-2007 period, the trend towards carbon accumulation on public lands continued despite a moderate increase in the extent of wildfire. The NWFP was originally implemented in the context of biodiversity conservation, but its consequences in terms of carbon sequestration are also of societal interest. Furthermore, management within the NWFP socioecological system will have to consider trade-offs among these and other ecosystem services.

  1. EcoVillage: A Net Zero Energy Ready Community

    SciTech Connect

    Arena, L.; Faakye, O.

    2015-02-01

    CARB is working with the EcoVillage co-housing community in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community scale project consists of 40 housing units --15 apartments and 25 single family residences. The community is pursuing certifications for DOE Zero Energy Ready Home, U.S. Green Building Council Leadership in Energy and Environmental Design Gold, and ENERGY STAR for the entire project. Additionally, seven of the 25 homes, along with the four-story apartment building and community center, are being constructed to the Passive House (PH) design standard.

  2. EcoVillage: A Net Zero Energy Ready Community

    SciTech Connect

    Arena, L.; Faakye, O.

    2015-02-01

    CARB is working with the EcoVillage co-housing community in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community scale project consists of 40 housing units --15 apartments and 25 single family residences. The community is pursuing certifications for DOE Zero Energy Ready Home, U.S. Green Building Council Leadership in Energy and Environmental Design Gold, and ENERGY STAR for the entire project. Additionally, seven of the 25 homes, along with the four-story apartment building and community center, are being constructed to the Passive House (PH) design standard.

  3. Community trial of insecticide-treated bed net use promotion in southern Ghana: the Net Use Intervention study.

    PubMed

    Elder, John P; Botwe, Augustine Aboagye; Selby, Richmond Ato; Franklin, Nadra; Shaw, Willard D

    2011-06-01

    Insecticide-treated nets (ITNs) reduce malaria transmission and related morbidity and child mortality; however, incorrect and inconsistent use limits their protective factors. This community trial titled the Net Use Intervention study sought to bridge the gap between ITN ownership and use in southern (coastal) Ghana and to determine the best mix of communication tools to affect behavior of ITN owners to consistent use while maintaining optimal internal and external validity. This two-group, non-randomized experiment evaluated a multichannel, multisector intervention process over the course of 8 weeks. A longitudinal cohort was scientifically sampled from six intervention and six control communities for both baseline and posttest surveys. The posttest survey showed no change in knowledge of ITNs in the intervention or control. In terms of use the previous night, there was a strong and statistically significant intervention effect (OR = 1.67; p < .05) within the intervention communities. The overall increase in ITN coverage was approximately one person per night per every two households. The promotion efforts succeeded well beyond the planners' expectations, not only promoting usage but also dramatically increasing demand for new ITNs.

  4. Multicriteria optimization of gluconic acid production using net flow.

    PubMed

    Halsall-Whitney, H; Taylor, D; Thibault, J

    2003-03-01

    The biochemical process industry is often confronted with the challenge of making decisions in an atmosphere of multiple and conflicting objectives. Recent innovations in the field of operations research and systems science have yielded rigorous multicriteria optimization techniques that can be successfully applied to the field of biochemical engineering. These techniques incorporate the expert's experience into the optimization routine and provide valuable information about the zone of possible solutions. This paper presents a multicriteria optimization strategy that generates a Pareto domain, given a set of conflicting objective criteria, and determines the optimal operating region for the production of gluconic acid using the net flow method (NFM). The objective criteria include maximizing the productivity and concentration of gluconic acid, while minimizing the residual substrate. Three optimization strategies are considered. The first two strategies identify the optimal operating region for the process inputs. The results yielded an acceptable compromise between productivity, gluconic acid concentration and residual substrate concentration. Fixing the process inputs representing the batch time, initial substrate concentration and initial biomass equal to their optimal values, the remaining simulations were used to study the sensitivity of the optimum operating region to changes in the oxygen mass transfer coefficient, K(L) a, by utilizing a multi-level K(L) a strategy. The results show that controlling K(L) a during the reaction reduced the production of biomass, which in turn resulted in increased productivity and concentration of gluconic acid above that of a fixed K(L) a.

  5. Control of the mid-summer net community production and nitrogen fixation in the central Baltic Sea: An approach based on pCO2 measurements on a cargo ship

    NASA Astrophysics Data System (ADS)

    Schneider, B.; Gustafsson, E.; Sadkowiak, B.

    2014-08-01

    Automated measurements of the surface CO2 partial pressure, pCO2, were performed since 2003 on a cargo ship along a transect between Helsinki in the Gulf of Finland and Lübeck/Gdynia in the southwest of the Baltic Sea. The temporal and spatial resolution of the measurements amounted to 2-4 days and about 2 nautical miles, respectively. Based on temperature and salinity records and on the mean alkalinity, the total CO2 concentrations, CT, were calculated from the mean pCO2 in the northeastern Gotland Sea. The CT data were used to establish a CO2 mass balance for the period from mid-June to the beginning of August in 2005, 2008, 2009 and 2011. Taking into account the air-sea CO2 gas exchange, the mass balance yielded the net organic matter (Corg) production which is fuelled by nitrogen fixation at this time of the year. Several production events were detected with rates up to 8 μmol-C L- 1 d- 1. The production rates were not related to temperature, but showed a distinct correlation with the rate of the temperature increase. This led to the conclusion that the exposure of nitrogen fixing cyanobacteria to irradiance is the dominating control for the Corg production. Therefore, we suggest using the ratio of irradiance to the mixed layer depth as a variable for the parameterization of nitrogen fixation in biogeochemical models. The Corg production and thus the nitrogen fixation rates remained almost constant as long as continuous rising temperatures indicated favorable irradiation conditions. A limitation of the rates by phosphate or any other factor could not be detected. Based on the C/N ratio of particulate organic matter during a cyanobacteria bloom, the Corg production was used to estimate the mid-summer nitrogen fixation. The values varied from 102 mmol m- 2 to 214 mmol m- 2 (mean: 138 mmol m- 2) for the different years and did not show any correlation with the phosphate excess after the spring nitrate depletion.

  6. Validation and Spatiotemporal Analysis of CERES Surface Net Radiation Product

    SciTech Connect

    Jia, Aolin; Jiang, Bo; Liang, Shunlin; Zhang, Xiaotong; Ma, Han

    2016-01-23

    The Clouds and the Earth’s Radiant Energy System (CERES) generates one of the few global satellite radiation products. The CERES ARM Validation Experiment (CAVE) has been providing long-term in situ observations for the validation of the CERES products. However, the number of these sites is low and their distribution is globally sparse, and particularly the surface net radiation product has not been rigorously validated yet. Therefore, additional validation efforts are highly required to determine the accuracy of the CERES radiation products. In this study, global land surface measurements were comprehensively collected for use in the validation of the CERES net radiation (Rn) product on a daily (340 sites) and a monthly (260 sites) basis, respectively. The validation results demonstrated that the CERES Rn product was, overall, highly accurate. The daily validations had a Mean Bias Error (MBE) of 3.43 W·m−2, Root Mean Square Error (RMSE) of 33.56 W·m−2, and R2 of 0.79, and the monthly validations had an MBE of 3.40 W·m−2, RMSE of 25.57 W·m−2, and R2 of 0.84. The accuracy was slightly lower for the high latitudes. Following the validation, the monthly CERES Rn product, from March 2000 to July 2014, was used for a further analysis. We analysed the global spatiotemporal variation of the Rn, which occurred during the measurement period. In addition, two hot spot regions, the southern Great Plains and south-central Africa, were then selected for use in determining the driving factors or attribution of the Rn variation. We determined that Rn over the southern Great Plains decreased by −0.33 W·m−2 per year, which was mainly driven by changes in surface green vegetation and precipitation. In south-central Africa, Rn decreased at a rate of −0.63 W·m−2 per year, the major driving factor of

  7. Assessing net carbon sequestration on urban and community forests of northern New England, USA

    Treesearch

    Daolan Zheng; Mark J. Ducey; Linda S. Heath

    2013-01-01

    Urban and community forests play an important role in the overall carbon budget of the USA. Accurately quantifying carbon sequestration by these forests can provide insight for strategic planning to mitigate greenhouse gas effects on climate change. This study provides a new methodology to estimate net forest carbon sequestration (FCS) in urban and community lands of...

  8. Skills.net: Community Internet Access and Training in Victoria, Australia.

    ERIC Educational Resources Information Center

    Bates, Adrian

    Skills.net is a 3-year program providing free or affordable Internet access and training to local Victorian (Australia) communities. It is especially aimed at those who would normally miss out on such access, such as the unemployed, women, people with disabilities, people from non-English speaking backgrounds, Aboriginals, and communities in…

  9. Shadow netWorkspace: An Open Source Intranet for Learning Communities

    ERIC Educational Resources Information Center

    Laffey, James M.; Musser, Dale

    2006-01-01

    Shadow netWorkspace (SNS) is a web application system that allows a school or any type of community to establish an intranet with network workspaces for all members and groups. The goal of SNS has been to make it easy for schools and other educational organizations to provide network services in support of implementing a learning community. SNS is…

  10. Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901-2005

    SciTech Connect

    Shao, Junjiong; Zhou, Xuhui; Luo, Yiqi; Zhang, Guodong; Yan, Wei; Li, Jiaxuan; Li, Bo; Dan, Li; Fisher, Joshua B.; Gao, Zhiqiang; He, Yong; Huntzinger, Deborah; Jain, Atul K.; Mao, Jiafu; Meng, Jihua; Michalak, Anna M.; Parazoo, Nicholas C.; Peng, Changhui; Poulter, Benjamin; Schwalm, Christopher R.; Shi, Xiaoying; Sun, Rui; Tao, Fulu; Tian, Hanqin; Wei, Yaxing; Zeng, Ning; Zhu, Qiuan; Zhu, Wenquan

    2016-04-28

    Here, despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.35 ± 1.25 and 0.14 ± 0.094 Pg C yr–1, respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36% and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012 Pg C yr–1 during 1981–2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models.

  11. Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901-2005

    DOE PAGES

    Shao, Junjiong; Zhou, Xuhui; Luo, Yiqi; ...

    2016-04-28

    Here, despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.35 ± 1.25 and 0.14 ± 0.094 Pg C yr–1, respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36% andmore » 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012 Pg C yr–1 during 1981–2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models.« less

  12. Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901-2005

    NASA Astrophysics Data System (ADS)

    Shao, Junjiong; Zhou, Xuhui; Luo, Yiqi; Zhang, Guodong; Yan, Wei; Li, Jiaxuan; Li, Bo; Dan, Li; Fisher, Joshua B.; Gao, Zhiqiang; He, Yong; Huntzinger, Deborah; Jain, Atul K.; Mao, Jiafu; Meng, Jihua; Michalak, Anna M.; Parazoo, Nicholas C.; Peng, Changhui; Poulter, Benjamin; Schwalm, Christopher R.; Shi, Xiaoying; Sun, Rui; Tao, Fulu; Tian, Hanqin; Wei, Yaxing; Zeng, Ning; Zhu, Qiuan; Zhu, Wenquan

    2016-05-01

    Despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.35 ± 1.25 and 0.14 ± 0.094 Pg C yr-1, respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36% and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012 Pg C yr-1 during 1981-2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models.

  13. PaleoNet: paleontology, publication and community in the digital age

    NASA Astrophysics Data System (ADS)

    MacLeod, Norman

    2002-12-01

    PaleoNet is an electronic communications system that realizes the concept of a global 'paleontological community'. It was begun in a conscious attempt to overcome the disciplinary, geographical, and occupational barriers that subdivide that community into sectors and impede information flow. Operationally PaleoNet consists of a listserver and associated web sites in the US and UK. Over the past 8 years of operation PaleoNet has more than met expectations set for it to become one of the most unconventional and innovative aspects of the contemporary paleontological scene. In particular, PaleoNet challenges conventional notions of formal scientific publication as the primary means paleontologists use to communicate with colleagues.

  14. Transcriptomic evidence for net methane oxidation and net methane production in putative ANaerobic MEthanotrophic (ANME) archaea

    NASA Astrophysics Data System (ADS)

    Lloyd, K. G.; Alperin, M. J.; Teske, A.

    2010-12-01

    Anaerobic methane oxidation regulates methane emissions in marine sediments and is thought to be mediated by uncultured methanogen-like archaea collectively labeled ANME (for ANaerobic MEthanotrophs). ANME archaea are often assumed to be obligate methanotrophs that are incapable of net methanogenesis, and are therefore used as proxies for anaerobic methane oxidation in many environments in spite of uncertainty regarding their metabolic capabilities. We tested this assumption by detecting and quantifying methanogenic gene transcription of ANME archaea across clearly differentiated zones of methane oxidation vs. methane production in sediments from the White Oak River estuary, NC. ANME-1 archaea (a group of putative obligate methanotrophs) consistently transcribe 16S rRNA and mRNA of methyl coenzyme M reductase (mcrA) the key gene for methanogenesis, up to 45 cm into methanogenic sediments. CARD-FISH shows that ANME-1 archaea exist as single rod-shaped cells or pairs of cells, and in very low numbers. Integrating normalized depth-distributions of 16S rDNA and rRNA (measured with qPCR and RT-qPCR, respectively) shows that 26-77 % of the rDNA proxy for ANME-1 cell numbers, and 18-74 % of the rRNA proxy for ANME-1 activity occurs within methane-producing sediments. mRNA transcripts of dissimilatory sulfite reductase (dsrAB) from sulfate reducing bacteria, the putative syntrophic partners of sulfate-dependent methane oxidation, were amplified consistently from methane-oxidizing sediments, and inconsistently from methane-producing sediments. These results change the perspective from ANME-1 archaea as obligate methane oxidizers to methanogens that are also capable of methane oxidation.

  15. Net carbon exchange and evapotranspiration in postfire and intact sagebrush communities in the Great Basin.

    PubMed

    Prater, Margaret R; Obrist, Daniel; Arnone, John A; DeLucia, Evan H

    2006-01-01

    Invasion of non-native annuals across the Intermountain West is causing a widespread transition from perennial sagebrush communities to fire-prone annual herbaceous communities and grasslands. To determine how this invasion affects ecosystem function, carbon and water fluxes were quantified in three, paired sagebrush and adjacent postfire communities in the northern Great Basin using a 1-m3 gas exchange chamber. Most of the plant cover in the postfire communities was invasive species including Bromus tectorum L., Agropyron cristatum (L.) Gaertn and Sisymbrium altissimum L. Instantaneous morning net carbon exchange (NCE) and evapotranspiration (ET) in native shrub plots were greater than either intershrub or postfire plots. Native sagebrush communities were net carbon sinks (mean NCE 0.2-4.3 micromol m-2 s-1) throughout the growing season. The magnitude and seasonal variation of NCE in the postfire communities were controlled by the dominant species and availability of soil moisture. Net C exchange in postfire communities dominated by perennial bunchgrasses was similar to sagebrush. However, communities dominated by annuals (cheatgrass and mustard) had significantly lower NCE than sagebrush and became net sources of carbon to the atmosphere (NCE declined to -0.5 micromol m-2 s-1) with increased severity of the summer drought. Differences in the patterns of ET led to lower surface soil moisture content and increased soil temperatures during summer in the cheatgrass-dominated community compared to the adjacent sagebrush community. Intensive measurements at one site revealed that temporal and spatial patterns of NCE and ET were correlated most closely with changes in leaf area in each community. By altering the patterns of carbon and water exchange, conversion of native sagebrush to postfire invasive communities may disrupt surface-atmosphere exchange and degrade the carbon storage capacity of these systems.

  16. Ozone and haze pollution weakens net primary productivity in China

    NASA Astrophysics Data System (ADS)

    Yue, Xu; Unger, Nadine; Harper, Kandice; Xia, Xiangao; Liao, Hong; Zhu, Tong; Xiao, Jingfeng; Feng, Zhaozhong; Li, Jing

    2017-05-01

    Atmospheric pollutants have both beneficial and detrimental effects on carbon uptake by land ecosystems. Surface ozone (O3) damages leaf photosynthesis by oxidizing plant cells, while aerosols promote carbon uptake by increasing diffuse radiation and exert additional influences through concomitant perturbations to meteorology and hydrology. China is currently the world's largest emitter of both carbon dioxide and short-lived air pollutants. The land ecosystems of China are estimated to provide a carbon sink, but it remains unclear whether air pollution acts to inhibit or promote carbon uptake. Here, we employ Earth system modeling and multiple measurement datasets to assess the separate and combined effects of anthropogenic O3 and aerosol pollution on net primary productivity (NPP) in China. In the present day, O3 reduces annual NPP by 0.6 Pg C (14 %) with a range from 0.4 Pg C (low O3 sensitivity) to 0.8 Pg C (high O3 sensitivity). In contrast, aerosol direct effects increase NPP by 0.2 Pg C (5 %) through the combination of diffuse radiation fertilization, reduced canopy temperatures, and reduced evaporation leading to higher soil moisture. Consequently, the net effects of O3 and aerosols decrease NPP by 0.4 Pg C (9 %) with a range from 0.2 Pg C (low O3 sensitivity) to 0.6 Pg C (high O3 sensitivity). However, precipitation inhibition from combined aerosol direct and indirect effects reduces annual NPP by 0.2 Pg C (4 %), leading to a net air pollution suppression of 0.8 Pg C (16 %) with a range from 0.6 Pg C (low O3 sensitivity) to 1.0 Pg C (high O3 sensitivity). Our results reveal strong dampening effects of air pollution on the land carbon uptake in China today. Following the current legislation emission scenario, this suppression will be further increased by the year 2030, mainly due to a continuing increase in surface O3. However, the maximum technically feasible reduction scenario could drastically relieve the current level of NPP damage by 70 % in 2030

  17. Validation and Spatiotemporal Analysis of CERES Surface Net Radiation Product

    DOE PAGES

    Jia, Aolin; Jiang, Bo; Liang, Shunlin; ...

    2016-01-23

    The Clouds and the Earth’s Radiant Energy System (CERES) generates one of the few global satellite radiation products. The CERES ARM Validation Experiment (CAVE) has been providing long-term in situ observations for the validation of the CERES products. However, the number of these sites is low and their distribution is globally sparse, and particularly the surface net radiation product has not been rigorously validated yet. Therefore, additional validation efforts are highly required to determine the accuracy of the CERES radiation products. In this study, global land surface measurements were comprehensively collected for use in the validation of the CERES netmore » radiation (Rn) product on a daily (340 sites) and a monthly (260 sites) basis, respectively. The validation results demonstrated that the CERES Rn product was, overall, highly accurate. The daily validations had a Mean Bias Error (MBE) of 3.43 W·m−2, Root Mean Square Error (RMSE) of 33.56 W·m−2, and R2 of 0.79, and the monthly validations had an MBE of 3.40 W·m−2, RMSE of 25.57 W·m−2, and R2 of 0.84. The accuracy was slightly lower for the high latitudes. Following the validation, the monthly CERES Rn product, from March 2000 to July 2014, was used for a further analysis. We analysed the global spatiotemporal variation of the Rn, which occurred during the measurement period. In addition, two hot spot regions, the southern Great Plains and south-central Africa, were then selected for use in determining the driving factors or attribution of the Rn variation. We determined that Rn over the southern Great Plains decreased by −0.33 W·m−2 per year, which was mainly driven by changes in surface green vegetation and precipitation. In south-central Africa, Rn decreased at a rate of −0.63 W·m−2 per year, the major driving factor of which was surface green vegetation.« less

  18. Pregnant families' discussions on the Net--from virtual connections toward real-life community.

    PubMed

    Kouri, Pirkko; Turunen, Hannele; Tossavainen, Kerttu; Saarikoski, Seppo

    2006-01-01

    The aim of this research was to analyze conversations between expectant families (N = 21) in Net Clinic, an Internet-based service designed for patients using public maternity care. The online conversations, shared opinions about experiences of pregnancy, and family life constituted the data for content analysis. The families developed a sense of virtual community, which gradually evolved into a real-life community, by discovering the similarity of their life situations and by giving parent-to-parent support for everyday life events. As a view of daily family life, Net Clinic offers maternity care professionals a deeper understanding of how to enhance safer pregnancy, birth, and growth of the family.

  19. Net Income of Pharmacy Faculty Compared to Community and Hospital Pharmacists

    PubMed Central

    Gatwood, Justin; Spivey, Christina A.; Dickey, Susan E.

    2016-01-01

    Objective. To compare the net cumulative income of community pharmacists, hospital pharmacists, and full-time pharmacy faculty members (residency-trained or with a PhD after obtaining a PharmD) in pharmacy practice, medicinal chemistry, pharmaceutics, pharmacology, and social and administrative sciences. Methods. Markov modeling was conducted to calculate net projected cumulative earnings of career paths by estimating the costs of education, including the costs of obtaining degrees and student loans. Results. The economic model spanned 49 years, from ages 18 to 67 years. Earning a PharmD and pursuing an academic career resulted in projected net cumulative lifetime earnings ranging from approximately $4.7 million to $6.3 million. A pharmacy practice faculty position following public pharmacy school and one year of residency resulted in higher net cumulative income than community pharmacy. Faculty members with postgraduate year 1 (PGY1) training also had higher net income than other faculty and hospital pharmacy career paths, given similar years of prepharmacy education and type of pharmacy school attended. Faculty members with either a PharmD or PhD in the pharmacology discipline may net as much as $5.9 million and outpace all other PhD graduates by at least $75 000 in lifetime earnings. Projected career earnings of postgraduate year 2 (PGY2) trained faculty and PharmD/PhD faculty members were lower than those of community pharmacists. Findings were more variable when comparing pharmacy faculty members and hospital pharmacists. Conclusion. With the exception of PGY1 trained academic pharmacists, faculty projected net cumulative incomes generally lagged behind community pharmacists, likely because of delayed entry into the job market as a result of advanced training/education. However, nonsalary benefits such as greater flexibility and autonomy may enhance the desirability of academic pharmacy as a career path. PMID:27756925

  20. Net Income of Pharmacy Faculty Compared to Community and Hospital Pharmacists.

    PubMed

    Chisholm-Burns, Marie A; Gatwood, Justin; Spivey, Christina A; Dickey, Susan E

    2016-09-25

    Objective. To compare the net cumulative income of community pharmacists, hospital pharmacists, and full-time pharmacy faculty members (residency-trained or with a PhD after obtaining a PharmD) in pharmacy practice, medicinal chemistry, pharmaceutics, pharmacology, and social and administrative sciences. Methods. Markov modeling was conducted to calculate net projected cumulative earnings of career paths by estimating the costs of education, including the costs of obtaining degrees and student loans. Results. The economic model spanned 49 years, from ages 18 to 67 years. Earning a PharmD and pursuing an academic career resulted in projected net cumulative lifetime earnings ranging from approximately $4.7 million to $6.3 million. A pharmacy practice faculty position following public pharmacy school and one year of residency resulted in higher net cumulative income than community pharmacy. Faculty members with postgraduate year 1 (PGY1) training also had higher net income than other faculty and hospital pharmacy career paths, given similar years of prepharmacy education and type of pharmacy school attended. Faculty members with either a PharmD or PhD in the pharmacology discipline may net as much as $5.9 million and outpace all other PhD graduates by at least $75 000 in lifetime earnings. Projected career earnings of postgraduate year 2 (PGY2) trained faculty and PharmD/PhD faculty members were lower than those of community pharmacists. Findings were more variable when comparing pharmacy faculty members and hospital pharmacists. Conclusion. With the exception of PGY1 trained academic pharmacists, faculty projected net cumulative incomes generally lagged behind community pharmacists, likely because of delayed entry into the job market as a result of advanced training/education. However, nonsalary benefits such as greater flexibility and autonomy may enhance the desirability of academic pharmacy as a career path.

  1. The allocation of ecosystem net primary productivity in tropical forests

    PubMed Central

    Malhi, Yadvinder; Doughty, Christopher; Galbraith, David

    2011-01-01

    The allocation of the net primary productivity (NPP) of an ecosystem between canopy, woody tissue and fine roots is an important descriptor of the functioning of that ecosystem, and an important feature to correctly represent in terrestrial ecosystem models. Here, we collate and analyse a global dataset of NPP allocation in tropical forests, and compare this with the representation of NPP allocation in 13 terrestrial ecosystem models. On average, the data suggest an equal partitioning of allocation between all three main components (mean 34 ± 6% canopy, 39 ± 10% wood, 27 ± 11% fine roots), but there is substantial site-to-site variation in allocation to woody tissue versus allocation to fine roots. Allocation to canopy (leaves, flowers and fruit) shows much less variance. The mean allocation of the ecosystem models is close to the mean of the data, but the spread is much greater, with several models reporting allocation partitioning outside of the spread of the data. Where all main components of NPP cannot be measured, litterfall is a good predictor of overall NPP (r2 = 0.83 for linear fit forced through origin), stem growth is a moderate predictor and fine root production a poor predictor. Across sites the major component of variation of allocation is a shifting allocation between wood and fine roots, with allocation to the canopy being a relatively invariant component of total NPP. This suggests the dominant allocation trade-off is a ‘fine root versus wood’ trade-off, as opposed to the expected ‘root–shoot’ trade-off; such a trade-off has recently been posited on theoretical grounds for old-growth forest stands. We conclude by discussing the systematic biases in estimates of allocation introduced by missing NPP components, including herbivory, large leaf litter and root exudates production. These biases have a moderate effect on overall carbon allocation estimates, but are smaller than the observed range in allocation values across sites. PMID

  2. Monitoring productivity with multiple mist-net stations

    Treesearch

    C. John Ralph; Kimberly Hollinger; Sherri L. Miller

    2004-01-01

    We evaluated data from 22 mist-net capture stations operated over 5 to 13 years in northern California and southern Oregon, to help develop sampling designs for monitoring using mist nets. In summer, 2.6% of individuals were recaptured at other stations within 1 km of the original banding station, and in fall, 1.4% were recaptured nearby. We recommend...

  3. 19 CFR 151.47 - Optional entry of net quantity of petroleum or petroleum products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Optional entry of net quantity of petroleum or petroleum products. 151.47 Section 151.47 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Petroleum and Petroleum Products § 151.47 Optional entry of net quantity of petroleum or petroleum products...

  4. Sweeping beauty: is grassland arthropod community composition effectively estimated by sweep netting?

    PubMed Central

    Spafford, Ryan D; Lortie, Christopher J

    2013-01-01

    Arthropods are critical ecosystem components due to their high diversity and sensitivity to perturbation. Furthermore, due to their ease of capture they are often the focus of environmental health surveys. There is much debate regarding the best sampling method to use in these surveys. Sweep netting and pan trapping are two sampling methods commonly used in agricultural arthropod surveys, but have not been contrasted in natural grassland systems at the community level. The purpose of this study was to determine whether sweep netting was effective at estimating arthropod diversity at the community level in grasslands or if supplemental pan trapping was needed. Arthropods were collected from grassland sites in Montana, USA, in the summer of 2011. The following three standardized evaluation criteria (consistency, reliability, and precision) were developed to assess the efficacy of sweep netting and pan trapping, based on analyses of variations in arthropod abundances, species richness, evenness, capture frequency, and community composition. Neither sampling method was sufficient in any criteria to be used alone for community-level arthropod surveys. On a taxa-specific basis, however, sweep netting was consistent, reliable, and precise for Thysanoptera, infrequently collected (i.e., rare) insects, and Arachnida, whereas pan trapping was consistent, reliable, and precise for Collembola and bees, which is especially significant given current threats to the latter's populations worldwide. Species-level identifications increase the detected dissimilarity between sweep netting and pan trapping. We recommend that community-level arthropod surveys use both sampling methods concurrently, at least in grasslands, but likely in most nonagricultural systems. Target surveys, such as monitoring bee communities in fragmented grassland habitat or where detailed information on behavior of the target arthropod groups is available can in some instances employ singular methods. As a

  5. Scaling net ecosystem production and net biome production over a heterogeneous region in the western United States

    NASA Astrophysics Data System (ADS)

    Turner, D. P.; Ritts, W. D.; Law, B. E.; Cohen, W. B.; Yang, Z.; Hudiburg, T.; Campbell, J. L.; Duane, M.

    2007-08-01

    Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5×105 km2) in the western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history, thus allowing us to account for all major fire and logging events over the last 30 years. For NEP, a 23-year record (1980-2002) of distributed meteorology (1 km resolution) at the daily time step was used to drive a process-based carbon cycle model (Biome-BGC). For NBP, fire emissions were computed from remote sensing based estimates of area burned and our mapped biomass estimates. Our estimates for the contribution of logging and crop harvest removals to NBP were from the model simulations and were checked against public records of forest and crop harvesting. The predominately forested ecoregions within our study region had the highest NEP sinks, with ecoregion averages up to 197 gC m-2 yr-1. Agricultural ecoregions were also NEP sinks, reflecting the imbalance of NPP and decomposition of crop residues. For the period 1996-2000, mean NEP for the study area was 17.0 TgC yr-1, with strong interannual variation (SD of 10.6). The sum of forest harvest removals, crop removals, and direct fire emissions amounted to 63% of NEP, leaving a mean NBP of 6.1 TgC yr-1. Carbon sequestration was predominantly on public forestland, where the harvest rate has fallen dramatically in the recent years. Comparison of simulation results with estimates of carbon stocks, and changes in carbon stocks, based on forest inventory data showed generally good agreement. The carbon sequestered as NBP, plus accumulation of forest products in slow turnover pools, offset 51% of the annual emissions of fossil fuel CO2 for the state. State-level NBP dropped below zero in 2002 because of the combination of a dry climate year and a large (200 000 ha) fire. These results highlight

  6. Scaling net ecosystem production and net biome production over a heterogeneous region in the western United States

    NASA Astrophysics Data System (ADS)

    Turner, D. P.; Ritts, W. D.; Law, B. E.; Cohen, W. B.; Yang, Z.; Hudiburg, T.; Campbell, J. L.; Duane, M.

    2007-04-01

    Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5×105 km2) in the western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history, thus allowing us to account for all major fire and logging events over the last 30 years. For NEP, a 23-year record (1980-2002) of distributed meteorology (1 km resolution) at the daily time step was used to drive a process-based carbon cycle model (Biome-BGC). For NBP, fire emissions were computed from remote sensing based estimates of area burned and our mapped biomass estimates. Our estimates for the contribution of logging and crop harvest removals to NBP were from the model simulations and were checked against public records of forest and crop harvesting. The predominately forested ecoregions within our study region had the highest NEP sinks, with ecoregion averages up to 197 gC m-2 yr-1. Agricultural ecoregions were also NEP sinks, reflecting the imbalance of NPP and decomposition of crop residues. For the period 1996-2000, mean NEP for the study area was 17.0 TgC yr-1, with strong interannual variation (SD of 10.6). The sum of forest harvest removals, crop removals, and direct fire emissions amounted to 63% of NEP, leaving a mean NBP of 6.1 TgC yr-1. Carbon sequestration was predominantly on public forestland, where the harvest rate has fallen dramatically in the recent years. Comparison of simulation results with estimates of carbon stocks, and changes in carbon stocks, based on forest inventory data showed generally good agreement. The carbon sequestered as NBP, plus accumulation of forest products in slow turnover pools, offset 51% of the annual emissions of fossil fuel CO2 for the state. State-level NBP dropped below zero in 2002 because of the combination of a dry climate year and a large (200 000 ha) fire. These results highlight

  7. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures†

    PubMed Central

    Kucharzyk, Katarzyna H.; Deshusses, Marc A.; Porter, Kaitlyn A.; Hsu-Kim, Heileen

    2016-01-01

    Monomethylmercury (MeHg) is produced in many aquatic environments by anaerobic microorganisms that take up and methylate inorganic forms of Hg(II). Net methylation of Hg(II) appears to be correlated with factors that affect the activity of the anaerobic microbial community and factors that increase the bioavailability of Hg(II) to these organisms. However, the relative importance of one versus the other is difficult to elucidate even though this information can greatly assist remediation efforts and risk assessments. Here, we investigated the effects of Hg speciation (dissolved Hg and nanoparticulate HgS) and microbial activity on the net production of MeHg using two mixed microbial cultures that were enriched from marine sediments under sulfate reducing conditions. The cultures were amended with dissolved Hg (added as a dissolved nitrate salt) and nanoparticulate HgS, and grown under different carbon substrate concentrations. The results indicated that net mercury methylation was the highest for cultures incubated in the greatest carbon substrate concentration (60 mM) compared to incubations with less carbon (0.6 and 6 mM), regardless of the form of mercury amended. Net MeHg production in cultures exposed to HgS nanoparticles was significantly slower than in cultures exposed to dissolved Hg; however, the difference diminished with slower growing cultures with low carbon addition (0.6 mM). The net Hg methylation rate was found to correlate with sulfate reduction rate in cultures exposed to dissolved Hg, while methylation rate was roughly constant for cultures exposed to nanoparticulate HgS. These results indicated a potential threshold of microbial productivity: below this point net MeHg production was limited by microbial activity, regardless of Hg bioavailability. Above this threshold of productivity, Hg speciation became a contributing factor towards net MeHg production. PMID:26211614

  8. BiomeNet: A Bayesian Model for Inference of Metabolic Divergence among Microbial Communities

    PubMed Central

    Chipman, Hugh; Gu, Hong; Bielawski, Joseph P.

    2014-01-01

    Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level metabolic interactions, BiomeNet applies a mixed-membership modelling framework to enzyme abundance information. The basic idea is that the mixture components of the model (metabolic reactions, subnetworks, and networks) are shared across all groups (microbiome samples), but the mixture proportions vary from group to group. Through this framework, the model can capture nested structures within the data. BiomeNet is unique in modeling each metagenome sample as a mixture of complex metabolic systems (metabosystems). The metabosystems are composed of mixtures of tightly connected metabolic subnetworks. BiomeNet differs from other unsupervised methods by allowing researchers to discriminate groups of samples through the metabolic patterns it discovers in the data, and by providing a framework for interpreting them. We describe a collapsed Gibbs sampler for inference of the mixture weights under BiomeNet, and we use simulation to validate the inference algorithm. Application of BiomeNet to human gut metagenomes revealed a metabosystem with greater prevalence among inflammatory bowel disease (IBD) patients. Based on the discriminatory subnetworks for this metabosystem, we inferred that the community is likely to be closely associated with the human gut epithelium, resistant to dietary interventions, and interfere with human uptake of an antioxidant connected to IBD. Because this metabosystem has a greater capacity to exploit host-associated glycans, we speculate that IBD-associated communities might arise

  9. Net Primary Production of boreal forests in the Krasnoyarsk Territory

    NASA Astrophysics Data System (ADS)

    Larko, Alexander; Chernetskiy, Maxim; Shevyrnogov, Anatoly

    One of the most important characteristics used in the biosphere change control is net primary production dynamics. (NPP) NPP shows the amount of pure carbon fixed in plants for a definite time period, essentially, this indicator reflects the intensity of a carbon biochemical cycle. Being the main indicator of the ecosystem condition, NPP has great significance, since it is also an indicator of biosphere carbon flux intensity. Its use is important for ecological investigations, carbon cycle calculation and the distribution of natural recourses. Ground true ecosystems determine most of seasonal and annual changes in the atmospheric CO2 concentration. Satellite methods of investigation are known to be effectively used for the calculation of the global NPP distribution. In its turn, the study of boreal forest NPP dynamics is required to introduce clarity into global models and to understand their role in the carbon cycle. At present, there is a number of calculation models for obtaining NPP. In the given work, an estimate of NPP for boreal forests of the Krasnoyarsk Territory is made. For the calculation, the GloPEM model employing TERRA/MODIS and TOMS data has been used. The obtained data have been compared with satellite temperature and ground true climatic data and, also, with the forest vegetation maps. The maps contained data about the biomass amount and the forest species composition, which allowed one to obtain the results showing the nonuniformity of NPP distribution depending on the climatic conditions, species composition and the latitude of the objects under study.

  10. Spatial scaling of net primary productivity using subpixel landcover information

    NASA Astrophysics Data System (ADS)

    Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.

    2008-10-01

    Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.

  11. Seasonal dynamics of terrestrial net primary production in China

    NASA Astrophysics Data System (ADS)

    Shi, Jun; Gao, Zhiqiang; Cui, Linli

    2005-09-01

    Study on seasonal change of terrestrial net primary production (NPP) and its responses to climate are to help understand the responses of terrestrial ecosystem to climate change and mechanisms of annual NPP increases. In this study, GLO-PEM simulating NPP data and corresponding climate data were used to explore the seasonal changes of terrestrial NPP and their geographical differences in China from 1981 to 2000. As the results, seasonal total NPP in China showed a significant increase for all four seasons during the past 20 years. The spring NPP indicated the largest increase rate, while the summer NPP was with the largest increase in magnitude. The area of NPP increase was largest in summer, and that of NPP decrease was largest in autumn. Seasonal NPP changed differently in different regions. Increased temperature or precipitation or their comprehensive functions might contribute to the NPP increase, and decreased precipitation might answer for the decreased NPP in most regions. South China had the largest NPP increase in spring, autumn and winter and the highest NPP increase rate in autumn, North China had the largest NPP increase rate in spring and winter, while Central China had the largest NPP increase and increase rate in summer.

  12. Seasonal patterns of daily net photosynthesis, transpiration and net primary productivity of Juncus roemerianus and Spartina alterniflora in a Georgia salt marsh.

    PubMed

    Giurgevich, J R; Dunn, E L

    1982-01-01

    Studies of the seasonal CO2 and water vapor exchange patterns of Juncus roemerianus and Spartina alterniflora were conducted in an undisturbed marsh community on Sapelo Island, Georgia. Daily patterns of net photosynthesis, transpiration, leaf diffusive conductance and water-use efficiency in response to ambient conditions were monitored on intact, in situ plants. Net primary productivity was calculated from the daytime CO2 fixation totals, nighttime CO2 loss, leaf standing stock and aboveground to belowground biomass ratios for each plant type.The tall form of S. alterniflora had higher rates of photosynthesis and higher water-use efficiency values which, in conjunction with low respiratory losses and large leaf standing crop, results in high values of net primary productivity. The environmental factors in the marsh which permit these physiological responses occur in less than 10% of the marsh. Overall, the physiological capabilities of the short form of S. alterniflora were reduced in comparison to the tall form, but the combination of environmental factors which determine the physiological responses of this form occur in a much greater portion of the marsh, and the short form of S. alterniflora dominates the Sapelo Island marshes.The response patterns of the C3 species, J. roemerianus, differed somewhat from the height forms of S. alterniflora. A large, seasonally constant leaf standing crop coupled with moderate rates of photosynthesis resulted in a net primary productivity value which was between the tall and short height forms of S. alterniflora. However, as with the tall S. alterniflora, the environmental conditions under which this high productivity and high water loss rate can be sustained are restricted to specific regions of the environmental gradient in the marsh.

  13. A Community Television Production Experience.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Dept. of Technical Journalism.

    The major goal of the Basic Video Production Workshop program of the Denver Community Video Center was to communicate basic production skills, through the use of extensive hands-on experience, to people with little or no training in the use of visual media. The ideas and exercises presented in this manual focus on the design and completion of…

  14. A Case of Kafka on the Net: Community Colleges' Domain Names.

    ERIC Educational Resources Information Center

    Georges, Joseph

    2000-01-01

    The .edu domain was originally intended for use by all educational levels. Since 1993, however, .edu names have been technically reserved for four-year institutions of higher education, leaving .us, .org or .net domains for two-year colleges. Nevertheless, 20% of 400 .edu names currently held by community colleges have been awarded since 1993.…

  15. Building Capacity through Sustainable Engagement: Lessons for the Learning Community from the "GraniteNet" Project

    ERIC Educational Resources Information Center

    Arden, Catherine; McLachlan, Kathryn; Cooper, Trevor

    2009-01-01

    This paper reports an exploration into critical success factors for the sustainability of the partnership between the University of Southern Queensland and the Stanthorpe community during the GraniteNet Phoenix Project--the first phase of a three-phase participatory action research project conducted during 2007-2008. The concepts of learning…

  16. A Case of Kafka on the Net: Community Colleges' Domain Names.

    ERIC Educational Resources Information Center

    Georges, Joseph

    2000-01-01

    The .edu domain was originally intended for use by all educational levels. Since 1993, however, .edu names have been technically reserved for four-year institutions of higher education, leaving .us, .org or .net domains for two-year colleges. Nevertheless, 20% of 400 .edu names currently held by community colleges have been awarded since 1993.…

  17. An improved null model for assessing the net effects of multiple stressors on communities.

    PubMed

    Thompson, Patrick L; MacLennan, Megan M; Vinebrooke, Rolf D

    2017-07-28

    Ecological stressors (i.e., environmental factors outside their normal range of variation) can mediate each other through their interactions, leading to unexpected combined effects on communities. Determining whether the net effect of stressors is ecologically surprising requires comparing their cumulative impact to a null model that represents the linear combination of their individual effects (i.e., an additive expectation). However, we show that standard additive and multiplicative null models that base their predictions on the effects of single stressors on community properties (e.g., species richness or biomass) do not provide this linear expectation, leading to incorrect interpretations of antagonistic and synergistic responses by communities. We present an alternative, the compositional null model, which instead bases its predictions on the effects of stressors on individual species, and then aggregates them to the community level. Simulations demonstrate the improved ability of the compositional null model to accurately provide a linear expectation of the net effect of stressors. We simulate the response of communities to paired stressors that affect species in a purely additive fashion and compare the relative abilities of the compositional null model and two standard community property null models (additive and multiplicative) to predict these linear changes in species richness and community biomass across different combinations (both positive, negative, or opposite) and intensities of stressors. The compositional model predicts the linear effects of multiple stressors under almost all scenarios, allowing for proper classification of net effects, whereas the standard null models do not. Our findings suggest that current estimates of the prevalence of ecological surprises on communities based on community property null models are unreliable, and should be improved by integrating the responses of individual species to the community level as does our

  18. From social network to safety net: Dementia-friendly communities in rural northern Ontario.

    PubMed

    Wiersma, Elaine C; Denton, Alison

    2016-01-01

    Dementia-friendly communities, as communities that enable people with dementia to remain involved and active and have control over their lives for as long as possible, centrally involve social support and social networks for people living with dementia. The purpose of this research was to explore and understand the context of dementia in rural northern communities in Ontario with an emphasis on understanding how dementia friendly the communities were. Using qualitative methods, interviews were conducted with a total of 71 participants, including 37 health service providers, 15 care partners, 2 people living with dementia and 17 other community members such as local business owners, volunteers, local leaders, friends and neighbours. The strong social networks and informal social support that were available to people living with dementia, and the strong commitment by community members, families and health care providers to support people with dementia, were considered a significant asset to the community. A culture of care and looking out for each other contributed to the social support provided. In particular, the familiarity with others provided a supportive community environment. People with dementia were looked out for by community members, and continued to remain connected in their communities. The social support provided in these communities demonstrated that although fragile, this type of support offered somewhat of a safety net for individuals living with dementia. This work provides important insights into the landscape of dementia in rural northern Ontario communities, and the strong social supports that sustain people with dementia remaining in the communities.

  19. Net Ecosystem Calcification by a Coral Reef Community under Natural Acidification

    NASA Astrophysics Data System (ADS)

    Shamberger, K.; Lentz, S. J.; Cohen, A. L.

    2016-02-01

    Net Ecosystem Calcification (NEC) is a measure of the balance between calcium carbonate production (calcification) and loss (dissolution) within a coral reef system. Establishing baseline NEC estimates for a broad range of coral reef systems today provides much needed information to constrain spatial and temporal variability within and amongst different systems, investigate the sensitivity of ecosystem scale calcification to environmental forcing, and improve projections of coral reef futures under ocean acidification throughout this century. Previous NEC studies have been limited to coral reefs with unidirectional (Lagrangian and flow respirometry studies) or negligible (slack water Eulerian studies) water flow across the reef for at least part of the day, usually on the order of hours. Here, we present NEC rates in a naturally low pH, semi-enclosed coral reef lagoon with high coral cover and diversity and tidally driven flow within the Palau Rock Islands. NEC was determined from data collected over the full diel cycle for four consecutive days, during two successive years and different seasons, using total alkalinity (TA), salinity, and volume budgets. Two different methods used to calculate NEC are in good agreement and show that the coral community is net calcifying despite high rates of bioerosion and pH (mean pH = 7.88 ± 0.02) and aragonite saturation state (Ωar = 2.66 ± 0.11) levels close to those projected for the end of this century. Critically, NEC rates in year 1 (17.0 - 23.7 mmol m-2 d-1) were half those of year 2 (42.0 - 48.1 mmol m-2 d-1), though the carbonate chemistry of the source water did not change between years. This suggests that single occupations and short term measurements do not adequately capture the full range of NEC variability within a system and that factors other than ocean acidification play an important role in modulating NEC rates.

  20. 19 CFR 151.47 - Optional entry of net quantity of petroleum or petroleum products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Optional entry of net quantity of petroleum or petroleum products. 151.47 Section 151.47 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Petroleum and Petroleum Products § 151.47 Optional entry of net quantity of petroleum or petroleum...

  1. 19 CFR 151.47 - Optional entry of net quantity of petroleum or petroleum products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Optional entry of net quantity of petroleum or petroleum products. 151.47 Section 151.47 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Petroleum and Petroleum Products § 151.47 Optional entry of net quantity of petroleum or petroleum...

  2. 19 CFR 151.47 - Optional entry of net quantity of petroleum or petroleum products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Optional entry of net quantity of petroleum or petroleum products. 151.47 Section 151.47 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Petroleum and Petroleum Products § 151.47 Optional entry of net quantity of petroleum or petroleum...

  3. 19 CFR 151.47 - Optional entry of net quantity of petroleum or petroleum products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Optional entry of net quantity of petroleum or petroleum products. 151.47 Section 151.47 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Petroleum and Petroleum Products § 151.47 Optional entry of net quantity of petroleum or petroleum...

  4. Net Ecosystem Production and Actionable Negative Emissions Strategies

    NASA Astrophysics Data System (ADS)

    DeCicco, J. M.; Heo, J.

    2016-12-01

    Negative emissions strategies, designed to increase the rate at which carbon dioxide (CO2) and other greenhouse gases are removed from the atmosphere, are an important aspect of broader strategies for mitigating climate change. Not only is CO2 the dominant greenhouse gas and the one most intimately tied to existing commercial energy use, but it is also part of the global carbon cycle. On the order of 200 PgC•yr-1 circulates between the atmosphere and the major carbon stocks of the terrestrial biosphere, oceans and geosphere. Anthropogenic flows of roughly 10 PgC•yr-1 from fossil fuel use and 1 PgC•yr-1 from land-use change significantly exceed the Earth's natural carbon sink, and this imbalance causes the buildup of carbon in the atmosphere. In addition to strategies for reducing CO2 emissions, increasing negative emissions through carbon dioxide removal (CDR) is crucial for reducing carbon cycle imbalance in the near term as well as meeting long-term goals such as a 2°C limit. Terrestrial carbon management is important for both reducing emissions and enhancing sinks. Photosynthesis in terrestrial ecosystems is the form of CDR that is now most actionable, referring to mechanisms that can be economically implemented at meaningful scales without technology breakthroughs. Net ecosystem production (NEP) is a crucial metric for guiding CDR involving the terrestrial biosphere, including options such as bioenergy with carbon capture and storage (BECCS) and other forms of bio-based mitigation. We derive the necessary conditions for effective implementation of this category of negative emissions measures, emphasizing the importance of NEP measurement, baselines and appropriate methods of carbon accounting. We present a method for quantitative spatio-temporal analysis of land-use and land-cover changes for estimating landscape-scale NEP; provide a preliminary baseline NEP estimate for the continental United States; apply the method to reveal a cautionary tale

  5. Degradation of net primary production in a semiarid rangeland

    NASA Astrophysics Data System (ADS)

    Jackson, Hasan; Prince, Stephen D.

    2016-08-01

    Anthropogenic land degradation affects many biogeophysical processes, including reductions of net primary production (NPP). Degradation occurs at scales from small fields to continental and global. While measurement and monitoring of NPP in small areas is routine in some studies, for scales larger than 1 km2, and certainly global, there is no regular monitoring and certainly no attempt to measure degradation. Quantitative and repeatable techniques to assess the extent of deleterious effects and monitor changes are needed to evaluate its effects on, for example, economic yields of primary products such as crops, lumber, and forage, and as a measure of land surface properties which are currently missing from dynamic global vegetation models, assessments of carbon sequestration, and land surface models of heat, water, and carbon exchanges. This study employed the local NPP scaling (LNS) approach to identify patterns of anthropogenic degradation of NPP in the Burdekin Dry Tropics (BDT) region of Queensland, Australia, from 2000 to 2013. The method starts with land classification based on the environmental factors presumed to control (NPP) to group pixels having similar potential NPP. Then, satellite remotely sensing data were used to compare actual NPP with its potential. The difference in units of mass of carbon and percentage loss were the measure of degradation. The entire BDT (7.45 × 106 km2) was investigated at a spatial resolution of 250 × 250 m. The average annual reduction in NPP due to anthropogenic land degradation in the entire BDT was -2.14 MgC m-2 yr-1, or 17 % of the non-degraded potential, and the total reduction was -214 MgC yr-1. Extreme average annual losses of 524.8 gC m-2 yr-1 were detected. Approximately 20 % of the BDT was classified as "degraded". Varying severities and rates of degradation were found among the river basins, of which the Belyando and Suttor were highest. Interannual, negative trends in reductions of NPP occurred in 7 % of the

  6. Mesozooplankton production, grazing and respiration in the Bay of Bengal: Implications for net heterotrophy

    NASA Astrophysics Data System (ADS)

    Fernandes, Veronica; Ramaiah, N.

    2016-03-01

    Mesozooplankton samples were collected from the mixed layer along a central (along 88°E) and a western transect in the Bay of Bengal during four seasons covered between 2001 and 2006 in order to investigate spatio-temporal variability in their biomass. At these stations, grazing and respiration rates were measured from live zooplankton hauled in from the surface during December 2005. Akin to the mesozooplankton "paradox" in the central and eastern Arabian Sea, biomass in the mixed layer was more or less invariant in the central and western Bay of Bengal, even as the chl a showed marginal temporal variation. By empirical equation, the mesozooplankton production rate calculated to be 70-246 mg C m- 2 d- 1 is on par with the Arabian Sea. Contrary to the conventional belief, mesozooplankton grazing impact was up to 83% on primary production (PP). Low PP coupled with very high zooplankton production (70% of PP) along with abundant bacterial production (50% of the PP; Ramaiah et al., 2009) is likely to render the Bay of Bengal net heterotrophic, especially during the spring intermonsoon. Greater estimates of fecal pellet-carbon egestion by mesozooplankton compared to the average particulate organic carbon flux in sediment traps, implies that much of the matter is recycled by heterotrophic communities in the mixed layer facilitating nutrient regeneration for phytoplankton growth. We also calculated that over a third of the primary production is channelized for basin-wide zooplankton respiration that accounts for ~ 52 Mt C annually. In the current scenario of global warming, if low (primary) productive warm pools like the Bay of Bengal continue to be net heterotrophic, negative implications like enhanced emission of CO2 to the atmosphere, increased particulate flux to the deeper waters and greater utilization of dissolved oxygen resulting in expansion of the existing oxygen minimum zone are imminent.

  7. Net ecosystem production in a Little Ice Age moraine: the role of plant functional traits

    NASA Astrophysics Data System (ADS)

    Varolo, E.; Zanotelli, D.; Tagliavini, M.; Zerbe, S.; Montagnani, L.

    2015-07-01

    Current glacier retreat allows vast mountain ranges available for vegetation establishment and growth. Little is known about the effective carbon (C) budget of these new ecosystems and how the presence of different vegetation communities, characterized by their specific physiology and life forms influences C fluxes. In this study, using a comparative analysis of the C fluxes of two contrasting vegetation types, we intend to evaluate if the different physiologies of the main species have an effect on Ecosystem Respiration (Reco), Gross Primary Production (GPP), annual cumulated Net Ecosystem Exchange (NEE), and long-term carbon accumulation in soil. The NEE of two plant communities present on a Little Ice Age moraine in the Matsch glacier forefield (Alps, Italy) was measured over two growing seasons. They are a typical C3 grassland, dominated by Festuca halleri All. and a community dominated by CAM rosettes Sempervivum montanum L. on rocky soils. Using transparent and opaque chambers, we extrapolated the ecophysiological responses to the main environmental drivers and performed the partition of NEE into Reco and GPP. Soil samples were collected from the same site to measure long-term C accumulation in the ecosystem. The two communities showed contrasting GPP but similar Reco patterns and as a result significantly different in NEE. The grassland acted mainly as a carbon sink with a total cumulated value of -46.4 ± 35.5 g C m-2 NEE while the plots dominated by the CAM rosettes acted as a source with 31.9 ± 22.4 g C m-2. In spite of the NEE being different in the two plant communities, soil analysis did not reveal significant differences in carbon accumulation. Grasslands showed 1.76 ± 0.12 kg C m-2, while CAM rosettes showed 2.06 ± 0.23 kg C m-2. This study demonstrates that carbon dynamics of two vegetation communities can be distinct even though the growing environment is similar. The physiological traits of the dominant species determine large differences in

  8. Community factors associated with malaria prevention by mosquito nets: an exploratory study in rural Burkina Faso.

    PubMed

    Okrah, Jane; Traoré, Corneille; Palé, Augustin; Sommerfeld, Johannes; Müller, Olaf

    2002-03-01

    Malaria-related knowledge, attitudes and practices (KAP) were examined in a rural and partly urban multiethnic population of Kossi province in north-western Burkina Faso prior to the establishment of a local insecticide-treated bednet (ITN) programme. Various individual and group interviews were conducted, and a structured questionnaire was administered to a random sample of 210 heads of households in selected villages and the provincial capital of Nouna. Soumaya, the local illness concept closest to the biomedical term malaria, covers a broad range of recognized signs and symptoms. Aetiologically, soumaya is associated with mosquito bites but also with a number of other perceived causes. The disease entity is perceived as a major burden to the community and is usually treated by both traditional and western methods. Malaria preventive practices are restricted to limited chloroquine prophylaxis in pregnant women. Protective measures against mosquitoes are, however, widespread through the use of mosquito nets, mosquito coils, insecticide sprays and traditional repellents. Mosquito nets are mainly used during the rainy season and most of the existing nets are used by adults, particularly heads of households. Mosquito nets treated with insecticide (ITN) are known to the population through various information channels. People are willing to treat existing nets and to buy ITNs, but only if such services would be offered at reduced prices and in closer proximity to the households. These findings have practical implications for the design of ITN programmes in rural areas of sub-Saharan Africa (SSA).

  9. Residence time control on hot moments of net nitrate production and uptake in the hyporheic zone

    USGS Publications Warehouse

    Briggs, Martin A.; Lautz, Laura K.; Hare, Danielle K.

    2014-01-01

    moments of net production and uptake, enhancing NO3- production as residence times approach the anaerobic threshold, and changing zones of net NO3- production to uptake as residence times increase past the net sink threshold. The anaerobic and net sink thresholds for beaver-influenced streambed morphology occur at much shorter residence times (1.3 h and 2.3 h, respectively) compared to other documented hyporheic systems, and the net sink threshold compares favorably to the lower boundary of the anaerobic threshold determined for this system with the new oxygen Damkohler number. The consistency of the residence time threshold values of NO3- cycling in this study, despite environmental variability and disparate morphology, indicates that NO3- hot moment dynamics are primarily driven by changes in physical hydrology and associated residence times.

  10. Effects of climate change and shifts in forest composition on forest net primary production

    Treesearch

    Jyh-Min Chiang; Louts [Louis] R. Iverson; Anantha Prasad; Kim J. Brown

    2008-01-01

    Forests are dynamic in both structure and species composition, and these dynamics are strongly influenced by climate. However, the net effects of future tree species composition on net primary production (NPP) are not well understood. The objective of this work was to model the potential range shifts of tree species (DISTRIB Model) and predict their impacts on NPP (...

  11. Near Net Shape production of metal components using LENS

    SciTech Connect

    Schlienger, E.; Dimos, D.; Griffith, M.; Michael, J.; Oliver, M.; Romero, T.; Smugeresky, J.

    1998-03-01

    Rapid Prototyping and Near Net Shape manufacturing technologies are the subject of considerable attention and development efforts. At Sandia National Laboratories, one such effort is LENS (Laser Engineered Net Shaping). The LENS process utilizes a stream of powder and a focused Nd YAG laser to build near net shape fully dense metal parts. In this process, a 3-D solid model is sliced, then an X-Y table is rastered under the beam to build each slice. The laser 1 powder head is incremented upward with each slice and the deposition process is controlled via shuttering of the laser. At present, this process is capable of producing fully dense metal parts of iron, nickel and titanium alloys including tool steels and aluminides. Tungsten components have also been produced. A unique aspect of this process is the ability to produce components wherein the composition varies at differing locations in the part. Such compositional variations may be accomplished in either a stepped or graded fashion. In this paper, the details of the process will be described. The deposition mechanism will be characterized and microstructures and their associated properties will be discussed. Examples of parts which have been produced will be shown and issues regarding dimensional control and surface finish will be addressed.

  12. NetCDF-CF-OPeNDAP: Standards for ocean data interoperability and object lessons for community data standards processes

    USGS Publications Warehouse

    Hankin, Steven C.; Blower, Jon D.; Carval, Thierry; Casey, Kenneth S.; Donlon, Craig; Lauret, Olivier; Loubrieu, Thomas; Srinivasan, Ashwanth; Trinanes, Joaquin; Godøy, Øystein; Mendelssohn, Roy; Signell, Richard P.; de La Beaujardiere, Jeff; Cornillon, Peter; Blanc, Frederique; Rew, Russ; Harlan, Jack; Hall, Julie; Harrison, D.E.; Stammer, Detlef

    2010-01-01

    It is generally recognized that meeting society's emerging environmental science and management needs will require the marine data community to provide simpler, more effective and more interoperable access to its data. There is broad agreement, as well, that data standards are the bedrock upon which interoperability will be built. The path that would bring the marine data community to agree upon and utilize such standards, however, is often elusive. In this paper we examine the trio of standards 1) netCDF files; 2) the Climate and Forecast (CF) metadata convention; and 3) the OPeNDAP data access protocol. These standards taken together have brought our community a high level of interoperability for "gridded" data such as model outputs, satellite products and climatological analyses, and they are gaining rapid acceptance for ocean observations. We will provide an overview of the scope of the contribution that has been made. We then step back from the information technology considerations to examine the community or "social" process by which the successes were achieved. We contrast the path by which the World Meteorological Organization (WMO) has advanced the Global Telecommunications System (GTS) - netCDF/CF/OPeNDAP exemplifying a "bottom up" standards process whereas GTS is "top down". Both of these standards are tales of success at achieving specific purposes, yet each is hampered by technical limitations. These limitations sometimes lead to controversy over whether alternative technological directions should be pursued. Finally we draw general conclusions regarding the factors that affect the success of a standards development effort - the likelihood that an IT standard will meet its design goals and will achieve community-wide acceptance. We believe that a higher level of thoughtful awareness by the scientists, program managers and technology experts of the vital role of standards and the merits of alternative standards processes can help us as a community to

  13. Ocean acidification accelerates net calcium carbonate loss in a coral rubble community

    NASA Astrophysics Data System (ADS)

    Stubler, Amber D.; Peterson, Bradley J.

    2016-09-01

    Coral rubble communities are an important yet often overlooked component of a healthy reef ecosystem. The organisms inhabiting reef rubble are primarily bioeroders that contribute to the breakdown and dissolution of carbonate material. While the effects of ocean acidification on calcifying communities have been well studied, there are few studies investigating the response of bioeroding communities to future changes in pH and calcium carbonate saturation state. Using a flow-through pH-stat system, coral rubble pieces with a naturally occurring suite of organisms, along with bleached control rubble pieces, were subjected to three different levels of acidification over an 8-week period. Rates of net carbonate loss in bleached control rubble doubled in the acidification treatments (0.02 vs. 0.04% CaCO3 d-1 in ambient vs. moderate and high acidification), and living rubble communities experienced significantly increased rates of net carbonate loss from ambient to high acidification conditions (0.06 vs. 0.10% CaCO3 d-1, respectively). Although more experimentation is necessary to understand the long-term response and succession of coral rubble communities under projected conditions, these results suggest that rates of carbonate loss will increase in coral rubble as pH and calcium carbonate saturation states are reduced. This study demonstrates a need to thoroughly investigate the contribution of coral rubble to the overall carbonate budget, reef resilience, recovery, and function under future conditions.

  14. Bed net use and associated factors in a rice farming community in Central Kenya

    PubMed Central

    Ng'ang'a, Peter N; Jayasinghe, Gayathri; Kimani, Violet; Shililu, Josephat; Kabutha, Charity; Kabuage, Lucy; Githure, John; Mutero, Clifford

    2009-01-01

    Background Use of insecticide-treated nets (ITNs) continues to offer potential strategy for malaria prevention in endemic areas. However their effectiveness, sustainability and massive scale up remain a factor of socio-economic and cultural variables of the local community which are indispensable during design and implementation stages. Methods An ethnographic household survey was conducted in four study villages which were purposefully selected to represent socio-economic and geographical diversity. In total, 400 households were randomly selected from the four study villages. Quantitative and qualitative information of the respondents were collected by use of semi-structured questionnaires and focus group discussions. Results Malaria was reported the most frequently occurring disease in the area (93%) and its aetiology was attributed to other non-biomedical causes like stagnant water (16%), and long rains (13%). Factors which significantly caused variation in bed net use were occupant relationship to household head (χ2 = 105.705; df 14; P = 0.000), Age (χ2 = 74.483; df 14; P = 0.000), village (χ2 = 150.325; df 6; P = 0.000), occupation (χ2 = 7.955; df 3; P = 0.047), gender (χ2 = 4.254; df 1; P = 0.039) and education levels of the household head or spouse (χ2 = 33.622; df 6; P = 0.000). The same variables determined access and conditions of bed nets at household level. Protection against mosquito bite (95%) was the main reason cited for using bed nets in most households while protection against malaria came second (54%). Colour, shape and affordability were some of the key potential factors which determined choice, use and acceptance of bed nets in the study area. Conclusion The study highlights potential social and economic variables important for effective and sustainable implementation of bed nets-related programmes in Sub-Saharan Africa. PMID:19371407

  15. Net Loss of CaCO3 from a subtropical calcifying community due to seawater acidification: Mesocosm-scale experimental evidence

    USGS Publications Warehouse

    Andersson, A.J.; Kuffner, I.B.; MacKenzie, F.T.; Jokiel, P.L.; Rodgers, K.S.; Tan, A.

    2009-01-01

    Acidification of seawater owing to oceanic uptake of atmospheric CO 2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3) material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (N=3) incubated in continuous-flow mesocosms subject to future seawater conditions. The calcifying community was dominated by the coral Montipora capitata. Daily average community calcification or Net Ecosystem Calcification (NECC=CaCO3 production - dissolution) was positive at 3.3 mmol CaCO3 m-2 h-1 under ambient seawater pCO2 conditions as opposed to negative at -0.04 mmol CaCO3 m-2 h-1 under seawater conditions of double the ambient pCO2. These experimental results provide support for the conclusion that some net calcifying communities could become subject to net dissolution in response to anthropogenic ocean acidification within this century. Nevertheless, individual corals remained healthy, actively calcified (albeit slower than at present rates), and deposited significant amounts of CaCO3 under the prevailing experimental seawater conditions of elevated pCO2.

  16. Production of aluminum-lithium near net shape extruded cylinders

    NASA Technical Reports Server (NTRS)

    Hartley, Paula J.

    1995-01-01

    In the late 1980's, under funding from the Advanced Launch System Program, numerous near net shape technologies were investigated as a means for producing high quality, low cost Aluminum-Lithium (Al-Li) hardware. Once such option was to extrude near net shape barrel panels instead of producing panels by machining thick plate into a final tee-stiffened configuration (which produced up to 90% scrap). This method offers a reduction in the volume of scrap and consequently reduces the buy-to-fly cost. Investigation into this technology continued under Shuttle-C funding where four Al alloys 2219, 2195, 2096, and RX 818 were extruded. Presented herein are the results of that program. Each alloy was successfully extruded at Wyman Gordon, opened and flattened at Ticorm, and solution heat treated and stretched at Reynolds Metals Company. The first two processes were quite successful while the stretching process did offer some challenges. Due to the configuration of the panels and the stretch press set-up, it was difficult to induce a consistent percentage of cold work throughout the length and width of each panel. The effects of this variation will be assessed in the test program to be conducted at a future date.

  17. Effectiveness of bowl trapping and netting for inventory of a bee community

    USGS Publications Warehouse

    Grundel, R.; Frohnapple, K.J.; Jean, R.P.; Pavlovic, N.B.

    2011-01-01

    Concern over the status of bees has increased the need to inventory bee communities and, consequently, has increased the need to understand effectiveness of different bee sampling methods. We sampled bees using bowl traps and netting at 25 northwest Indiana sites ranging from open grasslands to forests. Assemblages of bees captured in bowl traps and by netting were very similar, but this similarity was driven by similar relative abundances of commonly captured species. Less common species were often not shared between collection methods (bowls, netting) and only about half of the species were shared between methods. About one-quarter of species were more often captured by one of the two collection methods. Rapid accumulation of species was aided by sampling at temporal and habitat extremes. In particular, collecting samples early and late in the adult flight season and in open and forest habitats was effective in capturing the most species with the fewest samples. The number of samples estimated necessary to achieve a complete inventory using bowls and netting together was high. For example, ≈72% of species estimated capturable in bowls were captured among the 3,159 bees collected in bowls in this study, but ≈30,000–35,000 additional bees would need to be collected to achieve a 100% complete inventory. For bowl trapping, increasing the number of sampling dates or sampling sites was more effective than adding more bowls per sampling date in completing the inventory with the fewest specimens collected.

  18. Net-phytoplankton communities in the Western Boundary Currents and their environmental correlations

    NASA Astrophysics Data System (ADS)

    Chen, Yunyan; Sun, Xiaoxia; Zhun, Mingliang

    2017-05-01

    This study investigated net-phytoplankton biomass, species composition, the phytoplankton abundance horizontal distribution, and the correlations between net-phytoplankton communities and mesoscale structure that were derived from the net samples taken from the Western Boundary Currents during summer, 2014. A total of 199 phytoplankton species belonging to 61 genera in four phyla were identified. The dominant species included Climacodium frauenfeldianum, Thalassiothrix longissima, Rhizosolenia styliformis var. styliformis, Pyrocystis noctiluca, Ceratium trichoceros, and Trichodesmium thiebautii. Four phytoplankton communities were divided by cluster analysis and the clusters were mainly associated with the North Equatorial Counter Current (NECC), the North Equatorial Current (NEC), the Subtropical Counter Current (STCC), and the Luzon Current (LC), respectively. The lowest phytoplankton cell abundance and the highest Trichodesmium filament abundance were recorded in the STCC region. The principal component analysis showed that T. thiebautii preferred warm and nutrient poor water. There was also an increase in phytoplankton abundance and biomass near 5°N in the NECC region, where they benefit from upwellings and eddies.

  19. The utility of estimating net primary productivity over Alaska using baseline AVHRR data

    USGS Publications Warehouse

    Markon, C.J.; Peterson, Kim M.

    2002-01-01

    Net primary productivity (NPP) is a fundamental ecological variable that provides information about the health and status of vegetation communities. The Normalized Difference Vegetation Index, or NDVI, derived from the Advanced Very High Resolution Radiometer (AVHRR) is increasingly being used to model or predict NPP, especially over large remote areas. In this article, seven seasonally based metrics calculated from a seven-year baseline NDVI dataset were used to model NPP over Alaska, USA. For each growing season, they included maximum, mean and summed NDVI, total days, product of total days and maximum NDVI, an integral estimate of NDVI and a summed product of NDVI and solar radiation. Field (plot) derived NPP estimates were assigned to 18 land cover classes from an Alaskan statewide land cover database. Linear relationships between NPP and each NDVI metric were analysed at four scales: plot, 1-km, 10-km and 20-km pixels. Results show moderate to poor relationship between any of the metrics and NPP estimates for all data sets and scales. Use of NDVI for estimating NPP may be possible, but caution is required due to data seasonality, the scaling process used and land surface heterogeneity.

  20. The SeaDataNet data products: regional temperature and salinity historical data collections

    NASA Astrophysics Data System (ADS)

    Simoncelli, Simona; Coatanoan, Christine; Bäck, Orjan; Sagen, Helge; Scoy, Serge; Myroshnychenko, Volodymyr; Schaap, Dick; Schlitzer, Reiner; Iona, Sissy; Fichaut, Michele

    2016-04-01

    Temperature and Salinity (TS) historical data collections covering the time period 1900-2013 were created for each European marginal sea (Arctic Sea, Baltic Sea, Black Sea, North Sea, North Atlantic Ocean and Mediterranean Sea) within the framework of SeaDataNet2 (SDN) EU-Project and they are now available as ODV collections through the SeaDataNet web catalog at http://sextant.ifremer.fr/en/web/seadatanet/. Two versions have been published and they represent a snapshot of the SDN database content at two different times: V1.1 (January 2014) and V2 (March 2015). A Quality Control Strategy (QCS) has been developped and continuously refined in order to improve the quality of the SDN database content and to create the best product deriving from SDN data. The QCS was originally implemented in collaboration with MyOcean2 and MyOcean Follow On projects in order to develop a true synergy at regional level to serve operational oceanography and climate change communities. The QCS involved the Regional Coordinators, responsible of the scientific assessment, the National Oceanographic Data Centers (NODC) and the data providers that, on the base of the data quality assessment outcome, checked and eventually corrected anomalies in the original data. The QCS consists of four main phases: 1) data harvesting from the central CDI; 2) file and parameter aggregation; 3) quality check analysis at regional level; 4) analysis and correction of data anomalies. The approach is iterative to facilitate the upgrade of SDN database content and it allows also the versioning of data products with the release of new regional data collections at the end of each QCS loop. SDN data collections and the QCS will be presented and the results summarized.

  1. [The Net 'a la carte': virtual communities of users and integrated thematic telematic services].

    PubMed

    Hawa-Attourah, M

    Internet and its society of information and communication should be considered to be a smaller society evolving--others would say is trapped--within our society. Therefore, it should be considered not only from a technical or technological point of view but also regarding its human, cultural, social and intellectual aspects. This article starts with a general view of the present situation on the Internet. We also define the concept of a Virtual Community of Users (VCU). In view of this concept, debate centers on the communities of scientific, professional and academic communities using the Internet, analyzing the present situation, its needs and problems. We continue with the concepts of Virtual Thematic Service (VTS) and Integrated Virtual Thematic Services (IVTS) introduced as a means to solve the needs and problems of VCU. Finally, we describe a real pilot study, based on the IVTS paradigm, known as UniNet.

  2. CF Standard Names: Supporting Increased Use of netCDF-CF Across the Geoscience Community

    NASA Astrophysics Data System (ADS)

    Davis, E.; Kehoe, K.; Collis, S. M.; Guy, N.; Peckham, S. D.

    2016-12-01

    The Climate and Forecast (CF) metadata convention for netCDF uses a controlled list of standard names to identify the geophysical parameter represented by a data variable. As the use of CF continues to grow in the geoscience community, the number of requests for new standard names will continue to increase. We will discuss our experience working with scientists in geoscience domains new to CF to add standard names. We also look at possible ways to change the process for adding new CF standard names with thoughts towards improving the ability to handle large scale requests, perhaps for hundreds or even thousands of new CF standard names in a single request. For instance, more formalized rules for forming standard names and support for names from other non-CF geophysical parameter lists, e.g., CSDMS standard names. Other work on Linked Data in netCDF will also be explored for connections to CF standard names.

  3. Oxygen Balance and Net Ecosystem Production in a Florida Subtropical Estuary

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Seidensticker, L. E.; Herrmann, M.; Boyer, J. N.; Kemp, W. M.; Tomaso, D. J.; Briceno, H.

    2016-02-01

    A dissolved oxygen budget was constructed from oxygen concentration measurements in Biscayne Bay, Florida with monthly time resolution from 1996 to 2009 in order to estimate net ecosystem production (NEP). Averaged over the Bay, oxygen air-water exchange and NEP approximately balanced each other, while the other budget terms, including riverine input and exchange with the ocean, were negligibly small. The average NEP for the whole time series was found to be -15 mol O2 m-2 yr-1, indicating net heterotrophy, though the bay shifted from net heterotrophy to net autotrophy after the 2005 Atlantic hurricane season. NEP also exhibited a mean annual cycle in which net heterotrophy in the fall was 3 times greater than it was during the spring. The seasonality exhibited in the annual cycle suggests that NEP is anticorrelated with temperature, river discharge, and the nutrient concentration.

  4. AccrualNet: Addressing Low Accrual Via a Knowledge-Based, Community of Practice Platform

    PubMed Central

    Massett, Holly A.; Parreco, Linda K.; Padberg, Rose Mary; Richmond, Ellen S.; Rienzo, Marie E.; Leonard, Colleen E. Ryan; Quesenbery, Whitney; Killiam, H. William; Johnson, Lenora E.; Dilts, David M.

    2011-01-01

    Purpose: Present the design and initial evaluation of a unique, Web-enabled platform for the development of a community of practice around issues of oncology clinical trial accrual. Methods: The National Cancer Institute (NCI) conducted research with oncology professionals to identify unmet clinical trial accrual needs in the field. In response, a comprehensive platform for accrual resources, AccrualNet, was created by using an agile development process, storyboarding, and user testing. Literature and resource searches identified relevant content to populate the site. Descriptive statistics were tracked for resource and site usage. Use cases were defined to support implementation. Results: AccrualNet has five levels: (1) clinical trial macrostages (prestudy, active study, and poststudy); (2) substages (developing a protocol, selecting a trial, preparing to open, enrolling patients, managing the trial, retaining participants, and lessons learned); (3) strategies for each substage; (4) multiple activities for each strategy; and (5) multiple resources for each activity. Since its launch, AccrualNet has had more than 45,000 page views, with the Tools & Resources, Conversations, and Training sections being the most viewed. Total resources have increased 69%, to 496 items. Analysis of articles in the site reveals that 22% are from two journals and 46% of the journals supplied a single article. To date, there are 29 conversations with 43 posts. Four use cases are discussed. Conclusion: AccrualNet represents a unique, centralized comprehensive-solution platform to systematically capture accrual knowledge for all stages of a clinical trial. It is designed to foster a community of practice by encouraging users to share additional strategies, resources, and ideas. PMID:22379429

  5. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems

    Treesearch

    Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al

    2011-01-01

    Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China’s forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...

  6. Shuttle Net, Tuna Net

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Rockwell International, NASA's prime contractor for the Space Shuttle, asked West Coast Netting (WCN) to develop a safety net for personnel working on the Shuttle Orbiter. This could not be an ordinary net, it had to be relatively small, yet have extraordinary tensile strength. It also had to be fire resistant and resistant to ultraviolet (UV) light. After six months, WCN found the requisite fiber, a polyester-like material called NOMEX. The company was forced to invent a more sophisticated twisting process since conventional methods did not approach specified breaking strength. The resulting product, the Hyperester net, sinks faster and fishes deeper, making it attractive to fishing fleets. A patented treatment for UV protection and greater abrasion resistance make Hyperester nets last longer, and the no-shrink feature is an economic bonus.

  7. Modeling landscape net ecosystem productivity (LandNEP) under alternative management regimes

    Treesearch

    Eugenie S. Euskirchen; Jiquan Chen; Harbin Li; Eric J. Gustafson; Thomas R. Crow

    2002-01-01

    Forests have been considered as a major carbon sink within the global carbon budget. However, a fragmented forest landscape varies significantly in its composition and age structure, and the amount of carbon sequestered at this level remains generally unknown to the scientific community. More precisely, the temporal dynamics and spatial distribution of net ecosystem...

  8. Initial net CO2 uptake responses and root growth for a CAM community placed in a closed environment.

    PubMed

    Nobel, Park S; Bobich, Edward G

    2002-11-01

    To help understand carbon balance between shoots and developing roots, 41 bare-root crassulacean acid metabolism (CAM) plants native to the Sonoran Desert were studied in a glass-panelled sealable room at day/night air temperatures of 25/15 degrees C. Net CO(2) uptake by the community of Agave schottii, Carnegia gigantea, Cylindropuntia versicolor, Ferocactus wislizenii and Opuntia engelmannii occurred 3 weeks after watering. At 4 weeks, the net CO(2) uptake rate measured for south-east-facing younger parts of the shoots averaged 1.94 micro mol m(-2) s(-1) at night, considerably higher than the community-level nocturnal net CO(2) uptake averaged over the total shoot surface, primarily reflecting the influences of surface orientation on radiation interception (predicted net CO(2) uptake is twice as high for south-east-facing surfaces compared with all compass directions). Estimated growth plus maintenance respiration of the roots averaged 0.10 micro mol m(-2) s(-1) over the 13-week period, when the community had a net carbon gain from the atmosphere of 4 mol C while the structural C incorporated into the roots was 23 mol. Thus, these five CAM species diverted all net C uptake over the 13-week period plus some existing shoot C to newly developing roots. Only after sufficient roots develop to support shoot water and nutrient requirements will the plant community have net above-ground biomass gains.

  9. A biophysical process based approach for estimating net primary production using satellite and ground observations

    NASA Astrophysics Data System (ADS)

    Choudhury, Bhaskar J.

    An approach is presented for calculating interannual variation of net primary production (C) of terrestrial plant communities at regional scale using satellite and ground measurements. C has been calculated as the difference of gross photosynthesis (A g) and respiration (R), recognizing that different biophysical factors exert major control on these two processes. A g has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R g and R m. The R m has been determined from nitrogen content of plant tissue per unit ground area, while R g has been obtained as a fraction of the difference of A g and R m. Model parameters have not been determined by matching the calculated fluxes against observations at any location. Results are presented for cultivated and temperate deciduous forest areas over North America for five consecutive years (1986-1990) and compared with observations.

  10. Convergence of potential net ecosystem production among contrasting C3 grasslands

    NASA Astrophysics Data System (ADS)

    Peichl, Matthias; Sonnentag, Oliver; Wohlfahrt, Georg; Flanagan, Lawrence B.; Baldocchi, Dennis D.; Kiely, Gerard; Galvagno, Marta; Gianelle, Damiano; Marcolla, Barbara; Pio, Casimiro; Migliavacca, Mirco; Jones, Michael B.; Saunders, Matthew

    2013-04-01

    Metabolic theory and body size constraints on biomass production and decomposition suggest that differences in the intrinsic potential net ecosystem production (NEPpot) should be small among contrasting C3 grasslands and therefore unable to explain the wide range in the annual apparent net ecosystem production (NEPapp) reported by previous studies. We estimated NEPpot for nine C3 grasslands under contrasting climate and management regimes using multi-year eddy covariance data. NEPpot converged within a narrow range suggesting little difference in the net carbon dioxide uptake capacity among C3 grasslands. Our results indicate a unique feature of C3 grasslands compared to other terrestrial ecosystems and suggest a state of stability in NEPpot due to tightly coupled production and respiration processes. Consequently, the annual NEPapp of C3 grasslands is primarily a function of seasonal and short-term environmental and management constraints, and therefore especially susceptible to changes in future climate patterns and associated adaptation of management practices.

  11. Convergence of potential net ecosystem production among contrasting C3 grasslands

    PubMed Central

    Peichl, Matthias; Sonnentag, Oliver; Wohlfahrt, Georg; Flanagan, Lawrence B.; Baldocchi, Dennis D.; Kiely, Gerard; Galvagno, Marta; Gianelle, Damiano; Marcolla, Barbara; Pio, Casimiro; Migliavacca, Mirco; Jones, Michael B.; Saunders, Matthew

    2013-01-01

    Metabolic theory and body size dependent constraints on biomass production and decomposition suggest that differences in the intrinsic potential net ecosystem production (NEPPOT) should be small among contrasting C3 grasslands and therefore unable to explain the wide range in the annual apparent net ecosystem production (NEPAPP) reported by previous studies. We estimated NEPPOT for nine C3 grasslands under contrasting climate and management regimes using multi-year eddy covariance data. NEPPOT converged within a narrow range suggesting little difference in the net carbon dioxide uptake capacity across C3 grasslands. Our results indicate a unique feature of C3 grasslands compared to other terrestrial ecosystems and suggest a state of stability in NEPPOT due to tightly coupled production and respiration processes. Consequently, the annual NEPAPP of C3 grasslands is primarily a function of seasonal and short-term environmental and management constraints, and therefore especially susceptible to changes in future climate patterns and associated adaptation of management practices. PMID:23346985

  12. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.

    Treesearch

    David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon

    2005-01-01

    Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...

  13. Productivity, Social Networks and Net Communities in the Workplace

    ERIC Educational Resources Information Center

    Asunda, Paul

    2010-01-01

    The 21st century workplace is being shaped by ever-changing technological innovations, shifting demographic patterns, globalization and power shifts, in addition to different economic players such as policymakers, employers, education and training institutions that shape the quality of the future workforce. In today's work environment,…

  14. Social Capacity Assessment for communities and organisations in the CapHaz-Net context

    NASA Astrophysics Data System (ADS)

    Begg, C.; Kuhlicke, C.; Steinführer, A.; Luther, J.

    2012-04-01

    Instead of focusing on physical conditions of a hazard, CapHaz-Net regards the occurrence of a disaster as a result of people, communities and organisations lacking capacities to anticipate, cope with and recover from the impact of a natural hazard. Therefore, the CapHaz-Net project has pooled together knowledge surrounding six topics relating to the social side of natural hazards. These theoretical topics, which include social capacity building, risk governance, social vulnerability, risk perception, risk communication and risk education have been reviewed in terms of how they relate to and how we can improve actions relating to natural hazards. One of the results of this work has been the development of capacities typology that relates to the abilities and resources available to organisations and communities in regards to a future hazard event. It is from this typology we have developed two social capacity audits; one for communities and one for organisations. These assessments aim to identify appropriate measures and strategies regarding how to enhance, develop and build different kinds of capacities. The final outcome of the project is to develop recommendations. By using these assessments participants will be able to identify strong capacities and can refer to the recommendations for tips on how to improve capacities identified as weak. Most importantly, the assessment process is designed to be a self-assessment, completed by members of the community/organisation with the help of a facilitator. That way deficits and outcomes are defined by those who are most likely to be affected by a future hazard event and most likely to be implementing improvements towards resilience.

  15. MODIS EVI as a proxy for net primary production across precipitation regimes

    USDA-ARS?s Scientific Manuscript database

    Above ground net primary production (ANPP) is a measure of the rate of photosynthesis in an ecosystem, and is indicative of its biomass productivity. Prior studies have reported a relationship between ANPP and annual precipitation which converged across biomes in dry years. This deserves further s...

  16. Tradeoffs in overstory and understory aboveground net primary productivity in southwestern ponderosa pine stands

    Treesearch

    Kyla E. Sabo; Stephen C. Hart; Carolyn Hull Sieg; John Duff Bailey

    2008-01-01

    Previous studies in ponderosa pine forests have quantified the relationship between overstory stand characteristics and understory production using tree measurements such as basal area. We built on these past studies by evaluating the tradeoff between overstory and understory aboveground net primary productivity (ANPP) in southwestern ponderosa pine forests at the...

  17. Estimation of livestock appropriation of net primary productivity in Texas Drylands

    Treesearch

    Robert Washington-Allen; Jody Fitzgerald; Stephanie Grounds; Faisar Jihadi; John Kretzschmar; Kathryn Ramirez; John Mitchell

    2009-01-01

    The ecological state of US Drylands is unknown. This research is developing procedures to determine the impact of the ecological footprint of grazing livestock on the productive capacity of US Drylands. A pilot geodatabase was developed for the state of Texas that includes 2002 data for county boundaries, net primary productivity (NPP) derived from the Moderate...

  18. Kaupuni Village: A Closer Look at the First Net-Zero Energy Affordable Housing Community in Hawai'i (Brochure)

    SciTech Connect

    Not Available

    2012-05-01

    This is the first of four Hawaii Clean Energy Initiative community brochures focused on HCEI success stories. This brochure focuses on the first LEED Platinum net-zero energy affordable housing community in Hawaii. Our lead NREL contact for HCEI is Ken Kelly.

  19. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.

    PubMed

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-08-01

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  20. Seasonal shift in factors controlling net ecosystem production in a high Arctic terrestrial ecosystem.

    PubMed

    Uchida, Masaki; Kishimoto, Ayaka; Muraoka, Hiroyuki; Nakatsubo, Takayuki; Kanda, Hiroshi; Koizumi, Hiroshi

    2010-01-01

    We examined factors controlling temporal changes in net ecosystem production (NEP) in a high Arctic polar semi-desert ecosystem in the snow-free season. We examined the relationships between NEP and biotic and abiotic factors in a dominant plant community (Salix polaris-moss) in the Norwegian high Arctic. Just after snowmelt in early July, the ecosystem released CO(2) into the atmosphere. A few days after snowmelt, however, the ecosystem became a CO(2) sink as the leaves of S. polaris developed. Diurnal changes in NEP mirrored changes in light incidence (photosynthetic photon flux density, PPFD) in summer. NEP was significantly correlated with PPFD when S. polaris had fully developed leaves, i.e., high photosynthetic activity. In autumn, NEP values decreased as S. polaris underwent senescence. During this time, CO(2) was sometimes released into the atmosphere. In wet conditions, moss made a larger contribution to NEP. In fact, the water content of the moss regulated NEP during autumn. Our results indicate that the main factors controlling NEP in summer are coverage and growth of S. polaris, PPFD, and precipitation. In autumn, the main factor controlling NEP is moss water content.

  1. Uptake of health insurance and the productive safety net program in rural Ethiopia.

    PubMed

    Shigute, Zemzem; Mebratie, Anagaw D; Sparrow, Robert; Yilma, Zelalem; Alemu, Getnet; Bedi, Arjun S

    2017-03-01

    Due to lack of well-developed insurance and credit markets, rural families in Ethiopia are exposed to a range of covariate and idiosyncratic risks. In 2005, to deal with the consequences of covariate risks, the government implemented the Productive Safety Net Program (PSNP), and in 2011, to mitigate the financial consequences of ill-health, the government introduced a pilot Community Based Health Insurance (CBHI) Scheme. This paper explores whether scheme uptake and retention is affected by access to the PSNP. Based on household panel data and qualitative information, the analysis shows that participating in the PSNP increases the probability of CBHI uptake by 24 percentage points and enhances scheme retention by 10 percentage points. A large proportion of this effect may be attributed to explicit and implicit pressure applied by government officials on PSNP beneficiaries. Whether this is a desirable approach is debatable. Nevertheless, the results suggest that membership in existing social protection programs may be leveraged to spread new schemes and potentially accelerate poverty reduction efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Plankton community respiration, net ecosystem metabolism, and oxygen dynamics on the Louisiana continental shelf: Implications for hypoxia

    NASA Astrophysics Data System (ADS)

    Murrell, Michael C.; Stanley, Roman S.; Lehrter, John C.; Hagy, James D.

    2013-01-01

    We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column metabolism and the formation of hypoxia (dissolved oxygen <2 ml O2 l-1) in the region. Water column community respiration rates (WR) were measured on 10 cruises during spring, summer and fall seasons from 2003 to 2007 at multiple sites distributed across the Louisiana continental shelf, overlapping the region where bottom-water hypoxia occurs. We found consistent broad scale patterns in WR rates that followed depth and salinity gradients across the shelf. Observed WR rates were highest at low salinity inner shelf stations (<30 m depth) and decreased with increasing water depth. Surface waters had higher WR rates than bottom waters, a pattern most pronounced near the Mississippi river during spring and early summer. Surface water WR rates were highest in eastern transects and decreased westward; a trend that was not evident in bottom waters. WR tended to be higher in spring and summer compared to fall months, but overall the seasonal variability was small. We combined the WR rate measurements with contemporaneous measurements of phytoplankton productivity rates (reported in Lehrter et al., 2009, Continental Shelf Research, 29: 1861-1872) to estimate net water column metabolism. There was consistent evidence of net heterotrophy, particularly in western transects, and in deeper waters (>40 m depth), indicating a net organic carbon deficit on the LCS. We offer a simple scale argument to suggest that riverine and inshore coastal waters may be significant sources of organic carbon to account for this deficit. This study provided unprecedented, continental shelf scale coverage of heterotrophic metabolism, which is useful for constraining models of oxygen, carbon, and nutrient dynamics along the LCS.

  3. Net primary production of forests: a constant fraction of gross primary production?

    PubMed

    Waring, R. H.; Landsberg, J. J.; Williams, M.

    1998-02-01

    Considerable progress has been made in our ability to model and measure annual gross primary production (GPP) by terrestrial vegetation. But challenges remain in estimating maintenance respiration (R(m)) and net primary production (NPP). To search for possible common relationships, we assembled annual carbon budgets from six evergreen and one deciduous forest in Oregon, USA, three pine plantations in New South Wales, Australia, a deciduous forest in Massachusetts, USA, and a Nothofagus forest on the South Island of New Zealand. At all 12 sites, a standard procedure was followed to estimate annual NPP of foliage, branches, stems, and roots, the carbon expended in synthesis of these organs (R(g)), their R(m), and that of previously produced foliage and sapwood in boles, branches, and large roots. In the survey, total NPP ranged from 120 to 1660 g C m(-2) year(-1), whereas the calculated fraction allocated to roots varied from 0.22 to 0.63. Comparative analysis indicated that the total NPP/GPP ratio was conservative (0.47 +/- 0.04 SD). This finding supports the possibility of greatly simplifying forest growth models. The constancy of the NPP/GPP ratio also provides an incentive to renew efforts to understand the environmental factors affecting partitioning of NPP above and belowground.

  4. The potential of centrifugal casting for the production of near net shape uranium parts

    SciTech Connect

    Robertson, E.

    1993-09-01

    This report was written to provide a detailed summary of a literature survey on the near net shape casting process of centrifugal casting. Centrifugal casting is one potential casting method which could satisfy the requirements of the LANL program titled Near Net Shape Casting of Uranium for Reduced Environmental, Safety and Health Impact. In this report, centrifugal casting techniques are reviewed and an assessment of the ability to achieve the near net shape and waste minimization goals of the LANL program by using these techniques is made. Based upon the literature reviewed, it is concluded that if properly modified for operation within a vacuum, vertical or horizontal centrifugation could be used to safely cast uranium for the production of hollow, cylindrical parts. However, for the production of components of geometries other than hollow tubes, vertical centrifugation could be combined with other casting methods such as semi-permanent mold or investment casting.

  5. [Net energy analysis for annual 200 000 ton cassava ethanol production at Guangxi COFCO].

    PubMed

    Yue, Guojun; Sun, Zhenjiang; Shen, Naidong

    2015-02-01

    Guangxi COFCO innovates its annual 200 000 ton cassava ethanol production in recent years. To evaluate the energy input/output of the production process, we used the domestic life cycle model. The calculation results show that the net energy value was 9.56 MJ/L ethanol. Energy input for ethanol production was 51.3% of the total. 61.5% of energy input for ethanol production was used for steam input in ethanol distillation. Energy produced from by-product was 5.03 MJ/L ethanol. Hence, efficient use of raw materials is an important measure to improve the energy efficiency in Guangxi COFCO and energy compensation from byproducts has key impact on the net energy saving.

  6. Characteristics of comprehensive Chemical Industry Database CD-NET : Centered around chemical product information file

    NASA Astrophysics Data System (ADS)

    Takano, Hideo

    This paper describes Chemical Product Information File of Chemical Industry Database, CD-NET provided by Chemical Data Service Inc.. It defines "information" first, then explains file organization and presents how Chemical product Information File is located in CD-NET. Mentioning its complementary relation with JICST's JOIS-F the author defines the File as chemical product information for business purpose. All of the information items in the File emphasize that it is exactly a type of business and practical database. To distinguish general items from important items by product, all of the information is categorized into II classes by general chemical product and by area. The scope and emphasized items under each class are described in detail.

  7. Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem.

    PubMed

    Muldavin, Esteban H; Moore, Douglas I; Collins, Scott L; Wetherill, Karen R; Lightfoot, David C

    2008-02-01

    Aboveground net primary production (ANPP) dynamics are a key element in the understanding of ecosystem processes. For semiarid environments, the pulse-reserve framework links ANPP to variable and unpredictable precipitation events contingent on surficial hydrology, soil moisture dynamics, biodiversity structure, trophic dynamics, and landscape context. Consequently, ANPP may be decoupled periodically from processes such as decomposition and may be subjected to complex feedbacks and thresholds at broader scales. As currently formulated, the pulse-reserve framework may not encompass the breadth of ANPP response to seasonal patterns of precipitation and heat inputs. Accordingly, we examined a 6-year (1999-2004), seasonal record of ANPP with respect to precipitation, soil moisture dynamics, and functional groups in a black grama (Bouteloua eriopoda) grassland and a creosotebush (Larrea tridentata) shrubland in the northern Chihuahuan Desert. Annual ANPP was similar in the grassland (51.1 g/m(2)) and shrubland (59.2 g/m(2)) and positively correlated with annual precipitation. ANPP differed among communities with respect to life forms and functional groups and responses to abiotic drivers. In keeping with the pulse-reserve model, ANPP in black grama grassland was dominated by warm-season C(4) grasses and subshrubs that responded to large, transient summer storms and associated soil moisture in the upper 30 cm. In contrast, ANPP in creosotebush shrubland occasionally responded to summer moisture, but the predominant pattern was slower, non-pulsed growth of cool-season C(3) shrubs during spring, in response to winter soil moisture accumulation and the breaking of cold dormancy. Overall, production in this Chihuahuan Desert ecosystem reflected a mix of warm-temperate arid land pulse dynamics during the summer monsoon and non-pulsed dynamics in spring driven by winter soil moisture accumulation similar to that of cool-temperate regions.

  8. Evaluation of mist-net sampling as an index to productivity in Kirtland's Warblers

    USGS Publications Warehouse

    Bart, J.; Kepler, C.; Sykes, P.; Bocetti, C.I.

    1999-01-01

    In summary, in our study (1) capture rates (number of HY birds/number of AHY birds) were not useful as a direct measure of productivity in Kirtland's Warblers because HY birds were about 1.7 times more likely than AHY birds to be captured in mist nets; (2) capture rates varied substantially among sites, presumably because of changes in habitat that affected movements during late summer (thus, capture rates at a single site did not provide a useful index to population-wide productivity); and (3) population-wide capture rates provided useful indices to population-wide productivity. As noted previously, the first two conclusions are already accepted by specialists in the use of mist netting to index productivity. Our study presents the first evidence that annual variation in relative capture rates is sufficiently small that mist netting at multiple sites in a region can provide a useful index to region-wide productivity. The region must be large relative to late-summer movements by the study species, which means that obtaining habitat-specific productivity rates will be possible only within large patches of habitat. It should also be recognized that many species will move much farther than Kirtland's Warblers (owing to their limited breeding distribution). Our results suggest that mist-netting programs like MAPS and the Constant Effort Sites used in Britain can provide useful measures of temporal patterns, large-scale spatial patterns, and year-specific patterns in avian productivity. Furthermore, unlike most nest-monitoring studies, mist netting in late summer measures season-long productivity, the quantity of greatest use in most demographic analyses. Late-summer mist netting thus appears to be a useful method for studying avian productivity provided that investigators realize that results from at least six to eight sites that are well distributed across a large region must be combined to obtain a valid index, and that results obtained in this manner describe

  9. Disturbance and net ecosystem production across three climatically distinct forest landscapes

    Treesearch

    John L. Campbell; O.J. Sun; B.E. Law

    2004-01-01

    Biometric techniques were used to measure net ecosystem production (NEP) across three climatically distinct forest chronosequences in Oregon. NEP was highly negative immediately following stand-replacing disturbance in all forests and recovered to positive values by 10, 20, and 30 years of age for the mild mesic Coast Range, mesic West Cascades, and semi-arid East...

  10. Estimating Green Net National Product for Puerto Rico: An Economic Measure of Sustainability (Journal article)

    EPA Science Inventory

    This paper presents the data sources and methodology used to estimate Green Net National Product (GNNP), an economic metric of sustainability, for Puerto Rico. Using the change in GNNP as a one-sided test of weak sustainability (i.e., positive growth in GNNP is not enough to show...

  11. Improved estimates of net primary productivity from MODIS satellite data at regional and local scales

    Treesearch

    Yude Pan; Richard Birdsey; John Hom; Kevin McCullough; Kenneth Clark

    2006-01-01

    We compared estimates of net primary production (NPP) from the MODIS satellite with estimates from a forest ecosystem process model (PnET-CN) and forest inventory and analysis (FIA) data for forest types of the mid-Atlantic region of the United States. The regional means were similar for the three methods and for the dominant oak? hickory forests in the region. However...

  12. Global Potential Net Prmary Production Predicted from Vegetation Class, Precipitation, and Temperature

    USDA-ARS?s Scientific Manuscript database

    Net Primary Production (NPP), the difference between CO2 fixed by photosynthesis and CO2 lost to autotrophic respiration, is one of the most important components of the carbon cycle. Our goal was to develop a simple regression model to estimate global NPP using climate and land cover data. Approxima...

  13. Global Net Primary Production Predicted from Vegetation Class, Precipitation, and Temperature.

    USDA-ARS?s Scientific Manuscript database

    Net Primary Production (NPP), the difference between CO2 fixed by photosynthesis and CO2 lost to autotrophic respiration, is one of the most important components of the carbon cycle. Our goal was to develop a simple regression model to estimate global NPP using climate and land cover data. Approxima...

  14. Green Net Regional Product for the San Luis Basin, Colorado: An Economic Measure of Regional Sustainability

    EPA Science Inventory

    This paper presents the data sources and methodology used to estimate Green Net Regional Product (GNRP), a green accounting approach, for the San Luis Basin (SLB). GNRP is equal to aggregate consumption minus the depreciation of man-made and natural capital. We measure the move...

  15. Estimating Green Net National Product for Puerto Rico: An Economic Measure of Sustainability (Journal article)

    EPA Science Inventory

    This paper presents the data sources and methodology used to estimate Green Net National Product (GNNP), an economic metric of sustainability, for Puerto Rico. Using the change in GNNP as a one-sided test of weak sustainability (i.e., positive growth in GNNP is not enough to show...

  16. Relationships between net primary productivity and forest stand age in U.S. forests

    Treesearch

    Liming He; Jing M. Chen; Yude Pan; Richard Birdsey; Jens. Kattge

    2012-01-01

    Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four...

  17. On the spatial heterogeneity of net ecosystem productivity in complex landscapes

    Treesearch

    Ryan E. Emanuel; Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein

    2011-01-01

    Micrometeorological flux towers provide spatially integrated estimates of net ecosystem production (NEP) of carbon over areas ranging from several hectares to several square kilometers, but they do so at the expense of spatially explicit information within the footprint of the tower. This finer-scale information is crucial for understanding how physical and biological...

  18. Green Net Regional Product for the San Luis Basin, Colorado: An Economic Measure of Regional Sustainability

    EPA Science Inventory

    This paper presents the data sources and methodology used to estimate Green Net Regional Product (GNRP), a green accounting approach, for the San Luis Basin (SLB). GNRP is equal to aggregate consumption minus the depreciation of man-made and natural capital. We measure the move...

  19. Estimating climate change effects on net primary production of rangelands in the United States

    Treesearch

    Matthew C. Reeves; Adam L. Moreno; Karen E. Bagne; Steven W. Running

    2014-01-01

    The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen...

  20. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field

    USDA-ARS?s Scientific Manuscript database

    This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...

  1. Aboveground net primary production responses to water availability in the Chihuhuan Desert: importance of legacy effects

    USDA-ARS?s Scientific Manuscript database

    In arid ecosystems, current year precipitation explains a small proportion of annual aboveground net primary production (ANPP). Precipitation that occurred in previous years may be responsible for the observed difference between actual and expected ANPP, a concept that we called legacy. Thus, previo...

  2. Shelf-sea gross and net production estimates from oxygen-to-argon ratios and triple oxygen isotopes.

    NASA Astrophysics Data System (ADS)

    Seguro, I.; Kaiser, J.; Marca, A. D.; Painting, S.; Shutler, J. D.; Suggett, D. J.

    2016-02-01

    Although only covering around 10% of the oceans, shelf sea areas are highly productive regions representing up to 30% of total oceanic primary production. However, spatial and temporal variation of the primary production in shelf seas has not been completely understood. Subsequently, quantifying primary production is essential to understand the shelf sea carbon pump and the anthropogenic contribution. The marine oxygen cycle is strongly associated to the carbon cycle and in this study we are using O2/Ar ratios and the triple oxygen isotopic method of the sea water dissolved gases for quantifying primary production. Dissolved oxygen (O2) concentrations and their variations over time can be used to estimate biological net community production (NCP). However, physical process such us variations in temperature and pressure, mixing and bubble injection also influence dissolved O2 in seawater. To correct for these processes, I measured O2/Ar ratios using a shipboard membrane inlet mass spectrometer (MIMS) on board of RRS Discovery during four SSB cruises in 2014-2015 (summer-winter-spring-summer) in the Celtic Sea. The data, together with wind speed-based gas exchange parameterisations, give biological oxygen fluxes, which, at steady-state and disregarding advection, eddy diffusion and entrainment, equal NCP.In order to calculate gross production (GP), I took discrete samples of triple oxygen isotopes. The resulting data show variations in shelf-sea net and gross biological production with unprecedented temporal and spatial resolution. We estimate annual exchanges of carbon between the shelf sea, the atmosphere and the open ocean, as well as production rates.

  3. Annual Net Ecosystem Productivity of Wetlands: A Comparison of Automated and Manual Chamber Methods

    NASA Astrophysics Data System (ADS)

    Burrows, E. H.; Bubier, J. L.; Mosedale, A.; Crill, P. M.

    2001-05-01

    Net Ecosystem Exchange (NEE) of carbon dioxide (CO2) was measured in a minerotrophic poor fen in southeastern New Hampshire during the 2000 growing season using two types of chamber methods. Instantaneous CO2 flux was measured with transparent lexan and teflon static climate controlled chambers by calculating the change in headspace CO2 concentration in the chamber over time. Once per week the flux was sampled from ten manually operated chambers using a LI-COR 6200 portable photosynthesis system, which included a LI-6250 infrared gas analyzer, connected to the chambers. Ten automated chambers were installed in May of 2000, sampling CO2 flux every three hours over the diurnal cycle using a LI-COR 6262 infrared gas analyzer. The chambers and collars were placed throughout the fen in order to sample the range of plant communities. The manual sampling was done during the middle of the day, but the rate of photosynthesis changes depending on the amount of photosynthetically active radiation (PAR). In order to simulate varying light levels, shrouds blocking different amounts of light were placed over each manual chamber. An opaque shroud was used to measure respiration. NEE ranged from -13.0 to 12.5 μ mol CO2/m2/s in the manual chambers and -16.2 to 11.8 μ mol CO2/m2/s in the automated chambers for the mid-summer growing season. Manual respiration fluxes were measured under higher temperature regimes and the response of respiration to temperature will be factored in when comparing the two chamber techniques. Research during the summer of 2001 will also include diurnal measurements. Growing season net ecosystem productivity (NEP) will be estimated and compared for the two chamber systems. Several models will be used to estimate the flux when the manual chambers were not being sampled. The models will be based on biomass and dominant species in each chamber, and various environmental factors including water table, pH, relative humidity, PAR, air and peat temperature

  4. Naval petroleum reserves: Preliminary analysis of future net revenues from Elk Hills production

    SciTech Connect

    Not Available

    1986-01-01

    This is an interim report on the present value of the net revenues from Elk Hills Naval Petroleum Reserve. GAO calculated alternative present values of the net revenues applying (1) low, medium, and high forecasts of future crude oil prices and (2) alternative interest rates for discounting the future net revenues to their present values. The calculations are sensitive to both the oil price forecasts and discount rates used; they are preliminary and should be used with caution. They do not take into account possible added tax revenues collected by the government if Elk Hills were sold nor varying production levels and practices, which could either increase or decrease the total amount of oil that can be extracted.

  5. Evaluation of mist-net sampling as an index to productivity in Kirtland's Warblers

    USGS Publications Warehouse

    Bart, J.; Kepler, C.; Sykes, P.; Bocetti, Carol I.

    1999-01-01

    Many applied and theoretical investigations require information on how productivity varies in time and space (Temple and Wiens 1989. DeSante 1995). Examples include studies of habitat quality, population trends, life-history tactics, and metapopulation dynamics. From a demographic perspective, productivity is the number of young counted at a given time of year, produced per adult (e.g. Caswell 1989). Various measures have been used to estimate productivity. One of the most attractive is mist netting during the summer after young have left the nest, but ideally before they have left the study area. Several programs use this approach, including the Constant Effort Sites Scheme of the British Trust for Ornithology (Baillie et al. 1986, Bibby et al. 1992) and the Monitoring Avian Productivity and Survivorship (MAPS) program (DeSante et al. 1993) in North America.Hatching-year (HY) and after-hatching-year (AHY) birds are widely believed to have different susceptibilities to netting (DeSante et al. 1995, Peach et al. 1996), so the ratio of HY's to AHY's obtained from netting is not used as an estimate of productivity. Instead, investigators hope that the relative susceptibility to capture is about the same among the samples being compared so that the age ratios in mistnet samples provide a reliable index to productivity (DeSante 1995, DeSante et al. 1995).

  6. Periphyton biofilms influence net methylmercury production in an industrially contaminated system

    SciTech Connect

    Olsen, Todd Andrew; Brandt, Craig C.; Brooks, Scott C.

    2016-09-12

    Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from East Fork Poplar Creek, Tennessee, USA (EFPC) were measured during 2014-2015 using stable Hg isotopic rate assays. 201HgII and MM202Hg were added to intact periphyton samples and the formation of MM201Hg and loss of MM202Hg were monitored over time and used to calculate first-order rate constants for methylation and demethylation, respectively. The influence of location, temperature/season, light exposure and biofilm structure on methylation and demethylation were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven by differences in the demethylation rate constant (kd). In contrast, the within-site seasonal difference in net methylation was driven by changes in the methylation rate constant (km). Samples incubated in the dark had lower net methylation due to km values that were 60% less than those incubated in the light. Disrupting the biofilm structure decreased km by 50% and resulted in net demethylating conditions. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 27-85% of the MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.

  7. Periphyton biofilms influence net methylmercury production in an industrially contaminated system

    DOE PAGES

    Olsen, Todd Andrew; Brandt, Craig C.; Brooks, Scott C.

    2016-09-12

    Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from East Fork Poplar Creek, Tennessee, USA (EFPC) were measured during 2014-2015 using stable Hg isotopic rate assays. 201HgII and MM202Hg were added to intact periphyton samples and the formation of MM201Hg and loss of MM202Hg were monitored over time and used to calculate first-order rate constants for methylation and demethylation, respectively. The influence of location, temperature/season, light exposure and biofilm structure on methylation and demethylation were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven by differences in the demethylationmore » rate constant (kd). In contrast, the within-site seasonal difference in net methylation was driven by changes in the methylation rate constant (km). Samples incubated in the dark had lower net methylation due to km values that were 60% less than those incubated in the light. Disrupting the biofilm structure decreased km by 50% and resulted in net demethylating conditions. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 27-85% of the MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.« less

  8. Periphyton biofilms influence net methylmercury production in an industrially contaminated system

    SciTech Connect

    Olsen, Todd Andrew; Brandt, Craig C.; Brooks, Scott C.

    2016-09-12

    Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from East Fork Poplar Creek, Tennessee, USA (EFPC) were measured during 2014-2015 using stable Hg isotopic rate assays. 201HgII and MM202Hg were added to intact periphyton samples and the formation of MM201Hg and loss of MM202Hg were monitored over time and used to calculate first-order rate constants for methylation and demethylation, respectively. The influence of location, temperature/season, light exposure and biofilm structure on methylation and demethylation were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven by differences in the demethylation rate constant (kd). In contrast, the within-site seasonal difference in net methylation was driven by changes in the methylation rate constant (km). Samples incubated in the dark had lower net methylation due to km values that were 60% less than those incubated in the light. Disrupting the biofilm structure decreased km by 50% and resulted in net demethylating conditions. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 27-85% of the MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.

  9. Periphyton Biofilms Influence Net Methylmercury Production in an Industrially Contaminated System.

    PubMed

    Olsen, Todd A; Brandt, Craig C; Brooks, Scott C

    2016-10-18

    Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from the industrially contaminated East Fork Poplar Creek, Tennessee (EFPC) were measured during 2014-2016 using stable Hg isotopic rate assays. (201)Hg(II) and MM(202)Hg were added to intact periphyton samples in ambient streamwater and the formation of MM(201)Hg and loss of MM(202)Hg were monitored over time and used to calculate first-order rate potentials for methylation and demethylation. The influences of location, temperature/season, light exposure and biofilm structure on methylation and demethylation potentials were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven by differences in the demethylation rate potential (kd). In contrast, the within-site temperature-dependent difference in net methylation was driven by changes in the methylation rate potential (km). Samples incubated in the dark had lower net methylation due to lower km values than those incubated in the light. Disrupting the biofilm structure decreased km and resulted in lower net methylation. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 3.71-7.88 mg d(-1) MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.

  10. Disturbance severity and net primary production resilience of a Great Lakes forest ecosystem

    NASA Astrophysics Data System (ADS)

    Goodrich-Stuart, E. J.; Fahey, R.; De La Cruz, A.; Gough, C. M.

    2013-12-01

    As many Eastern deciduous forests of North America transition from early to mid-succession, the future of regional terrestrial carbon (C) storage is uncertain. The gradual, patchy senescence of early-successional trees accompanying this transition is comparable in severity to moderate disturbances such as silvicultural thinnings or insect outbreaks. While stand-replacing disturbance causes forests to temporarily become C sources, more moderate disturbances may inflict little to no decline in C sequestration. Identifying the disturbance severity at which net primary production (NPP) declines and the underlying mechanisms that drive forest C storage resistance to disturbance is increasingly important as moderate disturbances increase in frequency and extent across the region. The Forest Accelerated Succession ExperimenT (FASET) at the University of Michigan Biological Station subjected 39 ha of forest to moderate disturbance in 2008 by advancing age-related tree mortality through the stem girdling of early successional aspen and birch. Stand-scale disturbance severity, expressed as relative basal area of girdled aspen and birch, was 39% but plot-scale severity varied substantially within the experimental area (9 to 66% in 0.1 ha plots) because of the heterogeneous distribution of aspen and birch. We used this disturbance severity gradient to examine: 1) the relationship between NPP resilience and disturbance severity; 2) the disturbance severity at which NPP resilience prompts a shift in dominance from canopy to subcanopy vegetation; 3) how NPP resilience relates to disturbance-driven changes in resource-use efficiency, and 4) how disturbance severity shapes emerging forest communities We found that NPP is highly resilient to low to moderate levels of disturbance, but that production declines once a higher disturbance threshold is exceeded. Several complementary mechanisms, including canopy structural reorganization and the reallocation of growth-limiting light and

  11. Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge.

    PubMed

    Ziemba, Christopher; Peccia, Jordan

    2011-10-15

    The potential for anaerobic digester energy production must be balanced with the sustainability of reusing the resultant biosolids for land application. Mesophilic, thermophilic, temperature-phased, and high temperature (60 or 70 °C) batch pre-treatment digester configurations have been systematically evaluated for net energy production and pathogen inactivation potential. Energy input requirements and net energy production were modeled for each digester scheme. First-order inactivation rate coefficients for Escherichia coli, Enterococcus faecalis and bacteriophage MS-2 were measured at each digester temperature and full-scale pathogen inactivation performance was estimated for each indicator organism and each digester configuration. Inactivation rates were found to increase dramatically at temperatures above 55 °C. Modeling full-scale performance using retention times based on U.S. EPA time and temperature constraints predicts a 1-2 log inactivation in mesophilic treatment, and a 2-5 log inactivation in 50-55 °C thermophilic and temperature-phased treatments. Incorporating a 60 or 70 °C batch pre-treatment phase resulted in dramatically higher potency, achieving MS-2 inactivation of 14 and 16 logs respectively, and complete inactivation (over 100 log reduction) of E. coli and E. faecalis. For temperatures less than 70 °C, viability staining of thermally-treated E. coli showed significantly reduced inactivation relative to standard culture enumeration. Due to shorter residence times in thermophilic reactors, the net energy production for all digesters was similar (less than 20% difference) with the 60 or 70 °C batch treatment configurations producing the most net energy and the mesophilic treatment producing the least. Incorporating a 60 or 70 °C pre-treatment phase can dramatically increase pathogen inactivation performance without decreasing net energy capture from anaerobic digestion. Energy consumption is not a significant barrier against

  12. Initial Net CO2 Uptake Responses and Root Growth for a CAM Community Placed in a Closed Environment

    PubMed Central

    NOBEL, PARK S.; BOBICH, EDWARD G.

    2002-01-01

    To help understand carbon balance between shoots and developing roots, 41 bare‐root crassulacean acid metabolism (CAM) plants native to the Sonoran Desert were studied in a glass‐panelled sealable room at day/night air temperatures of 25/15 °C. Net CO2 uptake by the community of Agave schottii, Carnegia gigantea, Cylindropuntia versicolor, Ferocactus wislizenii and Opuntia engelmannii occurred 3 weeks after watering. At 4 weeks, the net CO2 uptake rate measured for south‐east‐facing younger parts of the shoots averaged 1·94 µmol m–2 s–1 at night, considerably higher than the community‐level nocturnal net CO2 uptake averaged over the total shoot surface, primarily reflecting the influences of surface orientation on radiation interception (predicted net CO2 uptake is twice as high for south‐east‐facing surfaces compared with all compass directions). Estimated growth plus maintenance respiration of the roots averaged 0·10 µmol m–2 s–1 over the 13‐week period, when the community had a net carbon gain from the atmosphere of 4 mol C while the structural C incorporated into the roots was 23 mol. Thus, these five CAM species diverted all net C uptake over the 13‐week period plus some existing shoot C to newly developing roots. Only after sufficient roots develop to support shoot water and nutrient requirements will the plant community have net above‐ground biomass gains. PMID:12466099

  13. Seasonal distribution of net primary production by functional groups in Chihuahuan Desert, and the role of seasonal precipitation

    USDA-ARS?s Scientific Manuscript database

    In hot deserts, precipitation is the principal driver for net primary production.  This study tested two hypotheses regarding aboveground net primary production (ANPP) and the effects of precipitation on ANPP in the Chihuahuan Desert, with emphasis on differences among seasons and among functional g...

  14. [Characteristics of net phytoplankton community and their relationships to environmental factors in the waters around Nansha Islands].

    PubMed

    Dai, Ming; Liu, Hua-Xue; Liao, Xiu-Li; Li, Kai-Zhi; Yan, Jia-Guo; Qi, Zhan-Hui; Huang, Hong-Hui

    2013-12-01

    Based on samples collected in the waters around Nansha Islands from August 25 to September 28, 2011, the characteristics of net phytoplankton community and their relationships to environmental factors were investigated. A total of 113 species, belonging to 34 genera of 3 phyla were identified, among which 57.5% belonged to Pyrrophyta and 40.7% belonged to Bacillariophyta. Ceratium in Pyrrophyta had the most species accounting for 30.1% of the 113 species. The average abundance of net phytoplankton was 2.12 x 10(4) cell x m(-3) and high abundances were encountered in the complex gyre adjacent to Reed Tablemount and in the Cyclonic Gyre adjacent to Wan'an Tan. Trichodesmium in Cyanophyta was the dominant functional group, taking up 77.0% of the total net phytoplankton abundance. Trichodesmium thiebautii, T. erythraeum and Pyrocystis noctiluca were the major dominant species. The dominant species varied with locations. Cyanophyta widely dominated at stations 3, 5, 6 and 10-14, Pyrrophyta were the dominant phytoplankton in the central locations at stations 4 and 7-9, while Bacillariophyta dominated only at the southernmost stations 1 and 2. The values of Shannon index and Pielou evenness index of net phytoplankton community were 3.10 and 0.62, respectively. The salinity, water temperature, contents of ammonium, nitrite, phosphate and silicate, as well as mesoscale gyres and the west Nansha coastal current were the important environmental factors affecting the characteristics of net phytoplankton community. The ordination plots by canonical correspondence analysis could well display the characteristics of net phytoplankton community and their relationships to environmental factors.

  15. Distribution of Subsidized Insecticide-treated Bed Nets through a Community Health Committee in Boboye Health District, Niger

    PubMed Central

    Nonaka, Daisuke; Maazou, Abani; Yamagata, Shigeo; Oumarou, Issofou; Uchida, Takako; Yacouba, Honoré JG; Kobayashi, Jun; Takeuchi, Tsutomu; Mizoue, Tetsuya

    2012-01-01

    In Niger, insecticide-treated bed nets (ITNs) have been distributed to the target group of households with young children and/or pregnant women at healthcare facilities in the course of antenatal/immunization clinics. With the aim of universal coverage, ITNs were additionally distributed to households through strengthened community health committees in 2009. This study assessed the impact of the community-based net distribution strategy involving community health committees in the ITN coverage in Boboye Health District, Niger. A cross-sectional survey was carried out on 1,034 households drawn from the intervention area (the co-existence of the community-based system together with the facility-based system) and the control area (the facility-based system alone). In the intervention area, 55.8% of households owned ITNs delivered through the community-based system, and 29.6% of households exclusively owned ITNs obtained through the community-based system. The community-based system not only reached households within the target group (54.6% ownership) but also those without (59.1% ownership). Overall, household ITN ownership was significantly higher in the intervention area than in the control area (82.5% vs. 60.7%). In combination, the community-based system and the facility-based system achieved a high ITN coverage. The community-based system contributed to reducing leakage in the facility-based system. PMID:23532450

  16. Net ecosystem exchange from two vegetation communities in Coppermine Peninsula, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Thomazini, André; Francelino, Márcio; Pereira, Antônio; Schünemann, Adriano; Mendonça, Eduardo Sá; Michel, Roberto; Schaefer, Carlos

    2017-04-01

    Antarctic vegetation frequently changes its constitution, size and distribution across the landscape, playing a key role on the nutrient cycling. The carbon cycling and land-atmosphere exchanges under these dynamic conditions remains little studied. The objective of this study was to evaluate the net ecosystem exchange (NEE), based on in situ measurements from different vegetation communities in Coppermine Peninsula, Maritime Antarctica. Mosses patches cover 1.5 ha, representing one of the most important cryptogamic communities in Maritime Antarctica. Two typical vegetation communities were studied: a moss site (hereafter Site 1) and a moss/lichen site (hereafter Site 2). Site 1 represents a low lying marine terrace (20 m asl), highly influenced by ice/snow/permafrost melting from the uplands, mainly constituted by Sanionia uncinata (Hedw.) Loeske, forming a dense carpet with 3-7 cm thickness. Site 2 is located in an elevated basalt ridge (29 m a.s.l.), under local influence of permafrost within 30 cm depth. Vegetation composition is varied , with a dominance of Polytrichastrum alpinum G.L. Smith, and lichens (Psoroma cinnamomeum Malme, Ochrolechia frigida (Sw.). To obtain the NEE data, we used closed automatic chamber system of CO2 exchange (LI-COR Biosciences, Lincoln, NE, USA) containing an infra-red gas analyzer (model LI-8100A), a multiplexer system (model LI-8150) and one clear chamber (model LI-8100-104C). Three PVC soil collars of 20 cm diameter were placed into the soil prior measurements at each selected site (standard depth of 3 cm), spaced 2 m from each other. NEE at each point were based on a single measurement over 1.5 min, and the concentrations of CO2 were determined at 3 sec intervals to determinate the current flux of CO2. Mean values of NEE were obtained from 08th (00:00 h) to January 22th, 2016 (12:00 h). From January 08th to 22th, mean values of NEE were -0.54 (±0.05) μmol CO2 m-2 s-1 in Site 1 and -0.07 (±0.02) μmol CO2 m-2 s-1 in Site 2

  17. GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation

    DOE PAGES

    Jiang, Bo; Liang, Shunlin; Ma, Han; ...

    2016-03-09

    Mapping surface all-wave net radiation (Rn) is critically needed for various applications. Several existing Rn products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime Rn product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS Rn product based on high-quality in situ measurements in the United Statesmore » shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm-2, and an average bias of 17.59 Wm-2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS Rn product is satisfactory. The GLASS Rn product from 2000 to the present is operational and freely available to the public.« less

  18. GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation

    SciTech Connect

    Jiang, Bo; Liang, Shunlin; Ma, Han; Zhang, Xiaotong; Xiao, Zhiqiang; Zhao, Xiang; Jia, Kun; Yao, Yunjun; Jia, Aolin

    2016-03-09

    Mapping surface all-wave net radiation (Rn) is critically needed for various applications. Several existing Rn products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime Rn product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS Rn product based on high-quality in situ measurements in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm-2, and an average bias of 17.59 Wm-2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS Rn product is satisfactory. The GLASS Rn product from 2000 to the present is operational and freely available to the public.

  19. Managing forest products for community benefit

    Treesearch

    Susan Charnley; Jonathan W. Long

    2014-01-01

    Forest products harvesting and use from national forest lands remain important to local residents and communities in some parts of the Sierra Nevada science synthesis area. Managing national forests for the sustainable production of timber, biomass, nontimber forest products, and forage for livestock can help support forestbased livelihoods in parts of the region where...

  20. Changing Community Health Behaviors with a Health Promotion Computer Network: Preliminary Findings from Stanford Health-Net

    PubMed Central

    Robinson, Thomas N.; Walters, Paul A.

    1987-01-01

    Computer-based health education has been employed in many settings. However, data on resultant behavior change are lacking. A randomized, controlled, prospective study was performed to test the efficacy of Stanford Health-Net in changing community health behaviors. Graduate and undergraduate students (N=1003) were randomly assigned to treatment and control conditions. The treatment group received access to Health-Net, a health promotion computer network emphasizing specific self-care and preventive strategies. Over a four month intervention period, 26% of the treatment group used Health-Net an average of 6.4 times each (range 1 to 97). Users rated Health-Net favorably. The mean number of ambulatory medical visits decreesed 22.5% more in the treatment group than in the control group (P<.05), while hospitalizations did not differ significantly between groups. In addition, perceived self-efficacy for preventing the acquisition of a STD and herpes increased 577% (P<.05) and 261% (P<.01) more, respectively, in the treatment group than in the control group. These findings suggest that access to Stanford Health-Net can result in significant health behavior change. The advantages of the network approach make it a potential model for other communities.

  1. Impact of atmospheric aerosol light scattering and absorption on terrestrial net primary productivity

    NASA Astrophysics Data System (ADS)

    Cohan, Daniel S.; Xu, Jin; Greenwald, Roby; Bergin, Michael H.; Chameides, William L.

    2002-12-01

    Scattering and absorption of sunlight by anthropogenic aerosols reduce the photosynthetically active radiation (PAR) incident upon the Earth's surface, but increase the fraction of the PAR that is diffuse. These alterations to irradiance may elicit conflicting responses in terrestrial plants: photosynthesis and net primary productivity (NPP) are slowed by reductions in total PAR, but enhanced by increases in diffuse PAR. In this paper, we use two canopy photosynthesis models to estimate the net effect of aerosols on carbon assimilation by green plants during summertime at midlatitudes. The model calculations indicate that the net effect of PAR scattering and absorption by atmospheric aerosols on NPP can be positive, neutral, or negative. Two parameters that strongly influence the net effect are the aerosol optical depth (integral of light extinction with height) and the cloud cover. On cloudless days NPP peaks under moderately thick aerosol loadings. On overcast days, aerosols slow NPP. The implications of these results for various regions of the globe and possible directions for future studies on the effect of aerosols on plant growth are discussed.

  2. Net energy ratio for the production of steam pretreated biomass-based pellets

    DOE PAGES

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...

    2015-06-21

    In this study, a process model was developed to determine the net energy ratio (NER) for both regular and steam-pretreated pellet production from ligno-cellulosic biomass. NER is a ratio of the net energy output to the total net energy input from non-renewable energy source into the system. Scenarios were developed to measure the effect of temperature and level of steam pretreatment on the NER of both production processes. The NER for the base case at 6 kg h–1 is 1.29 and 5.0 for steam-pretreated and regular pellet production respectively. However, at the large scale NER would improve. The major factormore » for NER is energy for steam and drying unit. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 200 °C with 50% pretreatment (Steam pretreating 50% feed stock, while the rest is undergoing regular pelletization). Uncertainty result for steam pretreated and regular pellet is 1.35 ± 0.09 and 4.52 ± 0.34 respectively.« less

  3. Net energy ratio for the production of steam pretreated biomass-based pellets

    SciTech Connect

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; Ghiasi, Bahman; Kumar, Linoj; Sokhansanj, Shahab

    2015-06-21

    In this study, a process model was developed to determine the net energy ratio (NER) for both regular and steam-pretreated pellet production from ligno-cellulosic biomass. NER is a ratio of the net energy output to the total net energy input from non-renewable energy source into the system. Scenarios were developed to measure the effect of temperature and level of steam pretreatment on the NER of both production processes. The NER for the base case at 6 kg h–1 is 1.29 and 5.0 for steam-pretreated and regular pellet production respectively. However, at the large scale NER would improve. The major factor for NER is energy for steam and drying unit. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 200 °C with 50% pretreatment (Steam pretreating 50% feed stock, while the rest is undergoing regular pelletization). Uncertainty result for steam pretreated and regular pellet is 1.35 ± 0.09 and 4.52 ± 0.34 respectively.

  4. Variation in peak growing season net ecosystem production across the Canadian Arctic.

    PubMed

    Lafleur, Peter M; Humphreys, Elyn R; St Louis, Vincent L; Myklebust, May C; Papakyriakou, Tim; Poissant, Laurier; Barker, Joel D; Pilote, Martin; Swystun, Kyle A

    2012-08-07

    Tundra ecosystems store vast amounts of soil organic carbon, which may be sensitive to climatic change. Net ecosystem production, NEP, is the net exchange of carbon dioxide (CO(2)) between landscapes and the atmosphere, and represents the balance between CO(2) uptake by photosynthesis and release by decomposition and autotrophic respiration. Here we examine CO(2) exchange across seven sites in the Canadian low and high Arctic during the peak growing season (July) in summer 2008. All sites were net sinks for atmospheric CO(2) (NEP ranged from 5 to 67 g C m(-2)), with low Arctic sites being substantially larger CO(2) sinks. The spatial difference in NEP between low and high Arctic sites was determined more by CO(2) uptake via gross ecosystem production than by CO(2) release via ecosystem respiration. Maximum gross ecosystem production at the low Arctic sites (average 8.6 μmol m(-2) s(-1)) was about 4 times larger than for high Arctic sites (average 2.4 μmol m(-2) s(-1)). NEP decreased with increasing temperature at all low Arctic sites, driven largely by the ecosystem respiration response. No consistent temperature response was found for the high Arctic sites. The results of this study clearly indicate there are large differences in tundra CO(2) exchange between high and low Arctic environments and this difference should be a central consideration in studies of Arctic carbon balance and climate change.

  5. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species

    PubMed Central

    Collier, Catherine J.; Ow, Yan X.; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L.; O'Brien, Katherine R.; Hrebien, Victoria; Adams, Matthew P.

    2017-01-01

    Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt) for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature). The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis (33°C), but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum

  6. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species.

    PubMed

    Collier, Catherine J; Ow, Yan X; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L; O'Brien, Katherine R; Hrebien, Victoria; Adams, Matthew P

    2017-01-01

    Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt) for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature). The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis (33°C), but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum

  7. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    PubMed

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid-marshes relative to the high marsh (P < 0.001). Net N2 O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m(-2)  h(-1) , -2.2 ± 0.9 μg N m(-2)  h(-1) , and 0.67 ± 0.57 μg N m(-2)  h(-1) in the low, mid, and high marshes, respectively. Both net N2 O release and uptake were observed in the low and high marshes, but the mid-marsh was consistently a net N2 O sink. Gross N2 O production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise. © 2015 John Wiley & Sons Ltd.

  8. Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina

    NASA Astrophysics Data System (ADS)

    Pucheta, Eduardo; Cabido, Marcelo; Díaz, Sandra; Funes, Guillermo

    1998-04-01

    Changes in plant community composition, diversity, aboveground biomass, and aboveground net primary production (ANPP) of different plant growth-forms were assessed in sites protected from livestock grazing for 2, 4, and 15 years, and in a heavily-grazed site. Species richness was maximum at the grazed site and decreased significantly after 4 years of protection. Diversity decreased significantly only after 15 years of protection. No alien or weedy species were found at grazed or protected sites. Grazing exclusion produced a shift from grazing-tolerant or grazing-avoiding species with a graminoid or prostrate growth-form to taller species with a tall tussock growth-form. Grazing produced a 33% decrease in standing biomass but little change in ANPP when compared to the site protected from grazing for 2 years, but important changes in both biomass and ANPP respect to the sites protected for 4 and 15 years. Consumption was near 35% of ANPP.

  9. Community-level net spillover of natural enemies from managed to natural forest.

    PubMed

    Frost, Carol M; Didham, Raphael K; Rand, Tatyana A; Peralta, Guadalupe; Tylianakis, Jason M

    2015-01-01

    Edge effects in fragmented natural habitats may De exaceroateci by intensive land use in the surrounding landscape. Given that most managed systems have higher primary productivity than adjacent natural systems, theory suggests that bottom-up subsidized consumers are likely to spill over from managed to natural habitats. Furthermore, the magnitude of spillover is likely to differ between generalist and specialist consumers, because of differences in their ability to use the full spectrum of resources. However, it is unknown whether there is indeed asymmetrical spillover of consumers between managed and natural habitats, and whether this is related to resource abundance or the trophic specialization of the consumer. We used flight intercept traps to measure spillover of generalist predators (Vespula wasps, Vespidae) and more specialist predators (106 species of parasitoids, Ichneumonidae and Braconidae) across habitat edges between native New Zealand forest and exotic plantation forest over a summer season. We found net spillover of both generalist and specialist predators from plantation to native forest, and that this was greater for generalists. To test whether natural enemy spillover from managed habitats was related to prey (caterpillar) abundance (i.e., whether it was bottom-up productivity driven, due to increased primary productivity), we conducted a large-scale herbivore reduction experiment at half of our plantation sites, by helicopter spraying caterpillar-specific insecticide over 2.5 ha per site. We monitored bidirectional natural enemy spillover and found that herbivore reduction reduced generalist but not specialist predator spillover. Trophic generalists may benefit disproportionately from high resource productivity in a habitat, and their cross-habitat spillover effects on natural food webs may be an important source of consumer pressure in mosaic landscapes.

  10. MPL-Net data products available at co-located AERONET sites and field experiment locations

    NASA Astrophysics Data System (ADS)

    Welton, E. J.; Campbell, J. R.; Berkoff, T. A.

    2002-05-01

    Micro-pulse lidar (MPL) systems are small, eye-safe lidars capable of profiling the vertical distribution of aerosol and cloud layers. There are now over 20 MPL systems around the world, and they have been used in numerous field experiments. A new project was started at NASA Goddard Space Flight Center in 2000. The new project, MPL-Net, is a coordinated network of long-time MPL sites. The network also supports a limited number of field experiments each year. Most MPL-Net sites and field locations are co-located with AERONET sunphotometers. At these locations, the AERONET and MPL-Net data are combined together to provide both column and vertically resolved aerosol and cloud measurements. The MPL-Net project coordinates the maintenance and repair for all instruments in the network. In addition, data is archived and processed by the project using common, standardized algorithms that have been developed and utilized over the past 10 years. These procedures ensure that stable, calibrated MPL systems are operating at sites and that the data quality remains high. Rigorous uncertainty calculations are performed on all MPL-Net data products. Automated, real-time level 1.0 data processing algorithms have been developed and are operational. Level 1.0 algorithms are used to process the raw MPL data into the form of range corrected, uncalibrated lidar signals. Automated, real-time level 1.5 algorithms have also been developed and are now operational. Level 1.5 algorithms are used to calibrate the MPL systems, determine cloud and aerosol layer heights, and calculate the optical depth and extinction profile of the aerosol boundary layer. The co-located AERONET sunphotometer provides the aerosol optical depth, which is used as a constraint to solve for the extinction-to-backscatter ratio and the aerosol extinction profile. Browse images and data files are available on the MPL-Net web-site. An overview of the processing algorithms and initial results from selected sites and field

  11. Belowground productivity of two cool desert communities.

    PubMed

    Caldwell, M M; Camp, L B

    1974-06-01

    A new technique based upon the dilution of C (14) /C (12) ratios in structural carbon of root systems during the course of the growing season was used to evaluate belowground turnover or productivity of two cool desert communities in northern Utah, USA. This technique provides a measure of turnover of the root system of established perennial plant communities avoiding many of the disadvantages of other techniques. Adjacent communities dominated by Atriplex confertifolia and Ceratoides lanata both exhibited belowground productivity values exceeding aboveground production by three-fold. The greater belowground turnover of the Atriplex-dominated community may be a factor contributing to the maintenance of a greater quantity of aboveground biomass and prolonged periods of active photosynthesis during the driest portions of the year when Ceratoides becomes largely photosynthetically inactive.

  12. The whole world will be able to see us: determining the characteristics of a culturally appropriate bed net among mestizo communities of the Peruvian Amazon.

    PubMed

    Harvey, Steven A; Olórtegui, Maribel Paredes; Leontsini, Elli; Pezo, Clara Bustamante; Pezantes, Luz Marina Olórtegui; Winch, Peter J

    2008-12-01

    The Peruvian Ministry of Health has distributed insecticide-treated nets (ITNs) in the country's Amazon region since 1999. Net use is nearly universal among mestizo communities in this area, but residents traditionally use non-impregnated muslin nets. We evaluated the cultural acceptability of Ministry ITNs using qualitative methods. Our results show that nets serve various functions for users: protection against insect bites, warmth, privacy, and a sense of security for young children. Because the Ministry-distributed ITNs could not fulfill these functions as well as traditional nets, many recipients disliked or rejected the ITNs they received. Also, because the ITN fabric stains rapidly, recipients washed their nets frequently rather than waiting 6 months as recommended. We propose a two-pronged approach that balances user and health system expectations of bed nets and that should lead to more widespread and effective ITN use in the study communities.

  13. Prioritising Carbon Sequestration Areas in Southern Queensland using Time Series MODIS Net Primary Productivity (NPP) Imagery

    NASA Astrophysics Data System (ADS)

    Apan, A.; Suarez Cadavid, L. A.; Richardson, L.; Maraseni, T.

    2014-11-01

    The aim of this study was to develop a method that will use satellite imagery to identify areas of high forest growth and productivity, as a primary input in prioritising revegetation sites for carbon sequestration. Using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, this study analysed the annual net primary production (NPP) values (gC/m2) of images acquired from 2000 to 2013, covering the Condamine Catchment in southeast Queensland, Australia. With the analysis of annual rainfall data during the same period, three transitions of "normal to dry" years were identified to represent the future climate scenario considered in this study. The difference in the corresponding NPP values for each year was calculated, and subsequently averaged to the get the "Mean of Annual NPP Difference" (MAND) map. This layer identified the areas with increased net primary production despite the drought condition in those years. Combined with key thematic maps (i.e. regional ecosystems, land use, and tree canopy cover), the priority areas were mapped. The results have shown that there are over 42 regional ecosystem (RE) types in the study area that exhibited positive vegetation growth and productivity despite the decrease in annual rainfall. However, seven (7) of these RE types represents the majority (79 %) of the total high productivity area. A total of 10,736 ha were mapped as priority revegetation areas. This study demonstrated the use of MODIS-NPP imagery to map vegetation with high carbon sequestration rates necessary in prioritising revegetation sites.

  14. Partial net primary production of a mixed dipterocarp forest: Spatial patterns and temporal dynamics

    NASA Astrophysics Data System (ADS)

    Tan, Zheng-Hong; Deng, Xiao-Bao; Hughes, Alice; Tang, Yong; Cao, Min; Zhang, Wen-Fu; Yang, Xiao-Fei; Sha, Li-Qing; Song, Liang; Zhao, Jun-Fu

    2015-03-01

    We examined how and why partial net primary production (NPPpart) varies across time and space in a Chinese dipterocarp forest. We hypothesize that (1) soil geochemistry explains the spatial pattern of NPPpart within the plot and (2) NPPpart can be used to measure the degree of drought resilience of a natural forest. Spatially, NPPpart was autocorrelated in the range of 75.3 m and homogenous. This spatial pattern could not be well explained by any of the soil properties individually or in combination. If drought sensitivity is defined by marked reduction in NPPpart, the studied forest is drought resilient even when a longer and drier than usual drought hit. Although annual NPPpart was unchanged (vary within 18.24 and 18.52 t ha-1 yr-1) after the drought, the allocation of NPPpart to short-lived litterfall increased, which has further effects on the ecosystem net carbon balance.

  15. Consumption-weighted life cycle assessment of a consumer electronic product community.

    PubMed

    Ryen, Erinn G; Babbitt, Callie W; Williams, Eric

    2015-02-17

    A new approach for quantifying the net environmental impact of a "community" of interrelated products is demonstrated for consumer electronics owned by an average U.S. household over a 15-year period (1992-2007). This consumption-weighted life cycle assessment (LCA) methodology accounts for both product consumption (number of products per household) and impact (cumulative energy demand (MJ) and greenhouse gas emissions (MT CO2 eq) per product), analyzed using a hybrid LCA framework. Despite efficiency improvements in individual devices from 1992 to 2007, the net impact of the entire product community increased, due primarily to increasing ownership and usage. The net energy impact for the product community is significant, nearly 30% of the average gasoline use in a U.S. passenger vehicle in 2007. The analysis points to a large contribution by legacy products (cathode ray tube televisions and desktop computers), due to historically high consumption rates, although impacts are beginning to shift to smaller mobile devices. This method is also applied to evaluate prospective intervention strategies, indicating that environmental impact can be reduced by strategies such as lifespan extension or energy efficiency, but only when applied to all products owned, or by transforming consumption trends toward fewer, highly multifunctional products.

  16. Building America Top Innovations 2012: Zero Net-Energy Homes Production Builder Business Case: California/Florida Production Builders

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Grupe Homes of Sacramento’s work with Building America to design California’s first production-scale community of solar homes. The homes outsold neighboring developments two to one.

  17. CoryneRegNet 6.0--Updated database content, new analysis methods and novel features focusing on community demands.

    PubMed

    Pauling, Josch; Röttger, Richard; Tauch, Andreas; Azevedo, Vasco; Baumbach, Jan

    2012-01-01

    Post-genomic analysis techniques such as next-generation sequencing have produced vast amounts of data about micro organisms including genetic sequences, their functional annotations and gene regulatory interactions. The latter are genetic mechanisms that control a cell's characteristics, for instance, pathogenicity as well as survival and reproduction strategies. CoryneRegNet is the reference database and analysis platform for corynebacterial gene regulatory networks. In this article we introduce the updated version 6.0 of CoryneRegNet and describe the updated database content which includes, 6352 corynebacterial regulatory interactions compared with 4928 interactions in release 5.0 and 3235 regulations in release 4.0, respectively. We also demonstrate how we support the community by integrating analysis and visualization features for transiently imported custom data, such as gene regulatory interactions. Furthermore, with release 6.0, we provide easy-to-use functions that allow the user to submit data for persistent storage with the CoryneRegNet database. Thus, it offers important options to its users in terms of community demands. CoryneRegNet is publicly available at http://www.coryneregnet.de.

  18. Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands.

    PubMed

    Ryals, Rebecca; Silver, Whendee L

    2013-01-01

    Most of the world's grasslands are managed for livestock production. A critical component of the long-term sustainability and profitability of rangelands (e.g., grazed grassland ecosystems) is the maintenance of plant production. Amending grassland soils with organic waste has been proposed as a means to increase net primary productivity (NPP) and ecosystem carbon (C) storage, while mitigating greenhouse gas emissions from waste management. Few studies have evaluated the effects of amendments on the C balance and greenhouse gas dynamics of grasslands. We used field manipulations replicated within and across two rangelands (a valley grassland and a coastal grassland) to determine the effects of a single application of composted green waste amendments on NPP and greenhouse gas emissions over three years. Amendments elevated total soil respiration by 18% +/- 4% at both sites but had no effect on nitrous oxide or methane emissions. Carbon losses were significantly offset by greater and sustained plant production. Amendments stimulated both above- and belowground NPP by 2.1 +/- 0.8 Mg C/ha to 4.7 +/- 0.7 Mg C/ha (mean +/- SE) over the three-year study period. Net ecosystem C storage increased by 25-70% without including the direct addition of compost C. The estimated magnitude of net ecosystem C storage was sensitive to estimates of heterotrophic soil respiration but was greater than controls in five out of six fields that received amendments. The sixth plot was the only one that exhibited lower soil moisture than the control, suggesting an important role of water limitation in these seasonally dry ecosystems. Treatment effects persisted over the course of the study, which were likely derived from increased water-holding capacity in most plots, and slow-release fertilization from compost decomposition. We conclude that a single application of composted organic matter can significantly increase grassland C storage, and that effects of a single application are likely to

  19. Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China.

    PubMed

    Xu, C; Liu, M; An, S; Chen, J M; Yan, P

    2007-11-01

    Urbanization is one of the most important aspects of global change. The process of urbanization has a significant impact on the terrestrial ecosystem carbon cycle. The Yangtze Delta region has one of the highest rates of urbanization in China. In this study, carried out in Jiangyin County as a representative region within the Yangtze Delta, land use and land cover changes were estimated using Landsat TM and ETM+ imagery. With these satellite data and the BEPS process model (Boreal Ecosystem Productivity Simulator), the impacts of urbanization on regional net primary productivity (NPP) and annual net primary production were assessed for 1991 and 2002. Landsat-based land cover maps in 1991 and 2002 showed that urban development encroached large areas of cropland and forest. Expansion of residential areas and reduction of vegetated areas were the major forms of land transformation in Jiangyin County during this period. Mean NPP of the total area decreased from 818 to 699 gCm(-2)yr(-1) during the period of 1991 to 2002. NPP of cropland was only reduced by 2.7% while forest NPP was reduced by 9.3%. Regional annual primary production decreased from 808 GgC in 1991 to 691 GgC in 2002, a reduction of 14.5%. Land cover changes reduced regional NPP directly, and the increasing intensity and frequency of human-induced disturbance in the urbanized areas could be the main reason for the decrease in forest NPP.

  20. The CAFE model: A net production model for global ocean phytoplankton

    NASA Astrophysics Data System (ADS)

    Silsbe, Greg M.; Behrenfeld, Michael J.; Halsey, Kimberly H.; Milligan, Allen J.; Westberry, Toby K.

    2016-12-01

    The Carbon, Absorption, and Fluorescence Euphotic-resolving (CAFE) net primary production model is an adaptable framework for advancing global ocean productivity assessments by exploiting state-of-the-art satellite ocean color analyses and addressing key physiological and ecological attributes of phytoplankton. Here we present the first implementation of the CAFE model that incorporates inherent optical properties derived from ocean color measurements into a mechanistic and accurate model of phytoplankton growth rates (μ) and net phytoplankton production (NPP). The CAFE model calculates NPP as the product of energy absorption (QPAR), and the efficiency (ϕμ) by which absorbed energy is converted into carbon biomass (CPhyto), while μ is calculated as NPP normalized to CPhyto. The CAFE model performance is evaluated alongside 21 other NPP models against a spatially robust and globally representative set of direct NPP measurements. This analysis demonstrates that the CAFE model explains the greatest amount of variance and has the lowest model bias relative to other NPP models analyzed with this data set. Global oceanic NPP from the CAFE model (52 Pg C m-2 yr-1) and mean division rates (0.34 day-1) are derived from climatological satellite data (2002-2014). This manuscript discusses and validates individual CAFE model parameters (e.g., QPAR and ϕμ), provides detailed sensitivity analyses, and compares the CAFE model results and parameterization to other widely cited models.

  1. Net ecosystem production, calcification and CO2 fluxes on a reef flat in Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Longhini, Cybelle M.; Souza, Marcelo F. L.; Silva, Ananda M.

    2015-12-01

    The carbon cycle in coral reefs is usually dominated by the organic carbon metabolism and precipitation-dissolution of CaCO3, processes that control the CO2 partial pressure (pCO2) in seawater and the CO2 fluxes through the air-sea interface. In order to characterize these processes and the carbonate system, four sampling surveys were conducted at the reef flat of Coroa Vermelha during low tide (exposed flat). Net ecosystem production (NEP), net precipitation-dissolution of CaCO3 (G) and CO2 fluxes across the air-water interface were calculated. The reef presented net autotrophy and calcification at daytime low tide. The NEP ranged from -8.7 to 31.6 mmol C m-2 h-1 and calcification from -13.1 to 26.0 mmol C m-2 h-1. The highest calcification rates occurred in August 2007, coinciding with the greater NEP rates. The daytime CO2 fluxes varied from -9.7 to 22.6 μmol CO2 m-2 h-1, but reached up to 13,900 μmol CO2 m-2 h-1 during nighttime. Carbon dioxide influx to seawater was predominant in the reef flat during low tide. The regions adjacent to the reef showed a supersaturation of CO2, acting as a source of CO2 to the atmosphere (from -22.8 to -2.6 mol CO2 m-2 h-1) in the reef flat during ebbing tide. Nighttime gas release to the atmosphere indicates a net CO2 release from the Coroa Vermelha reef flat within 24 h, and that these fluxes can be important to carbon budget in coral reefs.

  2. Comparing global models of terrestrial net primary productivity (NPP): Global pattern and differentiation by major biomes

    USGS Publications Warehouse

    Kicklighter, D.W.; Bondeau, A.; Schloss, A.L.; Kaduk, J.; McGuire, A.D.

    1999-01-01

    Annual and seasonal net primary productivity estimates (NPP) of 15 global models across latitudinal zones and biomes are compared. The models simulated NPP for contemporary climate using common, spatially explicit data sets for climate, soil texture, and normalized difference vegetation index (NDVI). Differences among NPP estimates varied over space and time. The largest differences occur during the summer months in boreal forests (50??to 60??N) and during the dry seasons of tropical evergreen forests. Differences in NPP estimates are related to model assumptions about vegetation structure, model parameterizations, and input data sets.

  3. Worldwide estimates and bibliography of net primary productivity derived from pre-1982 publications

    SciTech Connect

    Esser, G.; Lieth, H.F.H.; Scurlock, J.M.O.; Olson, R.J.

    1997-10-01

    An extensive compilation of more than 700 field estimates of net primary productivity of natural and agricultural ecosystems worldwide was synthesized in Germany in the 1970s and early 1980s. Although the Osnabrueck data set has not been updated since the 1980s, it represents a wealth of information for use in model development and validation. This report documents the development of this data set, its contents, and its recent availability on the Internet from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. Caution is advised in using these data, which necessarily include assumptions and conversions that may not be universally applicable to all sites.

  4. Southern Ocean Seasonal Net Production from Satellite, Atmosphere, and Ocean Data Sets

    NASA Technical Reports Server (NTRS)

    Keeling, Ralph F.; Campbell, J. (Technical Monitor)

    2002-01-01

    A new climatology of monthly air-sea O2 flux was developed using the net air-sea heat flux as a template for spatial and temporal interpolation of sparse hydrographic data. The climatology improves upon the previous climatology of Najjar and Keeling in the Southern Hemisphere, where the heat-based approach helps to overcome limitations due to sparse data coverage. The climatology is used to make comparisons with productivity derived from CZCS images. The climatology is also used in support of an investigation of the plausible impact of recent global warming an oceanic O2 inventories.

  5. Net primary productivity of forest stands in New Hampshire estimated from Landsat and MODIS satellite data

    PubMed Central

    Potter, Christopher; Gross, Peggy; Genovese, Vanessa; Smith, Marie-Louise

    2007-01-01

    Background A simulation model that relies on satellite observations of vegetation cover from the Landsat 7 sensor and from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate net primary productivity (NPP) of forest stands at the Bartlett Experiment Forest (BEF) in the White Mountains of New Hampshire. Results Net primary production (NPP) predicted from the NASA-CASA model using 30-meter resolution Landsat inputs showed variations related to both vegetation cover type and elevational effects on mean air temperatures. Overall, the highest predicted NPP from the NASA-CASA model was for deciduous forest cover at low to mid-elevation locations over the landscape. Comparison of the model-predicted annual NPP to the plot-estimated values showed a significant correlation of R2 = 0.5. Stepwise addition of 30-meter resolution elevation data values explained no more than 20% of the residual variation in measured NPP patterns at BEF. Both the Landsat 7 and the 250-meter resolution MODIS derived mean annual NPP predictions for the BEF plot locations were within ± 2.5% of the mean of plot estimates for annual NPP. Conclusion Although MODIS imagery cannot capture the spatial details of NPP across the network of closely spaced plot locations as well as Landsat, the MODIS satellite data as inputs to the NASA-CASA model does accurately predict the average annual productivity of a site like the BEF. PMID:17941989

  6. Net primary productivity of forest stands in New Hampshire estimated from Landsat and MODIS satellite data.

    PubMed

    Potter, Christopher; Gross, Peggy; Genovese, Vanessa; Smith, Marie-Louise

    2007-10-17

    A simulation model that relies on satellite observations of vegetation cover from the Landsat 7 sensor and from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate net primary productivity (NPP) of forest stands at the Bartlett Experiment Forest (BEF) in the White Mountains of New Hampshire. Net primary production (NPP) predicted from the NASA-CASA model using 30-meter resolution Landsat inputs showed variations related to both vegetation cover type and elevational effects on mean air temperatures. Overall, the highest predicted NPP from the NASA-CASA model was for deciduous forest cover at low to mid-elevation locations over the landscape. Comparison of the model-predicted annual NPP to the plot-estimated values showed a significant correlation of R2 = 0.5. Stepwise addition of 30-meter resolution elevation data values explained no more than 20% of the residual variation in measured NPP patterns at BEF. Both the Landsat 7 and the 250-meter resolution MODIS derived mean annual NPP predictions for the BEF plot locations were within +/- 2.5% of the mean of plot estimates for annual NPP. Although MODIS imagery cannot capture the spatial details of NPP across the network of closely spaced plot locations as well as Landsat, the MODIS satellite data as inputs to the NASA-CASA model does accurately predict the average annual productivity of a site like the BEF.

  7. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems

    PubMed Central

    Haberl, Helmut; Erb, K. Heinz; Krausmann, Fridolin; Gaube, Veronika; Bondeau, Alberte; Plutzar, Christoph; Gingrich, Simone; Lucht, Wolfgang; Fischer-Kowalski, Marina

    2007-01-01

    Human appropriation of net primary production (HANPP), the aggregate impact of land use on biomass available each year in ecosystems, is a prominent measure of the human domination of the biosphere. We present a comprehensive assessment of global HANPP based on vegetation modeling, agricultural and forestry statistics, and geographical information systems data on land use, land cover, and soil degradation that localizes human impact on ecosystems. We found an aggregate global HANPP value of 15.6 Pg C/yr or 23.8% of potential net primary productivity, of which 53% was contributed by harvest, 40% by land-use-induced productivity changes, and 7% by human-induced fires. This is a remarkable impact on the biosphere caused by just one species. We present maps quantifying human-induced changes in trophic energy flows in ecosystems that illustrate spatial patterns in the human domination of ecosystems, thus emphasizing land use as a pervasive factor of global importance. Land use transforms earth's terrestrial surface, resulting in changes in biogeochemical cycles and in the ability of ecosystems to deliver services critical to human well being. The results suggest that large-scale schemes to substitute biomass for fossil fuels should be viewed cautiously because massive additional pressures on ecosystems might result from increased biomass harvest. PMID:17616580

  8. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems.

    PubMed

    Haberl, Helmut; Erb, K Heinz; Krausmann, Fridolin; Gaube, Veronika; Bondeau, Alberte; Plutzar, Christoph; Gingrich, Simone; Lucht, Wolfgang; Fischer-Kowalski, Marina

    2007-07-31

    Human appropriation of net primary production (HANPP), the aggregate impact of land use on biomass available each year in ecosystems, is a prominent measure of the human domination of the biosphere. We present a comprehensive assessment of global HANPP based on vegetation modeling, agricultural and forestry statistics, and geographical information systems data on land use, land cover, and soil degradation that localizes human impact on ecosystems. We found an aggregate global HANPP value of 15.6 Pg C/yr or 23.8% of potential net primary productivity, of which 53% was contributed by harvest, 40% by land-use-induced productivity changes, and 7% by human-induced fires. This is a remarkable impact on the biosphere caused by just one species. We present maps quantifying human-induced changes in trophic energy flows in ecosystems that illustrate spatial patterns in the human domination of ecosystems, thus emphasizing land use as a pervasive factor of global importance. Land use transforms earth's terrestrial surface, resulting in changes in biogeochemical cycles and in the ability of ecosystems to deliver services critical to human well being. The results suggest that large-scale schemes to substitute biomass for fossil fuels should be viewed cautiously because massive additional pressures on ecosystems might result from increased biomass harvest.

  9. Global human appropriation of net primary production doubled in the 20th century

    PubMed Central

    Krausmann, Fridolin; Erb, Karl-Heinz; Gingrich, Simone; Haberl, Helmut; Bondeau, Alberte; Gaube, Veronika; Lauk, Christian; Plutzar, Christoph; Searchinger, Timothy D.

    2013-01-01

    Global increases in population, consumption, and gross domestic product raise concerns about the sustainability of the current and future use of natural resources. The human appropriation of net primary production (HANPP) provides a useful measure of human intervention into the biosphere. The productive capacity of land is appropriated by harvesting or burning biomass and by converting natural ecosystems to managed lands with lower productivity. This work analyzes trends in HANPP from 1910 to 2005 and finds that although human population has grown fourfold and economic output 17-fold, global HANPP has only doubled. Despite this increase in efficiency, HANPP has still risen from 6.9 Gt of carbon per y in 1910 to 14.8 GtC/y in 2005, i.e., from 13% to 25% of the net primary production of potential vegetation. Biomass harvested per capita and year has slightly declined despite growth in consumption because of a decline in reliance on bioenergy and higher conversion efficiencies of primary biomass to products. The rise in efficiency is overwhelmingly due to increased crop yields, albeit frequently associated with substantial ecological costs, such as fossil energy inputs, soil degradation, and biodiversity loss. If humans can maintain the past trend lines in efficiency gains, we estimate that HANPP might only grow to 27–29% by 2050, but providing large amounts of bioenergy could increase global HANPP to 44%. This result calls for caution in refocusing the energy economy on land-based resources and for strategies that foster the continuation of increases in land-use efficiency without excessively increasing ecological costs of intensification. PMID:23733940

  10. Global human appropriation of net primary production doubled in the 20th century.

    PubMed

    Krausmann, Fridolin; Erb, Karl-Heinz; Gingrich, Simone; Haberl, Helmut; Bondeau, Alberte; Gaube, Veronika; Lauk, Christian; Plutzar, Christoph; Searchinger, Timothy D

    2013-06-18

    Global increases in population, consumption, and gross domestic product raise concerns about the sustainability of the current and future use of natural resources. The human appropriation of net primary production (HANPP) provides a useful measure of human intervention into the biosphere. The productive capacity of land is appropriated by harvesting or burning biomass and by converting natural ecosystems to managed lands with lower productivity. This work analyzes trends in HANPP from 1910 to 2005 and finds that although human population has grown fourfold and economic output 17-fold, global HANPP has only doubled. Despite this increase in efficiency, HANPP has still risen from 6.9 Gt of carbon per y in 1910 to 14.8 GtC/y in 2005, i.e., from 13% to 25% of the net primary production of potential vegetation. Biomass harvested per capita and year has slightly declined despite growth in consumption because of a decline in reliance on bioenergy and higher conversion efficiencies of primary biomass to products. The rise in efficiency is overwhelmingly due to increased crop yields, albeit frequently associated with substantial ecological costs, such as fossil energy inputs, soil degradation, and biodiversity loss. If humans can maintain the past trend lines in efficiency gains, we estimate that HANPP might only grow to 27-29% by 2050, but providing large amounts of bioenergy could increase global HANPP to 44%. This result calls for caution in refocusing the energy economy on land-based resources and for strategies that foster the continuation of increases in land-use efficiency without excessively increasing ecological costs of intensification.

  11. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests

    SciTech Connect

    Gough, Christopher; Curtis, Peter; Hardiman, Brady; Scheuermann, Cynthia; Bond-Lamberty, Benjamin

    2016-06-29

    Century-old forests in the U.S. upper Midwest and Northeast power much of North Amer- ica’s terrestrial carbon (C) sink, but these forests’ production and C sequestration capacity are expected to soon decline as fast-growing early successional species die and are replaced by slower growing late successional species. But will this really happen? Here we marshal empirical data and ecological theory to argue that substantial declines in net ecosystem production (NEP) owing to reduced forest growth, or net primary production (NPP), are not imminent in regrown temperate deciduous forests over the next several decades. Forest age and production data for temperate deciduous forests, synthesized from published literature, suggest slight declines in NEP and increasing or stable NPP during middle successional stages. We revisit long-held hypotheses by EP Odum and others that suggest low-severity, high-frequency disturbances occurring in the region’s aging forests will, against intuition, maintain NEP at higher-than- expected rates by increasing ecosystem complexity, sustaining or enhancing NPP to a level that largely o sets rising C losses as heterotrophic respiration increases. This theoretical model is also supported by biological evidence and observations from the Forest Accelerated Succession Experiment in Michigan, USA. Ecosystems that experience high-severity disturbances that simplify ecosystem complexity can exhibit substantial declines in production during middle stages of succession. However, observations from these ecosystems have exerted a disproportionate in uence on assumptions regarding the trajectory and magnitude of age-related declines in forest production. We conclude that there is a wide ecological space for forests to maintain NPP and, in doing so, lessens the declines in NEP, with signi cant implications for the future of the North American carbon sink. Our intellectual frameworks for understanding forest C cycle dynamics and resilience need to

  12. Impact of an internet-based emergency department appointment system to access primary care at safety net community clinics.

    PubMed

    Chan, Theodore C; Killeen, James P; Castillo, Edward M; Vilke, Gary M; Guss, David A; Feinberg, Roberta; Friedman, Lawrence

    2009-08-01

    We evaluate the effect of an Internet-based, electronic referral system (termed IMPACT-ED for Improving Medical home and Primary care Access to the Community clinics Through the ED) on access and follow-up at primary care community clinics for safety net emergency department (ED) patients. We conducted a nonblinded interventional trial at an urban, safety net, hospital ED with a census of 39,000 annually. IMPACT-ED identified patients who had no source of regular care and lived in a 15-ZIP-code low-income area served by 3 community clinics. Emergency physicians received an automated notification through the electronic medical record to access an imbedded software program for scheduling follow-up clinic appointments. Patients who would benefit from a follow-up clinic visit within 2 weeks as determined by the emergency physician received a computer-generated appointment time and clinic map with bus routes as part of their discharge instructions, and the clinics received an electronic notification of the appointment. We compared frequency of follow-up for a 6-month period before implementation when patients received written instructions to call the clinic on their own (pre-IMPACT) and 6 months after implementation (post-IMPACT). Statistical analysis was conducted with chi(2) testing, and corresponding 95% confidence intervals are presented. There were 326 patients who received an appointment (post-IMPACT), of whom 81 followed up at the clinic as directed (24.8%), compared with 399 patients who received a referral (pre-IMPACT), of whom 4 followed up as directed (1.0%), for an absolute improvement of 23.8% (95% confidence interval 19.1% to 28.6%). Although most patients still failed to follow up at the community clinics as directed, the use of an Internet-based scheduling program linking a safety net ED with local community clinics significantly improved the frequency of follow-up for patients without primary care.

  13. Shrub biomass, net primary production, and canopy spectral imaging (NDVI) exhibit consistent correspondence across Arctic Tundra habitats.

    NASA Astrophysics Data System (ADS)

    Flower, C. E.; Welker, J. M.; Anderson-Smith, A.; Van Hoey, N.; Whelan, C.; Gonzalez-Meler, M. A.

    2014-12-01

    Climate change is contributing to rapid vegetation shifts in the ecologically sensitive arctic tundra. These tussock grass dominated systems are shifting to tussock/woody shrub communities with cascading ecological and climate feedback consequences. This shifting vegetation composition should result in concomitant changes in carbon sequestration (net ecosystem exchange, NEE) and productivity which in turn could be manifested in "Greening" and changes in normalized difference vegetation index values (NDVI). In this study, we address the need to know the relationships between NDVI, leaf area, and shrub biomass, in part so that long-term trends in NDVI can be much more accurately interpreted as true changes in ecosystem C cycling processes. These relationships will enhance our ability to predict shifts in standing carbon mass, carbon cycling, and use historic satellite products to assess change. We sampled NEE, NDVI, leaf area and shrub (Betula spp. and Salix spp.) biomass across a shrub gradient in a dry heath and moist acidic tundra. The positive relationship between NDVI and NEE highlights the potential shifts in tundra carbon sequestration associated with woody vegetation shifts. Furthermore, strong positive linear relationships found among shrub biomass, species, leaf area, and NDVI in different tundra habitats should increase the robustness of spatial scaling. Increased productivity in sites with increased NDVI can provide a mechanism through which tundra ecosystems may respond to climate change. Improvements in our ability to detect relationships between above and belowground biomass for the dominant shrubs can strengthen our ability to predict standing biomass from satellite imagery.

  14. Incorporating benthic community changes into hydrochemical-based projections of coral reef calcium carbonate production under ocean acidification

    NASA Astrophysics Data System (ADS)

    Shaw, Emily C.; Hamylton, Sarah M.; Phinn, Stuart R.

    2016-06-01

    The existence of coral reefs is dependent on the production and maintenance of calcium carbonate (CaCO3) framework that is produced through calcification. The net production of CaCO3 will likely decline in the future, from both declining net calcification rates (decreasing calcification and increasing dissolution) and shifts in benthic community composition from calcifying organisms to non-calcifying organisms. Here, we present a framework for hydrochemical studies that allows both declining net calcification rates and changes in benthic community composition to be incorporated into projections of coral reef CaCO3 production. The framework involves upscaling net calcification rates for each benthic community type using mapped proportional cover of the benthic communities. This upscaling process was applied to the reef flats at One Tree and Lady Elliot reefs (Great Barrier Reef) and Shiraho Reef (Okinawa), and compared to existing data. Future CaCO3 budgets were projected for Lady Elliot Reef, predicting a decline of 53 % from the present value by end-century (800 ppm CO2) without any changes to benthic community composition. A further 5.7 % decline in net CaCO3 production is expected for each 10 % decline in calcifier cover, and net dissolution is predicted by end-century if calcifier cover drops below 18 % of the present extent. These results show the combined negative effect of both declining net calcification rates and changing benthic community composition on reefs and the importance of considering both processes for determining future reef CaCO3 production.

  15. Remote sensing of net ecosystem productivity based on component spectrum and soil respiration observation in a boreal forest, interior Alaska

    NASA Astrophysics Data System (ADS)

    Kushida, Keiji; Kim, Yongwon; Tanaka, Noriyuki; Fukuda, Masami

    2004-03-01

    We built a remote-sensing method for determining leaf area index (LAI) and ground cover mosses/lichens in boreal forests by field component spectral observation and radiative transfer modeling based on the spectrum. The method was applied to evaluate annual net ecosystem productivity (NEP) distribution in a boreal forest, interior Alaska, by accounting for net primary productivity (NPP) of the vegetation compositions and soil respiration observation synchronized to the spectral observation. Spectral reflectance and soil respiration were observed in two 30-m × 30-m plots in black spruce stands, central Alaska. Spectral characteristics of the forest floor and the needle leaves were used as input parameters of a radiative transfer model to evaluate nadir reflectances of spruce communities in relation to varying upper layer LAI, forest floor bryophyte types, and leaf spectral characteristics. Using the relationship, we obtained LAI and bryophyte area ratios for each pixel that corresponds to spruce forest on Landsat ETM+ imagery. The LAI-NPP relationship of spruce forest was estimated from 's [1981] normal yield table data and specific leaf area, and NPP was calculated from LAI. Observations of daily respiration were extrapolated to annual timescales using soil temperature. On the basis of the annual soil respiration and NPP of the upper layer and forest floor, annual NEP geographical distribution in a recent normal year was estimated from remotely sensed LAI and forest floor bryophyte area ratios. The annually estimated NEP was 51 g C/m2/yr, which corresponds to the value (55 g C/m2/yr) for 150-year-old black spruce forest in the Boreal Ecosystem-Atmosphere Study (BOREAS) region, Canada.

  16. Estimating crop net primary production using inventory data and MODIS-derived parameters

    SciTech Connect

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  17. Comparing the Net Ecosystem Exchange of Two Cropping Systems for Dairy Feed Production

    NASA Astrophysics Data System (ADS)

    Sulaiman, M. F.; Wagner-Riddle, C.; Brown, S. E.

    2015-12-01

    A three-year study was conducted from 2012 to 2014 to determine the net CO2 fluxes from corn and hay, the two main feed crops used in dairy production. The aim of this study is to better understand the net ecosystem exchange (NEE) in annual and perennial cropping systems used in dairy production to benefit greenhouse gas emission model developments and the life cycle analysis of dairy production. The study was conducted on two 4-ha plots where one plot was a 5-year old hayfield and the other plot was planted in a continuous cycle corn. All plots were continuously monitored using the flux-gradient method deployed with a tunable diode laser trace gas analyzer and sonic anemometers. All plots received dairy manure as fertilizer applied according to common practice. The cumulative NEE for the three years of the study was -873.15 g C m-2 for corn and -409.36 g C m-2 for hay. Differences in respiration between the two cropping systems was found to be the larger factor compared to differences in gross ecosystem production (GEP) that resulted in the contrasting cumulative NEE where cumulative respiration for the three years for hay was 3094.23 g C m-2 as opposed to 2078.11 g C m-2 for corn. Cumulative GEP for the three years was 3503.60 and 2951.31 g C m-2 for hay and corn respectively. Inter-annual and inter-crop variability of the NEE, GEP and respiration will be discussed in relation to biomass production, climatic conditions and crop physiological characteristics.

  18. Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments.

    PubMed

    Smith, Melinda D; La Pierre, Kimberly J; Collins, Scott L; Knapp, Alan K; Gross, Katherine L; Barrett, John E; Frey, Serita D; Gough, Laura; Miller, Robert J; Morris, James T; Rustad, Lindsey E; Yarie, John

    2015-04-01

    Many global change drivers chronically alter resource availability in terrestrial ecosystems. Such resource alterations are known to affect aboveground net primary production (ANPP) in the short term; however, it is unknown if patterns of response change through time. We examined the magnitude, direction, and pattern of ANPP responses to a wide range of global change drivers by compiling 73 datasets from long-term (>5 years) experiments that varied by ecosystem type, length of manipulation, and the type of manipulation. Chronic resource alterations resulted in a significant change in ANPP irrespective of ecosystem type, the length of the experiment, and the resource manipulated. However, the pattern of ecosystem response over time varied with ecosystem type and manipulation length. Continuous directional responses were the most common pattern observed in herbaceous-dominated ecosystems. Continuous directional responses also were frequently observed in longer-term experiments (>11 years) and were, in some cases, accompanied by large shifts in community composition. In contrast, stepped responses were common in forests and other ecosystems (salt marshes and dry valleys) and with nutrient manipulations. Our results suggest that the response of ANPP to chronic resource manipulations can be quite variable; however, responses persist once they occur, as few transient responses were observed. Shifts in plant community composition over time could be important determinants of patterns of terrestrial ecosystem sensitivity, but comparative, long-term studies are required to understand how and why ecosystems differ in their sensitivity to chronic resource alterations.

  19. Terrestrial Net Primary Production Predicted from MODIS Satellite Data from 2000-2009

    NASA Astrophysics Data System (ADS)

    Potter, C. S.; Klooster, S. A.; Genovese, V. B.; Gross, P. M.; Hiatt, C.

    2010-12-01

    The CASA (Carnegie-Ames-Stanford) ecosystem model based on satellite greenness observations has been used to estimate monthly carbon fluxes in terrestrial ecosystems from 2000 to 2009. The CASA model was driven by NASA Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation cover properties and large-scale (1-km resolution) disturbance events detected in the monthly time series data. This modeling framework has been implemented to estimate historical as well as current monthly patterns in plant carbon fixation, living biomass increments, and long-term decay of woody (slash) pools before, during, and after land cover disturbance events. For the terrestrial biosphere, predicted net primary production (NPP) flux for atmospheric carbon dioxide has varied notably from year-to-year, but was predicted to have increased overall in the regions of the high-latitude Northern Hemisphere, South Asia, Central Africa, and Western Amazon since the year 2000. Periodic declines in regional NPP levels were predicted for the western Untied States, the southern Amazon, and southern Africa. These CASA NPP results were found to be partially in contrast to other recently published global modeling trends for terrestrial NPP that appear to be highly sensitive to regional drying patterns. Nevertheless, impacts of severe droughts on terrestrial NPP, disturbance frequency, and net ecosystem production sinks for carbon in the CASA model are presently being investigated in greater detail.

  20. Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia.

    PubMed

    de Oliveira, Gabriel; Brunsell, Nathaniel A; Moraes, Elisabete C; Bertani, Gabriel; Dos Santos, Thiago V; Shimabukuro, Yosio E; Aragão, Luiz E O C

    2016-06-24

    In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001-December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance.

  1. Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia

    PubMed Central

    de Oliveira, Gabriel; Brunsell, Nathaniel A.; Moraes, Elisabete C.; Bertani, Gabriel; dos Santos, Thiago V.; Shimabukuro, Yosio E.; Aragão, Luiz E. O. C.

    2016-01-01

    In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001–December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance. PMID:27347957

  2. Challenges of standardized continuous quality improvement programs in community pharmacies: the case of SafetyNET-Rx.

    PubMed

    Boyle, Todd A; MacKinnon, Neil J; Mahaffey, Thomas; Duggan, Kellie; Dow, Natalie

    2012-01-01

    Research on continuous quality improvement (CQI) in community pharmacies lags in comparison to service, manufacturing, and various health care sectors. As a result, very little is known about the challenges community pharmacies face when implementing CQI programs in general, let alone the challenges of implementing a standardized and technologically sophisticated one. This research identifies the initial challenges of implementing a standardized CQI program in community pharmacies and how such challenges were addressed by pharmacy staff. Through qualitative interviews, a multisite study of the SafetyNET-Rx CQI program involving community pharmacies in Nova Scotia, Canada, was performed to identify such challenges. Interviews were conducted with the CQI facilitator (ie, staff pharmacist or technician) in 55 community pharmacies that adopted the SafetyNET-Rx program. Of these 55 pharmacies, 25 were part of large national corporate chains, 22 were part of banner chains, and 8 were independent pharmacies. A total of 10 different corporate chains and banners were represented among the 55 pharmacies. Thematic content analysis using well-established coding procedures was used to explore the interview data and elicit the key challenges faced. Six major challenges were identified, specifically finding time to report, having all pharmacy staff involved in quality-related event (QRE) reporting, reporting apprehensiveness, changing staff relationships, meeting to discuss QREs, and accepting the online technology. Challenges were addressed in a number of ways including developing a manual-online hybrid reporting system, managers paying staff to meet after hours, and pharmacy managers showing visible commitment to QRE reporting and learning. This research identifies key challenges to implementing CQI programs in community pharmacies and also provides a starting point for future research relating to how the challenges of QRE reporting and learning in community pharmacies change

  3. NET-Works: Linking families, communities and primary care to prevent obesity in preschool-age children.

    PubMed

    Sherwood, Nancy E; French, Simone A; Veblen-Mortenson, Sara; Crain, A Lauren; Berge, Jerica; Kunin-Batson, Alicia; Mitchell, Nathan; Senso, Meghan

    2013-11-01

    Obesity prevention in children offers a unique window of opportunity to establish healthful eating and physical activity behaviors to maintain a healthful body weight and avoid the adverse proximal and distal long-term health consequences of obesity. Given that obesity is the result of a complex interaction between biological, behavioral, family-based, and community environmental factors, intervention at multiple levels and across multiple settings is critical for both short- and long-term effectiveness. The Minnesota NET-Works (Now Everybody Together for Amazing and Healthful Kids) study is one of four obesity prevention and/or treatment trials that are part of the Childhood Obesity Prevention and Treatment (COPTR) Consortium. The goal of the NET-Works study is to evaluate an intervention that integrates home, community, primary care and neighborhood strategies to promote healthful eating, activity patterns, and body weight among low income, racially/ethnically diverse preschool-age children. Critical to the success of this intervention is the creation of linkages among the settings to support parents in making home environment and parenting behavior changes to foster healthful child growth. Five hundred racially/ethnically diverse, two-four year old children and their parent or primary caregiver will be randomized to the multi-component intervention or to a usual care comparison group for a three-year period. This paper describes the study design, measurement and intervention protocols, and statistical analysis plan for the NET-Works trial. © 2013 Elsevier Inc. All rights reserved.

  4. Observation and simulation of net primary productivity in Qilian Mountain, western China.

    PubMed

    Zhou, Y; Zhu, Q; Chen, J M; Wang, Y Q; Liu, J; Sun, R; Tang, S

    2007-11-01

    We modeled net primary productivity (NPP) at high spatial resolution using an advanced spaceborne thermal emission and reflection radiometer (ASTER) image of a Qilian Mountain study area using the boreal ecosystem productivity simulator (BEPS). Two key driving variables of the model, leaf area index (LAI) and land cover type, were derived from ASTER and moderate resolution imaging spectroradiometer (MODIS) data. Other spatially explicit inputs included daily meteorological data (radiation, precipitation, temperature, humidity), available soil water holding capacity (AWC), and forest biomass. NPP was estimated for coniferous forests and other land cover types in the study area. The result showed that NPP of coniferous forests in the study area was about 4.4 tCha(-1)y(-1). The correlation coefficient between the modeled NPP and ground measurements was 0.84, with a mean relative error of about 13.9%.

  5. Net primary production in the Gulf Stream sustained by quasi-geostrophic vertical exchanges

    NASA Astrophysics Data System (ADS)

    Pascual, Ananda; Ruiz, Simón; Buongiorno Nardelli, Bruno; Guinehut, Stéphanie; Iudicone, Daniele; Tintoré, Joaquín.

    2015-01-01

    analyze 12 years of mesoscale vertical motion derived from an observation-based product in the top 1000 m of the North West Atlantic Ocean. Vertical velocities (O(10 m d-1)) associated with Gulf Stream instabilities consist of alternating cells of upwelling and downwelling. Here we show that the magnitude of the vertical motions decays exponentially southward with an e-folding length scale that is informative on the dynamics of the system. We further investigate the impact of the vertical supply of nutrients about phytoplankton growth with a conceptual model incorporating the mean effect of nutrient distribution, quasi-geostrophic dynamics, and Ekman suction/pumping. Results confirm that the mean effect of mesoscale vertical velocity variability alone can sustain observed levels of net primary production in the immediate vicinity of the Gulf Stream, while other mechanisms, including horizontal advection and submesoscale dynamics, need to be considered when moving toward the subtropical gyre.

  6. Comparing the impact of the 2003 and 2010 heatwaves on Net Primary Production in Europe

    NASA Astrophysics Data System (ADS)

    Bastos, Ana; Gouveia, Célia M.; Trigo, Ricardo M.; Running, Steve W.

    2013-04-01

    Climate variability is known to influence primary productivity on land ecosystems (Nemani et al., 2003). In particular, extreme climatic events such as major droughts and heatwaves are known to have severe impact on primary productivity and, therefore, to affect significantly the carbon dioxide uptake by land ecosystems at regional (Ciais et al., 2005) or even global scale (Zhao and Running, 2010). In the last decade, Europe was struck by two outstanding heatwaves, the 2003 event in Western Europe and the recent 2010 episode over Eastern Europe. Both were characterised by record breaking temperatures at the daily, weekly, monthly and seasonal scales, although the amplitude and spatial extent of the 2010 mega-heatwave surpassed the 2003 event (Barriopedro et al., 2011). This work aims to assess the influence of both mega-heatwaves on yearly Net Primary Production (NPP) and seasonal Net Photosynthesis (NP), which corresponds to the difference between Gross Primary Production and maintenance respiration. The work relies on yearly NPP and monthly NP data derived from satellite imagery obtained from MODIS (Moderate Resolution Imaging Spectroradiometer) sensor at 1km spatial resolution. Data were selected for the period between 2000 and 2011 over a region extending from 34.6N to 73.5N and 12.1W to 46.8E, covering Eurasia. In 2010 very low primary production anomalies are observed over a very large area in Eastern Europe, at the monthly, seasonal and yearly scale. In western Russia, yearly NPP anomalies fall below 50% of average. These widespread negative anomalous values of NP fields over the western Russia region match the patterns of very high temperature values combined with below-average precipitation, at the seasonal (summer) scale. Moreover, the impact of the heatwave is not only evident at the regional level but also at the wider continental (European) scale and is significantly more extensive and intense than the corresponding heatwave of 2003 in Western Europe

  7. Estimating crop net primary production using national inventory data and MODIS-derived parameters

    NASA Astrophysics Data System (ADS)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; César Izaurralde, R.

    2013-06-01

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux between land and atmosphere. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale as well as national and continental scales. Existing satellite-based NPP products tend to underestimate NPP on croplands. An Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP over large multi-state regions. The method is documented here and evaluated for corn (Zea mays L.) and soybean (Glycine max L. Merr.) in Iowa and Illinois in 2006 and 2007. The method includes a crop-specific Enhanced Vegetation Index (EVI), shortwave radiation data estimated using the Mountain Climate Simulator (MTCLIM) algorithm, and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that corresponds to the Cropland Data Layer (CDL) land cover product. Results from the modeling framework captured the spatial NPP gradient across croplands of Iowa and Illinois, and also represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 917 g C m-2 yr-1 and 409 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Site comparisons with flux tower data show AgI-LUE NPP in close agreement with tower-derived NPP, lower than inventory-based NPP, and higher than MOD17A3 NPP. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  8. Mobile health and patient engagement in the safety net: a survey of community health centers and clinics.

    PubMed

    Broderick, Andrew; Haque, Farshid

    2015-05-01

    Patient-centered technologies have emerged as a way to actively engage patients in care. The reach and potential of cell phones to engage diverse patient populations is great. Evidence of their effectiveness in improving health-related outcomes is limited. Researchers conducted an online survey of community health centers and clinics to assess if and how health care providers in the safety net use cell phones to support patient engagement. The findings indicate that the use of cell phones in patient care is at an early stage of deployment across the safety net. Organizations identify chronic disease management as an area where cell phones offer considerable potential to effectively engage patients. To promote widespread adoption and use, technical assistance to support the implementation and management of interventions, evidence-based or best practice models that highlight successful implementation strategies in care delivery, and the introduction of new payment or reimbursement policies will be essential.

  9. Grassland and Cropland Net Ecosystem Production of the U.S. Great Plains

    NASA Astrophysics Data System (ADS)

    Howard, D. M.; Wylie, B. K.; Ji, L.; Gilmanov, T. G.; Zhang, L.

    2014-12-01

    At observation sites throughout the world, carbon dioxide (CO2) levels and other ecosystem resources are measured by instruments known as flux towers. Although flux towers only measure the surrounding vicinity or spatial footprint of their placement ecosystem, the data recorded at these towers can be up-scaled to much greater levels through the use of comprehensive remote sensing data and advanced computer modeling. The purpose of this study was to develop ecological net ecosystem production (NEP) models capable of producing weekly cropland and grassland NEP maps of the U.S. Great Plains at 250 meter resolution for 2000 - 2008. Separate NEP regression tree models were developed for each land cover type (cropland and grassland) with 15 flux towers supporting the grassland model and 13 towers supporting the cropland model. The NEP regression tree models were established through training based on data from the supporting flux towers, remote sensing data, and other biogeophysical inputs. Map results of this study indicate, as anticipated, grassland ecosystems generally perform as net carbon (C) sinks, absorbing and storing C from the atmosphere, and conversely, croplands generally as net C sources (crop yields were not taken into account), releasing C, in the form of CO2, into the atmosphere. The models were evaluated by implementing a leave-one-out cross validation method, which withholds data form one particular year or site for testing a model developed with the remaining data. The cropland model validation analysis received an average Pearson's correlation coefficient (r) of 0.85 for the yearly validation and an average r = 0.73 for the site withholding. The grassland model validation analysis received an average r = 0.86 for the yearly validation and an average r = 0.83 for the site withholding.

  10. Winter respiratory C losses provide explanatory power for net ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Haeni, M.; Zweifel, R.; Eugster, W.; Gessler, A.; Zielis, S.; Bernhofer, C.; Carrara, A.; Grünwald, T.; Havránková, K.; Heinesch, B.; Herbst, M.; Ibrom, A.; Knohl, A.; Lagergren, F.; Law, B. E.; Marek, M.; Matteucci, G.; McCaughey, J. H.; Minerbi, S.; Montagnani, L.; Moors, E.; Olejnik, J.; Pavelka, M.; Pilegaard, K.; Pita, G.; Rodrigues, A.; Sanz Sánchez, M. J.; Schelhaas, M.-J.; Urbaniak, M.; Valentini, R.; Varlagin, A.; Vesala, T.; Vincke, C.; Wu, J.; Buchmann, N.

    2017-01-01

    Accurate predictions of net ecosystem productivity (NEPc) of forest ecosystems are essential for climate change decisions and requirements in the context of national forest growth and greenhouse gas inventories. However, drivers and underlying mechanisms determining NEPc (e.g., climate and nutrients) are not entirely understood yet, particularly when considering the influence of past periods. Here we explored the explanatory power of the compensation day (cDOY)—defined as the day of year when winter net carbon losses are compensated by spring assimilation—for NEPc in 26 forests in Europe, North America, and Australia, using different NEPc integration methods. We found cDOY to be a particularly powerful predictor for NEPc of temperate evergreen needleleaf forests (R2 = 0.58) and deciduous broadleaf forests (R2 = 0.68). In general, the latest cDOY correlated with the lowest NEPc. The explanatory power of cDOY depended on the integration method for NEPc, forest type, and whether the site had a distinct winter net respiratory carbon loss or not. The integration methods starting in autumn led to better predictions of NEPc from cDOY then the classical calendar method starting 1 January. Limited explanatory power of cDOY for NEPc was found for warmer sites with no distinct winter respiratory loss period. Our findings highlight the importance of the influence of winter processes and the delayed responses of previous seasons' climatic conditions on current year's NEPc. Such carry-over effects may contain information from climatic conditions, carbon storage levels, and hydraulic traits of several years back in time.

  11. Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity.

    PubMed

    Stuart-Haëntjens, Ellen J; Curtis, Peter S; Fahey, Robert T; Vogel, Christoph S; Gough, Christopher M

    2015-09-01

    The global carbon (C) balance is vulnerable to disturbances that alter terrestrial C storage. Disturbances to forests occur along a continuum of severity, from low-intensity disturbance causing the mortality or defoliation of only a subset of trees to severe stand- replacing disturbance that kills all trees; yet considerable uncertainty remains in how forest production changes across gradients of disturbance intensity. We used a gradient of tree mortality in an upper Great Lakes forest ecosystem to: (1) quantify how aboveground wood net primary production (ANPP,) responds to a range of disturbance severities; and (2) identify mechanisms supporting ANPPw resistance or resilience following moderate disturbance. We found that ANPPw declined nonlinearly with rising disturbance severity, remaining stable until >60% of the total tree basal area senesced. As upper canopy openness increased from disturbance, greater light availability to the subcanopy enhanced the leaf-level photosynthesis and growth of this formerly light-limited canopy stratum, compensating for upper canopy production losses and a reduction in total leaf area index (LAI). As a result, whole-ecosystem production efficiency (ANPPw/LAI) increased with rising disturbance severity, except in plots beyond the disturbance threshold. These findings provide a mechanistic explanation for a nonlinear relationship between ANPPw, and disturbance severity, in which the physiological and growth enhancement of undisturbed vegetation is proportional to the level of disturbance until a threshold is exceeded. Our results have important ecological and management implications, demonstrating that in some ecosystems moderate levels of disturbance minimally alter forest production.

  12. Assessing Interannual Variation in Net Ecosystem Production over a Coniferous Forest Landscape

    NASA Astrophysics Data System (ADS)

    Turner, D.; Guzy, M.; Lefsky, M.; Daly, C.; Law, B.

    2001-12-01

    Spatial estimates of net ecosystem production (NEP) can be attained by constraining ecosystem process models with remote sensing and hierarchical plot data (intensive measurements and survey data). In temperate coniferous forests, NEP varies widely 1) over the course of secondary succession, 2) in response to environmental gradients associated with elevation, and 3) in response to interannual variation in climate. These factors should therefore be included in spatially explicit estimates of NEP that are of interest in relation to assessing current biologically driven carbon flux. In the Pacific Northwest (PNW) region we are using a combination of satellite remote sensing, gridded meteorological data, and ecosystem process models to account for these factors. The Landsat ETM+ sensor, with a spatial resolution of about 30 m, generally captures the scale of the spatial heterogeneity associated with disturbances such as fire and logging. In PNW forests, ETM+ can resolve multiple age classes, and multiyear analysis that employs change detection permits dating of clearcuts generated since the 1970s. This fine temporal resolution early in succession is important because of the rapid changes in NEP with stand age. ETM+ is also effective in mapping leaf area index, although the algorithms tend to be asymptotic at the high LAIs found in some coniferous forests. Multiyear gridded meteorological data, based on interpolated meteorological station observations, provides the basis for model "spin ups" which bring simulated soil organic matter pools into near equilibrium with the local climate. Opportunities for validating NEP surfaces or component fluxes include georeferenced forest inventory data for bole wood carbon storage and production, eddy covariance flux data for daily gross primary production and net ecosystem exchange, and chronosequence studies in a variety of bioclimatic zones for characterizing carbon pools and fluxes over succession. Results of multiyear simulations

  13. Effects of climate change and shifts in forest composition on forest net primary production.

    PubMed

    Chiang, Jyh-Min; Iverson, Louts R; Prasad, Anantha; Brown, Kim J

    2008-11-01

    Forests are dynamic in both structure and species composition, and these dynamics are strongly influenced by climate. However, the net effects of future tree species composition on net primary production (NPP) are not well understood. The objective of this work was to model the potential range shifts of tree species (DISTRIB Model) and predict their impacts on NPP (PnET-II Model) that will be associated with alterations in species composition. We selected four 200 x 200 km areas in Wisconsin, Maine, Arkansas, and the Ohio-West Virginia area, representing focal areas of potential species range shifts. PnET-II model simulations were carried out assuming that all forests achieved steady state, of which the species compositions were predicted by DISTRIB model with no migration limitation. The total NPP under the current climate ranged from 552 to 908 g C/m(2) per year. The effects of potential species redistributions on NPP were moderate (-12% to +8%) compared with the influence of future climatic changes (-60% to +25%). The direction and magnitude of climate change effects on NPP were largely dependent on the degree of warming and water balance. Thus, the magnitude of future climate change can affect the feedback system between the atmosphere and biosphere.

  14. Catalyzing Implementation of Evidence-Based Interventions in Safety Net Settings: A Clinical-Community Partnership in South Los Angeles.

    PubMed

    Payán, Denise D; Sloane, David C; Illum, Jacqueline; Vargas, Roberto B; Lee, Donzella; Galloway-Gilliam, Lark; Lewis, LaVonna B

    2017-07-01

    This study is a process evaluation of a clinical-community partnership that implemented evidence-based interventions in clinical safety net settings. Adoption and implementation of evidence-based interventions in these settings can help reduce health disparities by improving the quality of clinical preventive services in health care settings with underserved populations. A clinical-community partnership model is a possible avenue to catalyze adoption and implementation of interventions amid organizational barriers to change. Three Federally Qualified Health Centers in South Los Angeles participated in a partnership led by a local community-based organization (CBO) to implement hypertension interventions. Qualitative research methods were used to evaluate intervention selection and implementation processes between January 2014 and June 2015. Data collection tools included a key participant interview guide, health care provider interview guide, and protocol for taking meeting minutes. This case study demonstrates how a CBO acted as an external facilitator and employed a collaborative partnership model to catalyze implementation of evidence-based interventions in safety net settings. The study phases observed included initiation, planning, and implementation. Three emergent categories of organizational facilitators and barriers were identified (personnel capacity, professional development capacity, and technological capacity). Key participants and health care providers expressed a high level of satisfaction with the collaborative and the interventions, respectively. The CBO's role as a facilitator and catalyst is a replicable model to promote intervention adoption and implementation in safety net settings. Key lessons learned are provided for researchers and practitioners interested in partnering with Federally Qualified Health Centers to implement health promotion interventions.

  15. Sensitivity of Spruce/Moss Boreal Forest Net Ecosystem Productivity to Seasonal Anomalies in Weather

    NASA Technical Reports Server (NTRS)

    Frolking, Steve

    1997-01-01

    Abstract. A process-oriented, daily time step model of a spruce/moss boreal ecosystem simulated 1994 and 1995 productivity for a Boreal Ecosystem-Atmosphere Study site near Thompson, Manitoba. Simulated black spruce net primary productivity (NPP) was 139 g C m(exp -2) in 1994 and 112 in 1995; feathermoss NPP was 13.0 g C m(exp -2) in 1994 and 9.7 in 1995; decomposition was 126 g C m(exp -2) in 1994 and 130 in 1995; net ecosystem productivity (NEP) was an uptake of 26.3 g C m(exp -2)in 1994 and 2.5 in 1995. A very dry period for the first half of the 1995 summer was the major cause of that year's lower productivity. Sensitivity simulations explored the impact of 2-month long warmer, cooler, wetter, and drier spells on ecosystem productivity. Warmer summers decreased spruce NPP, moss NPP, and NEP; cooler summers had the opposite effect. Earlier snowmelt (due to either warmer spring temperatures or reduced winter precipitation) increased moss and spruce NPP; later snowmelt had the opposite effect. The largest effect on decomposition was a 5% reduction due to a drier summer. One-month droughts (April through October) were also imposed on 1975 base year weather. Early summer droughts reduced moss annual NPP by -30-40%; summer droughts reduced spruce annual NPP by 10%; late summer droughts increased moss NPP by about 20% due to reduced respiration; May to September monthly droughts reduced heterotrophic respiration by about 10%. Variability in NEP was up to roughly +/- 35%. Finally, 1975 growing season precipitation was redistributed into frequent, small rainstorms and infrequent, large rainstorms. These changes had no effect on spruce NPP. Frequent rainstorms increased decomposition by a few percent, moss NPP by 50%, and NEP by 20%. Infrequent rainstorms decreased decomposition by 5%, moss NPP by 50% and NEP by 15%. The impact of anomalous weather patterns on productivity of this ecosystem depended on their timing during the year. Multiyear data sets are necessary to

  16. Sensitivity of Spruce/Moss Boreal Forest Net Ecosystem Productivity to Seasonal Anomalies in Weather

    NASA Technical Reports Server (NTRS)

    Frolking, Steve

    1997-01-01

    Abstract. A process-oriented, daily time step model of a spruce/moss boreal ecosystem simulated 1994 and 1995 productivity for a Boreal Ecosystem-Atmosphere Study site near Thompson, Manitoba. Simulated black spruce net primary productivity (NPP) was 139 g C m(exp -2) in 1994 and 112 in 1995; feathermoss NPP was 13.0 g C m(exp -2) in 1994 and 9.7 in 1995; decomposition was 126 g C m(exp -2) in 1994 and 130 in 1995; net ecosystem productivity (NEP) was an uptake of 26.3 g C m(exp -2)in 1994 and 2.5 in 1995. A very dry period for the first half of the 1995 summer was the major cause of that year's lower productivity. Sensitivity simulations explored the impact of 2-month long warmer, cooler, wetter, and drier spells on ecosystem productivity. Warmer summers decreased spruce NPP, moss NPP, and NEP; cooler summers had the opposite effect. Earlier snowmelt (due to either warmer spring temperatures or reduced winter precipitation) increased moss and spruce NPP; later snowmelt had the opposite effect. The largest effect on decomposition was a 5% reduction due to a drier summer. One-month droughts (April through October) were also imposed on 1975 base year weather. Early summer droughts reduced moss annual NPP by -30-40%; summer droughts reduced spruce annual NPP by 10%; late summer droughts increased moss NPP by about 20% due to reduced respiration; May to September monthly droughts reduced heterotrophic respiration by about 10%. Variability in NEP was up to roughly +/- 35%. Finally, 1975 growing season precipitation was redistributed into frequent, small rainstorms and infrequent, large rainstorms. These changes had no effect on spruce NPP. Frequent rainstorms increased decomposition by a few percent, moss NPP by 50%, and NEP by 20%. Infrequent rainstorms decreased decomposition by 5%, moss NPP by 50% and NEP by 15%. The impact of anomalous weather patterns on productivity of this ecosystem depended on their timing during the year. Multiyear data sets are necessary to

  17. Net primary productivity of some aquatic macrophytes in sewage-sullage mixture.

    PubMed

    Kanungo, V K; Sinha, S; Naik, M L

    2001-07-01

    Sewage-sullage mixture from Raipur city is spread over a vast area surrounding the city. This mixture has a pH always above neutrality with high turbidity. Transparency was nil with the absence of phenolphthalein alkalinity and dissolved oxygen. Hardness was high with low nitrogen and phosphorus concentration. Human consumable. acquatic macrophytes are cultivated in such waste water. Net primary productivity of three macrophytes: Ipomoea aquatica, Marsilea quadrifolia and Nelumbo nucifera were evaluated while being cultivated in such sewage-sullage mixture. Productivity was determined either with periodic biomass removal (I. aquatica and M. quadrifolia) or through removing the biomass only once at the time of growing season (N. nucifera). Growing season productivity of up to 27.48. 19.81 and 9.49 g m(-2) and day(-1) and extrapolated productivity of up to 100.30, 72.31 and 34.64 mt. ha(-1) yr(-1) was recorded for I. aquatica. M. quadrifolia and N. nucifera respectively. Thus, these macrophytes are yielding a high amount of human consumable biomass from an area which neither be a useless wetland.

  18. Direct and indirect effects of elevated atmospheric CO2 on net ecosystem production in a Chesapeake Bay tidal wetland.

    PubMed

    Erickson, John E; Peresta, Gary; Montovan, Kathryn J; Drake, Bert G

    2013-11-01

    The rapid increase in atmospheric CO2 concentrations (Ca ) has resulted in extensive research efforts to understand its impact on terrestrial ecosystems, especially carbon balance. Despite these efforts, there are relatively few data comparing net ecosystem exchange of CO2 between the atmosphere and the biosphere (NEE), under both ambient and elevated Ca . Here we report data on annual sums of CO2 (NEE(net) ) for 19 years on a Chesapeake Bay tidal wetland for Scirpus olneyi (C3 photosynthetic pathway)- and Spartina patens (C4 photosynthetic pathway)-dominated high marsh communities exposed to ambient and elevated Ca (ambient + 340 ppm). Our objectives were to (i) quantify effects of elevated Ca on seasonally integrated CO2 assimilation (NEE(net) = NEE(day) + NEE(night) , kg C m(-2) y(-1) ) for the two communities; and (ii) quantify effects of altered canopy N content on ecosystem photosynthesis and respiration. Across all years, NEE(net) averaged 1.9 kg m(-2) y(-1) in ambient Ca and 2.5 kg m(-2) y(-1) in elevated Ca , for the C3 -dominated community. Similarly, elevated Ca significantly (P < 0.01) increased carbon uptake in the C4 -dominated community, as NEE(net) averaged 1.5 kg m(-2) y(-1) in ambient Ca and 1.7 kg m(-2) y(-1) in elevated Ca . This resulted in an average CO2 stimulation of 32% and 13% of seasonally integrated NEE(net) for the C3 - and C4 -dominated communities, respectively. Increased NEE(day) was correlated with increased efficiencies of light and nitrogen use for net carbon assimilation under elevated Ca , while decreased NEE(night) was associated with lower canopy nitrogen content. These results suggest that rising Ca may increase carbon assimilation in both C3 - and C4 -dominated wetland communities. The challenge remains to identify the fate of the assimilated carbon. Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  19. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    NASA Astrophysics Data System (ADS)

    Aragão, L. E. O. C.; Malhi, Y.; Metcalfe, D. B.; Silva-Espejo, J. E.; Jiménez, E.; Navarrete, D.; Almeida, S.; Costa, A. C. L.; Salinas, N.; Phillips, O. L.; . Anderson, L. O.; Baker, T. R.; Goncalvez, P. H.; Huamán-Ovalle, J.; Mamani-Solórzano, M.; Meir, P.; Monteagudo, A.; Peñuela, M. C.; Prieto, A.; Quesada, C. A.; Rozas-Dávila, A.; Rudas, A.; Silva Junior, J. A.; Vásquez, R.

    2009-02-01

    The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1) How do Amazonian forests allocate productivity among its above- and below-ground components? (2) How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha-1 yr-1 (mean±standard error), at a white sand plot, and 17.0±1.4 Mg C ha-1 yr-1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha-1 yr-1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.

  20. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    NASA Astrophysics Data System (ADS)

    Aragão, L. E. O. C.; Malhi, Y.; Metcalfe, D. B.; Silva-Espejo, J. E.; Jiménez, E.; Navarrete, D.; Almeida, S.; Costa, A. C. L.; Salinas, N.; Phillips, O. L.; Anderson, L. O.; Alvarez, E.; Baker, T. R.; Goncalvez, P. H.; Huamán-Ovalle, J.; Mamani-Solórzano, M.; Meir, P.; Monteagudo, A.; Patiño, S.; Peñuela, M. C.; Prieto, A.; Quesada, C. A.; Rozas-Dávila, A.; Rudas, A.; Silva, J. A., Jr.; Vásquez, R.

    2009-12-01

    The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1) How do Amazonian forests allocate productivity among its above- and below-ground components? (2) How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha-1 yr-1 (mean±standard error), at a white sand plot, and 17.0±1.4 Mg C ha-1 yr-1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha-1 yr-1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.

  1. [Evaluation of agricultural net primary productivity in Yijinhuoluo County, Inner Mongolia].

    PubMed

    Jia, Bingrui; Zhou, Guangsheng

    2004-04-01

    An agricultural net primary productivity model considering both climatic and fertilizer factors was presented, with referencing over 40 years (1959-1998) climatic and agricultural data from Yijinhuoluo County. Based on the scenarios of climate, population and human activities (mainly fertilization) in the next 30 years as well as the demand of local people for food, the changes of the crop area were evaluated. As a result, 622-5948 hm2 could be converted into grassland and forest land from now to the year of 2010, amounting to 3%-31% of the average area between 1990 and 1998; from 2010 to 2020, the converted area should be 3263-8164 hm2, amounting to 17%-42%. In the next 10 years, the area of cropland would rise slightly because of the limitation of increasing yield and population.

  2. Subcritical ethylic biodiesel production from wet animal fat and vegetable oils: A net energy ratio analysis

    DOE PAGES

    Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando

    2016-08-23

    Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values ofmore » 2.6, 2.1 and 2.5 respectively. Finally, these results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.« less

  3. Laser Spray Fabrication for Net-Shape Rapid Product Realization LDRD

    SciTech Connect

    Atwood, C.L.; Ensz, M.T.; Greene, D.L.; Griffith, M.L.; Harwell, L.D.; Jeantette, F.P.; Keicher, D.M.; Oliver, M.S.; Reckaway, D.E.; Romero, J.A.; Schlienger, M.E.; Smugeresky, J.D.

    1999-04-01

    The primary purpose of this LDRD project was to characterize the laser deposition process and determine the feasibility of fabricating complex near-net shapes directly from a CAD solid model. Process characterization provided direction in developing a system to fabricate complex shapes directly from a CAD solid model. Our goal for this LDRD was to develop a system that is robust and provides a significant advancement to existing technologies (e.g., polymeric-based rapid prototyping, laser welding). Development of the process will allow design engineers to produce functional models of their designs directly from CAD files. The turnaround time for complex geometrical shaped parts will be hours instead of days and days instead of months. With reduced turnaround time, more time can be spent on the product-design phase to ensure that the best component design is achieved. Maturation of this technology will revolutionize the way the world produces structural components.

  4. Net primary productivity and its spatiotemporal patterns in Northeast China during 1981-2000

    NASA Astrophysics Data System (ADS)

    Shi, Jun; Liu, Jiyuan; Gao, Zhiqiang; Cui, Linli; Wang, Qi

    2004-11-01

    Based on the GLO-PEM simulation data, Net primary productivity (NPP) and its spatiotemporal patterns in Northeast China were studied from 1981 to 2000. Our research indicated that the distribution of annual NPP in Northeast China was obviously different from east to west. The averaged annual total NPP is 0.50PgC, with an annual increasing rate of 0.55%. NPP increased in most parts of Northeast China from 1981 to 2000, with the largest increase in the western part of Liaoning province, but it decreased in eastern Hulun Buir Plateau, Horqin Sandy Land, Changbai Mountains and northern Da Xingan Ling mountains. The early 1990s (1991-1995) is the time with fastest NPP increasing. NPP varies in different seasons. It increases mostly in summer, with an annual rate of 0.65%, but it decreasing in non-growing seasons.

  5. Subcritical ethylic biodiesel production from wet animal fat and vegetable oils: A net energy ratio analysis

    SciTech Connect

    Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando

    2016-08-23

    Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values of 2.6, 2.1 and 2.5 respectively. Finally, these results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.

  6. The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens.

    PubMed

    Cheung, Jackie K; Keyburn, Anthony L; Carter, Glen P; Lanckriet, Anouk L; Van Immerseel, Filip; Moore, Robert J; Rood, Julian I

    2010-07-01

    Clostridium perfringens causes several diseases in domestic livestock, including necrotic enteritis in chickens, which is of concern to the poultry industry due to its health implications and associated economic cost. The novel pore-forming toxin NetB is a critical virulence factor in the pathogenesis of this disease. In this study, we have examined the regulation of NetB toxin production. In C. perfringens, the quorum sensing-dependent VirSR two-component signal transduction system regulates genes encoding several toxins and extracellular enzymes. Analysis of the sequence upstream of the netB gene revealed the presence of potential DNA binding sites, or VirR boxes, that are recognized by the VirR response regulator. In vitro binding experiments showed that purified VirR was able to recognize and bind to these netB-associated VirR boxes. Furthermore, using a reporter gene assay, the netB VirR boxes were shown to be functional. Mutation of the virR gene in two avian C. perfringens strains was shown to significantly reduce the production of the NetB toxin; culture supernatants derived from these strains were no longer cytotoxic to Leghorn male hepatoma cells. Complementation with the virRS operon restored the toxin phenotypes to wild type. The results also showed that the VirSR two-component system regulates the expression of netB at the level of transcription. We postulate that in the gastrointestinal tract of infected birds, NetB production is upregulated when the population of C. perfringens cells reaches a threshold level that leads to activation of the VirSR system.

  7. The VirSR Two-Component Signal Transduction System Regulates NetB Toxin Production in Clostridium perfringens▿

    PubMed Central

    Cheung, Jackie K.; Keyburn, Anthony L.; Carter, Glen P.; Lanckriet, Anouk L.; Van Immerseel, Filip; Moore, Robert J.; Rood, Julian I.

    2010-01-01

    Clostridium perfringens causes several diseases in domestic livestock, including necrotic enteritis in chickens, which is of concern to the poultry industry due to its health implications and associated economic cost. The novel pore-forming toxin NetB is a critical virulence factor in the pathogenesis of this disease. In this study, we have examined the regulation of NetB toxin production. In C. perfringens, the quorum sensing-dependent VirSR two-component signal transduction system regulates genes encoding several toxins and extracellular enzymes. Analysis of the sequence upstream of the netB gene revealed the presence of potential DNA binding sites, or VirR boxes, that are recognized by the VirR response regulator. In vitro binding experiments showed that purified VirR was able to recognize and bind to these netB-associated VirR boxes. Furthermore, using a reporter gene assay, the netB VirR boxes were shown to be functional. Mutation of the virR gene in two avian C. perfringens strains was shown to significantly reduce the production of the NetB toxin; culture supernatants derived from these strains were no longer cytotoxic to Leghorn male hepatoma cells. Complementation with the virRS operon restored the toxin phenotypes to wild type. The results also showed that the VirSR two-component system regulates the expression of netB at the level of transcription. We postulate that in the gastrointestinal tract of infected birds, NetB production is upregulated when the population of C. perfringens cells reaches a threshold level that leads to activation of the VirSR system. PMID:20457789

  8. Model estimates of net primary productivity, evaportranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States

    Treesearch

    Hanqin Tian; Guangsheng Chen; Mingliang Liu; Chi Zhang; Ge Sun; Chaoqun Lu; Xiaofeng Xu; Wei Ren; Shufen Pan; Arthur. Chappelka

    2010-01-01

    The effects of global change on ecosystem productivity and water resources in the southern United States (SUS), a traditionally ‘water-rich’ region and the ‘timber basket’ of the country, are not well quantified. We carried out several simulation experiments to quantify ecosystem net primary productivity (NPP), evapotranspiration (ET)...

  9. Net ecosystem productivity of temperate grasslands in northern China: An upscaling study

    USGS Publications Warehouse

    Zhang, Li; Guo, Huadong; Jia, Gensuo; Wylie, Bruce; Gilmanov, Tagir; Howard, Daniel M.; Ji, Lei; Xiao, Jingfeng; Li, Jing; Yuan, Wenping; Zhao, Tianbao; Chen, Shiping; Zhou, Guangsheng; Kato, Tomomichi

    2014-01-01

    Grassland is one of the widespread biome types globally, and plays an important role in the terrestrial carbon cycle. We examined net ecosystem production (NEP) for the temperate grasslands in northern China from 2000 to 2010. We combined flux observations, satellite data, and climate data to develop a piecewise regression model for NEP, and then used the model to map NEP for grasslands in northern China. Over the growing season, the northern China's grassland had a net carbon uptake of 158 ± 25 g C m−2 during 2000–2010 with the mean regional NEP estimate of 126 Tg C. Our results showed generally higher grassland NEP at high latitudes (northeast) than at low latitudes (central and west) because of different grassland types and environmental conditions. In the northeast, which is dominated by meadow steppes, the growing season NEP generally reached 200–300 g C m−2. In the southwest corner of the region, which is partially occupied by alpine meadow systems, the growing season NEP also reached 200–300 g C m−2. In the central part, which is dominated by typical steppe systems, the growing season NEP generally varied in the range of 100–200 g C m−2. The NEP of the northern China's grasslands was highly variable through years, ranging from 129 (2001) to 217 g C m−2 growing season−1 (2010). The large interannual variations of NEP could be attributed to the sensitivity of temperate grasslands to climate changes and extreme climatic events. The droughts in 2000, 2001, and 2006 reduced the carbon uptake over the growing season by 11%, 29%, and 16% relative to the long-term (2000–2010) mean. Over the study period (2000–2010), precipitation was significantly correlated with NEP for the growing season (R2 = 0.35, p-value < 0.1), indicating that water availability is an important stressor for the productivity of the temperate grasslands in semi-arid and arid regions in northern China. We conclude that northern temperate grasslands have the potential to

  10. Hydrological and Climate Controls on Hyporheic Contributions to River Net Ecosystem Productivity

    NASA Astrophysics Data System (ADS)

    Newcomer, M. E.; Hubbard, S. S.; Fleckenstein, J. H.; Maier, U.; Schmidt, C.; Laube, G.; Chen, N.; Ulrich, C.; Dwivedi, D.; Steefel, C. I.; Rubin, Y.

    2016-12-01

    Hyporheic zone contributions to river net ecosystem productivity (NEP) can represent a substantial source or sink for organic and inorganic carbon (C). Hyporheic zone processes are estimated to vary with network location as a function of river-aquifer interactions as well as with climatic factors supporting riverbed gross primary productivity (GPP) and ecosystem respiration. Even though hyporheic zone NEP is hypothesized to be a significant budgetary component to river-aquifer biogeochemical cycling, models of river NEP often parameterize hyporheic zone contributions as a space-time constant input of CO2 to rivers, leading to overestimation of hyporheic zone NEP and underestimation of C storage. This assumption is problematic during the summer growing season, when GPP is largest and C is stored in surface and subsurface biomass. We investigated the dynamic role of hyporheic zone NEP using the MIN3P flow and reactive transport model with surface water GPP and ecosystem respiration simulated as a function of light, depth, temperature, pH, and atmospheric CO2. We simulated hyporheic zone NEP for low-order and high-order streams, which collectively represent a range of characteristic flow paths and subsurface residence times. Downscaled climate predictions of temperature and atmospheric CO2 representing carbon emission futures were used to force the models and to compare future and current hyporheic zone NEP. Our results show that river-aquifer flow conditions determine the relative role of the river as either a store or sink of C through direct contributions of O2 and dissolved organic content from river GPP. Modeled results show that high discharge, high order rivers are net stores of CO2 from the atmosphere; however this is dependent on perturbation events that allow stored C from summer GPP to be released (i.e. rising water tables during winter storms). Lacking a perturbation event, C remains in pore-water storage as dissolved CO2 and biomass. Conversely, low

  11. Developing a Network of Community Health Centers with a Common Electronic Health Record: Description of the Safety Net West Practice-based Research Network (SNW-PBRN)

    PubMed Central

    DeVoe, Jennifer E.; Gold, Rachel; Spofford, Mark; Chauvie, Susan; Muench, John; Turner, Ann; Likumahuwa, Sonja; Nelson, Christine

    2012-01-01

    In 2001, community health center (CHC) leaders in Oregon established an organization to facilitate the integration of health information technology, including a shared electronic health record (EHR), into safety net clinics. The Oregon Community Health Information Network (shortened to OCHIN as other states joined) became a CHC information technology hub, supporting a network-wide EHR with one master patient index, now linked across >40 safety net organizations serving >900,000 patients with nearly 8,000,000 distinct CHC visits. Recognizing the potential of OCHIN’s multi-clinic network and comprehensive EHR database for conducting safety net-based research, OCHIN leaders and local researchers formed the Safety Net West practice-based research network (PBRN). The Safety Net West “community-based laboratory,” based at OCHIN, is positioned to become an important resource for many studies including: evaluation of the real-time impact of health care reform on uninsured populations; development of new models of primary care delivery; dissemination and translation of interventions from other EHR-based systems (e.g., Kaiser Permanente) into the community health setting; and analyses of factors influencing disparities in health and health care access. We describe the founding of Safety Net West, its infrastructure development, current projects, and the future goals of this community-based PBRN with a common EHR. PMID:21900444

  12. A framework for evaluating safety-net and other community-level factors on access for low-income populations.

    PubMed

    Davidson, Pamela L; Andersen, Ronald M; Wyn, Roberta; Brown, E Richard

    2004-01-01

    The framework presented in this article extends the Andersen behavioral model of health services utilization research to examine the effects of contextual determinants of access. A conceptual framework is suggested for selecting and constructing contextual (or community-level) variables representing the social, economic, structural, and public policy environment that influence low-income people's use of medical care. Contextual variables capture the characteristics of the population that disproportionately relies on the health care safety net, the public policy support for low-income and safety-net populations, and the structure of the health care market and safety-net services within that market. Until recently, the literature in this area has been largely qualitative and descriptive and few multivariate studies comprehensively investigated the contextual determinants of access. The comprehensive and systematic approach suggested by the framework will enable researchers to strengthen the external validity of results by accounting for the influence of a consistent set of contextual factors across locations and populations. A subsequent article in this issue of Inquiry applies the framework to examine access to ambulatory care for low-income adults, both insured and uninsured.

  13. Comparing the impact of the 2003 and 2010 heatwaves on Net Ecosystem Production in Europe

    NASA Astrophysics Data System (ADS)

    Bastos, A. F.; Gouveia, C. M.; Trigo, R. M.

    2012-12-01

    Climate variability is known to influence primary productivity on land ecosystems (Nemani et al., 2003). In particular, extreme climatic events such as major droughts and heatwaves are known to have severe impact on primary productivity and, therefore, to affect significantly the carbon dioxide uptake by land ecosystems at regional (Ciais et al., 2005) or even global scale (Zhao and Running, 2010). In the last decade, Europe was struck by two outstanding heatwaves, the 2003 event in Western Europe and the recent 2010 episode over Eastern Europe. Both were characterised by record breaking temperatures at the daily, weekly, monthly and seasonal scales, although the amplitude and spatial extent of the 2010 mega-heatwave surpassed the 2003 event (Barriopedro et al., 2011). This work aims to assess the influence of both mega-heatwaves on seasonal and yearly Net Ecosystem Production (NEP). The work relies on monthly NEP data derived from satellite imagery obtained from MODIS (Moderate Resolution Imaging Spectroradiometer) sensor at 1km spatial resolution. Data were selected for the period between 2000 and 2011 over a region extending from 34.6 oN to 73.5 oN and 12.1 oW to 46.8 oE, covering Eurasia. In 2010 very low NEP anomalies are observed over a very large area in Eastern Europe, at the monthly, seasonal and yearly scale. In western Russia, yearly NEP anomalies fall below 50% of average cumulative NEP. These widespread negative anomalous values of NEP fields over the western Russia region match the patterns of very high temperature values combined with below-average precipitation, at the seasonal (summer) scale. Moreover, the impact of the heatwave is not only evident at the regional level but also at the wider continental (European) scale and is significantly more extensive and intense than the corresponding heatwave of 2003 in Western Europe (Ciais et al., 2005). References: Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. Garcia-Herrera (2011

  14. Estimation of potential GHG emissions from net primary productivity of forests — a satellite based approach

    NASA Astrophysics Data System (ADS)

    Prasad, V. Krishna; Kant, Yogesh; Badarinath, K. V. S.

    Solar radiation in the wavelength interval between 400 and 700 nm provides the energy for photosynthesis and this information can be used for estimating Net Primary Productivity of plants. In the present study, AVHRR coarse resolution satellite data has been used for estimating NPP and thereby potential Green House Gas (GHG) emissions by integrating satellite and ground based measurements. NPP of forests has been calculated from annual sum of daily photosynthetic absorbed radiation and the radiation use efficiency of different plant species. Fraction of absorbed photosynthetic radiation for the deciduous ecosystem has been computed from monthly AVHRR NDVI composite values and using the AVHRR simple ratio. Results of the study suggested potential productivity of 5.81 t/ha/yr from satellite data, when compared to actual productivity values of 5.4 t/ha/yr from girth measurements. Potential GHG emissions estimated using the NPP value, aerial to total NPP ratio, above ground biomass, burning efficiency, and emission factors from ground measurements suggested total emissions of 2.8 × 10 11, 2.1 × 10 10, 2.7 × 10 9, 9.8 × 10 8 and 2.0 × 10 7 gms for CO 2, CO, CH 4, NO x and N 2O respectively for the study area.

  15. Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivity.

    PubMed

    He, Chunyang; Liu, Zhifeng; Xu, Min; Ma, Qun; Dou, Yinyin

    2017-01-15

    Cropland net primary productivity (CNPP) is a crucial indicator of grain productivity and food security. However, assessments of the impact of urban expansion on the CNPP in China have been inadequate owing to data limitations. In this paper, our objective was to assess the impact of urban expansion on the CNPP in China from 1992 to 2015 in a spatially explicit manner. We first obtained the CNPP before urban expansion between 1992 and 2015 in China using the Carnegie-Ames-Stanford Approach (CASA) model. We then assessed the impact of urban expansion on the CNPP from 1992 to 2015 at multiple scales (the whole country, agricultural zones, and urban expansion hotspots) by combining the CNPP before urban expansion with the urban land coverage time series extracted from multi-source remotely sensed data. We found that the total loss of the CNPP due to urban expansion from 1992 to 2015 was 13.77TgC, which accounts for 1.88% of the CNPP before urban expansion in China. This CNPP loss resulted in a 12.45-million-ton decrease in grain production in China, corresponding to a reduction in the mean annual grain self-sufficiency rate of 2%. Therefore, we concluded that rapid urban expansion from 1992 to 2015 caused stress to China's food security. We suggest that it is still vital for China to effectively protect cropland to improve the urbanization level to 60% by 2020. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Monitoring of Typical Steppe Desertification Based on Time Series of Net Primary Productivity Data

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Li, Qiangzi; Gao, Zhihai

    2014-11-01

    Monitoring of grassland condition is a basic prerequisite for finding the degradation of a territory under climatic and human pressures leading to desertification. The temporal change in vegetation productivity is a key indicator of grassland degradation. In this paper, taking the Xilin Gol League as a case, the net primary production (NPP) dynamic trends during 2001-2010 were analyzed, with the Mann-Kendall test. In this paper, in the study area where precipitation and NPP has significantly positive correlation, the residual trend method (RESTREND) was used to remove the annual NPP fluctuation caused by rainfall fluctuation and reduce the effect of precipitation on vegetation monitoring indicators. The results showed that An overall strong liner correlation between NPP and precipitation was observed in the Xilin Gol grassland, with 68.52% of the pixels analyzed being significantly correlated (α =0.1). The statistical analysis reveals that the NPP trend estimation generally shows a decreasing trend, with 13.02% of the Xilin Gol grassland being analyzed showing a significant trend (11.47% decrease and 1.55% increase). However, the Xilin Gol grassland desertification was not serious in the past ten years, only 5.16% of the study area where the vegetation productivity was significantly decreases (reducing the effect of precipitation).

  17. Establishing and Expanding a Web Community Called NorthStarNet

    ERIC Educational Resources Information Center

    Minarik, Alan; Stoll, Christina

    2005-01-01

    These pioneers set out to set up new communities in the virtual frontier. Now, more than 50 libraries serve as Web hubs for their local settlements. The communities we live in have changed over time. But no matter the size of the tallest building, no matter how advanced the infrastructure, they grew to that size from humble beginnings: a…

  18. Economic Development Program, California Community Colleges: ED>Net 1998-1999 Annual Report.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Economic Development Coordination Network (EDNet).

    This report describes economic development programs operated by California Community Colleges during fiscal year 1998-1999. Report highlights include: (1) 60 of 107 community colleges (48 of 72 districts) operated an economic development program; (2) eight economic development programs engaged primarily in delivering training and technical…

  19. Biomass, net primary production and successional dynamics of a virgin white pine (Pinus strobus) stand in northern Michigan

    SciTech Connect

    Rose, W.M.

    1985-01-01

    Eastern white pine (Pinus strobus L.), averaging 177 years in age, dominates the forests at Hartwick Pines State Park, Michigan, with a basal area of 48.4 m/sup 2//ha, 66.7% of the total. Its mean diameter and height were 58 cm and 36 m, respectively. Hartwick's total biomass, 681 mt/ha, and basal area, 72.6 m/sup 2//ha, are among the highest worldwide. However, total net primary production of trees was a relatively low 7.5 mt/ha/yr. Diameter and height distributions suggest that red maple, sugar maple and beech are succeeding white pipe. Seeding survivorship was greater in the gaps than under the canopy and greater during winter than summer. Sugar maple had the highest overall annual survival rate and red maple had the lowest. Deer browsing may retard succession. There was a significant increase in height and crown cover of unbrowsed maple seedlings because shoot length had not been reduced by browsing. Fewer white pine survived in unbrowsed areas. It was concluded that a possible successional series for this area, if uninterrupted by fire or other disturbance, would be: jack pine for the first 80 years, white pine for 170 years, white pine-northern hardwood for 200 years, hemlock-northern hardwoods for 200 years with maple dominated hardwoods following as a long term stable community. It is hypothesized that biomass would increase to a maximum when white pine dominated and then decrease when hardwoods assumed dominance.

  20. Remote sensing of net ecosystem productivity based on component spectrum and soil respiration observation in boreal forest, interior Alaska.

    NASA Astrophysics Data System (ADS)

    Kushida, K.; Kim, Y.; Tanaka, N.; Fukuda, M.

    2003-12-01

    We built a remote sensing method for leaf area index (LAI) and ground cover mosses / lichens in boreal forest by field component spectral observation and radiative transfer modeling based on the spectrum. The method was applied to evaluate annual net ecosystem productivity (NEP) distribution in boreal forest, interior Alaska by combining soil respiration observation synchronized to the spectral observation. Spectral reflectance and soil respiration were observed in two 30m X 30m plots in black spruce stands, central Alaska. Spectral characteristics of the forest floor and the needle leaves were used as input parameters of a radiative transfer model to evaluate nadir reflectances of spruce communities in relation to varying upper layer LAI, forest floor bryophyte types, and leaf spectral characteristics. Using the relationship, we obtained LAI and bryophyte area ratios for each pixel that corresponds to spruce forest on Landsat ETM+ imagery. The LAI-NPP relationship was estimated from Plonski's normal yield table data and specific leaf area, and NPP was calculated from LAI. Based on the observed annual soil respiration and NPP of upper layer and forest floor, annual NEP geographical distribution was estimated as a mean value in recent 30-100 years from remotely sensed LAI and forest floor bryophyte area ratios. The annually estimated NEP was 51 gC/m2/year, which corresponds to the value (55 gC/m2/year) of 150-year-old black spruce forest in the BOREAS study region, Canada.

  1. Cultivating a cycle of trust with diverse communities in practice-based research: a report from PRIME Net.

    PubMed

    Getrich, Christina M; Sussman, Andrew L; Campbell-Voytal, Kimberly; Tsoh, Janice Y; Williams, Robert L; Brown, Anthony E; Potter, Michael B; Spears, William; Weller, Nancy; Pascoe, John; Schwartz, Kendra; Neale, Anne Victoria

    2013-01-01

    Practice-based research networks (PBRNs) are increasingly seen as important vehicles to translate research into practice, although less is known about the process of engaging diverse communities in PBRN research. The objective of this study was to identify strategies for successfully recruiting and retaining diverse racial/ethnic communities into PBRN research studies. This collaborative, multisite study engaged 5 of the 8 networks of the PRImary care MultiEthnic Network (PRIME Net) consortium that conducts research with traditionally underrepresented/underserved populations. We used a sequential, qualitative research design. We first conducted 1 key informant interview with each of 24 researchers experienced in recruiting research participants from 5 racial/ethnic communities (African American, Arab/Chaldean, Chinese, Hispanic, and Native American). Subsequently, we conducted 18 focus groups with 172 persons from these communities. Participants' comments indicated that successful recruitment and retention of underrepresented populations in PBRN studies is linked to the overall research process. This process, which we termed the cycle of trust, entailed developing and sustaining relationships of trust during 4 interrelated stages: before the study, during study recruitment, throughout study conduct, and after study completion. Participants identified a set of flexible strategies within each stage and called for close engagement with clinic and community partners. Our participants suggest that approaches to research that lay a foundation of trust, demonstrate respect for community members, and extend beyond the enrollment and data collection phases are essential to enhance the participation of diverse populations in PBRN research. These findings offer the PBRN community a guide toward achieving this important goal.

  2. The Central Logic Board for the KM3NeT detector: Design and production

    NASA Astrophysics Data System (ADS)

    Musico, P.; KM3NeT Collaboration

    2016-07-01

    The KM3NeT deep sea neutrino observatory will include a very large number of multi-Photomultiplier (PMT) optical modules (DOM) to detect the Cherenkov light generated by secondary particles produced in neutrino interactions. The Central Logic Board (CLB) has been developed to acquire timing and amplitude information from the PMT signals, implementing time-to-digital conversion (TDC) with time over threshold (TOT) technique. The board is also used to configure all the DOM subsystems, to assist in the DOM position and orientation, calibration and to monitor temperature and humidity in the DOM itself. All the collected data are transmitted to shore using a wide-bandwidth optical network. Moreover, through the optical network, all the DOMs are kept synchronized in time within 1 ns precision using the White Rabbit (WR) Precision Time Protocol (PTP) over an Ethernet connection. A large Field Programmable Gate Array (FPGA) has been adopted to implement all the specifications witht the requested performances. The CLB will be also used in the base container of the detection unit (DU) to set-up and monitor all the requested functionalities: in this scenario a dedicated firmware and software will be deployed on board. The design has been started in early 2013 and several prototypes have been developed. After deep test carried on in different EU laboratories, the final mass production batch of 600 boards has been ordered and built: all the CLB are now ready for integration in the DOMs and base containers. The first two KM3NeT DU will be deployed in summer 2015 and all other units are in advanced stage of integration.

  3. Assessment of net primary productivity over India using Indian geostationary satellite (INSAT-3A) data

    NASA Astrophysics Data System (ADS)

    Goroshi, S. K.; Singh, R. P.; Pradhan, R.; Parihar, J. S.

    2014-11-01

    Polar orbiting satellites (MODIS and SPOT) have been commonly used to measure terrestrial Net Primary Productivity (NPP) at regional/global scale. Charge Coupled Device (CCD) instrument on geostationary INSAT-3A platform provides a unique opportunity for continuous monitoring of ecosystem pattern and process study. An improved Carnegie-Ames-Stanford Approach (iCASA) model is one of the most expedient and precise ecosystem models to estimate terrestrial NPP. In this paper, an assessment of terrestrial NPP over India was carried out using the iCASA ecosystem model based on the INSAT CCD derived Normalized Difference Vegetation Index (NDVI) with multisource meteorological data for the year 2009. NPP estimated from the INSAT CCD followed the characteristic growth profile of most of the vegetation types in the country. NPP attained maximum during August and September, while minimum in April. Annual NPP for different vegetation types varied from 1104.55 gC m-2 year-1 (evergreen broadleaf forest) to 231.9 gC m-2 year-1 (grassland) with an average NPP of 590 gC m-2 year-1. We estimated 1.9 PgC of net carbon fixation over Indian landmass in 2009. Biome level comparison between INSAT derived NPP and MODIS NPP indicated a good agreement with the Willmott's index of agreement (d) ranging from 0.61 (Mixed forest) to 0.99 (Open Shrubland). Our findings are consistent with the earlier NPP studies in India and indicate that INSAT derived NPP has the capability to detect spatial and temporal variability of terrestrial NPP over a wide range of terrestrial ecosystems in India. Thus INSAT-3A data can be used as one of the potential satellite data source for accurate biome level carbon estimation in India.

  4. Flood effects on efflux and net production of nitrous oxide in river floodplain soils

    NASA Astrophysics Data System (ADS)

    Riaz, Muhammad; Bruderer, Christian; Niklaus, Pascal A.; Luster, Jörg

    2016-04-01

    Floodplain soils are often rich in nutrients and exhibit high spatial heterogeneity in terms of geomorphology, soil environmental conditions and substrate availability for processes involved in carbon and nutrient cycling. In addition, fluctuating water tables lead to temporally changing redox conditions. In such systems, there are ideal conditions for the occurrence of hot spots and moments of nitrous oxide emissions, a potent greenhouse gas. The factors that govern the spatial heterogeneity and dynamics of N2O formation in floodplain soils and the surface efflux of this gas are not fully understood. A particular issue is the contribution of N2O formation in the subsoil to surface efflux. We studied this question in the floodplain of a restored section of the Thur river (NE Switzerland) which is characterized by a flashy flow regime. As a consequence, the floodplain soils are unsaturated most of the time. We showed earlier that saturation during flood pulses leads to short phases of generally anoxic conditions followed by a drying phase with anoxic conditions within aggregates and oxic conditions in larger soil pores. The latter conditions are conducive for spatially closely-coupled nitrification-denitrification and related hot moments of nitrous oxide formation. In a floodplain zone characterized by about one meter of young, sandy sediments, that are mostly covered by the tall grass Phalaris arundinacea, we measured at several time points before and after a small flood event N2O surface efflux with the closed-chamber method, and assessed N2O concentrations in the soil air at four different depths using gas-permeable tubings. In addition, we calculated the N2O diffusivity in the soil from Radon diffusivity. The latter was estimated in-situ from the recovery of Radon concentration in the gas-permeable tubings after purging with ambient air. All these data were then used to calculate net N2O production rates at different soil depths with the gradient method. In

  5. Identification of extractable substances from rubber nettings used to package meat products.

    PubMed

    Bouma, K; Schothorst, R C

    2003-03-01

    Ten meat nettings were sampled from four different suppliers in the Netherlands. These meat nettings consisted both of natural rubber and of vegetable fibres. Nitrosamines were extractable up to 2 mg x kg(-1) netting, the nitrosamine being N-nitrosodibenzylamine. The nitrosatable substances found were precursors of N-nitrosodimethylamine and N-nitrosodibenzylamine and were extracted up to 0.4 mg x kg(-1) nettings. Considering the ratio of meat netting and foodstuff, the extractable amount of nitrosamines and nitrosatable substances does not raise concern for public health. The meat nettings were also screened for other potential migrants. Extractable amounts of several alkanes, alkenes, acids, antioxidants, plasticizers and sterols were found. Several of these extracted substances are not allowed in the Netherlands, although some are authorized in other countries. Several substances, however, have not been evaluated for use in food-contact materials and therefore the possible risk to public health is unknown.

  6. Effects of topography on simulated net primary productivity at landscape scale.

    PubMed

    Chen, X F; Chen, J M; An, S Q; Ju, W M

    2007-11-01

    Local topography significantly affects spatial variations of climatic variables and soil water movement in complex terrain. Therefore, the distribution and productivity of ecosystems are closely linked to topography. Using a coupled terrestrial carbon and hydrological model (BEPS-TerrainLab model), the topographic effects on the net primary productivity (NPP) are analyzed through four modelling experiments for a 5700 km(2) area in Baohe River basin, Shaanxi Province, northwest of China. The model was able to capture 81% of the variability in NPP estimated from tree rings, with a mean relative error of 3.1%. The average NPP in 2003 for the study area was 741 gCm(-2)yr(-1) from a model run including topographic effects on the distributions of climate variables and lateral flow of ground water. Topography has considerable effect on NPP, which peaks near 1350 m above the sea level. An elevation increase of 100 m above this level reduces the average annual NPP by about 25 gCm(-2). The terrain aspect gives rise to a NPP change of 5% for forests located below 1900 m as a result of its influence on incident solar radiation. For the whole study area, a simulation totally excluding topographic effects on the distributions of climatic variables and ground water movement overestimated the average NPP by 5%.

  7. Measurements and simulation of forest leaf area index and net primary productivity in Northern China.

    PubMed

    Wang, P; Sun, R; Hu, J; Zhu, Q; Zhou, Y; Li, L; Chen, J M

    2007-11-01

    Large scale process-based modeling is a useful approach to estimate distributions of global net primary productivity (NPP). In this paper, in order to validate an existing NPP model with observed data at site level, field experiments were conducted at three sites in northern China. One site is located in Qilian Mountain in Gansu Province, and the other two sites are in Changbaishan Natural Reserve and Dunhua County in Jilin Province. Detailed field experiments are discussed and field data are used to validate the simulated NPP. Remotely sensed images including Landsat Enhanced Thematic Mapper plus (ETM+, 30 m spatial resolution in visible and near infrared bands) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, 15m spatial resolution in visible and near infrared bands) are used to derive maps of land cover, leaf area index, and biomass. Based on these maps, field measured data, soil texture and daily meteorological data, NPP of these sites are simulated for year 2001 with the boreal ecosystem productivity simulator (BEPS). The NPP in these sites ranges from 80 to 800 gCm(-2)a(-1). The observed NPP agrees well with the modeled NPP. This study suggests that BEPS can be used to estimate NPP in northern China if remotely sensed images of high spatial resolution are available.

  8. Trends in North American net primary productivity derived from satellite observations, 1982-1998

    NASA Astrophysics Data System (ADS)

    Hicke, Jeffrey A.; Asner, Gregory P.; Randerson, James T.; Tucker, Compton; Los, Sietse; Birdsey, Richard; Jenkins, Jennifer C.; Field, Christopher

    2002-05-01

    Net primary productivity (NPP) in North America was computed for the years 1982-1998 using the Carnegie-Ames-Stanford approach (CASA) carbon cycle model. CASA was driven by a new, corrected satellite record of the normalized difference vegetation index at 8-km spatial resolution. Regional trends in the 17-year NPP record varied substantially across the continent. Croplands and grasslands of the Central Plains and eastern Canadian forests experienced summer increases in NPP. Peak NPP trends in Alaska and western Canada occurred in late spring or early summer, suggesting an earlier onset of the growing season in these regions. Forests and woodlands of the southeastern United States showed NPP increases in spring and fall, also suggesting an increase in the length of the growing season. An analysis of climate variables showed that summer precipitation increased in the Central Plains, indicating that climate changes probably play some role in increasing NPP in this region, though intensive management of agricultural ecosystems has also increased productivity. Similarly, increased summer precipitation possibly increased NPP in eastern Canada, but another possible explanation is forest recovery after insect damage. NPP in the southeastern United States increased in the absence of climate variation. Much of this region consists of aggressively managed forests, with young stand ages and intensive silviculture resulting in increased NPP. The high latitudes of western Canada and Alaska experienced spring warming that could have increased NPP in late spring or early summer.

  9. Trends in North American net primary productivity derived from satellite observations, 1982-1998

    NASA Astrophysics Data System (ADS)

    Hicke, Jeffrey A.; Asner, Gregory P.; Randerson, James T.; Tucker, Compton; Los, Sietse; Birdsey, Richard; Jenkins, Jennifer C.; Field, Christopher

    2002-06-01

    Net primary productivity (NPP) in North America was computed for the years 1982-1998 using the Carnegie-Ames-Stanford approach (CASA) carbon cycle model. CASA was driven by a new, corrected satellite record of the normalized difference vegetation index at 8-km spatial resolution. Regional trends in the 17-year NPP record varied substantially across the continent. Croplands and grasslands of the Central Plains and eastern Canadian forests experienced summer increases in NPP. Peak NPP trends in Alaska and western Canada occurred in late spring or early summer, suggesting an earlier onset of the growing season in these regions. Forests and woodlands of the southeastern United States showed NPP increases in spring and fall, also suggesting an increase in the length of the growing season. An analysis of climate variables showed that summer precipitation increased in the Central Plains, indicating that climate changes probably play some role in increasing NPP in this region, though intensive management of agricultural ecosystems has also increased productivity. Similarly, increased summer precipitation possibly increased NPP in eastern Canada, but another possible explanation is forest recovery after insect damage. NPP in the southeastern United States increased in the absence of climate variation. Much of this region consists of aggressively managed forests, with young stand ages and intensive silviculture resulting in increased NPP. The high latitudes of western Canada and Alaska experienced spring warming that could have increased NPP in late spring or early summer.

  10. Impacts of large-scale oscillations on pan-Arctic terrestrial net primary production

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Kimball, John S.; McDonald, Kyle C.; Cassano, John J.; Running, Steven W.

    2007-11-01

    Analyses of regional climate oscillations and satellite remote sensing derived net primary production (NPP) and growing season dynamics for the pan-Arctic region indicate that the oscillations influence NPP by regulating seasonal patterns of low temperature and moisture constraints to photosynthesis. Early-spring (Feb-Apr) patterns of the Arctic Oscillation (AO) are proportional to growing season onset (r = -0.653 P = 0.001), while growing season patterns of the Pacific Decadal Oscillation (PDO) are proportional to plant-available moisture constraints to NPP (I m ) (r = -0.471 P = 0.023). Relatively strong, negative PDO phases from 1988-1991 and 1998-2002 coincided with prolonged regional droughts indicated by a standardized moisture stress index. These severe droughts resulted in widespread reductions in NPP, especially for relatively drought prone boreal forest and grassland/cropland ecosystems. The influence of AO and PDO patterns on northern vegetation productivity appears to be decreasing and increasing, respectively, as low temperature constraints to plant growth relax and NPP becomes increasingly limited by available water supply under a warming climate.

  11. Counting women's labour: a reanalysis of children's net production using Cain's data from a Bangladeshi village.

    PubMed

    Robinson, Rachel Sullivan; Lee, Ronald D; Kramer, Karen L

    2008-03-01

    The economic contribution of children to their parents' households has long interested demographers because of its potential to influence fertility levels. Valuing children's labour in pre-industrial economies, however, is inherently difficult. The same is true of women's labour, a crucial component of any analysis of net production. Here we use Mead Cain's seminal study (Population and Development Review 3(3): 201-227, 1977) of children's economic contributions in a Bangladeshi village to illustrate these points. We combine Cain's data on landless women's and men's hours of work with data on the efficiency per hour of work from other pre-industrial settings (Mueller, Population and Development: The Search for Selective Interventions. Baltimore, MD: Johns Hopkins University Press, pp. 98-153, 1976; Kramer, Dissertation, Department of Anthropology, University of New Mexico, 1998). When women's labour is incorporated, we find that the Bangladeshi children begin to produce as much as they consume by ages 10 (girls) or 11 (boys). Despite these productive contributions, neither women nor men 'pay' for their cumulative consumption until their early 20s. We believe our methods could be usefully applied in other contexts.

  12. Modeling and spatially distributing forest net primary production at the regional scale.

    PubMed

    Mickler, Robert A; Earnhardt, Todd S; Moore, Jennifer A

    2002-04-01

    Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area's ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natural or anthropogenic processes, they may go from being a carbon sink to a carbon source or vice versa. Satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of terrestrial carbon. The coupling of Landsat Thematic Mapper (TM) data with a physiologically based forest productivity model (PnET-II) and historic climatic data provides an opportunity to enhance field plot-based forest inventory and monitoring methodologies. We use periodic forest inventory data from the U.S. Department of Agriculture (USDA) Forest Service's Forest Inventory and Analysis (FIA) Program to obtain estimates of forest area and type and to generate estimates of carbon storage for evergreen, deciduous, and mixed-forest classes. The area information is used in an accuracy assessment of remotely sensed forest cover at the regional scale. The map display of modeled net primary production (NPP) shows a range of forest carbon storage potentials and their spatial relationship to other landscape features across the southern United States. This methodology addresses the potential for measuring and projecting forest carbon sequestration in the terrestrial biosphere of the southern United States.

  13. Responses of net primary productivity (NPP) in Xinjiang to climate changes from 1981-2000

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Gao, Zhiqiang; Pan, Xiaoling; Slusser, James R.; Cao, Mingkui; Qi, Jiaguo; Zhang, Jie; Zhan, Xiwu; Ma, Yingjun

    2004-01-01

    In the last several decades, the responses of vegetation to global changes at regional and global scales have been studied with many mathematical models primarily driven by point meteorological observations. In this study, the net primary productivity (NPP) of Xinjiang, China is simulated using the GLObal Production Efficiency Model (GLO-PEM) which is a semi-mechanistic model of plant photosynthesis and respiration and driven entirely by satellite observations. With the available satellite observation data acquired from NOAA"s Advanced Very High Resolution Radiometer (AVHRR), the seasonal and inter-annual changes of NPP in the Xinjiang area are analyzed for the time period of 20 years from 1981 to 2000. Large spatial variability of NPP is found in this area. The temporal trends of NPP in different regions of the area differed significantly. However, for the whole area the mean annual NPP decreased in the 1980s and increased in the 1990s. Seasonal variations of NPP are large and inter-annual changes are moderate. The correlations between the simulated NPP and the precipitation and temperature suggested that precipitation and temperature played major roles in the variations of NPP.

  14. Assessing the Spatiotemporal Variation and Impact Factors of Net Primary Productivity in China

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Tan, Kun; Chen, Baozhang; Du, Peijun

    2017-03-01

    In this study, the net primary productivity (NPP) in China from 2001 to 2012 was estimated based on the Carnegie-Ames-Stanford Approach (CASA) model using Moderate Resolution Imaging Spectroradiometer (MODIS) and meteorological datasets, and the accuracy was verified by a ChinaFLUX dataset. It was found that the spatiotemporal variations in NPP present a downward trend with the increase of latitude and longitude. Moreover, the influence of climate change on the evolution of NPP shows that NPP has had different impact factors in different regions and periods over the 12 years. The eastern region has shown the largest increase in gross regional product (GRP) and a significant fluctuation in NPP over the 12 years. Meanwhile, NPP in the eastern and central regions is significantly positively correlated with annual solar radiation, while NPP in these two regions is significantly negatively correlated with the growth rate of GRP. It is concluded that both the development of the economy and climate change have influenced NPP evolution in China. In addition, NPP has shown a steadily rising trend over the 12 years as a result of the great importance attributed to ecological issues when developing the economy.

  15. Development of net energy ratio and emission factor for biohydrogen production pathways.

    PubMed

    Kabir, Md Ruhul; Kumar, Amit

    2011-10-01

    This study investigates the energy and environmental aspects of producing biohydrogen for bitumen upgrading from a life cycle perspective. Three technologies are studied for biohydrogen production; these include the Battelle Columbus Laboratory (BCL) gasifier, the Gas Technology Institute (GTI) gasifier, and fast pyrolysis. Three different biomass feedstocks are considered including forest residue (FR), whole forest (WF), and agricultural residue (AR). The fast pyrolysis pathway includes two cases: truck transport of bio-oil and pipeline transport of bio-oil. The net energy ratios (NERs) for nine biohydrogen pathways lie in the range of 1.3-9.3. The maximum NER (9.3) is for the FR-based pathway using GTI technology. The GHG emissions lie in the range of 1.20-8.1 kg CO₂ eq/kg H₂. The lowest limit corresponds to the FR-based biohydrogen production pathway using GTI technology. This study also analyzes the intensities for acid rain precursor and ground level ozone precursor.

  16. Spatial and Temporal Trends in terrestrial Ecosystems Net primary Production: A Model-Data Comparison

    NASA Astrophysics Data System (ADS)

    Rafique, R.; Asrar, G.; Zhao, F.; Zeng, N.

    2015-12-01

    The net primary productivity (NPP) is commonly used for understanding the dynamics of terrestrial ecosystems and their role in carbon cycle. The global NPP, highly variable over space and time, cannot be directly observed; however, satellite based observations of Normalized Difference Vegetation Index (NDVI) are used as a proxy to understand and monitor the NPP dynamics. In this study, we used a combination of most recent NDVI dataset and modeled NPP (from TRENDY project) for the period 1982-2012, to study the role of terrestrial ecosystems in carbon cycle under the prevailing climate conditions. We found that 67% and 80% of the global land showed positive NDVI and NPP values, respectively, for this period. The global spatial trends of NPP and NDVI were consistent, and in general agreement; however, this consistency was more prominent regionally in Western Europe, Eurasia, Sahel region of Africa, India, and China. Generally, on temporal scale, both global NPP and NDVI showed a corresponding pattern of increase (decrease) for the duration of this study except, for few years (e.g. 1990 and 1995-98). Northern hemisphere showed higher NDVI and NPP increasing trends over time compared to Southern hemisphere. Overall, the results of this study suggest that NDVI was able to capture the broader pattern of vegetation production as estimated by the ecosystem models. This pattern was stronger in temperate and boreal regions compared to tropical and extra tropical regions.

  17. Assessing the Spatiotemporal Variation and Impact Factors of Net Primary Productivity in China

    PubMed Central

    Wang, Xue; Tan, Kun; Chen, Baozhang; Du, Peijun

    2017-01-01

    In this study, the net primary productivity (NPP) in China from 2001 to 2012 was estimated based on the Carnegie-Ames-Stanford Approach (CASA) model using Moderate Resolution Imaging Spectroradiometer (MODIS) and meteorological datasets, and the accuracy was verified by a ChinaFLUX dataset. It was found that the spatiotemporal variations in NPP present a downward trend with the increase of latitude and longitude. Moreover, the influence of climate change on the evolution of NPP shows that NPP has had different impact factors in different regions and periods over the 12 years. The eastern region has shown the largest increase in gross regional product (GRP) and a significant fluctuation in NPP over the 12 years. Meanwhile, NPP in the eastern and central regions is significantly positively correlated with annual solar radiation, while NPP in these two regions is significantly negatively correlated with the growth rate of GRP. It is concluded that both the development of the economy and climate change have influenced NPP evolution in China. In addition, NPP has shown a steadily rising trend over the 12 years as a result of the great importance attributed to ecological issues when developing the economy. PMID:28281668

  18. Assessing the Spatiotemporal Variation and Impact Factors of Net Primary Productivity in China.

    PubMed

    Wang, Xue; Tan, Kun; Chen, Baozhang; Du, Peijun

    2017-03-10

    In this study, the net primary productivity (NPP) in China from 2001 to 2012 was estimated based on the Carnegie-Ames-Stanford Approach (CASA) model using Moderate Resolution Imaging Spectroradiometer (MODIS) and meteorological datasets, and the accuracy was verified by a ChinaFLUX dataset. It was found that the spatiotemporal variations in NPP present a downward trend with the increase of latitude and longitude. Moreover, the influence of climate change on the evolution of NPP shows that NPP has had different impact factors in different regions and periods over the 12 years. The eastern region has shown the largest increase in gross regional product (GRP) and a significant fluctuation in NPP over the 12 years. Meanwhile, NPP in the eastern and central regions is significantly positively correlated with annual solar radiation, while NPP in these two regions is significantly negatively correlated with the growth rate of GRP. It is concluded that both the development of the economy and climate change have influenced NPP evolution in China. In addition, NPP has shown a steadily rising trend over the 12 years as a result of the great importance attributed to ecological issues when developing the economy.

  19. Impacts of China's Three Gorges Dam Project on net primary productivity in the reservoir area.

    PubMed

    Xu, Xibao; Tan, Yan; Yang, Guishan; Li, Hengpeng; Su, Weizhong

    2011-10-15

    China's Three Gorges Dam Project (TGP) is the world's largest hydroelectric power project, and as a consequence the reservoir area is at risk of ecological degradation. This study uses net primary productivity (NPP) as an important indicator of the reservoir ecosystem's productivity to estimate the impacts of the TGP in the local resettlement region of the Three Gorges Reservoir Area (TGRA) over the 2000-2010 period. The modeling method is based upon the Carnegie Ames Stanford Approach (CASA) terrestrial carbon model and uses Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data for modeling simulation. The results demonstrate that total NPP in the resettlement region decreased by 8.0% (632.8Gg) from 2000 to 2010. The impact of the TGP on NPP is mainly mediated by land-use change brought about by the large-scale inundation of land and subsequent massive resettlement of both rural and urban residents. Nearby resettlement, land inundation, and relocation of old urban centers and affiliated urban dwellers are responsible for 54.3%, 28.0%, and 5.8% respectively of total NPP reduction in the resettlement region over the study period. The major national ecological projects implemented in the TGRA since 1998 have played a key role in offsetting the negative impacts of the TGP on NPP in the region.

  20. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology

    PubMed Central

    Koontz, Melissa; Lundberg, Christopher; Lane, Robert; Day, John; Pezeshki, Reza

    2016-01-01

    This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008–2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m−2·year−1), the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m−2·year−1·to 2874.2 ± 794.0 g·m−2·year−1. The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River. PMID:26861409

  1. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology.

    PubMed

    Koontz, Melissa; Lundberg, Christopher; Lane, Robert; Day, John; Pezeshki, Reza

    2016-02-04

    This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008-2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m(-2)·year(-1)), the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m(-2)·year(-1)·to 2874.2 ± 794.0 g·m(-2)·year(-1). The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  2. Climatic and oceanic forcing of new, net, and diatom production in the North Water

    NASA Astrophysics Data System (ADS)

    Tremblay, Jean-Eric; Gratton, Yves; Fauchot, Juliette; Price, Neil M.

    New, net, and diatom production in the North Water were estimated during May to July 1998 from in vitro measurements of nitrate uptake and mesoscale temporal changes in the inventories of nitrate, silicate, oxygen, and inorganic carbon (DIC). Sampling stations were divided into two domains according to the position of the dominant water types: the silicate-rich Arctic water (SRAW) and Baffin Bay Water (BBW). BBW dominated in the southeast and was associated with relatively shallow upper mixed layers (UMLs) and weak horizontal advection. A phytoplankton bloom started in late April in BBW and grew slowly over 7 weeks, during which time the build-up of particulate organic nitrogen and carbon accounted for ca. 80% of the nitrate and DIC deficit, respectively. Over half of the new production (1.37 g C m -2 d -1) during this period was attributed to wind-driven replenishment of nitrate in the euphotic zone. The bloom culminated when seasonally declining winds and rising temperatures severed the UML from the deep nutrient reservoir. The same change in weather induced ice melt, stratification, and bloom development in northern SRAW, which had previously been characterized by deep UMLs. Collectively, the results imply that the timing and magnitude of blooms in the North Water are controlled by a succession of oceanic and climatic forcings. New C production in the North Water during April to July (1.11 g C m -2 d -1) was an order of magnitude higher than in adjacent waters and up to 8 times higher than in the Northeast Water polynya. As much as 80% of this production was mediated by diatoms >5 μm, suggesting potentially high and efficient C transfer to the herbivorous food web and deep waters.

  3. Inter-annual Variability of Aboveground Net Primary Productivity in Regenerating Tropical Dry Forests

    NASA Astrophysics Data System (ADS)

    Powers, J. S.; Becknell, J. M.

    2015-12-01

    Globally, there are now more secondary forests regenerating following anthropogenic disturbance than primary forests. However, carbon dynamics in secondary tropical forests in general, and seasonally dry forests in particular, have not been as well studied as primary wet forests. Young, regenerating forests may be more sensitive to climatic variability than older forests because of their dynamic demographic rates. Similarly, seasonally dry tropical forests may be particularly sensitive to changes in precipitation, as tree growth is highly constrained by water availability. We examined how inter-annual variability in precipitation affected above-ground net primary productivity in chronosequences of dry forest in Costa Rica. Our sites included three forest cover types, whose distribution is linked to edaphic variation. Over our 6-yr dataset, annual rainfall varied from 1110 to 3040mm, with a 5-6 month dry season. ANPP ranged from 2.96 to 18.98 Mg ha-1 across sites that have been recovering for 7 to 67 years. Fine litter production dominated ANPP, and increased with forest age but not annual rainfall. By contrast, woody stem growth did not vary among forests that differed in age, but increased as a function of annual rainfall. These results differed by forest type. Lowland oak forests on low fertility soil had the lowest productivity and responses to rainfall, whereas forests on the highest fertility soils showed large increases in woody production with rainfall. Consistent with our expectation, younger forests on the intermediate soil type had higher variability in ANPP than older forests, but this was not significant for forests on the poor or high fertility soils. Our results highlight several important findings: 1) different components of ANPP vary in their responses to inter-annual variation in rainfall, 2) forest responses to climatic variability depend on species composition, which varies consistently with soil type in this landscape.

  4. Exploring the Relationship Between Wetland Methane Emissions and Net Ecosystem Productivity Using Experimental Shading and Labile Carbon Additions.

    NASA Astrophysics Data System (ADS)

    Owens, S.; von Fischer, J. C.

    2007-12-01

    Methane (CH4) emissions from wetlands are positively correlated with net ecosystem productivity (NEP); however the relative importance of proposed controlling mechanisms remains poorly understood. The carbon supply hypothesis suggests that recent photosynthesis contributes labile carbon substrate to methanogenic habitats, resulting in higher CH4 emissions with increases in NEP. Plant gas transport is also hypothesized to be important for conducting gases between the soil and the atmosphere. High CH4 production rates often occur in saturated wetland soils where gas diffusion is extremely slow. The aerenchymous tissues of vascular wetland plants can serve as the primary pathway for CH4 emissions from the soil to the atmosphere, while also allowing CH4 to bypass more aerobic soil regions where CH4 oxidation could occur. Using a hypothesis-driven experimental approach, we established shading treatments in a Juncus- dominated wetland in the northern Colorado Front Range, and measured CH4 and CO2 fluxes with a static chamber technique. In the summer of 2007, the shading manipulations (45% and 65% shade) significantly reduced net ecosystem exchange (NEE; an approximation of NEP) and mean CH4 fluxes compared to control plots (p=0.02 and p=0.01, respectively). To test the carbon supply hypothesis, we injected a solution containing acetate (a primary methanogenic carbon source) to a depth of 20cm below the soil surface. Acetate additions stimulated CH4 emission rates across all plots by an average of 29.3% (p=0.01). However the strength of the CH4 emission response was not significantly related to plot treatment or NEE, indicating that reduced carbon supply could not explain the response to shading. We hypothesize that reduced plant gas transport was more important than labile carbon supply for driving the lower CH4 emission rates in shaded plots. The dry weight of above-ground biomass was lower in shaded plots (p=0.04), suggesting a possible link between plant gas transport

  5. Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes

    PubMed Central

    2013-01-01

    Background Indoor residual insecticide spraying (IRS) and long-lasting insecticide treated nets (LLINs) are commonly used together even though evidence that such combinations confer greater protection against malaria than either method alone is inconsistent. Methods A deterministic model of mosquito life cycle processes was adapted to allow parameterization with results from experimental hut trials of various combinations of untreated nets or LLINs (Olyset®, PermaNet 2.0®, Icon Life® nets) with IRS (pirimiphos methyl, lambda cyhalothrin, DDT), in a setting where vector populations are dominated by Anopheles arabiensis, so that community level impact upon malaria transmission at high coverage could be predicted. Results Intact untreated nets alone provide equivalent personal protection to all three LLINs. Relative to IRS plus untreated nets, community level protection is slightly higher when Olyset® or PermaNet 2.0® nets are added onto IRS with pirimiphos methyl or lambda cyhalothrin but not DDT, and when Icon Life® nets supplement any of the IRS insecticides. Adding IRS onto any net modestly enhances communal protection when pirimiphos methyl is sprayed, while spraying lambda cyhalothrin enhances protection for untreated nets but not LLINs. Addition of DDT reduces communal protection when added to LLINs. Conclusions Where transmission is mediated primarily by An. arabiensis, adding IRS to high LLIN coverage provides only modest incremental benefit (e.g. when an organophosphate like pirimiphos methyl is used), but can be redundant (e.g. when a pyrethroid like lambda cyhalothin is used) or even regressive (e.g. when DDT is used for the IRS). Relative to IRS plus untreated nets, supplementing IRS with LLINs will only modestly improve community protection. Beyond the physical protection that intact nets provide, additional protection against transmission by An. arabiensis conferred by insecticides will be remarkably small, regardless of whether they are delivered

  6. Famine Early Warning Systems Network (FEWS NET) Contributions to Strengthening Resilience and Sustainability for the East African Community

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Galu, G.; Funk, C. C.; Verdin, J. P.; Rowland, J.

    2014-12-01

    The Planning for Resilience in East Africa through Policy, Adaptation, Research, and Economic Development (PREPARED) is a multi-organizational project aimed at mainstreaming climate-resilient development planning and program implementation into the East African Community (EAC). The Famine Early Warning Systems Network (FEWS NET) has partnered with the PREPARED project to address three key development challenges for the EAC; 1) increasing resiliency to climate change, 2) managing trans-boundary freshwater biodiversity and conservation and 3) improving access to drinking water supply and sanitation services. USGS FEWS NET has been instrumental in the development of gridded climate data sets that are the fundamental building blocks for climate change adaptation studies in the region. Tools such as the Geospatial Climate Tool (GeoCLIM) have been developed to interpolate time-series grids of precipitation and temperature values from station observations and associated satellite imagery, elevation data, and other spatially continuous fields. The GeoCLIM tool also allows the identification of anomalies and assessments of both their frequency of occurrence and directional trends. A major effort has been put forth to build the capacities of local and regional institutions to use GeoCLIM to integrate their station data (which is not typically available to the public) into improved national and regional gridded climate data sets. In addition to the improvements and capacity building activities related to geospatial analysis tools, FEWS NET will assist in two other areas; 1) downscaling of climate change scenarios and 2) vulnerability impact assessments. FEWS NET will provide expertise in statistical downscaling of Global Climate Model output fields and work with regional institutions to assess results of other downscaling methods. Completion of a vulnerability impact assessment (VIA) involves the examination of sectoral consequences in identified climate "hot spots". FEWS NET

  7. PARCS: A Safety Net Community-Based Fitness Center for Low-Income Adults

    PubMed Central

    Keith, NiCole; de Groot, Mary; Mi, Deming; Alexander, Kisha; Kaiser, Stephanie

    2015-01-01

    Background Physical activity (PA) and fitness are critical to maintaining health and avoiding chronic disease. Limited access to fitness facilities in low-income urban areas has been identified as a contributor to low PA participation and poor fitness. Objectives This research describes community-based fitness centers established for adults living in low-income, urban communities and characterizes a sample of its members. Methods The community identified a need for physical fitness opportunities to improve residents’ health. Three community high schools were host sites. Resources were combined to renovate and staff facilities, acquire equipment, and refer patients to exercise. The study sample included 170 members ≥ age 18yr who completed demographic, exercise self-efficacy, and quality of life surveys and a fitness evaluation. Neighborhood-level U.S. Census data were obtained for comparison. Results The community-based fitness centers resulted from university, public school, and hospital partnerships offering safe, accessible, and affordable exercise opportunities. The study sample mean BMI was 35 ± 7.6 (Class II obesity), mean age was 50yr ± 12.5, 66% were black, 72% were female, 66% completed some college or greater, and 71% had an annual household income < $25K and supported 2.2 dependents. Participants had moderate confidence for exercise participation and low fitness levels. When compared to census data, participants were representative of their communities. Conclusion This observational study reveals a need for affordable fitness centers for low-income adults. We demonstrate a model where communities and organizations strategically leverage resources to address disparities in physical fitness and health. PMID:27346764

  8. PARCS: A Safety Net Community-Based Fitness Center for Low-Income Adults.

    PubMed

    Keith, NiCole; Mi, Deming; Alexander, Kisha; Kaiser, Stephanie; de Groot, Mary

    2016-01-01

    Physical activity (PA) and fitness are critical to maintaining health and avoiding chronic disease. Limited access to fitness facilities in low-income urban areas has been identified as a contributor to low PA participation and poor fitness. This research describes community-based fitness centers established for adults living in low-income, urban communities and characterizes a sample of its members. The community identified a need for physical fitness opportunities to improve residents' health. Three community high schools were host sites. Resources were combined to renovate and staff facilities, acquire equipment, and refer patients to exercise. The study sample included 170 members older than age 18 who completed demographic, exercise self-efficacy, and quality of life surveys and a fitness evaluation. Neighborhood-level U.S. Census data were obtained for comparison. The community-based fitness centers resulted from university, public school, and hospital partnerships offering safe, accessible, and affordable exercise opportunities. The study sample mean body mass index was 35 + 7.6 kg/m(2) (class II obesity), mean age was 50 ± 12.5 years, 66% were Black, 72% were female, 66% completed some college or greater, and 71% had an annual household income of less than $25,000 and supported 2.2 dependents. Participants had moderate confidence for exercise participation and low fitness levels. When compared with census data, participants were representative of their communities. This observational study reveals a need for affordable fitness centers for low-income adults. We demonstrate a model where communities and organizations strategically leverage resources to address disparities in physical fitness and health.

  9. Importance of Past Human and Natural Disturbance in Present-Day Net Ecosystem Productivity

    NASA Astrophysics Data System (ADS)

    Felzer, B. S.; Phelps, P.

    2014-12-01

    Gridded datasets of Net Ecosystem Exchange derived from eddy covariance and remote sensing measurements provide a means of validating Net Ecosystem Productivity (NEP, opposite of NEE) from terrestrial ecosystem models. While most forested regions in the U.S. are observed to be moderate to strong carbon sinks, models not including human or natural disturbances will tend to be more carbon neutral, which is expected of mature ecosystems. We have developed the Terrestrial Ecosystems Model Hydro version (TEM-Hydro) to include both human and natural disturbances to compare against gridded NEP datasets. Human disturbances are based on the Hurtt et al. (2006) land use transition dataset and include transient agricultural (crops and pasture) conversion and abandonment and timber harvest. We include natural disturbances of storms and fires based on stochastic return intervals. Tropical storms and hurricane return intervals are based on Zheng et al. (2009) and occur only along the U.S. Atlantic and Gulf coasts. Fire return intervals are based on LANDFIRE Rapid Assessment Vegetation Models and vegetation types from the Hurtt dataset. We are running three experiments with TEM-Hydro from 1700-2011 for the conterminous U.S.: potential vegetation (POT), human disturbance only (agriculture and timber harvest, LULC), and human plus natural disturbance (agriculture, timber harvest, storms, and fire, DISTURB). The goal is to compare our NEP values to those obtained by FLUXNET-MTE (Jung et al. 2009) from 1982-2008 and ECMOD (Xiao et al., 2008) from 2000-2006 for different plant functional types (PFTs) within the conterminous U.S. Preliminary results show that, for the entire U.S., potential vegetation yields an NEP of 10.8 gCm-2yr-1 vs 128.1 gCm-2yr-1 for LULC and 89.8 gCm-2yr-1 for DISTURB from 1982-2008. The effect of regrowth following agricultural and timber harvest disturbance therefore contributes substantially to the present-day carbon sink, while stochastic storms and fires

  10. Biomass rather than growth rate determines variation in net primary production by giant kelp.

    PubMed

    Reed, Daniel C; Rassweiler, Andrew; Arkema, Katie K

    2008-09-01

    Net primary production (NPP) is influenced by disturbance-driven fluctuations in foliar standing crop (FSC) and resource-driven fluctuations in rates of recruitment and growth, yet most studies of NPP have focused primarily on factors influencing growth. We quantified NPP, FSC, recruitment, and growth rate for the giant kelp, Macrocystis pyrifera, at three kelp forests in southern California, U.S.A., over a 54-month period and determined the relative roles of FSC, recruitment, and growth rate in contributing to variation in annual NPP. Net primary production averaged between 0.42 and 2.38 kg dry mass x m(-2) x yr(-1) at the three sites. The initial FSC present at the beginning of the growth year and the recruitment of new plants during the year explained 63% and 21% of the interannual variation observed in NPP, respectively. The previous year's NPP and disturbance from waves collectively accounted for 80% of the interannual variation in initial FSC. No correlation was found between annual growth rate (i.e., the amount of new kelp mass produced per unit of existing kelp mass) and annual NPP (i.e., the amount of new kelp mass produced per unit area of ocean bottom), largely because annual growth rate was consistent compared to initial FSC and recruitment, which fluctuated greatly among years and sites. Although growth rate was a poor predictor of variation in annual NPP, it was principally responsible for the high mean values observed for NPP by Macrocystis. These high mean values reflected rapid growth (average of approximately 2% per day) of a relatively small standing crop (maximum annual mean = 444 g dry mass/m2) that replaced itself approximately seven times per year. Disturbance-driven variability in FSC may be generally important in explaining variation in NPP, yet it is rarely examined because cycles of disturbance and recovery occur over timescales of decades or more in many systems. Considerable insight into how variation in FSC drives variation in NPP may

  11. Impact of Icebergs on Net Primary Productivity in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Ye; Hou, Shugui

    2017-04-01

    Productivity in the Southern Ocean (SO) is iron-limited, and supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine environment. However, recent studies show that icebergs could provide comparable amount of bioavailable iron to the SO as aeolian dust. In addition, small scale areal studies suggest increased concentrations of chlorophyll, krill, and seabirds surrounding icebergs. Based on previous research, this study aims to examine whether iceberg occurrence has a significant impact on marine productivity at the scale of the SO, using remote sensing data of iceberg occurrences and ocean net primary productivity (NPP) covering the period 2002-2014. The impacts of both large and small icebergs are examined in four major ecological zones of the SO: the continental shelf zone (CSZ), the seasonal ice zone (SIZ), the permanent open ocean zone (POOZ) and the polar front zone (PFZ). We found that both large and small icebergs have an observable positive impact on NPP, but their impacts vary in different zones. Small icebergs on average increase NPP in most iron deficient zones: by 21% for the SIZ, 16% for the POOZ, and 12% for the PFZ, but have relatively small effect in the CSZ where iron is supplied from melt water and sediment input from the continent. Large icebergs on average increase the NPP by about 10%. Their impacts are stronger at higher latitudes, where they are more concentrated. From 1992-2014, there is a significant increasing trend for both small and large icebergs. The increase was most rapid in the early 2000s, and has levelled off since then. As the climate continues to warm, the Antarctic Ice Sheet is expected to experience increased mass loss as a whole, which could lead to more icebergs in the region. Based on our study, this could result in higher level of NPP in the SO as a whole, providing a negative feedback for global warming.

  12. Improved assessment of gross and net primary productivity of Canada's landmass

    NASA Astrophysics Data System (ADS)

    Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien

    2013-12-01

    assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.

  13. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    PubMed

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  14. Net primary productivity of subalpine meadows in Yosemite National Park in relation to climate variability

    USGS Publications Warehouse

    Moore, Peggy E.; Van Wagtendonk, Jan W.; Yee, Julie L.; McClaran, Mitchel P.; Cole, David N.; McDougald, Neil K.; Brooks, Matthew L.

    2013-01-01

    Subalpine meadows are some of the most ecologically important components of mountain landscapes, and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary productivity are associated with variability in moisture and temperature will become increasingly important with current and anticipated changes in climate. Our objective was to describe patterns and variability in aboveground live vascular plant biomass in relation to climatic factors. We harvested aboveground biomass at peak growth from four 64-m2 plots each in xeric, mesic, and hydric meadows annually from 1994 to 2000. Data from nearby weather stations provided independent variables of spring snow water content, snow-free date, and thawing degree days for a cumulative index of available energy. We assembled these climatic variables into a set of mixed effects analysis of covariance models to evaluate their relationships with annual aboveground net primary productivity (ANPP), and we used an information theoretic approach to compare the quality of fit among candidate models. ANPP in the xeric meadow was negatively related to snow water content and thawing degree days and in the mesic meadow was negatively related to snow water content. Relationships between ANPP and these 2 covariates in the hydric meadow were not significant. Increasing snow water content may limit ANPP in these meadows if anaerobic conditions delay microbial activity and nutrient availability. Increased thawing degree days may limit ANPP in xeric meadows by prematurely depleting soil moisture. Large within-year variation of ANPP in the hydric meadow limited sensitivity to the climatic variables. These relationships suggest that, under projected warmer and drier conditions, ANPP will increase in mesic meadows but remain unchanged in xeric meadows because declines associated with increased temperatures would offset the increases from decreased snow water content.

  15. Inter-annual variability and spatial coherence of net primary productivity across a western Oregon Cascades landscape

    Treesearch

    Travis J. Woolley; Mark E. Harmon; Kari B. O’Connell

    2015-01-01

    Inter-annual variability (IAV) of forest Net Primary Productivity (NPP) is a function of both extrinsic (e.g., climate) and intrinsic (e.g., stand dynamics) drivers. As estimates of NPP in forests are scaled from trees to stands to the landscape, an understanding of the relative effects of these factors on spatial and temporal behavior of NPP is important. Although a...

  16. Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data

    Treesearch

    Scott V. Ollinger; Marie-Louise Smith

    2005-01-01

    Understanding spatial patterns of net primary production (NPP) is central to the study of terrestrial ecosystems, but efforts are frequently hampered by a lack of spatial information regarding factors such as nitrogen availability and site history. Here, we examined the degree to which canopy nitrogen can serve as an indicator of patterns of NPP at the Bartlett...

  17. Spatial heterogeneity in aboveground net primary production and species richness at multiple scales in the Chihuahuan Desert

    USDA-ARS?s Scientific Manuscript database

    We analyzed patterns in spatial heterogeneity and the processes driving these patterns in two ecosystem properties, aboveground net primary production (ANPP) and species richness, at multiple scales in the Chihuahuan Desert. We used long-term data (1990-2009) to examine the importance of a suite of...

  18. Estimating Green Net National Product for Puerto Rico: An Economic Measure of Sustainability.

    PubMed

    Wu, Shanshan; Heberling, Matthew T

    2016-04-01

    This paper presents the data sources and methodology used to estimate Green Net National Product (GNNP), an economic metric of sustainability, for Puerto Rico. Using the change in GNNP as a one-sided test of weak sustainability (i.e., positive growth in GNNP is not enough to show the economy is sustainable), we measure the movement away from sustainability by examining the change in GNNP from 1993 to 2009. In order to calculate GNNP, we require both economic and natural capital data, but limited data for Puerto Rico require a number of simplifying assumptions. Based on the environmental challenges faced by Puerto Rico, we include damages from air emissions and solid waste, the storm protection value of mangroves and the value of extracting crushed stone as components in the depreciation of natural capital. Our estimate of GNNP also includes the value of time, which captures the effects of technological progress. The results show that GNNP had an increasing trend over the 17 years studied with two periods of negative growth (2004-2006 and 2007-2008). Our additional analysis suggests that the negative growth in 2004-2006 was possibly due to a temporary economic downturn. However, the negative growth in 2007-2008 was likely from the decline in the value of time, suggesting the island of Puerto Rico was moving away from sustainability during this time.

  19. Energy intensity ratios as net energy measures of United States energy production and expenditures

    NASA Astrophysics Data System (ADS)

    King, C. W.

    2010-10-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. /Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  20. Forecasting global urban expansion and its effect on terrestrial net primary productivity

    NASA Astrophysics Data System (ADS)

    Li, Xuecao; Yu, Le; Liu, Xiaoping; Gong, Peng

    2016-04-01

    Net primary productivity (NPP) is of great importance to global terrestrial carbon cycle and global climate change. Although many relevant studies have been carried out, attempts on its consequence caused by urban expansion are still limited. In this study, we quantified the NPP loss after urbanization by 2100, through linking a global land use/cover dynamic (GLCD) model and a neighborhood proxy method. Finer resolution (30m) global land cover map as well as detailed land demand dataset (half degree) were adopted for urban growth modeling and NPP quantification. Our results indicate that (1) by 2100, the global urban area will reach 125.15×104 km2, with a growth rate of 2,892 km2/year; (2) the NPP loss due to urbanization during period of 2010-2100 is 9×10^(-3) PgC, which accounts more than 3% of the total urban NPP in 2010. In addition, by the end of this century, most urbanized land is estimated to happen in developing countries, e.g. China and India. Overall, global urban expansion results a neglect impact to NPP. Therefore, more attentions should be paid to cope with urban development in future, such as urban planning or managements.

  1. Fire, hurricane and carbon dioxide: effects on net primary production of a subtropical woodland.

    PubMed

    Hungate, Bruce A; Day, Frank P; Dijkstra, Paul; Duval, Benjamin D; Hinkle, C Ross; Langley, J Adam; Megonigal, J Patrick; Stiling, Peter; Johnson, Dale W; Drake, Bert G

    2013-11-01

    Disturbance affects most terrestrial ecosystems and has the potential to shape their responses to chronic environmental change. Scrub-oak vegetation regenerating from fire disturbance in subtropical Florida was exposed to experimentally elevated carbon dioxide (CO₂) concentration (+350 μl l(-1)) using open-top chambers for 11 yr, punctuated by hurricane disturbance in year 8. Here, we report the effects of elevated CO₂ on aboveground and belowground net primary productivity (NPP) and nitrogen (N) cycling during this experiment. The stimulation of NPP and N uptake by elevated CO₂ peaked within 2 yr after disturbance by fire and hurricane, when soil nutrient availability was high. The stimulation subsequently declined and disappeared, coincident with low soil nutrient availability and with a CO₂ -induced reduction in the N concentration of oak stems. These findings show that strong growth responses to elevated CO₂ can be transient, are consistent with a progressively limited response to elevated CO₂ interrupted by disturbance, and illustrate the importance of biogeochemical responses to extreme events in modulating ecosystem responses to global environmental change. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Effects of climate warming on net primary productivity in China during 1961-2010.

    PubMed

    Gu, Fengxue; Zhang, Yuandong; Huang, Mei; Tao, Bo; Guo, Rui; Yan, Changrong

    2017-09-01

    The response of ecosystems to different magnitudes of climate warming and corresponding precipitation changes during the last few decades may provide an important reference for predicting the magnitude and trajectory of net primary productivity (NPP) in the future. In this study, a process-based ecosystem model, Carbon Exchange between Vegetation, Soil and Atmosphere (CEVSA), was used to investigate the response of NPP to warming at both national and subregional scales during 1961-2010. The results suggest that a 1.3°C increase in temperature stimulated the positive changing trend in NPP at national scale during the past 50 years. Regardless of the magnitude of temperature increase, warming enhanced the increase in NPP; however, the positive trend of NPP decreased when warming exceeded 2°C. The largest increase in NPP was found in regions where temperature increased by 1-2°C, and this rate of increase also contributed the most to the total increase in NPP in China's terrestrial ecosystems. Decreasing precipitation depressed the positive trend in NPP that was stimulated by warming. In northern China, warming depressed the increasing trend of NPP and warming that was accompanied by decreasing precipitation led to negative changing trends in NPP in large parts of northern China, especially when warming exceeded 2°C. However, warming stimulated the increase in NPP until warming was greater than 2°C, and decreased precipitation helped to increase the NPP in southern China.

  3. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    PubMed

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  4. [Simulating net primary production of rice and wheat crops: model validation and scenario prediction].

    PubMed

    Yang, Zhao-fang; Yu, Yong-qiang; Huang, Yao

    2005-03-01

    A model developed by the authors was validated against a total of 98 independent data sets to simulate net primary production (NPP) of rice and wheat crops. These data sets come from literature review and include field measurements conducted in different regions of China with various rates of N application. Model validation indicates that NPP of rice and wheat crops in main cultivated-area of China can be well simulated from weather, soil and N fertilization. A comparison between the simulated (y) and the observed NPP (x) resulted in a regression of y = 1.05x- 16.8 (r2= 0.771,p < 0.001, n = 98). Model scenario prediction for Nanjing area suggests that the increase of atmospheric CO2 concentration will enhance carbon fixation, while the increase of air temperature will reduce carbon fixation by rice and wheat crops. Effect of global warming on the wheat carbon fixation is less than on the rice. Under present and future scenario with atmospheric CO2 concentration of 540 micromol x mol(-1) and temperature increment of 1-4 degrees C, N fertilization will enhance carbon fixation of rice and wheat crops. The enhancement for wheat is more significant than that for rice crop. However, the application of N will not significantly improve the carbon fixation, even reduce rice NPP when the N application rate is higher than 150 kg x hm(-2).

  5. Estimating Green Net National Product for Puerto Rico: An Economic Measure of Sustainability

    NASA Astrophysics Data System (ADS)

    Wu, Shanshan; Heberling, Matthew T.

    2016-04-01

    This paper presents the data sources and methodology used to estimate Green Net National Product (GNNP), an economic metric of sustainability, for Puerto Rico. Using the change in GNNP as a one-sided test of weak sustainability (i.e., positive growth in GNNP is not enough to show the economy is sustainable), we measure the movement away from sustainability by examining the change in GNNP from 1993 to 2009. In order to calculate GNNP, we require both economic and natural capital data, but limited data for Puerto Rico require a number of simplifying assumptions. Based on the environmental challenges faced by Puerto Rico, we include damages from air emissions and solid waste, the storm protection value of mangroves and the value of extracting crushed stone as components in the depreciation of natural capital. Our estimate of GNNP also includes the value of time, which captures the effects of technological progress. The results show that GNNP had an increasing trend over the 17 years studied with two periods of negative growth (2004-2006 and 2007-2008). Our additional analysis suggests that the negative growth in 2004-2006 was possibly due to a temporary economic downturn. However, the negative growth in 2007-2008 was likely from the decline in the value of time, suggesting the island of Puerto Rico was moving away from sustainability during this time.

  6. Analyzing decadal net ecosystem production control factors and the effects of recent climate events in Japan

    NASA Astrophysics Data System (ADS)

    Setoyama, Y.; Sasai, T.

    2012-12-01

    By quantitatively examining the impacts of meteorological variables on net ecosystem production (NEP), we could ascertain accurately the role of terrestrial ecosystem transitions in carbon cycles. However, the control factors of NEP remain to be circumstantially clarified spatially and temporally. In this study, we investigated NEP control factors in Japan at 1 km grid resolution from 2001 to 2010, and the specific effects of recent climate and meteorological events on the terrestrial carbon cycle. After estimating NEP using the satellite-driven biosphere model (BEAMS), we investigated the effects of six control factors on NEP by sensitivity and anomaly analyses. We used MODIS, GPCP, and NCEP/NCAR re-analysis dataset for the model inputs. As a result, the key factors were parameters relevant to "phenology" and "radiation" (R2 = 0.64, 0.41, respectively). The ecological responses to meteorological changes were different for each region and season. We found in the anomaly analyses that NEP behavior in Japan generally follow inter-annual global CO2 concentrations and the ENSO cycles. In addition, the exceptions were changed by other climate and Japan unique meteorological events (e.g., El Niño modoki, Baiu front). By clarifying spatial and temporal pattern in the NEP control factor, we could understand recent terrestrial carbon cycle mechanism.

  7. Analyzing decadal net ecosystem production control factors and the effects of recent climate events in Japan

    NASA Astrophysics Data System (ADS)

    Setoyama, Yuko; Sasai, Takahiro

    2013-03-01

    To determine the mechanisms of global warming, better understand the feedback process between the atmosphere and the terrestrial ecosystem, and more fully understand the role of terrestrial ecosystem carbon cycle transitions, we must make a quantitative spatial assessment of the various, highly mutable factors that control terrestrial carbon fluxes. We quantitatively analyzed spatial and temporal net ecosystem production (NEP) factors from 2001 to 2010 at a spatial grid resolution of 1 km in Japan. After conducting six sensitivity study runs for time-variable inputs, we calculated NEP anomaly and correlation coefficients between the default and each sensitivity study run to quantitatively examine the contribution of target inputs on NEP. The primary factor controlling the annual NEP was input related to radiation (solar radiation and albedo), and the area averaged significant correlation coefficient was 0.38, dominating 91.8% of the area. The correlation coefficient in most areas was significantly high, but in mountainous areas (>1000 m), it was low. Input related to temperature (air temperature and land surface temperature) was the second most influential factor (R2 = 0.10, area = 6.8%), and water had a significant correlation in just 28.2% of all pixels. We determined that the primary spatial and temporal NEP factors in Japan were radiation and temperature, with the dominant position gradually rotating by season among three factors. We reaffirmed the continuing importance of high spatial resolution observations to qualitatively monitor the spatial and temporal changes of the various control factors.

  8. [Variation trends of natural vegetation net primary productivity in China under climate change scenario].

    PubMed

    Zhao, Dong-sheng; Wu, Shao-hong; Yin, Yun-he

    2011-04-01

    Based on the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) for climate change study, and according to the features of natural environment in China, the operation mechanism of the model was adjusted, and the parameters were modified. With the modified LPJ model and taking 1961-1990 as baseline period, the responses of natural vegetation net primary productivity (NPP) in China to climate change in 1991-2080 were simulated under the Special Report on Emissions Scenarios (SRES) B2 scenario. In 1961-1990, the total NPP of natural vegetation in China was about 3.06 Pg C a(-1); in 1961-2080, the total NPP showed a fluctuant decreasing trend, with an accelerated decreasing rate. Under the condition of slight precipitation change, the increase of mean air temperature would have definite adverse impact on the NPP. Spatially, the NPP decreased from southeast coast to northwest inland, and this pattern would have less variation under climate change. In eastern China with higher NPP, especially in Northeast China, east of North China, and Loess Plateau, the NPP would mainly have a decreasing trend; while in western China with lower NPP, especially in the Tibetan Plateau and Tarim Basin, the NPP would be increased. With the intensive climate change, such a variation trend of NPP would be more obvious.

  9. Remote sensing of aboveground biomass and annual net aerial primary productivity in tidal wetlands

    SciTech Connect

    Hardisky, M.A.

    1983-01-01

    A technique was investigated for estimating biomass and net aerial primary productivity (NAPP) in Delaware tidal marshes from spectral data, describing marsh vegetation canopies. Spectral radiance data were collected with hand-held radiometers from the ground and from low altitude aircraft. Spectral wavebands corresponding to Landsat 4 thematic mapper bands 3, 4 and 5 and multispectral scanner bands 5 and 7 were employed. Spectral data, expressed as index values, were substituted into simple regression models to nondestructively compute total aboveground biomass. Dead biomass, salt crystals on plant leaves and soil background reflectance, all attenuated the spectral radiance index values. A large spectral contribution from any one of these canopy components caused an underestimate of live biomass. Biomass and annual NAPP of a S. alterniflora dominated salt marsh was estimated by traditional harvesting techniques and from ground-gathered spectral radiance data. The live and dead standing crop biomass estimates computed from spectral data were usually not significantly different from harvest biomass estimates. Spectral estimates of NAPP were usually within 10% of NAPP estimates calculated from harvest data. August live standing crop biomass estimates computed from ground-gathered spectral data for a tidal brackish marsh were generally within 10% of harvest estimates. Live biomass estimates computed from spectral data gathered from a low altitude aircraft were equally similar to harvest biomass estimates. The remote sensing technique holds much promise for rapid and accurate estimates of biomass and NAPP in tidal marshes.

  10. Net primary productivity and its spatiotemporal patterns in Loess Plateau during 1981-2000

    NASA Astrophysics Data System (ADS)

    Shi, Huading; Gao, Zhiqiang; Shi, Jun

    2005-09-01

    Based on the GLO-PEM simulated data, net primary productivity (NPP) and its spatiotemporal patterns in Loess Plateau were studied from 1981 to 2000. Our research indicated that the distribution of annual NPP in Loess Plateau was obviously different from east to west and from south to north. The average of annual total NPP is 0.15PgC, with an annual increasing rate of 0.01%. NPP decreased in most parts of Loess Plateau, with the largest decrease in the southeast of Shanxi Province and northeast of Loess Plateau, But it increased in the area along the boundary between Shaanxi Province, Inner Mongolia Province and Lanzhou Basin in the west of Loess Plateau, The early 1990s (1991-1995) is the time with fastest NPP increase. The variation of NPP is different seasonally. It decreased mostly in winter, with an annual rate of 0.57%, and increased with an annual rate of 0.51% from April to May.

  11. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.

    PubMed

    LeBauer, David S; Treseder, Kathleen K

    2008-02-01

    Our meta-analysis of 126 nitrogen addition experiments evaluated nitrogen (N) limitation of net primary production (NPP) in terrestrial ecosystems. We tested the hypothesis that N limitation is widespread among biomes and influenced by geography and climate. We used the response ratio (R approximately equal ANPP(N)/ANPP(ctrl)) of aboveground plant growth in fertilized to control plots and found that most ecosystems are nitrogen limited with an average 29% growth response to nitrogen (i.e., R = 1.29). The response ratio was significant within temperate forests (R = 1.19), tropical forests (R = 1.60), temperate grasslands (R = 1.53), tropical grasslands (R = 1.26), wetlands (R = 1.16), and tundra (R = 1.35), but not deserts. Eight tropical forest studies had been conducted on very young volcanic soils in Hawaii, and this subgroup was strongly N limited (R = 2.13), which resulted in a negative correlation between forest R and latitude. The degree of N limitation in the remainder of the tropical forest studies (R = 1.20) was comparable to that of temperate forests, and when the young Hawaiian subgroup was excluded, forest R did not vary with latitude. Grassland response increased with latitude, but was independent of temperature and precipitation. These results suggest that the global N and C cycles interact strongly and that geography can mediate ecosystem response to N within certain biome types.

  12. Evaluation of modelled net primary production using MODIS and landsat satellite data fusion.

    PubMed

    Jay, Steven; Potter, Christopher; Crabtree, Robert; Genovese, Vanessa; Weiss, Daniel J; Kraft, Maggi

    2016-12-01

    To improve estimates of net primary production for terrestrial ecosystems of the continental United States, we evaluated a new image fusion technique to incorporate high resolution Landsat land cover data into a modified version of the CASA ecosystem model. The proportion of each Landsat land cover type within each 0.004 degree resolution CASA pixel was used to influence the ecosystem model result by a pure-pixel interpolation method. Seventeen Ameriflux tower flux records spread across the country were combined to evaluate monthly NPP estimates from the modified CASA model. Monthly measured NPP data values plotted against the revised CASA model outputs resulted in an overall R(2) of 0.72, mainly due to cropland locations where irrigation and crop rotation were not accounted for by the CASA model. When managed and disturbed locations are removed from the validation, the R(2) increases to 0.82. The revised CASA model with pure-pixel interpolated vegetation index performed well at tower sites where vegetation was not manipulated or managed and had not been recently disturbed. Tower locations that showed relatively low correlations with CASA-estimated NPP were regularly disturbed by either human or natural forces.

  13. Influence of site index on the relationship between forest net primary productivity and stand age

    PubMed Central

    Yu, Ying; Chen, Jing M.; Yang, Xiguang; Fan, Wenyi; Li, Mingze; He, Liming

    2017-01-01

    Previous studies show that forest net primary productivity (NPP) varies pronouncedly with stand age, and these variations play a crucial role in determining forest carbon sinks or sources at regional scales. Some forest carbon cycling models, eg. InTEC (The integrated terrestrial ecosystem C-budget model), calculates annual forest NPP in the long term according to normalized NPP-age relationships and the reference forest NPP at a given age. Therefore, the accurate NPP-age relationship is important for forest NPP estimation. In this study, NPP at various stand ages for twelve major forest stand types in Heilongjiang Province in northeast China is derived from yield tables with consideration of the total biomass increment and foliage and fine-root turnovers. Similar to previous studies, our results also show that forest NPP increases quickly at young ages, reaches the maximum value at middle age (10–40 years old), and then decreases to a relative stable level at old ages. However, we additionally found that forests under better site conditions have faster growth rates in young ages and steeper declines after reaching the maximum. Therefore, when the NPP-age curves for different site indices are normalized against the maximum value of each curve, there are significant differences among them. These differences have implications on the methodology for estimating the spatial distribution of forest carbon sources and sinks. PMID:28493995

  14. Responses of Terrestrial Ecosystems’ Net Primary Productivity to Future Regional Climate Change in China

    PubMed Central

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems’ response to global climate change. China’s ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund–Potsdam–Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China’s terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change. PMID:23593325

  15. HIV/AIDS, declining family resources and the community safety net.

    PubMed

    Heymann, Jody; Kidman, Rachel

    2009-01-01

    Families play central roles in the HIV/AIDS pandemic, caring for both orphaned children and the ill. This extra caregiving depletes two family resources essential for supporting children: time and money. We use recent data from published studies in sub-Saharan Africa to illustrate deficits and document community responses. In Botswana, parents caring for the chronically ill had less time for their preschool children (74 versus 96 hours per month) and were almost twice as likely to leave children home alone (53% versus 27%); these children experienced greater health and academic problems. Caregiving often prevented adults from working full time or earning their previous level of income; 47% of orphan caregivers and 64% of HIV/AIDS caregivers reported financial difficulties due to caregiving. Communities can play an important role in helping families provide adequate childcare and financial support. Unfortunately, while communities commonly offer informal assistance, the value of such support is not adequate to match the magnitude of need: 75% of children's families in Malawi received assistance from their social network, but averaging only US$81 annually. We suggest communities can strengthen the capacity of families by implementing affordable quality childcare for 0-6 year olds, after-school programming for older children and youth, supportive care for ill children and parents, microlending to enhance earnings, training to increase access to quality jobs, decent working conditions, social insurance for the informal sector, and income and food transfers when families are unable to make ends meet.

  16. Linking Educators' Professional Development to Workplace/Community Learning Experiences. TeachNET Educational Brief.

    ERIC Educational Resources Information Center

    Sargent, Thomas A.

    Mindful of the need for quality professional development and its characteristics, large numbers of educators are self-selecting to participate in workplace/community learning (WCL) experiences. Viewed as an alternative to less desirable forms of traditional professional development, WCL displays characteristics of high-quality professional…

  17. Net energy production and emissions mitigation of domestic wastewater treatment system: a comparison of different biogas-sludge use alternatives.

    PubMed

    Chen, Shaoqing; Chen, Bin

    2013-09-01

    Wastewater treatment systems are increasingly designed for the recovery of valuable chemicals and energy in addition to waste stream disposal. Herein, the life-cycle energy production and emissions mitigation of a typical domestic wastewater treatment system were assessed, in which different combinations of biogas use and sludge processing lines for industrial or household applications were considered. The results suggested that the reuse of biogas and sludge was so important in the system's overall energy balance and environmental performance that it may offset the cost in the plant's installation and operation. Combined heat and power and household utilization were two prior options for net energy production, provided an ideal power conversion efficiency and biogas production. The joint application of household biogas use and sludge nutrient processing achieved both high net energy production and significant environmental remediation across all impact categories, representing the optimal tradeoff for domestic wastewater treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China

    SciTech Connect

    Wang, Peijuan; Xie, Donghui; Zhou, Yuyu; E, Youhao; Zhu, Qijiang

    2014-01-16

    The ecological structure in the arid and semi-arid region of Northwest China with forest, grassland, agriculture, Gobi, and desert, is complex, vulnerable, and unstable. It is a challenging and sustaining job to keep the ecological structure and improve its ecological function. Net primary productivity (NPP) modeling can help to improve the understanding of the ecosystem, and therefore, improve ecological efficiency. The boreal ecosystem productivity simulator (BEPS) model provides the possibility of NPP modeling in terrestrial ecosystem, but it has some limitations for application in arid and semi-arid regions. In this paper we improve the BEPS model, in terms of its water cycle by adding the processes of infiltration and surface runoff, to be applicable in arid and semi-arid regions. We model the NPP of forest, grass, and crop in Gansu Province as an experimental area in Northwest China in 2003 using the improved BEPS model, parameterized with moderate resolution remote sensing imageries and meteorological data. The modeled NPP using improved BEPS agrees better with the ground measurements in Qilian Mountain than that with original BEPS, with a higher R2 of 0.746 and lower root mean square error (RMSE) of 46.53 gC/m2 compared to R2 of 0.662 and RMSE of 60.19 gC/m2 from original BEPS. The modeled NPP of three vegetation types using improved BEPS show evident differences compared to that using original BEPS, with the highest difference ratio of 9.21% in forest and the lowest value of 4.29% in crop. The difference ratios between different vegetation types lie on the dependence on natural water sources. The modeled NPP in five geographic zones using improved BEPS are higher than those with original BEPS, with higher difference ratio in dry zones and lower value in wet zones.

  19. Predicting global oceanic net primary productivity with reduced-dimension, linear dynamical spatiotemporal models

    NASA Astrophysics Data System (ADS)

    Gonzalez, F.; Barton, A.; Stock, C. A.

    2016-02-01

    Oceanic net primary production (NPP) accounts for roughly half of biological carbon fixation at the global scale, determining upper bounds for fisheries and export production. Assessing our ability to predict changes in NPP has thus major implications for the analysis of climate change impacts and for the management of living marine resources. Here, we fitted a series of reduced-dimension, linear dynamical spatiotemporal models to estimates of NPP derived from 18 years of remote sensing data and from simulations of a fully coupled, ocean-atmosphere Earth System Model (ESM). The method projects the evolution of NPP anomalies at the global scale from the time decay and interactions among a reduced set of major NPP modes of variability. This approach allowed us to assess potential limits to the predictability of NPP at the seasonal scale, and to assess the agreement in regional patterns of predictability based on remote sensing and ESM NPP estimates at large scales. The models are able to anticipate changes in NPP at lead times up to 24 months, especially in subtropical latitudes. Predictability was dominated by the decay of major modes at short time scales, with a prevalence of slow moving modes related to El Niño-Southern Oscillation and the Atlantic Multidecadal Oscillation. This decay dominated short-term predictions in both remote sensing and ESM NPP, although the modes prevailed for a longer time in ESM simulations. The dominance of short time persistence declined gradually at longer lead times as interactions between modes became more important for predicting NPP changes. These interactions were related to the propagation of major climate modes. Our approach provides a novel set of diagnostics to assess the performance of ESMs, and allowed us to identify potential regions where the prediction of NPP might lead to an improved management of living marine resources.

  20. Controls of vegetation structure and net primary production in restored grasslands

    USGS Publications Warehouse

    Munson, Seth M.; Lauenroth, William K.

    2014-01-01

    1. Vegetation structure and net primary production (NPP) are fundamental properties of ecosystems. Understanding how restoration practices following disturbance interact with environmental factors to control these properties can provide insight on how ecosystems recover and guide management efforts. 2. We assessed the relative contribution of environmental and restoration factors in controlling vegetation structure, above- and below-ground investment in production across a chronosequence of semiarid Conservation Reserve Program (CRP) fields recovering from dryland wheat cropping relative to undisturbed grassland. Importantly, we determined the role of plant diversity and how seeding either native or introduced perennial grasses influenced the recovery of vegetation properties. 3. Plant basal cover increased with field age and was highest in CRP fields seeded with native perennial grasses. In contrast, fields seeded with introduced perennial grasses had tall-growing plants with relatively low basal cover. These vegetation structural characteristics interacted with precipitation, but not soil characteristics, to influence above-ground NPP (ANPP). Fields enrolled in the CRP program for >7 years supported twice as much ANPP as undisturbed shortgrass steppe in the first wet year of the study, but all CRP fields converged on a common low amount of ANPP in the following dry year and invested less than half as much as the shortgrass steppe in below-ground biomass. 4. ANPP in CRP fields seeded with native perennial grasses for more than 7 years was positively related to species richness, whereas ANPP in CRP fields seeded with introduced perennial grasses were controlled more by dominant species. 5. Synthesis and applications. Seeding with introduced, instead of native, perennial grasses had a strong direct influence on vegetation structure, including species richness, which indirectly affected NPP through time. However, the effects of restoring either native or introduced

  1. Simulation of the effects of bottom topography on net primary production induced by riverine input

    NASA Astrophysics Data System (ADS)

    Hoshiba, Yasuhiro; Yamanaka, Yasuhiro

    2016-04-01

    Riverine input often leads to high biological productivity in coastal areas. In coastal areas termed as region of freshwater influence (ROFI), horizontal anticyclonic gyres and vertical circulation form by density differences between buoyant river water and sea water. Previous physical oceanography studies have shown that the horizontal pattern of anticyclonic gyres and the strength of vertical circulation are dependent on the bottom topography of ROFI. However, the dependencies of biogeochemical cycles such as the net primary production (NPP) on the bottom topography have not been verified. In order to clarify how the bottom topography affects the NPP in phytoplankton blooms caused by riverine input through the physical processes in ROFI, we used an ocean general circulation model (OGCM) including a simple ecosystem model and conducted several case studies varying the bottom slope angle in the ideal settings. We estimated NPP categorized into three nutrients supplied from the river, the sea-subsurface layer and via regeneration: RI-NPP, S-NPP and RE-NPP. S-NPP and RE-NPP are larger and smaller with a steeper slope, respectively, while RI-NPP is not affected by the slope angle. As a result, total NPP is weakly dependent on the slope angle, i.e., because S- and RE-NPPs cancel each other out through two physical processes, (1) S-NPP is controlled by the strength of the vertical circulation and (2) RE-NPP is controlled by the shape of the horizontal gyre, which both vary with the bottom slope angle. We also conducted realistic simulations for Ishikari Bay, Japan and confirmed a similar dependency to that in the above ideal settings. That is, the simulation results are consistent with the regime of ideal settings and show that RI- and RE-NPPs are important variables for Ishikari Bay which has a gentle slope.

  2. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity

    NASA Astrophysics Data System (ADS)

    Tian, Dashuan; Wang, Hong; Sun, Jian; Niu, Shuli

    2016-02-01

    The continually increasing nitrogen (N) deposition is expected to increase ecosystem aboveground net primary production (ANPP) until it exceeds plant N demand, causing a nonlinear response and N saturation for ANPP. However, the nonlinear response of ANPP to N addition gradient and the N saturation threshold have not been comprehensively quantified yet for terrestrial ecosystems. In this study, we compiled a global dataset of 44 experimental studies with at least three levels of N treatment. Nitrogen response efficiency (NRE, ANPP response per unit N addition) and the difference in NRE between N levels (ΔNRE) were quantified to test the nonlinearity in ANPP response. We found a universal response pattern of N saturation for ANPP with N addition gradient across all the studies and in different ecosystems. An averaged N saturation threshold for ANPP nonlinearity was found at the N addition rates of 5-6 g m-2 yr-1. The extent to which ANPP approaches N saturation varied with ecosystem type, N addition rate and environmental factors. ANPP in grasslands had lower NRE than those in forests and wetlands. Plant NRE decreased with reduced soil C:N ratio, and was the highest at intermediate levels of rainfall and temperature. These findings suggest that ANPP in grassland or the ecosystems with low soil C:N ratio (or low and high rainfall or temperature) is easier to be saturated with N enrichment. Overall, these results indicate that the beneficial effect of N deposition on plant productivity likely diminishes with continuous N enrichment when N loading surpasses the N saturation threshold for ANPP nonlinearity.

  3. Green Net Regional Product for the San Luis Basin, Colorado: an economic measure of regional sustainability.

    PubMed

    Heberling, Matthew T; Templeton, Joshua J; Wu, Shanshan

    2012-11-30

    This paper presents the data sources and methodology used to estimate Green Net Regional Product (GNRP), a green accounting approach, for the San Luis Basin (SLB). We measured the movement away from sustainability by examining the change in GNRP over time. Any attempt at green accounting requires both economic and natural capital data. However, limited data for the Basin requires a number of simplifying assumptions and requires transforming economic data at the national, state, and county levels to the level of the SLB. Given the contribution of agribusiness to the SLB, we included the depletion of both groundwater and soil as components in the depreciation of natural capital. We also captured the effect of the consumption of energy on climate change for future generations through carbon dioxide (CO(2)) emissions. In order to estimate the depreciation of natural capital, the shadow price of water for agriculture, the economic damages from soil erosion due to wind, and the social cost of carbon emissions were obtained from the literature and applied to the SLB using benefit transfer. We used Colorado's total factor productivity for agriculture to estimate the value of time (i.e., to include the effects of exogenous technological progress). We aggregated the economic data and the depreciation of natural capital for the SLB from 1980 to 2005. The results suggest that GNRP had a slight upward trend through most of this time period, despite temporary negative trends, the longest of which occurred during the period 1985-86 to 1987-88. However, given the upward trend in GNRP and the possibility of business cycles causing the temporary declines, there is no definitive evidence of moving away from sustainability. Published by Elsevier Ltd.

  4. Recovery of C/sub 3/. sqrt. hydrocarbon conversion products and net excess hydrogen in a catalytic reforming process

    SciTech Connect

    Degraff, R.R.; Peters, K.D.

    1982-12-21

    This invention relates to a hydrocarbon conversion process effected in the presence of hydrogen, especially a hydrogenproducing hydrocarbon conversion process. More particularly, this invention relates to the catalytic reforming of a naphtha feedstock, and is especially directed to an improved recovery of the net excess hydrogen, and to an improved recovery of a C/sub 3/..sqrt.. normally gaseous hydrocarbon conversion product and a C/sub 5/..sqrt.. hydrocarbon conversion product boiling in the gasoline range.

  5. The Muslim Community Center Clinic: A Maryland Safety Net Clinic, Achievements and Challenges

    PubMed Central

    Ashai, Shaukat A.

    2010-01-01

    The Muslim Community Center (MCC) is located in Silver Spring, Maryland, which is about 13 miles from the United States Capitol in Washington, D.C. The clinic is a part of the Primary Care Coalition, a network of 13 clinics that provide medical care to low-income uninsured residents of Montgomery County, Maryland. The clinic is open six days a week from 9 a.m. to 5 p.m. to provide free medical care to people age 18 or older without medical coverage, regardless of race, religion, country of origin, creed, ethnicity, or sex. Since its inception on June 15, 2003, it has provided more than 18,000 patient visits. The Muslim Community Center Medical Clinic is the second largest Muslim-run charity clinic in the United States. PMID:23864763

  6. Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    In 2009, Transformations, Inc. partnered with U.S. Department of Energy (DOE) Building America team Building Science Corporation (BSC) to build new net zero energy houses in three developments in Massachusetts. The company has been developing strategies for cost-effective super-insulated homes in the New England market since 2006. After years of using various construction techniques, it has developed a specific set of assemblies and specifications that achieve a 44.9% reduction in energy use compared with a home built to the 2009 International Residential Code, qualifying the houses for the DOE's Challenge Home. The super-insulated houses provide data for several research topics in a cold climate. BSC studied the moisture risks in double stud walls insulated with open cell spray foam and cellulose. The mini-split air source heat pump (ASHP) research focused on the range of temperatures experienced in bedrooms as well as the homeowners' perceptions of equipment performance. BSC also examined the developer's financing options for the photovoltaic (PV) systems, which take advantage of Solar Renewable Energy Certificates, local incentives, and state and federal tax credits.

  7. New Whole-House Case Study: Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts

    SciTech Connect

    2013-11-01

    In 2009, Transformations, Inc. partnered with Building America team Building Science Corporation (BSC) to build new net zero energy houses in three developments in Massachusetts. The company has been developing strategies for cost-effective super-insulated homes in the New England market since 2006. After years of using various construction techniques, it has developed a specific set of assemblies and specifications that achieve a 44.9% reduction in energy use compared with a home built to the 2009 International Residential Code, qualifying the houses for the DOE’s Challenge Home. The super-insulated houses provide data for several research topics in a cold climate. BSC studied the moisture risks in double stud walls insulated with open cell spray foam and cellulose. The mini-split air source heat pump (ASHP) research focused on the range of temperatures experienced in bedrooms as well as the homeowners’ perceptions of equipment performance. BSC also examined the developer’s financing options for the photovoltaic (PV) systems, which take advantage of Solar Renewable Energy Certificates, local incentives, and state and federal tax credits.

  8. Community solar salt production in Goa, India.

    PubMed

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  9. Community solar salt production in Goa, India

    PubMed Central

    2012-01-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa’s riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans. Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1–2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested. Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced. The aim of this review is to describe salt farming in Goa’s history, importance of salt production as a community activity, traditional method of salt production and the

  10. The influence of the breathing action on net drag force production in front crawl swimming.

    PubMed

    Formosa, D; Sayers, M G L; Burkett, B

    2014-12-01

    20 elite swimmers completed a total of 6 randomized net drag force trials in 2 conditions (i) 3 breathing and (ii) 3 non-breathing. Net drag force was measured using an assisted motorized dynamometer device mounted upon a Kistler force-platform. The male participants demonstrated no statistical differences in stroke rates between breathing and non-breathing trials. Female participants, however, demonstrated a statistical difference stroke rate. The male participants demonstrated that the breathing action caused a greater (26%) net drag force compared to the females (16%). To further understand the influence of breathing on swimming technique, each stroke was analyzed and comparisons were made between the breathing and non-breathing conditions. The male participants demonstrated a similar minimum net drag force when comparing the breathing and non-breathing conditions. Analysis showed that minimum net drag force and maximum net drag force for the males changed when integrating the breathing action, while female participants demonstrated similar swimming technique, regardless of condition or stroke.

  11. Automation of Presentation Record Production Based on Rich-Media Technology Using SNT Petri Nets Theory

    PubMed Central

    Martiník, Ivo

    2015-01-01

    Rich-media describes a broad range of digital interactive media that is increasingly used in the Internet and also in the support of education. Last year, a special pilot audiovisual lecture room was built as a part of the MERLINGO (MEdia-rich Repository of LearnING Objects) project solution. It contains all the elements of the modern lecture room determined for the implementation of presentation recordings based on the rich-media technologies and their publication online or on-demand featuring the access of all its elements in the automated mode including automatic editing. Property-preserving Petri net process algebras (PPPA) were designed for the specification and verification of the Petri net processes. PPPA does not need to verify the composition of the Petri net processes because all their algebraic operators preserve the specified set of the properties. These original PPPA are significantly generalized for the newly introduced class of the SNT Petri process and agent nets in this paper. The PLACE-SUBST and ASYNC-PROC algebraic operators are defined for this class of Petri nets and their chosen properties are proved. The SNT Petri process and agent nets theory were significantly applied at the design, verification, and implementation of the programming system ensuring the pilot audiovisual lecture room functionality. PMID:26258164

  12. Automation of Presentation Record Production Based on Rich-Media Technology Using SNT Petri Nets Theory.

    PubMed

    Martiník, Ivo

    2015-01-01

    Rich-media describes a broad range of digital interactive media that is increasingly used in the Internet and also in the support of education. Last year, a special pilot audiovisual lecture room was built as a part of the MERLINGO (MEdia-rich Repository of LearnING Objects) project solution. It contains all the elements of the modern lecture room determined for the implementation of presentation recordings based on the rich-media technologies and their publication online or on-demand featuring the access of all its elements in the automated mode including automatic editing. Property-preserving Petri net process algebras (PPPA) were designed for the specification and verification of the Petri net processes. PPPA does not need to verify the composition of the Petri net processes because all their algebraic operators preserve the specified set of the properties. These original PPPA are significantly generalized for the newly introduced class of the SNT Petri process and agent nets in this paper. The PLACE-SUBST and ASYNC-PROC algebraic operators are defined for this class of Petri nets and their chosen properties are proved. The SNT Petri process and agent nets theory were significantly applied at the design, verification, and implementation of the programming system ensuring the pilot audiovisual lecture room functionality.

  13. Impact of icebergs on net primary productivity in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Ye; Hou, Shugui

    2017-03-01

    Productivity in the Southern Ocean (SO) is iron-limited, and supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine environment. However, recent studies show that icebergs could provide a comparable amount of bioavailable iron to the SO as aeolian dust. In addition, small-scale areal studies suggest increased concentrations of chlorophyll, krill, and seabirds surrounding icebergs. Based on previous research, this study aims to examine whether iceberg occurrence has a significant impact on marine productivity at the scale of the SO, using remote sensing data of iceberg occurrences and ocean net primary productivity (NPP) covering the period 2002-2014. The impacts of both large and small icebergs are examined in four major ecological zones of the SO: the continental shelf zone (CSZ), the seasonal ice zone (SIZ), the permanent open ocean zone (POOZ), and the polar front zone (PFZ). We found that the presence of icebergs is associated with elevated levels of NPP, but the differences vary in different zones. Grid cells with small icebergs on average have higher NPP than other cells in most iron-deficient zones: 21 % higher for the SIZ, 16 % for the POOZ, and 12 % for the PFZ. The difference is relatively small in the CSZ where iron is supplied from meltwater and sediment input from the continent. In addition, NPP of grid cells adjacent to large icebergs on average is 10 % higher than that of control cells in the vicinity. The difference is larger at higher latitudes, where most large icebergs are concentrated. From 1992 to 2014, there is a significant increasing trend for both small and large icebergs. The increase was most rapid in the early 2000s and has leveled off since then. As the climate continues to warm, the Antarctic Ice Sheet is expected to experience increased mass loss as a whole, which could lead to more icebergs in the region. Based on our study, this could result in a higher level of NPP in the SO as a whole

  14. Ecosystem net primary production responses to changes in precipitation using an annual integrated MODIS EVI

    NASA Astrophysics Data System (ADS)

    Ponce Campos, Guillermo Ernesto

    2011-12-01

    In this study, the relationship of above-ground net primary productivity (ANPP) with precipitation using the enhanced vegetation index (EVI) from satellite data as surrogate for ANPP was assessed. To use EVI as a proxy for ANPP we extracted the satellite data from areas with uniform vegetation in a 2x2 km area for the multi-site approach. In the multi-site analysis in the United States our results showed a strong exponential relationship between iEVI and annual precipitation across the sites and climate regimes studied. We found convergence of all sites toward common and maximum rain use efficiency under the water-limited conditions represented by the driest year at each site. Measures of inter-annual variability in iEVI with rainfall variation across biomes were similar to that reported by Knapp and Smith (2001) in which the more herbaceous dominant sites were found to be most sensitive to inter-annual variations in precipitation with no relationships found in woodland sites. The relationship was also evaluated in the southern hemisphere using a multi-site analysis with information from satellite TRMM for precipitation and MOD13Q1 from MODIS for EVI values at calendar and hydrologic year periods. The tested sites were located across the 6 major land cover types in Australia, obtained from MODIS MCD12Q1 product and used to compare the relationship across different biomes. The results showed significant agreement between the annual iEVI and annual precipitation across the biomes involved in this study showing non-significant differences between the calendar and hydrologic years for the 24 sites across different climatic conditions. At the regional scale we also assessed the ANPP-precipitation relationship across all of Australia. Precipitation data from TRMM was obtained at 0.25°x0.2°5 degrees spatial resolution and monthly temporal resolution and EVI values were obtained from the CGM (Climate Grid Modeling) MOD13C1-16-days and 5.6km temporal and spatial

  15. Estimation of Net Primary Production (NPP) of Inner Mongolia in China

    NASA Astrophysics Data System (ADS)

    Park, J.; Kwak, Y.; Yasuda, Y.

    2009-12-01

    1. Introduction In the latter part of 1970's, the need for more precise calculation of the fixed-quantity of global land vegetation was emphasized. This data is necessary for estimating carbon income and expenditure at a global level. Research at the Mauna Loa volcano has clearly shown that the density of CO2 in the atmosphere is increasing. This increase is caused mainly by changes in human activities and the respiration of plants and animals. At present, however, the value of CO2 income and expenditure as calculated for human activities does not agree with the value thought to be contained in the marine and terrestrial carbon sinks. Clearly the value of primary production needs to be measured more precisely on a global scale. The use of satellite data immediately enables application at a global level, leading to higher precision of estimation when analyzing ecosystem models. In this study, we analyzed and compared Hohhot and Naiman, two regions in Inner Mongolia. In situ observation data (biomass and reflection data for each type of vegetation) was collected from 1999 to 2002. The results of these ground observations were then compared to the results from wide area measurement of vegetation index utilizing Terra/MODIS data 2. Application to satellite data The MODIS Surface Reflectance product (MOD09), with resolution of 250m, was utilized from April to November of 2002. MOD09 did atmosphere correction and geometric correction. Bands 1 (RED : 620-670nm) and 2 (NIR : 841-876nm) from MOD09 were used to produce a NDVI image. In addition, to remove the influence of cloud cover, monthly vegetation index images for May to September were generated using the Temporal Window Operation method (TWO : Park et al.1999), with the mid day of each month designated as a representative day. 3. Conclusion In this study, we estimate Net Primary Production (NPP) for a semiarid region of northern China using satellite data. An area in which pasturage is prohibited was studied in 1999

  16. Evaluation of dairy cattle manure as a supplement to improve net energy gain in fermentative hydrogen production from sucrose.

    PubMed

    Perera, Karnayakage Rasika J; Nirmalakhandan, Nagamany

    2011-09-01

    This study evaluated fermentative biohydrogen production from sucrose supplemented with dairy cattle manure at different sucrose:manure ratios. Hydrogen yields found in this study (2.9-5.3M hydrogen/M sucrose) at ambient temperature are higher than literature results obtained at mesophilic temperatures. This study demonstrated that dairy cattle manure could serve as a buffering agent to maintain recommended pH levels; as a nutrient source to provide the required nutrients for hydrogen production; as a seed to produce hydrogen from sucrose; and as a co-substrate to improve the hydrogen yield. Based on an analysis of the net energy gain, it is concluded that positive net energy gains can be realized with non-thermal pretreatment and/or by combining dark fermentation with anaerobic digestion or microbial fuel cells to extract additional energy from the aqueous products of dark fermentation.

  17. Expanding Access to Care and Improving Quality in the Mid-Atlantic States Safety-Net Clinics: Kaiser Permanente’s Community Ambassador Program

    PubMed Central

    Maeda, Jared Lane K; Bradley, Jacqueline J; Eissler, Sarah R; LoBrano, Marcia; Rubin, Mindy R; Gay, Maritha; Horberg, Michael A; Loftus, Bernadette C

    2015-01-01

    Context: As part of its longstanding commitment to improve the health of the communities it serves, Kaiser Permanente (KP) established the Community Ambassador Program (CAP) in the Mid-Atlantic States Region. The CAP places KP-employed nurse practitioners, midwives, and physician assistants to work in the safety-net clinics and to share best practices through a long-term community collaboration. Objective: To share the early experiences of the CAP and describe the initial results of the program’s impact on the safety-net clinics. Methods: We conducted an evaluation of 18 safety-net clinics that participated in the CAP in 2012 to determine the program’s early impact in expanding access to care, increasing the capacity of safety-net providers, and improving the quality of care on evidence-based measures in the year following program implementation. The safety-net clinics are comprised of federally qualified health centers, free clinics, and other community-based organizations. The clinics were asked to respond to questions regarding their evidence-based practices promoted by KP and on primary care-related utilization. Results: The Community Ambassadors provided an estimated 32,249 encounters to 11,988 patients. Performance by the Community Ambassadors was at or near 90% for 2 adult quality measures (weight screening and tobacco use assessment). For breast cancer screenings, however, performance among the Community Ambassadors was much lower (48%). Conclusion: The CAP demonstrated some early success in expanding access and improving quality of care on several key measures for certain subpopulations. Despite these achievements, opportunities remain for quality improvement, expanded capacity, and enhanced data reporting infrastructure. PMID:25785638

  18. Decoupling of soil carbon and nitrogen turnover partly explains increased net ecosystem production in response to nitrogen fertilization

    PubMed Central

    Ehtesham, Emad; Bengtson, Per

    2017-01-01

    During the last decade there has been an ongoing controversy regarding the extent to which nitrogen fertilization can increase carbon sequestration and net ecosystem production in forest ecosystems. The debate is complicated by the fact that increased nitrogen availability caused by nitrogen deposition has coincided with increasing atmospheric carbon dioxide concentrations. The latter could further stimulate primary production but also result in increased allocation of carbon to root exudates, which could potentially ‘prime’ the decomposition of soil organic matter. Here we show that increased input of labile carbon to forest soil caused a decoupling of soil carbon and nitrogen cycling, which was manifested as a reduction in respiration of soil organic matter that coincided with a substantial increase in gross nitrogen mineralization. An estimate of the magnitude of the effect demonstrates that the decoupling could potentially result in an increase in net ecosystem production by up to 51 kg C ha−1 day−1 in nitrogen fertilized stands during peak summer. Even if the effect is several times lower on an annual basis, the results still suggest that nitrogen fertilization can have a much stronger influence on net ecosystem production than can be expected from a direct stimulation of primary production alone. PMID:28406242

  19. Decoupling of soil carbon and nitrogen turnover partly explains increased net ecosystem production in response to nitrogen fertilization

    NASA Astrophysics Data System (ADS)

    Ehtesham, Emad; Bengtson, Per

    2017-04-01

    During the last decade there has been an ongoing controversy regarding the extent to which nitrogen fertilization can increase carbon sequestration and net ecosystem production in forest ecosystems. The debate is complicated by the fact that increased nitrogen availability caused by nitrogen deposition has coincided with increasing atmospheric carbon dioxide concentrations. The latter could further stimulate primary production but also result in increased allocation of carbon to root exudates, which could potentially ‘prime’ the decomposition of soil organic matter. Here we show that increased input of labile carbon to forest soil caused a decoupling of soil carbon and nitrogen cycling, which was manifested as a reduction in respiration of soil organic matter that coincided with a substantial increase in gross nitrogen mineralization. An estimate of the magnitude of the effect demonstrates that the decoupling could potentially result in an increase in net ecosystem production by up to 51 kg C ha-1 day-1 in nitrogen fertilized stands during peak summer. Even if the effect is several times lower on an annual basis, the results still suggest that nitrogen fertilization can have a much stronger influence on net ecosystem production than can be expected from a direct stimulation of primary production alone.

  20. Estimated Net Endogenous Acid Production and Serum Bicarbonate in African Americans with Chronic Kidney Disease

    PubMed Central

    Appel, Lawrence J.; Astor, Brad C.; Miller, Edgar R.; Beddhu, Srinivasan; Woodward, Mark; Parekh, Rulan S.; Anderson, Cheryl A.M.

    2011-01-01

    Summary Background and objectives Metabolic acidosis may contribute to morbidity and disease progression in patients with chronic kidney disease (CKD). The ratio of dietary protein, the major source of nonvolatile acid, to dietary potassium, which is naturally bound to alkali precursors, can be used to estimate net endogenous acid production (NEAP). We tested the association between estimated NEAP and serum bicarbonate in patients with CKD. Design, setting, participants, & measurements NEAP was estimated among 462 African American adults with hypertensive CKD using published equations: NEAP (mEq/d) = −10.2 + 54.5 (protein [g/d]/potassium [mEq/d]). Dietary protein and potassium intake were estimated from 24-hour urinary excretion of urea nitrogen and potassium, respectively. All of the eligible measurements during follow-up were modeled using generalized linear regression clustered by participant and adjusted for demographics, 24-hour urinary sodium, kidney function, and selected medications. Results Higher NEAP was associated with lower serum bicarbonate in a graded fashion (P trend < 0.001). Serum bicarbonate was 1.27 mEq/L lower among those in the highest compared with the lowest quartile of NEAP (P < 0.001). There was a greater difference in serum bicarbonate between the highest and lowest quartiles of NEAP among patients with stage 4/5 CKD (−2.43 mEq/L, P < 0.001) compared with those with stage 2/3 disease (−0.77 mEq/L, P = 0.01; P-interaction = 0.02). Conclusions Reducing NEAP, through reduction of dietary protein and increased intake of fruits and vegetables, may prevent metabolic acidosis in patients with CKD. PMID:21700817

  1. Estimated net endogenous acid production and serum bicarbonate in African Americans with chronic kidney disease.

    PubMed

    Scialla, Julia J; Appel, Lawrence J; Astor, Brad C; Miller, Edgar R; Beddhu, Srinivasan; Woodward, Mark; Parekh, Rulan S; Anderson, Cheryl A M

    2011-07-01

    Metabolic acidosis may contribute to morbidity and disease progression in patients with chronic kidney disease (CKD). The ratio of dietary protein, the major source of nonvolatile acid, to dietary potassium, which is naturally bound to alkali precursors, can be used to estimate net endogenous acid production (NEAP). We tested the association between estimated NEAP and serum bicarbonate in patients with CKD. NEAP was estimated among 462 African American adults with hypertensive CKD using published equations: NEAP (mEq/d) = -10.2 + 54.5 (protein [g/d]/potassium [mEq/d]). Dietary protein and potassium intake were estimated from 24-hour urinary excretion of urea nitrogen and potassium, respectively. All of the eligible measurements during follow-up were modeled using generalized linear regression clustered by participant and adjusted for demographics, 24-hour urinary sodium, kidney function, and selected medications. Higher NEAP was associated with lower serum bicarbonate in a graded fashion (P trend < 0.001). Serum bicarbonate was 1.27 mEq/L lower among those in the highest compared with the lowest quartile of NEAP (P < 0.001). There was a greater difference in serum bicarbonate between the highest and lowest quartiles of NEAP among patients with stage 4/5 CKD (-2.43 mEq/L, P < 0.001) compared with those with stage 2/3 disease (-0.77 mEq/L, P = 0.01; P-interaction = 0.02). Reducing NEAP, through reduction of dietary protein and increased intake of fruits and vegetables, may prevent metabolic acidosis in patients with CKD.

  2. Relationships between net primary productivity and forest stand age in U.S. forests

    NASA Astrophysics Data System (ADS)

    He, Liming; Chen, Jing M.; Pan, Yude; Birdsey, Richard; Kattge, Jens

    2012-09-01

    Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four terms to calculate NPP: annual accumulation of live biomass, annual mortality of aboveground and belowground biomass, foliage turnover to soil, and fine root turnover in soil. For U.S. forests the first two terms can be reliably estimated from the Forest Inventory and Analysis (FIA) data. Although the last two terms make up more than 50% of total NPP, direct estimates of these fluxes are highly uncertain due to limited availability of empirical relationships between aboveground biomass and foliage or fine root biomass. To resolve this problem, we developed a new approach using maps of leaf area index (LAI) and forest age at 1 km resolution to derive LAI-age relationships for 18 major forest type groups in the USA. These relationships were then used to derive foliage turnover estimates using species-specific trait data for leaf specific area and longevity. These turnover estimates were also used to derive the fine root turnover based on reliable relationships between fine root and foliage turnover. This combination of FIA data, remote sensing, and plant trait information allows for the first empirical and reliable NPP-age relationships for different forest types in the USA. The relationships show a general temporal pattern of rapid increase in NPP in the young ages of forest type groups, peak growth in the middle ages, and slow decline in the mature ages. The predicted patterns are influenced by climate conditions and can be affected by forest management. These relationships were further generalized to three major forest biomes for use by continental-scale carbon cycle models in conjunction with

  3. Social protection for all ages? Impacts of Ethiopia's Productive Safety Net Program on child nutrition.

    PubMed

    Porter, Catherine; Goyal, Radhika

    2016-06-01

    We investigate the impact of a large-scale social protection scheme, the Productive Safety Net Program (PSNP) in Ethiopia, on child nutritional outcomes. Children living in households that receive cash transfers should experience improved child nutrition. However, in the case of the PSNP, which for the majority of participants is a public works program, there are several potential threats to finding effects: first, without conditionality on child inputs, increased household income may not be translated into improved child nutrition. Second, the work requirement may impact on parental time, child time use and calories burned. Third, if there is a critical period for child human capital investment that closes before the age of 5 then children above this age may not see any improvement in medium-term nutritional outcomes, measured here as height-for-age. Using a cohort study that collected data both pre-and post-program implementation in 2002, 2006 and 2009, we exploit several novel aspects of the survey design to find estimates that can deal with non-random program placement. We present both matching and difference-in-differences estimates for the index children, as well as sibling-differences. Our estimates show an important positive medium-term nutritional impact of the program for children aged 5-15 that are comparable in size to Conditional Cash Transfer program impacts for much younger children. We show indicative evidence that the program impact on improved nutrition is associated with improved food security and reduced child working hours. Our robustness checks restrict the comparison group, by including only households who were shortlisted, but never received PSNP, and also exclude those who never received aid, thus identifying impact based on timing alone. We cannot rule out that the nutritional impact of the program is the same for younger and older children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A new framework for evaluating the impacts of drought on net primary productivity of grassland.

    PubMed

    Lei, Tianjie; Wu, Jianjun; Li, Xiaohan; Geng, Guangpo; Shao, Changliang; Zhou, Hongkui; Wang, Qianfeng; Liu, Leizhen

    2015-12-01

    This paper presented a valuable framework for evaluating the impacts of droughts (single factor) on grassland ecosystems. This framework was defined as the quantitative magnitude of drought impact that unacceptable short-term and long-term effects on ecosystems may experience relative to the reference standard. Long-term effects on ecosystems may occur relative to the reference standard. Net primary productivity (NPP) was selected as the response indicator of drought to assess the quantitative impact of drought on Inner Mongolia grassland based on the Standardized Precipitation Index (SPI) and BIOME-BGC model. The framework consists of six main steps: 1) clearly defining drought scenarios, such as moderate, severe and extreme drought; 2) selecting an appropriate indicator of drought impact; 3) selecting an appropriate ecosystem model and verifying its capabilities, calibrating the bias and assessing the uncertainty; 4) assigning a level of unacceptable impact of drought on the indicator; 5) determining the response of the indicator to drought and normal weather state under global-change; and 6) investigating the unacceptable impact of drought at different spatial scales. We found NPP losses assessed using the new framework were more sensitive to drought and had higher precision than the long-term average method. Moreover, the total and average losses of NPP are different in different grassland types during the drought years from 1961-2009. NPP loss was significantly increased along a gradient of increasing drought levels. Meanwhile, NPP loss variation under the same drought level was different in different grassland types. The operational framework was particularly suited for integrative assessing the effects of different drought events and long-term droughts at multiple spatial scales, which provided essential insights for sciences and societies that must develop coping strategies for ecosystems for such events. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Changes in vegetation net primary productivity from 1982 to 1999 in China

    NASA Astrophysics Data System (ADS)

    Piao, Shilong; Fang, Jingyun; Zhou, Liming; Zhu, Biao; Tan, Kun; Tao, Shu

    2005-06-01

    Terrestrial net primary production (NPP) has been a central focus of ecosystem science in the past several decades because of its importance to the terrestrial carbon cycle and ecosystem processes. Modeling studies suggest that terrestrial NPP has increased in the northern middle and high latitudes in the past 2 decades, and that such increase has exhibited seasonal and spatial variability, but there are few detailed studies on the temporal and spatial patterns of NPP trend over time in China. Here we present the trends in China's terrestrial NPP from 1982 to 1999 and their driving forces using satellite-derived NDVI (Normalized Difference Vegetation Index), climate data, and a satellite-based carbon model, CASA (Carnegie -Ames-Stanford Approach). The majority of China (86% of the study area) has experienced an increase in NPP during the period 1982-1999, with an annual mean increase rate of 1.03%. This increase was resulted primarily from plant growth in the middle of the growing season (June to August) (about 43.2%), followed by spring (33.7%). At the national and biome levels, the relative increase is largest in spring (March-May), indicating an earlier onset of the growing season. The changes in the phase of China's seasonal NPP curve may primarily be the result of advanced growing season (earlier spring) and enhanced plant growth in summer. During the past 2 decades the amplitude of the seasonal curve of NPP has increased and the annual peak NPP has advanced. Historical NPP trends also indicated a high degree of spatial heterogeneity, coupled with regional climate variations, agricultural practices, urbanization, and fire disturbance.

  6. Characterizing uncertainties in recent trends of global terrestrial net primary production through ensemble modeling

    NASA Astrophysics Data System (ADS)

    Wang, W.; Hashimoto, H.; Ganguly, S.; Votava, P.; Nemani, R. R.; Myneni, R. B.

    2010-12-01

    Large uncertainties exist in our understanding of the trends and variability in global net primary production (NPP) and its controls. This study attempts to address this question through a multi-model ensemble experiment. In particular, we drive ecosystem models including CASA, LPJ, Biome-BGC, TOPS-BGC, and BEAMS with a long-term climate dataset (i.e., CRU-NCEP) to estimate global NPP from 1901 to 2009 at a spatial resolution of 0.5 x 0.5 degree. We calculate the trends of simulated NPP during different time periods and test their sensitivities to climate variables of solar radiation, air temperature, precipitation, vapor pressure deficit (VPD), and atmospheric CO2 levels. The results indicate a large diversity among the simulated NPP trends over the past 50 years, ranging from nearly no trend to an increasing trend of ~0.1 PgC/yr. Spatial patterns of the NPP generally show positive trends in boreal forests, induced mainly by increasing temperatures in these regions; they also show negative trends in the tropics, although the spatial patterns are more diverse. These diverse trends result from different climatic sensitivities of NPP among the tested models. Depending the ecological processes (e.g., photosynthesis or respiration) a model emphasizes, it can be more or less responsive to changes in solar radiation, temperatures, water, or atmospheric CO2 levels. Overall, these results highlight the limit of current ecosystem models in simulating NPP, which cannot be easily observed. They suggest that the traditional single-model approach is not ideal for characterizing trends and variability in global carbon cycling.

  7. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland.

    PubMed

    Heisler-White, Jana L; Knapp, Alan K; Kelly, Eugene F

    2008-11-01

    Water availability is the primary constraint to aboveground net primary productivity (ANPP) in many terrestrial biomes, and it is an ecosystem driver that will be strongly altered by future climate change. Global circulation models predict a shift in precipitation patterns to growing season rainfall events that are larger in size but fewer in number. This "repackaging" of rainfall into large events with long intervening dry intervals could be particularly important in semi-arid grasslands because it is in marked contrast to the frequent but small events that have historically defined this ecosystem. We investigated the effect of more extreme rainfall patterns on ANPP via the use of rainout shelters and paired this experimental manipulation with an investigation of long-term data for ANPP and precipitation. Experimental plots (n = 15) received the long-term (30-year) mean growing season precipitation quantity; however, this amount was distributed as 12, six, or four events applied manually according to seasonal patterns for May-September. The long-term mean (1940-2005) number of rain events in this shortgrass steppe was 14 events, with a minimum of nine events in years of average precipitation. Thus, our experimental treatments pushed this system beyond its recent historical range of variability. Plots receiving fewer, but larger rain events had the highest rates of ANPP (184 +/- 38 g m(-2)), compared to plots receiving more frequent rainfall (105 +/- 24 g m(-2)). ANPP in all experimental plots was greater than long-term mean ANPP for this system (97 g m(-2)), which may be explained in part by the more even distribution of applied rain events. Soil moisture data indicated that larger events led to greater soil water content and likely permitted moisture penetration to deeper in the soil profile. These results indicate that semi-arid grasslands are capable of responding immediately and substantially to forecast shifts to more extreme precipitation patterns.

  8. Global potential net primary production predicted from vegetation class, precipitation, and temperature

    SciTech Connect

    Del Grosso, Stephen; Parton, William; Stohlgren, Thomas; Zheng, Daolan; Bachelet, Dominique; Prince, Stephen; Hibbard, Kathy; Olson, Richard K

    2008-08-01

    Net primary production (NPP), the difference between CO2 fixed by photosynthesis and CO2 lost to autotrophic respiration, is one of the most important components of the carbon cycle. Our goal was to develop a simple regression model to estimate global NPP using climate and land cover data. Approximately 5600 global data points with observed mean annual NPP, land cover class, precipitation, and temperature were compiled. Precipitation was better correlated with NPP than temperature, and it explained much more of the variability in mean annual NPP for grass- or shrub-dominated systems (r2 = 0.68) than for tree-dominated systems (r2 = 0.39). For a given precipitation level, tree-dominated systems had significantly higher NPP (approximately 100-150 g C m(-2) yr(-1)) than non-tree-dominated systems. Consequently, previous empirical models developed to predict NPP based on precipitation and temperature (e.g., the Miami model) tended to overestimate NPP for non-tree-dominated systems. Our new model developed at the National Center for Ecological Analysis and Synthesis (the NCEAS model) predicts NPP for tree-dominated systems based on precipitation and temperature; but for non-tree-dominated systems NPP is solely a function of precipitation because including a temperature function increased model error for these systems. Lower NPP in non-tree-dominated systems is likely related to decreased water and nutrient use efficiency and higher nutrient loss rates from more frequent fire disturbances. Late 20th century aboveground and total NPP for global potential native vegetation using the NCEAS model are estimated to be approximately 28 Pg and approximately 46 Pg C/yr, respectively. The NCEAS model estimated an approximately 13% increase in global total NPP for potential vegetation from 1901 to 2000 based on changing precipitation and temperature patterns.

  9. Country-level net primary production distribution and response to drought and land cover change.

    PubMed

    Peng, Dailiang; Zhang, Bing; Wu, Chaoyang; Huete, Alfredo R; Gonsamo, Alemu; Lei, Liping; Ponce-Campos, Guillermo E; Liu, Xinjie; Wu, Yanhong

    2017-01-01

    Carbon sequestration by terrestrial ecosystems can offset emissions and thereby offers an alternative way of achieving the target of reducing the concentration of CO2 in the atmosphere. Net primary production (NPP) is the first step in the sequestration of carbon by terrestrial ecosystems. This study quantifies moderate-resolution imaging spectroradiometer (MODIS) NPP from 2000 to 2014 at the country level along with its response to drought and land cover change. Our results indicate that the combined NPP for 53 countries represents >90% of global NPP. From 2000 to 2014, 29 of these 53 countries had increasing NPP trends, most notably the Central African Republic (23gC/m(2)/y). The top three and top 12 countries accounted for 30% and 60% of total global NPP, respectively, whereas the mean national NPP per unit area in the countries with the 12 lowest values was only around ~300gC/m(2)/y - the exception to this was Brazil, which had an NPP of 850gC/m(2)/y. Large areas of Russia, Argentina, Peru and several countries in southeast Asia showed a marked decrease in NPP (~15gC/m(2)/y). About 37% of the NPP decrease was caused by drought while ~55% of NPP variability was attributed to changes in water availability. Land cover change explained about 20% of the NPP variability. Our findings support the idea that government policies should aim primarily to improve water management in drought-afflicted countries; land use/land cover change policy could also be used as an alternative method of increasing NPP. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Assessing the impacts of droughts on net primary productivity in China.

    PubMed

    Pei, Fengsong; Li, Xia; Liu, Xiaoping; Lao, Chunhua

    2013-01-15

    Frequency and severity of droughts were projected to increase in many regions. However, their effects of temporal dynamics on the terrestrial carbon cycle remain uncertain, and hence deserve further investigation. In this paper, the droughts that occurred in China during 2001-2010 were identified by using the standardized precipitation index (SPI). Standardized anomaly index (SAI), which has been widely employed in reflecting precipitation, was extended to evaluate the anomalies of net primary productivity (NPP). In addition, influences of the droughts on vegetation were explored by examining the temporal dynamics of SAI-NPP along with area-weighted drought intensity at different time scales (1, 3, 6, 9 and 12 months). Year-to-year variability of NPP with several factors, including droughts, NDVI, radiation and temperature, was analyzed as well. Consequently, the droughts in the years 2001, 2006 and 2009 were well reconstructed. This indicates that SPI could be applied to the monitoring of the droughts in China during the past decade (2001-2010) effectively. Moreover, strongest correlations between droughts and NPP anomalies were found during or after the drought intensities reached their peak values. In addition, some droughts substantially reduced the countrywide NPP, whereas the others did not. These phenomena can be explained by the regional diversities of drought intensity, drought duration, areal extents of the droughts, as well as the cumulative and lag responses of vegetation to the precipitation deficits. Besides the drought conditions, normalized difference vegetation index (NDVI), radiation and temperature also contribute to the interannual variability of NPP. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Estimating forest net primary production under changing climate: adding pests into the equation.

    PubMed

    Pinkard, E A; Battaglia, M; Roxburgh, S; O'Grady, A P

    2011-07-01

    The current approach to modelling pest impacts on forest net primary production (NPP) is to apply a constant modifier. This does not capture the large spatial and temporal variability in pest abundance and activity that can occur, meaning that overestimates or underestimates of pest impacts on forest NPP are likely. Taking a more mechanistic approach that incorporates an understanding of how physiology is influenced by pest attack, enables us to better capture system feedbacks and dynamics, thereby improving the capacity to predict into novel situations such as changing climate, and to account for both changes in pest activity and host responses to the growing environment now and into the future. We reviewed the effects of pests on forest NPP and found a range of responses and physiological mechanisms underlying those responses. Pest outbreaks can clearly be a major perturbation to forest NPP, and it seems likely that the frequency and intensity of pest outbreaks, and the ways in which host species respond to pest damage, will change in the future. We summarized these impacts in the form of a conceptual model at leaf, tree and stand scales, and compared the physiological processes embedded within that framework with the capacity of a representative range of NPP models to capture those processes. We found that some models can encapsulate some of the processes, but no model can comprehensively account for the range of physiological responses to pest attack experienced by trees. This is not surprising, given the paucity of empirical data for most of the world's forests, and that the models were developed primarily for other purposes. We conclude with a list of the key physiological processes and pathways that need to be included in forest growth models in order to adequately capture pest impacts on forest NPP under current and future climate scenarios, the equations that might enable this and the empirical data required to support them.

  12. The supply and demand of net primary production in the Sahel

    NASA Astrophysics Data System (ADS)

    Abdi, A. M.; Seaquist, J.; Tenenbaum, D. E.; Eklundh, L.; Ardö, J.

    2014-09-01

    Net primary production (NPP) is the principal source of energy for ecosystems and, by extension, human populations that depend on them. The relationship between the supply and demand of NPP is important for the assessment of socio-ecological vulnerability. We present an analysis of the supply and demand of NPP in the Sahel using NPP estimates from the MODIS sensor and agri-environmental data from FAOSTAT. This synergistic approach allows for a spatially explicit estimation of human impact on ecosystems. We estimated the annual amount of NPP required to derive food, fuel and feed between 2000 and 2010 for 22 countries in sub-Saharan Africa. When comparing annual estimates of supply and demand of NPP, we found that demand increased from 0.44 PgC to 1.13 PgC, representing 19% and 41%, respectively, of available supply due to a 31% increase in the human population between 2000 and 2010. The demand for NPP has been increasing at an annual rate of 2.2% but NPP supply was near-constant with an inter-annual variability of approximately 1.7%. Overall, there were statistically significant (p < 0.05) increases in the NPP of cropland (+6.0%), woodland (+6.1%) and grassland/savanna (+9.4%), and a decrease in the NPP of forests (-0.7%). On the demand side, the largest increase was for food (20.4%) followed by feed (16.7%) and fuel (5.5%). The supply-demand balance of NPP is a potentially important tool from the standpoint of sustainable development, and as an indicator of stresses on the environment stemming from increased consumption of biomass.

  13. Ecological Controls on Net Ecosystem Productivity of a Seasonally Dry Annual Grassland under Current and Future Climates: Modelling with Ecosys

    NASA Astrophysics Data System (ADS)

    Grant, R.

    2012-04-01

    Net ecosystem productivity (NEP) of seasonally dry grasslands in Mediterranean climate zones is determined by the duration and intensity of rainy vs. dry seasons. Precipitation in these zones is expected to decline with climate change during the next century, possibly reducing NEP. Ecosystem models used to study climate change impacts on grasslands in these zones need first to simulate effects of soil wetting and drying on the duration and intensity of net C uptake and emission during rainy and dry seasons under current climate. Continuous eddy covariance (EC) measurements of CO2 and energy exchange provide well constrained tests of such models. In this study, hourly CO2 and energy exchange from the ecosystem model ecosys were tested against EC measurements recorded over an annual grassland at Vaira Ranch, CA in a Mediterranean climate zone during eight years (2001 - 2008) with variable rainy seasons. Variation in measured CO2 and latent heat fluxes was sufficiently well simulated during each year of the study (0.7 < R2 < 0.9) that most of the variation unexplained by the model could be attributed to uncertainty in the measurements. Interannual variation in NEP from the model was also correlated with that from EC measurements (R2 = 0.75). Annual NEP from both the model and EC were correlated with the duration of net C uptake, but not with the amount of precipitation, during the rainy seasons. Average annual NEP of the grassland modelled from 2001 to 2008 was 29 g C m-2 y-1 with an interannual variation of ± 110 g C m-2 y-1 caused by that in the duration of net C uptake. During climate change (SRES A1fi and B1 under HadCM3), changes in modelled NEP were determined by changes in duration and intensity of net C uptake in rainy seasons vs. net C emission in dry seasons. In years with briefer rainy seasons, modelled NEP rose because rates of net C uptake increased with higher temperature and CO2 concentration, while the duration of net C uptake remained limited by that

  14. Spatio-temporal distribution of net-collected phytoplankton community and its response to marine exploitation in Xiangshan Bay

    NASA Astrophysics Data System (ADS)

    Jiang, Zhibing; Zhu, Xuyu; Gao, Yu; Chen, Quanzhen; Zeng, Jiangning; Zhu, Genhai

    2013-07-01

    To explore the spatial-temporal distribution of the phytoplankton community and evaluate the combined effects of marine resource exploitation, net-collected phytoplankton and physical-chemical parameters were investigated in the Xiangshan Bay during the four seasons of 2010. A total of eight phyla, 97 genera, and 310 species were found, including 232 diatom species, 45 dinoflagellate species and 33 other taxa. The phytoplankton abundances presented a significant ( P<0.001) seasonal difference with the average of 60.66×104 cells/m3. Diatoms (mainly consisting of Coscinodiscus jonesianus, Cerataulina pelagica, Skeleto n ema costatum, and genus Chaetoceros) dominated the phytoplankton assemblage in all seasons. We found great spatio-temporal variation in community composition based on the multidimensional scaling and similarity analysis. Canonical correspondence analysis show that temperature, nutrition, illumination, and salinity were the main variables associated with microalgal assemblage. Compared with the previous studies, an increase in phytoplankton abundance and change in the dominant species coincided with increased exploitation activities in this bay (e.g. operation of coastal power plants, intensive mariculture, tidal flat reclamation, and industrial and agricultural development). The present findings suggest that the government should exercise caution when deciding upon developmental patterns in the sea-related economy.

  15. Regulatory authority approaches to deploying quality improvement standards to community pharmacies: insights from the SafetyNET-RX program.

    PubMed

    Boyle, Todd A; Bishop, Andrea C; Hillier, Chris; Mahaffey, Thomas; MacKinnon, Neil J; Zwicker, Bev

    2014-04-01

    Continuous quality improvement (CQI) programs provide an effective means to improve the safety and quality of community pharmacy practice. The role of formal support processes in ensuring the success of these CQI programs is explored in this research using the SafetyNET-Rx project. The primary objectives of this research were to determine how knowledge of, and confidence in, mandated CQI standards differs among pharmacies with access to formal support mechanisms and those without and the challenges faced by both. A survey questionnaire was mailed to 179 community pharmacies in Nova Scotia, Canada, in spring 2011. Quantitative results were analyzed using the Mann-Whitney U test for nonparametric data. Qualitative open-ended responses were analyzed using content analysis. Performing the Mann-Whitney U test indicated that a number of differences exist between the 2 groups with respect to: (1) staff knowledge of reporting quality-related events (QREs) to an anonymous database; (2) conducting annual pharmacy safety self-assessments; (3) confidence in meeting these 2 elements; and (4) documenting changes to address QREs. A number of challenges were identified by respondents through the open-ended questions. This research highlights the value of the active provision of formal support when developing standards related to quality improvement.

  16. Supporting Communities of Interest in a Net-Centric Investment Environment (Defense Acquisition Review Journal)

    DTIC Science & Technology

    2005-01-01

    customization. – Development of an ensemble of COTS software products to meet requirements needs. Content Management System : Through both well-thought-out, agreed...upon processes and automated tools, the support team can manage the site-wide content over time. It is important that the content management system be

  17. Community-level net spillover of natural enemies from managed to natural forest

    USDA-ARS?s Scientific Manuscript database

    Edge effects in fragmented natural habitats may be exacerbated by intensive land-use in the surrounding landscape. Given that most managed systems have higher productivity than adjacent natural systems, theory suggests that subsidised consumers are likely to spill over from managed to natural habita...

  18. Use of Yohkoh SXT in Measuring the Net Current and CME Productivity of Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.; Six, N. Frank (Technical Monitor)

    2001-01-01

    In our investigation of the correlation of global nonpotentiality of active regions to their CME productivity (Falconer, D.A. 2001, JGR, in press, and Falconer, Moore, & Gary, 2000, EOS 82, 20 S323), we use Yohkoh SXT images for two purposes. The first use is to help resolve the 180 degree ambiguity in the direction of the observed transverse magnetic field. Resolution of the 180 degree ambiguity is important, since the net current, one of our measures of global nonpotentiality, is derived from integrating the dot product of the transverse field around a contour (I(sub N)=(integral)BT(raised dot)dl). The ambiguity results from the observed transverse field being determined from the linear polarization, which gives the plane of the direction, but leaves a 180 degrees ambiguity. Automated methods to resolve the ambiguity ranging from the simple acute angle rule (Falconer, D.A. 2001) to the more sophisticated annealing method (Metcalf T.R. 1994). For many active regions, especially ones that are nearly potential these methods work well. But for very nonpotential active regions where the shear angle (the angle between the observed and potential transverse field) is near 90 degrees throughout large swaths along the main neutral line, both methods can resolve the ambiguity incorrectly for long segments of the neutral line. By determining from coronal images, such as those from Yohkoh/SXT, the sense of shear along the main neutral line in the active region, these cases can be identified and corrected by a modification of the acute angle rule described here. The second use of Yohkoh/SXT in this study is to check for the cusped coronal arcades of long-duration eruptive flares. This signature is an excellent proxy for CMEs, and was used by Canfield, Hudson, and McKenzie (1999 GRL V26, 6, 627-630). This work is funded by NSF through the Space Weather Program and by NASA through the Solar Physics Supporting Research and Technology Program.

  19. Sea spray geoengineering can reduce ocean net primary productivity and carbon uptake

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Keller, David; Korhonen, Hannele; Matthews, Damon

    2016-04-01

    Sea spray geoengineering or marine cloud brightening is one of the proposed methods to deliberately increase planetary albedo and thus counteract climate change. Previous studies have shown that it has potential to significantly alter the global energy balance and reduce impacts on temperature and precipitation. However, its effects on ecosystems have received considerably less attention. Our goal is to assess the effects of sea spray geoengineering on marine biological productivity and global carbon cycle. We use the University of Victoria Earth System Climate Model (UVic ESCM) to simulate the effects of prescribed aerosol forcing from previous simulations with the aerosol-climate model ECHAM-HAMMOZ. In our baseline simulation (GEO), forcing from geoengineering was applied over three persistent stratocumulus regions off the coasts of North America, South America, and South Africa. The global mean forcing was -1 W m-2. Other forcings and emissions were set according to the RCP4.5 scenario. The control run (CTRL) was identical to GEO except that no geoengineering was present. As a more extreme case, we simulated a scenario where forcing from geoengineering was applied over all ocean area (GEO-ALL) giving a global mean forcing of -4.9 W m-2. Geoengineering decreased the global total ocean net primary productivity (NPP) during the first decades, but the effect was insignificant by the end of the 21st century. The decrease was caused by decreased temperature of the ocean and climate system in general, not by the decrease in available sunlight as might have been expected. This was demonstrated by two sensitivity simulations where geoengineering was affecting only either temperature or the light available to marine ecosystems. The simulation GEO-ALL behaves in a different way than GEO: ocean NPP was lower than that in CTRL for the first three decades of geoengineering as in GEO, but then NPP increased over the level in CTRL for the remaining of the simulation. In

  20. Water use efficiency of net primary production in global terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Xia, Lei; Wang, Fei; Mu, Xingmin; Jin, Kai; Sun, Wenyi; Gao, Peng; Zhao, Guangju

    2015-07-01

    The carbon and water cycles of terrestrial ecosystems, which are strongly coupled via water use efficiency (WUE), are influenced by global climate change. To explore the relationship between the carbon and water cycles and predict the effect of climate change on terrestrial ecosystems, it is necessary to study the WUE in global terrestrial ecosystems. In this study, the 13-year WUE (i.e., net primary production (NPP)/evapotranspiration (ET)) of global terrestrial ecosystems was calculated based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) NPP (MOD17A3) and ET (MOD16A3) products from 2000 to 2012. The results indicate that the annual average WUE decreased but not significantly, and the 13-year mean value was 868.88 mg C m -2 mm -1. The variation trend of WUE value for each pixel differed greatly across the terrestrial ecosystems. A significant variation ( P<0.05) occurred in about 18.50% of the land surface. WUE was spatially distributed from 0 to 2541 mg C m -2 mm -1, and 58.78% of the WUE values were concentrated in the interval of 600-1200 mg C m -2 mm -1. The WUE increased from north to south in Africa and Oceania and from east to west in Europe and South America. Both latitudinal and longitudinal gradients existed in Asia and North America. The following trends in the WUE of different continents and Köppen-Geiger climates were observed: Europe (1129.71 mg C m -2 mm -1)> Oceania (1084.46 mg C m -2 mm -1)> Africa (893.51 mg C m -2 mm -1)> South America (893.07 mg C m -2 mm -1)> North America (870.79 mg C m -2 mm -1)> Asia (738.98 mg C m -2 mm -1) and warm temperate climates (1094 mg C m -2 mm -1)> snowy climates (862 mg C m -2 mm -1)> arid climates (785 mg C m -2 mm -1)> equatorial climates (732 mg C m -2 mm -1)> polar climates (435 mg C m -2 mm -1). Based on the WUE value and the present or future rainfall, the maximum carbon that fixed in one region may be theoretically calculated. Also, under the background of global climatic change, WUE may

  1. Use of Yohkoh SXT in Measuring the Net Current and CME Productivity of Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.; Six, N. Frank (Technical Monitor)

    2001-01-01

    In our investigation of the correlation of global nonpotentiality of active regions to their CME productivity (Falconer, D.A. 2001, JGR, in press, and Falconer, Moore, & Gary, 2000, EOS 82, 20 S323), we use Yohkoh SXT images for two purposes. The first use is to help resolve the 180 degree ambiguity in the direction of the observed transverse magnetic field. Resolution of the 180 degree ambiguity is important, since the net current, one of our measures of global nonpotentiality, is derived from integrating the dot product of the transverse field around a contour (I(sub N)=(integral)BT(raised dot)dl). The ambiguity results from the observed transverse field being determined from the linear polarization, which gives the plane of the direction, but leaves a 180 degrees ambiguity. Automated methods to resolve the ambiguity ranging from the simple acute angle rule (Falconer, D.A. 2001) to the more sophisticated annealing method (Metcalf T.R. 1994). For many active regions, especially ones that are nearly potential these methods work well. But for very nonpotential active regions where the shear angle (the angle between the observed and potential transverse field) is near 90 degrees throughout large swaths along the main neutral line, both methods can resolve the ambiguity incorrectly for long segments of the neutral line. By determining from coronal images, such as those from Yohkoh/SXT, the sense of shear along the main neutral line in the active region, these cases can be identified and corrected by a modification of the acute angle rule described here. The second use of Yohkoh/SXT in this study is to check for the cusped coronal arcades of long-duration eruptive flares. This signature is an excellent proxy for CMEs, and was used by Canfield, Hudson, and McKenzie (1999 GRL V26, 6, 627-630). This work is funded by NSF through the Space Weather Program and by NASA through the Solar Physics Supporting Research and Technology Program.

  2. Tropospheric O(3) compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO(2).

    PubMed

    King, John S; Kubiske, Mark E; Pregitzer, Kurt S; Hendrey, George R; McDonald, Evan P; Giardina, Christian P; Quinn, Vanessa S; Karnosky, David F

    2005-12-01

    Concentrations of atmospheric CO(2) and tropospheric ozone (O(3)) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO(2) enrichment (FACE) technology, we exposed north-temperate forest communities to concentrations of CO(2) and O(3) predicted for the year 2050 for the first 7 yr of stand development. Site-specific allometric equations were applied to annual nondestructive growth measurements to estimate above- and below-ground biomass and NPP for each year of the experiment. Relative to the control, elevated CO(2) increased total biomass 25, 45 and 60% in the aspen, aspen-birch and aspen-maple communities, respectively. Tropospheric O(3) caused 23, 13 and 14% reductions in total biomass relative to the control in the respective communities. Combined fumigation resulted in total biomass response of -7.8, +8.4 and +24.3% relative to the control in the aspen, aspen-birch and aspen-sugar maple communities, respectively. These results indicate that exposure to even moderate levels of O(3) significantly reduce the capacity of NPP to respond to elevated CO(2) in some forests.

  3. Establishing the Medication Safety Research Network of Indiana (Rx-SafeNet): Perspectives of Community Pharmacy Employees.

    PubMed

    Seel, Lindsey V; Hultgren, Kyle E; Snyder, Margie E

    2012-01-01

    The objective of this cross-sectional survey was to determine community pharmacy employee research project priorities and assess interest levels, barriers, and facilitators to joining a new community pharmacy practice-based research network (PBRN) and use this information in subsequent PBRN development. One hundred forty pharmacists and 40 support staff responded. The majority (72%) of respondents were somewhat interested or needed more information to determine their level of interest in joining a PBRN; 15% were very interested. While all research topics were regarded as important, dispensing errors were rated as the most important. Time constraints were considered the greatest barrier to participation. Greater knowledge of medication safety, enrichment of patient care, and improved patient and provider relationships were considered important reasons for joining a PBRN. Responses indicated favorable interest levels and project support from potential network members, though education and awareness campaigns are needed to enhance community pharmacy employee understanding of and involvement in research and PBRNs, specifically the Medication Safety Research Network of Indiana (Rx-SafeNet), a new network administered by the Purdue University College of Pharmacy. While the generalizability of survey results is limited, they were useful in determining policies and procedures of the new network. Surveying all employees involved in the future PBRN during the network development process is a unique approach to developing these types of networks in the U.S. Understanding support staff perspectives is important considering the critical role they play in project implementation and operations. Emerging PBRNs from any discipline may benefit from considering adding this step to their development.

  4. Influence of variations in biological and economical parameters on beef production net returns.

    PubMed

    Armstrong, S L; Wilton, J W; Pfeiffer, W C; Schaeffer, L R

    1990-07-01

    Net returns were defined as a function of the monetary returns (revenue) generated by the outputs less the monetary costs generated by the variable inputs. Outputs included total weaning weights of steers and heifers, weight of cull cows and weight of open heifers. Inputs included both feed and nonfeed costs. The net returns equation was incorporated as the objective function in a linear programming model. By maximizing the objective function, the breeding system that generated the highest net returns could be identified considering certain resource constraints. Breeding systems included purebred Herefords; small rotational dual purpose (SR), utilizing the breeds Angus, Pinzgauer, Gelbvieh and Tarentaise; large rotational (LR), a three-way rotational cross with the breeds Charolais, Simmental and Maine-Anjou; and Angus-sired terminal (AL) utilizing Angus as the sire breed and LR heifers as the maternal breed. Large rotational generally produced the greatest net returns, followed by SR and either AL or HE, depending on specific resource constraints (limited feed supply or herd size), calving rates, management systems, environment, beef to feed price ratios and purchased or farm-produced (inexpensive) feed utilized. Only under the conditions of a herd size constraint and farm-produced feed did AL exceed SR in net returns. Hereford had larger net returns than LR only when the two breeding systems were evaluated in an environment assumed to be reproductively stressful to LR. Ranking of breeding systems were dependent on specific conditions and indicated that one must consider each resource constraint and environment in which cattle are expected to produce before making breeding system recommendations.

  5. Variations of net ecosystem production due to seasonal precipitation differences in a tropical dry forest of northwest Mexico

    NASA Astrophysics Data System (ADS)

    Verduzco, Vivian S.; Garatuza-Payán, Jaime; Yépez, Enrico A.; Watts, Christopher J.; Rodríguez, Julio C.; Robles-Morua, Agustin; Vivoni, Enrique R.

    2015-10-01

    Due to their large extent and high primary productivity, tropical dry forests (TDF) are important contributors to atmospheric carbon exchanges in subtropical and tropical regions. In northwest Mexico, a bimodal precipitation regime that includes winter precipitation derived from Pacific storms and summer precipitation from the North American monsoon (NAM) couples water availability with ecosystem processes. We investigated the net ecosystem production of a TDF ecosystem using a 4.5 year record of water and carbon fluxes obtained from the eddy covariance method complemented with remotely sensed data. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer that respiration is mainly due to decomposition of soil organic matter accumulated from the prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production but can be overwhelmed by the strength of the primary productivity during the NAM. Precipitation characteristics during NAM have significant controls on sustaining carbon fixation in the TDF into the fall season. We identified that a threshold of ~350 to 400 mm of monsoon precipitation leads to a switch in the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This monsoonal precipitation threshold is typically exceeded one out of every 2 years. The close coupling of winter and summer periods with respect to carbon fluxes suggests that the annual carbon balance is dependent on precipitation amounts in both seasons in TDF ecosystems.

  6. Health policy and the community safety net for individuals with intellectual disability.

    PubMed

    Pollack, Harold A

    2011-01-01

    This article explores social policy developments in the arena of intellectual and developmental disabilities. It begins by summarizing the challenges facing persons with intellectual disabilities and their caregivers in 1945. Families depended on a patchwork of over-crowded and under-funded large state institutions. Children with intellectual disabilities were marginalized from education and public services. Shame and stigma, along with the lack of community-based services, led many parents to institutionalize a child. The federal government provided almost no specific assistance for disabled individuals or to their families. Postwar America provided fertile ground for parents to act collectively through the emergence of the National Association of Retarded Children (NARC). Partly as a consequence of such organizing, the 1950s marked a surprising turning-point, in which the federal government expanded income support to disabled persons through measures such as Social Security's "Disabled Adult Child" program and, by the early 1970s, the advent of Supplemental Security Income (SSI). It also reviews the growth of Medicaid as the dominant payer of medical and social services at the boundaries between personal medical services, case management, education, and other social services. The article ends by summarizing current challenges in intellectual disability policy. It notes that the size, complexity, and expense of I/DD services poses inherent challenges, particularly to state and local governments in the current recession. Adjusting for inflation, 23 states actually reduced real spending on I/DD services between 2008 and 2009. Controlling for local conditions, politically conservative states enacted deeper cuts and spent a smaller fraction of state income on intellectual disability services than other states. Copyright © 2012 Wiley Periodicals, Inc.

  7. Seasonal variations of net-phytoplankton community structure in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Jiang, Zhibing; Liu, Jingjing; Chen, Quanzhen; Zeng, Jiangning; Huang, Wei

    2013-12-01

    Based on the field survey data of four cruises in 2011, all phytoplankton communities in the southern Yellow Sea (SYS) were investigated for the species composition, dominant species, abundance and diversity indices. A total of 379 species belonging to 9 phyla were identified, of which the most abundant group was Bacillariophyta (60.9%), followed by Pyrrophyta (23.7%) and Haptophyta (6.9%). The seasonal distribution of abundance was: summer (4137.1×103 ind m-3) > spring (3940.4×103 ind m-3) > winter (3010.6×103 ind m-3) > autumn (340.8 ×103 ind m-3), while the horizontal distribution showed a decreasing tendency from inshore to offshore regions. The dominant species of phytoplankton varied in different seasons. The dominant species were Thalassiosira pacifica, Skeletoema spp. and Chaetoceros cinctus in spring, Chaetoceros debbilis, Chaetoceros pseudocurvisetus and Chaetoceros curvisetus in summer, Thalassiosira curviseriata, Alexandrium catenella and Ceratium fusus in autumn, Paralia sulcata, Phaeocystis sp. and Bacillaria paradoxa in winter, respectively. In SYS, the group of temperate coastal species was the major ecotype, and the groups of the central SYS species and oceanic species were also important constituents. The average values of Shannon-Weaver diversity index ( H') and Pielou evenness index ( J) were 2.37 and 0.65 respectively. The indices H' and J in the open sea were higher than those in coastal waters. Obvious co-variation tendencies between H' and J were observed in all but the summer cruise of this survey.

  8. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling

  9. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-03-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shaanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modeled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modeled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI), elevation and aspect have small and additive effects on improving the spatial scaling

  10. Quantifying Human Appropriated Net Primary Productivity (HANPP) in a Ghanaian Cocoa System

    NASA Astrophysics Data System (ADS)

    Morel, A.; Adu-Bredu, S.; Adu Sasu, M.; Ashley Asare, R.; Boyd, E.; Hirons, M. A.; Malhi, Y.; Mason, J.; Norris, K.; Robinson, E. J. Z.; McDermott, C. L.

    2015-12-01

    Ghana is the second largest producer of cocoa (Theobroma cacoa), exporting approximately 18 percent of global volumes. These cocoa farms are predominantly small-scale, ranging in size from 2-4 hectares (ha). Traditionally, the model of cocoa expansion in Ghana relied on clearing new areas of forest and establishing a farm under remnant forest trees. This is increasingly less practical due to few unprotected forest areas remaining and management practices favoring close to full sun cocoa to maximize short-term yields. This study is part of a larger project, ECOLMITS, which is an interdisciplinary, ESPA-funded[1] initiative exploring the ecological limits of ecosystem system services (ESS) for alleviating poverty in small-scale agroforestry systems. The ecological study plots are situated within and around the Kakum National Forest, a well-protected, moist-evergreen forest of the Lower Guinea Forest region. Net primary productivity (NPP) is a measure of the rate at which carbon dioxide (CO2) is incorporated into plant tissues (e.g. canopy, stem and root). For this study, NPP was monitored in situ using methods developed by the Global Environmental Monitoring Network (GEM, http://gem.tropicalforests.ox.ac.uk/). By comparing NPP measured in intact forest and farms, the human appropriated NPP (HANPP) of this system can be estimated. The forest measures provide the "potential" NPP of the region, and then the reduction in NPP for farm plots is calculated for both land-cover change (HANPPLUC) and cocoa harvesting (HANPPHARV). The results presented are of the first year of NPP measurements across the cocoa landscape, including measurements from intact forest, logged forest and cocoa farms across a shade gradient and located at varying distances from the forest edge (e.g. 100 m, 500 m, 1 km and 5 km). These measures will have implications for carbon sequestration potential over the region and long-term sustainability of the Ghanaian cocoa sector. [1] Ecosystem Services for

  11. Biological feedbacks dominate environmental sensitivity of net biomass production in temperate and boreal North American forests

    NASA Astrophysics Data System (ADS)

    Hember, R. A.; Kurz, W. A.; Coops, N.; Boisvenue, C.; Metsaranta, J. M.

    2012-12-01

    Considerable uncertainty remains in how environmental changes are impacting forest biomass dynamics. Here, we analyze a large sample of permanent sample plots and tree-ring chronologies from temperate and boreal forests across North America to empirically derive environmental sensitivity and constrain ecophysiological model simulations of biomass growth (G) and mortality (M). We argue that observed cross-site variation of G for common forest types reflects a combination of genetic differentiation and equilibrium sensitivity to environmental conditions. Growth of all tested tree species exhibited greater than expected exponential sensitivity to temperature and widely varying responses to water deficits. A high degree of persistence in temporal responses of G to environmental change, evident in both tree-ring chronologies and models, suggests that high estimates of equilibrium sensitivity derived from cross-site variation may be attributed to biological feedbacks (e.g., leaf area expansion) that delay and amplify environmental sensitivity above levels more often inferred from short-term transient variation. Long-term plots and tree-ring chronologies in western North America suggest that environmental changes contributed to significant enhancement of G over the 20th century. Increases in M above background levels were triggered by a critical level of modelled actual evapotranspiration (ETa). Leaf area expansion and consequent positive trends in transpiration were the primary factors causing stands to exceed critical levels of ETa. Positive dependence of M on transpiration led us to propose that hydraulic failure may be the primary mechanism causing drought-induced regular mortality and that recent trends may reflect a negative feedback response to 20th century growth enhancement that allowed biomass to build up to levels that were eventually unsustainable through the 1980's and 90's droughts. The effect of the mortality feedback on net biomass production (ΔB) is

  12. Modeling the effect of physiological responses to green pruning on net biomass production of Eucalyptus nitens.

    PubMed

    Pinkard, E. A.; Battaglia, M.; Beadle, C. L.; Sands, P. J.

    1999-01-01

    Green pruning of Eucalyptus nitens (Deane and Maiden) Maiden increases instantaneous rates of light-saturated CO(2) assimilation (A), and changes patterns of total leaf area and foliage distribution. We investigated the importance of such changes on the rate of recovery of growth following pruning. A simple process-based model was developed to estimate daily net biomass production (G(d)) of three-year-old plantation-grown trees over a 20-month period. The trees had been pruned by removal of 0, 50 or 70% of the length of green crown, equivalent to removal of 0, 55 or 88% of leaf area, respectively, when the plantation verged on canopy closure. Total G(d) was reduced by only 20% immediately following the 50%-pruning treatment, as a result of both the high leaf dark respiration and low A in the portion of the crown removed compared to the top of the crown. Pruning at the time of canopy closure preempted a natural and rapid decline in G(d) of the lower crown. Although leaf area index (L) was approximately 6.0 at the time of pruning, high light interception (95%) occurred with an L of 4.0. The 50%-pruning treatment reduced L to 3.5, but the physiological responses to pruning were sufficient to compensate fully for the reduction in intercepted radiation within 110 days of pruning. The 70%-pruning treatment reduced L to 1.9, and reduced G(d) by 77%, reflecting the removal of branches with high A in the mid and upper crown. Physiological responses to the 70%-pruning treatment were insufficient to increase G(d) to the value of unpruned trees during the study. Model sensitivity analysis showed that increases in A following pruning increased G(d) by 20 and 25% in the 50- and 70%-pruned trees, respectively, 20 months after pruning. Changes in leaf area/foliage distribution had a greater effect on G(d) of 50%-pruned trees (47% increase) than did changes in A. However, the reduction in photosynthetic potential associated with the 70%-pruning treatment resulted in only small

  13. Established dietary estimates of net acid production do not predict measured net acid excretion in patients with Type 2 diabetes on Paleolithic-Hunter-Gatherer-type diets

    PubMed Central

    Frassetto, Lynda A; Shi, Lijie; Schloetter, Monique; Sebastian, Anthony; Remer, Thomas

    2014-01-01

    Background Formulas developed to estimate diet-dependent net acid excretion (NAE) generally agree with measured values for typical Western diets. Whether they can also appropriately predict NAE for "Paleolithic-type" (Paleo) diets – which contain very high amounts of fruits and vegetables (F&V) and concurrent high amounts of protein is unknown. Here we compare measured NAEs with established NAE-estimates in subjects with Type 2 diabetes (T2D). Methods Thirteen subjects with well controlled T2D were randomized to either a Paleo or American Diabetes Association (ADA) diet for 14 days. 24-hour urine collections were performed at baseline and end of the diet period, and analyzed for titratable acid, bicarbonate, and ammonium to calculate measured NAE. Three formulas for estimating NAE from dietary intake were used; two (NAE_diet R or L) that include dietary mineral intake and sulfate- and organic acid (OA) production, and one that is empirically-derived (NAE_diet F) only considering potassium and protein intake. Results Measured NAE on the Paleo diet was significantly lower than on the ADA diet (+31±22 vs. 112±52 mEq/day, p=0.002). Although all formula estimates showed similar and reasonable correlations (r=0.52–0.76) with measured NAE, each one underestimated measured values. The formula with the best correlation did not contain an estimate of dietary organic acid production. Conclusions Paleo diets are lower in NAE than typical Western diets. However, commonly used formulas clearly underestimate NAE, especially for diets with very high F&V (as the Paleo diet), and in subjects with T2D. This may be due to an inappropriate estimation of proton loads stemming from OAs, underlining the necessity for improved measures of OA-related proton sources. PMID:23859996

  14. Established dietary estimates of net acid production do not predict measured net acid excretion in patients with Type 2 diabetes on Paleolithic-Hunter-Gatherer-type diets.

    PubMed

    Frassetto, L A; Shi, L; Schloetter, M; Sebastian, A; Remer, T

    2013-09-01

    Formulas developed to estimate diet-dependent net acid excretion (NAE) generally agree with measured values for typical Western diets. Whether they can also appropriately predict NAE for 'Paleolithic-type' (Paleo) diets-which contain very high amounts of fruits and vegetables (F&V) and concurrent high amounts of protein is unknown. Here, we compare measured NAEs with established NAE estimates in subjects with Type 2 diabetes (T2D). Thirteen subjects with well-controlled T2D were randomized to either a Paleo or American Diabetes Association (ADA) diet for 14 days. Twenty-four hour urine collections were performed at baseline and end of the diet period, and analyzed for titratable acid, bicarbonate and ammonium to calculate measured NAE. Three formulas for estimating NAE from dietary intake were used; two (NAE_diet R or L) that include dietary mineral intake and sulfate- and organic acid (OA) production, and one that is empirically derived (NAE_diet F) only considering potassium and protein intake. Measured NAE on the Paleo diet was significantly lower than on the ADA-diet (+31±22 vs 112±52 mEq/day, P=0.002). Although all formula estimates showed similar and reasonable correlations (r=0.52-0.76) with measured NAE, each one underestimated measured values. The formula with the best correlation did not contain an estimate of dietary OA production. Paleo-diets are lower in NAE than typical Western diets. However, commonly used formulas clearly underestimate NAE, especially for diets with very high F&V (as the Paleo diet), and in subjects with T2D. This may be due to an inappropriate estimation of proton loads stemming from OAs, underlining the necessity for improved measures of OA-related proton sources.

  15. Nitrogen Limitation of Terrestrial Net Primary Production: Global Patterns From Field Studies with Nitrogen Fertilization

    NASA Astrophysics Data System (ADS)

    Lebauer, D. S.; Treseder, K. K.

    2006-12-01

    Net primary production (NPP) transfers carbon from the atmospheric CO2 pool into the biosphere. Experimental evidence demonstrates that NPP is often limited by nitrogen availability. Hence, accelerated nitrogen availability due to fertilizer production, fossil fuel use, and biomass burning could stimulate global NPP. Over the next century, these nitrogen sources are expected to both increase in strength and expand from their current concentration in the temperate regions of Europe and the United States into the tropical regions of South America, Southeast Asia, and India. In order to predict future carbon budgets, it is necessary to quantify the impact of nitrogen on NPP. Currently there is no synthesis of ecosystem scale experiments that evaluates responses among biomes and across environmental gradients. The aim of this investigation is to test the prediction that nitrogen limitation is widespread, and to evaluate global patterns of NPP response to nitrogen. The present study compiles results from field-based nitrogen addition experiments in a comprehensive meta-analysis. Published studies were obtained through key word searches and referenced articles. A response metric was derived from each study based on measurements of plant growth under ambient nitrogen deposition (control) and experimental nitrogen addition (treatment). This metric is the response ratio (R): the ratio of mean growth in treatment divided by control plots. Therefore, a positive effect of nitrogen results in R>1. A meta-analysis was performed on ln(R) weighted by within-study variance. We found that most ecosystems are nitrogen limited (P<0.0001) and that average growth response to nitrogen was 32%. However, response was not uniform across biomes. Significant responses were observed in grasslands and forests (P<0.0001), but not wetlands and tundra (P=0.08 and P=0.16). While mean annual precipitation (MAP) was significantly correlated to R overall (P<0.0001), the direction of the effect varied

  16. Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective

    SciTech Connect

    Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.; Link, Robert P.; Zhang, Xuesong; Post, W. M.

    2013-12-01

    The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in a nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.

  17. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  18. 'PSA-SPN' - A Parameter Sensitivity Analysis Method Using Stochastic Petri Nets: Application to a Production Line System

    SciTech Connect

    Labadi, Karim; Saggadi, Samira; Amodeo, Lionel

    2009-03-05

    The dynamic behavior of a discrete event dynamic system can be significantly affected for some uncertain changes in its decision parameters. So, parameter sensitivity analysis would be a useful way in studying the effects of these changes on the system performance. In the past, the sensitivity analysis approaches are frequently based on simulation models. In recent years, formal methods based on stochastic process including Markov process are proposed in the literature. In this paper, we are interested in the parameter sensitivity analysis of discrete event dynamic systems by using stochastic Petri nets models as a tool for modelling and performance evaluation. A sensitivity analysis approach based on stochastic Petri nets, called PSA-SPN method, will be proposed with an application to a production line system.

  19. Defining the functional traits that drive bacterial decomposer community productivity

    PubMed Central

    Evans, Rachael; Alessi, Anna M.; Bird, Susannah; McQueen-Mason, Simon J.; Bruce, Neil C.; Brockhurst, Michael A.

    2017-01-01

    Microbial communities are essential to a wide range of ecologically and industrially important processes. To control or predict how these communities function, we require a better understanding of the factors which influence microbial community productivity. Here, we combine functional resource use assays with a biodiversity-ecosystem functioning (BEF) experiment to determine whether the functional traits of constituent species can be used to predict community productivity. We quantified the abilities of 12 bacterial species to metabolise components of lignocellulose and then assembled these species into communities of varying diversity and composition to measure their productivity growing on lignocellulose, a complex natural substrate. A positive relationship between diversity and community productivity was caused by a selection effect whereby more diverse communities were more likely to contain two species that significantly improved community productivity. Analysis of functional traits revealed that the observed selection effect was primarily driven by the abilities of these species to degrade β-glucan. Our results indicate that by identifying the key functional traits underlying microbial community productivity we could improve industrial bioprocessing of complex natural substrates. PMID:28323280

  20. Defining the functional traits that drive bacterial decomposer community productivity.

    PubMed

    Evans, Rachael; Alessi, Anna M; Bird, Susannah; McQueen-Mason, Simon J; Bruce, Neil C; Brockhurst, Michael A

    2017-03-21

    Microbial communities are essential to a wide range of ecologically and industrially important processes. To control or predict how these communities function, we require a better understanding of the factors which influence microbial community productivity. Here, we combine functional resource use assays with a biodiversity-ecosystem functioning (BEF) experiment to determine whether the functional traits of constituent species can be used to predict community productivity. We quantified the abilities of 12 bacterial species to metabolise components of lignocellulose and then assembled these species into communities of varying diversity and composition to measure their productivity growing on lignocellulose, a complex natural substrate. A positive relationship between diversity and community productivity was caused by a selection effect whereby more diverse communities were more likely to contain two species that significantly improved community productivity. Analysis of functional traits revealed that the observed selection effect was primarily driven by the abilities of these species to degrade β-glucan. Our results indicate that by identifying the key functional traits underlying microbial community productivity we could improve industrial bioprocessing of complex natural substrates.The ISME Journal advance online publication, 21 March 2017; doi:10.1038/ismej.2017.22.

  1. Net biogenic silica production and the contribution of diatoms to new production and organic matter export in the Costa Rica Dome ecosystem.

    PubMed

    Krause, Jeffrey W; Stukel, Michael R; Taylor, Andrew G; Taniguchi, Darcy A A; De Verneil, Alain; Landry, Michael R

    2016-03-01

    We determined the net rate of biogenic silica (bSiO2) production and estimated the diatom contribution to new production and organic matter export in the Costa Rica Dome during summer 2010. The shallow thermocline significantly reduces bSiO2 dissolution rates below the mixed layer, leading to significant enhancement of bSiO2 relative to organic matter (silicate-pump condition). This may explain why deep export of bSiO2 in this region is elevated by an order of magnitude relative to comparable systems. Diatom carbon, relative to autotrophic carbon, was low (<3%); however, the contribution of diatoms to new production averaged 3 and 13% using independent approaches. The 4-old discrepancy between methods may be explained by a low average C:Si ratio (∼1.4) for the net produced diatom C relative to the net produced bSiO2. We speculate that this low production ratio is not the result of reduced C, but may arise from a significant contribution of non-diatom silicifying organisms to bSiO2 production. The contribution of diatoms to organic matter export was minor (5.7%). These results, and those of the broader project, suggest substantial food-web transformation of diatom organic matter in the euphotic zone, which creates enriched bSiO2 relative to organic matter within the exported material.

  2. Net biogenic silica production and the contribution of diatoms to new production and organic matter export in the Costa Rica Dome ecosystem

    PubMed Central

    Krause, Jeffrey W.; Stukel, Michael R.; Taylor, Andrew G.; Taniguchi, Darcy A. A.; De Verneil, Alain; Landry, Michael R.

    2016-01-01

    We determined the net rate of biogenic silica (bSiO2) production and estimated the diatom contribution to new production and organic matter export in the Costa Rica Dome during summer 2010. The shallow thermocline significantly reduces bSiO2 dissolution rates below the mixed layer, leading to significant enhancement of bSiO2 relative to organic matter (silicate-pump condition). This may explain why deep export of bSiO2 in this region is elevated by an order of magnitude relative to comparable systems. Diatom carbon, relative to autotrophic carbon, was low (<3%); however, the contribution of diatoms to new production averaged 3 and 13% using independent approaches. The 4-old discrepancy between methods may be explained by a low average C:Si ratio (∼1.4) for the net produced diatom C relative to the net produced bSiO2. We speculate that this low production ratio is not the result of reduced C, but may arise from a significant contribution of non-diatom silicifying organisms to bSiO2 production. The contribution of diatoms to organic matter export was minor (5.7%). These results, and those of the broader project, suggest substantial food-web transformation of diatom organic matter in the euphotic zone, which creates enriched bSiO2 relative to organic matter within the exported material. PMID:27275026

  3. Improvements in hepatitis B virus screening before rituximab therapy: A community-based, safety-net hospital experience.

    PubMed

    Junus, Kevin; Aguilar, Maria; Patel, Priya; Irwin, David; Yee, Stephen; Liu, Benny; Bhuket, Taft; Wong, Robert J

    2017-02-15

    Individuals with chronic hepatitis B virus infection (HBV) or previously resolved HBV are at increased risk of HBV exacerbation or reactivation when they receive treatment with anti-CD20 monoclonal antibodies (against B-lymphocyte antigen cluster of differentiation 20 [CD20], an activated-glycosylated phosphoprotein) like rituximab (RTX). The objective of the current study was to evaluate the rates of appropriate HBV screening before patients started receiving RTX, at the initiation of HBV treatment, and during HBV flares among an underserved safety-net population. In total, 244 consecutive adults who received treatment with RTX from 2006 to 2015 at an urban safety-net hospital were evaluated to determine appropriate HBV screening (HBV surface antigen [HBsAg] and HBV total core antibody [HBcAb]) before starting RTX. The initiation of prophylactic antiviral therapy and the development of HBV flares after starting RTX were evaluated. Predictors of appropriate HBV screening were evaluated using multivariate logistic regression models. Most patients were women (52.7%; n = 128) and of Hispanic ethnicity (30.7%; n = 74). Before starting RTX, 60.5% (n = 147) of patients received appropriate HBV screening. The HBV screening rates before RTX improved from 14.7% (2006-2009) to 74.7% (2010-2012), and to 87.1% (2013-2015; P < .01. Two of 7 (28.6%) HBsAg-positive patients who did not receive antiviral therapy experienced HBV flares and 1 died, and 2 of 27 patients (7.4%) HBcAb-positive/HBsAg-negative patients who did not receive antiviral therapy experienced HBV reactivation. No patient-specific or disease-specific predictors of receiving HBV screening before RTX therapy were identified. Among adults receiving RTX therapy in a single community-based hospital system, HBV screening rates were suboptimal, and 28.6% of HBsAg-positive patients and 7.4% of HBsAg-negative/HBcAb-positive patients who did not receive antiviral treatment experienced HBV reactivation or

  4. Nurturing Neighborhood Nets.

    ERIC Educational Resources Information Center

    Chapman, Gary; Rhodes, Lodis

    1997-01-01

    Describes benefits of the Austin Free-Net, part of the nationwide movement "community networks" to provide public access to computers to low-income communities. Presents examples of users and discusses Internet instruction and location of terminals. A sidebar highlights 10 community networks, with areas served and Web site addresses.…

  5. Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers

    NASA Astrophysics Data System (ADS)

    Nemiah Ladd, S.; Dubois, Nathalie; Schubert, Carsten J.

    2017-09-01

    The hydrogen isotopic composition (δ2H) of lipid biomarkers has diverse applications in the fields of paleoclimatology, biogeochemistry, and microbial community dynamics. Large changes in hydrogen isotope fractionation have been observed among microbes with differing core metabolisms, while environmental factors including temperature and nutrient availability can affect isotope fractionation by photoautotrophs. Much effort has gone into studying these effects under laboratory conditions with single species cultures. Moving beyond controlled environments and quantifying the natural extent of these changes in freshwater lacustrine settings and identifying their causes is essential for robust application of δ2H values of common short-chain fatty acids as a proxy of net community metabolism and of phytoplankton-specific biomarkers as a paleohydrologic proxy. This work targets the effect of community dynamics, temperature, and productivity on 2H/1H fractionation in lipid biomarkers through a comparative time series in two central Swiss lakes: eutrophic Lake Greifen and oligotrophic Lake Lucerne. Particulate organic matter was collected from surface waters at six time points throughout the spring and summer of 2015, and δ2H values of short-chain fatty acids, as well as chlorophyll-derived phytol and the diatom biomarker brassicasterol, were measured. We paired these measurements with in situ incubations conducted with NaH13CO3, which were used to calculate the production rates of individual lipids in lake surface water. As algal productivity increased from April to June, net discrimination against 2H in Lake Greifen increased by as much as 148 ‰ for individual fatty acids. During the same time period in Lake Lucerne, net discrimination against 2H increased by as much as 58 ‰ for individual fatty acids. A large portion of this signal is likely due to a greater proportion of heterotrophically derived fatty acids in the winter and early spring, which are displaced by

  6. Exploring Global Patterns in Human Appropriation of Net Primary Production Using Earth Observation Satellites and Statistical Data

    NASA Astrophysics Data System (ADS)

    Imhoff, M.; Bounoua, L.

    2004-12-01

    A unique combination of satellite and socio-economic data were used to explore the relationship between human consumption and the carbon cycle. Biophysical models were applied to consumption data to estimate the annual amount of Earth's terrestrial net primary production humans require for food, fiber and fuel using the same modeling architecture as satellite-supported NPP measurements. The amount of Earth's NPP required to support human activities is a powerful measure of the aggregate human impacts on the biosphere and indicator of societal vulnerability to climate change. Equations were developed estimating the amount of landscape-level NPP required to generate all the products consumed by 230 countries including; vegetal foods, meat, milk, eggs, wood, fuel-wood, paper and fiber. The amount of NPP required was calculated on a per capita basis and projected onto a global map of population to create a spatially explicit map of NPP-carbon demand in units of elemental carbon. NPP demand was compared to a map of Earth's average annual net primary production or supply created using 17 years (1982-1998) of AVHRR vegetation index to produce a geographically accurate balance sheet of terrestrial NPP-carbon supply and demand. Globally, humans consume 20 percent of Earth's total net primary production on land. Regionally the NPP-carbon balance percentage varies from 6 to over 70 percent and locally from near 0 to over 30,000 percent in major urban areas. The uneven distribution of NPP-carbon supply and demand, indicate the degree to which various human populations rely on NPP imports, are vulnerable to climate change and suggest policy options for slowing future growth in NPP demand.

  7. Forest cockchafer larvae as methane production hotspots in soils and their importance for net soil methane fluxes

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Kammann, Claudia; Murphy, Paul; Müller, Christoph

    2016-04-01

    Certain groups of soil invertebrates, namely scarab beetles and millipedes, are capable of emitting considerable amounts of methane due to methanogens inhabiting their gut system. It was already pointed out in the early 1990's, that these groups of invertebrates may represent a globally important source of methane. However, apart from termites, the importance of invertebrates for the soil methane budget is still unknown. Here, we present preliminary results of a laboratory soil incubation experiment elucidating the influence of forest cockchafer larvae (Melolontha hippocastani FABRICIUS) on soil methane cycling. In January/February 2016, two soils from two different management systems - one from a pine forest (extensive use) and one from a vegetable field (intensive use) - were incubated for 56 days either with or without beetle larvae. Net soil methane fluxes and larvae methane emissions together with their stable carbon isotope signatures were quantified at regular intervals to estimate gross methane production and gross methane oxidation in the soils. The results of this experiment will contribute to testing the hypothesis of whether methane production hotspots can significantly enhance the methane oxidation capacity of soils. Forest cockchafer larvae are only found in well-aerated sandy soils where one would usually not suspect relevant gross methane production. Thus, besides quantifying their contribution to net soil methane fluxes, they are also ideal organisms to study the effect of methane production hotspots on overall soil methane cycling. Funding support: Reintegration grant of the German Academic Exchange Service (DAAD) (#57185798).

  8. Near-Net-Shape Production of Hollow Titanium Alloy Components via Electrochemical Reduction of Metal Oxide Precursors in Molten Salts

    NASA Astrophysics Data System (ADS)

    Hu, Di; Xiao, Wei; Chen, George Z.

    2013-04-01

    Metal oxide precursors (ca. 90 wt pct Ti, 6 wt pct Al, and 4 wt pct V) were prepared with a hollow structure in various shapes such as a sphere, miniature golf club head, and cup using a one-step solid slip-casting process. The precursors were then electro-deoxidized in molten calcium chloride [3.2 V, 1173 K (900 °C)] against a graphite anode. After 24 hours of electrolysis, the near-net-shape Ti-6Al-4V product maintained its original shape with controlled shrinkage. Oxygen contents in the Ti-6Al-4V components were typically below 2000 ppm. The maximum compressive stress and modulus of electrolytic products obtained in this work were approximately 243 MPa and 14 GPa, respectively, matching with the requirement for medical implants. Further research directions are discussed for mechanical improvement of the products via densification during or after electrolysis. This simple, fast, and energy-efficient near-net-shape manufacturing method could allow titanium alloy components with desired geometries to be prepared directly from a mixture of metal oxides, promising an innovative technology for the low-cost production of titanium alloy components.

  9. Global Human Appropriation of Net Primary Production for Biomass Consumption in the European Union, 1986-2007.

    PubMed

    Kastner, Thomas; Erb, Karl-Heinz; Haberl, Helmut

    2015-10-01

    The ongoing globalization process strengthens the connections between different geographic regions through trade. Biomass products, such as food, fiber, or bioenergy, are increasingly traded globally, thereby leading to telecouplings between distant, seemingly unrelated regions. For example, restrictions for agricultural production or changes in bioenergy demand in Europe or the United States might contribute to deforestation in Latin America or Sub-Saharan Africa. One approach to analyze trade-related land-use effects of the global socioeconomic biomass metabolism is the "embodied human appropriation of net primary production" or eHANPP. eHANPP accounts allocate to any product the entire amount of the human appropriation of net primary production (HANPP) that emerges throughout its supply chain. This allows consumption-based accounts to move beyond simple area-demand approaches by taking differences in natural productivity as well as in land-use intensity into account, both across land-use types as well as across world regions. In this article, we discuss the eHANPP related to the European Union's (EU) consumption of biomass products in the period 1986-2007, based on a consistent global trade data set derived from bilateral data. We find a considerable dependency of the EU on the appropriation of biological productivity outside its own boundaries, with increasing reliance on Latin America as a main supplier. By using the EU as an illustrative example, we demonstrate the usefulness of eHANPP for assessing land-use impacts caused by nations' socioeconomic activities and conclude that the eHANPP approach can provide useful information to better manage ecosystems globally in the face of an increasingly interconnected world.

  10. Biological production, export efficiency, and phytoplankton communities across 8000 km of the South Atlantic

    NASA Astrophysics Data System (ADS)

    Howard, E. M.; Durkin, C. A.; Hennon, G. M. M.; Ribalet, F.; Stanley, R. H. R.

    2017-07-01

    In situ oxygen tracers (triple oxygen isotope and oxygen/argon ratios) were used to evaluate meridional trends in surface biological production and export efficiency across 8000 km of the tropical and subtropical South Atlantic in March-May 2013. We used observations of picophytoplankton, nanophytoplankton, and microphytoplankton to evaluate community structure and diversity and assessed the relationships of these characteristics with production, export efficiency, and particulate organic carbon (POC) fluxes. Rates of productivity were relatively uniform along most of the transect with net community production (NCP) between 0 and 10 mmol O2 m-2 d-1, gross primary production (GPP) between 40 and 100 mmol O2 m-2 d-1, and NCP/GPP, a measure of export efficiency, ranging from 0.1 to 0.2 (0.05-0.1 in carbon units). However, notable exceptions to this basin-scale homogeneity included two locations with highly enhanced NCP and export efficiency compared to surrounding regions. Export of POC and particulate nitrogen, derived from sediment traps, correlated with GPP across the transect, over which the surface community was dominated numerically by picophytoplankton. NCP, however, did not correlate with POC flux; the mean difference between NCP and POC flux was similar to published estimates of dissolved organic carbon export from the surface ocean. The interrelated rates of production presented in this work contribute to the understanding, building on the framework of better-studied ocean basins, of how carbon is biologically transported between the atmosphere and the deep ocean.

  11. Assessment of a field incubation method estimating primary productivity in rockpool communities

    NASA Astrophysics Data System (ADS)

    Noël, Laure M.-L. J.; Griffin, John N.; Thompson, Richard C.; Hawkins, Stephen J.; Burrows, Michael T.; Crowe, Tasman P.; Jenkins, Stuart R.

    2010-06-01

    An open incubation method has been used in many studies to directly estimate primary productivity and ecosystem functioning by measuring photosynthetic and respiratory rates in intertidal rockpool communities. The method measures changes in dissolved oxygen concentrations recorded in situ during an artificial dark period (respiration) and a natural light period (net primary productivity). Although this method has yielded interesting results, its advantages and limitations have yet to be thoroughly tested. The accuracy of the method was investigated in a controlled laboratory environment and compared with field incubations. Atmospheric oxygen diffusion across the air-water interface did not affect incubation measurements under low wind speed (<2 m s -1). Temperature increases during incubations were not greater than in natural rockpools and did not affect primary productivity. The major problem was the oxygen supersaturation which inhibited photosynthesis, thus leading to an underestimation of primary production. To allow comparable measurements, net primary productivity needs to be recorded during the linear phase of the photosynthetic process (<30 min of light) before water reaches supersaturation (<160%). This method gives rapid and reliable estimates of primary productivity thereby allowing biodiversity and ecosystem functioning relationships to be tested using rockpools as natural mesocosms.

  12. Efficacy, Outcomes, and Empowerment Evaluation of a School District NET Project, Part II: School and Community Impact. Research Brief.

    ERIC Educational Resources Information Center

    Miller-Whitehead, Marie

    This study addressed assessing the efficacy and outcomes of a U.S. Department of Agriculture Nutrition Education Training (NET) project designed to increase awareness of health risk and wellness factors for grade 9 students. Although this paper reprises results from a survey of 125 ninth graders about the NET curriculum, the focus of this part of…

  13. Efficacy, Outcomes, and Empowerment Evaluation of a School District NET Project, Part II: School and Community Impact. Research Brief.

    ERIC Educational Resources Information Center

    Miller-Whitehead, Marie

    This study addressed assessing the efficacy and outcomes of a U.S. Department of Agriculture Nutrition Education Training (NET) project designed to increase awareness of health risk and wellness factors for grade 9 students. Although this paper reprises results from a survey of 125 ninth graders about the NET curriculum, the focus of this part of…

  14. Design and production of the digital optical module of the KM3NeT project

    NASA Astrophysics Data System (ADS)

    Leonora, Emanuele; Giordano, Valentina

    2017-03-01

    The KM3NeT collaboration is building the ARCA and ORCA neutrino telescopes in the depths of the Mediterranean Sea. They will consist of 3-dimensional arrays of photodetectors, called digital optical modules, suspended in the sea by means of vertical string structures, called detection units. The optical modules are composed of a pressure-resistant 17-inch spherical glass vessel, which contains 31 small photomultiplier tubes and all the associated electronics. The multi- photomultiplier solution represents an innovative design with respect to optical modules of all currently operated neutrino telescopes comprising a single large photomultipliers.

  15. Global Human Appropriation of Net Primary Production for Biomass Consumption in the European Union, 1986–2007

    PubMed Central

    Erb, Karl‐Heinz; Haberl, Helmut

    2015-01-01

    Summary The ongoing globalization process strengthens the connections between different geographic regions through trade. Biomass products, such as food, fiber, or bioenergy, are increasingly traded globally, thereby leading to telecouplings between distant, seemingly unrelated regions. For example, restrictions for agricultural production or changes in bioenergy demand in Europe or the United States might contribute to deforestation in Latin America or Sub‐Saharan Africa. One approach to analyze trade‐related land‐use effects of the global socioeconomic biomass metabolism is the “embodied human appropriation of net primary production” or eHANPP. eHANPP accounts allocate to any product the entire amount of the human appropriation of net primary production (HANPP) that emerges throughout its supply chain. This allows consumption‐based accounts to move beyond simple area‐demand approaches by taking differences in natural productivity as well as in land‐use intensity into account, both across land‐use types as well as across world regions. In this article, we discuss the eHANPP related to the European Union's (EU) consumption of biomass products in the period 1986–2007, based on a consistent global trade data set derived from bilateral data. We find a considerable dependency of the EU on the appropriation of biological productivity outside its own boundaries, with increasing reliance on Latin America as a main supplier. By using the EU as an illustrative example, we demonstrate the usefulness of eHANPP for assessing land‐use impacts caused by nations’ socioeconomic activities and conclude that the eHANPP approach can provide useful information to better manage ecosystems globally in the face of an increasingly interconnected world. PMID:27524879

  16. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada.

    PubMed

    Steele, Sarah J.; Gower, Stith T.; Vogel, Jason G.; Norman, John M.

    1997-01-01

    Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to quantify fine root net primary production (NPPFR). Average daily fine root growth (m m(-2) day(-1)) was positively correlated with soil temperature at 10-cm depth (r(2) = 0.83-0.93) for all three species, with black spruce showing the strongest temperature effect. At both study areas, fine root biomass (measured from soil cores) and fine root length (measured from minirhizotrons) were less for jack pine than for the other two species. Except for the aspen stands, estimates of NPPFR from minirhizotrons were significantly greater than estimates from ingrowth cores. The core method underestimated NPPFR because it does not account for simultaneous fine root growth and mortality. Minirhizotron NPPFR estimates ranged from 59 g m(-2) year(-1) for aspen stands at SSA to 235 g m(-2) year(-1) for black spruce at NSA. The ratio of NPPFR to total detritus production (aboveground litterfall + NPPFR) was greater for evergreen forests than for deciduous forests, suggesting that carbon allocation patterns differ between boreal evergreen and deciduous forests. In all stands, NPPFR consistently exceeded annual fine root turnover and the differences were larger for stands in the NSA than for stands in the SSA, whereas the difference between study areas was only significant for black spruce. The imbalance between NPPFR and fine root turnover is sufficient to explain the net accumulation of carbon in boreal forest soils.

  17. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites

    NASA Astrophysics Data System (ADS)

    Post, Hanna; Vrugt, Jasper A.; Fox, Andrew; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2017-03-01

    The Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual sites. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European sites with different plant functional types (PFTs). The posterior CLM parameter distributions of each site were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from "nearby" FLUXNET sites at 600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.

  18. Analysis to determine the maximum dimensions of flexible apertures in sensored security netting products.

    SciTech Connect

    Murton, Mark; Bouchier, Francis A.; vanDongen, Dale T.; Mack, Thomas Kimball; Cutler, Robert P; Ross, Michael P.

    2013-08-01

    Although technological advances provide new capabilities to increase the robustness of security systems, they also potentially introduce new vulnerabilities. New capability sometimes requires new performance requirements. This paper outlines an approach to establishing a key performance requirement for an emerging intrusion detection sensor: the sensored net. Throughout the security industry, the commonly adopted standard for maximum opening size through barriers is a requirement based on square inchestypically 96 square inches. Unlike standard rigid opening, the dimensions of a flexible aperture are not fixed, but variable and conformable. It is demonstrably simple for a human intruder to move through a 96-square-inch opening that is conformable to the human body. The longstanding 96-square-inch requirement itself, though firmly embedded in policy and best practice, lacks a documented empirical basis. This analysis concluded that the traditional 96-square-inch standard for openings is insufficient for flexible openings that are conformable to the human body. Instead, a circumference standard is recommended for these newer types of sensored barriers. The recommended maximum circumference for a flexible opening should be no more than 26 inches, as measured on the inside of the netting material.

  19. Community coverage with insecticide-treated mosquito nets and observed associations with all-cause child mortality and malaria parasite infections.

    PubMed

    Larsen, David A; Hutchinson, Paul; Bennett, Adam; Yukich, Joshua; Anglewicz, Philip; Keating, Joseph; Eisele, Thomas P

    2014-11-01

    Randomized trials and mathematical modeling suggest that insecticide-treated mosquito nets (ITNs) provide community-level protection to both those using ITNs and those without individual access. Using nationally representative household survey datasets from 17 African countries, we examined whether community ITN coverage is associated with malaria infections in children < 5 years old and all-cause child mortality (ACCM) among children < 5 years old in households with one or more ITNs versus without any type of mosquito net (treated or untreated). Increasing ITN coverage (> 50%) was protective against malaria infections and ACCM for children in households with an ITN, although this protection was not conferred to children in households without ITNs in these data. Children in households with ITNs were protected against malaria infections and ACCM with ITN coverage > 30%, but this protection was not significant with ITN coverage < 30%. Results suggest that ITNs are more effective with higher ITN coverage.

  20. The effect of cannibalism intensity on net primary production and dynamics of trophic links in aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Shirobokova, I. M.; Pechurkin, N. S.

    A mathematical model was used to investigate the effect of cannibalism intensity on the net primary production and the dynamics of trophic links in an aquatic ecosystem characterized by cannibalism at the upper trophic level. A mathematical model of an aquatic ecosystem has been constructed, with the following principal trophic links: limiting nutrient concentration, producers (phytoplankton), nonpredatory and predatory zooplankton. The model takes into account the age structure of the predator and includes two age groups (the young and adults). The adult predators are cannibals feeding on both nonpredatory zooplankton and their own young, which consume phytoplankton. It has been found that when cannibalism intensity increases above a certain level, the concentrations of both adults and the young of the predators decrease. At the same time, the concentrations of the nonpredatory zooplankton and of nutrients increase, while the biomass of producers decreases. When the cannibalism intensity is low, the net primary production of the system increases to a certain level correlated with the increase in cannibalism intensity and drops sharply when the level of consumption of young is high. There is an optimal intensity of canibalism, at which the productivity in the photosynthesis link is maximal.

  1. Mesozooplankton community composition, feeding, and export production during SOIREE

    NASA Astrophysics Data System (ADS)

    Zeldis, John

    The community composition and feeding rates of mesozooplankton (>200 μm length) were determined using plankton hauls, bottle incubations and gut pigment determinations during Southern Ocean Iron RElease Experiment (SOIREE) in the Southern Ocean in February 1999. Upper-ocean (0-65 m) mesozooplankton biomass (4.2 and 3.2 g m -2, inside and outside the iron-fertilised patch, respectively) was dominated by large copepodites (>1.5 mm). Salps and euphausiids were absent and very rare, respectively. Incubations using large copepods showed no significant difference in clearance rates of nano- (2-20 μm) and net- (>20 μm) plankton. Mean clearance rates inside and outside the iron-fertilised patch also did not differ and were very low (ca. 50 ml mg DW -1 d -1). Mean ingestion rate, however, was significantly greater in the patch due to higher algal and heterotrophic nanoflagellate (HNAN) biomass there. Gut pigment analysis showed that most ingestion by large, medium and small copepods occurred at night, and that specific ingestion was greatest in small copepods. Daily integrated ingestion rates determined by the incubation and gut pigment methods were similar for comparable large copepods. Phytoplankton and HNAN ingestion met only 14% of the estimated daily respiratory carbon requirements of the large copepods inside the patch, and 4% outside. Little ciliate or detrital carbon was available in the system, which could have further supplemented the food supply. A number of other studies have found a similar disparity between ingestion and nutritional requirements in copepods. Reasons for this include the possibility that fine-scale aggregations of copepods and their food have not been adequately sampled, or that measured metabolic rates have been systematically overestimated. Ingestion of phytoplankton by the total copepod community was low, with <1% of standing stock removed per day (inside and outside the patch) and 4% and 8% of primary production removed (inside and

  2. Impacts of climate change drivers on C4 grassland productivity: scaling driver effects through the plant community.

    PubMed

    Polley, H Wayne; Derner, Justin D; Jackson, Robert B; Wilsey, Brian J; Fay, Philip A

    2014-07-01

    Climate change drivers affect plant community productivity via three pathways: (i) direct effects of drivers on plants; (ii) the response of species abundances to drivers (community response); and (iii) the feedback effect of community change on productivity (community effect). The contribution of each pathway to driver-productivity relationships depends on functional traits of dominant species. We used data from three experiments in Texas, USA, to assess the role of community dynamics in the aboveground net primary productivity (ANPP) response of C4 grasslands to two climate drivers applied singly: atmospheric CO2 enrichment and augmented summer precipitation. The ANPP-driver response differed among experiments because community responses and effects differed. ANPP increased by 80-120g m(-2) per 100 μl l(-1) rise in CO2 in separate experiments with pasture and tallgrass prairie assemblages. Augmenting ambient precipitation by 128mm during one summer month each year increased ANPP more in native than in exotic communities in a third experiment. The community effect accounted for 21-38% of the ANPP CO2 response in the prairie experiment but little of the response in the pasture experiment. The community response to CO2 was linked to species traits associated with greater soil water from reduced transpiration (e.g. greater height). Community effects on the ANPP CO2 response and the greater ANPP response of native than exotic communities to augmented precipitation depended on species differences in transpiration efficiency. These results indicate that feedbacks from community change influenced ANPP-driver responses. However, the species traits that regulated community effects on ANPP differed from the traits that determined how communities responded to drivers. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Net primary productivity (NPP) of a biological soil crust (BSC) in northwestern Queensland, Australia.

    NASA Astrophysics Data System (ADS)

    Büdel, B.; Reichenberger, H.; Williams, W.

    2012-04-01

    In the tropical savanna of northwestern Queensland, BSCs are mainly composed of cyanobacteria, liverworts and more rarely, lichens. These BSCs cover up to 30% of the soil, thus stabilizing the soil surface against erosion. One of the major BSC types there is almost completely formed by the filamentous cyanobacterium Symplocastrum sp., with scattered occurrence of different species of the liverwort genus Riccia. Because of the local dominance of these crust type, we selected it for the determination of its NPP over a period of 18 months by setting up a semi-continuous and semi-automatic CO2 - gas exchange measuring device in the natural environment at Boodjamulla National Park. We found astonishingly high CO2-fixation rates of the Sympolcastrum sp. dominated crust type and also could show the crust was adapted to extremely high temperatures (47°C), at which time considerable positive net photosynthetic rates were still gained.

  4. Long-term dynamics of production, respiration, and net CO2 exchange in two sagebrush-steppe ecosystems

    USGS Publications Warehouse

    Gilmanov, T.G.; Svejcar, T.J.; Johnson, D.A.; Angell, R.F.; Saliendra, Nicanor Z.; Wylie, B.K.

    2006-01-01

    We present a synthesis of long-term measurements of CO2 exchange in 2 US Intermountain West sagebrush-steppe ecosystems. The locations near Burns, Oregon (1995-2001), and Dubois, Idaho (1996-2001), are part of the AgriFlux Network of the Agricultural Research Service, United States Department of Agriculture. Measurements of net ecosystem CO2 exchange (F c) during the growing season were continuously recorded at flux towers using the Bowen ratio-energy balance technique. Data were partitioned into gross primary productivity (Pg) and ecosystem respiration (Re) using the light-response function method. Wintertime fluxes were measured during 1999/2000 and 2000/2001 and used to model fluxes in other winters. Comparison of daytime respiration derived from light-response analysis with nighttime tower measurements showed close correlation, with daytime respiration being on the average higher than nighttime respiration. Maxima of Pg and Re at Burns were both 20 g CO2?? m-2??d-1 in 1998. Maxima of Pg and R e at Dubois were 37 and 35 g CO2??m -2??d-1, respectively, in 1997. Mean annual gross primary production at Burns was 1 111 (range 475-1 715) g CO2?? m-2??y-1 about 30% lower than that at Dubois (1 602, range 963-2 162 g CO2??m-2??y-1). Across the years, both ecosystems were net sinks for atmospheric CO2 with a mean net ecosystem CO2 exchange of 82 g CO2?? m-2??y-1 at Burns and 253 g CO2?? m-2??y-1 at Dubois, but on a yearly basis either site could be a C sink or source, mostly depending on precipitation timing and amount. Total annual precipitation is not a good predictor of carbon sequestration across sites. Our results suggest that Fc should be partitioned into Pg and Re components to allow prediction of seasonal and yearly dynamics of CO2 fluxes.

  5. Net biogenic silica production and nitrate regeneration determine the strength of the silica pump in the Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Demarest, Mark S.; Brzezinski, Mark A.; Nelson, David M.; Krause, Jeffrey W.; Jones, Janice L.; Beucher, Charlotte P.

    2011-03-01

    The high-nitrate, low-silicic acid character of the eastern equatorial Pacific (EEP) has been attributed to the preferential export of diatom biogenic silica (bSiO 2) over particulate organic nitrogen due to less efficient recycling of Si in surface waters. To gain insight into the strength of this silica pump, we examined [Si(OH) 4] and [bSiO 2] distributions and net bSiO 2 production rates in two regions of the EEP, one spanning the equator from 4°N to 3.25°S at 140°W and the other along a tropical instability wave (TIW) at 0.5°N between 132.5 and 123.4°W, ending within a cold vortex at 1.75°N by 125°W. Large uncertainty in the net bSiO 2 production rate measurement precluded a detailed examination of trends at high spatial resolution, but averaged data revealed clear differences in Si cycling between these two sampling areas. Surface [Si(OH) 4] generally remained at levels <4 μM across both, but [bSiO 2] nearly doubled to values as high as 226 nmol Si L -1 along the TIW. The mean integrated net rate of bSiO 2 production along the meridional transect was no more than 0.29 mmol Si m -2 d -1 to the 0.1% light level depth and -0.31 mmol Si m -2 d -1 to a depth of 300 m, implying net loss of bSiO 2 to dissolution in the upper 300 m in this area. In contrast, integrated net bSiO 2 production rates were five times higher on average in the zonal sampling area, exhibiting a mean of 1.45 mmol Si m -2 d -1 within the euphotic zone that declined by only ˜15% to a depth of 300 m, suggesting a significant potential for silica export to deeper waters along the TIW. In total, the fraction of bSiO 2 produced in the euphotic zone that was supported by new inputs of Si(OH) 4 was at least 3.7 times greater on average than the fraction of inorganic nitrogen taken up as NO3-, consistent with expectations for a silica pump. However, the mean integrated rate of NO3- uptake exceeded that of new Si(OH) 4 uptake by at least five times, implying preferential nitrate depletion in

  6. Evaluation of net ecosystem production (2000-2008) for potential grassland biofuel feedstock sites in the Greater Platte River Basin

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Wylie, B. K.; Zhang, L.

    2011-12-01

    Net Ecosystem Production (NEP) is a measure of net carbon accumulation by ecosystems and is an important variable for assessing and understanding the terrestrial carbon cycle and global climate change. We developed a 9-year (2000-2008) time series of NEP data for grasslands within the Great Plains based on flux tower observations, satellite remote sensing, biophysical and climate conditions, and weather data. In this study, we assessed a 9-year time series of NEP in the Greater Platte River Basin to investigate the historical trends of carbon flux (i.e., NEP) for sites possibly suitable for biofuel expansion (productive grasslands) and sites not suitable for biofuel expansion (less productive or degraded grasslands). The suitability of sites was identified using our dynamic modeling of ecosystem performance method. The average annual NEP for sites that were suitable for biofuel feedstock production was from 71 to 169 g C m-2 year-1 during 2000-2008, indicating a strong carbon sink (i.e., more carbon is stored than released) in these areas. The average annual NEP for sites that were not suitable for biofuel feedstock production was from -47 to 69 g C m-2 year-1 during 2000-2008, showing a weak carbon source or a weak carbon sink in these areas. The 9-year accumulated NEP was 200 g C m-2 for the non-suitable areas (a weak carbon sink) and 1166 g C m-2 for the suitable areas (a strong carbon sink). These results demonstrate that our dynamic modeling of ecosystem performance method can identify sites desirable for biofuel feedstock development. Results from this study provide useful information for land managers and decision makers to make optimal land use decisions regarding biofuel feedstock development and sustainability.

  7. Expansive Learning as Production of Community

    ERIC Educational Resources Information Center

    Morck, Line Lerche

    2010-01-01

    This article contributes a framework for analyzing learning as an expansive process in which persons come to partly transcend marginalization. Expansive learning is a kind of learning that partly transcends marginalization through changed participation and recognition by others of participants in their changed communities. This article draws on…

  8. Expansive Learning as Production of Community

    ERIC Educational Resources Information Center

    Morck, Line Lerche

    2010-01-01

    This article contributes a framework for analyzing learning as an expansive process in which persons come to partly transcend marginalization. Expansive learning is a kind of learning that partly transcends marginalization through changed participation and recognition by others of participants in their changed communities. This article draws on…

  9. Increasing Productivity in the Community College. Topical Paper Number 67.

    ERIC Educational Resources Information Center

    Goodwin, Gregory; Young, James C.

    Drawing heavily on the speeches and discussions that took place at a League for Innovation in the Community College conference held late in 1977 in North Carolina, this paper discusses the problem of increasing productivity in community colleges. Although escalating costs and decreasing revenues over the past decade have given the problem of…

  10. Geographical Factors Affecting Bed Net Ownership, a Tool for the Elimination of Anopheles-Transmitted Lymphatic Filariasis in Hard-to-Reach Communities

    PubMed Central

    Stanton, Michelle C.; Bockarie, Moses J.; Kelly-Hope, Louise A.

    2013-01-01

    Vector control, including the use of bed nets, is recommended as a possible strategy for eliminating lymphatic filariasis (LF) in post-conflict countries such as the Democratic Republic of Congo (DRC). This study examined the geographical factors that influence bed net ownership in DRC in order to identify hard-to-reach communities that need to be better targeted. In particular, urban/rural differences and the influence of population density, proximity to cities and health facilities, plus access to major transport networks were investigated. Demographic and Health Survey geo-referenced cluster level data were used to map bed net coverage (proportion of households with at least one of any type of bed net or at least one insecticide-treated net (ITN)), and ITN density (ITNs per person) for 260 clusters. Bivariate and multiple logistic or Poisson regression analyses were used to determine significant relationships. Overall, bed net (30%) and ITN (9%) coverage were very low with significant differences found between urban and rural clusters. In rural clusters, ITN coverage/density was positively correlated with population density (r = 0.25, 0.27 respectively, p<0.01), and negatively with the distance to the two largest cities, Kinshasa or Lubumbashi (r = −0.28, −0.30 respectively, p<0.0001). Further, ownership was significantly negatively correlated with distance to primary national roads and railways (all three measures), distance to main rivers (any bed net only) and distance to the nearest health facility (ITNs only). Logistic and Poisson regression models fitted to the rural cluster data indicated that, after controlling for measured covariates, ownership levels in the Bas-Congo province close to Kinshasa were much larger than that of other provinces. This was most noticeable when considering ITN coverage (odds ratio: 5.3, 95% CI: 3.67–7.70). This analysis provides key insights into the barriers of bed net ownership, which will help inform both LF

  11. Effect of parasitism by the pyramidellid gastropod Boonea impressa on the net productivity of oysters ( Crassostrea virginica)

    NASA Astrophysics Data System (ADS)

    White, M. E.; Powell, E. N.; Ray, S. M.

    1988-04-01

    The effect of an ectoparasitic gastropod, Boonea (= Odostomia) impressa, on the energy bidget of its host, the American oyster, Crassostrea virginica, was examined. A model was developed from laboratory and field data, as well as from equations developed by Powell and Stanton (1985). The model predicted that net productivity by large (7 cm length) oysters parasitized by 10 and 30 large (6 mm length) snails would be reduced by 21% and 63%, respectively. In contrast, net productivity in small (3 cm length) oysters would be reduced 25% by only 3 snails. Small oysters would have a negative energy balance when parasitized by 10 snails. The predicted reduction in growth was compared with measured growth in small and large oysters parasitized at abundances typical of Texas oyster reefs. Control oysters (no parasites) gained more shell weight than parasitized oysters. In four-week experiments conducted during the spring and fall, small control oysters gained 86% and 75% more weight than highly parasitized oysters. Large control oysters had 29% and 88% more shell deposition. Snail parasitism produced 75% mortality in small, highly parasitized oysters in the summer. In typical field populations in Texas bays, a minimal estimate of 4-12% of the energy otherwise available to the oyster for growth and reproduction is consumed by Boonea impressa.

  12. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    PubMed Central

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-01-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning. PMID:25766381

  13. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    PubMed

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  14. Librarians and the Free-Net Movement.

    ERIC Educational Resources Information Center

    Mattison, David

    1994-01-01

    Describes free-nets as free public access community-based computer systems; explains how libraries and librarians participate in the free-net movement; discusses Canadian free-nets; considers the public library/free-net analogy; and provides a survey of library services on Internet-accessible free-nets and civic networks. (Contains four…

  15. Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Gower, S. T.; Vogel, J. G.; Norman, J. M.; Kucharik, C. J.; Steele, S. J.; Stow, T. K.

    1997-12-01

    The objectives of this study are to (1) characterize the carbon (C) content, leaf area index, and aboveground net primary production (ANPP) for mature aspen, black spruce, and young and mature jack pine stands at the southern and northern Boreal Ecosystem-Atmosphere Study (BOREAS) areas and (2) compare net primary production and carbon allocation coefficients for the major boreal forest types of the world. Direct estimates of leaf area index, defined as one half of the total leaf surface area, range from a minimum of 1.8 for jack pine forests to a maximum of 5.6 for black spruce forests; stems comprise 5 to 15% of the total overstory plant area. In the BOREAS study, total ecosystem (vegetation plus detritus plus soil) carbon content is greatest in the black spruce forests (445,760-479,380 kg C ha-1), with 87 to 88% of the C in the soil, and is lowest in the jack pine stands (68,370-68,980 kg C ha-1) with a similar distribution of carbon in the vegetation and soil. Forest floor carbon content and mean residence time (MRT) also vary more among forest types in a study area than between study areas for a forest type; forest floor MRT range from 16 to 19 years for aspen stands to 28 to 39 years for jack pine stands. ANPP differs signif