Construct Validity of Accelerometry-Derived Force to Quantify Basketball Movement Patterns.
Staunton, Craig; Wundersitz, Daniel; Gordon, Brett; Kingsley, Michael
2017-12-01
This study assessed the construct validity of accelerometry-derived net force to quantify the external demands of basketball movements. Twenty-eight basketballers completed the Yo-Yo intermittent recovery test (Yo-Yo-IR1) and basketball exercise simulation test (BEST). Intensity was quantified using accelerometry-derived average net force (AvF Net ) and PlayerLoad TM per minute (PL/min). Within-player correlations were determined between intensity and running speed during Yo-Yo-IR1. Measured AvF Net was determined for movements during the BEST and predicted AvF Net was calculated using movement speed and correlations from Yo-Yo-IR1. Relationships between AvF Net and running speed during Yo-Yo-IR1 were nearly perfect (r 2 =0.95, 95% CI: 0.94-0.96; p<0.001) and stronger than correlations between running speed and PL/min (r 2 =0.80, 95% CI: 0.73-0.87; p<0.001). Differences between measured and predicted AvF Net were small during jogging and running (<1%), but large for basketball movements including jumping, change-of-direction and shuffling (15%-41%). As hypothesised, AvF Net differed by playing position (11%-16%; p <0.001) and reflected the additional demand upon players with larger body mass and lower movement efficiency. Both sprint speed and AvF Net reduced during the course of the BEST ( p ≤0.013). These findings confirm the construct validity of AvF Net to quantify the external demand of basketball movements. Accelerometry-derived net force has the potential to quantify the external demands of basketballers during training and competition. © Georg Thieme Verlag KG Stuttgart · New York.
The control of mono-articular muscles in multijoint leg extensions in man.
van Ingen Schenau, G J; Dorssers, W M; Welter, T G; Beelen, A; de Groot, G; Jacobs, R
1995-01-01
1. Movements often require control of direction and a magnitude of force exerted externally on the environment. Bi-articular upper leg muscles appear to play a unique role in the regulation of the net torques about the hip and knee joints, necessary for the control of this external force. 2. The aim of this study was to test the hypothesis that the mono-articular muscles act as work generators in powerful dynamic leg extensions, which means that they should be activated primarily in the phases during which they can contribute to work, irrespective of the net joint torques required to control the external force. 3. Cycling movements of six trained subjects were analysed by means of inverse dynamics, yielding net joint torques as well as activity patterns and shortening velocities of four mono- and four bi-articular leg muscles. 4. The results show that the mono-articular muscles exert force only in the phase in which these muscles shorten, whereas this appears not to be the case for the bi-articular muscles. 5. Reciprocal patterns of activation of the rectus femoris and hamstring muscles appear to tune the distribution of net joint torques about the hip and knee joints, necessary to control the (changing) direction of the force on the pedal. 6. An analysis of running in man and additional related literature based on animal studies appears to provide further support for the hypothesis that mono- and bi-articular muscles have essentially different roles in these powerful multijoint leg extension tasks. PMID:7602524
ERIC Educational Resources Information Center
Hester, Brooke; Burris, Jennifer
2012-01-01
Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…
Joint moments and contact forces in the foot during walking.
Kim, Yongcheol; Lee, Kyoung Min; Koo, Seungbum
2018-06-06
The net force and moment of a joint have been widely used to understand joint disease in the foot. Meanwhile, it does not reflect the physiological forces on muscles and contact surfaces. The objective of the study is to estimate active moments by muscles, passive moments by connective tissues and joint contact forces in the foot joints during walking. Joint kinematics and external forces of ten healthy subjects (all males, 24.7 ± 1.2 years) were acquired during walking. The data were entered into the five-segment musculoskeletal foot model to calculate muscle forces and joint contact forces of the foot joints using an inverse dynamics-based optimization. Joint reaction forces and active, passive and net moments of each joint were calculated from muscle and ligament forces. The maximum joint reaction forces were 8.72, 4.31, 2.65, and 3.41 body weight (BW) for the ankle, Chopart's, Lisfranc and metatarsophalangeal joints, respectively. Active and passive moments along with net moments were also obtained. The maximum net moments were 8.6, 8.4, 5.4 and 0.8%BW∙HT, respectively. While the trend of net moment was very similar between the four joints, the magnitudes and directions of the active and passive moments varied between joints. The active and passive moments during walking could reveal the roles of muscles and ligaments in each of the foot joints, which was not obvious in the net moment. This method may help narrow down the source of joint problems if applied to clinical studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
McClelland, J. A. G.
2011-01-01
Articulated bodies with an internal energy source require to be coupled to an external mass in order to accelerate themselves but the typical text book assertion that the net force is provided by the external mass is not correct. Arguments are presented demonstrating that the assertion is incorrect and reasons are suggested for the persistence of…
Obesity does not impair walking economy across a range of speeds and grades.
Browning, Raymond C; Reynolds, Michelle M; Board, Wayne J; Walters, Kellie A; Reiser, Raoul F
2013-05-01
Despite the popularity of walking as a form of physical activity for obese individuals, relatively little is known about how obesity affects the metabolic rate, economy, and underlying mechanical energetics of walking across a range of speeds and grades. The purpose of this study was to quantify metabolic rate, stride kinematics, and external mechanical work during level and gradient walking in obese and nonobese adults. Thirty-two obese [18 women, mass = 102.1 (15.6) kg, BMI = 33.9 (3.6) kg/m(2); mean (SD)] and 19 nonobese [10 women, mass = 64.4 (10.6) kg, BMI = 21.6 (2.0) kg/m(2)] volunteers participated in this study. We measured oxygen consumption, ground reaction forces, and lower extremity kinematics while subjects walked on a dual-belt force-measuring treadmill at 11 speeds/grades (0.50-1.75 m/s, -3° to +9°). We calculated metabolic rate, stride kinematics, and external work. Net metabolic rate (Ė net/kg, W/kg) increased with speed or grade across all individuals. Surprisingly and in contrast with previous studies, Ė net/kg was 0-6% less in obese compared with nonobese adults (P = 0.013). External work, although a primary determinant of Ė net/kg, was not affected by obesity across the range of speeds/grades used in this study. We also developed new prediction equations to estimate oxygen consumption and Ė net/kg and found that Ė net/kg was positively related to relative leg mass and step width and negatively related to double support duration. These results suggest that obesity does not impair walking economy across a range of walking speeds and grades.
Infinity and Newton's Three Laws of Motion
NASA Astrophysics Data System (ADS)
Lee, Chunghyoung
2011-12-01
It is shown that the following three common understandings of Newton's laws of motion do not hold for systems of infinitely many components. First, Newton's third law, or the law of action and reaction, is universally believed to imply that the total sum of internal forces in a system is always zero. Several examples are presented to show that this belief fails to hold for infinite systems. Second, two of these examples are of an infinitely divisible continuous body with finite mass and volume such that the sum of all the internal forces in the body is not zero and the body accelerates due to this non-null net internal force. So the two examples also demonstrate the breakdown of the common understanding that according to Newton's laws a body under no external force does not accelerate. Finally, these examples also make it clear that the expression `impressed force' in Newton's formulations of his first and second laws should be understood not as `external force' but as `exerted force' which is the sum of all the internal and external forces acting on a given body, if the body is infinitely divisible.
Quantum decision-maker theory and simulation
NASA Astrophysics Data System (ADS)
Zak, Michail; Meyers, Ronald E.; Deacon, Keith S.
2000-07-01
A quantum device simulating the human decision making process is introduced. It consists of quantum recurrent nets generating stochastic processes which represent the motor dynamics, and of classical neural nets describing the evolution of probabilities of these processes which represent the mental dynamics. The autonomy of the decision making process is achieved by a feedback from the mental to motor dynamics which changes the stochastic matrix based upon the probability distribution. This feedback replaces unavailable external information by an internal knowledge- base stored in the mental model in the form of probability distributions. As a result, the coupled motor-mental dynamics is described by a nonlinear version of Markov chains which can decrease entropy without an external source of information. Applications to common sense based decisions as well as to evolutionary games are discussed. An example exhibiting self-organization is computed using quantum computer simulation. Force on force and mutual aircraft engagements using the quantum decision maker dynamics are considered.
Ratchet Effects in Active Matter Systems
NASA Astrophysics Data System (ADS)
Reichhardt, C. J. Olson; Reichhardt, C.
2017-03-01
Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth of possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. We describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle-particle interactions, and nondissipative effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichhardt, Cynthia Jane; Reichhardt, Charles
Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth ofmore » possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. Here, we describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle–particle interactions, and nondissipative effects.« less
Force application during handcycling and handrim wheelchair propulsion: an initial comparison.
Arnet, Ursina; van Drongelen, Stefan; Veeger, D H; van der Woude L, H V
2013-12-01
The aim of the study was to evaluate the external applied forces, the effectiveness of force application and the net shoulder moments of handcycling in comparison with handrim wheelchair propulsion at different inclines. Ten able-bodied men performed standardized exercises on a treadmill at inclines of 1%, 2.5% and 4% with an instrumented handbike and wheelchair that measured three-dimensional propulsion forces. The results showed that during handcycling significantly lower mean forces were applied at inclines of 2.5% (P < .001) and 4% (P < .001) and significantly lower peak forces were applied at all inclines (1%: P = .014, 2.5% and 4%: P < .001). At the 2.5% incline, where power output was the same for both devices, total forces (mean over trial) of 22.8 N and 27.5 N and peak forces of 40.1 N and 106.9 N were measured for handbike and wheelchair propulsion. The force effectiveness did not differ between the devices (P = .757); however, the effectiveness did increase with higher inclines during handcycling whereas it stayed constant over all inclines for wheelchair propulsion. The resulting peak net shoulder moments were lower for handcycling compared with wheelchair propulsion at all inclines (P < .001). These results confirm the assumption that handcycling is physically less straining.
Sritharan, Prasanna; Lin, Yi-Chung; Pandy, Marcus G
2012-10-01
The aims of this study were to evaluate and explain the individual muscle contributions to the medial and lateral knee compartment forces during gait, and to determine whether these quantities could be inferred from their contributions to the external knee adduction moment. Gait data from eight healthy male subjects were used to compute each individual muscle contribution to the external knee adduction moment, the net tibiofemoral joint reaction force, and reaction moment. The individual muscle contributions to the medial and lateral compartment forces were then found using a least-squares approach. While knee-spanning muscles were the primary contributors, non-knee-spanning muscles (e.g., the gluteus medius) also contributed substantially to the medial compartment compressive force. Furthermore, knee-spanning muscles tended to compress both compartments, while most non-knee-spanning muscles tended to compress the medial compartment but unload the lateral compartment. Muscle contributions to the external knee adduction moment, particularly those from knee-spanning muscles, did not accurately reflect their tendencies to compress or unload the medial compartment. This finding may further explain why gait modifications may reduce the knee adduction moment without necessarily decreasing the medial compartment force. Copyright © 2012 Orthopaedic Research Society.
Muscle-Specific Effective Mechanical Advantage and Joint Impulse in Weightlifting.
Kipp, Kristof; Harris, Chad
2017-07-01
Kipp, K, and Harris, C. Muscle-specific effective mechanical advantage and joint impulse in weightlifting. J Strength Cond Res 31(7): 1905-1910, 2017-Lifting greater loads during weightlifting exercises may theoretically be achieved through increasing the magnitudes of net joint impulses or manipulating the joints' effective mechanical advantage (EMA). The purpose of this study was to investigate muscle-specific EMA and joint impulse as well as impulse-momentum characteristics of the lifter-barbell system across a range of external loads during the execution of the clean. Collegiate-level weightlifters performed submaximal cleans at 65, 75, and 85% of their 1-repetition maximum (1-RM), whereas data from a motion analysis system and a force plate were used to calculate lifter-barbell system impulse and velocity, as well as net extensor impulse generated at the hip, knee, and ankle joints and the EMA of the gluteus maximus, hamstrings, quadriceps, and triceps surae muscles. The results indicated that the lifter-barbell system impulse did not change as load increased, whereas the velocity of the lifter-barbell system decreased with greater load. In addition, the net extensor impulse at all joints increased as load increased. The EMA of all muscles did not, however, change as load increased. The load-dependent effects on the impulse-velocity characteristics of the lifter-barbell system may reflect musculoskeletal force-velocity behaviors, and may further indicate that the weightlifting performance is limited by the magnitude of ground reaction force impulse. In turn, the load-dependent effects observed at the joint level indicated that lifting greater loads were due to greater net extensor impulses generated at the joints of the lower extremity and not greater EMAs of the respective extensor muscles. In combination, these results suggest that lifting greater external loads during the clean is due to the ability to generate large extensor joint impulses, rather than manipulate EMA.
Henninger, Heath B; Barg, Alexej; Anderson, Andrew E; Bachus, Kent N; Tashjian, Robert Z; Burks, Robert T
2012-04-01
No clear recommendations exist regarding optimal humeral component version and deltoid tension in reverse total shoulder arthroplasty (TSA). A biomechanical shoulder simulator tested humeral versions (0°, 10°, 20° retroversion) and implant thicknesses (-3, 0, +3 mm from baseline) after reverse TSA in human cadavers. Abduction and external rotation ranges of motion as well as abduction and dislocation forces were quantified for native arms and arms implanted with 9 combinations of humeral version and implant thickness. Resting abduction angles increased significantly (up to 30°) after reverse TSA compared with native shoulders. With constant posterior cuff loads, native arms externally rotated 20°, whereas no external rotation occurred in implanted arms (20° net internal rotation). Humeral version did not affect rotational range of motion but did alter resting abduction. Abduction forces decreased 30% vs native shoulders but did not change when version or implant thickness was altered. Humeral center of rotation was shifted 17 mm medially and 12 mm inferiorly after implantation. The force required for lateral dislocation was 60% less than anterior and was not affected by implant thickness or version. Reverse TSA reduced abduction forces compared with native shoulders and resulted in limited external rotation and abduction ranges of motion. Because abduction force was reduced for all implants, the choice of humeral version and implant thickness should focus on range of motion. Lateral dislocation forces were less than anterior forces; thus, levering and inferior/posterior impingement may be a more probable basis for dislocation (laterally) than anteriorly directed forces. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
2013-01-01
Background People with a lower-extremity amputation that use conventional passive-elastic ankle-foot prostheses encounter a series of stress-related challenges during walking such as greater forces on their unaffected leg, and may thus be predisposed to secondary musculoskeletal injuries such as chronic joint disorders. Specifically, people with a unilateral transtibial amputation have an increased susceptibility to knee osteoarthritis, especially in their unaffected leg. Previous studies have hypothesized that the development of this disorder is linked to the abnormally high peak knee external adduction moments encountered during walking. An ankle-foot prosthesis that supplies biomimetic power could potentially mitigate the forces and knee adduction moments applied to the unaffected leg of a person with a transtibial amputation, which could, in turn, reduce the risk of knee osteoarthritis. We hypothesized that compared to using a passive-elastic prosthesis, people with a transtibial amputation using a powered ankle-foot prosthesis would have lower peak resultant ground reaction forces, peak external knee adduction moments, and corresponding loading rates applied to their unaffected leg during walking over a wide range of speeds. Methods We analyzed ground reaction forces and knee joint kinetics of the unaffected leg of seven participants with a unilateral transtibial amputation and seven age-, height- and weight-matched non-amputees during level-ground walking at 0.75, 1.00, 1.25, 1.50, and 1.75 m/s. Subjects with an amputation walked while using their own passive-elastic prosthesis and a powered ankle-foot prosthesis capable of providing net positive mechanical work and powered ankle plantar flexion during late stance. Results Use of the powered prosthesis significantly decreased unaffected leg peak resultant forces by 2-11% at 0.75-1.50 m/s, and first peak knee external adduction moments by 21 and 12% at 1.50 and 1.75 m/s, respectively. Loading rates were not significantly different between prosthetic feet. Conclusions Use of a biomimetic powered ankle-foot prosthesis decreased peak resultant force at slow and moderate speeds and knee external adduction moment at moderate and fast speeds on the unaffected leg of people with a transtibial amputation during level-ground walking. Thus, use of an ankle-foot prosthesis that provides net positive mechanical work could reduce the risk of comorbidities such as knee osteoarthritis. PMID:23758860
Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads
Bazrgari, Babak; Arjmand, Navid
2006-01-01
Despite the well-recognized role of lifting in back injuries, the relative biomechanical merits of squat versus stoop lifting remain controversial. In vivo kinematics measurements and model studies are combined to estimate trunk muscle forces and internal spinal loads under dynamic squat and stoop lifts with and without load in hands. Measurements were performed on healthy subjects to collect segmental rotations during lifts needed as input data in subsequent model studies. The model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles to take curved paths in flexion and trunk dynamic characteristics (inertia and damping) while subject to measured kinematics and gravity/external loads. A dynamic kinematics-driven approach was employed accounting for the spinal synergy by simultaneous consideration of passive structures and muscle forces under given posture and loads. Results satisfied kinematics and dynamic equilibrium conditions at all levels and directions. Net moments, muscle forces at different levels, passive (muscle or ligamentous) forces and internal compression/shear forces were larger in stoop lifts than in squat ones. These were due to significantly larger thorax, lumbar and pelvis rotations in stoop lifts. For the relatively slow lifting tasks performed in this study with the lowering and lifting phases each lasting ∼2 s, the effect of inertia and damping was not, in general, important. Moreover, posterior shift in the position of the external load in stoop lift reaching the same lever arm with respect to the S1 as that in squat lift did not influence the conclusion of this study on the merits of squat lifts over stoop ones. Results, for the tasks considered, advocate squat lifting over stoop lifting as the technique of choice in reducing net moments, muscle forces and internal spinal loads (i.e., moment, compression and shear force). PMID:17103232
Ratchet Effects in Active Matter Systems
Reichhardt, Cynthia Jane; Reichhardt, Charles
2016-12-21
Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth ofmore » possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. Here, we describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle–particle interactions, and nondissipative effects.« less
Power, muscular work, and external forces in cycling.
de Groot, G; Welbergen, E; Clijsen, L; Clarijs, J; Cabri, J; Antonis, J
1994-01-01
Cycling performance is affected by the interaction of a number of variables, including environment, mechanical, and human factors. Engineers have focused on the development of more efficient bicycles. Kinesiologists have examined cycling performance from a human perspective. This paper summarizes only certain aspects of human ergonomics of cycling, especially those which are important for the recent current research in our departments. Power is a key to performance of physical work. During locomotion an imaginary flow of energy takes place from the metabolism to the environment, with some efficiency. The 'useful' mechanical muscle power output might be used to perform movements and to do work against the environment. The external power is defined as the sum of joint powers, each calculated as the product of the joint (net) moment and angular velocity. This definition of external power is closely related to the mean external power as applied to exercise physiology: the sum of joint powers reflects all mechanical power which in principle can be used to fulfil a certain task. In this paper, the flow of energy for cycling is traced quantitatively as far as possible. Studies on the total lower limb can give insight into the contribution of individual muscles to external power. The muscle velocity (positive or negative) is obtained from the positions and orientations of body segments and a bar linkage model of the lower limb. The muscle activity can be measured by electromyography. In this way, positive and negative work regions in individual muscles are identified. Synergy between active agonistic/antagonistic muscle groups occurs in order to deliver external power. Maximum power is influenced by body position, geometry of the bicycle and pedalling rate. This has to be interpreted in terms of the length-tension and force-velocity-power relationships of the involved muscles. Flat road and uphill cycling at different saddle-tube angles is simulated on an ergometer. The measured pedal forces (magnitude and direction) are only dependent on the intersegmental orientation of saddle tube, crank position, upper and lower leg, and foot. The changed direction of the gravitational force with respect to the saddle-tube does not interfere with the co-ordinated force production pattern. During locomotory cycling at constant speed the external power is mainly used to overcome the aerodynamic friction force. This force and the rolling resistance are determined by coasting down experiments, yielding the external power.(ABSTRACT TRUNCATED AT 400 WORDS)
Characterization of the Radiological Environment at J-Village during Operation Tomodachi
2013-02-01
individual as compared to those for the helicopter crew members (Appendix A). 3.2.2. Other Relevant Dosimetry Results Thermoluminescent dosimeter ( TLD ...internal monitoring results are available for 14 of these individuals. External dosimetry data (EPD and TLD ) showed that the maximum recorded dose for an...Washington, DC. http://www.NNSAResponseData.net. Accessed December 7. USAFCRD (U. S. Air Force Center for Radiation Dosimetry ), 2011. Electronic Pocket
Radar coordination and resource management in a distributed sensor network using emergent control
NASA Astrophysics Data System (ADS)
Weir, B. S.; Sokol, T. M.
2009-05-01
As the list of anti-air warfare and ballistic missile defense missions grows, there is an increasing need to coordinate and optimize usage of radar resources across the netted force. Early attempts at this optimization involved top-down control mechanisms whereby sensors accept resource tasking orders from networked tracking elements. These approaches rely heavily on uncertain knowledge of sensor constraints and capabilities. Furthermore, advanced sensor systems may support self-defense missions of the host platform and are therefore unable to relinquish control to an external function. To surmount these issues, the use of bottom-up emergent control techniques is proposed. The information necessary to make quality, network-wide resource allocations is readily available to sensor nodes with access to a netted track picture. By assessing resource priorities relative to the network (versus local) track picture, sensors can understand the contribution of their resources to the netted force. This allows the sensors to apply resources where most needed and remove waste. Furthermore, simple local rules for resource usage, when properly constructed, allow sensors to obtain a globally optimal resource allocation without direct coordination (emergence). These results are robust to partial implementation (i.e., not all nodes upgraded at once) and failures on individual nodes (whether from casualty or reallocation to other sensor missions), and they leave resource control decisions in the hands of the sensor systems instead of an external function. This paper presents independent research and development work on emergent control of sensor resources and the impact to resource allocation and tracking performance.
Griffin, Timothy M; Roberts, Thomas J; Kram, Rodger
2003-07-01
We sought to understand how leg muscle function determines the metabolic cost of walking. We first indirectly assessed the metabolic cost of swinging the legs and then examined the cost of generating muscular force during the stance phase. Four men and four women walked at 0.5, 1.0, 1.5, and 2.0 m/s carrying loads equal to 0, 10, 20, and 30% body mass positioned symmetrically about the waist. The net metabolic rate increased in nearly direct proportion to the external mechanical power during moderate-speed (0.5-1.5 m/s) load carrying, suggesting that the cost of swinging the legs is relatively small. The active muscle volume required to generate force on the ground and the rate of generating this force accounted for >85% of the increase in net metabolic rate across moderate speeds and most loading conditions. Although these factors explained less of the increase in metabolic rate between 1.5 and 2.0 m/s ( approximately 50%), the cost of generating force per unit volume of active muscle [i.e., the cost coefficient (k)] was similar across all conditions [k = 0.11 +/- 0.03 (SD) J/cm3]. These data indicate that, regardless of the work muscles do, the metabolic cost of walking can be largely explained by the cost of generating muscular force during the stance phase.
Inertial attitude control of a bat-like morphing-wing air vehicle.
Colorado, J; Barrientos, A; Rossi, C; Parra, C
2013-03-01
This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.
NASA Technical Reports Server (NTRS)
Tolley-Henry, L.; Raper, C. D. Jr; Granato, T. C.; Raper CD, J. r. (Principal Investigator)
1988-01-01
Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic cultures containing 0.5, 1.0 and 10.0 mol m-3 NO3- was measured daily during a 24-d period of vegetative development to determine if amplitude of maximum and minimum rates of net NO3- uptake are responsive to external concentrations of NO3-. Removal of NO3- from the replenished solutions during each 24-h period was determined by ion chromatography. Neither dry matter accumulation nor the periodicity of oscillations in net uptake rate was altered by the external NO3- concentrations. The maxima of the oscillations in net uptake rate, however, increased nearly 3-fold in response to external NO3- concentrations. The maxima and minima, respectively, changed from 4.0 and 0.6 mmol NO3- per gram root dry weight per day at an external solution level of 0.5 mol m-3 NO3- to 15.2 and -2.7 mmol NO3- per gram root dry weight per day at an external solution level of 10.0 mol m-3 NO3-. The negative values for minimum net uptake rate from 10.0 mol m-3 NO3- solutions show that net efflux was occurring and indicate that the magnitude of the efflux component of net uptake was responsive to external concentration of NO3-.
Bobbing and kicks in electromagnetism and gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gralla, Samuel E.; Harte, Abraham I.; Wald, Robert M.
2010-05-15
We study systems analogous to binary black holes with spin in order to gain some insight into the origin and nature of 'bobbing' motion and 'kicks' that occur in this system. Our basic tool is a general formalism for describing the motion of extended test bodies in an external electromagnetic field in curved spacetime and possibly subject to other forces. We first show that bobbing of exactly the type as observed in numerical simulations of the binary black hole system occurs in a simple system consisting of two spinning balls connected by an elastic band in flat spacetime. This bobbingmore » may be understood as arising from the difference between a spinning body's 'lab frame centroid' and its true center of mass, and is purely 'kinematical' in the sense that it will appear regardless of the forces holding two spinning bodies in orbit. Next, we develop precise rules for relating the motion of charged bodies in a stationary external electromagnetic field in flat spacetime with the motion of bodies in a weakly curved stationary spacetime. We then consider the system consisting of two orbiting charges with magnetic dipole moment and spin at a level of approximation corresponding to 1.5 post-Newtonian order. Here we find that considerable amounts of momentum are exchanged between the bodies and the electromagnetic field; however, the bodies store this momentum entirely as ''hidden'' mechanical momentum, so that the interchange does not give rise to any net bobbing. The net bobbing that does occur is due solely to the kinematical spin effect, and we therefore argue that the net bobbing of the electromagnetic binary is not associated with possible kicks. We believe that this conclusion holds in the gravitational case as well.« less
Wheelchair pushing and turning: lumbar spine and shoulder loads and recommended limits.
Weston, Eric B; Khan, Safdar N; Marras, William S
2017-12-01
The objective of this study was to determine how simulated manual wheelchair pushing influences biomechanical loading to the lumbar spine and shoulders. Sixty-two subjects performed simulated wheelchair pushing and turning in a laboratory. An electromyography-assisted biomechanical model was used to estimate spinal loads. Moments at the shoulder joint, external hand forces and net turning torque were also assessed. Multiple linear regression techniques were employed to develop biomechanically based wheelchair pushing guidelines relating resultant hand force or net torque to spinal load. Male subjects experienced significantly greater spinal loading (p < 0.01), and spine loads were also increased for wheelchair turning compared to straight wheelchair pushing (p < 0.001). Biomechanically determined maximum acceptable resultant hand forces were 17-18% lower than psychophysically determined limits. We conclude that manual wheelchair pushing and turning can pose biomechanical risk to the lumbar spine and shoulders. Psychophysically determined maximum acceptable push forces do not appear to be protective enough of this biomechanical risk. Practitioner Summary: This laboratory study investigated biomechanical risk to the low back and shoulders during simulated wheelchair pushing. Manual wheelchair pushing posed biomechanical risk to the lumbar spine (in compression and A/P shear) and to the shoulders. Biomechanically determined wheelchair pushing thresholds are presented and are more protective than the closest psychophysically determined equivalents.
Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols.
Jacobson, M Z
2001-02-08
Aerosols affect the Earth's temperature and climate by altering the radiative properties of the atmosphere. A large positive component of this radiative forcing from aerosols is due to black carbon--soot--that is released from the burning of fossil fuel and biomass, and, to a lesser extent, natural fires, but the exact forcing is affected by how black carbon is mixed with other aerosol constituents. From studies of aerosol radiative forcing, it is known that black carbon can exist in one of several possible mixing states; distinct from other aerosol particles (externally mixed) or incorporated within them (internally mixed), or a black-carbon core could be surrounded by a well mixed shell. But so far it has been assumed that aerosols exist predominantly as an external mixture. Here I simulate the evolution of the chemical composition of aerosols, finding that the mixing state and direct forcing of the black-carbon component approach those of an internal mixture, largely due to coagulation and growth of aerosol particles. This finding implies a higher positive forcing from black carbon than previously thought, suggesting that the warming effect from black carbon may nearly balance the net cooling effect of other anthropogenic aerosol constituents. The magnitude of the direct radiative forcing from black carbon itself exceeds that due to CH4, suggesting that black carbon may be the second most important component of global warming after CO2 in terms of direct forcing.
Dimer motion on a periodic substrate: spontaneous symmetry breaking and absolute negative mobility.
Speer, David; Eichhorn, Ralf; Evstigneev, Mykhaylo; Reimann, Peter
2012-06-01
We consider two coupled particles moving along a periodic substrate potential with negligible inertia effects (overdamped limit). Even when the particles are identical and the substrate spatially symmetric, a sinusoidal external driving of appropriate amplitude and frequency may lead to spontaneous symmetry breaking in the form of a permanent directed motion of the dimer. Thermal noise restores ergodicity and thus zero net velocity, but entails arbitrarily fast diffusion of the dimer for sufficiently weak noise. Moreover, upon application of a static bias force, the dimer exhibits a motion opposite to that force (absolute negative mobility). The key requirement for all these effects is a nonconvex interaction potential of the two particles.
Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
2005-10-01
The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes that carry net toroidal flux.« less
Lower extremity control during turns initiated with and without hip external rotation.
Zaferiou, Antonia M; Flashner, Henryk; Wilcox, Rand R; McNitt-Gray, Jill L
2017-02-08
The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic behavior and deformation analysis of the fish cage system using mass-spring model
NASA Astrophysics Data System (ADS)
Lee, Chun Woo; Lee, Jihoon; Park, Subong
2015-06-01
Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.
Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing. PMID:21301636
Straube, Arthur V; Tierno, Pietro
2014-06-14
We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.
Whole-body angular momentum during stair ascent and descent.
Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M
2014-04-01
The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.
Present-day deformation across the Basin and Range Province, western United States
Thatcher, W.; Foulger, G.R.; Julian, B.R.; Svarc, J.; Quilty, E.; Bawden, G.W.
1999-01-01
The distribution of deformation within the Basin and Range province was determined from 1992, 1996, and 1998 surveys of a dense, 800-kilometer- aperture, Global Positioning System network, Internal deformation generally follows the pattern of Holocene fault distribution and is concentrated near the western extremity of the province, with lesser amounts focused near the eastern boundary. Little net deformation occurs across the central 500 kilometers of the network in western Utah and eastern Nevada. Concentration of deformation adjacent to the rigid Sierra Nevada block indicates that external plate-driving forces play an important role in driving deformation, modulating the extensional stress field generated by internal buoyancy forces that are due to lateral density gradients and topography near the province boundaries.
Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?
NASA Astrophysics Data System (ADS)
ten Hagen, Borge; Wittkowski, Raphael; Takagi, Daisuke; Kümmel, Felix; Bechinger, Clemens; Löwen, Hartmut
2015-05-01
The self-propulsion of artificial and biological microswimmers (or active colloidal particles) has often been modelled by using a force and a torque entering into the overdamped equations for the Brownian motion of passive particles. This seemingly contradicts the fact that a swimmer is force-free and torque-free, i.e. that the net force and torque on the particle vanish. Using different models for mechanical and diffusiophoretic self-propulsion, we demonstrate here that the equations of motion of microswimmers can be mapped onto those of passive particles with the shape-dependent grand resistance matrix and formally external effective forces and torques. This is consistent with experimental findings on the circular motion of artificial asymmetric microswimmers driven by self-diffusiophoresis. The concept of effective self-propulsion forces and torques significantly facilitates the understanding of the swimming paths, e.g. for a microswimmer under gravity. However, this concept has its limitations when the self-propulsion mechanism of a swimmer is disturbed either by another particle in its close vicinity or by interactions with obstacles, such as a wall.
The role of earth radiation budget studies in climate and general circulation research
NASA Technical Reports Server (NTRS)
Ramanathan, V.
1987-01-01
The use of earth radiation budget (ERB) data for climate and general circulation research is studied. ERB measurements obtained in the 1960's and 1970's have provided data on planetary brightness, planetary global energy balances, the greenhouse effect, solar insolation, meridional heat transport by oceans and atmospheres, regional forcing, climate feedback processes, and the computation of albedo values in low latitudes. The role of clouds in governing climate, in influencing the general circulation, and in determining the sensitivity of climate to external perturbations needs to be researched; a procedure for analyzing the ERB data, which will address these problems, is described. The approach involves estimating the clear-sky fluxes from the high spatial resolution scanner measurement and defining a cloud radiative forcing; the global average of the sum of the solar and long-wave cloud forcing yields the net radiative effect of clouds on the climate.
Satellite bulk tropospheric temperatures as a metric for climate sensitivity
NASA Astrophysics Data System (ADS)
Christy, John R.; McNider, Richard T.
2017-11-01
We identify and remove the main natural perturbations (e.g. volcanic activity, ENSOs) from the global mean lower tropospheric temperatures ( T LT ) over January 1979 - June 2017 to estimate the underlying, potentially human-forced trend. The unaltered value is +0.155 K dec-1 while the adjusted trend is +0.096 K dec-1, related primarily to the removal of volcanic cooling in the early part of the record. This is essentially the same value we determined in 1994 (+0.09 K dec-1, Christy and McNider, 1994) using only 15 years of data. If the warming rate of +0.096 K dec-1 represents the net T LT response to increasing greenhouse radiative forcings, this implies that the T LT tropospheric transient climate response (Δ T LT at the time CO2 doubles) is +1.10 ± 0.26 K which is about half of the average of the IPCC AR5 climate models of 2.31 ± 0.20 K. Assuming that the net remaining unknown internal and external natural forcing over this period is near zero, the mismatch since 1979 between observations and CMIP-5 model values suggests that excessive sensitivity to enhanced radiative forcing in the models can be appreciable. The tropical region is mainly responsible for this discrepancy suggesting processes that are the likely sources of the extra sensitivity are (a) the parameterized hydrology of the deep atmosphere, (b) the parameterized heat-partitioning at the oceanatmosphere interface and/or (c) unknown natural variations.
Robjant, Katy; Roberts, Jackie; Katona, Cornelius
2017-01-01
Human trafficking is a form of modern slavery that involves the forced movement of people internally within countries, or externally across borders. Victims who are trafficked for sexual exploitation are subject to repeated, multiple trauma, and high rates of mental health problems including posttraumatic stress disorder (PTSD) have been found. Narrative exposure therapy (NET) is an evidence-based treatment for PTSD. In this retrospective audit, we record the results of NET to treat 10 women who had been trafficked for sexual exploitation who were diagnosed with PTSD. All 10 women completed the therapy and experienced a reduction in PTSD severity scores at posttreatment, with improvements that were maintained or further improved at 3-month follow-up. General distress was also significantly reduced following treatment. Although limited by sample size and retrospective design, this audit demonstrates that NET is a feasible treatment for PTSD in this population and warrants further evaluation in a randomized controlled trial. Further adjunctive interventions may also be necessary to treat the additional psychological problems experienced by this population.
Drag of Clean and Fouled Net Panels – Measurements and Parameterization of Fouling
Gansel, Lars Christian; Plew, David R.; Endresen, Per Christian; Olsen, Anna Ivanova; Misimi, Ekrem; Guenther, Jana; Jensen, Østen
2015-01-01
Biofouling is a serious problem in marine aquaculture and it has a number of negative impacts including increased forces on aquaculture structures and reduced water exchange across nets. This in turn affects the behavior of fish cages in waves and currents and has an impact on the water volume and quality inside net pens. Even though these negative effects are acknowledged by the research community and governmental institutions, there is limited knowledge about fouling related effects on the flow past nets, and more detailed investigations distinguishing between different fouling types have been called for. This study evaluates the effect of hydroids, an important fouling organism in Norwegian aquaculture, on the forces acting on net panels. Drag forces on clean and fouled nets were measured in a flume tank, and net solidity including effect of fouling were determined using image analysis. The relationship between net solidity and drag was assessed, and it was found that a solidity increase due to hydroids caused less additional drag than a similar increase caused by change in clean net parameters. For solidities tested in this study, the difference in drag force increase could be as high as 43% between fouled and clean nets with same solidity. The relationship between solidity and drag force is well described by exponential functions for clean as well as for fouled nets. A method is proposed to parameterize the effect of fouling in terms of an increase in net solidity. This allows existing numerical methods developed for clean nets to be used to model the effects of biofouling on nets. Measurements with other types of fouling can be added to build a database on effects of the accumulation of different fouling organisms on aquaculture nets. PMID:26151907
Obesity does not increase External Mechanical Work per kilogram body mass during Walking
Browning, Raymond C.; McGowan, Craig P.; Kram, Rodger
2009-01-01
Walking is the most common type of physical activity prescribed for the treatment of obesity. The net metabolic rate during level walking (Watts/kg) is ~10% greater in obese vs. normal weight adults. External mechanical work (Wext) is one of the primary determinants of the metabolic cost of walking, but the effects of obesity on Wext have not been clearly established. The purpose of this study was to compare Wext between obese and normal weight adults across a range of walking speeds. We hypothesized that Wext (J/step) would be greater in obese adults but Wext normalized to body mass would be similar in obese and normal weight adults. We collected right leg three-dimensional ground reaction forces (GRF) while twenty adults (10 obese, BMI=35.6 kg/m2 and 10 normal weight, BMI=22.1 kg/m2) walked on a level, dual-belt force measuring treadmill at six speeds (0.50–1.75 m/s). We used the individual limb method (ILM) to calculate external work done on the center of mass. Absolute Wext (J/step) was greater in obese vs. normal weight adults at each walking speed, but relative Wext (J/step/kg) was similar between the groups. Step frequencies were not different. These results suggest that Wext is not responsible for the greater metabolic cost of walking (W/kg) in moderately obese adults. PMID:19646701
On the Origins of Vortex Shedding in Two-dimensional Incompressible Flows
Boghosian, M. E.; Cassel, K. W.
2016-01-01
An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM. PMID:27795617
On the Origins of Vortex Shedding in Two-dimensional Incompressible Flows.
Boghosian, M E; Cassel, K W
2016-12-01
An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.
Ferromagnetic Swimmers - Devices and Applications
NASA Astrophysics Data System (ADS)
Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor
2017-11-01
Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.
Mulroy, Sara J.; Ruparel, Puja; Hatchett, Patricia E.; Haubert, Lisa Lighthall; Eberly, Valerie J.; Gronley, JoAnne K.
2015-01-01
Background: Shoulder loading during manual wheelchair propulsion (WCP) contributes to the development of shoulder pain in individuals with spinal cord injury (SCI). Objective: To use regression analysis to investigate the relationships between the hand contact angle (location of the hand on the pushrim at initial contact and release during the push phase of the WCP cycle) with propulsion characteristics, pushrim forces, and shoulder kinetics during WCP in individuals with paraplegia. Methods: Biomechanical data were collected from 222 individuals (198 men and 24 women) with paraplegia from SCI during WCP on a stationary ergometer at a self-selected speed. The average age of participants was 34.7 years (±9.3), mean time since SCI was 9.3 years (±6.1), and average body weight was 74.4 kg (±15.9). The majority (n = 127; 56%) of participants had lower level paraplegia (T8 to L5) and 95 (42%) had high paraplegia (T2 to T7). Results: Increased push arc (mean = 75.3°) was associated with greater velocity (R = 0.384, P < .001) and cycle distance (R = 0.658, P < .001) and reduced cadence (R = -0.419, P < .001). Initial contact angle and hand release angles were equally associated with cycle distance and cadence, whereas a more anterior release angle was associated with greater velocity (R = 0.372, P < .001). When controlling for body weight, a more posterior initial contact angle was associated with greater posterior shoulder net joint force (R = 0.229, P = .001) and greater flexor net joint moment (R = 0.204, P = .002), whereas a more anterior hand release angle was significantly associated with increased vertical (R = 0.270, P < .001) and greater lateral (R = .293, P < .001) pushrim forces; greater shoulder net joint forces in all 3 planes — posterior (R = 0.164, P = .015), superior (R = 0.176, P = .009), and medial (R = 0.284, P < .001); and greater external rotator (R = 0.176, P = .009) and adductor (R = 0.259, P = .001) net joint moments. Conclusions: Current clinical practice guidelines recommend using long, smooth strokes during manual WCP to reduce peak shoulder forces and to prevent shoulder pain development. The position of the hand at both initial contact and hand release must be considered in WCP training. It is recommended that participants should reach back to initiate contact with the pushrim to maximize push arc but avoid a more anterior hand position at release, because this could increase shoulder load during the push phase of WCP. PMID:26689696
Requejo, Philip Santos; Mulroy, Sara J; Ruparel, Puja; Hatchett, Patricia E; Haubert, Lisa Lighthall; Eberly, Valerie J; Gronley, JoAnne K
2015-01-01
Shoulder loading during manual wheelchair propulsion (WCP) contributes to the development of shoulder pain in individuals with spinal cord injury (SCI). To use regression analysis to investigate the relationships between the hand contact angle (location of the hand on the pushrim at initial contact and release during the push phase of the WCP cycle) with propulsion characteristics, pushrim forces, and shoulder kinetics during WCP in individuals with paraplegia. Biomechanical data were collected from 222 individuals (198 men and 24 women) with paraplegia from SCI during WCP on a stationary ergometer at a self-selected speed. The average age of participants was 34.7 years (±9.3), mean time since SCI was 9.3 years (±6.1), and average body weight was 74.4 kg (±15.9). The majority (n = 127; 56%) of participants had lower level paraplegia (T8 to L5) and 95 (42%) had high paraplegia (T2 to T7). Increased push arc (mean = 75.3°) was associated with greater velocity (R = 0.384, P < .001) and cycle distance (R = 0.658, P < .001) and reduced cadence (R = -0.419, P <.001). Initial contact angle and hand release angles were equally associated with cycle distance and cadence, whereas a more anterior release angle was associated with greater velocity (R = 0.372, P < .001). When controlling for body weight, a more posterior initial contact angle was associated with greater posterior shoulder net joint force (R = 0.229, P = .001) and greater flexor net joint moment (R = 0.204, P = .002), whereas a more anterior hand release angle was significantly associated with increased vertical (R = 0.270, P < .001) and greater lateral (R = .293, P < .001) pushrim forces; greater shoulder net joint forces in all 3 planes - posterior (R = 0.164, P = .015), superior (R = 0.176, P = .009), and medial (R = 0.284, P < .001); and greater external rotator (R = 0.176, P = .009) and adductor (R = 0.259, P = .001) net joint moments. Current clinical practice guidelines recommend using long, smooth strokes during manual WCP to reduce peak shoulder forces and to prevent shoulder pain development. The position of the hand at both initial contact and hand release must be considered in WCP training. It is recommended that participants should reach back to initiate contact with the pushrim to maximize push arc but avoid a more anterior hand position at release, because this could increase shoulder load during the push phase of WCP.
A Mathematical Proof of the Vortex Shedding Mechanism
NASA Astrophysics Data System (ADS)
Boghosian, Michael; Cassel, Kevin
2015-11-01
A novel mechanism leading to vortex splitting and subsequent shedding that is valid for both inviscid or viscous flows and external, internal, or wall-bounded flows is described. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Previous simulations of various flows have demonstrated the VSM numerically. Here, we present a mathematical proof of the VSM that is shown to be both a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The proof includes relating the positive divergence of the net force, condition (2) above, with the second invariant of the velocity gradient tensor, i.e. the Q-criterion. It is shown that the Q-criterion is identical to the determinant of the Hessian matrix for the streamfunction. As a result, the second-partial-derivative test on this Hessian matrix can provide a qualitative description on the behavior of the streamfunction, and thus vortices or recirculation regions, near critical points. Supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK90769).
Chris A. Maier; R.O. Teskey
1992-01-01
Leaf gas exchange and water relations were monitored in the upper canopy of two 25 m tall eastern white pine (Pinus strobus L.) trees over two consecutive growing seasons (1986 and 1987). Examination of the seasonal and diurnal patterns of net photosynthesis and leaf conductance showed that both internal and external (environmental) factors were...
Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch
NASA Technical Reports Server (NTRS)
Thomas, John H.; Montesinis, Benjamin
1989-01-01
The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.
Numerical study on the hydrodynamic characteristics of biofouled full-scale net cage
NASA Astrophysics Data System (ADS)
Bi, Chun-wei; Zhao, Yun-peng; Dong, Guo-hai
2015-06-01
The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al. (2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.
The Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load.
Andreasson, Johan O L; Shastry, Shankar; Hancock, William O; Block, Steven M
2015-05-04
The response of motor proteins to external loads underlies their ability to work in teams and determines the net speed and directionality of cargo transport. The mammalian kinesin-2, KIF3A/B, is a heterotrimeric motor involved in intraflagellar transport and vesicle motility in neurons. Bidirectional cargo transport is known to result from the opposing activities of KIF3A/B and dynein bound to the same cargo, but the load-dependent properties of kinesin-2 are poorly understood. We used a feedback-controlled optical trap to probe the velocity, run length, and unbinding kinetics of mouse KIF3A/B under various loads and nucleotide conditions. The kinesin-2 motor velocity is less sensitive than kinesin-1 to external forces, but its processivity diminishes steeply with load, and the motor was observed occasionally to slip and reattach. Each motor domain was characterized by studying homodimeric constructs, and a global fit to the data resulted in a comprehensive pathway that quantifies the principal force-dependent kinetic transitions. The properties of the KIF3A/B heterodimer are intermediate between the two homodimers, and the distinct load-dependent behavior is attributable to the properties of the motor domains and not to the neck linkers or the coiled-coil stalk. We conclude that the force-dependent movement of KIF3A/B differs significantly from conventional kinesin-1. Against opposing dynein forces, KIF3A/B motors are predicted to rapidly unbind and rebind, resulting in qualitatively different transport behavior from kinesin-1. Copyright © 2015 Elsevier Ltd. All rights reserved.
The mechanochemical cycle of mammalian kinesin-2 KIF3A/B under load
Andreasson, Johan O.L.; Shastry, Shankar; Hancock, William O.; Block, Steven M.
2015-01-01
Summary The response of motor proteins to external loads underlies their ability to work in teams and determines the net speed and directionality of cargo transport. The mammalian kinesin-2, KIF3A/B, is a heterotrimeric motor involved in intraflagellar transport and vesicle motility in neurons. Bidirectional cargo transport is known to result from the opposing activities of KIF3A/B and dynein bound to the same cargo, but the load-dependent properties of kinesin-2 are poorly understood. We used a feedback-controlled optical trap to probe the velocity, run length and unbinding kinetics of mouse KIF3A/B under various loads and nucleotide conditions. The kinesin-2 motor velocity is less sensitive than kinesin-1 to external forces, but its processivity diminishes steeply with load, and the motor was observed occasionally to slip and reattach. Each motor domain was characterized by studying homodimeric constructs, and a global fit to the data resulted in a comprehensive pathway that quantifies the principal force-dependent kinetic transitions. The properties of the KIF3A/B heterodimer are intermediate between the two homodimers, and the distinct load-dependent behavior is attributable to the properties of the motor domains, and not to the neck-linkers or the coiled-coil stalk. We conclude that the force-dependent movement of KIF3A/B differs significantly from conventional kinesin-1. Against opposing dynein forces, KIF3A/B motors are predicted to rapidly unbind and rebind, resulting in qualitatively different transport behavior from kinesin-1. PMID:25866395
NASA Astrophysics Data System (ADS)
Folland, C. K.; Boucher, O.; Colman, A.; Parker, D. E.
2017-12-01
The recent slowdown in the warming of global mean surface temperature (GST) has highlighted the influences of natural variability. This talk discusses reconstructions of the variations of GST down to the monthly time scale since 1891 using monthly forcing data. We show that most of the variations in annual, and to some extent sub-annual, GST since 1891 can be reproduced skillfully from known forcing factors external and internal to the climate system. This includes the slowdown in warming over about 1998-2013 where reconstruction skill is particularly high down to the multi-monthly time scale. The relative contributions of the several key forcing factors to GST continually vary, but most of the net warming since 1891 is reconstructed to be attributable to the net forcing due to increasing greenhouse gases and anthropogenic aerosols. Separate analyses are carried out for three periods of GST slowdown:- 1896-1910, 1941-1976, together with 1998-2013 and some of its sub periods. We also study two periods where strong warming occurred, 1911-1940 and 1977-1997. Comparisons are made with the skill of average GST provided by 40 CMIP5 models. In the recent 1998-2013 slowdown, TSI forcing appears to have caused significant cooling, particularly over 2001-2010. This is additional to well documented cooling effects of an increased frequency of La Nina events, a negative Interdecadal Pacific Oscillation and some increases in volcanic forcing. Although there are short-term features of the GST curve since 1891 that cannot be fully explained, the most serious disagreements between the reconstructions and observations occur in the Second World War, especially in 1944-1945. Here observed near worldwide SSTs may be biased significantly too warm. Despite this, our generally high reconstruction skill is consistent with a good understanding of the multiple causes of observed GST variations and the general veracity of the GST record since 1891.
Robust global ocean cooling trend for the pre-industrial Common Era
NASA Astrophysics Data System (ADS)
McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile
2015-09-01
The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years -- a key interval for understanding the present and future climate response to these forcings -- global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CE that is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.
Robust global ocean cooling trend for the pre-industrial Common Era
McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile
2015-01-01
The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years — a key interval for understanding the present and future climate response to these forcings — global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CEthat is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.
NASA Astrophysics Data System (ADS)
Abel, Julianna; Luntz, Jonathan; Brei, Diann
2012-08-01
Active knits are a unique architectural approach to meeting emerging smart structure needs for distributed high strain actuation with simultaneous force generation. This paper presents an analytical state-based model for predicting the actuation response of a shape memory alloy (SMA) garter knit textile. Garter knits generate significant contraction against moderate to large loads when heated, due to the continuous interlocked network of loops of SMA wire. For this knit architecture, the states of operation are defined on the basis of the thermal and mechanical loading of the textile, the resulting phase change of the SMA, and the load path followed to that state. Transitions between these operational states induce either stick or slip frictional forces depending upon the state and path, which affect the actuation response. A load-extension model of the textile is derived for each operational state using elastica theory and Euler-Bernoulli beam bending for the large deformations within a loop of wire based on the stress-strain behavior of the SMA material. This provides kinematic and kinetic relations which scale to form analytical transcendental expressions for the net actuation motion against an external load. This model was validated experimentally for an SMA garter knit textile over a range of applied forces with good correlation for both the load-extension behavior in each state as well as the net motion produced during the actuation cycle (250% recoverable strain and over 50% actuation). The two-dimensional analytical model of the garter stitch active knit provides the ability to predict the kinetic actuation performance, providing the basis for the design and synthesis of large stroke, large force distributed actuators that employ this novel architecture.
Numerical Investigation of the Turbulent Wind Flow Through Elevated Windbreak
NASA Astrophysics Data System (ADS)
Agarwal, Ashish; Irtaza, Hassan
2018-06-01
Analysis of airflow through elevated windbreaks is presented in this paper. Permeable nets and impermeable film increases considerable wind forces on the windbreaks which is susceptible to damage during high wind. A comprehensive numerical investigation has been carried out to analyze the effects of wind on standalone elevated windbreak clad with various permeable nets and an impermeable film. The variation of airflow behavior around and through permeable nets and airflow behavior around impermeable film were also been investigated. Computational fluid dynamics techniques using Reynolds Averaged Navier-Stokes equations has been used to predict the wind force coefficient and thus wind forces on panels supporting permeable nets and impermeable film for turbulent wind flow. Elevated windbreak panels were analyzed for seven different permeable nets having various solidity ratio, specific permeability and aerodynamic resistant coefficients. The permeable nets were modelled as porous jump media obeying Forchheimer's law and an impermeable film modelled as rigid wall.
Numerical Investigation of the Turbulent Wind Flow Through Elevated Windbreak
NASA Astrophysics Data System (ADS)
Agarwal, Ashish; Irtaza, Hassan
2018-04-01
Analysis of airflow through elevated windbreaks is presented in this paper. Permeable nets and impermeable film increases considerable wind forces on the windbreaks which is susceptible to damage during high wind. A comprehensive numerical investigation has been carried out to analyze the effects of wind on standalone elevated windbreak clad with various permeable nets and an impermeable film. The variation of airflow behavior around and through permeable nets and airflow behavior around impermeable film were also been investigated. Computational fluid dynamics techniques using Reynolds Averaged Navier-Stokes equations has been used to predict the wind force coefficient and thus wind forces on panels supporting permeable nets and impermeable film for turbulent wind flow. Elevated windbreak panels were analyzed for seven different permeable nets having various solidity ratio, specific permeability and aerodynamic resistant coefficients. The permeable nets were modelled as porous jump media obeying Forchheimer's law and an impermeable film modelled as rigid wall.
Effects of Different Relative Loads on Power Performance During the Ballistic Push-up.
Wang, Ran; Hoffman, Jay R; Sadres, Eliahu; Bartolomei, Sandro; Muddle, Tyler W D; Fukuda, David H; Stout, Jeffrey R
2017-12-01
Wang, R, Hoffman, JR, Sadres, E, Bartolomei, S, Muddle, TWD, Fukuda, DH, and Stout, JR. Effects of different relative loads on power performance during the ballistic push-up. J Strength Cond Res 31(12): 3411-3416, 2017-The purpose of this investigation was to examine the effect of load on force and power performance during a ballistic push-up. Sixty (24.5 ± 4.3 years, 1.75 ± 0.07 m, and 80.8 ± 13.5 kg) recreationally active men who participated in this investigation completed all testing and were included in the data analysis. All participants were required to perform a 1 repetition maximum bench press, and ballistic push-ups without external load (T1), with 10% (T2) and 20% (T3) of their body mass. Ballistic push-ups during T2 and T3 were performed using a weight loaded vest. Peak and mean force, power, as well as net impulse and flight time were determined for each ballistic push-up. Peak and mean force were both significantly greater (p < 0.01) during T3 (1,062 ± 202 and 901 ± 154 N, respectively), than both T2 (1,017 ± 202 and 842 ± 151 N, respectively) and T1 (960 ± 188 and 792 ± 140 N, respectively). Peak and mean power were significantly greater (p < 0.01) during T1 (950 ± 257 and 521 ± 148 W, respectively), than both T2 (872 ± 246 and 485 ± 143 W, respectively) and T3 (814 ± 275 and 485 ± 162 W, respectively). Peak and mean power were greatest during T1, regardless of participants' strength levels. Significant (p < 0.01) greater net impulse and smaller peak velocity and flight time were also noted from T1 to T3. Results of this investigation indicated that maximal power outputs were achieved without the use of an external load when performing the ballistic push-up, regardless of the participants' level of strength.
Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J
2013-06-01
Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.
External solution driving forces for isotonic fluid absorption in proximal tubules.
Andreoli, T E; Schafer, J A
1979-02-01
We have explored evidence that suggests that lateral intercellular spaces is the mammalian proximal nephron do not serve as a hypertonic "central compartment" driving volume absorption. A primary consideration is the very low transepithelial resistance of this tissue as demonstrated by several laboratories. By making the reasonable assumption that passive ion permeation occurs via a paracellular route, we have concluded that the diffusion resistance of the spaces in insufficient to allow the development of a significant compositional difference between the spaces and the peritubular medium. This conclusion led us to look for potential osmotic gradients existing between the luminal and peritubular solutions. From the perfusion rate dependence of osmotic volume flow in the absence of active transport in isolated convoluted and straight proximal tubules, we calculated that both segments have very high hydraulic conductances, on the order of 3,000-5,000 micron/sec. Consequently, slight differences in the effective osmolality of the external solutions are sufficient to explain net volume absorption both in vivo and in vitro. We have provided evidence for two such driving forces. First, the development of asymmetrical anion concentration differences along the length of the proximal nephron due to preferential reabsorption of HCO-3 provides a driving force if the reflection coefficient for HCO-3 exceeds that for Cl-. Second, slight luminal hypotonicity may develop as a consequence of active solute absorption. Although both mechanisms probably occur simultaneously in vivo, we consider the former to be quantitatively the most important.
Indian summer monsoon rainfall: Dancing with the tunes of the sun
NASA Astrophysics Data System (ADS)
Hiremath, K. M.; Manjunath, Hegde; Soon, Willie
2015-02-01
There is strong statistical evidence that solar activity influences the Indian summer monsoon rainfall. To search for a physical link between the two, we consider the coupled cloud hydrodynamic equations, and derive an equation for the rate of precipitation that is similar to the equation of a forced harmonic oscillator, with cloud and rain water mixing ratios as forcing variables. Those internal forcing variables are parameterized in terms of the combined effect of external forcing as measured by sunspot and coronal hole activities with several well known solar periods (9, 13 and 27 days; 1.3, 5, 11 and 22 years). The equation is then numerically solved and the results show that the variability of the simulated rate of precipitation captures very well the actual variability of the Indian monsoon rainfall, yielding vital clues for a physical understanding that has so far eluded analyses based on statistical correlations alone. We also solved the precipitation equation by allowing for the effects of long-term variation of aerosols. We tentatively conclude that the net effects of aerosols variation are small, when compared to the solar factors, in terms of explaining the observed rainfall variability covering the full Indian monsoonal geographical domains.
Skyrmions Driven by Intrinsic Magnons
NASA Astrophysics Data System (ADS)
Psaroudaki, Christina; Loss, Daniel
2018-06-01
We study the dynamics of a Skyrmion in a magnetic insulating nanowire in the presence of time-dependent oscillating magnetic field gradients. These ac fields act as a net driving force on the Skyrmion via its own intrinsic magnetic excitations. In a microscopic quantum field theory approach, we include the unavoidable coupling of the external field to the magnons, which gives rise to time-dependent dissipation for the Skyrmion. We demonstrate that the magnetic ac field induces a super-Ohmic to Ohmic crossover behavior for the Skyrmion dissipation kernels with time-dependent Ohmic terms. The ac driving of the magnon bath at resonance results in a unidirectional helical propagation of the Skyrmion in addition to the otherwise periodic bounded motion.
A novel frequency tuned wireless actuator with snake-like motion
NASA Astrophysics Data System (ADS)
Zhang, Kewei; Zhu, Qianke; Chai, Yuesheng
2016-07-01
In this work, we propose a novel wireless actuator which is composed of magnetostrictive material/copper bi-layer film. The actuator can be controlled to move like a snake bi-directionally along a pipe by tuning the frequency of external magnetic field near its first order resonant frequency. The governing equation for the actuator is established and the vibration mode shape function is derived. Theoretical analysis shows that motion of the actuator is achieved by asymmetric vibration mode shape, specific vibration bending deformation, and effective net total impacting force. The simulation and experimental results well confirm the theoretical analysis. This work provides contribution to the development of wireless micro robots and autonomous magnetostrictive sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Huai; Jiang, Huijun; Hou, Zhonghuai, E-mail: hzhlj@ustc.edu.cn
The dynamics of point-like Brownian particles in a periodic confined channel with oscillating boundaries has been studied. Directional transport (DT) behavior, characterized by net displacement along the horizontal direction, is observed even without external force which is necessary for the conventional DT where the boundaries are static. For typical parameter values, the average velocity V{sub t} of DT reaches a maximum with the variation of the noise intensity D, being alike to the phenomenon of stochastic resonance. Interestingly, we find that V{sub t} shows nontrivial dependences on the particle gravity G depending on the noise level. When the noise ismore » large, V{sub t} increases monotonically with G indicating that heavier particle moves faster, while for small noise, V{sub t} shows a bell-shape dependence on G, suggesting that a particle with an intermediate weight may move the fastest. Such results were not observed for DT in a channel with static boundaries. To understand these findings, we have adopted an effective one-dimensional coarsening description, which facilitates us to introduce an effective entropic force along the horizontal direction. The average force is apparently nonzero due to the oscillatory boundary, hence leading to the net transport, and it shows similar dependences as V{sub t} on the noise intensity D and particle gravity G. The dependences of the DT behavior on other parameters describing the oscillatory channel have also been investigated, showing that DT is more pronounced for larger oscillation amplitude and frequency, and asymmetric geometry within a channel period and phase difference between neighboring periods are both necessary for the occurrence of DT.« less
Leg exoskeleton reduces the metabolic cost of human hopping.
Grabowski, Alena M; Herr, Hugh M
2009-09-01
During bouncing gaits such as hopping and running, leg muscles generate force to enable elastic energy storage and return primarily from tendons and, thus, demand metabolic energy. In an effort to reduce metabolic demand, we designed two elastic leg exoskeletons that act in parallel with the wearer's legs; one exoskeleton consisted of a multiple leaf (MLE) and the other of a single leaf (SLE) set of fiberglass springs. We hypothesized that hoppers, hopping on both legs, would adjust their leg stiffness while wearing an exoskeleton so that the combination of the hopper and exoskeleton would behave as a linear spring-mass system with the same total stiffness as during normal hopping. We also hypothesized that decreased leg force generation while wearing an exoskeleton would reduce the metabolic power required for hopping. Nine subjects hopped in place at 2.0, 2.2, 2.4, and 2.6 Hz with and without an exoskeleton while we measured ground reaction forces, exoskeletal compression, and metabolic rates. While wearing an exoskeleton, hoppers adjusted their leg stiffness to maintain linear spring-mass mechanics and a total stiffness similar to normal hopping. Without accounting for the added weight of each exoskeleton, wearing the MLE reduced net metabolic power by an average of 6% and wearing the SLE reduced net metabolic power by an average of 24% compared with hopping normally at frequencies between 2.0 and 2.6 Hz. Thus, when hoppers used external parallel springs, they likely decreased the mechanical work performed by the legs and substantially reduced metabolic demand compared with hopping without wearing an exoskeleton.
Manipulation of a neutral and nonpolar nanoparticle in water using a nonuniform electric field
NASA Astrophysics Data System (ADS)
Xu, Zhen; Wang, Chunlei; Sheng, Nan; Hu, Guohui; Zhou, Zhewei; Fang, Haiping
2016-01-01
The manipulation of nanoparticles in water is of essential importance in chemical physics, nanotechnology, medical technology, and biotechnology applications. Generally, a particle with net charges or charge polarity can be driven by an electric field. However, many practical particles only have weak and even negligible charge and polarity, which hinders the electric field to exert a force large enough to drive these nanoparticles directly. Here, we use molecular dynamics simulations to show that a neutral and nonpolar nanoparticle in liquid water can be driven directionally by an external electric field. The directed motion benefits from a nonuniform water environment produced by a nonuniform external electric field, since lower water energies exist under a higher intensity electric field. The nanoparticle spontaneously moves toward locations with a weaker electric field intensity to minimize the energy of the whole system. Considering that the distance between adjacent regions of nonuniform field intensity can reach the micrometer scale, this finding provides a new mechanism of manipulating nanoparticles from the nanoscale to the microscale.
Dynamics of the Random Field Ising Model
NASA Astrophysics Data System (ADS)
Xu, Jian
The Random Field Ising Model (RFIM) is a general tool to study disordered systems. Crackling noise is generated when disordered systems are driven by external forces, spanning a broad range of sizes. Systems with different microscopic structures such as disordered mag- nets and Earth's crust have been studied under the RFIM. In this thesis, we investigated the domain dynamics and critical behavior in two dipole-coupled Ising ferromagnets Nd2Fe14B and LiHoxY 1-xF4. With Tc well above room temperature, Nd2Fe14B has shown reversible disorder when exposed to an external transverse field and crosses between two universality classes in the strong and weak disorder limits. Besides tunable disorder, LiHoxY1-xF4 has shown quantum tunneling effects arising from quantum fluctuations, providing another mechanism for domain reversal. Universality within and beyond power law dependence on avalanche size and energy were studied in LiHo0.65Y0.35 F4.
NASA Astrophysics Data System (ADS)
Müller, Jens; Lückoff, Finn; Oberleithner, Kilian
2017-11-01
The precessing vortex core (PVC) is a dominant coherent structure which occurs in swirling jets such as in swirl-stabilised gas turbine combustors. It stems from a global hydrodynamic instability caused by an internal feedback mechanism within the jet core. In this work, open-loop forcing is applied to a generic non-reacting swirling jet to investigate its receptivity to external actuation regarding lock-in behaviour of the PVC for different streamwise positions and Reynolds numbers. The forcing is periodically exerted by zero net mass flux synthetic jets which are introduced radially through slits inside the duct walls upstream of the swirling jet's exit plane. Time-resolved pressure measurements are conducted to identify the PVC frequency and stereo PIV combined with proper orthogonal decomposition in the duct and free field is used to extract the mean flow and the PVC mode. The data is used in a global linear stability framework to gain the adjoint of the PVC which reveals the regions of highest receptivity to periodic forcing based on mean flow input only. This theoretical receptivity model is compared with the experimentally obtained receptivity results and the validity and applicability of the adjoint model for the prediction of optimal forcing positions is discussed.
Bungee force level, stiffness, and variation during treadmill locomotion in simulated microgravity.
De Witt, John K; Schaffner, Grant; Ploutz-Snyder, Lori L
2014-04-01
Crewmembers performing treadmill exercise on the International Space Station must wear a harness with an external gravity replacement force that is created by elastomer bungees. The quantification of the total external force, displacement, stiffness, and force variation is important for understanding the forces applied to the crewmember during typical exercise. Data were collected during static trials in the laboratory from a single subject and four subjects were tested while walking at 1.34 m x s(-1) and running at 2.24 m x s(-1) and 3.13 m x s(-1) on a treadmill during simulated microgravity in parabolic flight. The external force was provided by bungees and carabiner clips in configurations commonly used by crewmembers. Total external force, displacement, and force variation in the bungee system were measured, from which stiffness was computed. Mean external force ranged from 431 to 804 N (54-131% bodyweight) across subjects and conditions. Mean displacement was 4 to 8 cm depending upon gait speed. Mean stiffness was affected by bungee configuration and ranged from 1.73 to 29.20 N x cm(-1). Force variation for single bungee configurations was 2.61-4.48% of total external force and between 4.30-57.5% total external force for two-bungee configurations. The external force supplied to crewmembers by elastomer bungees provided a range of loading levels with variations that occur throughout the gait cycle. The quantification of bungee-loading characteristics is important to better define the system currently used by crewmembers during exercise.
Magnetically controlled ferromagnetic swimmers
Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.
2017-01-01
Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control. PMID:28276490
Magnetically controlled ferromagnetic swimmers
NASA Astrophysics Data System (ADS)
Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.
2017-03-01
Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control.
Gagnon, Denis; Plamondon, André; Larivière, Christian
2016-09-06
Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. Copyright © 2016 Elsevier Ltd. All rights reserved.
May common model biases reduce CMIP5's ability to simulate the recent Pacific La Niña-like cooling?
NASA Astrophysics Data System (ADS)
Luo, Jing-Jia; Wang, Gang; Dommenget, Dietmar
2018-02-01
Over the recent three decades sea surface temperate (SST) in the eastern equatorial Pacific has decreased, which helps reduce the rate of global warming. However, most CMIP5 model simulations with historical radiative forcing do not reproduce this Pacific La Niña-like cooling. Based on the assumption of "perfect" models, previous studies have suggested that errors in simulated internal climate variations and/or external radiative forcing may cause the discrepancy between the multi-model simulations and the observation. But the exact causes remain unclear. Recent studies have suggested that observed SST warming in the other two ocean basins in past decades and the thermostat mechanism in the Pacific in response to increased radiative forcing may also play an important role in driving this La Niña-like cooling. Here, we investigate an alternative hypothesis that common biases of current state-of-the-art climate models may deteriorate the models' ability and can also contribute to this multi-model simulations-observation discrepancy. Our results suggest that underestimated inter-basin warming contrast across the three tropical oceans, overestimated surface net heat flux and underestimated local SST-cloud negative feedback in the equatorial Pacific may favor an El Niño-like warming bias in the models. Effects of the three common model biases do not cancel one another and jointly explain 50% of the total variance of the discrepancies between the observation and individual models' ensemble mean simulations of the Pacific SST trend. Further efforts on reducing common model biases could help improve simulations of the externally forced climate trends and the multi-decadal climate fluctuations.
NASA Technical Reports Server (NTRS)
Sohn, Byung-Ju; Smith, Eric A.
1992-01-01
This paper focuses on the role of cloud- and surface-atmosphere forcing on the net radiation balance and their potential impact on the general circulation at climate time scales. The globally averaged cloud-forcing estimates and cloud sensitivity values taken from various recent studies are summarized. It is shown that the net radiative heating over the tropics is principally due to high clouds, while the net cooling in mid- and high latitudes is dominated by low and middle clouds.
Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate
Sándor, Csand; Libál, Andras; Reichhardt, Charles; ...
2017-01-17
Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less
Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sándor, Csand; Libál, Andras; Reichhardt, Charles
Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less
Quantized transport for a skyrmion moving on a two-dimensional periodic substrate
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson
2015-03-01
We examine the dynamics of a skyrmion moving over a two-dimensional periodic substrate utilizing simulations of a particle-based skyrmion model. We specifically examine the role of the nondissipative Magnus term on the driven motion and the resulting skyrmion velocity-force curves. In the overdamped limit, there is a depinning transition into a sliding state in which the skyrmion moves in the same direction as the external drive. When there is a finite Magnus component in the equation of motion, a skyrmion in the absence of a substrate moves at an angle with respect to the direction of the external driving force. When a periodic substrate is added, the direction of motion or Hall angle of the skyrmion is dependent on the amplitude of the external drive, only approaching the substrate-free limit for higher drives. Due to the underlying symmetry of the substrate the direction of skyrmion motion does not change continuously as a function of drive, but rather forms a series of discrete steps corresponding to integer or rational ratios of the velocity components perpendicular (
Khandpur, Ritika; Carmona-Rivera, Carmelo; Vivekanandan-Giri, Anuradha; Gizinski, Alison; Yalavarthi, Srilakshmi; Knight, Jason S.; Friday, Sean; Li, Sam; Patel, Rajiv M.; Subramanian, Venkataraman; Thompson, Paul; Chen, Pojen; Fox, David A.; Pennathur, Subramaniam; Kaplan, Mariana J.
2013-01-01
The early events leading to the development of rheumatoid arthritis (RA) remain unclear but formation of autoantibodies to citrullinated antigens (ACPA) is considered a key pathogenic phenomenon. Neutrophils isolated from patients with various autoimmune diseases display enhanced extracellular trap formation (NETs), a phenomenon that externalizes autoantigens and immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and synovial fluid RA neutrophils, compared to neutrophils from healthy controls and from patients with osteoarthritis. Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. During NETosis, neutrophils externalized citrullinated autoantigens implicated in RA pathogenesis, whereas anti-citrullinated vimentin antibodies potently induced NET formation. The inflammatory cytokines IL-17A and TNF-α induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease. PMID:23536012
Change of magnetic properties of nanocrystalline alloys under influence of external factors
NASA Astrophysics Data System (ADS)
Sitek, Jozef; Holková, Dominika; Dekan, Julius; Novák, Patrik
2016-10-01
Nanocrystalline (Fe3Ni1)81Nb7B12 alloys were irradiated using different types of radiation and subsequently studied by Mössbauer spectroscopy. External magnetic field of 0.5 T, electron-beam irradiation up to 4 MGy, neutron irradiation up to 1017 neutrons/cm2 and irradiation with Cu ions were applied on the samples. All types of external factors had an influence on the magnetic microstructure manifested as a change in the direction of the net magnetic moment, intensity of the internal magnetic field and volumetric fraction of the constituent phases. The direction of the net magnetic moment was the most sensitive parameter. Changes of the microscopic magnetic parameters were compared after different external influence and results of nanocrystalline samples were compared with their amorphous precursors.
Effect of External Loading on Force and Power Production During Plyometric Push-ups.
Hinshaw, Taylour J; Stephenson, Mitchell L; Sha, Zhanxin; Dai, Boyi
2018-04-01
Hinshaw, TJ, Stephenson, ML, Sha, Z, and Dai, B. Effect of external loading on force and power production during plyometric push-ups. J Strength Cond Res 32(4): 1099-1108, 2018-One common exercise to train upper-body strength and power is the push-up. Training at the loads that would produce the greatest power is an effective way to increase peak power. The purpose of the current study was to quantify the changes in peak force, peak power, and peak velocity among a modified plyometric push-up and plyometric push-ups with or without external loading in physically active young adults. Eighteen male and 17 female participants completed 4 push-ups: (a) modified plyometric push-up on the knees, (b) plyometric push-up without external loading, (c) plyometric push-up with an external load of 5% of body weight, and (d) plyometric push-up with an external load of 10% of body weight. Two force platforms were set up to collect vertical ground reaction forces at the hands and feet. The modified plyometric push-up demonstrated the lowest force, power, and velocity (5.4≥ Cohen's dz ≥1.2). Peak force and force at peak velocity increased (3.8≥ Cohen's dz ≥0.3) and peak velocity and velocity at peak power decreased (1.4≥ Cohen's dz ≥0.8) for the push-up without external loading compared with the 2 push-ups with external loading. No significant differences were observed for peak power among the push-ups with or without external loading (0.4≥ Cohen's dz ≥0.1). Although peak power is similar with or without external loading, push-ups without external loading may be more beneficial for a quick movement, and push-ups with external loading may be more beneficial for a greater force production.
Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics.
Lake, Jason; Mundy, Peter; Comfort, Paul; McMahon, John J; Suchomel, Timothy J; Carden, Patrick
2018-05-29
This study examined concurrent validity of countermovement vertical jump (CMJ) reactive strength index modified and force-time characteristics recorded using a one dimensional portable and laboratory force plate system. Twenty-eight men performed bilateral CMJs on two portable force plates placed on top of two in-ground force plates, both recording vertical ground reaction force at 1000 Hz. Time to take-off, jump height, reactive strength index modified, braking and propulsion impulse, mean net force, and duration were calculated from the vertical force from both force plate systems. Results from both systems were highly correlated (r≥.99). There were small (d<.12) but significant differences between their respective braking impulse, braking mean net force, propulsion impulse, and propulsion mean net force (p<.001). However, limits of agreement yielded a mean value of 1.7% relative to the laboratory force plate system (95% CL: .9% to 2.5%), indicating very good agreement across all of the dependent variables. The largest limits of agreement belonged to jump height (2.1%), time to take-off (3.4%), and reactive strength index modified (3.8%). The portable force plate system provides a valid method of obtaining reactive strength measures, and several underpinning force-time variables, from unloaded CMJ and practitioners can use both force plates interchangeably.
Experimental testing of impact force on rigid and flexible barriers - A comparison
NASA Astrophysics Data System (ADS)
Nagl, Georg; Hübl, Johannes; Chiari, Michael
2016-04-01
The Trattenbach endangers the main western railway track of Austria by floods and debris flows. Three check dams for debris retention were built in the proximal fan area several decades ago. With regard to an improvement of the protective function, these structures have to be renewed. The recent concept of the uppermost barrier is a type of an energy dissipation net structure, stopping debris flows with the ability of self-cleaning by subsequent floods or by machinery employment. The access to the basin is achieved through the slit when the net has been removed. This technical structure consists of a rigid open crown dam with a 4m wide slit. This slit is closed with a flexible net. To verify this protective system, 21 small scale experiments were conducted to test and optimize this new type of Slit Net Dam. To determine the forces on the barrier, in a first setup of experiments the impact forces on a rigid wall with 24 load cells were measured. In the second setup the slit barrier with the net was investigated. On four main cables the anchor forces were measured. In a further setup the basal distance between the channel and lowest net was varied. To study the emptying of the basin and the dosing effect on debris flows.
Nozzle design study for a quasi-axisymmetric scramjet-powered vehicle at Mach 7.9 flight conditions
NASA Astrophysics Data System (ADS)
Tanimizu, Katsuyoshi; Mee, David J.; Stalker, Raymond J.; Jacobs, Peter A.
2013-09-01
A nozzle shape optimization study for a quasi-axisymmetric scramjet has been performed for a Mach 7.9 operating condition with hydrogen fuel, aiming at the application of a hypersonic airbreathing vehicle. In this study, the nozzle geometry which is parameterized by a set of design variables, is optimized for the single objective of maximum net thrust using an in-house CFD solver for inviscid flowfields with a simple force prediction methodology. The combustion is modelled using a simple chemical reaction code. The effects of the nozzle design on the overall vehicle performance are discussed. For the present geometry, net thrust is achieved for the optimized vehicle design. The results of the nozzle-optimization study show that performance is limited by the nozzle area ratio that can be incorporated into the vehicle without leading to too large a base diameter of the vehicle and increasing the external drag of the vehicle. This study indicates that it is very difficult to achieve positive thrust at Mach 7.9 using the basic geometry investigated.
Siphon flows in isolated magnetic flux tubes. III - The equilibrium path of the flux-tube arch
NASA Technical Reports Server (NTRS)
Thomas, John H.; Montesinos, Benjamin
1990-01-01
It is shown how to calculate the equilibrium path of a thin magnetic flux tube in a stratified, nonmagnetic atmosphere when the flux tube contains a steady siphon flow. The equilbrium path of a static thin flux tube in an infinite stratified atmosphere generally takes the form of a symmetric arch of finite width, with the flux tube becoming vertical at either end of the arch. A siphon flow within the flux tube increases the curvature of the arched equilibrium path in order that the net magnetic tension force can balance the inertial force of the flow, which tries to straighten the flux tube. Thus, a siphon flow reduces the width of the arched equilibrium path, with faster flows producing narrower arches. The effect of the siphon flow on the equilibrium path is generally greater for flux tubes of weaker magnetic field strength. Examples of the equilibrium are shown for both isothemal and adiabatic siphon flows in thin flux tubes in an isothermal external atmosphere.
Knee extensor dynamics in the volleyball approach jump: the influence of patellar tendinopathy.
Sorenson, Shawn C; Arya, Shruti; Souza, Richard B; Pollard, Christine D; Salem, George J; Kulig, Kornelia
2010-09-01
Controlled laboratory study using a cross-sectional design. To evaluate knee joint dynamics in elite volleyball players with and without a history of patellar tendinopathy, focusing on mechanical energy absorption and generation. We hypothesized that tendinopathy would be associated withreduced net joint work and net joint power. Patellar tendinopathy is a common, debilitating injury affecting competitive volleyball players. Thirteen elite male players with and without a history of patellar tendinopathy (mean ± SD age, 27 ± 7 years) performed maximum-effort volleyball approach jumps. Sagittal plane knee joint kinematics, kinetics, and energetics were quantified in the lead limb, using data obtained from a force platform and an 8-camera motion analysis system. Vertical ground reaction forces and pelvis vertical velocity at takeoff were examined. Independent sample t tests were used to evaluate group differences (α = .05). The tendinopathy group, compared to controls, demonstrated significant reductions (approximately 30%) in net joint work and net joint power during the eccentric phase of the jump, with no differences in the concentric phase. Positive to-negative net joint work and net joint power ratios were significantly higher in the tendinopathy group, which had a net joint work ratio of 1.00 (95% CI: 0.77, 1.24) versus 0.76 (95% CI: 0.64, 0.88) for controls, and a net joint power ratio of 1.62 (95% CI: 1.15, 2.10) versus 1.00 (95% CI: 0.80, 1.21) for controls. There were no significant differences in net joint moment, angular velocity, or range of motion. Peak vertical ground reaction forces were lower for the tendinopathy group, while average vertical ground reaction forces and pelvis vertical velocity were similar. Patellar tendinopathy is associated with differences in sagittal plane mechanical energy absorption at the knee during maximum-effort volleyball approach jumps. Net joint work and net joint power may help define underlying mechanisms, adaptive effects, or rehabilitative strategies for individuals with patellar tendinopathy.
Schmidt III, WF; McManus, TJ
1977-01-01
Duck red cells in hypertonic media experience rapid osmotic shrinkage followed by gradual reswelling back toward their original volume. This uptake of salt and water is self limiting and demands a specific ionic composition of the external solution. Although ouabain (10(-4)M) alters the pattern of cation accumulation from predominantly potassium to sodium, it does not affect the rate of the reaction, or the total amount of salt or water taken up. To study the response without the complications of active Na-K transport, ouabain was added to most incubations. All water accumulated by the cells can be accounted for by net salt uptake. Specific external cation requirements for reswelling include: sufficient sodium (more than 23 mM), and elevated potassium (more than 7 mM). In the absence of external potassium cells lose potassium without gaining sodium and continue to shrink instead of reswelling. Adding rubidium to the potassium- free solution promotes an even greater loss of cell potassium, yet causes swelling due to a net uptake of sodium and rubidium followed by chloride. The diuretic furosemide (10(-3)M) inhibits net sodium uptake which depends on potassium (or rubidium), as well as inhibits net sodium uptake which depends on sodium. As a result, cell volume is stabilized in the presence of this drug by inhibition of shrinkage, at low, and of swelling at high external potassium. The response has a high apparent energy of activation (15-20 kcal/mol). We propose that net salt and water movements in hypertonic solutions containing ouabain are mediated by direct coupling or cis-interaction, between sodium and potassium so that the uphill movement of one is driven by the downhill movement of the other in the same direction. PMID:894251
From Signature-Based Towards Behaviour-Based Anomaly Detection (Extended Abstract)
2010-11-01
data acquisition can serve as sensors. De- facto standard for IP flow monitoring is NetFlow format. Although NetFlow was originally developed by Cisco...packets with some common properties that pass through a network device. These collected flows are exported to an external device, the NetFlow ...Thanks to the network-based approach using NetFlow data, the detection algorithm is host independent and highly scalable. Deep Packet Inspection
Flow enhancement of deformable self-driven objects by countercurrent
NASA Astrophysics Data System (ADS)
Mashiko, Takashi; Fujiwara, Takashi
2016-10-01
We report numerical simulations of the mixed flows of two groups of deformable self-driven objects. The objects belonging to the group A (B) have drift coefficient D =DA (DB), where a positive (negative) value of D denotes the rightward (leftward) driving force. For co-current flows (DA ,DB > 0), the result is rather intuitive: the net flow of one group (QA) increases if the driving force of the other group is stronger than its own driving force (i.e., DB >DA), and decreases otherwise (DB
The Effect of Increasing Inertia upon Vertical Ground Reaction Forces during Locomotion
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Hagan, R. Donald; Cromwell, Ronita L.
2007-01-01
The addition of inertia to exercising astronauts could increase ground reaction forces and potentially provide a greater health benefit. However, conflicting results have been reported regarding the adaptations to additional mass (inertia) without additional net weight (gravitational force) during locomotion. We examined the effect of increasing inertia while maintaining net gravitational force on vertical ground reaction forces and kinematics during walking and running. Vertical ground reaction force was measured for ten healthy adults (5 male/5 female) during walking (1.34 m/s) and running (3.13 m/s) using a force-measuring treadmill. Subjects completed locomotion at normal weight and mass, and at 10, 20, 30, and 40% of added inertial force. The added gravitational force was relieved with overhead suspension, so that the net force between the subject and treadmill at rest remained equal to 100% body weight. Peak vertical impact forces and loading rates increased with increased inertia during walking, and decreased during running. As inertia increased, peak vertical propulsive forces decreased during walking and did not change during running. Stride time increased during walking and running, and contact time increased during running. Vertical ground reaction force production and adaptations in gait kinematics were different between walking and running. The increased inertial forces were utilized independently from gravitational forces by the motor control system when determining coordination strategies.
Relative net vertical impulse determines jumping performance.
Kirby, Tyler J; McBride, Jeffrey M; Haines, Tracie L; Dayne, Andrea M
2011-08-01
The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.
Impact of external forcing on simulated hydroclimate from interannual to multicentennial timescales
NASA Astrophysics Data System (ADS)
Roldán, Pedro; Fidel González-Rouco, Jesús; Melo-Aguilar, Camilo
2017-04-01
During the last millennium, external forcing experienced important changes in different timescales. It has been demostrated that these changes had an impact on climate. In particular, changes in solar activity, volcanic eruptions and emissions of greenhouse gases are related to short-term and long-term changes in global temperatures, with situations of higher total external forcing generally related with higher global and hemispherical temperatures, and conversely with situations of lower forcing. This connection is clearly observed in climate simulations from different models and in proxy-based reconstructions. The changes in external forcing can also explain certain changes in atmospheric dynamics and hydroclimate, although in this case it is in general more difficult to trace causality arguments. Analyses based on simulations from two different models (ECHO-G and CESM-LME) have been performed, to assess the impact of external forcing on climate in timescales ranging from interannual to multicentennial. Various climatic variables have been analysed, including temperature, sea level pressure, surface wind, precipitation and soil moisture. For interannual timescales, composites have been defined with the years before and after the main volcanic eruptions of the last millennium as well as the minima of solar activity during this period. For longer timescales, a Principal Component analysis has been performed, to try to separate the signal of external forcing from that of internal variability. This has been done for the whole millennium and for the pre-industrial period, to assess the difference between natural and anthropogenic forcing. For multicentennial timescales, composites for the Medieval Climate Anomaly (MCA; ca. 950-1250), the Little Ice Age (LIA; ca. 1450-1850) and the 20th Century have been compared. These three periods were respectively characterised by higher, lower and higher forcing. This allows to assess the contribution of external forcing to the evolution of climate over longer time intervals. These analyses have shown that external forcing is an important factor in the evolution of the simulated hydroclimate of the last millennium. In the short-term, it has been observed that volcanic eruptions and other situations of extreme forcing significantly alter the global precipitation in the subsequent years. In the long-term, variations of external forcing can be related to changes in atmospheric dynamics and in hydroclimate. However, this impact is not homogeneously distributed. There are areas where hydroclimate is mainly influenced by the external forcing and other areas more influenced by internal variability, with spatial decorrelation being higher in precipitation or drought related variables than in temperature. The regional sensitivity to external forcing of hydroclimate is model and, to a lesser degree, simulation dependent.
Vashista, Vineet; Khan, Moiz; Agrawal, Sunil K.
2017-01-01
In this paper, we develop an intervention to apply external gait synchronized forces on the pelvis to reduce the user’s effort during walking. A cable-driven robot was used to apply the external forces and an adaptive frequency oscillator scheme was developed to adapt the timing of force actuation to the gait frequency during walking. The external forces were directed in the sagittal plane to assist the trailing leg during the forward propulsion and vertical deceleration of the pelvis during the gait cycle. A pilot experiment with five healthy subjects was conducted. The results showed that the subjects applied lower ground reaction forces in the vertical and anterior-posterior directions during the late stance phase. In summary, the current work provides a novel approach to study the role of external pelvic forces in altering the walking effort. These studies can provide better understanding for designing exoskeletons and prosthetic devices to reduce the overall walking effort. PMID:29623294
Health safety nets can break cycles of poverty and disease: a stochastic ecological model.
Plucinski, Mateusz M; Ngonghala, Calistus N; Bonds, Matthew H
2011-12-07
The persistence of extreme poverty is increasingly attributed to dynamic interactions between biophysical processes and economics, though there remains a dearth of integrated theoretical frameworks that can inform policy. Here, we present a stochastic model of disease-driven poverty traps. Whereas deterministic models can result in poverty traps that can only be broken by substantial external changes to the initial conditions, in the stochastic model there is always some probability that a population will leave or enter a poverty trap. We show that a 'safety net', defined as an externally enforced minimum level of health or economic conditions, can guarantee ultimate escape from a poverty trap, even if the safety net is set within the basin of attraction of the poverty trap, and even if the safety net is only in the form of a public health measure. Whereas the deterministic model implies that small improvements in initial conditions near the poverty-trap equilibrium are futile, the stochastic model suggests that the impact of changes in the location of the safety net on the rate of development may be strongest near the poverty-trap equilibrium.
Patterning in systems driven by nonlocal external forces.
Luneville, L; Mallick, K; Pontikis, V; Simeone, D
2016-11-01
This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.
Patterning in systems driven by nonlocal external forces
NASA Astrophysics Data System (ADS)
Luneville, L.; Mallick, K.; Pontikis, V.; Simeone, D.
2016-11-01
This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.
Work, Thierry M.; Balazs, George H.
2010-01-01
We examined the gross and microscopic pathology and distribution of sea turtles that were landed as bycatch from the Hawaii, USA–based pelagic longline fishery and known to be forced submerged. Olive ridley turtles (Lepidochelys olivacea) composed the majority of animals examined, and hook-induced perforation of the esophagus was the most common gross lesion followed by perforation of oral structures (tongue, canthus) and of flippers. Gross pathology in the lungs suggestive of drowning was seen in 23 of 71 turtles. Considering only the external gross findings, the pathologist and the observer on board the longline vessel agreed on hook-induced lesions only 60% of the time thereby illustrating the limitations of depending on external examination alone to implicate hooking interactions or drowning as potential cause of sea turtle mortality. When comparing histology of drowned turtles to a control group of nondrowned turtles, the former had significantly more pulmonary edema, hemorrhage, and sloughed columnar epithelium. These microscopic changes may prove useful to diagnose suspected drowning in sea turtles where history of hooking or netting interactions is unknown.
Feedback-controlled radiation pressure cooling
NASA Astrophysics Data System (ADS)
Prior, Yehiam; Vilensky, Mark; Averbukh, Ilya Sh.
2008-03-01
We propose a new approach to laser cooling of micromechanical devices, which is based on the phenomenon of optical bistability. These devices are modeled as a Fabry-Perot resonator with one fixed and one oscillating mirror. The bistability may be induced by an external feedback loop. When excited by an external laser, the cavity field has two co-existing stable steady-states depending on the position of the moving mirror. If the latter moves slow enough, the field in the cavity adjusts itself adiabatically to the mirror's instantaneous position. The mirror experiences radiation pressure corresponding to the intensity value. A sharp transition between two values of the radiation pressure force happens twice per every period of the mirror oscillation at non-equivalent positions (hysteresis effect), which leads to a non-zero net energy loss. The cooling mechanism resembles Sisyphus cooling in which the cavity mode performs sudden transitions between two stable states. We provide a dynamical stability analysis of the coupled moving mirror -- cavity field system, and find the parameters for efficient cooling. Direct numerical simulations show that a bistable cavity provides much more efficient cooling compared to the regular one.
Mizuguchi, Satoshi; Sands, William A; Wassinger, Craig A; Lamont, Hugh S; Stone, Michael H
2015-06-01
Examining a countermovement jump (CMJ) force-time curve related to net impulse might be useful in monitoring athletes' performance. This study aimed to investigate the reliability of alternative net impulse calculation and net impulse characteristics (height, width, rate of force development, shape factor, and proportion) and validate against the traditional calculation in the CMJ. Twelve participants performed the CMJ in two sessions (48 hours apart) for test-retest reliability. Twenty participants were involved for the validity assessment. Results indicated intra-class correlation coefficient (ICC) of ≥ 0.89 and coefficient of variation (CV) of ≤ 5.1% for all of the variables except for rate of force development (ICC = 0.78 and CV = 22.3%). The relationship between the criterion and alternative calculations was r = 1.00. While the difference between them was statistically significant (245.96 ± 63.83 vs. 247.14 ± 64.08 N s, p < 0.0001), the effect size was trivial and deemed practically minimal (d = 0.02). In conclusion, variability of rate of force development will pose a greater challenge in detecting performance changes. Also, the alternative calculation can be used practically in place of the traditional calculation to identify net impulse characteristics and monitor and study athletes' performance in greater depth.
NASA Astrophysics Data System (ADS)
Yoon, Seokjin; Kasai, Akihide
2017-11-01
The dominant external forcing factors influencing estuarine circulation differ among coastal environments. A three-dimensional regional circulation model was developed to estimate external influence indices and relative contributions of external forcing factors such as external oceanic forcing, surface heat flux, wind stress, and river discharge to circulation and hydrographic properties in Tango Bay, Japan. Model results show that in Tango Bay, where the Tsushima Warm Current passes offshore of the bay, under conditions of strong seasonal winds and river discharge, the water temperature and salinity are strongly influenced by surface heat flux and river discharge in the surface layer, respectively, while in the middle and bottom layers both are mainly controlled by open boundary conditions. The estuarine circulation is comparably influenced by all external forcing factors, the strong current, surface heat flux, wind stress, and river discharge. However, the influence degree of each forcing factor varies with temporal variations in external forcing factors as: the influence of open boundary conditions is higher in spring and early summer when the stronger current passes offshore of the bay, that of surface heat flux reflects the absolute value of surface heat flux, that of wind stress is higher in late fall and winter due to strong seasonal winds, and that of river discharge is higher in early spring due to snow-melting and summer and early fall due to flood events.
NASA Technical Reports Server (NTRS)
Vonderhaar, T. H.; Stephens, G. L.; Campbell, G. G.
1980-01-01
The annual and seasonal averaged Earth atmosphere radiation budgets derived from the most complete set of satellite observations available are presented. The budgets were derived from a composite of 48 monthly mean radiation budget maps. Annually and seasonally averaged radiation budgets are presented as global averages and zonal averages. The geographic distribution of the various radiation budget quantities is described. The annual cycle of the radiation budget was analyzed and the annual variability of net flux was shown to be largely dominated by the regular semi and annual cycles forced by external Earth-Sun geometry variations. Radiative transfer calculations were compared to the observed budget quantities and surface budgets were additionally computed with particular emphasis on discrepancies that exist between the present computations and previous surface budget estimates.
Micro pumping with cardiomyocyte-polymer hybrid.
Park, Jungyul; Kim, Il Chaek; Baek, Jeongeun; Cha, Misun; Kim, Jinseok; Park, Sukho; Lee, Junghoon; Kim, Byungkyu
2007-10-01
This paper presents a hybrid micropump actuated by the up-down motion of a dome shaped cell-polymer membrane composite. The contractile force induced from self-beating cardiomyocytes cultured on the membrane causes shrinkage and relaxation of a microchamber, leading to a flow in a microchannel. Flow direction is controlled by the geometry of diffuser/nozzle in the microchannel. The fabrication process is noninvasive to cells, thus, cardiomyocytes can robustly maintain their activity for a long time. The fluid motion in the microchannel was monitored by tracking 2 microm polystyrene beads. A net flow rate of 0.226 nl min(-1) was obtained in our microscale device. Our device demonstrates a unique performance of a cell-microdevice hybrid lab-on-a-chip that does not require any external power source, preventing electrical or heat shock to analytes.
Non-Newtonian Aspects of Artificial Intelligence
NASA Astrophysics Data System (ADS)
Zak, Michail
2016-05-01
The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.
NASA Astrophysics Data System (ADS)
Frolking, S. E.; Dommain, R.; Glaser, P. H.; Joos, F.; Jeltsch-Thommes, A.
2016-12-01
The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian tropical peat swamp forests are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a simple force-restore model to represent the perturbation to the atmospheric CO2 and CH4 burdens, and net radiative forcing, resulting from long-term conversion of tropical peat swamp forests to oil palm or acacia plantations. Drainage ditches are installed in land-use conversion to both oil palm and acacia, leading to a persistent change in the system greenhouse gas balance with the atmosphere. Drainage causes the net CO2 exchange to switch from a weak sink (removal from the atmosphere) in the accumulating peat of a swamp forest to a relatively strong source as the peat is oxidized. CH4 emissions increase due to relatively high emissions from the ditches themselves. For these systems, persistent CO2 fluxes have a much stronger impact on atmospheric radiative forcing than do the CH4 fluxes. Prior to conversion, slow peat accumulation (net CO2 uptake) over millennia establishes a slowly increasing net radiative cooling perturbation to the atmosphere. Upon conversion, CO2 loss rates are 16-32 times higher than pre-conversion CO2 uptake rates. Rapid loss rates cause the net radiative forcing perturbation to quickly (decades) become a net warming, which can persist for many centuries after the peat has all been oxidized.
The architecture of neutrophil extracellular traps investigated by atomic force microscopy
NASA Astrophysics Data System (ADS)
Pires, Ricardo H.; Felix, Stephan B.; Delcea, Mihaela
2016-07-01
Neutrophils are immune cells that engage in a suicidal pathway leading to the release of partially decondensed chromatin, or neutrophil extracellular traps (NETs). NETs behave as a double edged sword; they can bind to pathogens thereby ensnaring them and limiting their spread during infection; however, they may bind to host circulating materials and trigger thrombotic events, and are associated with autoimmune disorders. Despite the fundamental role of NETs as part of an immune system response, there is currently a very poor understanding of how their nanoscale properties are reflected in their macroscopic impact. In this work, using a combination of fluorescence and atomic force microscopy, we show that NETs appear as a branching filament network that results in a substantially organized porous structure with openings with 0.03 +/- 0.04 μm2 on average and thus in the size range of small pathogens. Topological profiles typically up to 3 +/- 1 nm in height are compatible with a ``beads on a string'' model of nucleosome chromatin. Typical branch lengths of 153 +/- 103 nm appearing as rigid rods and height profiles of naked DNA in NETs of 1.2 +/- 0.5 nm are indicative of extensive DNA supercoiling throughout NETs. The presence of DNA duplexes could also be inferred from force spectroscopy and the occurrence of force plateaus that ranged from ~65 pN to 300 pN. Proteolytic digestion of NETs resulted in widespread disassembly of the network structure and considerable loss of mechanical properties. Our results suggest that the underlying structure of NETs is considerably organized and that part of its protein content plays an important role in maintaining its mesh architecture. We anticipate that NETs may work as microscopic mechanical sieves with elastic properties that stem from their DNA-protein composition, which is able to segregate particles also as a result of their size. Such a behavior may explain their participation in capturing pathogens and their association with thrombosis.Neutrophils are immune cells that engage in a suicidal pathway leading to the release of partially decondensed chromatin, or neutrophil extracellular traps (NETs). NETs behave as a double edged sword; they can bind to pathogens thereby ensnaring them and limiting their spread during infection; however, they may bind to host circulating materials and trigger thrombotic events, and are associated with autoimmune disorders. Despite the fundamental role of NETs as part of an immune system response, there is currently a very poor understanding of how their nanoscale properties are reflected in their macroscopic impact. In this work, using a combination of fluorescence and atomic force microscopy, we show that NETs appear as a branching filament network that results in a substantially organized porous structure with openings with 0.03 +/- 0.04 μm2 on average and thus in the size range of small pathogens. Topological profiles typically up to 3 +/- 1 nm in height are compatible with a ``beads on a string'' model of nucleosome chromatin. Typical branch lengths of 153 +/- 103 nm appearing as rigid rods and height profiles of naked DNA in NETs of 1.2 +/- 0.5 nm are indicative of extensive DNA supercoiling throughout NETs. The presence of DNA duplexes could also be inferred from force spectroscopy and the occurrence of force plateaus that ranged from ~65 pN to 300 pN. Proteolytic digestion of NETs resulted in widespread disassembly of the network structure and considerable loss of mechanical properties. Our results suggest that the underlying structure of NETs is considerably organized and that part of its protein content plays an important role in maintaining its mesh architecture. We anticipate that NETs may work as microscopic mechanical sieves with elastic properties that stem from their DNA-protein composition, which is able to segregate particles also as a result of their size. Such a behavior may explain their participation in capturing pathogens and their association with thrombosis. Electronic supplementary information (ESI) available: Fluorescence microscopy and AFM images of NETs; fluorescence and AFM images of chromatin of a neutrophil adhered on mica; height contrast AFM image of two plasmids evidencing supercoiling. See DOI: 10.1039/c6nr03416k
Strauss, Eric J; Ishak, Charbel; Inzerillo, Christopher; Walsh, Michael; Yildirim, Gokce; Walker, Peter; Jazrawi, Laith; Rosen, Jeffrey
2007-08-01
To determine whether positioning of the tibia affects the degree of tibial external rotation seen during a dial test in the posterior cruciate ligament (PCL)-posterolateral corner (PLC)-deficient knee. Laboratory investigation. Biomechanics laboratory. An anterior force applied to the tibia in the combined PCL-PLC-deficient knee will yield increased tibial external rotation during a dial test. The degree of tibial external rotation was measured with 5 Nm of external rotation torque applied to the tibia at both 30 degrees and 90 degrees of knee flexion. Before the torque was applied, an anterior force, a posterior force, or neutral (normal, reduced control) force was applied to the tibia. External rotation measurements were repeated after sequential sectioning of the PCL, the posterolateral structures and the fibular collateral ligament (FCL). Baseline testing of the intact specimens demonstrated a mean external rotation of 18.6 degrees with the knee flexed to 30 degrees (range 16.1-21.0 degrees ), and a mean external rotation of 17.3 degrees with the knee flexed to 90 degrees (range 13.8-20.0 degrees ). Sequential sectioning of the PCL, popliteus and popliteofibular ligament, and the FCL led to a significant increase in tibial external rotation compared with the intact knee for all testing scenarios. After sectioning of the popliteus and popliteofibular ligament, the application of an anterior force during testing led to a mean tibial external rotation that was 5 degrees greater than during testing in the neutral position and 7.5 degrees greater than during testing with a posterior force. In the PCL, popliteus/popliteofibular ligament and FCL-deficient knee, external rotation was 9 degrees and 12 degrees greater with the application of an anterior force during testing compared with neutral positioning and the application of a posterior force, respectively. An anterior force applied to the tibia during the dial test in a combined PCL-PLC-injured knee increased the overall amount of observed tibial external rotation during the dial test. The anterior force reduced the posterior tibial subluxation associated with PCL injury, which is analogous to what is observed when the dial test is performed with the patient in the prone position. Reducing the tibia with either an anterior force when the patient is supine or performing the dial test with the patient in the prone position increases the ability of an examiner to detect a concomitant PLC injury in the setting of a PCL-deficient knee.
Multilingual Content Extraction Extended with Background Knowledge for Military Intelligence
2011-06-01
extended with background knowledge (WordNet [Fel98], YAGO [SKW08]) so that new conclusions (logical inferences) can be drawn. For this purpose theorem...such formalized content is extended with background knowledge (WordNet, YAGO ) so that new conclusions (logical inferences) can be drawn. Our aim is to...External Knowledge Formulas Transformation FOLE MRS to FOLE WordNet OpenCyc ... YAGO Logical Calculation Knowledge Background Knowledge Axioms Background
A Large Scale Code Resolution Service Network in the Internet of Things
Yu, Haining; Zhang, Hongli; Fang, Binxing; Yu, Xiangzhan
2012-01-01
In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT's advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS. PMID:23202207
A large scale code resolution service network in the Internet of Things.
Yu, Haining; Zhang, Hongli; Fang, Binxing; Yu, Xiangzhan
2012-11-07
In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT’s advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS.
Delayed-feedback chimera states: Forced multiclusters and stochastic resonance
NASA Astrophysics Data System (ADS)
Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.
2016-07-01
A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.
Twin-spool turbopumps for ''low'' net positive suction pressure operations
NASA Technical Reports Server (NTRS)
Bair, E. K.; Campbell, W. E.; Ford, O. I.
1970-01-01
Modified single-shaft turbopump incorporates inducer and main pump, each separately driven at different speeds through coaxial-shaft arrangement. Inducer operates at low speed for low net positive suction pressure, main pump operates at high speed to generate high pressure. This arrangement requires no external control for the inducer.
Li, Zhijun; Ge, Shuzhi Sam; Liu, Sibang
2014-08-01
This paper investigates optimal feet forces' distribution and control of quadruped robots under external disturbance forces. First, we formulate a constrained dynamics of quadruped robots and derive a reduced-order dynamical model of motion/force. Consider an external wrench on quadruped robots; the distribution of required forces and moments on the supporting legs of a quadruped robot is handled as a tip-point force distribution and used to equilibrate the external wrench. Then, a gradient neural network is adopted to deal with the optimized objective function formulated as to minimize this quadratic objective function subjected to linear equality and inequality constraints. For the obtained optimized tip-point force and the motion of legs, we propose the hybrid motion/force control based on an adaptive neural network to compensate for the perturbations in the environment and approximate feedforward force and impedance of the leg joints. The proposed control can confront the uncertainties including approximation error and external perturbation. The verification of the proposed control is conducted using a simulation.
Knudsen, Mads Faurschou; Jacobsen, Bo Holm; Seidenkrantz, Marit-Solveig; Olsen, Jesper
2014-01-01
The Atlantic Multidecadal Oscillation (AMO) represents a significant driver of Northern Hemisphere climate, but the forcing mechanisms pacing the AMO remain poorly understood. Here we use the available proxy records to investigate the influence of solar and volcanic forcing on the AMO over the last ~450 years. The evidence suggests that external forcing played a dominant role in pacing the AMO after termination of the Little Ice Age (LIA; ca. 1400–1800), with an instantaneous impact on mid-latitude sea-surface temperatures that spread across the North Atlantic over the ensuing ~5 years. In contrast, the role of external forcing was more ambiguous during the LIA. Our study further suggests that the Atlantic Meridional Overturning Circulation is important for linking external forcing with North Atlantic sea-surface temperatures, a conjecture that reconciles two opposing theories concerning the origin of the AMO. PMID:24567051
Knudsen, Mads Faurschou; Jacobsen, Bo Holm; Seidenkrantz, Marit-Solveig; Olsen, Jesper
2014-02-25
The Atlantic Multidecadal Oscillation (AMO) represents a significant driver of Northern Hemisphere climate, but the forcing mechanisms pacing the AMO remain poorly understood. Here we use the available proxy records to investigate the influence of solar and volcanic forcing on the AMO over the last ~450 years. The evidence suggests that external forcing played a dominant role in pacing the AMO after termination of the Little Ice Age (LIA; ca. 1400-1800), with an instantaneous impact on mid-latitude sea-surface temperatures that spread across the North Atlantic over the ensuing ~5 years. In contrast, the role of external forcing was more ambiguous during the LIA. Our study further suggests that the Atlantic Meridional Overturning Circulation is important for linking external forcing with North Atlantic sea-surface temperatures, a conjecture that reconciles two opposing theories concerning the origin of the AMO.
Markolf, Keith L; Jackson, Steven; McAllister, David R
2012-09-01
Syndesmosis (high ankle) sprains produce disruption of the distal tibiofibular ligaments. Forces on the distal fibula that produce these injuries are unknown. Twenty-seven fresh-frozen lower extremities were used for this study. A load cell recorded forces acting on the distal fibula from forced ankle dorsiflexion and applied external foot torque; medial-lateral and anterior-posterior displacements of the distal fibula were recorded. Fibular forces and axial displacements were also recorded with applied axial force. During forced ankle dorsiflexion and external foot torque tests, the distal fibula always displaced posteriorly with respect to the tibia with no measurable medial-lateral displacement. With 10 Nm dorsiflexion moment, cutting the tibiofibular ligaments approximately doubled fibular force and displacement values. Cutting the tibiofibular ligaments significantly increased fibular displacement from applied external foot torque. Fibular forces and axial displacements from applied axial weight-bearing force were highest with the foot dorsiflexed. The highest mean fibular force in the study (271.9 N) occurred with 10 Nm external foot torque applied to a dorsiflexed foot under 1000 N axial force. Two important modes of loading that could produce high ankle sprains were identified: forced ankle dorsiflexion and external foot torque applied to a dorsiflexed ankle loaded with axial force. The distal tibiofibular ligaments restrained fibular displacement during these tests. Residual mortise widening observed at surgery may be the result of tibiofibular ligament injuries caused by posterior displacement of the fibula. Therefore, a syndesmosis screw used to fix the fibula would be subjected to posterior bending forces from these loading modes. Ankle bracing to prevent extreme ankle dorsiflexion during rehabilitation may be advisable to prevent excessive fibular motions that could affect syndesmosis healing.
Fore-Aft Ground Force Adaptations to Induced Forelimb Lameness in Walking and Trotting Dogs
Abdelhadi, Jalal; Wefstaedt, Patrick; Nolte, Ingo; Schilling, Nadja
2012-01-01
Animals alter their locomotor mechanics to adapt to a loss of limb function. To better understand their compensatory mechanisms, this study evaluated the changes in the fore-aft ground forces to forelimb lameness and tested the hypothesis that dogs unload the affected limb by producing a nose-up pitching moment via the exertion of a net-propulsive force when the lame limb is on the ground. Seven healthy Beagles walked and trotted at steady speed on an instrumented treadmill while horizontal force data were collected before and after a moderate lameness was induced. Peak, mean and summed braking and propulsive forces as well as the duration each force was exerted and the time to reach maximum force were evaluated for both the sound and the lame condition. Compared with the sound condition, a net-propulsive force was produced by the lame diagonal limbs due to a reduced braking force in the affected forelimb and an increased propulsive force in the contralateral hindlimb when the dogs walked and trotted. To regain pitch stability and ensure steady speed for a given locomotor cycle, the dogs produced a net-braking force when the sound diagonal limbs were on the ground by exerting greater braking forces in both limbs during walking and additionally reducing the propulsive force in the hindlimb during trotting. Consistent with the proposed mechanism, dogs maximize their double support phases when walking. Likely associated with the fore-aft force adaptations to lameness are changes in muscle recruitment that potentially result in short- and long-term effects on the limb and trunk muscles. PMID:23300614
Roles of production, consumption and trade in global and regional aerosol radiative forcing
NASA Astrophysics Data System (ADS)
Lin, J.; Tong, D.; Davis, S. J.; Ni, R.; Tan, X.; Pan, D.; Zhao, H.; Lu, Z.; Streets, D. G.; Feng, T.; Zhang, Q.; Yan, Y.; Hu, Y.; Li, J.; Liu, Z.; Jiang, X.; Geng, G.; He, K.; Huang, Y.; Guan, D.
2016-12-01
Anthropogenic aerosols exert strong radiative forcing on the climate system. Prevailing view regards aerosol radiative forcing as a result of emissions from regions' economic production, with China and other developing regions having the largest contributions to radiative forcing at present. However, economic production is driven by global demand for computation, and international trade allows for separation of regions consuming goods and services from regions where goods and related aerosol pollution are produced. It has recently been recognized that regions' consumption and trade have profoundly altered the spatial distribution of aerosol emissions and pollution. Building upon our previous work, this study quantifies for the first time the roles of trade and consumption in aerosol climate forcing attributed to different regions. We contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers like Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences in radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions associated with global consumption. Ref: Lin et al., China's international trade and air pollution in the United States, PNAS, 2014 Lin et al., Global climate forcing of aerosols embodied in international trade, Nature Geoscience, 2016
Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces
NASA Astrophysics Data System (ADS)
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth
2015-04-01
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth
2015-04-21
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.
Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates
NASA Technical Reports Server (NTRS)
Walton, Otis R.; Johnson, Scott M.
2010-01-01
The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging. Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.
Three-dimensionally printed biological machines powered by skeletal muscle.
Cvetkovic, Caroline; Raman, Ritu; Chan, Vincent; Williams, Brian J; Tolish, Madeline; Bajaj, Piyush; Sakar, Mahmut Selman; Asada, H Harry; Saif, M Taher A; Bashir, Rashid
2014-07-15
Combining biological components, such as cells and tissues, with soft robotics can enable the fabrication of biological machines with the ability to sense, process signals, and produce force. An intuitive demonstration of a biological machine is one that can produce motion in response to controllable external signaling. Whereas cardiac cell-driven biological actuators have been demonstrated, the requirements of these machines to respond to stimuli and exhibit controlled movement merit the use of skeletal muscle, the primary generator of actuation in animals, as a contractile power source. Here, we report the development of 3D printed hydrogel "bio-bots" with an asymmetric physical design and powered by the actuation of an engineered mammalian skeletal muscle strip to result in net locomotion of the bio-bot. Geometric design and material properties of the hydrogel bio-bots were optimized using stereolithographic 3D printing, and the effect of collagen I and fibrin extracellular matrix proteins and insulin-like growth factor 1 on the force production of engineered skeletal muscle was characterized. Electrical stimulation triggered contraction of cells in the muscle strip and net locomotion of the bio-bot with a maximum velocity of ∼ 156 μm s(-1), which is over 1.5 body lengths per min. Modeling and simulation were used to understand both the effect of different design parameters on the bio-bot and the mechanism of motion. This demonstration advances the goal of realizing forward-engineered integrated cellular machines and systems, which can have a myriad array of applications in drug screening, programmable tissue engineering, drug delivery, and biomimetic machine design.
2017-05-25
operate independently without external nation support; (3) a custom approach is necessary in security forces development based on political requirements...independently without external nation support; (3) a custom approach is necessary in security forces development based on political requirements...interventions both successful and unsuccessful, that an external country must craft a custom approach to develop local security forces based on the
El Ouaaid, Z; Shirazi-Adl, A; Plamondon, A
2018-03-21
To reduce lifting and associated low back injuries, manual material handling operations often involve pulling-pushing of carts at different weights, orientations, and heights. The loads on spine and risk of injury however need to be investigated. The aim of this study was to evaluate muscle forces, spinal loads and trunk stability in pull-push tasks in sagittal-symmetric, static upright standing posture. Three hand-held load magnitudes (80, 120 and 160 N) at four elevations (0, 20, 40 and 60 cm to the L5-S1) and 24 force directions covering all pull/push orientations were considered. For this purpose, a musculoskeletal finite element model with kinematics measured earlier were used. Results demonstrated that peak spinal forces occur under inclined pull (lift) at upper elevations but inclined push at the lowermost one. Minimal spinal loads, on the other hand, occurred at and around vertical pull directions. Overall, spinal forces closely followed variations in the net external moment of pull-push forces at the L5-S1. Local lumbar muscles were most active in pulls while global extensor muscles in lifts. The trunk stability margin decreased with load elevation except at and around horizontal push; it peaked under pulls and reached minimum at vertical lifts. It also increased with antagonist activity in muscles and intra-abdominal pressure. Results provide insight into the marked effects of variation in the load orientation and elevation on muscle forces, spinal loads and trunk stability and hence offer help in rehabilitation, performance enhancement training and design of safer workplaces. Copyright © 2017 Elsevier Ltd. All rights reserved.
Knee Joint Kinetics in Relation to Commonly Prescribed Squat Loads and Depths
Cotter, Joshua A.; Chaudhari, Ait M.; Jamison, Steve T.; Devor, Steven T.
2014-01-01
Controversy exists regarding the safety and performance benefits of performing the squat exercise to depths beyond 90° of knee flexion. Our aim was to compare the net peak external knee flexion moments (pEKFM) experienced over typical ranges of squat loads and depths. Sixteen recreationally trained males (n = 16; 22.7 ± 1.1 yrs; 85.4 ± 2.1 kg; 177.6 ± 0.96 cm; mean ± SEM) with no previous lower limb surgeries or other orthopedic issues and at least one year of consistent resistance training experience while utilizing the squat exercise performed single repetition squat trials in a random order at squat depths of above parallel, parallel, and below parallel. Less than one week before testing, one repetition maximum (1RM) values were found for each squat depth. Subsequent testing required subjects to perform squats at the three depths with three different loads: unloaded, 50% 1RM, and 85% 1RM (nine total trials). Force platform and kinematic data were collected to calculate pEKFM. To assess differences among loads and depths, a two-factor (load and depth) repeated-measures ANOVA with significance set at the P < 0.05 level was used. Squat 1RM significantly decreased 13.6% from the above parallel to parallel squat and another 3.6% from the parallel to the below parallel squat (P < 0.05). Net peak external knee flexion moments significantly increased as both squat depth and load were increased (P ≤ 0.02). Slopes of pEKFM were greater from unloaded to 50% 1RM than when progressing from 50% to 85% 1RM (P < 0.001). The results suggest that that typical decreases in squat loads used with increasing depths are not enough to offset increases in pEKFM. PMID:23085977
Neutrophil extracellular traps: double-edged swords of innate immunity.
Kaplan, Mariana J; Radic, Marko
2012-09-15
Spectacular images of neutrophils ejecting nuclear chromatin and bactericidal proteins, in response to microbes, were first reported in 2004. As externalized chromatin could entangle bacteria, these structures were named neutrophil extracellular traps (NETs). Subsequent studies identified microorganisms and sterile conditions that stimulate NETs, as well as additional cell types that release extracellular chromatin. The release of NETs is the most dramatic stage in a cell death process called NETosis. Experimental evidence suggests that NETs participate in pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. Exaggerated NETosis or diminished NET clearance likely increases risk of autoreactivity to NET components. The biological significance of NETs is just beginning to be explored. A more complete integration of NETosis within immunology and pathophysiology will require better understanding of NET properties associated with specific disease states and microbial infections. This may lead to the identification of important therapeutic targets.
Green Net Value Added as a Sustainability Metric Based on ...
Sustainability measurement in economics involves evaluation of environmental and economic impact in an integrated manner. In this study, system level economic data are combined with environmental impact from a life cycle assessment (LCA) of a common product. We are exploring a costing approach that captures traditional costs but also incorporates externality costs to provide a convenient, easily interpretable metric. Green Net Value Added (GNVA) is a type of full cost accounting that incorporates total revenue, the cost of materials and services, depreciation, and environmental externalities. Two, but not all, of the potential environmental impacts calculated by the standard LCIA method (TRACI) could be converted to externality cost values. We compute externality costs disaggregated by upstream sectors, full cost, and GNVA to evaluate the relative sustainability of Bounty® paper towels manufactured at two production facilities. We found that the longer running, more established line had a higher GNVA than the newer line. The dominant factors contributing to externality costs are calculated to come from the stationary sources in the supply chain: electricity generation (27-35%), refineries (20-21%), pulp and paper making (15-23%). Health related externalities from Particulate Matter (PM2.5) and Carbon Dioxide equivalent (CO2e) emissions appear largely driven by electricity usage and emissions by the facilities, followed by pulp processing and transport. Supply
Effects of load on ground reaction force and lower limb kinematics during concentric squats.
Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos
2005-10-01
The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P < 0.05). Bar linear velocity ranged from 0.54 +/- 0.11 to 2.50 +/- 0.50 m x s(-1) and decreased significantly with increasing external load (P < 0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P < 0.05). The force-barbell velocity curves were fitted using linear models with coefficients (r2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.
Propulsion of Active Colloids by Self-Induced Field Gradients.
Boymelgreen, Alicia; Yossifon, Gilad; Miloh, Touvia
2016-09-20
Previously, metallodielectric Janus particles have been shown to travel with their dielectric hemisphere forward under low frequency applied electric fields as a result of asymmetric induced-charge electroosmotic flow. Here, it is demonstrated that at high frequencies, well beyond the charge relaxation time of the electric double layer induced around the particle, rather than the velocity decaying to zero, the Janus particles reverse direction, traveling with their metallic hemisphere forward. It is proposed that such motion is the result of a surface force, arising from localized nonuniform electric field gradients, induced by the dual symmetry-breaking of an asymmetric particle adjacent to a wall, which act on the induced dipole of the particle to drive net motion even in a uniform AC field. Although the field is external, since the driving gradient is induced on the particle level, it may be considered an active colloid. We have thus termed this propulsion mechanism "self-dielectrophoresis", to distinguish from traditional dielectrophoresis where the driving nonuniform field is externally fixed and the particle direction is restricted. It is demonstrated theoretically and experimentally that the critical frequency at which the particle reverses direction can be characterized by a nondimensional parameter which is a function of electrolyte concentration and particle size.
NASA Astrophysics Data System (ADS)
Chun, Myung-Suk; Chun, Byoungjin; Lee, Ji-Young; Complex Fluids Team
2016-11-01
We investigate the externally time-dependent pulsatile electrokinetic viscous flows by extending the previous simulations concerning the electrokinetic microfluidics for different geometries. The external body force originated from between the nonlinear Poisson-Boltzmann field and the flow-induced electric field is employed in the Cauchy momentum equation, and then the Nernst-Planck equation in connection with the net current conservation is coupled. Our explicit model allows one to quantify the effects of the oscillating frequency and conductance of the Stern layer, considering the shear thinning effect and the strong electric double layer interaction. This presentation reports the new results regarding the implication of optimum frequency pressure pulsations toward realizing mechanical to electrical energy transfer with high conversion efficiencies. These combined factors for different channel dimension are examined in depth to obtain possible enhancements of streaming current, with taking advantage of pulsating pressure field. From experimental verifications by using electrokinetic power chip, it is concluded that our theoretical framework can serve as a useful basis for micro/nanofluidics design and potential applications to the enhanced energy conversion. NRF of Korea (No.2015R1A2A1A15052979) and KIST (No.2E26490).
NASA Technical Reports Server (NTRS)
Campbell, James R.; Lolli, Simone; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.
2016-01-01
One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.070.67 W m(exp -2) in sample-relative terms, which reduces to 0.030.27 W m(exp -2) in absolute terms after normalizing to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud under sampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth of less than or equal to 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualize how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets.
Particles with nonlinear electric response: Suppressing van der Waals forces by an external field.
Soo, Heino; Dean, David S; Krüger, Matthias
2017-01-01
We study the classical thermal component of Casimir, or van der Waals, forces between point particles with highly anharmonic dipole Hamiltonians when they are subjected to an external electric field. Using a model for which the individual dipole moments saturate in a strong field (a model that mimics the charges in a neutral, perfectly conducting sphere), we find that the resulting Casimir force depends strongly on the strength of the field, as demonstrated by analytical results. For a certain angle between the external field and center-to-center axis, the fluctuation force can be tuned and suppressed to arbitrarily small values. We compare the forces between these particles with those between particles with harmonic Hamiltonians and also provide a simple formula for asymptotically large external fields, which we expect to be generally valid for the case of saturating dipole moments.
Studying Climate Response to Forcing by the Nonlinear Dynamical Mode Decomposition
NASA Astrophysics Data System (ADS)
Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander
2017-04-01
An analysis of global climate response to external forcing, both anthropogenic (mainly, CO2 and aerosol) and natural (solar and volcanic), is needed for adequate predictions of global climate change. Being complex dynamical system, the climate reacts to external perturbations exciting feedbacks (both positive and negative) making the response non-trivial and poorly predictable. Thus an extraction of internal modes of climate system, investigation of their interaction with external forcings and further modeling and forecast of their dynamics, are all the problems providing the success of climate modeling. In the report the new method for principal mode extraction from climate data is presented. The method is based on the Nonlinear Dynamical Mode (NDM) expansion [1,2], but takes into account a number of external forcings applied to the system. Each NDM is represented by hidden time series governing the observed variability, which, together with external forcing time series, are mapped onto data space. While forcing time series are considered to be known, the hidden unknown signals underlying the internal climate dynamics are extracted from observed data by the suggested method. In particular, it gives us an opportunity to study the evolution of principal system's mode structure in changing external conditions and separate the internal climate variability from trends forced by external perturbations. Furthermore, the modes so obtained can be extrapolated beyond the observational time series, and long-term prognosis of modes' structure including characteristics of interconnections and responses to external perturbations, can be carried out. In this work the method is used for reconstructing and studying the principal modes of climate variability on inter-annual and decadal time scales accounting the external forcings such as anthropogenic emissions, variations of the solar activity and volcanic activity. The structure of the obtained modes as well as their response to external factors, e.g. forecast their change in 21 century under different CO2 emission scenarios, are discussed. [1] Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510 [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016). Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. http://doi.org/10.1063/1.4968852
Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance formore » the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.« less
NASA Technical Reports Server (NTRS)
Mach, D. M.; Koshak, W. J.
2007-01-01
A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).
Experimentally Building a Qualitative Understanding of Newton's Second Law
NASA Astrophysics Data System (ADS)
Gates, Joshua
2014-12-01
Newton's second law is one of the cornerstones of the introductory physics curriculum, but it can still trouble a large number of students well after its introduction, hobbling their ability to apply the concept to problem solving1 and to related concepts, such as momentum, circular motion, and orbits. While there are several possibilities for lab activities addressing the functional relationship among net force, mass, and acceleration, the qualitative understanding of the connection between forces and acceleration can still be lacking,2 leading to poor performance in problem solving and in assessments such as the Force Concept Inventory3 and Force and Motion Conceptual Evaluation.4 There is a need for strong conceptual understanding of the relationships between net force and acceleration and between acceleration and velocity in order to effectively address common force-motion misconceptions;5 there is a large literature concerning student understanding of force and motion.6
Tanaka, Shinobu; Hayashi, Shigeki; Fukushima, Satoshi; Yasuki, Tsuyoshi
2013-01-01
This article describes the chest injury risk reduction effect of shoulder restraints using finite element (FE) models of the worldwide harmonized side impact dummy (WorldSID) and Total Human Model for Safety (THUMS) in an FE model 32 km/h oblique pole side impact. This research used an FE model of a mid-sized vehicle equipped with various combinations of curtain shield air bags, torso air bags, and shoulder restraint air bags. As occupant models, AM50 WorldSID and THUMS AM50 Version 4 were used for comparison. The research investigated the effect of shoulder restraint air bag on chest injury by comparing cases with and without a shoulder side air bag. The maximum external force to the chest was reduced by shoulder restraint air bag in both WorldSID and THUMS, reducing chest injury risk as measured by the amount of rib deflection, number of the rib fractures, and rib deflection ratio. However, it was also determined that the external force to shoulder should be limited to the chest injury threshold because the external shoulder force transmits to the chest via the arm in the case of WorldSID and via the scapula in the case of THUMS. Because these results show the shoulder restraint air bag effect on chest injury risk, the vent hole size of the shoulder restraint air bag was changed for varying reaction forces to investigate the relationship between the external force to the shoulder and the risk of chest injury. In the case of THUMS, an external shoulder force of 1.8 kN and more force from the shoulder restraint air bag was necessary to help prevent rib fracture. Increasing external force applied to shoulder up to 6.2 kN (the maximum force used in this study) did not induce any rib or clavicle fractures in the THUMS. When the shoulder restraint air bag generated external force to the shoulder from 1.8 to 6.2 kN in THUMS, which were applied to the WorldSID, the shoulder deflection ranged from 35 to 68 mm, and the shoulder force ranged from 1.8 to 2.3 kN. In the test configuration used, a shoulder restraint using the air bag helps reduce chest injury risk by lowering the maximum magnitude of external force to the shoulder and chest. To help reduce rib fracture risk in the THUMS, the shoulder restraint air bag was expected to generate a force of 3.7 kN with a minimum rib deflection ratio. This corresponds to a shoulder rib deflection of 60 mm and a shoulder load of 2.2 kN in WorldSID. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.
Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas
NASA Astrophysics Data System (ADS)
Chowdhury, Snigdha; Mandi, Laxmikanta; Chatterjee, Prasanta
2018-04-01
Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped electrons. The reductive perturbation technique is employed to obtain a forced Korteweg-de Vries-like Schamel equation. An analytical solution is obtained in the presence of externally applied force. The effect of the external applied periodic force is also observed. The effect of the spectral index (κ), the strength ( f 0 ) , and the frequency ( ω ) on the amplitude and width of the solitary wave is obtained. The result may be useful in laboratory plasma as well as space environments.
Contribution of tibiofemoral joint contact to net loads at the knee in gait.
Walter, Jonathan P; Korkmaz, Nuray; Fregly, Benjamin J; Pandy, Marcus G
2015-07-01
Inverse dynamics analysis is commonly used to estimate the net loads at a joint during human motion. Most lower-limb models of movement represent the knee as a simple hinge joint when calculating muscle forces. This approach is limited because it neglects the contributions from tibiofemoral joint contact forces and may therefore lead to errors in estimated muscle forces. The aim of this study was to quantify the contributions of tibiofemoral joint contact loads to the net knee loads calculated from inverse dynamics for multiple subjects and multiple gait patterns. Tibiofemoral joint contact loads were measured in four subjects with instrumented implants as each subject walked at their preferred speed (normal gait) and performed prescribed gait modifications designed to treat medial knee osteoarthritis. Tibiofemoral contact loads contributed substantially to the net knee extension and knee adduction moments in normal gait with mean values of 16% and 54%, respectively. These findings suggest that knee-contact kinematics and loads should be included in lower-limb models of movement for more accurate determination of muscle forces. The results of this study may be used to guide the development of more realistic lower-limb models that account for the effects of tibiofemoral joint contact at the knee. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Molecules, muscles, and machines: Universal performance characteristics of motors
Marden, James H.; Allen, Lee R.
2002-01-01
Animal- and human-made motors vary widely in size and shape, are constructed of vastly different materials, use different mechanisms, and produce an enormous range of mass-specific power. Despite these differences, there is remarkable consistency in the maximum net force produced by broad classes of animal- and human-made motors. Motors that use force production to accomplish steady translational motion of a load (myosin, kinesin, dynein, and RNA polymerase molecules, muscle cells, whole muscles, winches, linear actuators, and rockets) have maximal force outputs that scale as the two-thirds power of mass, i.e., with cross-sectional area. Motors that use cyclical motion to generate force and are more subject to multiaxial stress and vibration have maximal force outputs that scale as a single isometric function of motor mass with mass-specific net force output averaging 57 N⋅kg−1 (SD = 14). Examples of this class of motors includes flying birds, bats, and insects, swimming fish, various taxa of running animals, piston engines, electric motors, and all types of jets. Dependence of force production and stress resistance on cross-sectional area is well known, but the isometric scaling and common upper limit of mass-specific force production by cyclical motion motors has not been recognized previously and is not explained by an existing body of theory. Remarkably, this finding indicates that most of the motors used by humans and animals for transportation have a common upper limit of mass-specific net force output that is independent of materials and mechanisms. PMID:11917097
Molecules, muscles, and machines: universal performance characteristics of motors.
Marden, James H; Allen, Lee R
2002-04-02
Animal- and human-made motors vary widely in size and shape, are constructed of vastly different materials, use different mechanisms, and produce an enormous range of mass-specific power. Despite these differences, there is remarkable consistency in the maximum net force produced by broad classes of animal- and human-made motors. Motors that use force production to accomplish steady translational motion of a load (myosin, kinesin, dynein, and RNA polymerase molecules, muscle cells, whole muscles, winches, linear actuators, and rockets) have maximal force outputs that scale as the two-thirds power of mass, i.e., with cross-sectional area. Motors that use cyclical motion to generate force and are more subject to multiaxial stress and vibration have maximal force outputs that scale as a single isometric function of motor mass with mass-specific net force output averaging 57 N x kg(-1) (SD = 14). Examples of this class of motors includes flying birds, bats, and insects, swimming fish, various taxa of running animals, piston engines, electric motors, and all types of jets. Dependence of force production and stress resistance on cross-sectional area is well known, but the isometric scaling and common upper limit of mass-specific force production by cyclical motion motors has not been recognized previously and is not explained by an existing body of theory. Remarkably, this finding indicates that most of the motors used by humans and animals for transportation have a common upper limit of mass-specific net force output that is independent of materials and mechanisms.
Variability of the contrail radiative forcing due to crystal shape
NASA Astrophysics Data System (ADS)
Markowicz, K. M.; Witek, M. L.
2011-12-01
The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be determined. Two cases are discussed here: a 1% homogeneous contrail cover and the contrail cover provided by Rädel and Shine (2008). In the second distribution case, a more realistic contrail cover is taken into account. This model combines the AERO2K flight inventory with meteorological data and normalizes it with respect to the contrail cover derived from satellite observations. Simulations performed by the Fu-Liou model show significant variability of the shortwave, longwave, and net radiative forcing with crystal shape. The nonspherical crystals have smaller net forcing in contrary to spherical particles. The differences in net radiative forcing between optical models reach up to 50%. The hexagonal column and hexagonal plate particles show the smallest net radiative forcing while the largest forcing is obtained for the spheres. The global and annual mean shortwave, longwave, and net contrail radiative forcing, average over all crystal models and assuming an optical depth of 0.3 at visible wavelengths, is -5.7, 16.8, and 11.1 mW/m2, respectively. A ratio of the radiative forcings' standard deviation to the mean value, derived using 10 different ice particle models, is about 0.2 for the shortwave, 0.14 for the longwave, and 0.23 for the net radiation.
NASA Astrophysics Data System (ADS)
Litt, Maxime; Sicart, Jean-Emmanuel; Six, Delphine; Wagnon, Patrick; Helgason, Warren D.
2017-04-01
Over Saint-Sorlin Glacier in the French Alps (45° N, 6.1° E; ˜ 3 km2) in summer, we study the atmospheric surface-layer dynamics, turbulent fluxes, their uncertainties and their impact on surface energy balance (SEB) melt estimates. Results are classified with regard to large-scale forcing. We use high-frequency eddy-covariance data and mean air-temperature and wind-speed vertical profiles, collected in 2006 and 2009 in the glacier's atmospheric surface layer. We evaluate the turbulent fluxes with the eddy-covariance (sonic) and the profile method, and random errors and parametric uncertainties are evaluated by including different stability corrections and assuming different values for surface roughness lengths. For weak synoptic forcing, local thermal effects dominate the wind circulation. On the glacier, weak katabatic flows with a wind-speed maximum at low height (2-3 m) are detected 71 % of the time and are generally associated with small turbulent kinetic energy (TKE) and small net turbulent fluxes. Radiative fluxes dominate the SEB. When the large-scale forcing is strong, the wind in the valley aligns with the glacier flow, intense downslope flows are observed, no wind-speed maximum is visible below 5 m, and TKE and net turbulent fluxes are often intense. The net turbulent fluxes contribute significantly to the SEB. The surface-layer turbulence production is probably not at equilibrium with dissipation because of interactions of large-scale orographic disturbances with the flow when the forcing is strong or low-frequency oscillations of the katabatic flow when the forcing is weak. In weak forcing when TKE is low, all turbulent fluxes calculation methods provide similar fluxes. In strong forcing when TKE is large, the choice of roughness lengths impacts strongly the net turbulent fluxes from the profile method fluxes and their uncertainties. However, the uncertainty on the total SEB remains too high with regard to the net observed melt to be able to recommend one turbulent flux calculation method over another.
Interactions between kinematics and loading during walking for the normal and ACL deficient knee.
Andriacchi, Thomas P; Dyrby, Chris O
2005-02-01
The relationships between extrinsic forces acting at the knee and knee kinematics were examined with the purpose of identifying specific phases of the walking cycle that could cause abnormal kinematics in the anterior cruciate ligament (ACL) deficient knee. Intersegmental forces and moments in directions that would produce anterior-posterior (AP) translation, internal-external (IE) rotation and flexion-extension (FE) at the knee were compared with the respective translation and rotations of the tibia relative to the femur during four selected phases (heel strike, weight acceptance, terminal extension and swing) of the walking cycle. The kinematic changes associated with loss of the ACL occurred primarily during the terminal portion of swing phase of the walking cycle where, for the ACL deficient knee, the tibia had reduced external rotation and anterior translation as the knee extended prior to heel strike. The kinematic changes during swing phase were associated with a rotational offset relative to the contralateral knee in the average position of the tibia towards internal rotation. The offset was maintained through the entire gait cycle. The abnormal offsets in the rotational position were correlated with the magnitude of the flexion moment (balanced by a net quadriceps moment) during weight acceptance. These results suggest that adaptations to the patterns of muscle firing during walking can compensate for kinematic changes associated with the loss of the ACL. The altered rotational position would cause changes in tibiofemoral contact during walking that could cause the type of degenerative changes reported in the meniscus and the articular cartilage following ACL injury.
The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.
Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith
2006-06-15
Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.
Is midsole thickness a key parameter for the running pattern?
Chambon, Nicolas; Delattre, Nicolas; Guéguen, Nils; Berton, Eric; Rao, Guillaume
2014-01-01
Many studies have highlighted differences in foot strike pattern comparing habitually shod runners who ran barefoot and with running shoes. Barefoot running results in a flatter foot landing and in a decreased vertical ground reaction force compared to shod running. The aim of this study was to investigate one possible parameter influencing running pattern: the midsole thickness. Fifteen participants ran overground at 3.3 ms(-1) barefoot and with five shoes of different midsole thickness (0 mm, 2 mm, 4 mm, 8 mm, 16 mm) with no difference of height between rearfoot and forefoot. Impact magnitude was evaluated using transient peak of vertical ground reaction force, loading rate, tibial acceleration peak and rate. Hip, knee and ankle flexion angles were computed at touch-down and during stance phase (range of motion and maximum values). External net joint moments and stiffness for hip, knee and ankle joints were also observed as well as global leg stiffness. No significant effect of midsole thickness was observed on ground reaction force and tibial acceleration. However, the contact time increased with midsole thickness. Barefoot running compared to shod running induced ankle in plantar flexion at touch-down, higher ankle dorsiflexion and lower knee flexion during stance phase. These adjustments are suspected to explain the absence of difference on ground reaction force and tibial acceleration. This study showed that the presence of very thin footwear upper and sole was sufficient to significantly influence the running pattern. Copyright © 2014 Elsevier B.V. All rights reserved.
On the autonomous motion of active drops or bubbles.
Ryazantsev, Yuri S; Velarde, Manuel G; Guzman, Eduardo; Rubio, Ramón G; Ortega, Francisco; Montoya, Juan-Jose
2018-05-19
Thermo-capillary stresses on the surface of a drop can be the result of a non-isothermal surface chemical conversion of a reactant dissolved in the host fluid. The strength of heat production (with e.g. absorption) on the surface is ruled by the diffusion of the reactant and depends on the state of motion of the drop. Such thermo-capillary stresses can provoke the motion of the drop or its motionless state in the presence of an external body force. If in the balance of forces, including indeed viscous drag, the net resultant force vanishes there is the possibility of autonomous motion with constant velocity of the drop. Focusing on drops with radii in the millimeter range provided here is a quantitative study of the possibility of such autonomous motion when the drop, considered as active unit, is seat of endo- or exo-thermic reactive processes that dominate its motion. The framework is restricted to Stokes flows in the hydrodynamics, negligible heat Peclet number while the solute Peclet number is considered very high. A boundary layer approximation is used in the description of reactant diffusion. Those processes eventually end up in the action being expressed by surface tension gradients and the Marangoni effect. Explicit expressions of the force acting on the drop and the velocity fields inside and outside the drop are provided. Some significant particular cases are discussed to illustrate the usefulness of the theory. Copyright © 2018. Published by Elsevier Inc.
External Forces Affecting Higher Education. NACUBO Professional File. Vol. 7, No. 5.
ERIC Educational Resources Information Center
Bailey, Stephen K.
Out of the many external forces that influence college campuses, there are four that have had (or are likely to have) a major impact on the fortunes of higher education. The ways in which college and university officials and friends react to these forces can make an enormous difference to the future of higher education. The forces are: (1) Federal…
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-06-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-03-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
Radiative Forcing Due to Major Aerosol Emitting Sectors in China and India
NASA Technical Reports Server (NTRS)
Streets, David G.; Shindell, Drew Todd; Lu, Zifeng; Faluvegi, Greg
2013-01-01
Understanding the radiative forcing caused by anthropogenic aerosol sources is essential for making effective emission control decisions to mitigate climate change. We examined the net direct plus indirect radiative forcing caused by carbonaceous aerosol and sulfur emissions in key sectors of China and India using the GISS-E2 chemistry-climate model. Diesel trucks and buses (67 mW/ sq. m) and residential biofuel combustion (52 mW/ sq. m) in India have the largest global mean, annual average forcings due mainly to the direct and indirect effects of BC. Emissions from these two sectors in China have near-zero net global forcings. Coal-fired power plants in both countries exert a negative forcing of about -30 mW/ sq. m from production of sulfate. Aerosol forcings are largest locally, with direct forcings due to residential biofuel combustion of 580 mW/ sq. m over India and 416 mW/ sq. m over China, but they extend as far as North America, Europe, and the Arctic
NASA Astrophysics Data System (ADS)
Bai, Zhan-Wu; Zhang, Wei
2018-01-01
The diffusion behaviors of Brownian particles in a tilted periodic potential under the influence of an internal white noise and an external Ornstein-Uhlenbeck noise are investigated through numerical simulation. In contrast to the case when the bias force is smaller or absent, the diffusion coefficient exhibits a nonmonotonic dependence on the correlation time of the external noise when bias force is large. A mechanism different from locked-to-running transition theory is presented for the diffusion enhancement by a bias force in intermediate to large damping. In the underdamped regime and the presence of external noise, the diffusion coefficient is a monotonically decreasing function of low temperature rather than a nonmonotonic function when external noise is absent. The diffusive process undergoes four regimes when bias force approaches but is less than its critical value and noises intensities are small. These behaviors can be attributed to the locked-to-running transition of particles.
Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P
2017-04-01
The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.
Jansen-Osmann, Petra; Richter, Stefanie; Konczak, Jürgen; Kalveram, Karl-Theodor
2002-03-01
When humans perform goal-directed arm movements under the influence of an external damping force, they learn to adapt to these external dynamics. After removal of the external force field, they reveal kinematic aftereffects that are indicative of a neural controller that still compensates the no longer existing force. Such behavior suggests that the adult human nervous system uses a neural representation of inverse arm dynamics to control upper-extremity motion. Central to the notion of an inverse dynamic model (IDM) is that learning generalizes. Consequently, aftereffects should be observable even in untrained workspace regions. Adults have shown such behavior, but the ontogenetic development of this process remains unclear. This study examines the adaptive behavior of children and investigates whether learning a force field in one hemifield of the right arm workspace has an effect on force adaptation in the other hemifield. Thirty children (aged 6-10 years) and ten adults performed 30 degrees elbow flexion movements under two conditions of external damping (negative and null). We found that learning to compensate an external damping force transferred to the opposite hemifield, which indicates that a model of the limb dynamics rather than an association of visited space and experienced force was acquired. Aftereffects were more pronounced in the younger children and readaptation to a null-force condition was prolonged. This finding is consistent with the view that IDMs in children are imprecise neural representations of the actual arm dynamics. It indicates that the acquisition of IDMs is a developmental achievement and that the human motor system is inherently flexible enough to adapt to any novel force within the limits of the organism's biomechanics.
NASA Astrophysics Data System (ADS)
Chen, Xiang
2012-11-01
We investigate the net force on a rigid Casimir cavity generated by vacuum fluctuations of electromagnetic field in three cases: de Sitter space-time, de Sitter space-time with weak gravitational field and Schwarzschild-de Sitter space-time. In de Sitter space-time the resulting net force follows the square inverse law but unfortunately it is too weak to be measurable due to the large universe radius. By introducing a weak gravitational field into the de Sitter space-time, we find that the net force can now be split into two parts, one is the gravitational force due to the induced effective mass between the two plates and the other one is generated by the metric structure of de Sitter space-time. In order to investigate the vacuum fluctuation force on the rigid cavity under strong gravitational field, we perform a similar analysis in Schwarzschild-de Sitter space-time and results are obtained in three different limits. The most interesting one is when the cavity gets closer to the horizon of a blackhole, square inverse law is recovered and the repulsive force due to negative energy/mass of the cavity now has an observable strength. More importantly the force changes from being repulsive to attractive when the cavity crosses the event horizon, so that the energy/mass of the cavity switches the sign, which suggests the unusual time direction inside the event horizon.
Health safety nets can break cycles of poverty and disease: a stochastic ecological model
Pluciński, Mateusz M.; Ngonghala, Calistus N.; Bonds, Matthew H.
2011-01-01
The persistence of extreme poverty is increasingly attributed to dynamic interactions between biophysical processes and economics, though there remains a dearth of integrated theoretical frameworks that can inform policy. Here, we present a stochastic model of disease-driven poverty traps. Whereas deterministic models can result in poverty traps that can only be broken by substantial external changes to the initial conditions, in the stochastic model there is always some probability that a population will leave or enter a poverty trap. We show that a ‘safety net’, defined as an externally enforced minimum level of health or economic conditions, can guarantee ultimate escape from a poverty trap, even if the safety net is set within the basin of attraction of the poverty trap, and even if the safety net is only in the form of a public health measure. Whereas the deterministic model implies that small improvements in initial conditions near the poverty-trap equilibrium are futile, the stochastic model suggests that the impact of changes in the location of the safety net on the rate of development may be strongest near the poverty-trap equilibrium. PMID:21593026
Radiation reaction on a classical charged particle: a modified form of the equation of motion.
Alcaine, Guillermo García; Llanes-Estrada, Felipe J
2013-09-01
We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.
Radiation reaction on a classical charged particle: A modified form of the equation of motion
NASA Astrophysics Data System (ADS)
Alcaine, Guillermo García; Llanes-Estrada, Felipe J.
2013-09-01
We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.
Small-amplitude oscillations of electrostatically levitated drops
NASA Astrophysics Data System (ADS)
Feng, J. Q.; Beard, K. V.
1990-07-01
The nature of axisymmetric oscillations of electrostatically levitated drops is examined using an analytical method of multiple-parameter perturbations. The solution for the quiescent equilibrium shape exhibits both stretching of the drop surface along the direction of the externally applied electric field and asymmetry about the drop's equatorial plane. In the presence of electric and gravitational fields, small-amplitude oscillations of charged drops differ from the linear modes first analyzed by Rayleigh. The oscillatory response at each frequency consists of several Legendre polynomials rather than just one, and the characteristic frequency for each axisymmetric mode decreases from that calculated by Rayleigh as the electric field strength increases. This lowering of the characteristic frequencies is enhanced by the net electric charge required for levitation against gravity. Since the contributions of the various forces appear explicitly in the analytic solutions, physical insight is readily gained into their causative role in drop behavior.
Frequency effects on the stability of a journal bearing for periodic loading
NASA Technical Reports Server (NTRS)
Vijayaraghavan, D.; Brewe, D. E.
1991-01-01
The stability of a journal bearing is numerically predicted when a unidirectional periodic external load is applied. The analysis is performed using a cavitation algorithm, which mimics the Jakobsson-Floberg and Olsson (JFO) theory by accounting for the mass balance through the complete bearing. Hence, the history of the film is taken into consideration. The loading pattern is taken to be sinusoidal and the frequency of the load cycle is varied. The results are compared with the predictions using Reynolds boundary conditions for both film rupture and reformation. With such comparisons, the need for accurately predicting the cavitation regions for complex loading patterns is clearly demonstrated. For a particular frequency of loading, the effects of mass, amplitude of load variation and frequency of journal speed are also investigated. The journal trajectories, transient variations in fluid film forces, net surface velocity and minimum film thickness, and pressure profiles are also presented.
Integrated analysis of energy transfers in elastic-wave turbulence.
Yokoyama, Naoto; Takaoka, Masanori
2017-08-01
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.
2013-01-01
Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations. PMID:23758937
Kondo, Hisami; Toyota, Hiroyasu; Kamiya, Takayuki; Yamashita, Kazunari; Hakomori, Tadashi; Imoto, Junko; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2017-01-01
External lubrication is a useful method which reduces the adhesion of powder to punches and dies by spraying lubricants during the tableting process. However, no information is available on whether the tablets prepared using an external lubrication system can be applicable for a film coating process. In this study, we evaluated the adhesion force of the film coating layer to the surface of tablets prepared using an external lubrication method, compared with those prepared using internal lubrication method. We also evaluated wettability, roughness and lubricant distribution state on the tablet surface before film coating, and investigated the relationship between peeling of the film coating layer and these tablet surface properties. Increasing lubrication through the external lubrication method decreased wettability of the tablet surface. However, no change was observed in the adhesion force of the film coating layer. On the other hand, increasing lubrication through the internal lubrication method, decreased both wettability of the tablet surface and the adhesion force of the film coating layer. The magnesium stearate distribution state on the tablet surface was assessed using an X-ray fluorescent analyzer and lubricant agglomerates were observed in the case of the internal lubrication method. However, the lubricant was uniformly dispersed in the external lubrication samples. These results indicate that the distribution state of the lubricant affects the adhesion force of the film coating layer, and external lubrication maintained sufficient lubricity and adhesion force of the film coating layer with a small amount of lubricant.
Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.
2014-01-01
Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.
Spatially Synchronous Extinction of Species under External Forcing
NASA Astrophysics Data System (ADS)
Amritkar, R. E.; Rangarajan, Govindan
2006-06-01
More than 99% of the species that ever existed on the surface of the Earth are now extinct and their extinction on a global scale has been a puzzle. One may think that a species under an external threat may survive in some isolated locations leading to the revival of the species. Using a general model we show that, under a common external forcing, the species with a quadratic saturation term first undergoes spatial synchronization and then extinction. The effect can be observed even when the external forcing acts only on some locations provided the dynamics contains a synchronizing term. Absence of the quadratic saturation term can help the species to avoid extinction.
Effect of attentional focus strategies on peak force and performance in the standing long jump.
Wu, Will F W; Porter, Jared M; Brown, Lee E
2012-05-01
Significant benefits in standing long jump performance have been demonstrated when subjects were provided verbal instructions that promoted an external focus of attention compared with an internal focus of attention, suggesting differences in ground reaction forces. The purpose of the present study was to evaluate peak force and jump performance between internal and external focus of attention strategies. Untrained subjects were assigned to both experimental conditions in which verbal instructions were provided to promote either an external or internal focus of attention. All subjects completed a total number of 5 standing long jumps. The results of the study demonstrated that the external focus of attention condition elicited significantly greater jump distance (153.6 ± 38.6 cm) than the internal focus of attention condition (139.5 ± 46.7 cm). There were no significant differences observed between conditions in peak force (1429.8 ± 289.1 N and 1453.7 ± 299.7 N, respectively). The results add to the growing body of literature describing the training and learning benefits of an external focus of attention. Practitioners should create standardized verbal instructions using an external focus of attention to maximize standing long jump performance.
Proprioception Is Robust under External Forces
Kuling, Irene A.; Brenner, Eli; Smeets, Jeroen B. J.
2013-01-01
Information from cutaneous, muscle and joint receptors is combined with efferent information to create a reliable percept of the configuration of our body (proprioception). We exposed the hand to several horizontal force fields to examine whether external forces influence this percept. In an end-point task subjects reached visually presented positions with their unseen hand. In a vector reproduction task, subjects had to judge a distance and direction visually and reproduce the corresponding vector by moving the unseen hand. We found systematic individual errors in the reproduction of the end-points and vectors, but these errors did not vary systematically with the force fields. This suggests that human proprioception accounts for external forces applied to the hand when sensing the position of the hand in the horizontal plane. PMID:24019959
Examining the Impact of External Influences on Police Use of Deadly Force over Time.
ERIC Educational Resources Information Center
White, Michael D.
2002-01-01
Used interrupted time-series analysis (ARIMA) to study the impact of legislation and judicial intervention on the use of deadly force by police officers in Philadelphia, Pennsylvania. Findings generally suggest that dynamic changes in the internal working environment can outweigh the influence of external mechanisms on deadly force use. Findings…
NASA Technical Reports Server (NTRS)
Marshall, J.; Weislogel, M.; Jacobson, T.
1999-01-01
The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single gain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three- dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction. Electrostatic forces are generally under-estimated for their role in causing agglomeration of dispersed grains in particulate clouds, or their role in affecting the internal frictional relationships in packed granular masses. We believe that electrostatic, in particular dipole-mediated processes, are pervasive and probably affect, at some level, everything from astrophysical-scale granular systems such as interstellar nebulae, protoplanetary dust and debris disks, planetary-scale systems such as debris palls from meteorite impact, volcanic eruptions, and aeolian dust storms, all the way to industrial-scale systems in mining, powder and grain processing, pharmaceuticals, and smoke-stack technologies. NASA must concern itself with the electrostatic behavior of dust and sand on Mars because of its potentially critical importance to human exploration. The motion and adhesion of martian surface materials will affect the design and performance of spacesuits, habitats, processing plants, solar panels, and any externally exposed equipment such as surface rovers or communication and weather stations. Additionally, the adhesion of dust and sand could greatly enhance contact with the potentially toxic components of the martian soil.
Thrust measurements of a complete axisymmetric scramjet in an impulse facility
NASA Technical Reports Server (NTRS)
Paull, A.; Stalker, R. J.; Mee, D.
1995-01-01
This paper describes tests which were conducted in the hypersonic impulse facility T4 on a fully integrated axisymmetric scramjet configuration. In these tests the net force on the scramjet vehicle was measured using a deconvolution force balance. This measurement technique and its application to a complex model such as the scramjet are discussed. Results are presented for the scramjet's aerodynamic drag and the net force on the scramjet when fuel is injected into the combustion chambers. It is shown that a scramjet using a hydrogen-silane fuel produces greater thrust than its aerodynamic drag at flight speeds equivalent to 260 m/s.
Cyber Defence in the Armed Forces of the Czech Republic
2010-11-01
undesirable action backward discovery. This solution is based on special tools using NetFlow protocol. Active network elements or specialized hardware...probes attached to the backbone network using a tap can be the sources of NetFlow data. The principal advantage of NetFlow protocol is the fact that it...provides primary data in the open form, which can be easily utilized in the subsequent operations. The FlowMon Probe 4000 is mostly used NetFlow
NetCDF4/HDF5 and Linked Data in the Real World - Enriching Geoscientific Metadata without Bloat
NASA Astrophysics Data System (ADS)
Ip, Alex; Car, Nicholas; Druken, Kelsey; Poudjom-Djomani, Yvette; Butcher, Stirling; Evans, Ben; Wyborn, Lesley
2017-04-01
NetCDF4 has become the dominant generic format for many forms of geoscientific data, leveraging (and constraining) the versatile HDF5 container format, while providing metadata conventions for interoperability. However, the encapsulation of detailed metadata within each file can lead to metadata "bloat", and difficulty in maintaining consistency where metadata is replicated to multiple locations. Complex conceptual relationships are also difficult to represent in simple key-value netCDF metadata. Linked Data provides a practical mechanism to address these issues by associating the netCDF files and their internal variables with complex metadata stored in Semantic Web vocabularies and ontologies, while complying with and complementing existing metadata conventions. One of the stated objectives of the netCDF4/HDF5 formats is that they should be self-describing: containing metadata sufficient for cataloguing and using the data. However, this objective can be regarded as only partially-met where details of conventions and definitions are maintained externally to the data files. For example, one of the most widely used netCDF community standards, the Climate and Forecasting (CF) Metadata Convention, maintains standard vocabularies for a broad range of disciplines across the geosciences, but this metadata is currently neither readily discoverable nor machine-readable. We have previously implemented useful Linked Data and netCDF tooling (ncskos) that associates netCDF files, and individual variables within those files, with concepts in vocabularies formulated using the Simple Knowledge Organization System (SKOS) ontology. NetCDF files contain Uniform Resource Identifier (URI) links to terms represented as SKOS Concepts, rather than plain-text representations of those terms, so we can use simple, standardised web queries to collect and use rich metadata for the terms from any Linked Data-presented SKOS vocabulary. Geoscience Australia (GA) manages a large volume of diverse geoscientific data, much of which is being translated from proprietary formats to netCDF at NCI Australia. This data is made available through the NCI National Environmental Research Data Interoperability Platform (NERDIP) for programmatic access and interdisciplinary analysis. The netCDF files contain both scientific data variables (e.g. gravity, magnetic or radiometric values), but also domain-specific operational values (e.g. specific instrument parameters) best described fully in formal vocabularies. Our ncskos codebase provides access to multiple stores of detailed external metadata in a standardised fashion. Geophysical datasets are generated from a "survey" event, and GA maintains corporate databases of all surveys and their associated metadata. It is impractical to replicate the full source survey metadata into each netCDF dataset so, instead, we link the netCDF files to survey metadata using public Linked Data URIs. These URIs link to Survey class objects which we model as a subclass of Activity objects as defined by the PROV Ontology, and we provide URI resolution for them via a custom Linked Data API which draws current survey metadata from GA's in-house databases. We have demonstrated that Linked Data is a practical way to associate netCDF data with detailed, external metadata. This allows us to ensure that catalogued metadata is kept consistent with metadata points-of-truth, and we can infer complex conceptual relationships not possible with netCDF key-value attributes alone.
Force sharing and other collaborative strategies in a dyadic force perception task
Tatti, Fabio
2018-01-01
When several persons perform a physical task jointly, such as transporting an object together, the interaction force that each person experiences is the sum of the forces applied by all other persons on the same object. Therefore, there is a fundamental ambiguity about the origin of the force that each person experiences. This study investigated the ability of a dyad (two persons) to identify the direction of a small force produced by a haptic device and applied to a jointly held object. In this particular task, the dyad might split the force produced by the haptic device (the external force) in an infinite number of ways, depending on how the two partners interacted physically. A major objective of this study was to understand how the two partners coordinated their action to perceive the direction of the third force that was applied to the jointly held object. This study included a condition where each participant responded independently and another one where the two participants had to agree upon a single negotiated response. The results showed a broad range of behaviors. In general, the external force was not split in a way that would maximize the joint performance. In fact, the external force was often split very unequally, leaving one person without information about the external force. However, the performance was better than expected in this case, which led to the discovery of an unanticipated strategy whereby the person who took all the force transmitted this information to the partner by moving the jointly held object. When the dyad could negotiate the response, we found that the participant with less force information tended to switch his or her response more often. PMID:29474433
Spin-oscillator model for the unzipping of biomolecules by mechanical force.
Prados, A; Carpio, A; Bonilla, L L
2012-08-01
A spin-oscillator system models unzipping of biomolecules (such as DNA, RNA, or proteins) subject to an external force. The system comprises a macroscopic degree of freedom, represented by a one-dimensional oscillator, and internal degrees of freedom, represented by Glauber spins with nearest-neighbor interaction and a coupling constant proportional to the oscillator position. At a critical value F(c) of an applied external force F, the oscillator rest position (order parameter) changes abruptly and the system undergoes a first-order phase transition. When the external force is cycled at different rates, the extension given by the oscillator position exhibits a hysteresis cycle at high loading rates, whereas it moves reversibly over the equilibrium force-extension curve at very low loading rates. Under constant force, the logarithm of the residence time at the stable and metastable oscillator rest position is proportional to F-F(c) as in an Arrhenius law.
Methods for evaluating and ranking transportation energy conservation programs
NASA Astrophysics Data System (ADS)
Santone, L. C.
1981-04-01
The energy conservation programs are assessed in terms of petroleum savings, incremental costs to consumers probability of technical and market success, and external impacts due to environmental, economic, and social factors. Three ranking functions and a policy matrix are used to evaluate the programs. The net present value measure which computes the present worth of petroleum savings less the present worth of costs is modified by dividing by the present value of DOE funding to obtain a net present value per program dollar. The comprehensive ranking function takes external impacts into account. Procedures are described for making computations of the ranking functions and the attributes that require computation. Computations are made for the electric vehicle, Stirling engine, gas turbine, and MPG mileage guide program.
Zastrow, Stefan; Brookman-May, Sabine; Cong, Thi Anh Phuong; Jurk, Stanislaw; von Bar, Immanuel; Novotny, Vladimir; Wirth, Manfred
2015-03-01
To predict outcome of patients with renal cell carcinoma (RCC) who undergo surgical therapy, risk models and nomograms are valuable tools. External validation on independent datasets is crucial for evaluating accuracy and generalizability of these models. The objective of the present study was to externally validate the postoperative nomogram developed by Karakiewicz et al. for prediction of cancer-specific survival. A total of 1,480 consecutive patients with a median follow-up of 82 months (IQR 46-128) were included into this analysis with 268 RCC-specific deaths. Nomogram-estimated survival probabilities were compared with survival probabilities of the actual cohort, and concordance indices were calculated. Calibration plots and decision curve analyses were used for evaluating calibration and clinical net benefit of the nomogram. Concordance between predictions of the nomogram and survival rates of the cohort was 0.911 after 12, 0.909 after 24 months and 0.896 after 60 months. Comparison of predicted probabilities and actual survival estimates with calibration plots showed an overestimation of tumor-specific survival based on nomogram predictions of high-risk patients, although calibration plots showed a reasonable calibration for probability ranges of interest. Decision curve analysis showed a positive net benefit of nomogram predictions for our patient cohort. The postoperative Karakiewicz nomogram provides a good concordance in this external cohort and is reasonably calibrated. It may overestimate tumor-specific survival in high-risk patients, which should be kept in mind when counseling patients. A positive net benefit of nomogram predictions was proven.
On the organizing role of nonmuscular forces during performance of a giant circle in gymnastics.
Sevrez, Violaine; Rao, Guillaume; Berton, Eric; Bootsma, Reinoud J
2012-02-01
Five elite gymnasts performed giant circles on the high bar under different conditions of loading (without and with 6-kg loads attached to the shoulders, waist or ankles). Comparing the gymnasts' kinematic pattern of movement with that of a triple-pendulum moving under the sole influence of nonmuscular forces revealed qualitative similarities, including the adoption of an arched position during the downswing and a piked position during the upswing. The structuring role of nonmuscular forces in the organization of movement was further reinforced by the results of an inverse dynamics analysis, assessing the contributions of gravitational, inertial and muscular components to the net joint torques. Adding loads at the level of the shoulders, waist or ankles systematically influenced movement kinematics and net joint torques. However, with the loads attached at the level of the shoulders or waist, the load-induced changes in gravitational and inertial torques provided the required increase in net joint torque, thereby allowing the muscular torques to remain unchanged. With the loads attached at the level of the ankles, this was no longer the case and the gymnasts increased the muscular torques at the shoulder and hip joints. Together, these results demonstrate that expert gymnasts skillfully exploit the operative nonmuscular forces, employing muscle force only in the capacity of complementary forces needed to perform the task.
Work production of quantum rotor engines
NASA Astrophysics Data System (ADS)
Seah, Stella; Nimmrichter, Stefan; Scarani, Valerio
2018-04-01
We study the mechanical performance of quantum rotor heat engines in terms of common notions of work using two prototypical models: a mill driven by the heat flow from a hot to a cold mode, and a piston driven by the alternate heating and cooling of a single working mode. We evaluate the extractable work in terms of ergotropy, the kinetic energy associated to net directed rotation, as well as the intrinsic work based on the exerted torque under autonomous operation, and we compare them to the energy output for the case of an external dissipative load and for externally driven engine cycles. Our results connect work definitions from both physical and information-theoretical perspectives. In particular, we find that apart from signatures of angular momentum quantization, the ergotropy is consistent with the intuitive notion of work in the form of net directed motion. It also agrees with the energy output to an external load or agent under optimal conditions. This sets forth a consistent thermodynamical description of rotating quantum motors, flywheels, and clocks.
General Matrix Inversion for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms
NASA Technical Reports Server (NTRS)
Mach, D. M.; Koshak, W. J.
2006-01-01
We have developed a matrix calibration procedure that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. Our calibration method is being used with all of our aircraft/electric field sensing combinations and can be generalized to any reasonable combination of electric field measurements and aircraft. We determine a calibration matrix that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or de-emphasized (for example, due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate our calibration technique, we present data from several of our aircraft programs (ER-2, DC-8, Altus, Citation).
Arctic ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983-1990
NASA Technical Reports Server (NTRS)
Schweiger, Axel J.; Key, Jeffrey R.
1994-01-01
Radiative fluxes and cloud forcings for the ocean areas of the Arctic are computed from the monthly cloud product of the International Satellite Cloud Climatology Project (ISCCP) for 1983-90. Spatially averaged short-wave fluxes are compared well with climatological values, while downwelling longwave fluxes are significantly lower. This is probably due to the fact that the ISCCP cloud amounts are underestimates. Top-of-the-atmosphere radiative fluxes are in excellent agreement with measurements from the Earth Radiation Budget Experiment (ERBE). Computed cloud forcings indicate that clouds have a warming effect at the surface and at the top of the atmosphere during winter and a cooling effect during summer. The net radiative effect of clouds is larger at the surface during winter but greater at the top of the atmosphere during summer. Overall the net radiative effect of clouds at the top of the atmosphere is one of cooling. This is in contrast to a previous result from ERBE data showing arctic cloud forcings have a net warming effect. Sensitivities to errors in input parameters are generally greater during winter with cloud amount being the most important paarameter. During summer the surface radiation balance is most sensitive to errors in the measurements of surface reflectance. The results are encouraging, but the estimated error of 20 W/sq m in surface net radiative fluxes is too large, given that estimates of the net radiative warming effect due to a doubling of CO2 are on the order of 4 W/sq m. Because it is difficult to determine the accuracy of results with existing in situ observations, it is recommended that the development of improved algorithms for the retrieval of surface radiative properties be accompanied by the simultaneous assembly of validation datasets.
Preliminary Investigation of Methods to Increase Base Pressure of Plug Nozzles at Mach 0.9
NASA Technical Reports Server (NTRS)
Salmi, Reino J
1956-01-01
The effects of various afterbody changes on the base pressure of a nacelle-type isentropic plug nozzle installation operating at lower-than-design jet pressure ratios were investigated at a Mach number of 0.9. Although the estimates of the net propulsive force contain some uncertainties, the results indicate that both a plain-ring base shroud and a circular-arc boattail fairing reduced the loss in net propulsive force experienced with a cylindrical nacelle installation of the plug nozzle.
Helbig, Manuel; Chasmer, Laura E; Kljun, NatasCha; Quinton, William L; Treat, Claire C; Sonnentag, Oliver
2017-06-01
At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH 4 ) emissions. Here, we quantify the thaw-induced increase in CH 4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO 2 ) exchange. Using nested wetland and landscape eddy covariance net CH 4 flux measurements in combination with flux footprint modeling, we find that landscape CH 4 emissions increase with increasing wetland-to-forest ratio. Landscape CH 4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH 4 emission of ~13 g CH 4 m -2 is the dominating contribution to the landscape CH 4 emission of ~7 g CH 4 m -2 . In contrast, forest contributions to landscape CH 4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr -1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH 4 m -2 yr -1 in landscape CH 4 emissions. A long-term net CO 2 uptake of >200 g CO 2 m -2 yr -1 is required to offset the positive radiative forcing of increasing CH 4 emissions until the end of the 21st century as indicated by an atmospheric CH 4 and CO 2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO 2 flux measurements suggest a long-term net CO 2 uptake between 49 and 157 g CO 2 m -2 yr -1 . Thus, thaw-induced CH 4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century. © 2016 John Wiley & Sons Ltd.
Air pollution radiative forcing from specific emissions sectors at 2030
NASA Astrophysics Data System (ADS)
Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.
2008-01-01
Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.
Foraging at the Edge of Chaos: Internal Clock versus External Forcing
NASA Astrophysics Data System (ADS)
Nicolis, S. C.; Fernández, J.; Pérez-Penichet, C.; Noda, C.; Tejera, F.; Ramos, O.; Sumpter, D. J. T.; Altshuler, E.
2013-06-01
Activity rhythms in animal groups arise both from external changes in the environment, as well as from internal group dynamics. These cycles are reminiscent of physical and chemical systems with quasiperiodic and even chaotic behavior resulting from “autocatalytic” mechanisms. We use nonlinear differential equations to model how the coupling between the self-excitatory interactions of individuals and external forcing can produce four different types of activity rhythms: quasiperiodic, chaotic, phase locked, and displaying over or under shooting. At the transition between quasiperiodic and chaotic regimes, activity cycles are asymmetrical, with rapid activity increases and slower decreases and a phase shift between external forcing and activity. We find similar activity patterns in ant colonies in response to varying temperature during the day. Thus foraging ants operate in a region of quasiperiodicity close to a cascade of transitions leading to chaos. The model suggests that a wide range of temporal structures and irregularities seen in the activity of animal and human groups might be accounted for by the coupling between collectively generated internal clocks and external forcings.
Does temperature nudging overwhelm aerosol radiative ...
For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated meteorology-air quality models that include aerosol direct and indirect effects. However in such multi-modeling systems, temperature changes due to nudging can compete with temperature changes induced by radiatively active & hygroscopic short-lived tracers leading to interesting dilemmas: From weather and climate prediction’s (retrospective or future) point of view when nudging is continuously applied, is there any real added benefit of using such complex and computationally expensive regional integrated modeling systems? What are the relative sizes of these two competing forces? To address these intriguing questions, we convert temperature changes due to nudging into radiative fluxes (referred to as the pseudo radiative forcing, PRF) at the surface and troposphere, and compare the net PRF with the reported aerosol radiative forcing. Results indicate that the PRF at surface dominates PRF at top of the atmosphere (i.e., the net). Also, the net PRF is about 2-4 times larger than estimated aerosol radiative forcing at regional scales while it is significantly larger at local scales. These results also show large surface forcing errors at many polluted urban sites. Thus, operational c
Murphy, Ryan J.; Liu, Hao; Iordachita, Iulian I.; Armand, Mehran
2017-01-01
Dexterous continuum manipulators (DCMs) have been widely adopted for minimally- and less-invasive surgery. During the operation, these DCMs interact with surrounding anatomy actively or passively. The interaction force will inevitably affect the tip position and shape of DCMs, leading to potentially inaccurate control near critical anatomy. In this paper, we demonstrated a 2D mechanical model for a tendon actuated, notched DCM with compliant joints. The model predicted deformation of the DCM accurately in the presence of tendon force, friction force, and external force. A partition approach was proposed to describe the DCM as a series of interconnected rigid and flexible links. Beam mechanics, taking into consideration tendon interaction and external force on the tip and the body, was applied to obtain the deformation of each flexible link of the DCM. The model results were compared with experiments for free bending as well as bending in the presence of external forces acting at either the tip or body of the DCM. The overall mean error of tip position between model predictions and all of the experimental results was 0.62±0.41mm. The results suggest that the proposed model can effectively predict the shape of the DCM. PMID:28989273
Solar and atmospheric forcing on mountain lakes.
Luoto, Tomi P; Nevalainen, Liisa
2016-10-01
We investigated the influence of long-term external forcing on aquatic communities in Alpine lakes. Fossil microcrustacean (Cladocera) and macrobenthos (Chironomidae) community variability in four Austrian high-altitude lakes, determined as ultra-sensitive to climate change, were compared against records of air temperature, North Atlantic Oscillation (NAO) and solar forcing over the past ~400years. Summer temperature variability affected both aquatic invertebrate groups in all study sites. The influence of NAO and solar forcing on aquatic invertebrates was also significant in the lakes except in the less transparent lake known to have remained uniformly cold during the past centuries due to summertime snowmelt input. The results suggest that external forcing plays an important role in these pristine ecosystems through their impacts on limnology of the lakes. Not only does the air temperature variability influence the communities but also larger-scale external factors related to atmospheric circulation patterns and solar activity cause long-term changes in high-altitude aquatic ecosystems, through their connections to hydroclimatic conditions and light environment. These findings are important in the assessment of climate change impacts on aquatic ecosystems and in greater understanding of the consequences of external forcing on lake ontogeny. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Chistopher, Sundar A.; Kliche, Donna V.; Chou, Joyce; Welch, Ronald M.
1996-01-01
Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.
NASA Technical Reports Server (NTRS)
Christopher, Sundar A.; Kliche, Donna A.; Chou, Joyce; Welch, Ronald M.
1996-01-01
Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.
Dynamic force signal processing system of a robot manipulator
NASA Technical Reports Server (NTRS)
Uchiyama, M.; Kitagaki, K.; Hakomori, K.
1987-01-01
If dynamic noises such as those caused by the inertia forces of the hand can be eliminated from the signal of the force sensor installed on the wrist of the robot manipulator and if the necessary information of the external force can be detected with high sensitivity and high accuracy, a fine force feedback control for robots used in high speed and various fields will be possible. As the dynamic force sensing system, an external force estimate method with the extended Kalman filter is suggested and simulations and tests for a one axis force were performed. Later a dynamic signal processing system of six axes was composed and tested. The results are presented.
Thermal Noise Reduction of Mechanical Oscillators by Actively Controlled External Dissipative Forces
NASA Technical Reports Server (NTRS)
Liang, Shoudan; Medich, David; Czajkowsky, Daniel M.; Sheng, Sitong; Yuan, Jian-Yang; Shao, Zhifeng
1999-01-01
We show that the thermal fluctuations of very soft mechanical oscillators, such as the cantilever in an atomic force microscope (AFM), can be reduced without changing the stiffness of the spring or having to lower the environment temperature. We derive a theoretical relationship between the thermal fluctuations of an oscillator and an actively external-dissipative force. This relationship is verified by experiments with an AFM cantilever where the external active force is coupled through a magnetic field. With simple instrumentation, we have reduced the thermal noise amplitude of the cantilever by a factor of 3.4, achieving an apparent temperature of 25 K with the environment at 295K. This active noise reduction approach can significantly improve the accuracy of static position or static force measurements in a number of practical applications.
The lift force on a drop in unbounded plane Poiseuille flow
NASA Technical Reports Server (NTRS)
Wohl, P. R.
1976-01-01
The lift force on a deformable liquid sphere moving in steady, plane Poiseuille-Stokes flow and subjected to an external body force is calculated. The results are obtained by seeking a solution to Stokes' equations for the motion of the liquids inside and outside the slightly perturbed sphere surface, as expansions valid for small values of the ratio of the Weber number to the Reynolds number. When the ratio of the drop and external fluid viscosities is small, the lift exerted on a neutrally buoyant drop is found to be approximately one-tenth of the magnitude of the force reported by Wohl and Rubinow acting on the same drop in unbounded Poiseuille flow in a tube. The resultant trajectory of the drop is calculated and displayed as a function of the external body force.
Jeffree, Ross A; Oberhansli, Francois; Teyssie, Jean-Louis
2007-07-01
An experimental study examined the 96-h net influx from seawater of the anthropogenic radionuclides (241)Am, (60)Co and (134)Cs through the egg-case of the spotted dogfish Scyliorhinus canicula. Net influx directly through the wall of the egg-case was greatest for (134)Cs, then (241)Am and lastly (60)Co. Within the egg-case wall itself the measured concentration factors (CFs) and their gradients in the external, median and internal layers showed that for both (241)Am and (60)Co they were >10(3) in the external layer and declined by an order of magnitude in the interior layer. In contrast (134)Cs had a CF of only about three in the external layer which declined by a factor of 2 towards the two more internal layers of the egg-case. The egg-case apertures, that open within the prehatching stage of embryological development, significantly (P<0.05) increased the net influx of (241)Am and (60)Co to the interior of the egg-case, although their water concentrations were still lower than those in the labelled seawater bath. In contrast, the aperture did not increase the net influx of (134)Cs whose water concentrations equilibrated with those in seawater. Together these results indicate that the egg-case wall is very permeable to (134)Cs, representing little barrier to its movement, and hence consistent with the lack of importance of the aperture in determining its internal water concentrations in the egg-case. In contrast, (241)Am and (60)Co show much higher rates of accumulation by the egg-case, consistent with the measured reduced permeability of its wall, and therefore giving greater prominence to its aperture in the net transfer of these two radionuclides to the egg case's interior. The presence of the embryo within its egg-case did not significantly (P>0.05) affect the rates of influx of radioisotopes, with the exception of an interactive effect for (60)Co with the egg-case aperture (P<0.05). The CF of only (241)Am in the embryo itself relative to the external seawater concentration was significantly (P<0.05) enhanced by the presence of the aperture.
Topological analysis of metabolic networks based on petri net theory.
Zevedei-Oancea, Ionela; Schuster, Stefan
2011-01-01
Petri net concepts provide additional tools for the modelling of metabolic networks. Here, the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometry matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, P-invariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism.
Topological analysis of metabolic networks based on Petri net theory.
Zevedei-Oancea, Ionela; Schuster, Stefan
2003-01-01
Petri net concepts provide additional tools for the modelling of metabolic networks. Here, the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometry matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, P-invariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism.
NASA Astrophysics Data System (ADS)
Kharkar, Prashant S.; Reith, Maarten E. A.; Dutta, Aloke K.
2008-01-01
Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of -OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.
Application of dGNSS in Alpine Ski Racing: Basis for Evaluating Physical Demands and Safety
Gilgien, Matthias; Kröll, Josef; Spörri, Jörg; Crivelli, Philip; Müller, Erich
2018-01-01
External forces, such as ground reaction force or air drag acting on athletes' bodies in sports, determine the sport-specific demands on athletes' physical fitness. In order to establish appropriate physical conditioning regimes, which adequately prepare athletes for the loads and physical demands occurring in their sports and help reduce the risk of injury, sport-and/or discipline-specific knowledge of the external forces is needed. However, due to methodological shortcomings in biomechanical research, data comprehensively describing the external forces that occur in alpine super-G (SG) and downhill (DH) are so far lacking. Therefore, this study applied new and accurate wearable sensor-based technology to determine the external forces acting on skiers during World Cup (WC) alpine skiing competitions in the disciplines of SG and DH and to compare these with those occurring in giant slalom (GS), for which previous research knowledge exists. External forces were determined using WC forerunners carrying a differential global navigation satellite system (dGNSS). Combining the dGNSS data with a digital terrain model of the snow surface and an air drag model, the magnitudes of ground reaction forces were computed. It was found that the applied methodology may not only be used to track physical demands and loads on athletes, but also to simultaneously investigate safety aspects, such as the effectiveness of speed control through increased air drag and ski–snow friction forces in the respective disciplines. Therefore, the component of the ground reaction force in the direction of travel (ski–snow friction) and air drag force were computed. This study showed that (1) the validity of high-end dGNSS systems allows meaningful investigations such as characterization of physical demands and effectiveness of safety measures in highly dynamic sports; (2) physical demands were substantially different between GS, SG, and DH; and (3) safety-related reduction of skiing speed might be most effectively achieved by increasing the ski–snow friction force in GS and SG. For DH an increase in the ski–snow friction force might be equally as effective as an increase in air drag force. PMID:29559918
Effect of lateralized design on muscle and joint reaction forces for reverse shoulder arthroplasty.
Liou, William; Yang, Yang; Petersen-Fitts, Graysen R; Lombardo, Daniel J; Stine, Sasha; Sabesan, Vani J
2017-04-01
Manufacturers of reverse shoulder arthroplasty (RSA) implants have recently designed innovative implants to optimize performance in rotator cuff-deficient shoulders. These advancements are not without tradeoffs and can have negative biomechanical effects. The objective of this study was to develop an integrated finite element analysis-kinematic model to compare the muscle forces and joint reaction forces (JRFs) of 3 different RSA designs. A kinematic model of a normal shoulder joint was adapted from the Delft model and integrated with the well-validated OpenSim shoulder model. Static optimizations then allowed for calculation of the individual muscle forces, moment arms, and JRFs relative to net joint moments. Three-dimensional computer models of 3 RSA designs-humeral lateralized design (HLD), glenoid lateralized design, and Grammont design-were integrated, and parametric studies were performed. Overall, there were decreases in deltoid and rotator cuff muscle forces for all 3 RSA designs. These decreases were greatest in the middle deltoid of the HLD model for abduction and flexion and in the rotator cuff muscles under both internal rotation and external rotation. The JRFs in abduction and flexion decreased similarly for all RSA designs compared with the normal shoulder model, with the greatest decrease seen in the HLD model. These findings demonstrate that the design characteristics implicit in these modified RSA prostheses result in mechanical differences most prominently seen in the deltoid muscle and overall JRFs. Further research using this novel integrated model can help guide continued optimization of RSA design and clinical outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Residual circulation and suspended sediment transport in the Dutch Wadden Sea
NASA Astrophysics Data System (ADS)
Duran-Matute, Matias; Sassi, Maximiliano; de Boer, Gerben; Grawë, Ulf; Gerkema, Theo; van Kessel, Thijs; Cronin, Katherine
2014-05-01
The Dutch Wadden Sea (DWS), situated between continental Europe and the Dutch Wadden Islands, is a semi enclosed basin connected to the North Sea by a series of tidal inlets and composed mainly of tidal flats and sea gullies. The DWS is of high ecological importance due to its biodiversity and has been declared a World Heritage site by UNESCO. It is a dynamic area subject to regional relative sea level rise due to global sea level rise, postglacial rebound and gas exploitation. For intertidal areas to continue to serve as feeding ground for migratory birds, a net import of sediment is required. Observations are crucial but provide only scarce information in space and time. Hence, to estimate the net influx of suspended sediment into the DWS, realistic high resolution three-dimensional numerical simulations have been carried out using the General Estuarine Transport Model (GETM). The hydrodynamics are mainly governed by the tides, the fresh water discharge from several sluices into the DWS and wind variability. It is expected that the transport of suspended particulate matter (SPM) is governed by the same factors, too, in combination with sediment sink and source terms. For validation, the results are compared against different observational data sets, such as tidal gauges, temperature and salinity at a fixed station, and the volumetric flux rate through one of the inlets obtained from an acoustic Doppler current profiler (ADCP) attached to a ferry. SPM transport is modeled for four different sediment classes each of which is defined by the critical shear stress and the settling velocity. Results show a clear net import of SPM through one of the inlets, which is in agreement with the observations. First estimates of the total sediment fluxes through the different inlets are presented together with an analysis on their variability and sensibility to the external forcing. Of particular importance is the net export of SPM during storms as well as the role of storms on sub-tidal variability.
Contribution of family violence to the intergenerational transmission of externalizing behavior.
Ehrensaft, Miriam K; Cohen, Patricia
2012-08-01
Research finds that early antisocial behavior is a risk for later intimate partner violence (IPV) perpetration and victimization, and that children's exposure to their parents' IPV is a risk for subsequent behavior problems. This study tests whether intimate violence (IPV) between partners contributes independently to the intergenerational transmission of antisocial behavior, using the Children in the Community Study, a representative sample (N = 821) followed for over 25 years in 6 assessments. The present study includes a subsample of parents (N = 678) and their offspring (N = 396). We test the role of three mechanisms by which IPV may influence child antisocial behavior-parental psychopathology, parenting practices, and child self-regulation. Results suggest that IPV independently increased the risk for offspring externalizing problems, net of the effects of parental history of antisocial behavior and family violence. IPV also increased the risk for parental post traumatic stress disorder (PTSD) and alcohol use disorder 2 years later, but not for major depressive disorder. Alcohol use disorder independently increased the risk for offspring externalizing behavior, but IPV continued to predict offspring externalizing net of parental alcohol use. Parenting, particularly low satisfaction with the child, was significantly associated with both IPV and externalizing behavior, but did not mediate the effects of IPV on externalizing. IPV predicted higher levels of emotional expressivity, aggression and hostile reactivity, and depressive mood in offspring. Implications for future research and prevention are discussed.
Smith machine counterbalance system affects measures of maximal bench press throw performance.
Vingren, Jakob L; Buddhadev, Harsh H; Hill, David W
2011-07-01
Equipment with counterbalance weight systems is commonly used for the assessment of performance in explosive resistance exercise movements, but it is not known if such systems affect performance measures. The purpose of this study was to determine the effect of using a counterbalance weight system on measures of smith machine bench press throw performance. Ten men and 14 women (mean ± SD: age, 25 ± 4 years; height, 173 ± 10 cm; weight, 77.7 ± 18.3 kg) completed maximal smith machine bench press throws under 4 different conditions (2 × 2; counterbalance × load): with or without a counterbalance weight system and using 'light' or 'moderate' net barbell loads. Performance variables (peak force, peak velocity, and peak power) were measured using a linear accelerometer attached to the barbell. The counterbalance weight system resulted in significant (p < 0.001) reductions in measures of peak force (mean difference ± standard error: light: -112 ± 20 N; moderate: -140 ± 23 N), peak velocity (light: -0.49 ± 0.10 m·s; moderate: -0.33 ± 0.07 m·s), and peak power (light: -220 ± 43 W; moderate: -143 ± 28 W) compared with no counterbalance system for both load conditions. Load condition did not affect absolute or percentage reductions from the counterbalance weight system for any variable. In conclusion, the use of a counterbalance weight system reduces accelerometer-based performance measures for the bench press throw exercise at light and moderate loads. This reduction in measures is likely because of an increase in the external resistance during the movement, which results in a discrepancy between the manually input and the actual value for external load. A counterbalance weight system should not be used when measuring performance in explosive resistance exercises with an accelerometer.
Modelling of current loads on aquaculture net cages
NASA Astrophysics Data System (ADS)
Kristiansen, Trygve; Faltinsen, Odd M.
2012-10-01
In this paper we propose and discuss a screen type of force model for the viscous hydrodynamic load on nets. The screen model assumes that the net is divided into a number of flat net panels, or screens. It may thus be applied to any kind of net geometry. In this paper we focus on circular net cages for fish farms. The net structure itself is modelled by an existing truss model. The net shape is solved for in a time-stepping procedure that involves solving a linear system of equations for the unknown tensions at each time step. We present comparisons to experiments with circular net cages in steady current, and discuss the sensitivity of the numerical results to a set of chosen parameters. Satisfactory agreement between experimental and numerical prediction of drag and lift as function of the solidity ratio of the net and the current velocity is documented.
2013-06-14
ever-evolving contemporary nature of external and internal threats to the safety and security of the American homeland, it becomes increasingly...Major Justin P. Hurt, 146 pages. With the ever-evolving contemporary nature of external and internal threats to the safety and security of the American...HAZMAT Hazardous Materials HRF Homeland Response Force HSPD Homeland Security Presidential Directive JFHQ Joint Force
Causes of irregularities in trends of global mean surface temperature since the late 19th century
2018-01-01
The time series of monthly global mean surface temperature (GST) since 1891 is successfully reconstructed from known natural and anthropogenic forcing factors, including internal climate variability, using a multiple regression technique. Comparisons are made with the performance of 40 CMIP5 models in predicting GST. The relative contributions of the various forcing factors to GST changes vary in time, but most of the warming since 1891 is found to be attributable to the net influence of increasing greenhouse gases and anthropogenic aerosols. Separate statistically independent analyses are also carried out for three periods of GST slowdown (1896–1910, 1941–1975, and 1998–2013 and subperiods); two periods of strong warming (1911–1940 and 1976–1997) are also analyzed. A reduction in total incident solar radiation forcing played a significant cooling role over 2001–2010. The only serious disagreements between the reconstructions and observations occur during the Second World War, especially in the period 1944–1945, when observed near-worldwide sea surface temperatures (SSTs) may be significantly warm-biased. In contrast, reconstructions of near-worldwide SSTs were rather warmer than those observed between about 1907 and 1910. However, the generally high reconstruction accuracy shows that known external and internal forcing factors explain all the main variations in GST between 1891 and 2015, allowing for our current understanding of their uncertainties. Accordingly, no important additional factors are needed to explain the two main warming and three main slowdown periods during this epoch. PMID:29881771
Linking netCDF Data with the Semantic Web - Enhancing Data Discovery Across Domains
NASA Astrophysics Data System (ADS)
Biard, J. C.; Yu, J.; Hedley, M.; Cox, S. J. D.; Leadbetter, A.; Car, N. J.; Druken, K. A.; Nativi, S.; Davis, E.
2016-12-01
Geophysical data communities are publishing large quantities of data across a wide variety of scientific domains which are overlapping more and more. Whilst netCDF is a common format for many of these communities, it is only one of a large number of data storage and transfer formats. One of the major challenges ahead is finding ways to leverage these diverse data sets to advance our understanding of complex problems. We describe a methodology for incorporating Resource Description Framework (RDF) triples into netCDF files called netCDF-LD (netCDF Linked Data). NetCDF-LD explicitly connects the contents of netCDF files - both data and metadata, with external web-based resources, including vocabularies, standards definitions, and data collections, and through them, a whole host of related information. This approach also preserves and enhances the self describing essence of the netCDF format and its metadata, whilst addressing the challenge of integrating various conventions into files. We present a case study illustrating how reasoning over RDF graphs can empower researchers to discover datasets across domain boundaries.
Army Cyber Mission Force - Ambitions and Realities
2015-05-21
London: A & C Black, 2006), 219. 3 Ibid., 227. 4 Susan Pines, Veda Dickerson, and Lori Cates, eds., O*NET Dictionary of Occupational Titles, 2nd ed...Pines, Susan, Veda Dickerson, and Lori Cates. "Experience." In O*NET Dictionary of Occupational Titles
Midsole material-related force control during heel-toe running.
Kersting, Uwe G; Brüggemann, Gert-Peter
2006-01-01
The impact maximum and rearfoot eversion have been used as indicators of load on internal structures in running. The midsole hardness of a typical running shoe was varied systematically to determine the relationship between external ground reaction force (GRF), in-shoe force, and kinematic variables. Eight subjects were tested during overground running at 4 m/s. Rearfoot movement as well as in-shoe forces and external GRF varied nonsystematically with midsole hardness. Kinematic parameters such as knee flexion and foot velocity at touchdown (TD), also varied nonsystematically with altered midsole hardness. Results demonstrate that considerable variations of in-shoe loading occur that were not depicted by external GRF measurements alone. Individuals apparently use different strategies of mechanical and neuromuscular adaptation in response to footwear modifications. In conclusion, shoe design effects on impact forces or other factors relating to injuries depend on the individual and therefore cannot be generalized.
Self-similar solutions of stationary Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Shi, Zuoshunhua
2018-02-01
In this paper, we mainly study the existence of self-similar solutions of stationary Navier-Stokes equations for dimension n = 3 , 4. For n = 3, if the external force is axisymmetric, scaling invariant, C 1 , α continuous away from the origin and small enough on the sphere S2, we shall prove that there exists a family of axisymmetric self-similar solutions which can be arbitrarily large in the class Cloc3 , α (R3 0). Moreover, for axisymmetric external forces without swirl, corresponding to this family, the momentum flux of the flow along the symmetry axis can take any real number. However, there are no regular (U ∈ Cloc3 , α (R3 0)) axisymmetric self-similar solutions provided that the external force is a large multiple of some scaling invariant axisymmetric F which cannot be driven by a potential. In the case of dimension 4, there always exists at least one self-similar solution to the stationary Navier-Stokes equations with any scaling invariant external force in L 4 / 3 , ∞ (R4).
Ellis, Richard G; Sumner, Bonnie J; Kram, Rodger
2014-09-01
There remains substantial debate as to the specific contributions of individual muscles to center of mass accelerations during walking and running. To gain insight, we altered the demand for muscular propulsion and braking by applying external horizontal impeding and aiding forces near the center of mass as subjects walked and ran on a treadmill. We recorded electromyographic activity of the gluteus maximus (superior and inferior portions), the gluteus medius, biceps femoris, semitendinosus/membrinosus, vastus medialis, lateral and medial gastrocnemius and soleus. We reasoned that activity in a propulsive muscle would increase with external impeding force and decrease with external aiding force whereas activity in a braking muscle would show the opposite. We found that during walking the gastrocnemius and gluteus maximus provide propulsion while the vasti are central in providing braking. During running, we found that the gluteus maximus, vastus medialis, gastrocnemius and soleus all contribute to propulsion. Copyright © 2014 Elsevier B.V. All rights reserved.
Defects formation and wave emitting from defects in excitable media
NASA Astrophysics Data System (ADS)
Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni
2016-05-01
Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.
A better way of fitting clips? A comparative study with respect to physical workload.
Gaudez, Clarisse; Wild, Pascal; Aublet-Cuvelier, Agnès
2015-11-01
The clip fitting task is a frequently encountered assembly operation in the car industry. It can cause upper limb pain. During task laboratory simulations, upper limb muscular activity and external force were compared for 4 clip fitting methods: with the bare hand, with an unpowered tool commonly used at a company and with unpowered and powered prototype tools. None of the 4 fitting methods studied induced a lower overall workload than the other three. Muscle activity was lower at the dominant limb when using the unpowered tools and at the non-dominant limb with the bare hand or with the powered tool. Fitting clips with the bare hand required a higher external force than fitting with the three tools. Evaluation of physical workload was different depending on whether external force or muscle activity results were considered. Measuring external force only, as recommended in several standards, is insufficient for evaluating physical workload. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
The Vorticity Budgets of North Atlantic Winter Marine Extratropical Cyclones Development
NASA Astrophysics Data System (ADS)
Azad, R.; Sorteberg, A.
2012-12-01
A partitioned form of the Zwack-Okossi (Z-O) tendency equation is employed to examine the composite role of dynamic and thermodynamic forcing mechanisms to the development of North Atlantic winter marine extratropical cyclones. The results provide a further insight into the budgets of near surface cyclonic geostrophic vorticity (CGV) and their evolution during the life cycle of mid-latitude low pressure systems. Of interest are the direct, indirect and net effects of the Z-O forcing mechanisms. The direct effect shows the contribution of each process to the near surface geostrophic vorticity tendency, while the indirect effect implies the contribution from the associated vertical motion and resulting adiabatic cooling or warming. The net effect is the sum of the direct and indirect effects.We found that the vorticity advection term is the largest net contributor to the development of the marine cyclones. The net positive effect of both the temperature advection and latent heating terms is smaller owing to the induced adiabatic cooling which reduces the positive direct contributions. The direct and indirect parts of ageostrophic tendency and friction terms support each other, resulting in significant net contributions at the low center.Comparisons of the composite contributions by the Z-O forcing terms at different pressure levels over the low center indicate that, in agreement with previous studies, the commencement of significant development is accompanied with the upper level cyclonic absolute vorticity advection, upper level warm advection and mid-to low level latent heating. However, during the end of the development, mid-tropospheric net contribution by vorticity advection term and low level warm advection controls the production of CGV. The former is due to both the presence of mid-level cyclonic vorticity advection and induced adiabatic warming over the composite low center.
Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid.
Lopes, J Henrique; Azarpeyvand, Mahdi; Silva, Glauber T
2016-01-01
In this paper, the acoustic interaction forces and torques exerted by an arbitrary time-harmonic wave on a set of N objects suspended in an inviscid fluid are theoretically analyzed. We utilize the partial-wave expansion method with translational addition theorem and re-expansion of multipole series to solve the related multiple scattering problem. We show that the acoustic interaction force and torque can be obtained using the farfield radiation force and torque formulas. To exemplify the method, we calculate the interaction forces exerted by an external traveling and standing plane wave on an arrangement of two and three olive-oil droplets in water. The droplets' radii are comparable to the wavelength (i.e., Mie scattering regime). The results show that the acoustic interaction forces present an oscillatory spatial distribution which follows the pattern formed by interference between the external and rescattered waves. In addition, acoustic interaction torques arise on the absorbing droplets whenever a nonsymmetric wavefront is formed by the external and rescattered waves' interference.
Observationally constrained estimates of carbonaceous aerosol radiative forcing.
Chung, Chul E; Ramanathan, V; Decremer, Damien
2012-07-17
Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.
Observationally constrained estimates of carbonaceous aerosol radiative forcing
Chung, Chul E.; Ramanathan, V.; Decremer, Damien
2012-01-01
Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm-2, to be compared with the Intergovernmental Panel on Climate Change’s estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm-2. This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm-2 (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm-2, thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522
Training Analyses Supporting the Land Warrior and Ground Soldier Systems
2009-07-01
unit with LW and MW expressed in terms of unit force effectiveness, impacts to the DOTMLPF domains, life cycle cost, and ability to mitigate Joint...other individual tasks, Soldier and/or leader, be added to NET; should any be eliminated? What methods of instruction/resources should remain the...presentation of the training observation results from the nine-day NET. Terminal Learning Objectives The NET POI ( Omega Training Group, 2006
NASA Astrophysics Data System (ADS)
Eichhorn, R.; Reimann, P.
2004-04-01
We consider a Brownian particle whose motion is confined to a ``meandering'' pathway and which is driven away from thermal equilibrium by an alternating external force. This system exhibits absolute negative mobility, i.e. when an external static force is applied the particle moves in the direction opposite to that force. We reveal the physical mechanism behind this ``donkey-like'' behavior, and derive analytical approximations that are in excellent agreement with numerical results.
NASA Technical Reports Server (NTRS)
Odom, J. B.
1978-01-01
The External Tank must provide a safe storage container for both LH2 and LO2, a means of maintaining propellant quality in order to meet the engine pump net positive suction pressure requirements, and a structural strong-back for the Space Shuttle system, all at the minimum recurring cost and weight, while maintaining quality and reliability. The present paper summarizes External Tank design features and discusses the advantages of using LH2 and LO2 for the Space Shuttle system.
Tibiofemoral contact forces during walking, running and sidestepping.
Saxby, David J; Modenese, Luca; Bryant, Adam L; Gerus, Pauline; Killen, Bryce; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Lloyd, David G
2016-09-01
We explored the tibiofemoral contact forces and the relative contributions of muscles and external loads to those contact forces during various gait tasks. Second, we assessed the relationships between external gait measures and contact forces. A calibrated electromyography-driven neuromusculoskeletal model estimated the tibiofemoral contact forces during walking (1.44±0.22ms(-1)), running (4.38±0.42ms(-1)) and sidestepping (3.58±0.50ms(-1)) in healthy adults (n=60, 27.3±5.4years, 1.75±0.11m, and 69.8±14.0kg). Contact forces increased from walking (∼1-2.8 BW) to running (∼3-8 BW), sidestepping had largest maximum total (8.47±1.57 BW) and lateral contact forces (4.3±1.05 BW), while running had largest maximum medial contact forces (5.1±0.95 BW). Relative muscle contributions increased across gait tasks (up to 80-90% of medial contact forces), and peaked during running for lateral contact forces (∼90%). Knee adduction moment (KAM) had weak relationships with tibiofemoral contact forces (all R(2)<0.36) and the relationships were gait task-specific. Step-wise regression of multiple external gait measures strengthened relationships (0.20
Tidal and meteorological forcing of sediment transport in tributary mudflat channels.
Ralston, David K; Stacey, Mark T
2007-06-01
Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.
Tidal and meteorological forcing of sediment transport in tributary mudflat channels
Ralston, David K.; Stacey, Mark T.
2011-01-01
Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides. PMID:21499572
Relationships Between Potentiation Effects After Ballistic Half-Squats and Bilateral Symmetry.
Suchomel, Timothy J; Sato, Kimitake; DeWeese, Brad H; Ebben, William P; Stone, Michael H
2016-05-01
The purposes of this study were to examine the effect of ballistic concentric-only half-squats (COHS) on subsequent squat-jump (SJ) performances at various rest intervals and to examine the relationships between changes in SJ performance and bilateral symmetry at peak performance. Thirteen resistance-trained men performed an SJ immediately and every minute up to 10 min on dual force plates after 2 ballistic COHS repetitions at 90% of their 1-repetition-maximum COHS. SJ peak force, peak power, net impulse, and rate of force development (RFD) were compared using a series of 1-way repeated-measures ANOVAs. The percent change in performance at which peak performance occurred for each variable was correlated with the symmetry index scores at the corresponding time point using Pearson correlation coefficients. Statistical differences in peak power (P = .031) existed between rest intervals; however, no statistically significant pairwise comparisons were present (P > .05). No statistical differences in peak force (P = .201), net impulse (P = .064), and RFD (P = .477) were present between rest intervals. The relationships between changes in SJ performance and bilateral symmetry after the rest interval that produced the greatest performance for peak force (r = .300, P = .319), peak power (r = -.041, P = .894), net impulse (r = -.028, P = .927), and RFD (r = -.434, P = .138) were not statistically significant. Ballistic COHS may enhance SJ performance; however, the changes in performance were not related to bilateral symmetry.
Henninger, Heath B; Barg, Alexej; Anderson, Andrew E; Bachus, Kent N; Burks, Robert T; Tashjian, Robert Z
2012-09-01
Lateral offset center of rotation (COR) reduces the incidence of scapular notching and potentially increases external rotation range of motion (ROM) after reverse total shoulder arthroplasty (rTSA). The purpose of this study was to determine the biomechanical effects of changing COR on abduction and external rotation ROM, deltoid abduction force, and joint stability. A biomechanical shoulder simulator tested cadaveric shoulders before and after rTSA. Spacers shifted the COR laterally from baseline rTSA by 5, 10, and 15 mm. Outcome measures of resting abduction and external rotation ROM, and abduction and dislocation (lateral and anterior) forces were recorded. Resting abduction increased 20° vs native shoulders and was unaffected by COR lateralization. External rotation decreased after rTSA and was unaffected by COR lateralization. The deltoid force required for abduction significantly decreased 25% from native to baseline rTSA. COR lateralization progressively eliminated this mechanical advantage. Lateral dislocation required significantly less force than anterior dislocation after rTSA, and both dislocation forces increased with lateralization of the COR. COR lateralization had no influence on ROM (adduction or external rotation) but significantly increased abduction and dislocation forces. This suggests the lower incidence of scapular notching may not be related to the amount of adduction deficit after lateral offset rTSA but may arise from limited impingement of the humeral component on the lateral scapula due to a change in joint geometry. Lateralization provides the benefit of increased joint stability, but at the cost of increasing deltoid abduction forces. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1983-01-01
Rockwell International, NASA's prime contractor for the Space Shuttle, asked West Coast Netting (WCN) to develop a safety net for personnel working on the Shuttle Orbiter. This could not be an ordinary net, it had to be relatively small, yet have extraordinary tensile strength. It also had to be fire resistant and resistant to ultraviolet (UV) light. After six months, WCN found the requisite fiber, a polyester-like material called NOMEX. The company was forced to invent a more sophisticated twisting process since conventional methods did not approach specified breaking strength. The resulting product, the Hyperester net, sinks faster and fishes deeper, making it attractive to fishing fleets. A patented treatment for UV protection and greater abrasion resistance make Hyperester nets last longer, and the no-shrink feature is an economic bonus.
NASA Astrophysics Data System (ADS)
Rubio, Rafael M.; Salamanca, Juan J.
2018-07-01
The dynamics of external force free motion of pendulums on surfaces of constant Gaussian curvature is addressed when the pivot moves along a geodesic obtaining the Lagrangian of the system. As an application it is possible the study of elastic and quantum pendulums.
Energy-Water System Solutions | Energy Analysis | NREL
simultaneously. Example Projects Energy, water, and renewable opportunities assessment at Bagram Air Force Base opportunity to plan integrated infrastructure. Example Projects Identification of critical water and campus-level opportunities. Example Projects Net Zero Energy-Water-Waste analysis for Fort Carson Net
Measurement of external forces and torques on a large pointing system
NASA Technical Reports Server (NTRS)
Morenus, R. C.
1980-01-01
Methods of measuring external forces and torques are discussed, in general and as applied to the Large Pointing System wind tunnel tests. The LPS tests were in two phases. The first test was a preliminary test of three models representing coelostat, heliostat, and on-gimbal telescope configurations. The second test explored the coelostat configuration in more detail. The second test used a different setup for measuring external loads. Some results are given from both tests.
Cloud Radiation Forcings and Feedbacks: General Circulation Model Tests and Observational Validation
NASA Technical Reports Server (NTRS)
Lee,Wan-Ho; Iacobellis, Sam F.; Somerville, Richard C. J.
1997-01-01
Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation parameterizations are empirically validated by using a single-column diagnostic model. together with measurements from the Atmospheric Radiation Measurement program and from the Tropical Ocean Global Atmosphere Combined Ocean-Atmosphere Response Experiment. The inclusion of prognostic cloud water produces a notable improvement in the realism of the parameterizations, as judged by these observations. Furthermore, the observational evidence suggests that deriving cloud radiative properties from cloud water content and microphysical characteristics is a promising route to further improvement.
Angular Impulse and Balance Regulation During the Golf Swing.
Peterson, Travis J; Wilcox, Rand R; McNitt-Gray, Jill L
2016-08-01
Our aim was to determine how skilled players regulate linear and angular impulse while maintaining balance during the golf swing. Eleven highly-skilled golf players performed swings with a 6-iron and driver. Components contributing to linear and angular impulse generated by the rear and target legs (resultant horizontal reaction force [RFh], RFh-angle, and moment arm) were quantified and compared across the group and within a player (α = .05). Net angular impulse generated by both the rear and target legs was greater for the driver than the 6-iron. Mechanisms used to regulate angular impulse generation between clubs varied across players and required coordination between the legs. Increases in net angular impulse with a driver involved increases in target leg RFh. Rear leg RFh-angle was maintained between clubs whereas target leg RFh became more aligned with the target line. Net linear impulse perpendicular to the target line remained near zero, preserving balance, while net linear impulse along the target line decreased in magnitude. These results indicate that the net angular impulse was regulated between clubs by coordinating force generation of the rear and target legs while sustaining balance throughout the task.
Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity
NASA Technical Reports Server (NTRS)
Chung, Jacob N.
1996-01-01
The objective of the research is to study the feasibility of employing an external force to replace the buoyancy force in order to maintain nucleate boiling in microgravity. We have found that a bulk velocity field, an electric field and an acoustic field could each play the role of the gravity field in microgravity. Nucleate boiling could be maintained by any one of the three external force fields in space.
Comparing Biofouling Control Treatments for Use on Aquaculture Nets
Swain, Geoffrey; Shinjo, Nagahiko
2014-01-01
Test panels comprised of uncoated, copper coated and silicone coated 7/8'' (22 mm) mesh knitted nylon net were evaluated to compare their properties and the effectiveness to prevent biofouling. This paper describes test procedures that were developed to quantify the performance in terms of antifouling, cleanability, drag and cost. The copper treatment was the most effective at controlling fouling, however, the silicone treated nets were the easiest to clean. The drag forces on the net were a function of twine diameter, twine roughness and fouling. After immersion, the uncoated nets had the most drag followed by the silicone and copper treatments. The cost of applying silicone to nets is high; however, improved formulations may provide a non-toxic alternative to control fouling. PMID:25474085
Coupled loads analysis for Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Eldridge, J.
1992-01-01
Described here is a method for determining the transient response of, and the resultant loads in, a system exposed to predicted external forces. In this case, the system consists of four racks mounted on the inside of a space station resource node module (SSRNMO) which is mounted in the payload bay of the space shuttle. The predicted external forces are forcing functions which envelope worst case forces applied to the shuttle during liftoff and landing. This analysis, called a coupled loads analysis, is used to couple the payload and shuttle models together, determine the transient response of the system, and then recover payload loads, payload accelerations, and payload to shuttle interface forces.
Tool to assess contents of ARM surface meteorology network netCDF files
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudt, A.; Kwan, T.; Tichler, J.
The Atmospheric Radiation Measurement (ARM) Program, supported by the US Department of Energy, is a major program of atmospheric measurement and modeling designed to improve the understanding of processes and properties that affect atmospheric radiation, with a particular focus on the influence of clouds and the role of cloud radiative feedback in the climate system. The ARM Program will use three highly instrumented primary measurement sites. Deployment of instrumentation at the first site, located in the Southern Great Plains of the United States, began in May of 1992. The first phase of deployment at the second site in the Tropicalmore » Western Pacific is scheduled for late in 1995. The third site will be in the North Slope of Alaska and adjacent Arctic Ocean. To meet the scientific objectives of ARM, observations from the ARM sites are combined with data from other sources; these are called external data. Among these external data sets are surface meteorological observations from the Oklahoma Mesonet, a Kansas automated weather network, the Wind Profiler Demonstration Network (WPDN), and the National Weather Service (NWS) surface stations. Before combining these data with the Surface Meteorological Observations Station (SMOS) ARM data, it was necessary to assess the contents and quality of both the ARM and the external data sets. Since these data sets had previously been converted to netCDF format for use by the ARM Science Team, a tool was written to assess the contents of the netCDF files.« less
Satellite Remote Sensing of Fires, Smoke and Regional Radiative Energy Budgets
NASA Technical Reports Server (NTRS)
Christopher, Sundar A.; Wang, Min; Barbieri, Kristine; Welch, Ronald M.; Yang, Shi-Keng
1997-01-01
Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 and 1986 biomass burning season. The results are characterized for four major eco-systems, namely: (1) Tropical Rain Forest (TRF), (2) Tropical Broadleaf Seasonal (TBS), (3) Mild/Warm/Hot Grass/Shrub (MGS), and (4) Savanna/Grass and Seasonal Woods (SGW). Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment [ERBE) data, the direct regional radiative forcing of biomass burning aerosols are computed. The results show that more than 70% of the fires occur in the MGS and SGW eco-systems due to agricultural practices. The smoke generated from biomass burning has negative net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires have mean net radiative forcing values ranging between -25.6 to -33.9 W/sq m for 1985 and between -12.9 to -40.8 W/sq m for 1986. These results confirm that the regional net radiative impact of biomass burning is one of cooling.
A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing
NASA Astrophysics Data System (ADS)
Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.
2010-02-01
Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.
Malaria vaccine development and how external forces shape it: an overview.
Lorenz, Veronique; Karanis, Gabriele; Karanis, Panagiotis
2014-06-30
The aim of this paper is to analyse the current status and scientific value of malaria vaccine approaches and to provide a realistic prognosis for future developments. We systematically review previous approaches to malaria vaccination, address how vaccine efforts have developed, how this issue may be fixed, and how external forces shape vaccine development. Our analysis provides significant information on the various aspects and on the external factors that shape malaria vaccine development and reveal the importance of vaccine development in our society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weis, Tanja; Engel, Dieter; Ehresmann, Arno
2008-12-15
A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.
Modern Aspects of Liquid Metal Engineering
NASA Astrophysics Data System (ADS)
Czerwinski, Frank
2017-02-01
Liquid metal engineering (LME) refers to a variety of physical and/or chemical treatments of molten metals aimed at influencing their solidification characteristics. Although the fundamentals have been known for decades, only recent progress in understanding solidification mechanisms has renewed an interest in opportunities this technique creates for an improvement of castings. This review covers conventional and novel concepts of LME with their application to modern manufacturing techniques based not only on liquid but also on semisolid routes. The role of external forces applied to the melt combined with grain nucleation control is explained along with laboratory- and commercial-scale equipment designed for implementation of various concepts exploring mechanical, electromagnetic, and ultrasound principles. An influence of melt treatments on quality of the final product is considered through distinguishing between internal integrity of net shape components and the alloy microstructure. Recent global developments indicate that exploring the synergy of melt chemistry and physical treatments achieved through LME allows creating the optimum conditions for nucleation and growth during solidification, positively affecting quality of castings.
Solitary waves in the nonlinear Dirac equation in the presence of external driving forces
Mertens, Franz G.; Cooper, Fred; Quintero, Niurka R.; ...
2016-01-05
In this paper, we consider the nonlinear Dirac (NLD) equation in (1 + 1) dimensions with scalar–scalar self interaction g 2/κ + 1 (Ψ¯Ψ) κ + 1 in the presence of external forces as well as damping of the form f(x) - iμγ 0Ψ, where both f and Ψ are two-component spinors. We develop an approximate variational approach using collective coordinates (CC) for studying the time dependent response of the solitary waves to these external forces. This approach predicts intrinsic oscillations of the solitary waves, i.e. the amplitude, width and phase all oscillate with the same frequency. The translational motionmore » is also affected, because the soliton position oscillates around a mean trajectory. For κ = 1 we solve explicitly the CC equations of the variational approximation for slow moving solitary waves in a constant external force without damping and find reasonable agreement with solving numerically the CC equations. Finally, we then compare the results of the variational approximation with no damping with numerical simulations of the NLD equation for κ = 1, when the components of the external force are of the form f j = r j exp(–iΚx) and again find agreement if we take into account a certain linear excitation with specific wavenumber that is excited together with the intrinsic oscillations such that the momentum in a transformed NLD equation is conserved.« less
NASA Astrophysics Data System (ADS)
Frederiksen, Carsten S.; Frederiksen, Jorgen S.; Sisson, Janice M.; Osbrough, Stacey L.
2017-05-01
Changes in the characteristics of Southern Hemisphere (SH) storms, in all seasons, during the second half of the twentieth century, have been related to changes in the annual cycle of SH baroclinic instability. In particular, significant negative trends in baroclinic instability, as measured by the Phillips Criterion, have been found in the region of the climatological storm tracks; a zonal band of significant positive trends occur further poleward. Corresponding to this decrease/increase in baroclinic instability there is a decrease/increase in the growth rate of storm formation at these latitudes over this period, and in some cases a preference for storm formation further poleward than normal. Based on model output from a multi-model ensemble (MME) of coupled atmosphere-ocean general circulation models, it is shown that these trends are the result of external radiative forcing, including anthropogenic greenhouse gases, ozone, aerosols and land-use change. The MME is used in an analysis of variance method to separate the internal (natural) variability in the Phillips Criterion from influences associated with anomalous external radiative forcing. In all seasons, the leading externally forced mode has a significant trend and a loading pattern highly correlated with the pattern of trends in the Phillips Criterion. The covariance between the externally forced component of SH rainfall and the leading external mode strongly resembles the MME pattern of SH rainfall trends. A comparison between similar analyses of MME simulations using the second half of the twenty-first century of the Representative Concentration Pathways (RCP) RCP8.5 and RCP4.5 scenarios show that trends in the Phillips Criterion and rainfall are projected to continue and intensify under increasing anthropogenic greenhouse gas concentrations.
Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Tami C.; Doherty, Sarah J.; Fahey, D. W.
2013-06-06
Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. Predominant sources are combustion related; namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that ismore » quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption, influence on liquid, mixed-phase, and ice clouds, and deposition on snow and ice. These effects are calculated with models, but when possible, they are evaluated with both microphysical measurements and field observations. Global atmospheric absorption attributable to black carbon is too low in many models, and should be increased by about about 60%. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of black carbon is +0.43 W m-2 with 90% uncertainty bounds of (+0.17, +0.68) W m-2. Total direct forcing by all black carbon sources in the present day is estimated as +0.49 (+0.20, +0.76) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings and their rapid responses and feedbacks. The best estimate of industrial-era (1750 to 2005) climate forcing of black carbon through all forcing mechanisms is +0.77 W m-2 with 90% uncertainty bounds of +-0.06 to +1.53 W m-2. Thus, there is a 96% probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. With a value of +0.77 W m-2, black carbon is likely the second most important individual climate-forcing agent in the industrial era, following carbon dioxide. Sources that emit black carbon also emit other short- lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of co- emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil-fuel and biofuel) have a net climate forcing of +0.004 (-0.62 to +0.57) W m-2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all black- carbon-rich sources becomes slightly negative (-0.08 W m-2 with 90% uncertainty bounds of -1.23 to +0.81 W m-2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.« less
Asymmetric adaptation in human walking using the Tethered Pelvic Assist Device (TPAD).
Vashista, Vineet; Reisman, Darcy S; Agrawal, Sunil K
2013-06-01
Human nervous system is capable of modifying motor commands in response to alterations in walking conditions. Previous research has shown that external perturbations that induce gait asymmetry can lead to adaptation in gait parameters. Such strategies have also been shown to temporarily restore gait symmetry in subjects with post stroke hemiparesis. This work aims to develop an experimental paradigm to induce gait asymmetry in human subjects by applying external asymmetric forces on the pelvis through the Tethered Pelvic Assist Device (TPAD). These external forces on the pelvis have the potential to influence the swing and the stance phases of both legs. Eight healthy subjects participated in the experiment where a higher resistive force was applied on the pelvis during the swing phase of the left leg as compared to the right leg. We hypothesized that such asymmetrically applied forces on the pelvis will lead to asymmetric adaptation in the human walking.
Surface effects on friction-induced fluid heating in nanochannel flows.
Li, Zhigang
2009-02-01
We investigate the mechanism of friction-induced fluid heating under the influence of surfaces. The temperature distributions of liquid argon and helium in nanoscale Poiseuille flows are studied through molecular dynamics simulations. It is found that the fluid heating is mainly caused by the viscous friction in the fluid when the external force is small and there is no slip at the fluid-solid interface. When the external force is larger than the fluid-surface binding force, the friction at the fluid-solid interface dominates over the internal friction of the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force. The effect of temperature on the fluid heating is also discussed.
Modulated error diffusion CGHs for neural nets
NASA Astrophysics Data System (ADS)
Vermeulen, Pieter J. E.; Casasent, David P.
1990-05-01
New modulated error diffusion CGHs (computer generated holograms) for optical computing are considered. Specific attention is given to their use in optical matrix-vector, associative processor, neural net and optical interconnection architectures. We consider lensless CGH systems (many CGHs use an external Fourier transform (FT) lens), the Fresnel sampling requirements, the effects of finite CGH apertures (sample and hold inputs), dot size correction (for laser recorders), and new applications for this novel encoding method (that devotes attention to quantization noise effects).
2012-05-17
external civilian success factors rather than recognized competence within the Army organization. Finally, this produced a zero net gain for USAR...officers prior to their MSO and the after-tax net result for a $6,000 bonus was not compelling for many Soldiers. The USAR experienced a noticeable...the maximum active duty end strength. Thus, Congress created Active Duty for Operational Support ( ADOS ). 91 This short-term policy provided
Black Male Labor Force Participation.
ERIC Educational Resources Information Center
Baer, Roger K.
This study attempts to test (via multiple regression analysis) hypothesized relationships between designated independent variables and age specific incidences of labor force participation for black male subpopulations in 54 Standard Metropolitan Statistical Areas. Leading independent variables tested include net migration, earnings, unemployment,…
USDA-ARS?s Scientific Manuscript database
Cotton cultivars with reduced fiber-seed attachment force have the potential to be ginned faster with less energy. The objective of this study was to identify quantitative trait loci (QTL) for net ginning energy (NGE) requirement, and its relationship with other fiber quality traits in upland cotton...
Tuition Pricing and Aid Strategies: A Practical Approach. AIR 1994 Annual Forum Paper.
ERIC Educational Resources Information Center
Fine, Paul L.
This paper examines the applicability of net tuition revenue models for a highly selective, elite priced, private research university in the southern U.S. Pricing and aid strategies for this university seem to be driven by intuitive assumptions about the economy, market forces, needs-blind admissions, student satisfaction, net price…
Anisotropic swim stress in active matter with nematic order
NASA Astrophysics Data System (ADS)
Yan, Wen; Brady, John F.
2018-05-01
Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.
Biscarini, Andrea; Contemori, Samuele; Busti, Daniele; Botti, Fabio M; Pettorossi, Vito E
2016-12-08
Quadriceps strengthening exercises designed for the early phase of anterior cruciate ligament (ACL) rehabilitation should limit the anterior tibial translation developed by quadriceps contraction near full knee extension, in order to avoid excessive strain on the healing tissue. We hypothesize that knee-flexion exercises with simultaneous voluntary contraction of quadriceps (voluntary quadriceps cocontraction) can yield considerable levels of quadriceps activation while preventing the tibia from translating forward relative to the femur. Electromyographic activity in quadriceps and hamstring muscles was measured in 20 healthy males during isometric knee-flexion exercises executed near full knee extension with maximal voluntary effort of quadriceps cocontraction and external resistance (R) ranging from 0% to 60% of the 1-repetition maximum (1RM). Biomechanical modeling was applied to derive the shear (anterior/posterior) tibiofemoral force developed in each exercise condition. Isometric knee-flexion exercises with small external resistance (R=10% 1RM) and maximal voluntary effort of quadriceps cocontraction yielded a net posterior (ACL-unloading) tibial pull (P=0.005) and levels of activation of 32%, 50%, and 45% of maximum voluntary isometric contraction, for the rectus femoris, vastus medialis, and vastus lateralis, respectively. This exercise might potentially rank as one of the most appropriate quadriceps strengthening interventions in the early phase of ACL rehabilitation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C
2009-12-01
The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure whilemore » gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.« less
Bundle, Matthew W; Ernst, Carrie L; Bellizzi, Matthew J; Wright, Seth; Weyand, Peter G
2006-11-01
For both different individuals and modes of locomotion, the external forces determining all-out sprinting performances fall predictably with effort duration from the burst maximums attained for 3 s to those that can be supported aerobically as trial durations extend to roughly 300 s. The common time course of this relationship suggests a metabolic basis for the decrements in the force applied to the environment. However, the mechanical and neuromuscular responses to impaired force production (i.e., muscle fatigue) are generally considered in relation to fractions of the maximum force available, or the maximum voluntary contraction (MVC). We hypothesized that these duration-dependent decrements in external force application result from a reliance on anaerobic metabolism for force production rather than the absolute force produced. We tested this idea by examining neuromuscular activity during two modes of sprint cycling with similar external force requirements but differing aerobic and anaerobic contributions to force production: one- and two-legged cycling. In agreement with previous studies, we found greater peak per leg aerobic metabolic rates [59% (+/-6 SD)] and pedal forces at VO2 peak [30% (+/-9)] during one- vs. two-legged cycling. We also determined downstroke pedal forces and neuromuscular activity by surface electromyography during 15 to 19 all-out constant load sprints lasting from 12 to 400 s for both modes of cycling. In support of our hypothesis, we found that the greater reliance on anaerobic metabolism for force production induced compensatory muscle recruitment at lower pedal forces during two- vs. one-legged sprint cycling. We conclude that impaired muscle force production and compensatory neuromuscular activity during sprinting are triggered by a reliance on anaerobic metabolism for force production.
NASA Astrophysics Data System (ADS)
Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K.
2018-07-01
We investigate the solutions for a set of coupled nonlinear Fokker-Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.
Force generation by titin folding.
Mártonfalvi, Zsolt; Bianco, Pasquale; Naftz, Katalin; Ferenczy, György G; Kellermayer, Miklós
2017-07-01
Titin is a giant protein that provides elasticity to muscle. As the sarcomere is stretched, titin extends hierarchically according to the mechanics of its segments. Whether titin's globular domains unfold during this process and how such unfolded domains might contribute to muscle contractility are strongly debated. To explore the force-dependent folding mechanisms, here we manipulated skeletal-muscle titin molecules with high-resolution optical tweezers. In force-clamp mode, after quenching the force (<10 pN), extension fluctuated without resolvable discrete events. In position-clamp experiments, the time-dependent force trace contained rapid fluctuations and a gradual increase of average force, indicating that titin can develop force via dynamic transitions between its structural states en route to the native conformation. In 4 M urea, which destabilizes H-bonds hence the consolidated native domain structure, the net force increase disappeared but the fluctuations persisted. Thus, whereas net force generation is caused by the ensemble folding of the elastically-coupled domains, force fluctuations arise due to a dynamic equilibrium between unfolded and molten-globule states. Monte-Carlo simulations incorporating a compact molten-globule intermediate in the folding landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles. © 2017 The Protein Society.
Nagahara, Ryu; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo
2018-06-01
We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly-most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely-very likely greater mean propulsive force during the initial four steps and possibly-very likely larger mean net anterior-posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior-posterior force during initial and middle acceleration.
The Strategic Importance of Defeating Underground Facilities
2012-03-20
German Submarine Pens: October 1942-April 1945,‖ December 7, 2010. http://www.usaaf.net/ ww2 /uboats/uboatspg6.htm (accessed 10 December 2011) 48...1945,‖ December 7, 2010. http://www.usaaf.net/ ww2 /uboats/uboatspg6.htm (accessed 10 December 2011). 51 Bradham, Hitler’s U-Boat Fortresses, 55. 52...The U.S. Army Air Forces in World War II, ―Bombing German Submarine Pens: October 1942-April 1945,‖ December 7, 2010. http://www.usaaf.net/ ww2
National Guard and Reserve Equipment Report for Fiscal Year 2013 (NGRER FY 2013)
2012-02-01
MTOEs and modernization of equipment; 2-11 however, the net result has been a more ready and modern force, prepared for utilization as an...projections for cascades to the ARNG through FY 2015. 3. Funding for New and Displaced Equipment Training New Equipment Training ( NET )/Displaced Equipment...Training (DET) funding is dependent on the amount of new equipment scheduled to be received. In FY 2011, the ARNG received $79.6M in NET funding to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiqi; Shi, Zheng; Lu, Xingjie
Terrestrial ecosystems have absorbed roughly 30 % of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C inputmore » (e.g., net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Overall, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnobaeva, L. A., E-mail: kla1983@mail.ru; Siberian State Medical University Moscowski Trakt 2, Tomsk, 634050; Shapovalov, A. V.
Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on dynamics local conformational perturbations (kink) propagating along the DNA molecule is investigated. Such waves have an important role in the regulation of important biological processes in living systems at the molecular level. As a dynamic model of DNA was used a modified sine-Gordon equation, simulating the rotational oscillations of bases in one of the chains DNA. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the frameworkmore » of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker– Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum. Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on the kink dynamics is investigated in the sine–Gordon model. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker–Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum.« less
Instabilities, rheology and spontaneous flows in magnetotactic bacterial suspensions
NASA Astrophysics Data System (ADS)
Alonso-Matilla, Roberto; Saintillan, David
2017-11-01
Magnetotactic bacteria are motile prokaryotes, mostly present in marine habitats, that synthesize intracellular magnetic membrane-bounded crystals known as magnetosomes. They behave as self-propelled permanent magnetic dipoles that orient and migrate along the geomagnetic field lines of the Earth. In this work, we analyze the macroscopic transport properties of suspensions of such bacteria in microfluidic devices. When placed in an external magnetic field, these microorganisms feel a net magnetic torque which is transmitted to the surrounding fluid, and can give rise to a net unidirectional fluid flow in a planar channel, with a flow rate and direction that can be controlled by adjusting both the magnitude and orientation of the external field. Using a continuum kinetic model, we provide a physical explanation for the onset of these spontaneous flows. We also study the rheological properties and stability of these suspensions in both an applied shear flow and a pressure-driven flow.
NASA Astrophysics Data System (ADS)
Frederiksen, Carsten S.; Ying, Kairan; Grainger, Simon; Zheng, Xiaogu
2018-04-01
Models from the coupled model intercomparison project phase 5 (CMIP5) dataset are evaluated for their ability to simulate the dominant slow modes of interannual variability in the Northern Hemisphere atmospheric circulation 500 hPa geopotential height in the twentieth century. A multi-model ensemble of the best 13 models has then been used to identify the leading modes of interannual variability in components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. Modes in the intraseasonal component are related to intraseasonal variability in the North Atlantic, North Pacific and North American, and Eurasian regions and are little affected by the larger radiative forcing of the Representative Concentration Pathways 8.5 (RCP8.5) scenario. The leading modes in the slow-internal component are related to the El Niño-Southern Oscillation, Pacific North American or Tropical Northern Hemisphere teleconnection, the North Atlantic Oscillation, and the Western Pacific teleconnection pattern. While the structure of these slow-internal modes is little affected by the larger radiative forcing of the RCP8.5 scenario, their explained variance increases in the warmer climate. The leading mode in the slow-external component has a significant trend and is shown to be related predominantly to the climate change trend in the well mixed greenhouse gas concentration during the historical period. This mode is associated with increasing height in the 500 hPa pressure level. A secondary influence on this mode is the radiative forcing due to stratospheric aerosols associated with volcanic eruptions. The second slow-external mode is shown to be also related to radiative forcing due to stratospheric aerosols. Under RCP8.5 there is only one slow-external mode related to greenhouse gas forcing with a trend over four times the historical trend.
Liu, Ping; Wang, Jianquan; Xu, Yan; Ao, Yingfang
2015-04-01
The aim of this study was to determine the in situ forces and length patterns of the fibular collateral ligament (FCL) and kinematics of the knee under various loading conditions. Six fresh-frozen cadaveric knees were used (mean age 46 ± 14.4 years; range 20-58). In situ forces and length patterns of FCL and kinematics of the knee were determined under the following loading conditions using a robotic/universal force-moment sensor testing system: no rotation, varus (10 Nm), external rotation (5 Nm), and internal rotation (5 Nm) at 0°, 15°, 30°, 60º, 90°, and 120° of flexion, respectively. Under no rotation loading, the distances between the centres of the FCL attachments decreased as the knee flexed. Under varus loading, the force in FCL peaked at 15° of flexion and decreased with further knee flexion, while distances remained nearly constant and the varus rotation increased with knee flexion. Using external rotation, the force in the FCL also peaked at 15° flexion and decreased with further knee flexion, the distances decreased with flexion, and external rotation increased with knee flexion. Using internal rotation load, the force in the FCL was relatively small across all knee flexion angles, and the distances decreased with flexion; the amount of internal rotation was fairly constant. FCL has a primary role in preventing varus and external rotation at 15° of flexion. The FCL does not perform isometrically following knee flexion during neutral rotation, and tibia rotation has significant effects on the kinematics of the FCL. Varus and external rotation laxity increased following knee flexion. By providing more realistic data about the function and length patterns of the FCL and the kinematics of the intact knee, improved reconstruction and rehabilitation protocols can be developed.
The Net Climate Impact of Coal-Fired Power Plant Emissions
NASA Technical Reports Server (NTRS)
Shindell, D.; Faluvegi, G.
2010-01-01
Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until 1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogeneities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate regional temperature responses may provide additional insight.
The net climate impact of coal-fired power plant emissions
NASA Astrophysics Data System (ADS)
Shindell, D.; Faluvegi, G.
2010-04-01
Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until ~1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low-sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogenaities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate regional temperature responses may provide additional insight.
NASA Astrophysics Data System (ADS)
Mclaughlin, M. K.; Tumolo, B.; Sklar, L. S.; Albertson, L.; Daniels, M.
2017-12-01
The influence of life on geomorphic processes is commonly inferred from correlations between the size and abundance of individual organisms and the change in process thresholds and rates from abiotic conditions. However, to understand and model the underlying mechanisms, it is helpful to make direct measurements of the forces acting between organisms and the earth materials they inhabit. For example, flume studies have found that the presence of net-spinning caddisfly larvae (Trichoptera: Hydropsychidae) can increase the shear stress required to initiate particle motion by more than a factor of two, with potentially significant implications for the timing and magnitude of bedload sediment transport in gravel-bedded rivers. To explore the underlying mechanics we conducted flume experiments at the Stroud Water Research center in Avonadale, Pennsylvania, using strain gages to measure the forces acting between caddisfly nets and sediment particles of various sizes, during the process of initial particle motion. We combine these measurements with high-speed video images to document for the first time, the three dimensional dynamics of net stretching, tearing, and detachment that govern the magnitude of the increase in critical shear stress. We are using these data and insights to substantially improve a previously published theoretical model for the mechanics of sediment stabilization by caddisfly larvae. In particular, we seek to constrain the range of particle sizes potentially stabilized by caddisfly larvae and explain mechanistically why the effect of caddisfly nets varies with particle size. These predictions have implications for understanding feedbacks between bed stabilization by caddisflies, insect density, inter-specific niche partitioning, and the movement of sediment that shapes gravel-bed channels.
Explosive force of primacord grid forms large sheet metal parts
NASA Technical Reports Server (NTRS)
1966-01-01
Primacord which is woven through fish netting in a grid pattern is used for explosive forming of large sheet metal parts. The explosive force generated by the primacord detonation is uniformly distributed over the entire surface of the sheet metal workpiece.
Net radiative forcing responses to regional CO and NMVOC reductions
NASA Astrophysics Data System (ADS)
Fry, M. M.; Schwarzkopf, M. D.; Adelman, Z.; Naik, V.; West, J.
2012-12-01
Recent studies suggest that short-lived pollutants and their precursors be considered in near-term climate mitigation strategies, in addition to national air quality programs, but their associated forcings vary based on the region of emissions. Here we quantify the net radiative forcing (RF) impacts of regional anthropogenic carbon monoxide (CO) and non-methane volatile organic compound (NMVOC) emissions due to changes in the tropospheric concentrations of ozone (O3), methane (CH4), and aerosols (carbonaceous and sulfate), to inform future coordinated actions addressing air quality and climate forcing. We present the RF from CO and NMVOC emission reductions from 10 regions (North America, South America, Europe, Former Soviet Union, Southern Africa, India, East Asia, Southeast Asia, Australia and New Zealand, and Middle East and Northern Africa). The global chemical transport model MOZART-4 is used to simulate tropospheric concentration changes, using the IPCC AR5 Representative Concentration Pathway 8.5 (RCP 8.5) emissions inventory for 2005 and global meteorology from the Goddard Earth Observing System Model, version 5 (GEOS-5) for the years 2004-2005. We utilize the NOAA Geophysical Fluid Dynamics Laboratory standalone radiative transfer model to calculate the stratospheric-adjusted net RF for each regional CO and NMVOC reduction, relative to the base. We find that global annual net RF per unit change in emissions ranges from -0.115 to -0.131 mW m-2 / Tg CO for CO reductions, and -0.0035 to -0.436 mW m-2 / Tg C for NMVOC reductions, with the regions in the tropics providing the greatest improvements (Middle East, Southeast Asia, and India CO reductions, and Middle East, Africa, and India NMVOC reductions). The net RF distributions for the CO and NMVOC reductions show widespread cooling across the northern and southern hemispheres corresponding to the patterns of O3 and CH4 decreases, and localized positive and negative net RFs due to increases and decreases in aerosols. The strongest annual net RF impacts occur within the tropics (28 S - 28 N) followed by the northern mid-latitudes (28 N - 60 N), independent of reduction region for CO, and for many of the NMVOC regional reductions. The small variation in RF per unit emissions for CO, among world regions (coefficient of variation = 0.045), suggests that the error would be small in using a uniform global warming potential (GWP), and in possibly including CO in international climate agreements. In contrast, NMVOCs show greater variability among the reduction regions (coefficient of variation = 0.48), suggesting that regionally-specific GWPs may be more appropriate for NMVOCs.
Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus
Knight, Jason S.; Zhao, Wenpu; Luo, Wei; Subramanian, Venkataraman; O’Dell, Alexander A.; Yalavarthi, Srilakshmi; Hodgin, Jeffrey B.; Eitzman, Daniel T.; Thompson, Paul R.; Kaplan, Mariana J.
2013-01-01
Recent evidence suggests that enhanced neutrophil extracellular trap (NET) formation activates plasmacytoid dendritic cells and serves as a source of autoantigens in SLE. We propose that aberrant NET formation is also linked to organ damage and to the premature vascular disease characteristic of human SLE. Here, we demonstrate enhanced NET formation in the New Zealand mixed 2328 (NZM) model of murine lupus. NZM mice also developed autoantibodies to NETs as well as the ortholog of human cathelicidin/LL37 (CRAMP), a molecule externalized in the NETs. NZM mice were treated with Cl-amidine, an inhibitor of peptidylarginine deiminases (PAD), to block NET formation and were evaluated for lupus-like disease activity, endothelial function, and prothrombotic phenotype. Cl-amidine treatment inhibited NZM NET formation in vivo and significantly altered circulating autoantibody profiles and complement levels while reducing glomerular IgG deposition. Further, Cl-amidine increased the differentiation capacity of bone marrow endothelial progenitor cells, improved endothelium-dependent vasorelaxation, and markedly delayed time to arterial thrombosis induced by photochemical injury. Overall, these findings suggest that PAD inhibition can modulate phenotypes crucial for lupus pathogenesis and disease activity and may represent an important strategy for mitigating cardiovascular risk in lupus patients. PMID:23722903
Current in nanojunctions: Effects of reservoir coupling
NASA Astrophysics Data System (ADS)
Yadalam, Hari Kumar; Harbola, Upendra
2018-07-01
We study the effect of system reservoir coupling on currents flowing through quantum junctions. We consider two simple double-quantum dot configurations coupled to two external fermionic reservoirs and study the net current flowing between the two reservoirs. The net current is partitioned into currents carried by the eigenstates of the system and by the coherences between the eigenstates induced due to coupling with the reservoirs. We find that current carried by populations is always positive whereas current carried by coherences are negative for large couplings. This results in a non-monotonic dependence of the net current on the coupling strength. We find that in certain cases, the net current can vanish at large couplings due to cancellation between currents carried by the eigenstates and by the coherences. These results provide new insights into the non-trivial role of system-reservoir couplings on electron transport through quantum dot junctions. In the presence of weak coulomb interactions, net current as a function of system reservoir coupling strength shows similar trends as for the non-interacting case.
Chang, Junning; Symes, William S; Lim, Felix; Carrasco, L Roman
2016-05-01
Despite the large implications of the use of tropical land for exports ("land absorption") on ecosystem services (ES) and global biodiversity conservation, the magnitude of these externalities is not known. We quantify the net value of ES lost in tropical countries as a result of cropland, forestland and pastureland absorption for exports after deducting ES gains through imports ("land displacement"). We find that net ES gains occur only in 7 out of the 41 countries and regions considered. We estimate global annual net losses of over 1.7 x 10(12) international dollars (I$) (I$1.1 x 10(12) if carbon-related services are not considered). After deducting the benefits from agricultural, forest and livestock rents in land replacing tropical forests, the net annual losses are I$1.3 and I$0.7 x 10(12), respectively. The results highlight the large magnitude of tropical ES losses through international trade that are not compensated by the rents of land uses in absorbed land.
Orientational ordering of colloidal dispersions by application of time-dependent external forces.
Moths, Brian; Witten, T A
2013-08-01
We discuss a method of organizing incoherent motion of a colloidal suspension to produce synchronized, coherent motion, extending the discussion of our recent Letter [Moths and Witten, Phys. Rev. Lett. 110, 028301 (2013)]. The method does not require interaction between the objects. Instead, the effect is controlled by the "twist matrix" which gives the angular velocity of an asymmetric object in a fluid resulting from a weak external force. We analyze the two types of forcing considered in the Letter: a force alternating between two directions and a continuously rotating force. For the alternating force, we justify the claim of the Letter that under appropriate forcing conditions, the orientational entropy of the objects decreases indefinitely with time, on average. We provide a bound on that rate in terms of the twist matrix. For the case of rotating force, we derive conditions for phased-locked motion of the objects to the force and prove that there is only one stable phase-locked orientation under these conditions. We find numerically that the fastest alignment typically occurs for tilt angles of order unity. We discuss how the alignment effect scales with the object size for external forcing caused by gravity or an electric field. Under practical forcing conditions we estimate that the alignment should persist despite rotational diffusion for objects larger than about 10 microns. Potential misalignment owing to hydrodynamic interaction of the objects is estimated to be negligible at volume fractions smaller than about 10(-4.5) (10(-3)) when the forcing is gravitational (electrophoretic).
External Influences on Modeled and Observed Cloud Trends
NASA Technical Reports Server (NTRS)
Marvel, Kate; Zelinka, Mark; Klein, Stephen A.; Bonfils, Celine; Caldwell, Peter; Doutriaux, Charles; Santer, Benjamin D.; Taylor, Karl E.
2015-01-01
Understanding the cloud response to external forcing is a major challenge for climate science. This crucial goal is complicated by intermodel differences in simulating present and future cloud cover and by observational uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era. Presented herein are CMIP5 (Coupled Model Intercomparison Project - Phase 5) model-derived fingerprints of externally forced changes to three cloud properties: the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that a detectable multivariate signal should have already emerged. A search is then made for signals of external forcing in two observational datasets: ISCCP (International Satellite Cloud Climatology Project) and PATMOS-x (Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres - Extended). The datasets are both found to show a poleward migration of the zonal CLT pattern that is incompatible with forced CMIP5 models. Nevertheless, a detectable multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts to improve these existing satellite observations, in addition to planning for new missions.
Jones, Benjamin A; McDermott, Shana M; Chermak, Janie M
2016-09-15
This paper examines invasive species management when invasive species impact health outcomes indirectly through changes to environmental quality. For example, the emerald ash borer (EAB) has destroyed millions of ash trees throughout North America and has the potential to impact rates of cardiorespiratory mortality and morbidity through ash trees' ability to capture airborne pollutants. Optimal management inclusive of indirect health externalities may be different than status quo plans because the links between nature and health are complex, dynamic, and spatially heterogeneous. We produce a novel dynamic bioeconomic-health model to determine optimal EAB management in the face of such health effects. Our results show that including health increases net benefits of management substantially and that a "one size fits all" management approach is suboptimal given forest cover and demographic spatial heterogeneity. Net benefits to society are 873% higher and air pollution related mortality incidence is 82% lower when health externalities are included in management profiles using insecticide treatments and non-ash tree preemptive plantings without removal. Additionally, constrained managers optimally substitute toward preemptive tree plantings and away from insecticide use in the presence of indirect health externalities as a way to minimize disruptions to air quality. This paper has policy implications for the optimal management of environmental amenities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Contribution of acetate to butyrate formation by human faecal bacteria.
Duncan, Sylvia H; Holtrop, Grietje; Lobley, Gerald E; Calder, A Graham; Stewart, Colin S; Flint, Harry J
2004-06-01
Acetate is normally regarded as an endproduct of anaerobic fermentation, but butyrate-producing bacteria found in the human colon can be net utilisers of acetate. The butyrate formed provides a fuel for epithelial cells of the large intestine and influences colonic health. [1-(13)C]Acetate was used to investigate the contribution of exogenous acetate to butyrate formation. Faecalibacterium prausnitzii and Roseburia spp. grown in the presence of 60 mm-acetate and 10 mm-glucose derived 85-90 % butyrate-C from external acetate. This was due to rapid interchange between extracellular acetate and intracellular acetyl-CoA, plus net acetate uptake. In contrast, a Coprococcus-related strain that is a net acetate producer derived only 28 % butyrate-C from external acetate. Different carbohydrate-derived energy sources affected butyrate formation by mixed human faecal bacteria growing in continuous or batch cultures. The ranking order of butyrate production rates was amylopectin > oat xylan > shredded wheat > inulin > pectin (continuous cultures), and inulin > amylopectin > oat xylan > shredded wheat > pectin (batch cultures). The contribution of external acetate to butyrate formation in these experiments ranged from 56 (pectin) to 90 % (xylan) in continuous cultures, and from 72 to 91 % in the batch cultures. This is consistent with a major role for bacteria related to F. prausnitzii and Roseburia spp. in butyrate formation from a range of substrates that are fermented in the large intestine. Variations in the dominant metabolic type of butyrate producer between individuals or with variations in diet are not ruled out, however, and could influence butyrate supply in the large intestine.
A thermostatted kinetic theory model for event-driven pedestrian dynamics
NASA Astrophysics Data System (ADS)
Bianca, Carlo; Mogno, Caterina
2018-06-01
This paper is devoted to the modeling of the pedestrian dynamics by means of the thermostatted kinetic theory. Specifically the microscopic interactions among pedestrians and an external force field are modeled for simulating the evacuation of pedestrians from a metro station. The fundamentals of the stochastic game theory and the thermostatted kinetic theory are coupled for the derivation of a specific mathematical model which depicts the time evolution of the distribution of pedestrians at different exits of a metro station. The perturbation theory is employed in order to establish the stability analysis of the nonequilibrium stationary states in the case of a metro station consisting of two exits. A general sensitivity analysis on the initial conditions, the magnitude of the external force field and the number of exits is presented by means of numerical simulations which, in particular, show how the asymptotic distribution and the convergence time are affected by the presence of an external force field. The results show how, in evacuation conditions, the interaction dynamics among pedestrians can be negligible with respect to the external force. The important role of the thermostat term in allowing the reaching of the nonequilibrium stationary state is stressed out. Research perspectives are underlined at the end of paper, in particular for what concerns the derivation of frameworks that take into account the definition of local external actions and the introduction of the space and velocity dynamics.
Non-cooperative Brownian donkeys: A solvable 1D model
NASA Astrophysics Data System (ADS)
Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.
2003-12-01
A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.
Regularity in an environment produces an internal torque pattern for biped balance control.
Ito, Satoshi; Kawasaki, Haruhisa
2005-04-01
In this paper, we present a control method for achieving biped static balance under unknown periodic external forces whose periods are only known. In order to maintain static balance adaptively in an uncertain environment, it is essential to have information on the ground reaction forces. However, when the biped is exposed to a steady environment that provides an external force periodically, uncertain factors on the regularity with respect to a steady environment are gradually clarified using learning process, and finally a torque pattern for balancing motion is acquired. Consequently, static balance is maintained without feedback from ground reaction forces and achieved in a feedforward manner.
Propagation of the state change induced by external forces in local interactions
NASA Astrophysics Data System (ADS)
Lu, Jianjun; Tokinaga, Shozo
2016-10-01
This paper analyses the propagation of the state changes of agents that are induced by external forces applied to a plane. In addition, we propose two models for the behavior of the agents placed on a lattice plane, both of which are affected by local interactions. We first assume that agents are allowed to move to another site to maximise their satisfaction. Second, we utilise a model in which the agents choose activities on each site. The results show that the migration (activity) patterns of agents in both models achieve stability without any external forces. However, when we apply an impulsive external force to the state of the agents, we then observe the propagation of the changes in the agents' states. Using simulation studies, we show the conditions for the propagation of the state changes of the agents. We also show the propagation of the state changes of the agents allocated in scale-free networks and discuss the estimation of the agents' decisions in real state changes. Finally, we discuss the estimation of the agents' decisions in real state temporal changes using economic and social data from Japan and the United States.
Triggered dynamics in a model of different fault creep regimes
Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina
2014-01-01
The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale. PMID:24954397
Radiative Forcing by Contrails
NASA Technical Reports Server (NTRS)
Meerkoetter, R.; Schumann, U.; Doelling, D. R.; Nakajima, T.; Tsushima, Y.
1999-01-01
A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.
Modification of Impulse Generation During Pirouette Turns With Increased Rotational Demands.
Zaferiou, Antonia M; Wilcox, Rand R; McNitt-Gray, Jill L
2016-10-01
This study determined how dancers regulated angular and linear impulse during the initiation of pirouettes of increased rotation. Skilled dancers (n = 11) performed single and double pirouette turns with each foot supported by a force plate. Linear and angular impulses generated by each leg were quantified and compared between turn types using probability-based statistical methods. As rotational demands increased, dancers increased the net angular impulse generated. The contribution of each leg to net angular impulse in both single and double pirouettes was influenced by stance configuration strategies. Dancers who generated more angular impulse with the push leg than with the turn leg initiated the turn with the center of mass positioned closer to the turn leg than did other dancers. As rotational demands increased, dancers tended to increase the horizontal reaction force magnitude at one or both feet; however, they used subject-specific mechanisms. By coordinating the generation of reaction forces between legs, changes in net horizontal impulse remained minimal, despite impulse regulation at each leg used to achieve more rotations. Knowledge gained regarding how an individual coordinates the generation of linear and angular impulse between both legs as rotational demand increased can help design tools to improve that individual's performance.
2005 8th Annual Systems Engineering Conference. Volume 4, Thursday
2005-10-27
requirements, allocation , and utilization statistics Operations Decisions Acquisition Decisions Resource Management — Integrated Requirements/ Allocation ...Quality Improvement Consultants, Inc. “Automated Software Testing Increases Test Quality and Coverage Resulting in Improved Software Reliability.”, Mr...Steven Ligon, SAIC The Return of Discipline, Ms. Jacqueline Townsend, Air Force Materiel Command Track 4 - Net Centric Operations: Testing Net-Centric
Providing the Tools for Information Sharing: Net-Centric Enterprise Services
2007-07-01
The Department of Defense (DoD) is establishing a net-centric environment that increasingly leverages shared services and Service-Oriented...transformational program that delivers a set of shared services as part of the DoD’s common infrastructure to enable networked joint force capabilities, improved interoperability, and increased information sharing across mission area services.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Sohn, B. J.
1990-01-01
Global cloudiness and radiation budget data from Nimbus 6 and 7 are used to investigate the role of cloud and surface radiative forcing and elements of the earth's general circulation. Although globally integrated cloud forcing is nearly zero, there are large regional imbalances and well regulated processes in the shortwave and longwave spectrum that control the meridional gradient structure of the net radiation balance and the factors modulating the east-west oriented North Africa-western Pacific energy transport dipole. The analysis demonstrates that clouds play a dual role in both the shortwave and longwave spectra in terms of tropical and midlatitude east-west gradients. The key result is that cloud forcing, although not always the principle regulator of interannual variability of the global climate, serves to reinforce the basic three-cell meridional circulation.
Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces.
Berman, Yonatan; Ben-Jacob, Eshel; Zhang, Xin; Shapira, Yoash
2016-01-01
Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors' long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors-the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress.
Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces
Berman, Yonatan; Zhang, Xin; Shapira, Yoash
2016-01-01
Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors’ long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors—the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress. PMID:27031230
The onset of chaos in orbital pilot-wave dynamics.
Tambasco, Lucas D; Harris, Daniel M; Oza, Anand U; Rosales, Rodolfo R; Bush, John W M
2016-10-01
We present the results of a numerical investigation of the emergence of chaos in the orbital dynamics of droplets walking on a vertically vibrating fluid bath and acted upon by one of the three different external forces, specifically, Coriolis, Coulomb, or linear spring forces. As the vibrational forcing of the bath is increased progressively, circular orbits destabilize into wobbling orbits and eventually chaotic trajectories. We demonstrate that the route to chaos depends on the form of the external force. When acted upon by Coriolis or Coulomb forces, the droplet's orbital motion becomes chaotic through a period-doubling cascade. In the presence of a central harmonic potential, the transition to chaos follows a path reminiscent of the Ruelle-Takens-Newhouse scenario.
Nonstationary time series prediction combined with slow feature analysis
NASA Astrophysics Data System (ADS)
Wang, G.; Chen, X.
2015-01-01
Almost all climate time series have some degree of nonstationarity due to external driving forces perturbations of the observed system. Therefore, these external driving forces should be taken into account when reconstructing the climate dynamics. This paper presents a new technique of combining the driving force of a time series obtained using the Slow Feature Analysis (SFA) approach, then introducing the driving force into a predictive model to predict non-stationary time series. In essence, the main idea of the technique is to consider the driving forces as state variables and incorporate them into the prediction model. To test the method, experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted. The results showed improved and effective prediction skill.
NASA Astrophysics Data System (ADS)
Choi, Jin; Jo, Jung Hyun; Kim, Myung-Jin; Roh, Dong-Goo; Park, Sun-Youp; Lee, Hee-Jae; Park, Maru; Choi, Young-Jun; Yim, Hong-Suh; Bae, Young-Ho; Park, Young-Sik; Cho, Sungki; Moon, Hong-Kyu; Choi, Eun-Jung; Jang, Hyun-Jung; Park, Jang-Hyun
2016-06-01
Inactive space objects are usually rotating and tumbling as a result of internal or external forces. KOREASAT 1 has been inactive since 2005, and its drift trajectory has been monitored with the optical wide-field patrol network (OWL-Net). However, a quantitative analysis of KOREASAT 1 in regard to the attitude evolution has never been performed. Here, two optical tracking systems were used to acquire raw measurements to analyze the rotation period of two inactive satellites. During the optical campaign in 2013, KOREASAT 1 was observed by a 0.6 m class optical telescope operated by the Korea Astronomy and Space Science Institute (KASI). The rotation period of KOREASAT 1 was analyzed with the light curves from the photometry results. The rotation periods of the low Earth orbit (LEO) satellite ASTRO-H after break-up were detected by OWL-Net on April 7, 2016. We analyzed the magnitude variation of each satellite by differential photometry and made comparisons with the star catalog. The illumination effect caused by the phase angle between the Sun and the target satellite was corrected with the system tool kit (STK) and two line element (TLE) technique. Finally, we determined the rotation period of two inactive satellites on LEO and geostationary Earth orbit (GEO) with light curves from the photometry. The main rotation periods were determined to be 5.2 sec for ASTRO-H and 74 sec for KOREASAT 1.
Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD
NASA Astrophysics Data System (ADS)
Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.
2017-05-01
The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.
Application of largest Lyapunov exponent analysis on the studies of dynamics under external forces
NASA Astrophysics Data System (ADS)
Odavić, Jovan; Mali, Petar; Tekić, Jasmina; Pantić, Milan; Pavkov-Hrvojević, Milica
2017-06-01
Dynamics of driven dissipative Frenkel-Kontorova model is examined by using largest Lyapunov exponent computational technique. Obtained results show that besides the usual way where behavior of the system in the presence of external forces is studied by analyzing its dynamical response function, the largest Lyapunov exponent analysis can represent a very convenient tool to examine system dynamics. In the dc driven systems, the critical depinning force for particular structure could be estimated by computing the largest Lyapunov exponent. In the dc+ac driven systems, if the substrate potential is the standard sinusoidal one, calculation of the largest Lyapunov exponent offers a more sensitive way to detect the presence of Shapiro steps. When the amplitude of the ac force is varied the behavior of the largest Lyapunov exponent in the pinned regime completely reflects the behavior of Shapiro steps and the critical depinning force, in particular, it represents the mirror image of the amplitude dependence of critical depinning force. This points out an advantage of this technique since by calculating the largest Lyapunov exponent in the pinned regime we can get an insight into the dynamics of the system when driving forces are applied. Additionally, the system is shown to be not chaotic even in the case of incommensurate structures and large amplitudes of external force, which is a consequence of overdampness of the model and the Middleton's no passing rule.
Lauf, P K; Adragna, N C
1996-10-01
Swelling-induced human erythrocyte K-Cl cotransport is membrane potential independent and capable of uphill transport. However, a complete thermodynamic analysis of basal and stimulated K-Cl cotransport, at constant cell volume, is missing. This study was performed in low K sheep red blood cells before and after reducing cellular free Mg into the nanomolar range with the divalent cation ionophore A23187 and a chelator, an intervention known to stimulate K-Cl cotransport. The anion exchange inhibitor 4,4'diisothiocyanato-2,2'disulfonic stilbene was used to clamp intracellular pH and Cl or NO3 concentrations. Cell volume was maintained constant as external and internal pH differed by more than two units. K-Cl cotransport was calculated from the K effluxes and Rb (as K congener) influxes measured in Cl and NO3, at constant internal K and external anions, and variable concentrations of extracellular Rb and internal anions, respectively. The external Rb concentration at which net K-Cl cotransport is zero was defined as flux reversal point which changed with internal pH and hence Cl. Plots of the ratio of external Rb concentrations corresponding to the flux reversal points and the internal K concentration versus the ratio of the internal and external Cl concentrations (i.e., the Donnan ratio of the transported ions) yielded slopes near unity for both control and low internal Mg cells. Thus, basal as well as low internal Mg-stimulated net K-Cl cotransport depends on the electrochemical potential gradient of KCl.
1996-01-01
Swelling-induced human erythrocyte K-Cl cotransport is membrane potential independent and capable of uphill transport. However, a complete thermodynamic analysis of basal and stimulated K-Cl cotransport, at constant cell volume, is missing. This study was performed in low K sheep red blood cells before and after reducing cellular free Mg into the nanomolar range with the divalent cation ionophore A23187 and a chelator, an intervention known to stimulate K- Cl cotransport. The anion exchange inhibitor 4,4'diisothiocyanato- 2,2'disulfonic stilbene was used to clamp intracellular pH and Cl or NO3 concentrations. Cell volume was maintained constant as external and internal pH differed by more than two units. K-Cl cotransport was calculated from the K effluxes and Rb (as K congener) influxes measured in Cl and NO3, at constant internal K and external anions, and variable concentrations of extracellular Rb and internal anions, respectively. The external Rb concentration at which net K-Cl cotransport is zero was defined as flux reversal point which changed with internal pH and hence Cl. Plots of the ratio of external Rb concentrations corresponding to the flux reversal points and the internal K concentration versus the ratio of the internal and external Cl concentrations (i.e., the Donnan ratio of the transported ions) yielded slopes near unity for both control and low internal Mg cells. Thus, basal as well as low internal Mg-stimulated net K-Cl cotransport depends on the electrochemical potential gradient of KCl. PMID:8894982
Human influence on Canadian temperatures
NASA Astrophysics Data System (ADS)
Wan, Hui; Zhang, Xuebin; Zwiers, Francis
2018-02-01
Canada has experienced some of the most rapid warming on Earth over the past few decades with a warming rate about twice that of the global mean temperature since 1948. Long-term warming is observed in Canada's annual, winter and summer mean temperatures, and in the annual coldest and hottest daytime and nighttime temperatures. The causes of these changes are assessed by comparing observed changes with climate model simulated responses to anthropogenic and natural (solar and volcanic) external forcings. Most of the observed warming of 1.7 °C increase in annual mean temperature during 1948-2012 [90% confidence interval (1.1°, 2.2 °C)] can only be explained by external forcing on the climate system, with anthropogenic influence being the dominant factor. It is estimated that anthropogenic forcing has contributed 1.0 °C (0.6°, 1.5 °C) and natural external forcing has contributed 0.2 °C (0.1°, 0.3 °C) to the observed warming. Up to 0.5 °C of the observed warming trend may be associated with low frequency variability of the climate such as that represented by the Pacific decadal oscillation (PDO) and North Atlantic oscillation (NAO). Overall, the influence of both anthropogenic and natural external forcing is clearly evident in Canada-wide mean and extreme temperatures, and can also be detected regionally over much of the country.
Stability diagram for the forced Kuramoto model.
Childs, Lauren M; Strogatz, Steven H
2008-12-01
We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillators in the population try to synchronize with one another while also trying to lock onto an external drive. Previous work on the forced Kuramoto model uncovered two main types of attractors, called forced entrainment and mutual entrainment, but the details of the bifurcations between them were unclear. Here we present a complete bifurcation analysis of the model for a special case in which the infinite-dimensional dynamics collapse to a two-dimensional system. Exact results are obtained for the locations of Hopf, saddle-node, and Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking resemblance to that for the weakly nonlinear forced van der Pol oscillator.
Force approach to radiation reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
López, Gustavo V., E-mail: gulopez@udgserv.cencar.udg.mx
The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion ofmore » a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.« less
Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis
Leppkes, Moritz; Maueröder, Christian; Hirth, Sebastian; Nowecki, Stefanie; Günther, Claudia; Billmeier, Ulrike; Paulus, Susanne; Biermann, Mona; Munoz, Luis E.; Hoffmann, Markus; Wildner, Dane; Croxford, Andrew L.; Waisman, Ari; Mowen, Kerri; Jenne, Dieter E.; Krenn, Veit; Mayerle, Julia; Lerch, Markus M.; Schett, Georg; Wirtz, Stefan; Neurath, Markus F.; Herrmann, Martin; Becker, Christoph
2016-01-01
Ductal occlusion has been postulated to precipitate focal pancreatic inflammation, while the nature of the primary occluding agents has remained elusive. Neutrophils make use of histone citrullination by peptidyl arginine deiminase-4 (PADI4) in contact to particulate agents to extrude decondensed chromatin as neutrophil extracellular traps (NETs). In high cellular density, NETs form macroscopically visible aggregates. Here we show that such aggregates form inside pancreatic ducts in humans and mice occluding pancreatic ducts and thereby driving pancreatic inflammation. Experimental models indicate that PADI4 is critical for intraductal aggregate formation and that PADI4-deficiency abrogates disease progression. Mechanistically, we identify the pancreatic juice as a strong instigator of neutrophil chromatin extrusion. Characteristic single components of pancreatic juice, such as bicarbonate ions and calcium carbonate crystals, induce aggregated NET formation. Ductal occlusion by aggregated NETs emerges as a pathomechanism with relevance in a plethora of inflammatory conditions involving secretory ducts. PMID:26964500
The alkaline tide and ammonia excretion after voluntary feeding in freshwater rainbow trout.
Bucking, Carol; Wood, Chris M
2008-08-01
We investigated the potential acid-base and nitrogenous waste excretion challenges created by voluntary feeding in freshwater rainbow trout, with particular focus on the possible occurrence of an alkaline tide (a metabolic alkalosis created by gastric HCl secretion during digestion). Plasma metabolites (glucose, urea and ammonia) were measured at various time points before and after voluntary feeding to satiation (approximately 5% body mass meal of dry commercial pellets), as was the net flux of ammonia and titratable alkalinity to the water from unfed and fed fish. Arterial blood, sampled by indwelling catheter, was examined for post-prandial effects on pH, plasma bicarbonate and plasma CO2 tension. There was no significant change in plasma glucose or urea concentrations following feeding, whereas plasma ammonia transiently increased, peaking at threefold above resting values at 12 h after the meal and remaining elevated for 24 h. The increased plasma ammonia was correlated with an increase in net ammonia excretion to the water, with fed fish significantly elevating their net ammonia excretion two- to threefold between 12 and 48 h post feeding. These parameters did not change in unfed control fish. Fed fish likewise increased the net titratable base flux to the water by approximately threefold, which resulted in a transition from a small net acid flux seen in unfed fish to a large net base flux in fed fish. Over 48 h, this resulted in a net excretion of 13 867 micromol kg(-1) more base to the external water than in unfed fish. The arterial blood exhibited a corresponding rise in pH (between 6 and 12 h) and plasma bicarbonate (between 3 and 12 h) following feeding; however, no respiratory compensation was observed, as PaCO2 remained constant. Overall, there was evidence of numerous challenges created by feeding in a freshwater teleost fish, including the occurrence of an alkaline tide, and its compensation by excretion of base to the external water. The possible influence of feeding ecology and environmental salinity on these challenges, as well as discrepancies in the literature, are discussed.
Representing agriculture in Earth System Models: Approaches and priorities for development
NASA Astrophysics Data System (ADS)
McDermid, S. S.; Mearns, L. O.; Ruane, A. C.
2017-09-01
Earth System Model (ESM) advances now enable improved representations of spatially and temporally varying anthropogenic climate forcings. One critical forcing is global agriculture, which is now extensive in land-use and intensive in management, owing to 20th century development trends. Agriculture and food systems now contribute nearly 30% of global greenhouse gas emissions and require copious inputs and resources, such as fertilizer, water, and land. Much uncertainty remains in quantifying important agriculture-climate interactions, including surface moisture and energy balances and biogeochemical cycling. Despite these externalities and uncertainties, agriculture is increasingly being leveraged to function as a net sink of anthropogenic carbon, and there is much emphasis on future sustainable intensification. Given its significance as a major environmental and climate forcing, there now exist a variety of approaches to represent agriculture in ESMs. These approaches are reviewed herein, and range from idealized representations of agricultural extent to the development of coupled climate-crop models that capture dynamic feedbacks. We highlight the robust agriculture-climate interactions and responses identified by these modeling efforts, as well as existing uncertainties and model limitations. To this end, coordinated and benchmarking assessments of land-use-climate feedbacks can be leveraged for further improvements in ESM's agricultural representations. We suggest key areas for continued model development, including incorporating irrigation and biogeochemical cycling in particular. Last, we pose several critical research questions to guide future work. Our review focuses on ESM representations of climate-surface interactions over managed agricultural lands, rather than on ESMs as an estimation tool for crop yields and productivity.
Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators
NASA Astrophysics Data System (ADS)
Ashpis, David E.; Laun, Matthew C.
2013-11-01
DBD plasma actuators generate a wall-jet that can be used for active flow control. We used an analytical balance to measure the thrust generated by the actuator, it is a common metric of its performance without external flow. We found that the measured force is afflicted by several problems; it drifts in time, not always repeatable, is unstable, and depends on the manner the voltage is applied. We report results of investigations of these issues. Tests were conducted on an actuator constructed of 1/4 inch thick high-density polyethylene (HDPE) dielectric with 100 mm long offset electrodes, with applied voltages up to 48 kV p-p and frequencies from 32 Hz to 2.5 kHz, and pure Sine and Trapezoidal waveforms. The relative humidity was in the range of 51-55%, corresponding to moisture range of 10,500 to13,000 ppm mass. Force readings were up to 500 mg, (approximately 50 mN/m). We found that the measured force is the net of the positive thrust generated by the wall-jet and an ``anti-thrust'' acting in the opposite direction. We propose a correction procedure that yields the plasma-generated thrust. The correction is based on voltage-dependent anti-thrust measured in the low frequency range of 20-40 Hz. We found that adjacent objects in a test setup affect the measured thrust, and verified it by comparing experiments with and without a metal enclosure, grounded and ungrounded. Uncorrected thrust varied by up to approximately +/-100%, and the corrected thrust variations were up to approximately 30%. Supported by NASA's FAP/Aerospace Sciences Project.
Neutrophil extracellular traps in vasculitis, friend or foe?
Söderberg, Daniel; Segelmark, Mårten
2018-01-01
Neutrophil extracellular traps (NETs) can be found at the sites of vascular lesions and in the circulation of patients with active small vessel vasculitis. Neutrophils from vasculitis patients release more NETs in vitro, and NETs have properties that can harm the vasculature both directly and indirectly. There are several ways to interfere with NET formation, which open for new therapeutic options. However, there are several types of NETs and different mechanisms of NET formation, and these might have different effects on inflammation. Here we review recent findings regarding the pathogenesis and therapeutic potentials of NETs in vasculitis. Experimental mouse models support a role for NETs in promoting vascular damage, where histones and mitochondrial DNA appear to be driving forces. Impaired formation of NETs, however, in an SLE-like mouse model leads to more severe disease, suggesting that NETs can be important in limiting inflammation. Studies on drug-induced vasculitis reveal that levamisole can induce NETosis via muscarinic receptors, predisposing for the generation of autoantibodies, including antineutrophil cytoplasmic autoantibodies (ANCA). This supports the notion that NETs can bridge the innate and adaptive immune systems. NETs can participate in the pathogenesis of vasculitis, but in some models there also seem to be protective effects of NETs. This complexity needs further evaluation with experimental models that are as specific as possible for human primary vasculitis.
Safety evaluation of large external fixation clamps and frames in a magnetic resonance environment.
Luechinger, Roger; Boesiger, Peter; Disegi, John A
2007-07-01
Large orthopedic external fixation clamps and related components were evaluated for force, torque, and heating response when subjected to the strong electromagnetic fields of magnetic-resonance (MR) imaging devices. Forces induced by a 3-Tesla (T) MR scanner were compiled for newly designed nonmagnetic clamps and older clamps that contained ferromagnetic components. Heating trials were performed in a 1.5 and in a 3 T MR scanner with two assembled external fixation frames. Forces of the newly designed clamps were more than a factor 2 lower as the gravitational force on the device whereas, magnetic forces on the older devices showed over 10 times the force induced by earth acceleration of gravity. No torque effects could be found for the newly designed clamps. Temperature measurements at the tips of Schanz screws in the 1.5 T MR scanner showed a rise of 0.7 degrees C for a pelvic frame and of 2.1 degrees C for a diamond knee bridge frame when normalized to a specific absorption rate (SAR) of 2 W/kg. The normalized temperature increases in the 3 T MR scanner were 0.9 degrees C for the pelvic frame and 1.1 degrees C for the knee bridge frame. Large external fixation frames assembled with the newly designed clamps (390 Series Clamps), carbon fiber reinforced rods, and implant quality 316L stainless steel Schanz screws met prevailing force and torque limits when tested in a 3-T field, and demonstrated temperature increase that met IEC-60601 guidelines for extremities. The influence of frame-induced eddy currents on the risk of peripheral nerve stimulation was not investigated. Copyright 2006 Wiley Periodicals, Inc.
Choo, Min Soo; Jeong, Seong Jin; Cho, Sung Yong; Yoo, Changwon; Jeong, Chang Wook; Ku, Ja Hyeon; Oh, Seung-June
2017-04-01
We aimed to externally validate the prediction model we developed for having bladder outlet obstruction (BOO) and requiring prostatic surgery using 2 independent data sets from tertiary referral centers, and also aimed to validate a mobile app for using this model through usability testing. Formulas and nomograms predicting whether a subject has BOO and needs prostatic surgery were validated with an external validation cohort from Seoul National University Bundang Hospital and Seoul Metropolitan Government-Seoul National University Boramae Medical Center between January 2004 and April 2015. A smartphone-based app was developed, and 8 young urologists were enrolled for usability testing to identify any human factor issues of the app. A total of 642 patients were included in the external validation cohort. No significant differences were found in the baseline characteristics of major parameters between the original (n=1,179) and the external validation cohort, except for the maximal flow rate. Predictions of requiring prostatic surgery in the validation cohort showed a sensitivity of 80.6%, a specificity of 73.2%, a positive predictive value of 49.7%, and a negative predictive value of 92.0%, and area under receiver operating curve of 0.84. The calibration plot indicated that the predictions have good correspondence. The decision curve showed also a high net benefit. Similar evaluation results using the external validation cohort were seen in the predictions of having BOO. Overall results of the usability test demonstrated that the app was user-friendly with no major human factor issues. External validation of these newly developed a prediction model demonstrated a moderate level of discrimination, adequate calibration, and high net benefit gains for predicting both having BOO and requiring prostatic surgery. Also a smartphone app implementing the prediction model was user-friendly with no major human factor issue.
ERIC Educational Resources Information Center
Cawley, Robert
1978-01-01
Considers the problem of determining the force on an element of a finite length line of charge moving horizontally with extreme relativistic speed through an evacuated space above an infinite plane ideal conducting surface. (SL)
NASA Astrophysics Data System (ADS)
Nishizawa, Tomoaki; Sugimoto, Nobuo; Shimizu, Atsushi; Uno, Itsushi; Hara, Yukari; Kudo, Rei
2018-04-01
We deployed multi-wavelength Mie-Raman lidars (MMRL) at three sites of the AD-Net and have conducted continuous measurements using them since 2013. To analyze the MMRL data and better understand the externally mixing state of main aerosol components (e.g., dust, sea-salt, and black carbon) in the atmosphere, we developed an integrated package of aerosol component retrieval algorithms, which have already been developed or are being developed, to estimate vertical profiles of the aerosol components. This package applies to the other ground-based lidar network data (e.g., EARLINET) and satellite-borne lidar data (e.g., CALIOP/CALIPSO and ATLID/EarthCARE) as well as the other lidar data of the AD-Net.
ERIC Educational Resources Information Center
Dion, Kenneth L.; Dion, Karen K.
1973-01-01
Relationships between internal-external control and romantic love were hypothesized on the basis of a social influence interpretation and the view that romantic love is culturally stereotyped as an external force. Consistent with these perspectives, proportionally fewer internals than externals reported having been romantically attached. (Author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Weimin; Niu, Haitao; Lin, Tong
2014-01-28
The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform externalmore » electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.« less
Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol
NASA Astrophysics Data System (ADS)
Pust, Ladislav; Pesek, Ludek
This paper employs a new analytical approach to model the influence of aerodynamic excitation on the dynamics of a bladed cascade at the flutter state. The flutter is an aero-elastic phenomenon that is linked to the interaction of the flow and the traveling deformation wave in the cascade when only the damping of the cascade changes. As a case study the dynamic properties of the five-blade-bunch excited by the running harmonic external forces and aerodynamic self-excited forces are investigated. This blade-bunch is linked in the shroud by means of the viscous-elastic damping elements. The external running excitation depends on the ratio of stator and rotor blade numbers and corresponds to the real type of excitation in the steam turbine. The aerodynamic self-excited forces are modeled by two types of Van der Pol nonlinear models. The influence of the interaction of both types of self-excitation with the external running excitation is investigated on the response curves.
Static Prehension of a Horizontally Oriented Object in Three Dimensions
Wu, Yen-Hsun; Zatsiorsky, Vladimir M.; Latash, Mark L.
2011-01-01
We studied static prehension of a horizontally oriented object. Specific hypotheses were explored addressing such issues as the sharing patterns of the total moment of force across the digits, presence of mechanically unnecessary digit forces, and trade-off between multi-digit synergies at the two levels of the assumed control hierarchy. Within the assumed hierarchy, at the upper level, the task is shared between the thumb and virtual finger (an imagined finger producing a wrench equal to the sum of the wrenches of individual fingers). At the lower level, action of the virtual finger is shared among the four actual fingers. The subjects held statically a horizontally oriented handle instrumented with six-component force/torque sensors with different loads and torques acting about the long axis of the handle. The thumb acted from above while the four fingers supported the weight of the object. When the external torque was zero, the thumb produced mechanically unnecessary force of about 2.8 N, which did not depend on the external load magnitude. When the external torque was not zero, tangential forces produced over 80% of the total moment of force. The normal forces by the middle and ring fingers produced consistent moments against the external torque, while the normal forces of the index and little fingers did not. Force and moment variables at both hierarchical levels were stabilized by co-varied across trials adjustments of forces/moments produced by individual digits with the exception of the normal force analyzed at the lower level of the hierarchy. There was a trade-off between synergy indices computed at the two levels of the hierarchy for the three components of the total force vector, but not for the moment of force components. Overall, the results have shown that task mechanics are only one factor that defines forces produced by individual digits. Other factors, such as loading sensory receptors may lead to mechanically unnecessary forces. There seems to be no single rule (for example, ensuring similar safety margin values) that would describe sharing of the normal and tangential forces and be valid across tasks. Fingers that are traditionally viewed as less accurate (e.g., the ring finger) may perform more consistently in certain tasks. The observations of the trade-off between the synergy indices computed at two levels for the force variables but not for the moment of force variables suggest that the degree of redundancy (the number of excessive elemental variables) at the higher level is an important factor. PMID:22071684
Irrigation as an Historical Climate Forcing
NASA Technical Reports Server (NTRS)
Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.
2014-01-01
Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multimodel assessments.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-L.; Johnson, D; Simpson, J.; Starr, David OC. (Technical Monitor)
2002-01-01
A two-dimensional version of the Goddard Cumulus Ensemble (GCE) Model is used to simulate convective systems that developed in various geographic locations. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. By examining the surface energy budgets, the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases. These two terms arc opposite in sign, however. The contributions by net radiation and latent heat flux to the net condensation vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) accounts for about 20% or more of the net condensation. However, short-wave heating and long-wave cooling are in balance with each other for cloud systems over the West Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. Large-scale cooling exceeds large-scale moistening in the Pacific and Atlantic cases. For cloud systems over the South China Sea, however, there is more large-scale moistening than cooling even though the cloud systems developed in a very moist environment. though For three cloud systems that developed over a mid-latitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means the accurate measurement of surface fluxes and radiation is crucial for simulating these mid-latitude cases.
Nonstationary time series prediction combined with slow feature analysis
NASA Astrophysics Data System (ADS)
Wang, G.; Chen, X.
2015-07-01
Almost all climate time series have some degree of nonstationarity due to external driving forces perturbing the observed system. Therefore, these external driving forces should be taken into account when constructing the climate dynamics. This paper presents a new technique of obtaining the driving forces of a time series from the slow feature analysis (SFA) approach, and then introduces them into a predictive model to predict nonstationary time series. The basic theory of the technique is to consider the driving forces as state variables and to incorporate them into the predictive model. Experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted to test the model. The results showed improved prediction skills.
Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis.
Stauch, Tim; Dreuw, Andreas
2016-11-23
In quantum mechanochemistry, quantum chemical methods are used to describe molecules under the influence of an external force. The calculation of geometries, energies, transition states, reaction rates, and spectroscopic properties of molecules on the force-modified potential energy surfaces is the key to gain an in-depth understanding of mechanochemical processes at the molecular level. In this review, we present recent advances in the field of quantum mechanochemistry and introduce the quantum chemical methods used to calculate the properties of molecules under an external force. We place special emphasis on quantum chemical force analysis tools, which can be used to identify the mechanochemically relevant degrees of freedom in a deformed molecule, and spotlight selected applications of quantum mechanochemical methods to point out their synergistic relationship with experiments.
Holocene coastal dune fields used as indicators of net littoral transport: West Coast, USA
Peterson, C.D.; Stock, E.; Hart, R.; Percy, D.; Hostetler, S.W.; Knott, J.R.
2010-01-01
Between Point Grenville, Washington, and Point Conception, California (1500 km distance) 21 dune fields record longshore transport in 20 littoral cells during the late Holocene. The direction of predominant littoral transport is established by relative positions of dune fields (north, central, or south) in 17 representative littoral cells. Dune field position is north of cell midpoints in northernmost Oregon and Washington, but is south of cell midpoints in southern Oregon and California. Downdrift sand trapping occurs at significant changes in shoreline angle and/or at bounding headlands that project at least 2.5 km seaward from the general coastal trend. Sand bypassing occurs around small headlands of less than 0.5 km in projection distance. A northward shift of the winter low-pressure center in the northeast Pacific Ocean is modeled from 11 ka to 0 ka. Nearshore current forcing in southern Oregon and northern California switched from northward in earliest Holocene time to southward in late Holocene time. The late Holocene (5-0 ka) is generally characterized by net northward littoral drift in northernmost Oregon and Washington and by net southward littoral drift in southernmost Oregon and California. A regional divergence of net transport direction in central Oregon, i.e. no net drift, is consistent with modeled wind and wave forcing at the present time (0 ka). ?? 2009 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Brekke, Stewart
2010-03-01
Every mass or mass group, from atoms and molecules to stars and galaxies,has no motion, is vibrating, rotating,or moving linearly, singularly or in some combination. When created, the excess energy of creation will generate a vibration, rotation and/or linear motion besides the mass or mass group. Curvilinear or orbital motion is linear motion in an external force field. External forces, such as photon, molecular or stellar collisions may over time modify the inital rotational, vibratory or linear motions of the mass of mass group. The energy equation for each mass or mass group is E=mc^2 + 1/2mv^2 + 1/2I2̂+ 1/2kx0^2 + WG+ WE+ WM.
NASA Astrophysics Data System (ADS)
Huveneers, François
2018-04-01
We investigate the long-time behavior of a passive particle evolving in a one-dimensional diffusive random environment, with diffusion constant D . We consider two cases: (a) The particle is pulled forward by a small external constant force and (b) there is no systematic bias. Theoretical arguments and numerical simulations provide evidence that the particle is eventually trapped by the environment. This is diagnosed in two ways: The asymptotic speed of the particle scales quadratically with the external force as it goes to zero, and the fluctuations scale diffusively in the unbiased environment, up to possible logarithmic corrections in both cases. Moreover, in the large D limit (homogenized regime), we find an important transient region giving rise to other, finite-size scalings, and we describe the crossover to the true asymptotic behavior.
Unbinding Transition of Probes in Single-File Systems
NASA Astrophysics Data System (ADS)
Bénichou, Olivier; Démery, Vincent; Poncet, Alexis
2018-02-01
Single-file transport, arising in quasi-one-dimensional geometries where particles cannot pass each other, is characterized by the anomalous dynamics of a probe, notably its response to an external force. In these systems, the motion of several probes submitted to different external forces, although relevant to mixtures of charged and neutral or active and passive objects, remains unexplored. Here, we determine how several probes respond to external forces. We rely on a hydrodynamic description of the symmetric exclusion process to obtain exact analytical results at long times. We show that the probes can either move as a whole, or separate into two groups moving away from each other. In between the two regimes, they separate with a different dynamical exponent, as t1 /4. This unbinding transition also occurs in several continuous single-file systems and is expected to be observable.
Hou, Deyi; Al-Tabbaa, Abir; Guthrie, Peter
2014-08-15
The sustainable remediation concept, aimed at maximizing the net environmental, social, and economic benefits in contaminated site remediation, is being increasingly recognized by industry, governments, and academia. However, there is limited understanding of actual sustainable behaviour being adopted and the determinants of such sustainable behaviour. The present study identified 27 sustainable practices in remediation. An online questionnaire survey was used to rank and compare them in the US (n=112) and the UK (n=54). The study also rated ten promoting factors, nine barriers, and 17 types of stakeholders' influences. Subsequently, factor analysis and general linear models were used to determine the effects of internal characteristics (i.e. country, organizational characteristics, professional role, personal experience and belief) and external forces (i.e. promoting factors, barriers, and stakeholder influences). It was found that US and UK practitioners adopted many sustainable practices to similar extents. Both US and UK practitioners perceived the most effectively adopted sustainable practices to be reducing the risk to site workers, protecting groundwater and surface water, and reducing the risk to the local community. Comparing the two countries, we found that the US adopted innovative in-situ remediation more effectively; while the UK adopted reuse, recycling, and minimizing material usage more effectively. As for the overall determinants of sustainable remediation, the country of origin was found not to be a significant determinant. Instead, organizational policy was found to be the most important internal characteristic. It had a significant positive effect on reducing distant environmental impact, sustainable resource usage, and reducing remediation cost and time (p<0.01). Customer competitive pressure was found to be the most extensively significant external force. In comparison, perceived stakeholder influence, especially that of primary stakeholders (site owner, regulator, and primary consultant), did not appear to have as extensive a correlation with the adoption of sustainability as one would expect. Copyright © 2014 Elsevier B.V. All rights reserved.
Internal phase transition induced by external forces in Finsler geometric model for membranes
NASA Astrophysics Data System (ADS)
Koibuchi, Hiroshi; Shobukhov, Andrey
2016-10-01
In this paper, we numerically study an anisotropic shape transformation of membranes under external forces for two-dimensional triangulated surfaces on the basis of Finsler geometry. The Finsler metric is defined by using a vector field, which is the tangential component of a three-dimensional unit vector σ corresponding to the tilt or some external macromolecules on the surface of disk topology. The sigma model Hamiltonian is assumed for the tangential component of σ with the interaction coefficient λ. For large (small) λ, the surface becomes oblong (collapsed) at relatively small bending rigidity. For the intermediate λ, the surface becomes planar. Conversely, fixing the surface with the boundary of area A or with the two-point boundaries of distance L, we find that the variable σ changes from random to aligned state with increasing of A or L for the intermediate region of λ. This implies that an internal phase transition for σ is triggered not only by the thermal fluctuations, but also by external mechanical forces. We also find that the frame (string) tension shows the expected scaling behavior with respect to A/N (L/N) at the intermediate region of A (L) where the σ configuration changes between the disordered and ordered phases. Moreover, we find that the string tension γ at sufficiently large λ is considerably smaller than that at small λ. This phenomenon resembles the so-called soft-elasticity in the liquid crystal elastomer, which is deformed by small external tensile forces.
Aerodynamic characteristics of the ventilated design for flapping wing micro air vehicle.
Zhang, G Q; Yu, S C M
2014-01-01
Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the "ventilation" in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds.
Aerodynamic Characteristics of the Ventilated Design for Flapping Wing Micro Air Vehicle
Zhang, G. Q.; Yu, S. C. M.
2014-01-01
Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the “ventilation” in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds. PMID:24683339
Towards Subject-Specific Strength Training Design through Predictive Use of Musculoskeletal Models.
Plüss, Michael; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio
2018-01-01
Lower extremity dysfunction is often associated with hip muscle strength deficiencies. Detailed knowledge of the muscle forces generated in the hip under specific external loading conditions enables specific structures to be trained. The aim of this study was to find the most effective movement type and loading direction to enable the training of specific parts of the hip muscles using a standing posture and a pulley system. In a novel approach to release the predictive power of musculoskeletal modelling techniques based on inverse dynamics, flexion/extension and ab-/adduction movements were virtually created. To demonstrate the effectiveness of this approach, three hip orientations and an external loading force that was systematically rotated around the body were simulated using a state-of-the art OpenSim model in order to establish ideal designs for training of the anterior and posterior parts of the M. gluteus medius (GM). The external force direction as well as the hip orientation greatly influenced the muscle forces in the different parts of the GM. No setting was found for simultaneous training of the anterior and posterior parts with a muscle force higher than 50% of the maximum. Importantly, this study has demonstrated the use of musculoskeletal models as an approach to predict muscle force variations for different strength and rehabilitation exercise variations.
Towards Subject-Specific Strength Training Design through Predictive Use of Musculoskeletal Models
Plüss, Michael; Schellenberg, Florian
2018-01-01
Lower extremity dysfunction is often associated with hip muscle strength deficiencies. Detailed knowledge of the muscle forces generated in the hip under specific external loading conditions enables specific structures to be trained. The aim of this study was to find the most effective movement type and loading direction to enable the training of specific parts of the hip muscles using a standing posture and a pulley system. In a novel approach to release the predictive power of musculoskeletal modelling techniques based on inverse dynamics, flexion/extension and ab-/adduction movements were virtually created. To demonstrate the effectiveness of this approach, three hip orientations and an external loading force that was systematically rotated around the body were simulated using a state-of-the art OpenSim model in order to establish ideal designs for training of the anterior and posterior parts of the M. gluteus medius (GM). The external force direction as well as the hip orientation greatly influenced the muscle forces in the different parts of the GM. No setting was found for simultaneous training of the anterior and posterior parts with a muscle force higher than 50% of the maximum. Importantly, this study has demonstrated the use of musculoskeletal models as an approach to predict muscle force variations for different strength and rehabilitation exercise variations. PMID:29796082
Fornés, José A
2010-01-15
We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of a elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. For a given set of parameters we observe direct movement against the load force if hydrodynamic interactions were considered.
Effect of flow oscillations on cavity drag and a technique for their control
NASA Technical Reports Server (NTRS)
Gharib, M.; Roshko, A.; Sarohia, V.
1985-01-01
Experiments to relate the state of the shear layer to cavity drag have been performed in a water channel using a 4" axisymmetric cavity model. Detailed flow measurements in various cavity flow oscillation phases, amplitude amplification along the flow direction, distribution of shear stress, and other momentum flux obtained by laser Doppler velocimeter are presented. Measurements show exponential dependence of cavity drag on the length of the cavity. A jump in the cavity drag coefficient is observed as the cavity flow shows a bluff body wake type behavior. Natural and forced oscillations are introduced by a sinusoidally heated thin-film strip which excites the Tollmein-Schlichting waves in the boundary layer upstream of the gap. For a large gap, self-sustained periodic oscillations are observed, while for smaller gaps, which do not oscillate naturally, periodical oscillations can be obtained by external forcing through the strip heater. The drag of the cavity can be increased by one order of magnitude in the non-oscillating case through external forcing. Also, it is possible to completely eliminate mode switching by external forcing. For the first time, it is demonstrated that amplitude of cavity flow Kelvin-Helmholtz wave is dampened or cancelled by introduction of external perturbation of natural flow frequency but different phase.
Permeability of continental crust influenced by internal and external forcing
Rojstaczer, S.A.; Ingebritsen, S.E.; Hayba, D.O.
2008-01-01
The permeability of continental crust is so highly variable that it is often considered to defy systematic characterization. However, despite this variability, some order has been gleaned from globally compiled data. What accounts for the apparent coherence of mean permeability in the continental crust (and permeability-depth relations) on a very large scale? Here we argue that large-scale crustal permeability adjusts to accommodate rates of internal and external forcing. In the deeper crust, internal forcing - fluxes induced by metamorphism, magmatism, and mantle degassing - is dominant, whereas in the shallow crust, external forcing - the vigor of the hydrologic cycle - is a primary control. Crustal petrologists have long recognized the likelihood of a causal relation between fluid flux and permeability in the deep, ductile crust, where fluid pressures are typically near-lithostatic. It is less obvious that such a relation should pertain in the relatively cool, brittle upper crust, where near-hydrostatic fluid pressures are the norm. We use first-order calculations and numerical modeling to explore the hypothesis that upper-crustal permeability is influenced by the magnitude of external fluid sources, much as lower-crustal permeability is influenced by the magnitude of internal fluid sources. We compare model-generated permeability structures with various observations of crustal permeability. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.
Volumetric flow rate in simulations of microfluidic devices+
NASA Astrophysics Data System (ADS)
Kovalčíková, KristÍna; Slavík, Martin; Bachratá, Katarína; Bachratý, Hynek; Bohiniková, Alžbeta
2018-06-01
In this work, we examine the volumetric flow rate of microfluidic devices. The volumetric flow rate is a parameter which is necessary to correctly set up a simulation of a real device and to check the conformity of a simulation and a laboratory experiments [1]. Instead of defining the volumetric rate at the beginning as a simulation parameter, a parameter of external force is set. The proposed hypothesis is that for a fixed set of other parameters (topology, viscosity of the liquid, …) the volumetric flow rate is linearly dependent on external force in typical ranges of fluid velocity used in our simulations. To confirm this linearity hypothesis and to find numerical limits of this approach, we test several values of the external force parameter. The tests are designed for three different topologies of simulation box and for various haematocrits. The topologies of the microfluidic devices are inspired by existing laboratory experiments [3 - 6]. The linear relationship between the external force and the volumetric flow rate is verified in orders of magnitudes similar to the values obtained from laboratory experiments. Supported by the Slovak Research and Development Agency under the contract No. APVV-15-0751 and by the Ministry of Education, Science, Research and Sport of the Slovak Republic under the contract No. VEGA 1/0643/17.
Dissipative, forced turbulence in two-dimensional magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Fyfe, D.; Montgomery, D.; Joyce, G.
1976-01-01
The equations of motion for turbulent two-dimensional magnetohydrodynamic flows are solved in the presence of finite viscosity and resistivity, for the case in which external forces (mechanical and/or magnetic) act on the fluid. The goal is to verify the existence of a magnetohydrodynamic dynamo effect which is represented mathematically by a substantial back-transfer of mean square vector potential to the longest allowed Fourier wavelengths. External forces consisting of a random part plus a fraction of the value at the previous time step are employed, after the manner of Lilly for the Navier-Stokes case. The regime explored is that for which the mechanical and magnetic Reynolds numbers are in the region of 100 to 1000. The conclusions are that mechanical forcing terms alone cannot lead to dynamo action, but that dynamo action can result from either magnetic forcing terms or from both mechanical and magnetic forcing terms simultaneously.
Castelain, Mickaël; Koutris, Efstratios; Andersson, Magnus; Wiklund, Krister; Björnham, Oscar; Schedin, Staffan; Axner, Ove
2009-07-13
Bacterial adhesion organelles, known as fimbria or pili, are expressed by gram-positive as well as gram-negative bacteria families. These appendages play a key role in the first steps of the invasion and infection processes, and they therefore provide bacteria with pathogenic abilities. To improve the knowledge of pili-mediated bacterial adhesion to host cells and how these pili behave under the presence of an external force, we first characterize, using force measuring optical tweezers, open coil-like T4 pili expressed by gram-positive Streptococcus pneumoniae with respect to their biomechanical properties. It is shown that their elongation behavior can be well described by the worm-like chain model and that they possess a large degree of flexibility. Their properties are then compared with those of helix-like pili expressed by gram-negative uropathogenic Escherichia coli (UPEC), which have different pili architecture. The differences suggest that these two types of pili have distinctly dissimilar mechanisms to adhere and sustain external forces. Helix-like pili expressed by UPEC bacteria adhere to host cells by single adhesins located at the distal end of the pili while their helix-like structures act as shock absorbers to dampen the irregularly shear forces induced by urine flow and to increase the cooperativity of the pili ensemble, whereas open coil-like pili expressed by S. pneumoniae adhere to cells by a multitude of adhesins distributed along the pili. It is hypothesized that these two types of pili represent different strategies of adhering to host cells in the presence of external forces. When exposed to significant forces, bacteria expressing helix-like pili remain attached by distributing the external force among a multitude of pili, whereas bacteria expressing open coil-like pili sustain large forces primarily by their multitude of binding adhesins which presumably detach sequentially.
How can the West Better Assist Partner Nations in Establishing Internal Security
2017-03-31
Force: The Art of War in the Modern World (London: Penguin Books, 2005), 5-6; Herfried Münkler, The New Wars, trans. Patrick Camiller (Cambridge...role. The organizations will not be special forces as understood as elite units, the 48 distillation of martial spirit, but forces which are...keeping,” (June 27, 1992) http://www.un- documents.net/a47-277.htm Smith, Rupert. The Utility of Force: The Art of War in the Modern World. London
NASA Astrophysics Data System (ADS)
Chen, Ying-Ying; Jin, Fei-Fei
2018-03-01
The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.
Experimental testing of flexible barriers for containment of debris flows
DeNatale, Jay S.; Iverson, Richard M.; Major, Jon J.; LaHusen, Richard G.; Fliegel, Gregg L.; Duffy, John D.
1999-01-01
In June 1996, six experiments conducted at the U.S. Geological Survey Debris Flow Flume demonstrated that flexible, vertical barriers constructed of wire rope netting can stop small debris flows. All experimental debris flows consisted of water-saturated gravelly sand with less than two percent finer sediment by weight. All debris flows had volumes of about 10 cubic meters, masses of about 20 metre tons, and impact velocities of 5 to 9 meters per second. In four experiments, the debris flow impacted pristine, unreformed barriers of varying design; in the other two experiments, the debris flow impacted barriers already loaded with sediment from a previous flow. Differences in barrier design led to differences in barrier performance. Experiments were conducted with barriers constructed of square-mesh wire-rope netting with 30centimeter, 20centimeter, and 15 centimeter mesh openings as well as 30centimeter diameter interlocking steel rings. In all cases, sediment cascading downslope at the leading edge of the debris flows tended to spray through the nets. Nets fitted with finer-mesh chain link or chicken wire liners contained more sediment than did unlined nets, and a ring net fitted with a synthetic silt screen liner contained nearly 100 percent of the sediment. Irreversible net displacements of up to 2 meters and friction brake engagement on the support and anchor cables dissipated some of the impact energy. However, substantial forces developed in the steel support columns and the lateral and tie-back anchor cables attached to these columns. As predicted by elementary mechanics, the anchor cables experienced larger tensile forces when the support columns were hinged at the base rather than bolted rigidly to the foundation. Measured loads in the lateral anchor cables exceeded those in the tie-back anchor cables and the load cell capacity of 45 kilo-Newtons. Measurements also indicated that the peak loads in the tie- back anchors were highly transient and occurred at the points of maximum momentum impulse to the net.
How 3 rural safety net clinics integrate care for patients: a qualitative case study.
Derrett, Sarah; Gunter, Kathryn E; Nocon, Robert S; Quinn, Michael T; Coleman, Katie; Daniel, Donna M; Wagner, Edward H; Chin, Marshall H
2014-11-01
Integrated care focuses on care coordination and patient centeredness. Integrated care supports continuity of care over time, with care that is coordinated within and between settings and is responsive to patients' needs. Currently, little is known about care integration for rural patients. To examine challenges to care integration in rural safety net clinics and strategies to address these challenges. Qualitative case study. Thirty-six providers and staff from 3 rural clinics in the Safety Net Medical Home Initiative. Interviews were analyzed using the framework method with themes organized within 3 constructs: Team Coordination and Empanelment, External Coordination and Partnerships, and Patient-centered and Community-centered Care. Participants described challenges common to safety net clinics, including limited access to specialists for Medicaid and uninsured patients, difficulty communicating with external providers, and payment models with limited support for care integration activities. Rurality compounded these challenges. Respondents reported benefits of empanelment and team-based care, and leveraged local resources to support care for patients. Rural clinics diversified roles within teams, shared responsibility for patient care, and colocated providers, as strategies to support care integration. Care integration was supported by 2 fundamental changes to organize and deliver care to patients-(1) empanelment with a designated group of patients being cared for by a provider; and (2) a multidisciplinary team able to address rural issues. New funding and organizational initiatives of the Affordable Care Act may help to further improve care integration, although additional solutions may be necessary to address particular needs of rural communities.
NASA Astrophysics Data System (ADS)
Bogena, H. R.; Huisman, S.; Rosenbaum, U.; Wuethen, A.; Vereecken, H.
2009-04-01
Wireless sensor network technology allows near real-time monitoring of soil properties with a high spatial and temporal resolution for observing hydrological processes in small watersheds. The novel wireless sensor network SoilNet uses the low-cost ZigBee radio network for communication and a hybrid topology with a mixture of underground end devices each wired to several soil sensors and aboveground router devices. The SoilNet sensor network consists of soil water content, salinity and temperature sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. the occurrence of precipitation. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. Simultaneously, we have also developed a data management and visualisation system. Recently, a small forest catchment Wüstebach (27 ha) was instrumented with 50 end devices and more than 400 soil sensors in the frame of the TERENO-RUR hydrological observatory. We will present first results of this large sensor network both in terms of spatial-temporal variations in soil water content and the performance of the sensor network (e.g. network stability and power use).
Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo.
Gullbrand, Sarah E; Peterson, Joshua; Mastropolo, Rosemarie; Roberts, Timothy T; Lawrence, James P; Glennon, Joseph C; DiRisio, Darryl J; Ledet, Eric H
2015-05-01
The intervertebral disc primarily relies on trans-endplate diffusion for the uptake of nutrients and the clearance of byproducts. In degenerative discs, diffusion is often diminished by endplate sclerosis and reduced proteoglycan content. Mechanical loading-induced convection has the potential to augment diffusion and enhance net transport into the disc. The ability of convection to augment disc transport is controversial and has not been demonstrated in vivo. To determine if loading-induced convection can enhance small molecule transport into the intervertebral disc in vivo. Net transport was quantified via postcontrast enhanced magnetic resonance imaging (MRI) into the discs of the New Zealand white rabbit lumbar spine subjected to in vivo cyclic low rate loading. Animals were administered the MRI contrast agent gadodiamide intravenously and subjected to in vivo low rate loading (0.5 Hz, 200 N) via a custom external loading apparatus for either 2.5, 5, 10, 15, or 20 minutes. Animals were then euthanized and the lumbar spines imaged using postcontrast enhanced MRI. The T1 constants in the nucleus, annulus, and cartilage endplates were quantified as a measure of gadodiamide transport into the loaded discs compared with the adjacent unloaded discs. Microcomputed tomography was used to quantify subchondral bone density. Low rate loading caused the rapid uptake and clearance of gadodiamide in the nucleus compared with unloaded discs, which exhibited a slower rate of uptake. Relative to unloaded discs, low rate loading caused a maximum increase in transport into the nucleus of 16.8% after 5 minutes of loading. Low rate loading increased the concentration of gadodiamide in the cartilage endplates at each time point compared with unloaded levels. Results from this study indicate that forced convection accelerated small molecule uptake and clearance in the disc induced by low rate mechanical loading. Low rate loading may, therefore, be therapeutic to the disc as it may enhance the nutrient uptake and waste product clearance. Copyright © 2015 Elsevier Inc. All rights reserved.
Observations reveal external driver for Arctic sea-ice retreat
NASA Astrophysics Data System (ADS)
Notz, Dirk; Marotzke, Jochem
2012-04-01
The very low summer extent of Arctic sea ice that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-ice retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-ice minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-ice extent is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea ice already today.
NASA Astrophysics Data System (ADS)
Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.; Ge, Cui; Wang, Jun; Payer Sulprizio, Melissa; Croft, Betty; Ridley, David A.; McConnell, Joseph R.; Sharma, Sangeeta; Husain, Liaquat; Dutkiewicz, Vincent A.; Eleftheriadis, Konstantinos; Skov, Henrik; Hopke, Phillip K.
2017-03-01
Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near-term climate-forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2-3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005-2010 Arctic shortwave radiative forcing (RF) of -0.19 ± 0.05 W m-2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (-1.17 ± 0.10 W m-2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from -0.67 ± 0.06 W m-2 to -0.19 ± 0.05 W m-2, yielding a net TOA RF of +0.48 ± 0.06 W m-2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980-2010 trends in aerosol-radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol-cloud interactions or BC deposition on snow.
Medical Situational Awareness in Theater Advanced Concept Technology Demonstration Project Proposal
2004-06-01
making it an impossible task to sort, understand , and generate actionable knowledge within operational timeframes. Medical Situational Awareness in...need for greater medical situation awareness in theater and for greater integration of theater medical information into the net-centric rapid...There is a need for greater Medical Situation Awareness in theater and for greater integration of theater medical information into the ForceNet
Successfully Implementing Net-Zero Energy Policy through the Air Force Military Construction Program
2013-03-01
Meets Does not meet Does not meet Meets Renewable Farms Meets Meets Meets Meets On-Site (Distributed Generation) Meets* Meets* Meets Meets...independence, nor does it allow for net-zero energy installations. Developing centralized renewable energy farms is another method for obtaining...combination of centralized renewable energy farms and distributed generation methods. The specific combination of methods an installation will utilize
Bianchi, Lorenzo; Schiavina, Riccardo; Borghesi, Marco; Bianchi, Federico Mineo; Briganti, Alberto; Carini, Marco; Terrone, Carlo; Mottrie, Alex; Gacci, Mauro; Gontero, Paolo; Imbimbo, Ciro; Marchioro, Giansilvio; Milanese, Giulio; Mirone, Vincenzo; Montorsi, Francesco; Morgia, Giuseppe; Novara, Giacomo; Porreca, Angelo; Volpe, Alessandro; Brunocilla, Eugenio
2018-04-06
To assess the predictive accuracy and the clinical value of a recent nomogram predicting cancer-specific mortality-free survival after surgery in pN1 prostate cancer patients through an external validation. We evaluated 518 prostate cancer patients treated with radical prostatectomy and pelvic lymph node dissection with evidence of nodal metastases at final pathology, at 10 tertiary centers. External validation was carried out using regression coefficients of the previously published nomogram. The performance characteristics of the model were assessed by quantifying predictive accuracy, according to the area under the curve in the receiver operating characteristic curve and model calibration. Furthermore, we systematically analyzed the specificity, sensitivity, positive predictive value and negative predictive value for each nomogram-derived probability cut-off. Finally, we implemented decision curve analysis, in order to quantify the nomogram's clinical value in routine practice. External validation showed inferior predictive accuracy as referred to in the internal validation (65.8% vs 83.3%, respectively). The discrimination (area under the curve) of the multivariable model was 66.7% (95% CI 60.1-73.0%) by testing with receiver operating characteristic curve analysis. The calibration plot showed an overestimation throughout the range of predicted cancer-specific mortality-free survival rates probabilities. However, in decision curve analysis, the nomogram's use showed a net benefit when compared with the scenarios of treating all patients or none. In an external setting, the nomogram showed inferior predictive accuracy and suboptimal calibration characteristics as compared to that reported in the original population. However, decision curve analysis showed a clinical net benefit, suggesting a clinical implication to correctly manage pN1 prostate cancer patients after surgery. © 2018 The Japanese Urological Association.
Amplitude and phase fluctuations of Van der Pol oscillator under external random forcing
NASA Astrophysics Data System (ADS)
Singh, Aman K.; Yadava, R. D. S.
2018-05-01
The paper presents an analytical study of noise in Van der Pol oscillator output subjected to an external force noise assumed to be characterized by delta function (white noise). The external fluctuations are assumed to be small in comparison to the average response of the noise free system. The autocorrelation function and power spectrum are calculated under the condition of weak nonlinearity. The latter ensures limit cycle oscillations. The total spectral power density is dominated by the contributions from the phase fluctuations. The amplitude fluctuations are at least two orders of magnitude smaller. The analysis is shown to be useful to interpretation microcantilever based biosensing data.
Inducing and destruction of chimeras and chimera-like states by an external harmonic force
NASA Astrophysics Data System (ADS)
Shepelev, I. A.; Vadivasova, T. E.
2018-03-01
We study the phenomena of chimera destruction and inducing of chimera-like states in an ensemble of nonlocally coupled chaotic Rössler oscillators under an external harmonic force. The localized harmonic influence can lead to both destruction and changing of the spatial topology of chimeras. At the same time this influence can cause the emergence of stable chimera-like states (induced chimeras) for the regime of partial coherent chaos. Induced chimeras are also observed for the global influence. We show the possibility of controlling the chimera-like state topology by varying the parameters of localized external harmonic influence.
Geramy, Allahyar; Mortezai, Omid; Esmaily, Masomeh; Darvishpour, Hojat
2015-04-01
Headgears are among the effective orthodontic appliances to achieve treatment goals. Unilateral molar distal movement is sometimes needed during an orthodontic treatment, which can be achieved by an asymmetric headgear. Different unilateral headgears have been introduced. The main goal of this study was to analyze the force system of unilateral expanded outer bow asymmetric headgears by the finite element method (FEM). Six 3D finite element models of a mesiodistal slice of the maxilla containing upper first molars, their periodontal ligaments (PDLs), cancellous bone, cortical bone, and a cervical headgear with expanded outer bow attached to maxillary first molars were designed in SolidWorks 2010 and meshed in ANSYS Workbench ver. 12.1. The models were the same except for the degree of outer bow expansion. The outer bow ends were loaded with 2 N force. The distal driving force and the net moment were evaluated. A decrease in the distalizing force in the normal side molar from 1.69 N to 1.37 N was shown by increasing the degree of unilateral expansion. At the same time, the force increased from 2.19 N to 2.49 N in the expanded side molar. A net moment increasing from 2.26 N.mm to 4.64 N.mm was also shown. Unilateral outer bow expansion can produce different distalizing forces in molars, which increase by increasing the expansion.
Weis, Allison; Michalek, Jeremy J; Jaramillo, Paulina; Lueken, Roger
2015-05-05
We develop a unit commitment and economic dispatch model to estimate the operation costs and the air emissions externality costs attributable to new electric vehicle electricity demand under controlled vs uncontrolled charging schemes. We focus our analysis on the PJM Interconnection and use scenarios that characterize (1) the most recent power plant fleet for which sufficient data are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming plant retirements, and (3) the 2018 fleet with increased wind capacity. We find that controlled electric vehicle charging can reduce associated generation costs by 23%-34% in part by shifting loads to lower-cost, higher-emitting coal plants. This shift results in increased externality costs of health and environmental damages from increased air pollution. On balance, we find that controlled charging of electric vehicles produces negative net social benefits in the recent PJM grid but could have positive net social benefits in a future grid with sufficient coal retirements and wind penetration.
Pigeons steer like helicopters and generate down- and upstroke lift during low speed turns.
Ros, Ivo G; Bassman, Lori C; Badger, Marc A; Pierson, Alyssa N; Biewener, Andrew A
2011-12-13
Turning is crucial for animals, particularly during predator-prey interactions and to avoid obstacles. For flying animals, turning consists of changes in (i) flight trajectory, or path of travel, and (ii) body orientation, or 3D angular position. Changes in flight trajectory can only be achieved by modulating aerodynamic forces relative to gravity. How birds coordinate aerodynamic force production relative to changes in body orientation during turns is key to understanding the control strategies used in avian maneuvering flight. We hypothesized that pigeons produce aerodynamic forces in a uniform direction relative to their bodies, requiring changes in body orientation to redirect those forces to turn. Using detailed 3D kinematics and body mass distributions, we examined net aerodynamic forces and body orientations in slowly flying pigeons (Columba livia) executing level 90° turns. The net aerodynamic force averaged over the downstroke was maintained in a fixed direction relative to the body throughout the turn, even though the body orientation of the birds varied substantially. Early in the turn, changes in body orientation primarily redirected the downstroke aerodynamic force, affecting the bird's flight trajectory. Subsequently, the pigeon mainly reacquired the body orientation used in forward flight without affecting its flight trajectory. Surprisingly, the pigeon's upstroke generated aerodynamic forces that were approximately 50% of those generated during the downstroke, nearly matching the relative upstroke forces produced by hummingbirds. Thus, pigeons achieve low speed turns much like helicopters, by using whole-body rotations to alter the direction of aerodynamic force production to change their flight trajectory.
Pigeons steer like helicopters and generate down- and upstroke lift during low speed turns
Ros, Ivo G.; Bassman, Lori C.; Badger, Marc A.; Pierson, Alyssa N.; Biewener, Andrew A.
2011-01-01
Turning is crucial for animals, particularly during predator–prey interactions and to avoid obstacles. For flying animals, turning consists of changes in (i) flight trajectory, or path of travel, and (ii) body orientation, or 3D angular position. Changes in flight trajectory can only be achieved by modulating aerodynamic forces relative to gravity. How birds coordinate aerodynamic force production relative to changes in body orientation during turns is key to understanding the control strategies used in avian maneuvering flight. We hypothesized that pigeons produce aerodynamic forces in a uniform direction relative to their bodies, requiring changes in body orientation to redirect those forces to turn. Using detailed 3D kinematics and body mass distributions, we examined net aerodynamic forces and body orientations in slowly flying pigeons (Columba livia) executing level 90° turns. The net aerodynamic force averaged over the downstroke was maintained in a fixed direction relative to the body throughout the turn, even though the body orientation of the birds varied substantially. Early in the turn, changes in body orientation primarily redirected the downstroke aerodynamic force, affecting the bird’s flight trajectory. Subsequently, the pigeon mainly reacquired the body orientation used in forward flight without affecting its flight trajectory. Surprisingly, the pigeon’s upstroke generated aerodynamic forces that were approximately 50% of those generated during the downstroke, nearly matching the relative upstroke forces produced by hummingbirds. Thus, pigeons achieve low speed turns much like helicopters, by using whole-body rotations to alter the direction of aerodynamic force production to change their flight trajectory. PMID:22123982
Mechanical regulation of T-cell functions
Chen, Wei; Zhu, Cheng
2013-01-01
Summary T cells are key players of the mammalian adaptive immune system. They experience different mechanical microenvironments during their life cycles, from the thymus, secondary lymph organs, and peripheral tissues that are free of externally applied force but display variable substrate rigidities, to the blood and lymphatic circulation systems where complicated hydrodynamic forces are present. Regardless of whether T cells are subject to external forces or generate their own internal forces, they response and adapt to different biomechanical cues to modulate their adhesion, migration, trafficking, and triggering of immune functions through mechanical regulation of various molecules that bear force. These include adhesive receptors, immunoreceptors, motor proteins, cytoskeletal proteins, and their associated molecules. Here we discuss the forces acting on various surface and cytoplasmic proteins of a T cell in different mechanical milieus. We review existing data on how force regulates protein conformational changes and interactions with counter molecules, including integrins, actin, and the T-cell receptor, and how each relates to T-cell functions. PMID:24117820
The Veterans Administration library program.
Gartland, H J
1968-01-01
The Veterans Administration Library Service is continuously responsive to the information requirements of the agency's policies which provide for the improved care and treatment of veterans through research, education, and clinical programs. At the same time, it participates in the planning of the federal government as a whole in providing library support for health care for the American people. There are both internal and external forces influencing VA hospitals and their libraries. Retirements and consequent recruitment of new people will necessitate a rethinking of the VA library program at the same time as external forces will be affecting the program. These external forces include the application of machines to library services through the development of in-house capabilities coupled with joint-use participation and P.L. 89-785 which provides for the exchange of medical information, sharing of facilities, and cooperative training programs. A conceptual rearrangement of information resources will facilitate attainment of our goals.
NASA Astrophysics Data System (ADS)
Booth, Adam M.; McCarley, Justin; Hinkle, Jason; Shaw, Susan; Ampuero, Jean-Paul; Lamb, Michael P.
2018-05-01
Landslides reactivate due to external environmental forcing or internal mass redistribution, but the process is rarely documented quantitatively. We capture the three-dimensional, 1-m resolution surface deformation field of a transiently reactivated landslide with image correlation of repeat airborne lidar. Undrained loading by two debris flows in the landslide's head, rather than external forcing, triggered reactivation. After that loading, the lower 2 km of the landslide advanced by up to 14 m in 2 years before completely stopping. The displacement field over those 2 years implies that the slip surface gained 1 kPa of shear strength, which was likely accomplished by a negative dilatancy-pore pressure feedback as material deformed around basal roughness elements. Thus, landslide motion can be decoupled from external environmental forcing in cases, motivating the need to better understand internal perturbations to the stress field to predict hazards and sediment fluxes as landscapes evolve.
Quantization and instability of the damped harmonic oscillator subject to a time-dependent force
NASA Astrophysics Data System (ADS)
Majima, H.; Suzuki, A.
2011-12-01
We consider the one-dimensional motion of a particle immersed in a potential field U(x) under the influence of a frictional (dissipative) force linear in velocity ( -γẋ) and a time-dependent external force ( K(t)). The dissipative system subject to these forces is discussed by introducing the extended Bateman's system, which is described by the Lagrangian: ℒ=mẋẏ-U(x+{1}/{2}y)+U(x-{1}/{2}y)+{γ}/{2}(xẏ-yẋ)-xK(t)+yK(t), which leads to the familiar classical equations of motion for the dissipative (open) system. The equation for a variable y is the time-reversed of the x motion. We discuss the extended Bateman dual Lagrangian and Hamiltonian by setting U(x±y/2)={1}/{2}k( specifically for a dual extended damped-amplified harmonic oscillator subject to the time-dependent external force. We show the method of quantizing such dissipative systems, namely the canonical quantization of the extended Bateman's Hamiltonian ℋ. The Heisenberg equations of motion utilizing the quantized Hamiltonian ℋ̂ surely lead to the equations of motion for the dissipative dynamical quantum systems, which are the quantum analog of the corresponding classical systems. To discuss the stability of the quantum dissipative system due to the influence of an external force K(t) and the dissipative force, we derived a formula for transition amplitudes of the dissipative system with the help of the perturbation analysis. The formula is specifically applied for a damped-amplified harmonic oscillator subject to the impulsive force. This formula is used to study the influence of dissipation such as the instability due to the dissipative force and/or the applied impulsive force.
Tibiofemoral Contact Forces in the Anterior Cruciate Ligament-Reconstructed Knee.
Saxby, David John; Bryant, Adam L; Modenese, Luca; Gerus, Pauline; Killen, Bryce A; Konrath, Jason; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Vertullo, Christopher; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G
2016-11-01
To investigate differences in anterior cruciate ligament-reconstructed (ACLR) and healthy individuals in terms of the magnitude of the tibiofemoral contact forces, as well as the relative muscle and external load contributions to those contact forces, during walking, running, and sidestepping gait tasks. A computational EMG-driven neuromusculoskeletal model was used to estimate the muscle and tibiofemoral contact forces in those with single-bundle combined semitendinosus and gracilis tendon autograft ACLR (n = 104, 29.7 ± 6.5 yr, 78.1 ± 14.4 kg) and healthy controls (n = 60, 27.5 ± 5.4 yr, 67.8 ± 14.0 kg) during walking (1.4 ± 0.2 m·s), running (4.5 ± 0.5 m·s) and sidestepping (3.7 ± 0.6 m·s). Within the computational model, the semitendinosus of ACLR participants was adjusted to account for literature reported strength deficits and morphological changes subsequent to autograft harvesting. ACLR had smaller maximum total and medial tibiofemoral contact forces (~80% of control values, scaled to bodyweight) during the different gait tasks. Compared with controls, ACLR were found to have a smaller maximum knee flexion moment, which explained the smaller tibiofemoral contact forces. Similarly, compared with controls, ACLR had both a smaller maximum knee flexion angle and knee flexion excursion during running and sidestepping, which may have concentrated the articular contact forces to smaller areas within the tibiofemoral joint. Mean relative muscle and external load contributions to the tibiofemoral contact forces were not significantly different between ACLR and controls. ACLR had lower bodyweight-scaled tibiofemoral contact forces during walking, running, and sidestepping, likely due to lower knee flexion moments and straighter knee during the different gait tasks. The relative contributions of muscles and external loads to the contact forces were equivalent between groups.
Effect of plasma distribution on propulsion performance in electrodeless plasma thrusters
NASA Astrophysics Data System (ADS)
Takao, Yoshinori; Takase, Kazuki; Takahashi, Kazunori
2016-09-01
A helicon plasma thruster consisting of a helicon plasma source and a magnetic nozzle is one of the candidates for long-lifetime thrusters because no electrodes are employed to generate or accelerate plasma. A recent experiment, however, detected the non-negligible axial momentum lost to the lateral wall boundary, which degrades thruster performance, when the source was operated with highly ionized gases. To investigate this mechanism, we have conducted two-dimensional axisymmetric particle-in-cell (PIC) simulations with the neutral distribution obtained by Direct Simulation Monte Carlo (DSMC) method. The numerical results have indicated that the axially asymmetric profiles of the plasma density and potential are obtained when the strong decay of neutrals occurs at the source downstream. This asymmetric potential profile leads to the accelerated ion towards the lateral wall, leading to the non-negligible net axial force in the opposite direction of the thrust. Hence, to reduce this asymmetric profile by increasing the neutral density at downstream and/or by confining plasma with external magnetic field would result in improvement of the propulsion performance. These effects are also analyzed by PIC/DSMC simulations.
Anodic stripping voltammetry enhancement by redox magnetohydrodynamics.
Clark, Emily A; Fritsch, Ingrid
2004-04-15
The effect of an external magnetic field on linear scan anodic stripping voltammetry (ASV) in solutions of 10(-6)-10(-7) M concentrations of lead, cadmium, and copper at mercury films on glassy carbon electrodes has been investigated. A high concentration of Hg(2+) was added to the analyte solution to induce a large cathodic current during the deposition step. Therefore, a large Lorentz force from the net flux of charge through the magnetic field resulted in convection due to magnetohydrodynamics. The faster delivery of analytes to the mercury film electrode during deposition caused an increase in the anodic stripping peaks. The effect of varying Hg(2+) concentrations (0-60 mM) and magnetic field strengths (0-1.77 T) on the enhancement of the stripping peaks was investigated. Enhancements as large as 129% for peak currents and 167% for peak areas were observed. An enhancement of approximately 100% was observed when 60 mM Fe(3+) replaced high concentrations of Hg(2+). This method of convection exhibits promise for small-volume ASV analysis with possible improved limits of detection and decreased preconcentration times.
Smith, Doug M.; Allan, Richard P.; Coward, Andrew C.; ...
2015-02-19
Observational analyses of running 5 year ocean heat content trends (Ht) and net downward top of atmosphere radiation (N) are significantly correlated (r ~ 0.6) from 1960 to 1999, but a spike in Ht in the early 2000s is likely spurious since it is inconsistent with estimates of N from both satellite observations and climate model simulations. Variations in N between 1960 and 2000 were dominated by volcanic eruptions and are well simulated by the ensemble mean of coupled models from the Fifth Coupled Model Intercomparison Project (CMIP5). Here, we find an observation-based reduction in N of -0.31 ± 0.21more » W m -2 between 1999 and 2005 that potentially contributed to the recent warming slowdown, but the relative roles of external forcing and internal variability remain unclear. Finally, while present-day anomalies of N in the CMIP5 ensemble mean and observations agree, this may be due to a cancelation of errors in outgoing longwave and absorbed solar radiation.« less
Regolith Advanced Surface Systems Operations Robot Excavator
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Smith, Jonathan D.; Ebert, Thomas; Cox, Rachel; Rahmatian, Laila; Wood, James; Schuler, Jason; Nick, Andrew
2013-01-01
The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (<50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.
Empirical model of TEC response to geomagnetic and solar forcing over Balkan Peninsula
NASA Astrophysics Data System (ADS)
Mukhtarov, P.; Andonov, B.; Pancheva, D.
2018-01-01
An empirical total electron content (TEC) model response to external forcing over Balkan Peninsula (35°N-50°N; 15°E-30°E) is built by using the Center for Orbit Determination of Europe (CODE) TEC data for full 17 years, January 1999 - December 2015. The external forcing includes geomagnetic activity described by the Kp-index and solar activity described by the solar radio flux F10.7. The model describes the most probable spatial distribution and temporal variability of the externally forced TEC anomalies assuming that they depend mainly on latitude, Kp-index, F10.7 and LT. The anomalies are expressed by the relative deviation of the TEC from its 15-day mean, rTEC, as the mean value is calculated from the 15 preceding days. The approach for building this regional model is similar to that of the global TEC model reported by Mukhtarov et al. (2013a) however it includes two important improvements related to short-term variability of the solar activity and amended geomagnetic forcing by using a "modified" Kp index. The quality assessment of the new constructing model procedure in terms of modeling error calculated for the period of 1999-2015 indicates significant improvement in accordance with the global TEC model (Mukhtarov et al., 2013a). The short-term prediction capabilities of the model based on the error calculations for 2016 are improved as well. In order to demonstrate how the model is able to reproduce the rTEC response to external forcing three geomagnetic storms, accompanied also with short-term solar activity variations, which occur at different seasons and solar activity conditions are presented.
Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin; McCulloch, Malcolm
2013-01-01
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO2, pH, and aragonite saturation state (Ωar) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO2, pH, and Ωar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO2. PMID:23326411
Falter, James L; Lowe, Ryan J; Zhang, Zhenlin; McCulloch, Malcolm
2013-01-01
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2), pH, and aragonite saturation state (Ω(ar)) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2), pH, and Ω(ar) are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO(2) relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2) in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, X., E-mail: xzm0005@auburn.edu; Maurer, D. A.; Knowlton, S. F.
2015-12-15
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used tomore » infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less
NASA Astrophysics Data System (ADS)
Ma, X.; Maurer, D. A.; Knowlton, S. F.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.
2015-12-01
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.
Ma, X.; Maurer, D. A.; Knowlton, Stephen F.; ...
2015-12-22
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. Lastly, the inversion radius of standard saw-teeth is usedmore » to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less
Observed and Projected Changes to the Precipitation Annual Cycle
Marvel, Kate; Biasutti, Michela; Bonfils, Celine; ...
2017-06-08
Anthropogenic climate change is predicted to cause spatial and temporal shifts in precipitation patterns. These may be apparent in changes to the annual cycle of zonal mean precipitation P. Trends in the amplitude and phase of the P annual cycle in two long-term, global satellite datasets are broadly similar. Model-derived fingerprints of externally forced changes to the amplitude and phase of the P seasonal cycle, combined with these observations, enable a formal detection and attribution analysis. Observed amplitude changes are inconsistent with model estimates of internal variability but not attributable to the model-predicted response to external forcing. This mismatch betweenmore » observed and predicted amplitude changes is consistent with the sustained La Niña–like conditions that characterize the recent slowdown in the rise of the global mean temperature. However, observed changes to the annual cycle phase do not seem to be driven by this recent hiatus. Furthermore these changes are consistent with model estimates of forced changes, are inconsistent (in one observational dataset) with estimates of internal variability, and may suggest the emergence of an externally forced signal.« less
Dynamics of molecular motors with finite processivity on heterogeneous tracks.
Kafri, Yariv; Lubensky, David K; Nelson, David R
2005-04-01
The dynamics of molecular motors which occasionally detach from a heterogeneous track like DNA or RNA is considered. Motivated by recent single-molecule experiments, we study a simple model for a motor moving along a disordered track using chemical energy while an external force opposes its motion. The motors also have finite processivity, i.e., they can leave the track with a position-dependent rate. We show that the response of the system to disorder in the hopping-off rate depends on the value of the external force. For most values of the external force, strong disorder causes the motors which survive for long times on the track to be localized at preferred positions. However, near the stall force, localization occurs for any amount of disorder. To obtain these results, we study the complex eigenvalue spectrum of the time evolution operator. Existence of localized states near the top of the band implies a stretched exponential contribution to the decay of the survival probability. A similar spectral analysis also provides a very efficient method for studying the dynamics of motors with infinite processivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marvel, Kate; Biasutti, Michela; Bonfils, Celine
Anthropogenic climate change is predicted to cause spatial and temporal shifts in precipitation patterns. These may be apparent in changes to the annual cycle of zonal mean precipitation P. Trends in the amplitude and phase of the P annual cycle in two long-term, global satellite datasets are broadly similar. Model-derived fingerprints of externally forced changes to the amplitude and phase of the P seasonal cycle, combined with these observations, enable a formal detection and attribution analysis. Observed amplitude changes are inconsistent with model estimates of internal variability but not attributable to the model-predicted response to external forcing. This mismatch betweenmore » observed and predicted amplitude changes is consistent with the sustained La Niña–like conditions that characterize the recent slowdown in the rise of the global mean temperature. However, observed changes to the annual cycle phase do not seem to be driven by this recent hiatus. Furthermore these changes are consistent with model estimates of forced changes, are inconsistent (in one observational dataset) with estimates of internal variability, and may suggest the emergence of an externally forced signal.« less
USDA-ARS?s Scientific Manuscript database
Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...
USDA-ARS?s Scientific Manuscript database
Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...
Martin, J.R.; Budgeon, M.K.; Zatsiorsky, V.M.; Latash, M.L.
2010-01-01
When one finger changes its force, other fingers of the hand can show unintended force changes in the same direction (enslaving) and in the opposite direction (error compensation). We tested a hypothesis that externally imposed changes in finger force predominantly lead to error compensation effects in other fingers thus stabilizing the total force. A novel device, the “inverse piano”, was used to impose controlled displacements to one of the fingers over different magnitudes and at different rates. Subjects (n =10) pressed with four fingers at a constant force level and then one of the fingers was unexpectedly raised. The subjects were instructed not to interfere with possible changes in the finger forces. Raising a finger caused an increase in its force and a drop in the force of the other three fingers. Overall, total force showed a small increase. Larger force drops were seen in neighbors of the raised finger (proximity effect). The results show that multi-finger force stabilizing synergies dominate during involuntary reactions to externally imposed finger force changes. Within the referent configuration hypothesis, the data suggest that the instruction “not to interfere” leads to adjustments of the referent coordinates of all the individual fingers. PMID:21450360
Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow
NASA Astrophysics Data System (ADS)
Wajsowicz, R. C.
The effects of the Indonesian throughflow on the upper thermocline circulation and surface heat flux over the Indian Ocean are presented for a 3-D ocean model forced by two different monthly wind-stress climatologies, as they show interesting differences, which could have implications for long-term variability in the Indian and Australasian monsoons. The effects are determined by contrasting a control run with a run in which the throughflow is blocked by an artificial land-bridge across the exit channels into the Indian Ocean. In the model forced by ECMWF wind stresses, there is little impact on the annual mean surface heat flux in the region surrounding the throughflow exit straits, whereas in the model forced by SSM/I-based wind stresses, a modest throughflow of less than 5 ×106 m3s-1 over the upper 300 m induces an extra 10-50 Wm-2 output. In the SSM/I-forced model, there is insignificant penetration of the throughflow into the northern Indian Ocean. However, in the ECMWF-forced model, the throughflow induces a 5-10 Wm-2 reduction in heat input into the ocean, i.e., an effective output, over the Somali Current in the annual mean. These differences are attributed to differences in the strength and direction of the Ekman transport of the ambient flow, and the vertical structure of the transport and temperature anomalies associated with the throughflow. In both models, the throughflow induces a 5-30 Wm-2 increase in net output over a broad swathe of the southern Indian Ocean, and a reduction in heat output of 10-60 Wm-2 in a large L-shaped band around Tasmania. Effective increases in throughflow-induced net output reach up to 40 (60) Wm-2 over the Agulhas Current retroflection in the ECMWF (SSM/I)-forced model. Seasonal variations in the throughflow's effect on the net surface heat flux are attributed to seasonal variations in the ambient circulation of the Indian Ocean, specifically in coastal upwelling along the south Javan, west Australian, and Somalian coasts, and in the depth of convective overturning between 40°S to 50°S, and its sensing of the mean throughflow's thermal anomaly. The seasonal anomalies plus annual mean yield maximum values for the throughflow-induced net surface heat output in boreal summer. Values may exceed 40 Wm-2 in the southern Indian Ocean interior in both models, exceed 60 Wm-2 over the Agulhas retroflection and immediate vicinity of the exit channels in the SSM/I-forced model, and reach 30 Wm-2 over the Somali jet in the ECMWF-forced model.
Early experience of a safety net provider reorganizing into an accountable care organization.
Hacker, Karen; Santos, Palmira; Thompson, Douglas; Stout, Somava S; Bearse, Adriana; Mechanic, Robert E
2014-08-01
Although safety net providers will benefit from health insurance expansions under the Affordable Care Act, they also face significant challenges in the postreform environment. Some have embraced the concept of the accountable care organization to help improve quality and efficiency while addressing financial shortfalls. The experience of Cambridge Health Alliance (CHA) in Massachusetts, where health care reform began six years ago, provides insight into the opportunities and challenges of this approach in the safety net. CHA's strategies include care redesign, financial realignment, workforce transformation, and development of external partnerships. Early results show some improvement in access, patient experience, quality, and utilization; however, the potential efficiencies will not eliminate CHA's current operating deficit. The patient population, payer mix, service mix, cost structure, and political requirements reduce the likelihood of financial sustainability without significant changes in these factors, increased public funding, or both. Thus the future of safety net institutions, regardless of payment and care redesign success, remains at risk. Copyright © 2014 by Duke University Press.
Dynamic mechanical control of local vacancies in NiO thin films
NASA Astrophysics Data System (ADS)
Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V.; Kim, Yunseok
2018-07-01
The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.
Dynamic mechanical control of local vacancies in NiO thin films.
Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V; Kim, Yunseok
2018-07-06
The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.
Effect of coating on properties of esthetic orthodontic nickel-titanium wires.
Iijima, Masahiro; Muguruma, Takeshi; Brantley, William; Choe, Han-Cheol; Nakagaki, Susumu; Alapati, Satish B; Mizoguchi, Itaru
2012-03-01
To determine the effect of coating on the properties of two esthetic orthodontic nickel-titanium wires. Woowa (polymer coating; Dany Harvest) and BioForce High Aesthetic Archwire (metal coating; Dentsply GAC) with cross-section dimensions of 0.016 × 0.022 inches were selected. Noncoated posterior regions of the anterior-coated Woowa and uncoated Sentalloy were used for comparison. Nominal coating compositions were determined by x-ray fluorescence (JSX-3200, JOEL). Cross-sectioned and external surfaces were observed with a scanning electron microscope (SEM; SSX-550, Shimadzu) and an atomic force microscope (SPM-9500J2, Shimadzu). A three-point bending test (12-mm span) was carried out using a universal testing machine (EZ Test, Shimadzu). Hardness and elastic modulus of external and cross-sectioned surfaces were obtained by nanoindentation (ENT-1100a, Elionix; n = 10). Coatings on Woowa and BioForce High Aesthetic Archwire contained 41% silver and 14% gold, respectively. The coating thickness on Woowa was approximately 10 µm, and the coating thickness on BioForce High Aesthetic Archwire was much smaller. The surfaces of both coated wires were rougher than the noncoated wires. Woowa showed a higher mean unloading force than the noncoated Woowa, although BioForce High Aesthetic Archwire showed a lower mean unloading force than Sentalloy. While cross-sectional surfaces of all wires had similar hardness and elastic modulus, values for the external surface of Woowa were smaller than for the other wires. The coating processes for Woowa and BioForce High Aesthetic Archwire influence bending behavior and surface morphology.
ERIC Educational Resources Information Center
Shah, Chandra; Burke, Gerald
Forecasts of Australian labor market growth, net replacement needs, and net job openings to 2006 are presented using the nine-way grouping of occupations described by (Maglen and Shah, 1999). Analysis is based on classifying occupations by whether they are advantaged by globalization and technological change, relatively insulated, or vulnerable.…
A many-body dissipative particle dynamics study of forced water-oil displacement in capillary.
Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao
2012-01-17
The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications. © 2011 American Chemical Society
Northern Florida reef tract benthic metabolism scaled by remote sensing
Brock, J.C.; Yates, K.K.; Halley, R.B.; Kuffner, I.B.; Wright, C.W.; Hatcher, B.G.
2006-01-01
Holistic rates of excess organic carbon production (E) and calcification for a 0.5 km2 segment of the backreef platform of the northern Florida reef tract (NFRT) were estimated by combining biotope mapping using remote sensing with community metabolic rates determined with a benthic incubation system. The use of ASTER multispectral satellite imaging for the spatial scaling of benthic metabolic processes resulted in errors in E and net calcification (G) of 48 and 431% respectively, relative to estimates obtained using AISA hyperspectral airborne scanning. At 19 and 125%, the E and G errors relative to the AISA-based estimates were less pronounced for an analysis that used IKONOS multispectral satellite imagery to spatially extrapolate the chamber process measurements. Our scaling analysis indicates that the holistic calcification rate of the backreef platform of the northern Florida reef tract is negligible at 0.07 g CaCO3 m-2 d-1. All of the mapped biotopes in this reef zone are net heterotrophic, resulting in an estimated holistic excess production rate of -0.56 g C m-2 d-1, and an overall gross primary production to respiration ratio of 0.85. Based on our finding of ubiquitous heterotrophy, we infer that the backreef platform of the NFRT is a sink for external inputs of suspended particulate organic matter. Further, our results suggest that the inward advection of inorganic nutrients is not a dominant forcing mechanism for benthic biogeochemical function in the NFRT. We suggest that the degradation of the northern Florida reef tract may parallel the community phase shifts documented within other reef systems polluted by organic detritus.
Ballistic Impact Resistance of Multi-Layer Textile Fabrics
1981-10-01
REBOT (NNOLA, NVAR). the first array contains the vector of forces externally applied to the ’ top surface of the layer under consideration, while the...array REBOT (NNOLA, NVAR) contains the forces externally applied to the lower surface of the array. Initially all the elements of each of the two arrays...Qodes in a layer, the contents of array REBOT are now replaced with those of array RETOP in preparation for the repetition of the same calculations for
EEO External Relevant Labor Force Analysis
1980-09-01
N 04 .- . / Washington. D.C. 20350 If. CONTROLLING OFFICE NAME AND ADDRESS Navy Personnel Research and Development Center,/, Sentber 1 8 Code 303 N-i...8217Mn. RESEARCH REPORT NO. 37 EEO EXTERNAL RELEVANT LABOR FORCE ANALYSIS D.M. ATWATER R. J. NIEHAUS’ N BY J. A. SHERIDAN ii OFFICE OF THE ASSISTANT...San Diego. CA 92152 86 I4. MONITORING AGENCY NAME & AOORESS(I diflerent ham Controlling ONce.) IS. SECURITY CLASS. (of Ihis report) oA SN (/#/F
NASA Astrophysics Data System (ADS)
Webster, S.; Hardi, J.; Oschwald, M.
2015-03-01
The influence of injection conditions on rocket engine combustion stability is investigated for a sub-scale combustion chamber with shear coaxial injection elements and the propellant combination hydrogen-oxygen. The experimental results presented are from a series of tests conducted at subcritical and supercritical pressures for oxygen and for both ambient and cryogenic temperature hydrogen. The stability of the system is characterised by the root mean squared amplitude of dynamic combustion chamber pressure in the upper part of the acoustic spectrum relevant for high frequency combustion instabilities. Results are presented for both unforced and externally forced combustion chamber configurations. It was found that, for both the unforced and externally forced configurations, the injection velocity had the strongest influence on combustion chamber stability. Through the use of multivariate linear regression the influence of hydrogen injection temperature and hydrogen injection mass flow rate were best able to explain the variance in stability for dependence on injection velocity ratio. For unforced tests turbulent jet noise from injection was found to dominate the energy content of the signal. For the externally forced configuration a non-linear regression model was better able to predict the variance, suggesting the influence of non-linear behaviour. The response of the system to variation of injection conditions was found to be small; suggesting that the combustion chamber investigated in the experiment is highly stable.
Regionally dependent summer heat wave response to increased surface temperature in the US
NASA Astrophysics Data System (ADS)
Lopez, H.; Dong, S.; Kirtman, B. P.; Goni, G. J.; Lee, S. K.; Atlas, R. M.; West, R.
2017-12-01
Climate projections for the 21st Century suggest an increase in the occurrence of heat waves. However, the time it takes for the externally forced signal of climate change to emerge against the background of natural variability (i.e., Time of Emergence, ToE) particularly on the regional scale makes reliable future projection of heat waves challenging. Here, we combine observations and model simulations under present and future climate forcing to assess internal variability versus external forcing in modulating US heat waves. We characterized the most common heat wave patterns over the US by the use of clustering of extreme events by their spatial distribution. For each heat wave cluster, we assess changes in the probability density function (PDF) of summer temperature extremes by modeling the PDF as a stochastically generated skewed (SGS) distribution. The probability of necessary causation for each heat wave cluster was also quantified, allowing to make assessments of heat extreme attribution to anthropogenic climate change. The results suggest that internal variability will dominate heat wave occurrence over the Great Plains with ToE occurring in the 2050s (2070s) and of occurrence of ratio of warm-to-cold extremes of 1.7 (1.7) for the Northern (Southern) Plains. In contrast, external forcing will dominate over the Western (Great Lakes) region with ToE occurring as early as in the 2020s (2030s) and warm-to-cold extremes ratio of 6.4 (10.2), suggesting caution in attributing heat extremes to external forcing due to their regional dependence.
Brandauer, B; Timmann, D; Häusler, A; Hermsdörfer, J
2010-02-01
Various studies showed a clear impairment of cerebellar patients to modulate grip force in anticipation of the loads resulting from movements with a grasped object. This failure corroborated the theory of internal feedforward models in the cerebellum. Cerebellar damage also impairs the coordination of multiple-joint movements and this has been related to deficient prediction and compensation of movement-induced torques. To study the effects of disturbed torque control on feedforward grip-force control, two self-generated load conditions with different demands on torque control-one with movement-induced and the other with isometrically generated load changes-were directly compared in patients with cerebellar degeneration. Furthermore the cerebellum is thought to be more involved in grip-force adjustment to self-generated loads than to externally generated loads. Consequently, an additional condition with externally generated loads was introduced to further test this hypothesis. Analysis of 23 patients with degenerative cerebellar damage revealed clear impairments in predictive feedforward mechanisms in the control of both self-generated load types. Besides feedforward control, the cerebellar damage also affected more reactive responses when the externally generated load destabilized the grip, although this impairment may vary with the type of load as suggested by control experiments. The present findings provide further support that the cerebellum plays a major role in predictive control mechanisms. However, this impact of the cerebellum does not strongly depend on the nature of the load and the specific internal forward model. Contributions to reactive (grip force) control are not negligible, but seem to be dependent on the physical characteristics of an externally generated load.
NASA Astrophysics Data System (ADS)
Mohammadian, Shahabeddin Keshavarz; Layeghi, Mohammad; Hemmati, Mansor
2013-03-01
Forced convective heat transfer from a vertical circular tube conveying deionized (DI) water or very dilute Ag-DI water nanofluids (less than 0.02% volume fraction) in a cross flow of air has been investigated experimentally. Some experiments have been performed in a wind tunnel and heat transfer characteristics such as thermal conductance, effectiveness, and external Nusselt number has been measured at different air speeds, liquid flow rates, and nanoparticle concentrations. The cross flow of air over the tube and the liquid flow in the tube were turbulent in all cases. The experimental results have been compared and it has been found that suspending Ag nanoparticles in the base fluid increases thermal conductance, external Nusselt number, and effectiveness. Furthermore, by increasing the external Reynolds number, the external Nusselt number, effectiveness, and thermal conductance increase. Also, by increasing internal Reynolds number, the thermal conductance and external Nusselt number enhance while the effectiveness decreases.
Homodyne detection of short-range Doppler radar using a forced oscillator model
NASA Astrophysics Data System (ADS)
Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote
2017-03-01
This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis.
NASA Astrophysics Data System (ADS)
Casdagli, M. C.
1997-09-01
We show that recurrence plots (RPs) give detailed characterizations of time series generated by dynamical systems driven by slowly varying external forces. For deterministic systems we show that RPs of the time series can be used to reconstruct the RP of the driving force if it varies sufficiently slowly. If the driving force is one-dimensional, its functional form can then be inferred up to an invertible coordinate transformation. The same results hold for stochastic systems if the RP of the time series is suitably averaged and transformed. These results are used to investigate the nonlinear prediction of time series generated by dynamical systems driven by slowly varying external forces. We also consider the problem of detecting a small change in the driving force, and propose a surrogate data technique for assessing statistical significance. Numerically simulated time series and a time series of respiration rates recorded from a subject with sleep apnea are used as illustrative examples.
Munro, B J; Steele, J R; Bashford, G M; Ryan, M; Britten, N
1998-03-01
Twelve elderly female rheumatoid arthritis patients (mean age = 65.5 +/- 8.6 yr) were assessed rising from an instrumented Eser Ejector chair under four conditions: high seat (540 mm), low seat (450 mm), with and without the ejector mechanism operating. Sagittal plane motion, ground reaction forces, and vertical chair arm rest forces were recorded during each trial with the signals synchronised at initial subject head movement. When rising from a high seat, subjects displayed significantly (p < 0.05) greater time to seat off; greater trunk, knee and ankle angles at seat off; increased ankle angular displacement; decreased knee angular displacement; and decreased total net and normalised arm rest forces compared to rising from a low seat. When rising using the ejector mechanism, time to seat off and trunk and knee angle at seat off significantly increased, whereas trunk and knee angular displacement, and total net and normalised arm rest forces significantly decreased compared to rising unassisted. Regardless of seat height or ejector mechanism use, there were no significant differences in the peak, or time to peak horizontal velocity of the subjects' total body centre of mass, or net knee and ankle moments. It was concluded that increased seat height and use of the ejector mechanism facilitated sit-to-stand transfers performed by elderly female rheumatoid arthritic patients. However, using the ejector chair may be preferred by these patients compared to merely raising seat height because it does not necessitate the use of a footstool, a possible obstacle contributing to falls.
NASA Astrophysics Data System (ADS)
Monrolin, Nicolas; Praud, Olivier; Plouraboué, Franck
2018-06-01
Ionic wind refers to the acceleration of partially ionized air between two high-voltage electrodes. We study the momentum transfer from ions to air, resulting from ionic wind created by two asymmetric electrodes and producing a net thrust. This electrohydrodynamic (EHD) thrust, has already been measured in previous studies with digital scales. In this study, we provide more insights into the electrohydrodynamic momentum transfer for a wire-to-cylinder(s) positive dc corona discharge. We provide a simple and general theoretical derivation for EHD thrust, which is proportional to the current/mobility ratio and also to an effective distance integrated on the surface of the electrodes. By considering various electrode configurations, our investigation brings out the physical origin of previously obtained optimal configurations, associated with a better tradeoff between Coulomb forcing, friction occurring at the collector, and wake interactions. By measuring two-dimensional velocity fields using particle image velocimetry (PIV), we are able to evaluate the resulting local net force, including the pressure gradient. It is shown that the contribution of velocity fluctuations in the wake of the collecting electrode(s) must be taken into account to recover the net thrust. We confirm the proportionality between the EHD force and the current/mobility ratio experimentally, and evaluate the ion mobility from PIV measurements. A spectral analysis of the velocity fluctuations indicates a dominant frequency corresponding to a Strouhal number of 0.3 based on the ionic wind velocity and the collector size. Finally, the effective mobility of charge carriers is estimated by a PIV based method inside the drift region.
The dynamics of double slab subduction
NASA Astrophysics Data System (ADS)
Holt, A. F.; Royden, L. H.; Becker, T. W.
2017-04-01
We use numerical models to investigate the dynamics of two interacting slabs with parallel trenches. Cases considered are: a single slab reference, outward dipping slabs (out-dip), inward dipping slabs (in-dip) and slabs dipping in the same direction (same-dip). Where trenches converge over time (same-dip and out-dip systems), large positive dynamic pressures in the asthenosphere are generated beneath the middle plate and large trench-normal extensional forces are transmitted through the middle plate. This results in slabs that dip away from the middle plate at depth, independent of trench geometry. The single slab, the front slab in the same-dip case and both out-dip slabs undergo trench retreat and exhibit stable subduction. However, slabs within the other double subduction systems tend to completely overturn at the base of the upper mantle, and exhibit either trench advance (rear slab in same-dip), or near-stationary trenches (in-dip). For all slabs, the net slab-normal dynamic pressure at 330 km depth is nearly equal to the slab-normal force induced by slab buoyancy. For double subduction, the net outward force on the slabs due to dynamic pressure from the asthenosphere is effectively counterbalanced by the net extensional force transmitted through the middle plate. Thus, dynamic pressure at depth, interplate coupling and lithospheric stresses are closely linked and their effects cannot be isolated. Our results provide insights into both the temporal evolution of double slab systems on Earth and, more generally, how the various components of subduction systems, from mantle flow/pressure to interplate coupling, are dynamically linked.
Under the radar: community safety nets for AIDS-affected households in sub-Saharan Africa.
Foster, G
2007-01-01
Safety nets are mechanisms to mitigate the effects of poverty on vulnerable households during times of stress. In sub-Saharan Africa, extended families, together with communities, are the most effective responses enabling access to support for households facing crises. This paper reviews literature on informal social security systems in sub-Saharan Africa, analyses changes taking place in their functioning as a result of HIV/AIDS and describes community safety net components including economic associations, cooperatives, loan providers, philanthropic groups and HIV/AIDS initiatives. Community safety nets target households in greatest need, respond rapidly to crises, are cost efficient, based on local needs and available resources, involve the specialized knowledge of community members and provide financial and psycho-social support. Their main limitations are lack of material resources and reliance on unpaid labour of women. Changes have taken place in safety net mechanisms because of HIV/AIDS, suggesting the resilience of communities rather than their impending collapse. Studies are lacking that assess the value of informal community-level transfers, describe how safety nets assist the poor or analyse modifications in response to HIV/AIDS. The role of community safety nets remains largely invisible under the radar of governments, non-governmental organizations and international bodies. External support can strengthen this system of informal social security that provides poor HIV/AIDS-affected households with significant support.
An Innovative Miniature Bite Force Recorder
Utreja, Ashok K; Sandhu, Navreet; Dhaliwal, Yadvinder S
2011-01-01
In this study, a detailed description of development of a new novel bite force recorder (gnathodynamometer) using solid state components is vividly explained. This state of the art authenticated device can be used to assess the complex function of human bite force, which is the net resultant combination of functional response of various craniomandibular structures consisting of interrelated components, like the muscles of mastication, joints, teeth and the neuromuscular system. The consistency and accuracy of the bite force recorder was reaffirmed by doing a detailed laboratory calibration and clinical testing on 30 adult subjects. PMID:27672249
NASA Astrophysics Data System (ADS)
Bauer, Susanne E.; Menon, Surabi
2012-01-01
The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.
NASA Technical Reports Server (NTRS)
Bauer, Susanne E.; Menon, Surabi
2012-01-01
The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.
Scattering of accelerated wave packets
NASA Astrophysics Data System (ADS)
Longhi, S.; Horsley, S. A. R.; Della Valle, G.
2018-03-01
Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.
Allied Forces. 1st Airborne Task Force. Field Order Number 1
1944-08-05
will install and operate radio set SCR- 284 in a directed net. KfCS Div Arty station when installed. Initially 460th F.A. Bn will control. principal...oilly will be used. Food will be consumed from original containers and mess kits’will not be used until prop er mess gear washing facilities are
Gas powered fluid gun with recoil mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubelich, Mark C.; Yonas, Gerold
A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided by a cavitating venturi that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated.
A Double-Edged Sword: Assessing the Impact of Tuition Discounting.
ERIC Educational Resources Information Center
Hubbell, Loren W. Loomis; Rush, Sean C.
1991-01-01
A discussion of the interrelationships between college tuition pricing, family resources, externally funded financial aid, and institutionally funded financial aid suggests that, as the range of tuition levels broadens, institutions must focus more closely on net tuition income in their forecasting or face erosion of revenues. (MSE)
Consortium Purchases: Case Study for a Cost-Benefit Analysis.
ERIC Educational Resources Information Center
Scigliano, Marisa
2002-01-01
Discusses library cooperation and academic library consortia and presents a case study of a Canadian consortia that conducted a cost-benefit analysis for purchasing an electronic resource. Reports on member library subscription costs, external economic factors, value of patron time saved, costs and benefits for patrons, and net savings. (LRW)
A Managerial Approach to Compensation
ERIC Educational Resources Information Center
Wolfe, Arthur V.
1975-01-01
The article examines the major external forces constraining equitable employee compensation, sets forth the classical employee compensation assumptions, suggests somewhat more realistic employee compensation assumptions, and proposes guidelines based on analysis of these external constraints and assumptions. (Author)
MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.
2010-01-01
In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672
NASA Astrophysics Data System (ADS)
Ding, Yang; Ming, Tingyu
2016-11-01
In undulatory locomotion, torque (bending moment) is required along the body to overcome the external forces from environments and bend the body. Previous observations on animals using less than two wavelengths on the body showed such torque has a single traveling wave pattern. Using resistive force theory model and considering the torque generated by external force in a resistive force dominated media, we found that as the wave number (number of wavelengths on the locomotor's body) increases from 0.5 to 1.8, the speed of the traveling wave of torque decreases. When the wave number increases to 2 and greater, the torque pattern transits from a single traveling wave to a two traveling waves and then a complex pattern that consists two wave-like patterns. By analyzing the force distribution and its contribution to the torque, we explain the speed decrease of the torque wave and the pattern transition. This research is partially supported by the Recruitment Program of Global Young Experts (China).
The role of external forcing and Pacific trade winds in recent changes of the global climate system
NASA Astrophysics Data System (ADS)
Friedman, Andrew; Gastineau, Guillaume; Khodri, Myriam
2017-04-01
The Pacific trade winds experienced an unprecedented strengthening since the mid 1990s. Several studies have proposed that the increased Pacific trade winds were associated with the reduced rate of global mean surface temperature warming in the first decade of the 21st century, as well as far-reaching atmospheric teleconnections. We designed a set of ensemble partial coupling experiments using the IPSL-CM5A-LR coupled model that allow us to cleanly distinguish the influence of Pacific trade wind variability from that of external forcing over the past few decades. In this study, we quantify the respective impacts of these processes on surface temperature, ocean heat content, and atmospheric teleconnections. We designed two ensembles of coupled simulations using partial coupling with the IPSL-CM5A-LR model to separate the Pacific internal variability and that of external radiative forcing. We prescribe surface wind stress in the tropical Pacific (20°S to 20°N) from 1979-2014 in two ensembles of 30 members each: (1) Prescribed climatological model wind stress, which allows us to estimate the influence of external radiative forcing in the absence of variability within the Pacific Ocean. (2) Wind stress anomalies from ERA-Interim reanalysis added to the model wind stress climatology, which accounts for the effects of both external radiative forcing and the wind stress variability. We find that the observed wind stress anomalies account for the pattern of eastern tropical Pacific cooling when compared to the climatology experiment, so that it resembles the observed trends from 1992-2011. The tropical Pacific shows dominant heat uptake in the western Pacific above the 20°C isotherm, which contributed to slow the warming of tropical SST during the 2000s. The trade wind increase is associated with a strengthening of the Pacific Walker circulation, and zonal shifts in tropical rainfall. Despite tropical SST biases which affect the response of tropical rainfall and the location of deep convection, the wind stress anomaly forcing effectively simulates the wave train pattern emanating from the tropical Pacific, and associated extratropical teleconnections such as a weakening of the Aleutian Low and drought in North America.
Theory, Design, and Algorithms for Optimal Control of wireless Networks
2010-06-09
The implementation of network-centric warfare technologies is an abiding, critical interest of Air Force Science and Technology efforts for the Warfighter. Wireless communications, strategic signaling are areas of critical Air Force Mission need. Autonomous networks of multiple, heterogeneous Throughput enhancement and robust connectivity in communications and sensor networks are critical factors in net-centric USAF operations. This research directly supports the Air Force vision of information dominance and the development of anywhere, anytime operational readiness.
Electricity resonance-induced fast transport of water through nanochannels.
Kou, Jianlong; Lu, Hangjun; Wu, Fengmin; Fan, Jintu; Yao, Jun
2014-09-10
We performed molecular dynamics simulations to study water permeation through a single-walled carbon nanotube with electrical interference. It was found that the water net flux across the nanochannel is greatly affected by the external electrical interference, with the maximal net flux occurred at an electrical interference frequency of 16670 GHz being about nine times as high as the net flux at the low or high frequency range of (<1000 GHz or >80,000 GHz). The above phenomena can be attributed to the breakage of hydrogen bonds as the electrical interference frequency approaches to the inherent resonant frequency of hydrogen bonds. The new mechanism of regulating water flux across nanochannels revealed in this study provides an insight into the water transportation through biological water channels and has tremendous potential in the design of high-flux nanofluidic systems.
Kia, Mohammad; Wright, Timothy M; Cross, Michael B; Mayman, David J; Pearle, Andrew D; Sculco, Peter K; Westrich, Geoffrey H; Imhauser, Carl W
2018-01-01
The correct amount of external rotation of the femoral component during TKA is controversial because the resulting changes in biomechanical knee function associated with varying degrees of femoral component rotation are not well understood. We addressed this question using a computational model, which allowed us to isolate the biomechanical impact of geometric factors including bony shapes, location of ligament insertions, and implant size across three different knees after posterior-stabilized (PS) TKA. Using a computational model of the tibiofemoral joint, we asked: (1) Does external rotation unload the medial collateral ligament (MCL) and what is the effect on lateral collateral ligament tension? (2) How does external rotation alter tibiofemoral contact loads and kinematics? (3) Does 3° external rotation relative to the posterior condylar axis align the component to the surgical transepicondylar axis (sTEA) and what anatomic factors of the femoral condyle explain variations in maximum MCL tension among knees? We incorporated a PS TKA into a previously developed computational knee model applied to three neutrally aligned, nonarthritic, male cadaveric knees. The computational knee model was previously shown to corroborate coupled motions and ligament loading patterns of the native knee through a range of flexion. Implant geometries were virtually installed using hip-to-ankle CT scans through measured resection and anterior referencing surgical techniques. Collateral ligament properties were standardized across each knee model by defining stiffness and slack lengths based on the healthy population. The femoral component was externally rotated from 0° to 9° relative to the posterior condylar axis in 3° increments. At each increment, the knee was flexed under 500 N compression from 0° to 90° simulating an intraoperative examination. The computational model predicted collateral ligament forces, compartmental contact forces, and tibiofemoral internal/external and varus-valgus rotation through the flexion range. The computational model predicted that femoral component external rotation relative to the posterior condylar axis unloads the MCL and the medial compartment; however, these effects were inconsistent from knee to knee. When the femoral component was externally rotated by 9° rather than 0° in knees one, two, and three, the maximum force carried by the MCL decreased a respective 55, 88, and 297 N; the medial contact forces decreased at most a respective 90, 190, and 570 N; external tibial rotation in early flexion increased by a respective 4.6°, 1.1°, and 3.3°; and varus angulation of the tibia relative to the femur in late flexion increased by 8.4°, 8.0°, and 7.9°, respectively. With 3° of femoral component external rotation relative to the posterior condylar axis, the femoral component was still externally rotated by up to 2.7° relative to the sTEA in these three neutrally aligned knees. Variations in MCL force from knee to knee with 3° of femoral component external rotation were related to the ratio of the distances from the femoral insertion of the MCL to the posterior and distal cuts of the implant; the closer this ratio was to 1, the more uniform were the MCL tensions from 0° to 90° flexion. A larger ratio of distances from the femoral insertion of the MCL to the posterior and distal cuts may cause clinically relevant increases in both MCL tension and compartmental contact forces. To obtain more consistent ligament tensions through flexion, it may be important to locate the posterior and distal aspects of the femoral component with respect to the proximal insertion of the MCL such that a ratio of 1 is achieved.
A Parametric Approach to Numerical Modeling of TKR Contact Forces
Lundberg, Hannah J.; Foucher, Kharma C.; Wimmer, Markus A.
2009-01-01
In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients. PMID:19155015
Microscopic theory of Brownian motion revisited: The Rayleigh model
NASA Astrophysics Data System (ADS)
Kim, Changho; Karniadakis, George Em
2013-03-01
We investigate three force autocorrelation functions
NASA Astrophysics Data System (ADS)
Azzari, George
Southern Californian wildfires can influence climate in a variety of ways, including changes in surface albedo, emission of greenhouse gases and aerosols, and the production of tropospheric ozone. Ecosystem post-fire recovery plays a key role in determining the strength, duration, and relative importance of these climate forcing agents. Southern California's ecosystems vary markedly with topography, creating sharp transitions with elevation, aspect, and slope. Little is known about the ways topography influences ecosystem properties and function, particularly in the context of post-fire recovery. We combined images from the USGS satellite Landsat 5 with flux tower measurements to analyze pre- and post-fire albedo and carbon exchanged by Southern California's ecosystems in the Santa Ana Mountains. We reduced the sources of external variability in Landsat images using several correction methods for topographic and bidirectional effects. We used time series of corrected images to infer the Net Ecosystem Exchange and surface albedo, and calculated the radiative forcing due to CO2 emissions and albedo changes. We analyzed the patterns of recovery and radiative forcing on north- and south-facing slopes, stratified by vegetation classes including grassland, coastal sage scrub, chaparral, and evergreen oak forest. We found that topography strongly influenced post-fire recovery and radiative forcing. Field observations are often limited by the difficulty of collecting ground validation data. Current instrumentation networks do not provide adequate spatial resolution for landscape-level analysis. The deployment of consumer-market technology could reduce the cost of near-surface measurements, allowing the installation of finer-scale instrument networks. We tested the performance of the Microsoft Kinect sensor for measuring vegetation structure. We used Kinect to acquire 3D vegetation point clouds in the field, and used these data to compute plant height, crown diameter, and volume. We found good agreement between Kinect-derived and manual measurements.
Biased and flow driven Brownian motion in periodic channels
NASA Astrophysics Data System (ADS)
Martens, S.; Straube, A.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.
2012-02-01
In this talk we will present an expansion of the common Fick-Jacobs approximation to hydrodynamically as well as by external forces driven Brownian transport in two-dimensional channels exhibiting smoothly varying periodic cross-section. We employ an asymptotic analysis to the components of the flow field and to stationary probability density for finding the particles within the channel in a geometric parameter. We demonstrate that the problem of biased Brownian dynamics in a confined 2D geometry can be replaced by Brownian motion in an effective periodic one-dimensional potential ψ(x) which takes the external bias, the change of the local channel width, and the flow velocity component in longitudinal direction into account. In addition, we study the influence of the external force magnitude, respectively, the pressure drop of the fluid on the particle transport quantities like the averaged velocity and the effective diffusion coefficient. The critical ratio between the external force and pressure drop where the average velocity equals zero is identified and the dependence of the latter on the channel geometry is derived. Analytic findings are confirmed by numerical simulations of the particle dynamics in a reflection symmetric sinusoidal channel.
NASA Astrophysics Data System (ADS)
Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas
2016-05-01
External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.
Mortezai, Omid; Esmaily, Masomeh; Darvishpour, Hojat
2015-01-01
Objectives: Headgears are among the effective orthodontic appliances to achieve treatment goals. Unilateral molar distal movement is sometimes needed during an orthodontic treatment, which can be achieved by an asymmetric headgear. Different unilateral headgears have been introduced. The main goal of this study was to analyze the force system of unilateral expanded outer bow asymmetric headgears by the finite element method (FEM). Materials and Methods: Six 3D finite element models of a mesiodistal slice of the maxilla containing upper first molars, their periodontal ligaments (PDLs), cancellous bone, cortical bone, and a cervical headgear with expanded outer bow attached to maxillary first molars were designed in SolidWorks 2010 and meshed in ANSYS Workbench ver. 12.1. The models were the same except for the degree of outer bow expansion. The outer bow ends were loaded with 2 N force. The distal driving force and the net moment were evaluated. Results: A decrease in the distalizing force in the normal side molar from 1.69 N to 1.37 N was shown by increasing the degree of unilateral expansion. At the same time, the force increased from 2.19 N to 2.49 N in the expanded side molar. A net moment increasing from 2.26 N.mm to 4.64 N.mm was also shown. Conclusion: Unilateral outer bow expansion can produce different distalizing forces in molars, which increase by increasing the expansion. PMID:26622282
Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence
NASA Astrophysics Data System (ADS)
Stevenson, David S.; Doherty, Ruth M.; Sanderson, Michael G.; Collins, William J.; Johnson, Colin E.; Derwent, Richard G.
2004-09-01
A chemistry-climate model has been applied to study the radiative forcings generated by aircraft NOx emissions through changes in ozone and methane. Four numerical experiments, where an extra pulse of aircraft NOx was emitted into the model atmosphere for a single month (January, April, July, or October), were compared to a control experiment, allowing the aircraft impact to be isolated. The extra NOx produces a short-lived (few months) pulse of ozone that generates a positive radiative forcing. However, the NOx and O3 both generate OH, which leads to a reduction in CH4. A detailed analysis of the OH budget reveals the spatial structure and chemical reactions responsible for the generation of the OH perturbation. Methane's long lifetime means that the CH4 anomaly decays slowly (perturbation lifetime of 11.1 years). The negative CH4 anomaly also has an associated negative O3 anomaly, and both of these introduce a negative radiative forcing. There are important seasonal differences in the response of O3 and CH4 to aircraft NOx, related to the annual cycle in photochemistry; the O3 radiative forcing calculations also have a seasonal dependence. The long-term globally integrated annual mean net forcing calculated here is approximately zero, although earlier work suggests a small net positive forcing. The model design (e.g., upper tropospheric chemistry, convection parameterization) and experimental setup (pulse magnitude and duration) may somewhat influence the results: further work with a range of models is required to confirm these results quantitatively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cisneros-Parra, Joel U.; Martinez-Herrera, Francisco J.; Montalvo-Castro, J. Daniel
We recently reported on a series of equilibrium figures for a self-gravitating heterogeneous liquid body, consisting of two concentric distorted spheroids, “nucleus” and “atmosphere,” each endowed with its own internal motion of differential rotation. In our current work, we calculate the body’s force at external points and obtain a multipolar expansion of the potential. We also give an account of figures with prolate nuclei, which remained unnoticed by us in our former paper.
2005-06-24
for an adhesion-active surface. 2.8.2 Dupre’s equation Let adhesive interaction between two bodies take place. Dupre’s equation defines the...connection between work of external forces on system of two bodies with adhesive interaction contact, the potential energies these bodies and the energy...Lagrangian of system of two bodies with adhesion interaction is equal half of work of external forces enclosed to this system” With the help of
Visco-Resistive MHD Modeling Benchmark of Forced Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Beidler, M. T.; Hegna, C. C.; Sovinec, C. R.; Callen, J. D.; Ferraro, N. M.
2016-10-01
The presence of externally-applied 3D magnetic fields can affect important phenomena in tokamaks, including mode locking, disruptions, and edge localized modes. External fields penetrate into the plasma and can lead to forced magnetic reconnection (FMR), and hence magnetic islands, on resonant surfaces if the local plasma rotation relative to the external field is slow. Preliminary visco-resistive MHD simulations of FMR in a slab geometry are consistent with theory. Specifically, linear simulations exhibit proper scaling of the penetrated field with resistivity, viscosity, and flow, and nonlinear simulations exhibit a bifurcation from a flow-screened to a field-penetrated, magnetic island state as the external field is increased, due to the 3D electromagnetic force. These results will be compared to simulations of FMR in a circular cross-section, cylindrical geometry by way of a benchmark between the NIMROD and M3D-C1 extended-MHD codes. Because neither this geometry nor the MHD model has the physics of poloidal flow damping, the theory of will be expanded to include poloidal flow effects. The resulting theory will be tested with linear and nonlinear simulations that vary the resistivity, viscosity, flow, and external field. Supported by OFES DoE Grants DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466, and the SciDAC Center for Extended MHD Modeling.
Modeling of particle agglomeration in nanofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, K. Hari; Neti, S.; Oztekin, A.
2015-03-07
Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid wasmore » moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.« less
Dynamic dielectrophoresis model of multi-phase ionic fluids.
Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu
2015-01-01
Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.
Modification of impulse generation during piqué turns with increased rotational demands.
Zaferiou, Antonia M; Wilcox, Rand R; McNitt-Gray, Jill L
2016-06-01
During initiation of a piqué turn, a dancer generates impulse to achieve the desired lateral translation and whole-body rotation. The goal of this study was to determine how individuals regulate impulse generation when initiating piqué turns with increased rotational demands. Skilled dancers (n=10) performed single (∼360°) and double (∼720°) piqué turns from a stationary position. Linear and angular impulse generated by the push and turn legs were quantified using ground reaction forces and compared across turn conditions as a group and within a dancer using probability-based statistical methods. The results indicate that as the rotation demands of the piqué turn increased, the net angular impulse generated increased whereas net lateral impulse decreased. Early during turn initiation, the free moment contributed to angular impulse generation. Later during turn initiation, horizontal reaction forces were controlled to generate angular impulse. As rotational demands increased, the moment applied increased primarily from redirection of the horizontal reaction force (RFh) at the push leg and a combination of RFh magnitude and moment arm increases at the turn leg. RFh at each leg were coordinated to limit unwanted net linear impulse. Knowledge of observed subject-specific mechanisms is important to inform the design of turning performance training tools. Copyright © 2016 Elsevier B.V. All rights reserved.
The energy associated with MHD waves generation in the solar wind plasma
NASA Technical Reports Server (NTRS)
delaTorre, A.
1995-01-01
Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.
Magnetic Torque in Single Crystal Ni-Mn-Ga
NASA Astrophysics Data System (ADS)
Hobza, Anthony; Müllner, Peter
2017-06-01
Magnetic shape memory alloys deform in an external magnetic field in two distinct ways: by axial straining—known as magnetic-field-induced strain—and by bending when exposed to torque. Here, we examine the magnetic torque that a magnetic field exerts on a long Ni-Mn-Ga rod. A single crystal specimen of Ni-Mn-Ga was constrained with respect to bending and subjected to an external magnetic field. The torque required to rotate the specimen in the field was measured as a function of the orientation of the sample with the external magnetic field, strain, and the magnitude of the external magnetic field. The torque was analyzed based on the changes in the free energy with the angle between the field and the sample. The contributions of magnetocrystalline anisotropy and shape anisotropy to the Zeeman energy determine the net torque. The torque is large when magneotcrystalline and shape anisotropies act synergistically and small when these anisotropies act antagonistically.
Brainard, Jamie; Nassar, Nedal T.; Gambogi, Joseph; Baker, Michael S.; Jarvis, Michael T.
2018-01-25
A U.S. Navy SEAL (an acronym for sea, air, land) carries gear containing at least 23 nonfuel mineral commodities for which the United States is greater than 50 percent net import reliant. The graphics display the leading world producers of selected nonfuel mineral commodities used to manufacture U.S. Navy SEAL gear. SEALs are members of the U.S. Navy's special operations forces.
Comprehensive Nuclear-Test-Ban Treaty: Updated ’Safeguards’ and Net Assessments
2009-06-03
measures that this nation can take unilaterally within the treaty to protect its nuclear security. To compensate for “disadvantages and risk” they...and strategic forces, and could be augmented with implementation measures . While Safeguards may be part of a future CTBT debate, both supporters and...A second path involves efforts to alter the net assessment through measures intended to mitigate perceived risks of the treaty. This path has been
Drag Measurements over Embedded Cavities in a Low Reynolds Number Couette Flow
NASA Astrophysics Data System (ADS)
Gilmer, Caleb; Lang, Amy; Jones, Robert
2010-11-01
Recent research has revealed that thin-walled, embedded cavities in low Reynolds number flow have the potential to reduce the net viscous drag force acting on the surface. This reduction is due to the formation of embedded vortices allowing the outer flow to pass over the surface via a roller bearing effect. It is also hypothesized that the scales found on butterfly wings may act in a similar manner to cause a net increase in flying efficiency. In this experimental study, rectangular embedded cavities were designed as a means of successfully reducing the net drag across surfaces in a low Reynolds number flow. A Couette flow was generated via a rotating conveyor belt immersed in a tank of high viscosity mineral oil above which the plates with embedded cavities were placed. Drag induced on the plate models was measured using a force gauge and compared directly to measurements acquired over a flat plate. Various cavity aspect ratios and gap heights were tested in order to determine the conditions under which the greatest drag reductions occurred.
Dikin-type algorithms for dextrous grasping force optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buss, M.; Faybusovich, L.; Moore, J.B.
1998-08-01
One of the central issues in dextrous robotic hand grasping is to balance external forces acting on the object and at the same time achieve grasp stability and minimum grasping effort. A companion paper shows that the nonlinear friction-force limit constraints on grasping forces are equivalent to the positive definiteness of a certain matrix subject to linear constraints. Further, compensation of the external object force is also a linear constraint on this matrix. Consequently, the task of grasping force optimization can be formulated as a problem with semidefinite constraints. In this paper, two versions of strictly convex cost functions, onemore » of them self-concordant, are considered. These are twice-continuously differentiable functions that tend to infinity at the boundary of possible definiteness. For the general class of such cost functions, Dikin-type algorithms are presented. It is shown that the proposed algorithms guarantee convergence to the unique solution of the semidefinite programming problem associated with dextrous grasping force optimization. Numerical examples demonstrate the simplicity of implementation, the good numerical properties, and the optimality of the approach.« less
Ponderomotive forces in electrodynamics of moving media: The Minkowski and Abraham approaches
NASA Astrophysics Data System (ADS)
Nesterenko, V. V.; Nesterenko, A. V.
2016-09-01
In the general setting of the problem, the explicit compact formulae are derived for the ponderomotive forces in the macroscopic electrodynamics of moving media in the Minkowski and Abraham approaches. Taking account of the Minkowski constitutive relations and making use of a special representation for the Abraham energy-momentum tensor enable one to obtain a compact expression for the Abraham force in the case of arbitrary dependence of the medium velocity on spatial coordinates and the time and for nonstationary external electromagnetic field. We term the difference between the ponderomotive forces in the Abraham and Minkowski approaches as the Abraham force not only under consideration of media at rest but also in the case of moving media. The Lorentz force is found which is exerted by external electromagnetic field on the conduction current in a medium, the covariant Ohm law, and the constitutive Minkowski relations being taken into account. The physical argumentation is traced for the definition of the 4-vector of the ponderomotive force as the 4-divergence of the energy-momentum tensor of electromagnetic field in a medium.
Locomotor Adaptation to an Asymmetric Force on the Human Pelvis Directed Along the Right Leg.
Vashista, Vineet; Martelli, Dario; Agrawal, Sunil
2015-09-11
In this work, we study locomotor adaptation in healthy adults when an asymmetric force vector is applied to the pelvis directed along the right leg. A cable-driven Active Tethered Pelvic Assist Device (A-TPAD) is used to apply an external force on the pelvis, specific to a subject's gait pattern. The force vector is intended to provide external weight bearing during walking and modify the durations of limb supports. The motivation is to use this paradigm to improve weight bearing and stance phase symmetry in individuals with hemiparesis. An experiment with nine healthy subjects was conducted. The results show significant changes in the gait kinematics and kinetics while the healthy subjects developed temporal and spatial asymmetry in gait pattern in response to the applied force vector. This was followed by aftereffects once the applied force vector was removed. The adaptation to the applied force resulted in asymmetry in stance phase timing and lower limb muscle activity. We believe this paradigm, when extended to individuals with hemiparesis, can show improvements in weight bearing capability with positive effects on gait symmetry and walking speed.
Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications
Luo, Yiqi; Shi, Zheng; Lu, Xingjie; ...
2017-01-12
Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g.,more » net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Altogether, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.« less
Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiqi; Shi, Zheng; Lu, Xingjie
Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g.,more » net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Altogether, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.« less
Transient dynamics of terrestrial carbon storage: Mathematical foundation and numeric examples
Luo, Yiqi; Shi, Zheng; Lu, Xingjie; ...
2016-09-16
Terrestrial ecosystems absorb roughly 30% of anthropogenic CO 2 emissions since preindustrial era, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling, experimental, and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under climate change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production,more » NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Furthermore, this and our other studies have demonstrated that one matrix equation can exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. Moreover, the emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. We also propose that the C storage potential be the targeted variable for research, market trading, and government negotiation for C credits.« less
Transient dynamics of terrestrial carbon storage: Mathematical foundation and numeric examples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiqi; Shi, Zheng; Lu, Xingjie
Terrestrial ecosystems absorb roughly 30% of anthropogenic CO 2 emissions since preindustrial era, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling, experimental, and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under climate change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production,more » NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Furthermore, this and our other studies have demonstrated that one matrix equation can exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. Moreover, the emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. We also propose that the C storage potential be the targeted variable for research, market trading, and government negotiation for C credits.« less
Joint contact loading in forefoot and rearfoot strike patterns during running.
Rooney, Brandon D; Derrick, Timothy R
2013-09-03
Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (p<0.05). There was no evidence to support a difference between habitual and converted running for joint contact forces. The increased loading at the ankle joint for FFS is an area of concern for individuals considering altering their foot strike pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bremmell, Kristen E; Britcher, Leanne; Griesser, Hans J
2013-06-01
Addition of ionized terminal groups to PEG graft layers may cause additional interfacial forces to modulate the net interfacial interactions between PEG graft layers and proteins. In this study we investigated the effect of terminal sulfonate groups, characterizing PEG-aldehyde (PEG-CHO) and sulfonated PEG (PEG-SO3) graft layers by XPS and colloid probe AFM interaction force measurements as a function of ionic strength, in order to determine surface forces relevant to protein resistance and models of bio-interfacial interaction of such graft coatings. On the PEG-CHO surface the measured interaction force does not alter with ionic strength, typical of a repulsive steric barrier coating. An analogous repulsive interaction force of steric origin was also observed on the PEG-SO3 graft coating; however, the net interaction force changed with ionic strength. Interaction forces were modelled by steric and electrical double layer interaction theories, with fitting to a scaling theory model enabling determination of the spacing and stretching of the grafted chains. Albumin, fibrinogen, and lysozyme did not adsorb on the PEG-CHO coating, whereas the PEG graft with terminal sulfonate groups showed substantial adsorption of albumin but not fibrinogen or lysozyme from 0.15 M salt solutions. Under lower ionic strength conditions albumin adsorption was again minimized as a result of the increased electrical double-layer interaction observed with the PEG-SO3 modified surface. This unique and unexpected adsorption behaviour of albumin provides an alternative explanation to the "negative cilia" model used by others to rationalize observed thromboresistance on PEG-sulfonate coatings. Copyright © 2013 Elsevier B.V. All rights reserved.
García-Manglano, Javier
2015-12-01
Most literature on female employment focuses on the intersection between women's labor supply and family events such as marriage, divorce, or childbearing. Even when using longitudinal data and methods, most studies estimate average net effects over time and assume homogeneity among women. Less is known about diversity in women's cumulative work patterns over the long run. Using group-based trajectory analysis, I model the employment trajectories of early Baby Boom women in the United States from ages 20 to 54. I find that women in this cohort can be classified in four ideal-type groups: those who were consistently detached from the labor force (21 %), those who gradually increased their market attachment (27 %), those who worked intensely in young adulthood but dropped out of the workforce after midlife (13 %), and those who were steadily employed across midlife (40 %). I then explore a variety of traits associated with membership in each of these groups. I find that (1) the timing of family events (marriage, fertility) helps to distinguish between groups with weak or strong attachment to the labor force in early adulthood; (2) external constraints (workplace discrimination, husband's opposition to wife's work, ill health) explain membership in groups that experienced work trajectory reversals; and (3) individual preferences influence labor supply across women's life course. This analysis reveals a high degree of complexity in women's lifetime working patterns, highlighting the need to understand women's labor supply as a fluid process.
Inertial frames and breakthrough propulsion physics
NASA Astrophysics Data System (ADS)
Millis, Marc G.
2017-09-01
The term ;Breakthrough Propulsion Physics; comes from the NASA project by that name which examined non-rocket space drives, gravity control, and faster-than-light travel. The focus here is on space drives and the related unsolved physics of inertial frames. A ;space drive; is a generic term encompassing any concept for using as-yet undiscovered physics to move a spacecraft instead of existing rockets, sails, or tethers. The collective state of the art spans mostly steps 1-3 of the scientific method: defining the problem, collecting data, and forming hypotheses. The key issues include (1) conservation of momentum, (2) absence of obvious reaction mass, and (3) the net-external thrusting requirement. Relevant open problems in physics include: (1) the sources and mechanisms of inertial frames, (2) coupling of gravitation to the other fundamental forces, and (3) the nature of the quantum vacuum. Rather than following the assumption that inertial frames are an immutable, intrinsic property of space, this paper revisits Mach's Principle, where it is posited that inertia is relative to the distant surrounding matter. This perspective allows conjectures that a space drive could impart reaction forces to that matter, via some as-yet undiscovered interaction with the inertial frame properties of space. Thought experiments are offered to begin a process to derive new hypotheses. It is unknown if this line of inquiry will be fruitful, but it is hoped that, by revisiting unsolved physics from a propulsion point of view, new insights will be gained.
Neutral Beam Driven Neoclassical Transport in NSTX
NASA Astrophysics Data System (ADS)
Houlberg, W. A.; Shaing, K. C.; Callen, J. D.
2002-11-01
We re-examine the particle and heat flows driven by neutral beam injection in tokamak plasmas. These appear as inward pinches for co-injection and outward for counter injection. We derive the parallel friction and heat friction forces exerted on the thermal species by the energetic beam ions by extending the early analysis of Callen, et al. [1], which are then used as external forces in the moments formulation of neoclassical transport in NCLASS [2]. NCLASS is based on the multiple species treatment of Hirshman and Sigmar [3]. Of particular interest is the ion energy flux driven by the heat friction term. It scales as the beam energy, while the particle and electron heat terms scale as the thermal plasma temperature. In NSTX the high beam energy to plasma temperature ratio may lead to a net negative ion heat flux with strong co-injection. Limtations to the theory, such as the large fast ion orbit size relative to the radius of the flux surface, are discussed. Comparisons are made with earlier works by Hinton and Kim [4] and Stacey [5], who evaluated only the beam-thermal friction. [1] J.D. Callen, et al, 5th IAEA, Tokyo (1974), Vol 1, 645 [2] W.A. Houlberg, K.C. Shaing, S.P. Hirshman, M.C. Zarnstorff, Phys. Plasmas 4 (1997) 3230 [3] S.P. Hirshman, D.J. Sigmar, Nucl. Fusion 21 (1981) 1079 [4] F.L. Hinton, Y.-B. Kim, Phys. Fluids B 5 (1993) 3012 [5] W.M. Stacey, Phys. Fluids B 5 (1993) 4505
An Analytic Approach to Modeling Land-Atmosphere Interaction: 1. Construct and Equilibrium Behavior
NASA Astrophysics Data System (ADS)
Brubaker, Kaye L.; Entekhabi, Dara
1995-03-01
A four-variable land-atmosphere model is developed to investigate the coupled exchanges of water and energy between the land surface and atmosphere and the role of these exchanges in the statistical behavior of continental climates. The land-atmosphere system is substantially simplified and formulated as a set of ordinary differential equations that, with the addition of random noise, are suitable for analysis in the form of the multivariate Îto equation. The model treats the soil layer and the near-surface atmosphere as reservoirs with storage capacities for heat and water. The transfers between these reservoirs are regulated by four states: soil saturation, soil temperature, air specific humidity, and air potential temperature. The atmospheric reservoir is treated as a turbulently mixed boundary layer of fixed depth. Heat and moisture advection, precipitation, and layer-top air entrainment are parameterized. The system is forced externally by solar radiation and the lateral advection of air and water mass. The remaining energy and water mass exchanges are expressed in terms of the state variables. The model development and equilibrium solutions are presented. Although comparisons between observed data and steady state model results re inexact, the model appears to do a reasonable job of partitioning net radiation into sensible and latent heat flux in appropriate proportions for bare-soil midlatitude summer conditions. Subsequent work will introduce randomness into the forcing terms to investigate the effect of water-energy coupling and land-atmosphere interaction on variability and persistence in the climatic system.
From strings to coils: Rotational dynamics of DNA-linked colloidal chains
NASA Astrophysics Data System (ADS)
Kuei, Steve; Garza, Burke; Biswal, Sibani Lisa
2017-10-01
We investigate the dynamical behavior of deformable filaments experimentally using a tunable model system consisting of linked paramagnetic colloidal particles, where the persistence length lp, the contour length lc, and the strength and frequency of the external driving force are controlled. We find that upon forcing by an external magnetic field, a variety of structural and conformational regimes exist. Depending on the competition of forces and torques on the chain, we see classic rigid rotator behavior, as well as dynamically rich wagging, coiling, and folding behavior. Through a combination of experiments, computational models, and theoretical calculations, we are able to observe, classify, and predict these dynamics as a function of the dimensionless Mason and magnetoelastic numbers.
Stress Response of Granular Systems
NASA Astrophysics Data System (ADS)
Ramola, Kabir; Chakraborty, Bulbul
2017-10-01
We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.
Muscles do more positive than negative work in human locomotion
DeVita, Paul; Helseth, Joseph; Hortobagyi, Tibor
2008-01-01
Summary Muscle work during level walking and ascent and descent ramp and stairway walking was assessed in order to explore the proposition that muscles perform more positive than negative work during these locomotion tasks. Thirty four healthy human adults were tested while maintaining a constant average walking velocity in the five gait conditions. Ground reaction force and sagittal plane kinematic data were obtained during the stance phases of these gaits and used in inverse dynamic analyses to calculate joint torques and powers at the hip, knee and ankle. Muscle work was derived as the area under the joint power vs time curves and was partitioned into positive, negative and net components. Dependent t-tests were used to compare positive and negative work in level walking and net joint work between ascent and descent gaits on the ramp and stairs (P<0.010). Total negative and positive work in level walking was −34 J and 50 J, respectively, with the difference in magnitude being statistically significant (P<0.001). Level walking was therefore performed with 16 J of net positive muscle work per step. The magnitude of the net work in ramp ascent was 25% greater than the magnitude of net work in ramp descent (89 vs −71 J m−1, P<0.010). Similarly, the magnitude of the net work in stair ascent was 43% greater than the magnitude of net work in stair descent (107 vs −75 J step−1, P<0.000). We identified three potential causes for the reduced negative vs positive work in these locomotion tasks: (1) the larger magnitude of the accelerations induced by the larger ground reaction forces in descending compared to ascending gaits elicited greater energy dissipation in non-muscular tissues, (2) the ground reaction force vector was directed closer to the joint centers in ramp and stair descent compared to ascent, which reduced the load on the muscular tissues and their energy dissipating response, and (3) despite the need to produce negative muscle work in descending gaits, both ramp and stair descent also had positive muscle work to propel the lower extremity upward and forward into the swing phase movement trajectory. We used these data to formulate two novel hypotheses about human locomotion. First, level walking requires muscles to generate a net positive amount of work per gait cycle to overcome energy losses by other tissues. Second, skeletal muscles generate more mechanical energy in gait tasks that raise the center of mass compared to the mechanical energy they dissipate in gait tasks that lower the center of mass, despite equivalent changes in total mechanical energy. PMID:17872990
Muscles do more positive than negative work in human locomotion.
DeVita, Paul; Helseth, Joseph; Hortobagyi, Tibor
2007-10-01
Muscle work during level walking and ascent and descent ramp and stairway walking was assessed in order to explore the proposition that muscles perform more positive than negative work during these locomotion tasks. Thirty four healthy human adults were tested while maintaining a constant average walking velocity in the five gait conditions. Ground reaction force and sagittal plane kinematic data were obtained during the stance phases of these gaits and used in inverse dynamic analyses to calculate joint torques and powers at the hip, knee and ankle. Muscle work was derived as the area under the joint power vs time curves and was partitioned into positive, negative and net components. Dependent t-tests were used to compare positive and negative work in level walking and net joint work between ascent and descent gaits on the ramp and stairs (P<0.010). Total negative and positive work in level walking was -34 J and 50 J, respectively, with the difference in magnitude being statistically significant (P<0.001). Level walking was therefore performed with 16 J of net positive muscle work per step. The magnitude of the net work in ramp ascent was 25% greater than the magnitude of net work in ramp descent (89 vs -71 J m(-1), P<0.010). Similarly, the magnitude of the net work in stair ascent was 43% greater than the magnitude of net work in stair descent (107 vs -75 J step(-1), P<0.000). We identified three potential causes for the reduced negative vs positive work in these locomotion tasks: (1) the larger magnitude of the accelerations induced by the larger ground reaction forces in descending compared to ascending gaits elicited greater energy dissipation in non-muscular tissues, (2) the ground reaction force vector was directed closer to the joint centers in ramp and stair descent compared to ascent, which reduced the load on the muscular tissues and their energy dissipating response, and (3) despite the need to produce negative muscle work in descending gaits, both ramp and stair descent also had positive muscle work to propel the lower extremity upward and forward into the swing phase movement trajectory. We used these data to formulate two novel hypotheses about human locomotion. First, level walking requires muscles to generate a net positive amount of work per gait cycle to overcome energy losses by other tissues. Second, skeletal muscles generate more mechanical energy in gait tasks that raise the center of mass compared to the mechanical energy they dissipate in gait tasks that lower the center of mass, despite equivalent changes in total mechanical energy.
Decreased knee adduction moment does not guarantee decreased medial contact force during gait.
Walter, Jonathan P; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J
2010-10-01
Excessive contact force is believed to contribute to the development of medial compartment knee osteoarthritis. The external knee adduction moment (KAM) has been identified as a surrogate measure for medial contact force during gait, with an abnormally large peak value being linked to increased pain and rate of disease progression. This study used in vivo gait data collected from a subject with a force-measuring knee implant to assess whether KAM decreases accurately predict corresponding decreases in medial contact force. Changes in both quantities generated via gait modification were analyzed statistically relative to the subject's normal gait. The two gait modifications were a "medial thrust" gait involving knee medialization during stance phase and a "walking pole" gait involving use of bilateral walking poles. Reductions in the first (largest) peak of the KAM (32-33%) did not correspond to reductions in the first peak of the medial contact force. In contrast, reductions in the second peak and angular impulse of the KAM (15-47%) corresponded to reductions in the second peak and impulse of the medial contact force (12-42%). Calculated reductions in both KAM peaks were highly sensitive to rotation of the shank reference frame about the superior-inferior axis of the shank. Both peaks of medial contact force were best predicted by a combination of peak values of the external KAM and peak absolute values of the external knee flexion moment (R(2) = 0.93). Future studies that evaluate the effectiveness of gait modifications for offloading the medial compartment of the knee should consider the combined effect of these two knee moments. Published by Wiley Periodicals, Inc. J Orthop Res 28:1348-1354, 2010.
Radiative Forcing of the Pinatubo Aerosol as a Function of Latitude and Time
NASA Technical Reports Server (NTRS)
Bergstrom, R. W.; Kinne, S.; Russell, P. B.; Bauman, J. J.; Minnis, P.
1996-01-01
We present calculations of the radiative forcing of the Mt. Pinatubo aerosols as a function of latitude and time after the eruption and compare the results with GOES satellite data. The results from the model indicate that the net effect of the aerosol was to cool the earth-atmosphere system with the most significant radiative effect in the tropics (corresponding to the location of the tropical stratospheric reservoir) and at latitudes greater than 60 deg. The high-latitude maximum is a combined effect of the high-latitude peak in optical depth (Trepte et al 1994) and the large solar zenith angles. The comparison of the predicted and measured net flux shows relatively good agreement, with the model consistently under predicting the cooling effect of the aerosol.
Radiative Forcing of the Pinatubo Aerosol as a Function of Latitude and Time
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Kinne, S.; Russell, P. B.; Bauman, J. J.; Minnis, P.
2000-01-01
We present calculations of the radiative forcing of the Mt. Pinatubo aerosols as a function of latitude and time after the eruption and compare the results with GOES satellite data. The results from the model indicate that the net effect of the aerosol was to cool the earth-atmosphere system with the most significant radiative effect in the tropics (corresponding to the location of the tropical stratospheric reservoir) and at latitudes greater than 60 degrees. The high-latitude maximum is a combined effect of the high-latitude peak in optical depth (Trepte et al 1994) and the large solar zenith angles. The comparison of the predicted and measured net flux shows relatively good agreement, with the model consistently under predicting the cooling effect of the aerosol.
NASA Astrophysics Data System (ADS)
Li, Dawei; Zhang, Rong; Knutson, Thomas R.
2017-04-01
This study aims to understand the relative roles of external forcing versus internal climate variability in causing the observed Barents Sea winter sea ice extent (SIE) decline since 1979. We identify major discrepancies in the spatial patterns of winter Northern Hemisphere sea ice concentration trends over the satellite period between observations and CMIP5 multi-model mean externally forced response. The CMIP5 externally forced decline in Barents Sea winter SIE is much weaker than that observed. Across CMIP5 ensemble members, March Barents Sea SIE trends have little correlation with global mean surface air temperature trends, but are strongly anti-correlated with trends in Atlantic heat transport across the Barents Sea Opening (BSO). Further comparison with control simulations from coupled climate models suggests that enhanced Atlantic heat transport across the BSO associated with regional internal variability may have played a leading role in the observed decline in winter Barents Sea SIE since 1979.
The QBO and weak external forcing by solar activity: A three dimensional model study
NASA Technical Reports Server (NTRS)
Dameris, M.; Ebel, A.
1989-01-01
A better understanding is attempted of the physical mechanisms leading to significant correlations between oscillations in the lower and middle stratosphere and solar variability associated with the sun's rotation. A global 3-d mechanistic model of the middle atmosphere is employed to investigate the effects of minor artificially induced perturbations. The aim is to explore the physical mechanisms of the dynamical response especially of the stratosphere to weak external forcing as it may result from UV flux changes due to solar rotation. First results of numerical experiments dealing about the external forcing of the middle atmosphere by solar activity were presented elsewhere. Different numerical studies regarding the excitation and propagation of weak perturbations have been continued since then. The model calculations presented are made to investigate the influence of the quasi-biennial oscillation (QBO) on the dynamical response of the middle atmosphere to weak perturbations by employing different initial wind fields which represent the west and east phase of the QBO.
Jiang, Xi Zhuo; Feng, Muye; Ventikos, Yiannis; Luo, Kai H
2018-04-10
Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.
Nonequilibrium Tuning of the Thermal Casimir Effect.
Dean, David S; Lu, Bing-Sui; Maggs, A C; Podgornik, Rudolf
2016-06-17
In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.
Solar Variability in the Context of Other Climate Forcing Mechanisms
NASA Technical Reports Server (NTRS)
Hansen, James E.
1999-01-01
I compare and contrast climate forcings due to solar variability with climate forcings due to other mechanisms of climate change, interpretation of the role of the sun in climate change depends upon climate sensitivity and upon the net forcing by other climate change mechanisms. Among the potential indirect climate forcings due to solar variability, only that due to solar cycle induced ozone changes has been well quantified. There is evidence that the sun has been a significant player in past climate change on decadal to century time scales, and that it has the potential to contribute to climate change in the 21st century.
Parallel manipulation of individual magnetic microbeads for lab-on-a-chip applications
NASA Astrophysics Data System (ADS)
Peng, Zhengchun
Many scientists and engineers are turning to lab-on-a-chip systems for faster and cheaper analysis of chemical reactions and biomolecular interactions. A common approach that facilitates the handling of reagents and biomolecules in these systems utilizes micro/nano beads as the solid carrier. Physical manipulation, such as assembly, transport, sorting, and tweezing, of beads on a chip represents an essential step for fully utilizing their potentials in a wide spectrum of bead-based analysis. Previous work demonstrated manipulation of either an ensemble of beads without individual control, or single beads but lacks the capability for parallel operation. Parallel manipulation of individual beads is required to meet the demand for high-throughput and location-specific analysis. In this work, we introduced two methods for parallel manipulation of individual magnetic microbeads, which can serve as effective lab-on-a-chip platforms and/or efficient analytic tools. The first method employs arrays of soft ferromagnetic patterns fabricated inside a microfluidic channel and subjected to an external magnetic field. We demonstrated that the system can be used to assemble individual beads (1-3 mum) from a flow of suspended beads into a regular array on the chip, hence improving the integrated electrochemical detection of biomolecules bound to the bead surface. By rotating the external field, the assembled microbeads can be remotely controlled with synchronized, high-speed circular motion around individual soft magnets on the chip. We employed this manipulation mode for efficient sample mixing in continuous microflow. Furthermore, we discovered a simple but effective way of transporting the microbeads on the chip by varying the strength of the local bias field within a revolution of the external field. In addition, selective transport of microbeads with different size was realized, providing a platform for effective on-chip sample separation and offering the potential for multiplexing capability. The second method integrates magnetic and dielectrophoretic manipulations of the same microbeads. The device combines tapered conducting wires and fingered electrodes to generate desirable magnetic and electric fields, respectively. By externally programming the magnetic attraction and dielectrophoretic repulsion forces, out-of-plane oscillation of the microbeads across the channel height was realized. This manipulation mode can facilitate the interaction between the beads with multiple layers of sample fluid inside the channel. We further demonstrated the tweezing of microbeads in liquid with high spatial resolutions, i.e., from submicrometer to nanometer range, by fine-tuning the net force from magnetic attraction and dielectrophoretic repulsion of the beads. The highresolution control of the out-of-plane motion of the microbeads led to the invention of massively parallel biomolecular tweezers. We believe the maturation of bead-based microtweezers will revolutionize the state-of-art tools currently used for single cell and single molecule studies.
ERIC Educational Resources Information Center
Rosenblatt, Rebecca; Heckler, Andrew F.
2011-01-01
We developed an instrument to systematically investigate student conceptual understanding of the relationships between the directions of net force, velocity, and acceleration in one dimension and report on data collected on the final version of the instrument from over 650 students. Unlike previous work, we simultaneously studied all six possible…
SPECIAL PURPOSE IT DERAILED: UNINTENDED CONSEQUENCES OF UNIVERSAL IT LAWS AND POLICIES
2017-10-26
Information Services Division ........................ 3 Figure 2: iNET Instrumentation Telemetry Ground Station...consolidate local Information Technology (IT) networks into an enterprise architecture to reduce costs and to increase security. Leadership coined this...IT network was established to link Air Force and contractor sites to seamlessly share program information . So when Air Force IT leadership tried to
The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES
NASA Technical Reports Server (NTRS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk
2005-01-01
The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.
Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers.
Wittkowski, Raphael; Löwen, Hartmut
2012-02-01
Recently the Brownian dynamics of self-propelled (active) rodlike particles was explored to model the motion of colloidal microswimmers, catalytically driven nanorods, and bacteria. Here we generalize this description to biaxial particles with arbitrary shape and derive the corresponding Langevin equation for a self-propelled Brownian spinning top. The biaxial swimmer is exposed to a hydrodynamic Stokes friction force at low Reynolds numbers, to fluctuating random forces and torques as well as to an external and an internal (effective) force and torque. The latter quantities control its self-propulsion. Due to biaxiality and hydrodynamic translational-rotational coupling, the Langevin equation can only be solved numerically. In the special case of an orthotropic particle in the absence of external forces and torques, the noise-free (zero-temperature) trajectory is analytically found to be a circular helix. This trajectory is confirmed numerically to be more complex in the general case of an arbitrarily shaped particle under the influence of arbitrary forces and torques involving a transient irregular motion before ending up in a simple periodic motion. By contrast, if the external force vanishes, no transient regime is found, and the particle moves on a superhelical trajectory. For orthotropic particles, the noise-averaged trajectory is a generalized concho-spiral. We furthermore study the reduction of the model to two spatial dimensions and classify the noise-free trajectories completely finding circles, straight lines with and without transients, as well as cycloids and arbitrary periodic trajectories. © 2012 American Physical Society
The Strategic Balance in Transition: Interpreting Changes in US - USSR Weapons Levels.
1980-10-31
application of force is prima facie evidence of failure of rational analysis and patient negotiations. Rather, Pipes contends that the Soviet Union...served on active duty briefly with the Army and then with the Air Force from 1958 to 1971 and is currently a reserve officer with the Air National Guard...Soviet force postures and strategic doctrine? Dennis Ross , currently with the Departmenit of Defense’s Office of’ Net Assessment, contends that: 6 The
Impact of internal variability on projections of Sahel precipitation change
NASA Astrophysics Data System (ADS)
Monerie, Paul-Arthur; Sanchez-Gomez, Emilia; Pohl, Benjamin; Robson, Jon; Dong, Buwen
2017-11-01
The impact of the increase of greenhouse gases on Sahelian precipitation is very uncertain in both its spatial pattern and magnitude. In particular, the relative importance of internal variability versus external forcings depends on the time horizon considered in the climate projection. In this study we address the respective roles of the internal climate variability versus external forcings on Sahelian precipitation by using the data from the CESM Large Ensemble Project, which consists of a 40 member ensemble performed with the CESM1-CAM5 coupled model for the period 1920-2100. We show that CESM1-CAM5 is able to simulate the mean and interannual variability of Sahel precipitation, and is representative of a CMIP5 ensemble of simulations (i.e. it simulates the same pattern of precipitation change along with equivalent magnitude and seasonal cycle changes as the CMIP5 ensemble mean). However, CESM1-CAM5 underestimates the long-term decadal variability in Sahel precipitation. For short-term (2010-2049) and mid-term (2030-2069) projections the simulated internal variability component is able to obscure the projected impact of the external forcing. For long-term (2060-2099) projections external forcing induced change becomes stronger than simulated internal variability. Precipitation changes are found to be more robust over the central Sahel than over the western Sahel, where climate change effects struggle to emerge. Ten (thirty) members are needed to separate the 10 year averaged forced response from climate internal variability response in the western Sahel for a long-term (short-term) horizon. Over the central Sahel two members (ten members) are needed for a long-term (short-term) horizon.
Cytoplasmic motion induced by cytoskeleton stretching and its effect on cell mechanics.
Zhang, T
2011-09-01
Cytoplasmic motion assumed as a steady state laminar flow induced by cytoskeleton stretching in a cell is determined and its effect on the mechanical behavior of the cell under externally applied forces is demonstrated. Non-Newtonian fluid is assumed for the multiphase cytoplasmic fluid and the analytical velocity field around the macromolecular chain is obtained by solving the reduced nonlinear momentum equation using homotopy technique. The entropy generation by the fluid internal friction is calculated and incorporated into the entropic elasticity based 8-chain constitutive relations. Numerical examples showed strengthening behavior of cells in response to externally applied mechanical stimuli. The spatial distribution of the stresses within a cell under externally applied fluid flow forces were also studied.
Forcings and feedbacks by land ecosystem changes on climate change
NASA Astrophysics Data System (ADS)
Betts, R. A.
2006-12-01
Vegetation change is involved in climate change through both forcing and feedback processes. Emissions of CO{2} from past net deforestation are estimated to have contributed approximately 0.22 0.51 Wm - 2 to the overall 1.46 Wm - 2 radiative forcing by anthropogenic increases in CO{2} up to the year 2000. Deforestation-induced increases in global mean surface albedo are estimated to exert a radiative forcing of 0 to -0.2 Wm - 2, and dust emissions from land use may exert a radiative forcing of between approximately +0.1 and -0.2 Wm - 2. Changes in the fluxes of latent and sensible heat due to tropical deforestation are simulated to have exerted other local warming effects which cannot be quantified in terms of a Wm - 2 radiative forcing, with the potential for remote effects through changes in atmospheric circulation. With tropical deforestation continuing rapidly, radiative forcing by surface albedo change may become less useful as a measure of the forcing of climate change by changes in the physical properties of the land surface. Although net global deforestation is continuing, future scenarios used for climate change prediction suggest that fossil fuel emissions of CO{2} may continue to increase at a greater rate than land use emissions and therefore continue to increase in dominance as the main radiative forcing. The CO{2} rise may be accelerated by up to 66% by feedbacks arising from global soil carbon loss and forest dieback in Amazonia as a consequence of climate change, and Amazon forest dieback may also exert feedbacks through changes in the local water cycle and increases in dust emissions.
Energetic costs of producing muscle work and force in a cyclical human bouncing task
Kuo, Arthur D.
2011-01-01
Muscles expend energy to perform active work during locomotion, but they may also expend significant energy to produce force, for example when tendons perform much of the work passively. The relative contributions of work and force to overall energy expenditure are unknown. We therefore measured the mechanics and energetics of a cyclical bouncing task, designed to control for work and force. We hypothesized that near bouncing resonance, little work would be performed actively by muscle, but the cyclical production of force would cost substantial metabolic energy. Human subjects (n = 9) bounced vertically about the ankles at inversely proportional frequencies (1–4 Hz) and amplitudes (15–4 mm), such that the overall rate of work performed on the body remained approximately constant (0.30 ± 0.06 W/kg), but the forces varied considerably. We used parameter identification to estimate series elasticity of the triceps surae tendon, as well as the work performed actively by muscle and passively by tendon. Net metabolic energy expenditure for bouncing at 1 Hz was 1.15 ± 0.31 W/kg, attributable mainly to active muscle work with an efficiency of 24 ± 3%. But at 3 Hz (near resonance), most of the work was performed passively, so that active muscle work could account for only 40% of the net metabolic rate of 0.76 ± 0.28 W/kg. Near resonance, a cost for cyclical force that increased with both amplitude and frequency of force accounted for at least as much of the total energy expenditure as a cost for work. Series elasticity reduces the need for active work, but energy must still be expended for force production. PMID:21212245
Contributions to muscle force and EMG by combined neural excitation and electrical stimulation
NASA Astrophysics Data System (ADS)
Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.
2014-10-01
Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical neuroprosthetic interventions involving either motor or sensory stimulation.
Contributions to muscle force and EMG by combined neural excitation and electrical stimulation
Crago, Patrick E; Makowski, Nathaniel S; Cole, Natalie M
2014-01-01
Objective Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity, without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main Results Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously - voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical neuroprosthetic interventions involving either motor or sensory stimulation. PMID:25242203
Load identification approach based on basis pursuit denoising algorithm
NASA Astrophysics Data System (ADS)
Ginsberg, D.; Ruby, M.; Fritzen, C. P.
2015-07-01
The information of the external loads is of great interest in many fields of structural analysis, such as structural health monitoring (SHM) systems or assessment of damage after extreme events. However, in most cases it is not possible to measure the external forces directly, so they need to be reconstructed. Load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response functions are usually the knowns. Generally, this leads to a so called ill-posed inverse problem, which involves solving an underdetermined linear system of equations. For most practical applications it can be assumed that the applied loads are not arbitrarily distributed in time and space, at least some specific characteristics about the external excitation are known a priori. In this contribution this knowledge was used to develop a more suitable force reconstruction method, which allows identifying the time history and the force location simultaneously by employing significantly fewer sensors compared to other reconstruction approaches. The properties of the external force are used to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The possibility of reconstructing loads based on noisy structural measurement signals will be demonstrated by considering two frequently occurring loading conditions: harmonic excitation and impact events, separately and combined. First a simulation study of a simple plate structure is carried out and thereafter an experimental investigation of a real beam is performed.
A dynamic load estimation method for nonlinear structures with unscented Kalman filter
NASA Astrophysics Data System (ADS)
Guo, L. N.; Ding, Y.; Wang, Z.; Xu, G. S.; Wu, B.
2018-02-01
A force estimation method is proposed for hysteretic nonlinear structures. The equation of motion for the nonlinear structure is represented in state space and the state variable is augmented by the unknown the time history of external force. Unscented Kalman filter (UKF) is improved for the force identification in state space considering the ill-condition characteristic in the computation of square roots for the covariance matrix. The proposed method is firstly validated by a numerical simulation study of a 3-storey nonlinear hysteretic frame excited by periodic force. Each storey is supposed to follow a nonlinear hysteretic model. The external force is identified and the measurement noise is considered in this case. Then a case of a seismically isolated building subjected to earthquake excitation and impact force is studied. The isolation layer performs nonlinearly during the earthquake excitation. Impact force between the seismically isolated structure and the retaining wall is estimated with the proposed method. Uncertainties such as measurement noise, model error in storey stiffness and unexpected environmental disturbances are considered. A real-time substructure testing of an isolated structure is conducted to verify the proposed method. In the experimental study, the linear main structure is taken as numerical substructure while the one of the isolations with additional mass is taken as the nonlinear physical substructure. The force applied by the actuator on the physical substructure is identified and compared with the measured value from the force transducer. The method proposed in this paper is also validated by shaking table test of a seismically isolated steel frame. The acceleration of the ground motion as the unknowns is identified by the proposed method. Results from both numerical simulation and experimental studies indicate that the UKF based force identification method can be used to identify external excitations effectively for the nonlinear structure with accurate results even with measurement noise, model error and environmental disturbances.
Self-Assessment in Professional Programmes within Tertiary Institutions
ERIC Educational Resources Information Center
Bourke, Roseanna
2014-01-01
Self-assessment at tertiary level is a critical pedagogical and assessment tool to support students in their transition to professional careers where on-going learning and assessment is required. Beyond the safety-net of course content, external assessment and pre-determined criteria, novice professionals need to find ways to self-assess their…
DOT National Transportation Integrated Search
2002-04-01
Cost- benefit analyses of walking- and cycling track net-works in three Norwegian cities are presented in this study. A project group working with a National Cycling Strategy in Norway initialised the study. Motivation for starting the study is the P...
Stimulated emission of surface plasmons by electron tunneling in metal-barrier-metal structures
NASA Technical Reports Server (NTRS)
Siu, D. P.; Gustafson, T. K.
1978-01-01
It is shown that correlation currents arising from the superposition of pairs of states on distinct sides of a potential barrier in metal-barrier-metal structures can result in inelastic tunneling through the emission of surface plasmons. Net gain of an externally excited plasmon field is possible.
Principles of E-network modelling of heterogeneous systems
NASA Astrophysics Data System (ADS)
Tarakanov, D.; Tsapko, I.; Tsapko, S.; Buldygin, R.
2016-04-01
The present article is concerned with the analytical and simulation modelling of heterogeneous technical systems using E-network mathematical apparatus (the expansion of Petri nets). The distinguishing feature of the given system is the presence of the module6 which identifies the parameters of the controlled object as well as the external environment.
ERIC Educational Resources Information Center
Brust, Peter; Jayakumar, Vivekanand
2012-01-01
Global imbalances and the sustainability of large U.S. current account deficits have dominated international macroeconomics of late. Pedagogically, a clear disconnect exists between graduate-level open-economy macroeconomics that emphasizes intertemporal current account models and net foreign asset adjustment featuring valuation effects, and,…
Interdisciplinary Matchmaking: Choosing Collaborators by Skill, Acquaintance and Trust
NASA Astrophysics Data System (ADS)
Hupa, Albert; Rzadca, Krzysztof; Wierzbicki, Adam; Datta, Anwitaman
Social networks are commonly used to enhance recommender systems. Most of such systems recommend a single resource or a person. However, complex problems or projects usually require a team of experts that must work together on a solution. Team recommendation is much more challenging, mostly because of the complex interpersonal relations between members. This chapter presents fundamental concepts on how to score a team based on members' social context and their suitability for a particular project. We represent the social context of an individual as a three-dimensional social network (3DSN) composed of a knowledge dimension expressing skills, a trust dimension and an acquaintance dimension. Dimensions of a 3DSN are used to mathematically formalize the criteria for prediction of the team's performance. We use these criteria to formulate the team recommendation problem as a multi-criteria optimization problem. We demonstrate our approach on empirical data crawled from two web2.0 sites:
Hay, Joel W; Smeeding, Jim; Carroll, Norman V; Drummond, Michael; Garrison, Louis P; Mansley, Edward C; Mullins, C Daniel; Mycka, Jack M; Seal, Brian; Shi, Lizheng
2010-01-01
The assignment of prices or costs to pharmaceuticals can be crucial to results and conclusions that are derived from pharmacoeconomic cost effectiveness analyses (CEAs). Although numerous pharmacoeconomic practice guidelines are available in the literature and have been promulgated in many countries, these guidelines are either vague or silent about how drug costs should be established or measured. This is particularly problematic in pharmacoeconomic studies performed from the "societal" perspective, because typically the measured cost of a brand name pharmaceutical is not a true economic cost but also includes transfer payments from some members of society (patients and third party payers) to other members of society (pharmaceutical manufacturer stockholders) in large part as a reward for biomedical innovation. Moreover, there are numerous and complex institutional factors that influence how drug costs should be measured from other CEA perspectives, both internationally and within the domestic US context. The objective of this report is to provide guidance and recommendations on how drug costs should be measured for CEAs performed from a number of key analytic perspectives. ISPOR Task Force on Good Research Practices-Use of Drug Costs for Cost Effectiveness Analysis (Drug Cost Task Force [DCTF]) was appointed with the advice and consent of the ISPOR Board of Directors. Members were experienced developers or users of CEA models, worked in academia, industry, and as advisors to governments, and came from several countries. Because how drug costs should be measured for CEAs depend on the perspectives, five Task Force subgroups were created to develop drug cost standards from the societal, managed care, US government, industry, and international perspective. The ISPOR Task Force on Good Research Practices-Use of Drug Costs for Cost Effectiveness Analysis (DCTF) subgroups met to develop core assumptions and an outline before preparing six draft reports. They solicited comments on the outline and drafts from a core group of 174 external reviewers and more broadly from the membership of ISPOR at two ISPOR meetings and via the ISPOR web site. Drug cost measurements should be fully transparent and reflect the net payment most relevant to the user's perspective. The Task Force recommends that for CEAs of brand name drugs performed from a societal perspective, either 1) CEA analysts use a cost that more accurately reflects true societal drug costs (e.g., 20-60% of average sales price), or when that is too unrealistic to be meaningful for decision-makers, 2) refer to their analyses as from a "limited societal perspective." CEAs performed from a payer perspective should use drug prices actually paid by the relevant payer net of all rebates, copays, or other adjustments. When such price adjustments are confidential, the analyst should apply a typical or average discount that preserves this confidentiality. Drug transaction prices not only ration current use of medication but also ration future biomedical research and development. CEA researchers should tailor the appropriate measure of drug costs to the analytic perspective, maintain clarity and transparency on drug cost measurement, and report the sensitivity of CEA results to reasonable drug cost measurement alternatives.
Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L
2018-06-01
The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by 2° and 4° of internal-external (I-E) malalignment of the femoral component in kinematically aligned total knee arthroplasty. Because I-E malalignment would introduce the greatest changes to the articular surfaces near 90° of flexion, the hypotheses were that the tibial force imbalance would be significantly increased near 90° flexion and that primarily varus-valgus laxity would be affected near 90° flexion. Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced I-E malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured from 0° to 120° flexion using a custom tibial force sensor. Bidirectional laxities in four degrees of freedom were measured from 0° to 120° flexion using a custom load application system. Tibial force imbalance increased the greatest at 60° flexion where a regression analysis against the degree of I-E malalignment yielded sensitivities (i.e. slopes) of 30 N/° (medial tibial force > lateral tibial force) and 10 N/° (lateral tibial force > medial tibial force) for internal and external malalignments, respectively. Valgus laxity increased significantly with the 4° external component with the greatest increase of 1.5° occurring at 90° flexion (p < 0.0001). With the tibial component correctly aligned, I-E malalignment of the femoral component caused significant increases in tibial force imbalance. Minimizing I-E malalignment lowers the increase in the tibial force imbalance. By keeping the resection thickness of each posterior femoral condyle to within ± 0.5 mm of the thickness of the respective posterior region of the femoral component, the increase in imbalance can be effectively limited to 38 N. Generally laxities were unaffected within the ± 4º range tested indicating that instability is not a clinical concern and that manual testing of laxities is not useful to detect I-E malalignment.
Validation of a dynamic linked segment model to calculate joint moments in lifting.
de Looze, M P; Kingma, I; Bussmann, J B; Toussaint, H M
1992-08-01
A two-dimensional dynamic linked segment model was constructed and applied to a lifting activity. Reactive forces and moments were calculated by an instantaneous approach involving the application of Newtonian mechanics to individual adjacent rigid segments in succession. The analysis started once at the feet and once at a hands/load segment. The model was validated by comparing predicted external forces and moments at the feet or at a hands/load segment to actual values, which were simultaneously measured (ground reaction force at the feet) or assumed to be zero (external moments at feet and hands/load and external forces, beside gravitation, at hands/load). In addition, results of both procedures, in terms of joint moments, including the moment at the intervertebral disc between the fifth lumbar and first sacral vertebra (L5-S1), were compared. A correlation of r = 0.88 between calculated and measured vertical ground reaction forces was found. The calculated external forces and moments at the hands showed only minor deviations from the expected zero level. The moments at L5-S1, calculated starting from feet compared to starting from hands/load, yielded a coefficient of correlation of r = 0.99. However, moments calculated from hands/load were 3.6% (averaged values) and 10.9% (peak values) higher. This difference is assumed to be due mainly to erroneous estimations of the positions of centres of gravity and joint rotation centres. The estimation of the location of L5-S1 rotation axis can affect the results significantly. Despite the numerous studies estimating the load on the low back during lifting on the basis of linked segment models, only a few attempts to validate these models have been made. This study is concerned with the validity of the presented linked segment model. The results support the model's validity. Effects of several sources of error threatening the validity are discussed. Copyright © 1992. Published by Elsevier Ltd.
Extracting Leading Nonlinear Modes of Changing Climate From Global SST Time Series
NASA Astrophysics Data System (ADS)
Mukhin, D.; Gavrilov, A.; Loskutov, E. M.; Feigin, A. M.; Kurths, J.
2017-12-01
Data-driven modeling of climate requires adequate principal variables extracted from observed high-dimensional data. For constructing such variables it is needed to find spatial-temporal patterns explaining a substantial part of the variability and comprising all dynamically related time series from the data. The difficulties of this task rise from the nonlinearity and non-stationarity of the climate dynamical system. The nonlinearity leads to insufficiency of linear methods of data decomposition for separating different processes entangled in the observed time series. On the other hand, various forcings, both anthropogenic and natural, make the dynamics non-stationary, and we should be able to describe the response of the system to such forcings in order to separate the modes explaining the internal variability. The method we present is aimed to overcome both these problems. The method is based on the Nonlinear Dynamical Mode (NDM) decomposition [1,2], but takes into account external forcing signals. An each mode depends on hidden, unknown a priori, time series which, together with external forcing time series, are mapped onto data space. Finding both the hidden signals and the mapping allows us to study the evolution of the modes' structure in changing external conditions and to compare the roles of the internal variability and forcing in the observed behavior. The method is used for extracting of the principal modes of SST variability on inter-annual and multidecadal time scales accounting the external forcings such as CO2, variations of the solar activity and volcanic activity. The structure of the revealed teleconnection patterns as well as their forecast under different CO2 emission scenarios are discussed.[1] Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016). Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101.
Discrete Element Method Simulation of a Boulder Extraction From an Asteroid
NASA Technical Reports Server (NTRS)
Kulchitsky, Anton K.; Johnson, Jerome B.; Reeves, David M.; Wilkinson, Allen
2014-01-01
The force required to pull 7t and 40t polyhedral boulders from the surface of an asteroid is simulated using the discrete element method considering the effects of microgravity, regolith cohesion and boulder acceleration. The connection between particle surface energy and regolith cohesion is estimated by simulating a cohesion sample tearing test. An optimal constant acceleration is found where the peak net force from inertia and cohesion is a minimum. Peak pulling forces can be further reduced by using linear and quadratic acceleration functions with up to a 40% reduction in force for quadratic acceleration.
Radial forces in a misaligned radial face seal
NASA Technical Reports Server (NTRS)
Etsion, I.
1978-01-01
Radial forces on the primary seal ring of a flat misaligned seal are analyzed, taking into account the radial variation in seal clearance. An analytical solution for both hydrostatic and hydrodynamic effects is presented that covers the whole range from zero to full angular misalignment. The net radial force on the primary seal ring is always directed so as to produce a radial eccentricity which generates inward pumping. Although the radial force is usually very small, in some cases it may be one of the reasons for excessive leakage through both the primary and secondary seals of a radial face seal.
Radial forces in a misaligned radial face seal
NASA Technical Reports Server (NTRS)
Etsion, I.
1977-01-01
Radial forces on the primary seal ring of a flat misaligned seal are analyzed, taking into account the radial variation in seal clearance. An analytical solution for both hydrostatic and hydrodynamic effects is presented that covers the whole range from zero to full angular misalignment. The net radial force on the primary seal ring is always directed so as to produce a radial eccentricity which generates inward pumping. Although the radial force is usually very small, in some cases it may be one of the reasons for excessive leakage through both the primary and secondary seals of a radial face seal.
2001-03-01
tungsten thin wall nozzle liner removed from reusable mandrel. b) W and Re rocket, nozzle inserts (2 inserts per mandrel) for Air Force. Rhenium PPI...compares the fabrication time for the VPS nozzles with equivalent carbon / carbon composite (C/C) and forged tungsten materials. Table 5: Comparison of...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1181 TITLE: Low Cost, Net Shape Fabrication of Rhenium and High
NASA Astrophysics Data System (ADS)
Lehn, Andrea M.; Thornycroft, Patrick J. M.; Lauder, George V.; Leftwich, Megan C.
2017-02-01
In this paper we consider the effects of adding high-frequency, low-amplitude perturbations to a smooth sinusoidal base input signal for a heaving panel in a closed loop flow tank. Specifically, 0.1 cm amplitude sinusoidal perturbation waves with frequency fp ranging from 0.5 to 13.0 Hz are added to 1 cm heave sinusoids with base frequencies, fb, ranging from 0.5 to 3.0 Hz. Two thin foils with different flexural stiffness are heaved with the combined input signals in addition to both the high-heave and low-heave signals independently. In all cases, the foils are heaved in a recirculating water channel with an incoming velocity of Vx=10 cm/s and a Reynolds number based on the chord length of Re=17 300 . Results demonstrate that perturbations increase the net axial force, in the streamwise direction, in most cases tested (with the exception of some poor performing flexible foil cases). Most significantly, for a base frequency of 1 Hz, perturbations at 9 Hz result in a 780.7% increase in net streamwise force production. Generally, the higher the perturbation frequency, fp the more axial force generated. However, for the stiffer foil, a clear peak in net force exists at fp=9 Hz , regardless of the base frequency. For the stiffer foil, swimming efficiency at a 1 Hz flapping frequency is increased dramatically with the addition of a perturbation, with reduced efficiency increases at higher flapping frequencies. Likewise, for the flexible foil, swimming efficiency gains are greatest at the lower flapping frequencies. Perturbations alter the wake structure by increasing the vorticity magnitude and increasing the vortex shedding frequency; i.e., more, stronger vortices are produced in each flapping cycle.
Net Zero Energy Military Installations: A Guide to Assessment and Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booth, S.; Barnett, J.; Burman, K.
2010-08-01
The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zeromore » energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.« less
Use of the NetBeans Platform for NASA Robotic Conjunction Assessment Risk Analysis
NASA Technical Reports Server (NTRS)
Sabey, Nickolas J.
2014-01-01
The latest Java and JavaFX technologies are very attractive software platforms for customers involved in space mission operations such as those of NASA and the US Air Force. For NASA Robotic Conjunction Assessment Risk Analysis (CARA), the NetBeans platform provided an environment in which scalable software solutions could be developed quickly and efficiently. Both Java 8 and the NetBeans platform are in the process of simplifying CARA development in secure environments by providing a significant amount of capability in a single accredited package, where accreditation alone can account for 6-8 months for each library or software application. Capabilities either in use or being investigated by CARA include: 2D and 3D displays with JavaFX, parallelization with the new Streams API, and scalability through the NetBeans plugin architecture.
Measuring Air Force Contracting Customer Satisfaction
2015-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT MEASURING AIR FORCE CONTRACTING CUSTOMER SATISFACTION ...... satisfaction elements should be included in a standardized tool that measures the level of customer satisfaction for AF Contracting’s external and
NASA Technical Reports Server (NTRS)
Christopher, Sundar A.; Wang, Min; Berendes, Todd A.; Welch, Ronald M.; Yang, Shi-Keng
1998-01-01
Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 biomass burning season. The results are characterized for four major ecosystems, namely: (1) tropical rain forest, (2) tropical broadleaf seasonal, (3) savannah/grass and seasonal woods (SGW), and (4) mild/warm/hot grass/shrub (MGS). The spatial and temporal distribution of fires are examined from two different methods using the multispectral Advanced Very High Resolution Radiometer Local Area Coverage data. Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment data, the direct regional radiative forcing of biomass burning aerosols is computed. The results show that more than 70% of the fires occur in the MGS and SGW ecosystems due to agricultural practices. The smoke generated from biomass burning has negative instantaneous net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires has mean net radiative forcing values ranging from -25.6 to -33.9 W m(exp -2). These results confirm that the regional net radiative impact of biomass burning is one of cooling. The spectral and broadband properties for clear-sky and smoke regions are also presented that could be used as input and/or validation for other studies attempting to model the impact of aerosols on the earth-atmosphere system. These results have important applications for future instruments from the Earth Observing System (EOS) program. Specifically, the combination of the Visible Infrared Scanner and Clouds and the Earth's Radiant Energy System (CERES) instruments from the Tropical Rainfall Measuring Mission and the combination of Moderate Resolution Imaging Spectrometer and CERES instruments from the EOS morning crossing mission could provide reliable estimates of the direct radiative forcing of aerosols on a global scale, thereby reducing the uncertainties in current global aerosol radiative forcing values.
The effects of clouds on CO2 forcing
NASA Technical Reports Server (NTRS)
Randall, David A.
1990-01-01
The cloud radiative forcing (CRF) is the difference between the radiative flux (at the top of the atmosphere) which actually occurs in the presence of clouds, and that which would occur if the clouds were removed but the atmospheric state were otherwise unchanged. The CO2 forcing is defined, in analogy with the cloud forcing, as the difference in fluxes and/or infrared heating rates obtained by instantaneously changing CO2 concentration (doubling it) without changing anything else, i.e., without allowing any feedback. An increased CO2 concentration leads to a reduced net upward longwave flux at the Earth's surface. This induced net upward flux is due to an increased downward emission by the CO2 in the atmosphere above. The negative increment to the net upward flux becomes more intense at higher levels in the troposphere, reaching a peak intensity roughly at the tropopause. It then weakens with height in the stratosphere. This profile implies a warming of the troposphere and cooling of the stratosphere. The CSU GCM was recently used to make some preliminary CO2 forcing calculations, for a single simulated, for July conditions. The longwave radiation routine was called twice, to determine the radiative fluxes and heating rates for both 2 x CO2 and 1 x CO2. As diagnostics, the 2-D distributions of the longwave fluxes at the surface and the top of atmosphere, as well as the 3-D distribution of the longwave cooling in the interior was saved. In addition, the pressure was saved (near the tropopause) where the difference in the longwave flux due to CO2 doubling has its largest magnitude. For convenience, this level is referred to as the CO2 tropopause. The actual difference in the flux at that level was also saved. Finally, all of these fields were duplicated for the hypothetical case of no cloudiness (clear sky), so that the effects of the clouds can be isolated.
Saturation of conductance in single ion channels: the blocking effect of the near reaction field.
Nadler, Boaz; Schuss, Zeev; Hollerbach, Uwe; Eisenberg, R S
2004-11-01
The ionic current flowing through a protein channel in the membrane of a biological cell depends on the concentration of the permeant ion, as well as on many other variables. As the concentration increases, the rate of arrival of bath ions to the channel's entrance increases, and typically so does the net current. This concentration dependence is part of traditional diffusion and rate models that predict Michaelis-Menten current-concentration relations for a single ion channel. Such models, however, neglect other effects of bath concentrations on the net current. The net current depends not only on the entrance rate of ions into the channel, but also on forces acting on ions inside the channel. These forces, in turn, depend not only on the applied potential and charge distribution of the channel, but also on the long-range Coulombic interactions with the surrounding bath ions. In this paper, we study the effects of bath concentrations on the average force on an ion in a single ion channel. We show that the force of the reaction field on a discrete ion inside a channel embedded in an uncharged lipid membrane contains a blocking (shielding) term that is proportional to the square root of the ionic bath concentration. We then show that different blocking strengths yield different behavior of the current-concentration and conductance-concentration curves. Our theory shows that at low concentrations, when the blocking force is weak, conductance grows linearly with concentration, as in traditional models, e.g., Michaelis-Menten formulations. As the concentration increases to a range of moderate shielding, conductance grows as the square root of concentration, whereas at high concentrations, with high shielding, conductance may actually decrease with increasing concentrations: the conductance-concentration curve can invert. Therefore, electrostatic interactions between bath ions and the single ion inside the channel can explain the different regimes of conductance-concentration relations observed in experiments.
Bounding the role of black carbon in the climate system: A scientific assessment
NASA Astrophysics Data System (ADS)
Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Berntsen, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Kärcher, B.; Koch, D.; Kinne, S.; Kondo, Y.; Quinn, P. K.; Sarofim, M. C.; Schultz, M. G.; Schulz, M.; Venkataraman, C.; Zhang, H.; Zhang, S.; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, J. P.; Shindell, D.; Storelvmo, T.; Warren, S. G.; Zender, C. S.
2013-06-01
carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m-2 with 90% uncertainty bounds of (+0.08, +1.27) W m-2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m-2 with 90% uncertainty bounds of +0.17 to +2.1 W m-2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m-2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (-0.50 to +1.08) W m-2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (-0.06 W m-2 with 90% uncertainty bounds of -1.45 to +1.29 W m-2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
Bounding the Role of Black Carbon in the Climate System: a Scientific Assessment
NASA Technical Reports Server (NTRS)
Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Bernsten, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Karcher, B.; Koch, D.;
2013-01-01
Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg/yr in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W/sq m with 90% uncertainty bounds of (+0.08, +1.27)W/sq m. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W/sq m. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W/sq m with 90% uncertainty bounds of +0.17 to +2.1 W/sq m. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W/sq m, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (0.50 to +1.08) W/sq m during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (0.06 W/sq m with 90% uncertainty bounds of 1.45 to +1.29 W/sq m). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Row, K.L.; Johnson, R.B.
1990-10-01
Maxillary right first molar teeth of rats were tipped mesially with an orthodontic appliance for 2 weeks (experimental group), {sup 3}H-proline was injected, and orthodontic forces were removed 6 hr later (time 0). The contralateral molar teeth of treated (internal control group) and age- and weight-matched untreated animals (external control group) were also studied. Diastemata were created between the molar teeth by the orthodontic appliance, and transseptal fibers between first and second (P less than 0.001) and second and third molars (P less than 0.005) were significantly lengthened as compared to external and internal controls at time 0. Diastemata betweenmore » molar teeth were closed 5 days after removal of orthodontic force. Transseptal fibers adjacent to the source of the orthodontic force (mesial region) had the highest mean number of {sup 3}H-proline-labeled proteins at time 0 and at all times following removal of the force (P less than 0.001), and had the highest rate of labeled protein removal (P less than 0.001). Half-lives for removal of 3H-proline-labeled transseptal fiber proteins were significantly greater in mesial and distal regions and significantly less in middle regions of experimentals than in corresponding regions of external controls (P less than 0.001).« less
Three-year financial analysis of pharmacy services at an independent community pharmacy.
Doucette, William R; McDonough, Randal P; Mormann, Megan M; Vaschevici, Renata; Urmie, Julie M; Patterson, Brandon J
2012-01-01
To assess the financial performance of pharmacy services including vaccinations, cholesterol screenings, medication therapy management (MTM), adherence management services, employee health fairs, and compounding services provided by an independent community pharmacy. Three years (2008-10) of pharmacy records were examined to determine the total revenue and costs of each service. Costs included products, materials, labor, marketing, overhead, equipment, reference materials, and fax/phone usage. Costs were allocated to each service using accepted principles (e.g., time for labor). Depending on the service, the total revenue was calculated by multiplying the frequency of the service by the revenue per patient or by adding the total revenue received. A sensitivity analysis was conducted for the adherence management services to account for average dispensing net profit. 7 of 11 pharmacy services showed a net profit each year. Those services include influenza and herpes zoster immunization services, MTM, two adherence management services, employee health fairs, and prescription compounding services. The services that realized a net loss included the pneumococcal immunization service, cholesterol screenings, and two adherence management services. The sensitivity analysis showed that all adherence services had a net gain when average dispensing net profit was included. Most of the pharmacist services had an annual positive net gain. It seems likely that these services can be sustained. Further cost management, such as reducing labor costs, could improve the viability of services with net losses. However, even with greater efficiency, external factors such as competition and reimbursement challenge the sustainability of these services.
Externalizing disorders: cluster 5 of the proposed meta-structure for DSM-V and ICD-11.
Krueger, R F; South, S C
2009-12-01
The extant major psychiatric classifications DSM-IV and ICD-10 are purportedly atheoretical and largely descriptive. Although this achieves good reliability, the validity of a medical diagnosis is greatly enhanced by an understanding of the etiology. In an attempt to group mental disorders on the basis of etiology, five clusters have been proposed. We consider the validity of the fifth cluster, externalizing disorders, within this proposal. We reviewed the literature in relation to 11 validating criteria proposed by the Study Group of the DSM-V Task Force, in terms of the extent to which these criteria support the idea of a coherent externalizing spectrum of disorders. This cluster distinguishes itself by the central role of disinhibitory personality in mental disorders spread throughout sections of the current classifications, including substance dependence, antisocial personality disorder and conduct disorder. Shared biomarkers, co-morbidity and course offer additional evidence for a valid cluster of externalizing disorders. Externalizing disorders meet many of the salient criteria proposed by the Study Group of the DSM-V Task Force to suggest a classification cluster.
According to QFT there is likely no Lense-Thirring effect
NASA Astrophysics Data System (ADS)
Chen, Shao-Guang
According to QFT it is deduced that the gravitation is likely to originate from the polarization effect of Dirac vacuum fluctuation (Chen Shao-Guang, Nuovo Cimento B 104, 611, 1989). In Dirac vacuum the lowest-energy virtual neutrinos v0 possess most number, which exert isotropic colliding pressure to isolated mass-point A (m), the net force on A is zero. For another masspoint B (M) near A to obstruct v0 flux shooting to A, the v0 number along the line connecting A and B will decrease and destroy isotropic distribution of v0 , which leads to not only the change in momentum P (produces net v0 flux and net force Fp) but also the change in energy E or rest mass m (produces net force Fm) because in QFT the rest mass is not the bare mass but the physical mass of renormalization which contains v0 with energy. From the definition of force: F = Fp + Fm, Fp = m ( d v / d t ) , Fm = v (d m / d t ) (1) , on A (or B) net force FQ (quasi-Casimir pressure of weak interaction) is: FQ = Fp + Fm = - K (m M / r 2 ) ((r/r ) + (v /c )) (2). K calculated from the weak-electromagnetism unified theory (W-EUT) has the same order of magnitude as experimental gravitational constant G. Let a photon enter into the neighborhood of mass-point B and returns, we calculate the change in momentum-energy of photon with Eq.(2), and transform into the change in space-time metric through the commutation relations between conjugate momentum and conjugate coordinates in quantum theory. Again using the standard procedures of calibrating clock and calibrating ruler, we obtain Schwarzschild metric with constant K (Chen Shao-Guang, Origin of gravitation and gravitational redshift, pp 41- 48, Chinese Szechwan Science-Technique Press, Chengtu, 2004). Then FQ has geodetic effect. According to the change in masses caused by Bondi's inductive transfer of energy in GR (H. Bondi, Proc. R. Soc. London A 427, 249, 1990) and Eq. (1) a new gravitational formula is deduced: FG = Fp + Fm = - G(m M / r 2 ) ((r/r ) + (v /c )) (3). FG is equivalent to Einstein's equation, the multi-bodies gravitational problems can be solved by FG . FG and FQ as a bridge joined QFT and GR. If K ≡ G, gravitational theory would be merged into W-EUT. The gravitational laws predicted by FG and FQ are identical except quantum effects and Lense-Thirring effect —— the dragging of inertial frames. FQ has quantum effects but FG has not. Quantum effects of gravity had been verified by Nesvizhevsky et al. with the ultracold neutrons falling in the earth's gravitational field (V.V. Nesvizhevsky et al., Nature 415, 297, 2002), which shows that FQ is essential but FG is phenomenological. FG has Lense-Thirring effect but FQ has not. Because gravitational field of FG is on the around of B but the net v0 flux (as the gravitational field of FQ ) only appear on the line connecting A and B. When mass-point A moves to a new place, the net v0 flux will immediately appear on a new line connecting A and B. When the place of mass-point A does not change but B rotates, the net v0 flux will be still on the original line and will not rotate with B. Therefore, in 2004 I predicted that GP-B can not find the advance of Lense-Thirring effect and only can find the advance of geodetic effect, as a ‘negative result' for the mostly mission of GP-B. The result predicted from QFT or GR who is more correct will be judged by GP-B.
NASA Astrophysics Data System (ADS)
Matsuda, Tatsuya; Miura, Kinya; Sawada, Yayoi
2017-10-01
This study investigated the characteristics of wave forces loading on the detached structure that consisted of an upper structure and a pile foundation. In this study, structure stability was also considered on the results obtained from previous studies on the instability of seabed induced by wave force. When a wave force acted on the structure, an external force acted on the pile foundation as if pulling out the foundation on the outer harbor side and pushing it in on the inner harbor. The effective stress in seabed was increase so the pile foundation was considered to maintain sufficient bearing capacity. Subsequently, when the bearing capacity of the ground was decreased because the water pressure in the ground surface layer decreased, the pile foundation will be aggravated settled down. The external force acting on the pile foundation was not same on outer harbor and inner harbor with the form of the upper structure. As a result, we found that the strain will be generated on the structure.
Balancing a force on the fingertip of a two-dimensional finger model without intrinsic muscles.
Spoor, C W
1983-01-01
A slightly flexed human middle finger can balance an external force on the fingertip. Internal stabilization is also possible, which means that the externally unloaded finger can be kept stiff. We want to analyse whether in these situations the intrinsic hand muscles are needed. Distances from tendons to flexion axes are taken from the literature and are substituted in the moment equilibrium equations of a two-dimensional finger model. Diagrams illustrate the statically indeterminate problem of solving tendon forces. The possibilities for equilibrium without intrinsics appear to depend mainly on four tendon-to-joint distances. These distances determine to which of two groups a finger belongs: (1) one in which intrinsics are not necessary for internal stabilization nor for balancing a force on the fingertip in any direction in the sagittal plane; (2) one in which, without intrinsics, internal stabilization is impossible and only dorso-distally directed forces on the fingertip can be balanced.
Corporate funding and conflicts of interest: a primer for psychologists.
Pachter, Wendy S; Fox, Ronald E; Zimbardo, Philip; Antonuccio, David O
2007-12-01
A presidential task force on external funding was established by the American Psychological Association (APA) in 2003 to review APA policies, procedures, and practices regarding the acceptance of funding and support from private corporations for educational and training programs; continuing education offerings; research projects; publications; advertising; scientific and professional meetings and conferences; and consulting, practice, and advocacy relationships. This article, based on the Executive Summary of the APA Task Force on External Funding Final Report, presents the findings and unanimous recommendations of the task force in the areas of association income, annual convention, research and journals, continuing education, education, practice, and conflicts of interest and ethics. The task force concluded that it is important for both APA and individual psychologists to become familiar with the challenges that corporate funding can pose to their integrity. The nature and extent of those challenges led the task force to recommend that APA develop explicit policies, educational materials, and continuing education programs to preserve the independence of psychological science, practice, and education. (Copyright) 2007 APA.
Biomechanics of pressure ulcer in body tissues interacting with external forces during locomotion.
Mak, Arthur F T; Zhang, Ming; Tam, Eric W C
2010-08-15
Forces acting on the body via various external surfaces during locomotion are needed to support the body under gravity, control posture, and overcome inertia. Examples include the forces acting on the body via the seating surfaces during wheelchair propulsion, the forces acting on the plantar foot tissues via the insole during gait, and the forces acting on the residual-limb tissues via the prosthetic socket during various movement activities. Excessive exposure to unwarranted stresses at the body-support interfaces could lead to tissue breakdowns commonly known as pressure ulcers, often presented as deep-tissue injuries around bony prominences or as surface damage on the skin. In this article, we review the literature that describes how the involved tissues respond to epidermal loading, taking into account both experimental and computational findings from in vivo and in vitro studies. In particular, we discuss related literature about internal tissue deformation and stresses, microcirculatory responses, and histological, cellular, and molecular observations.
Stress Transmission in Granular Packings: Localization and Cooperative Response
NASA Astrophysics Data System (ADS)
Ramola, Kabir
We develop a framework for stress transmission in two dimensional granular media that respects vector force balance at the microscopic level. For a packing of grains interacting via pairwise contact forces, we introduce local gauge degrees of freedom that determine the response of the system to external perturbations. This allows us to construct unique force-balanced solutions that determine the change in contact forces as a response to external stress. By mapping this response to diffusion in the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for stress localization using exact diagonalization studies of network Laplacians associated with soft disk packings. We use this formalism to characterize the deviation from elastic behaviour as the amount of disorder in the underlying network is varied. We discuss generalizations to systems with large friction between grains and other networks that display topological disorder. This work has been supported by NSF-DMR 1409093 and the W. M. Keck Foundation.
Zhong, Jian; He, Dannong
2015-01-01
Surface deformation and fracture processes of materials under external force are important for understanding and developing materials. Here, a combined horizontal universal mechanical testing machine (HUMTM)-atomic force microscope (AFM) system is developed by modifying UMTM to combine with AFM and designing a height-adjustable stabilizing apparatus. Then the combined HUMTM-AFM system is evaluated. Finally, as initial demonstrations, it is applied to analyze the relationship among macroscopic mechanical properties, surface nanomorphological changes under external force, and fracture processes of two kinds of representative large scale thin film materials: polymer material with high strain rate (Parafilm) and metal material with low strain rate (aluminum foil). All the results demonstrate the combined HUMTM-AFM system overcomes several disadvantages of current AFM-combined tensile/compression devices including small load force, incapability for large scale specimens, disability for materials with high strain rate, and etc. Therefore, the combined HUMTM-AFM system is a promising tool for materials research in the future. PMID:26265357
Zhong, Jian; He, Dannong
2015-08-12
Surface deformation and fracture processes of materials under external force are important for understanding and developing materials. Here, a combined horizontal universal mechanical testing machine (HUMTM)-atomic force microscope (AFM) system is developed by modifying UMTM to combine with AFM and designing a height-adjustable stabilizing apparatus. Then the combined HUMTM-AFM system is evaluated. Finally, as initial demonstrations, it is applied to analyze the relationship among macroscopic mechanical properties, surface nanomorphological changes under external force, and fracture processes of two kinds of representative large scale thin film materials: polymer material with high strain rate (Parafilm) and metal material with low strain rate (aluminum foil). All the results demonstrate the combined HUMTM-AFM system overcomes several disadvantages of current AFM-combined tensile/compression devices including small load force, incapability for large scale specimens, disability for materials with high strain rate, and etc. Therefore, the combined HUMTM-AFM system is a promising tool for materials research in the future.
Homodyne detection of short-range Doppler radar using a forced oscillator model
Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote
2017-01-01
This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis. PMID:28252000
Study of hydrodynamic characteristics of a Sharp Eagle wave energy converter
NASA Astrophysics Data System (ADS)
Zhang, Ya-qun; Sheng, Song-wei; You, Ya-ge; Huang, Zhen-xin; Wang, Wen-sheng
2017-06-01
According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture.
Tug of war in motility assay experiments
NASA Astrophysics Data System (ADS)
Hexner, Daniel; Kafri, Yariv
2009-09-01
The dynamics of two groups of molecular motors pulling in opposite directions on a rigid filament is studied theoretically. To this end we first consider the behavior of one set of motors pulling in a single direction against an external force using a new mean-field approach. Based on these results we analyze a similar setup with two sets of motors pulling in opposite directions in a tug of war in the presence of an external force. In both cases we find that the interplay of fluid friction and protein friction leads to a complex phase diagram where the force-velocity relations can exhibit regions of bistability and spontaneous symmetry breaking. Finally, motivated by recent work, we turn to the case of motility assay experiments where motors bound to a surface push on a bundle of filaments. We find that, depending on the absence or the presence of bistability in the force-velocity curve at zero force, the bundle exhibits anomalous or biased diffusion on long-time and large-length scales.
Rotor vibration caused by external excitation and rub
NASA Technical Reports Server (NTRS)
Matsushita, O.; Takagi, M.; Kikuchi, K.; Kaga, M.
1982-01-01
For turbomachinery with low natural frequencies, considerations have been recently required for rotor vibrations caused by external forces except unbalance one, such as foundation motion, seismic wave, rub and so forth. Such a forced vibration is investigated analytically and experimentally in the present paper. Vibrations in a rotor-bearing system under a harmonic excitation are analyzed by the modal technique in the case of a linear system including gyroscopic effect. For a nonlinear system a new and powerful quasi-modal technique is developed and applied to the vibration caused by rub.
Electromagnetic Force on a Moving Dipole
ERIC Educational Resources Information Center
Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.
2011-01-01
We analyse the force acting on a moving dipole due to an external electromagnetic field and show that the expression derived in Vekstein (1997 "Eur. J. Phys." 18 113) is erroneous and suggest the correct equation for the description of this force. We also discuss the physical meaning of the relativistic transformation of current for a closed…
Latt, L Daniel; Glisson, Richard R; Adams, Samuel B; Schuh, Reinhard; Narron, John A; Easley, Mark E
2015-10-01
Transverse tarsal joint arthrodesis is commonly performed in the operative treatment of hindfoot arthritis and acquired flatfoot deformity. While fixation is typically achieved using screws, failure to obtain and maintain joint compression sometimes occurs, potentially leading to nonunion. External fixation is an alternate method of achieving arthrodesis site compression and has the advantage of allowing postoperative compression adjustment when necessary. However, its performance relative to standard screw fixation has not been quantified in this application. We hypothesized that external fixation could provide transverse tarsal joint compression exceeding that possible with screw fixation. Transverse tarsal joint fixation was performed sequentially, first with a circular external fixator and then with compression screws, on 9 fresh-frozen cadaveric legs. The external fixator was attached in abutting rings fixed to the tibia and the hindfoot and a third anterior ring parallel to the hindfoot ring using transverse wires and half-pins in the tibial diaphysis, calcaneus, and metatarsals. Screw fixation comprised two 4.3 mm headless compression screws traversing the talonavicular joint and 1 across the calcaneocuboid joint. Compressive forces generated during incremental fixator foot ring displacement to 20 mm and incremental screw tightening were measured using a custom-fabricated instrumented miniature external fixator spanning the transverse tarsal joint. The maximum compressive force generated by the external fixator averaged 186% of that produced by the screws (range, 104%-391%). Fixator compression surpassed that obtainable with screws at 12 mm of ring displacement and decreased when the tibial ring was detached. No correlation was found between bone density and the compressive force achievable by either fusion method. The compression across the transverse tarsal joint that can be obtained with a circular external fixator including a tibial ring exceeds that which can be obtained with 3 headless compression screws. Screw and external fixator performance did not correlate with bone mineral density. This study supports the use of external fixation as an alternative method of generating compression to help stimulate fusion across the transverse tarsal joints. The findings provide biomechanical evidence to support the use of external fixation as a viable option in transverse tarsal joint fusion cases in which screw fixation has failed or is anticipated to be inadequate due to suboptimal bone quality. © The Author(s) 2015.
Kinetics of molecular transitions with dynamic disorder in single-molecule pulling experiments
NASA Astrophysics Data System (ADS)
Zheng, Yue; Li, Ping; Zhao, Nanrong; Hou, Zhonghuai
2013-05-01
Macromolecular transitions are subject to large fluctuations of rate constant, termed as dynamic disorder. The individual or intrinsic transition rates and activation free energies can be extracted from single-molecule pulling experiments. Here we present a theoretical framework based on a generalized Langevin equation with fractional Gaussian noise and power-law memory kernel to study the kinetics of macromolecular transitions to address the effects of dynamic disorder on barrier-crossing kinetics under external pulling force. By using the Kramers' rate theory, we have calculated the fluctuating rate constant of molecular transition, as well as the experimentally accessible quantities such as the force-dependent mean lifetime, the rupture force distribution, and the speed-dependent mean rupture force. Particular attention is paid to the discrepancies between the kinetics with and without dynamic disorder. We demonstrate that these discrepancies show strong and nontrivial dependence on the external force or the pulling speed, as well as the barrier height of the potential of mean force. Our results suggest that dynamic disorder is an important factor that should be taken into account properly in accurate interpretations of single-molecule pulling experiments.
Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system
NASA Astrophysics Data System (ADS)
Longcai, Zhang
2014-07-01
Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.